State Estimation

Now turn to the general problem of estimating the state of a noisy dynamic system given noisy measurements:

\[x^+ = f(x, w) \]
\[y = h(x) + v \]

in which the process disturbance, \(w \), measurement disturbance, \(v \), and system initial state, \(x(0) \), are independent random variables with stationary probability densities.

Full Information Estimation

- Full information estimation will prove to have the best theoretical properties in terms of stability and optimality.
- Unfortunately, it will also prove to be computationally intractable except for the simplest cases, such as a linear system model.
- One method for practical estimator design therefore is to come as close as possible to the properties of full information estimation while maintaining a tractable online computation (MHE).
Variables

Notation required to distinguish the system variables from the estimator variables:

<table>
<thead>
<tr>
<th>System variable</th>
<th>Decision variable</th>
<th>Optimal decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>x</td>
<td>\hat{x}</td>
</tr>
<tr>
<td>process disturbance</td>
<td>w</td>
<td>\hat{w}</td>
</tr>
<tr>
<td>measured output</td>
<td>y</td>
<td>\hat{y}</td>
</tr>
<tr>
<td>measurement disturbance</td>
<td>v</td>
<td>\hat{v}</td>
</tr>
</tbody>
</table>

The relationships between these variables:

\[
\begin{align*}
x^+ &= f(x, w) & y &= h(x) + v \\
\chi^+ &= f(\chi, \omega) & y &= h(\chi) + \nu \\
\hat{x}^+ &= f(\hat{x}, \hat{w}) & \hat{y} &= h(\hat{x})
\end{align*}
\]

Full Information Estimation

The full information objective function is

\[
V_T(\chi(0), \omega) = \ell_x(\chi(0) - \overline{x}_0) + \sum_{i=0}^{T-1} \ell_i(\omega(i), \nu(i))
\]

subject to

\[
\chi^+ = f(\chi, \omega) \quad y = h(\chi) + \nu
\]

in which T is the current time, $y(i)$ is the measurement at time i, and \overline{x}_0 is the prior information on the initial state. The full information estimator is then defined as the solution to

\[
\min_{\chi(0), \omega} V_T(\chi(0), \omega)
\]

Convergent states under i-IOSS

What class of systems have a stable state estimator?

- Assume system observability?
 - Too restrictive for even linear systems (recall the definition of detectability).
- We need a similar detectability definition for nonlinear systems – i-IOSS:

Definition 1 (i-IOSS)

The system $x^+ = f(x, w), y = h(x)$ is incrementally input/output-to-state stable (i-IOSS) if there exists some $\beta(\cdot) \in KL$ and $\gamma_1(\cdot), \gamma_2(\cdot) \in K$ such that for every two initial states z_1 and z_2, and any two disturbance sequences w_1 and w_2

\[
|x(k; z_1, w_1) - x(k; z_2, w_2)| \leq \beta(|z_1 - z_2|, k) + \gamma_1(\|w_1 - w_2\|_{0:k-1}) + \gamma_2(\|y_{z_1, w_1} - y_{z_2, w_2}\|_{0:k})
\]

One of the most important and useful implications of the i-IOSS property:

Proposition 2 (Convergence of state under i-IOSS)

If system $x^+ = f(x, w), y = h(x)$ is i-IOSS, $w_1(k) \rightarrow w_2(k)$ and $y_1(k) \rightarrow y_2(k)$ as $k \rightarrow \infty$, then

\[
x(k; z_1, w_1) \rightarrow x(k; z_2, w_2) \quad \text{for all } z_1, z_2
\]

(The proof of this proposition is discussed in Exercise 4.3.)
Convergent disturbances under i-IOSS

The class of disturbances \((w, v)\) affecting the system is defined as:

Assumption 3 (Convergent disturbances)

The sequence \((w(k), v(k))\) for \(k \in \mathbb{I}_{\geq 0}\) are bounded and converge to zero as \(k \to \infty\).

Remark 4 (Summable disturbances)

If the disturbances satisfy Assumption 3, then there exists a \(\mathcal{K}\)-function \(\gamma_w(\cdot)\) such that the disturbances are summable

\[
\sum_{i=0}^{\infty} \gamma_w(\|(w(i), v(i))\|) \text{ is bounded}
\]

See Sontag (1998, Proposition 7) for a statement and proof of this result.

Stage Cost

Given such class of disturbances, the estimator stage cost is chosen to satisfy the following property:

Assumption 5 (Positive definite stage cost)

The initial state cost and stage costs are continuous functions and satisfy the following inequalities for all \(x \in \mathbb{R}^n, w \in \mathbb{R}^g, \) and \(v \in \mathbb{R}^p\)

\[
\gamma_x(|x|) \leq \ell_x(x) \leq \gamma_x(|x|)
\]

\[
\gamma_w(||(w, v)||) \leq \ell_i(w, v) \leq \gamma_w(||(w, v)||) \quad i \geq 0
\]

in which \(\gamma_x, \gamma_w, \gamma_x, \gamma_w \in \mathcal{K}_\infty\) and \(\gamma_w\) is defined in Remark 4.

Notice that if we change the class of disturbances affecting the system, we may also have to change the stage cost in the state estimator to satisfy \(\ell_i(w, v) \leq \gamma_w(||(w, v)||)\) in (5).

Stability

Zero error system

First consider the zero estimate error solution for all \(k \geq 0\) (initial state is equal to the estimator’s prior and zero disturbances). In this case, the optimal solution is:

\[
\hat{x}(0|T) = \bar{x}_0
\]

\[
\hat{w}(i|T) = 0 \quad \text{for all} \quad 0 \leq i \leq T, T \geq 1
\]

\[
h(\hat{x}(i|T)) = y(i) \quad \text{for all} \quad 0 \leq i \leq T, T \geq 1
\]

The perturbation to this solution are: the system’s initial state (distance from \(\bar{x}_0\)), and the process and measurement disturbances. We next define stability properties so that:

- **asymptotic stability** considers the case \(x_0 \neq \bar{x}_0\) with zero disturbances.
- **robust stability** considers the case in which \((w(i), v(i)) \neq 0\).

Global Asymptotic Stability

Definition 6 (Global asymptotic stability)

The estimate is based on the noise-free measurement \(y = h(x(x_0, 0))\). The estimate is (nominally) globally asymptotically stable (GAS) if there exists a \(\mathcal{KL}\)-function \(\beta(\cdot)\) such that for all \(x_0, \bar{x}_0\) and \(k \in \mathbb{I}_{\geq 0}\)

\[
|x(k; x_0, 0) - \hat{x}(k)| \leq \beta(|x_0 - \bar{x}_0|, k)
\]

The standard definition of estimator stability for linear systems is consistent with Definition 6.
Robust Global Asymptotic Stability

Definition 7 (Robust global asymptotic stability)

The estimate is based on the noisy measurement \(y = h(x_0, w) + v \). The estimate is robustly GAS if for all \(x_0 \) and \(\bar{x}_0 \), and \((w, v) \) satisfying Assumption 3, the following hold.

1. The estimate converges to the state; as \(k \to \infty \)
 \[
 \hat{x}(k) \to x(k; x_0, w)
 \]

2. For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that
 \[
 \gamma_x(|x_0 - \bar{x}_0|) + \sum_{i=0}^{\infty} \gamma_w(||(w(i), v(i))||) \leq \delta
 \]
 implies \(|x(k; x_0, w) - \hat{x}(k)| \leq \varepsilon \) for all \(k \in \mathbb{I}_{\geq 0} \).

Robust GAS of full information estimates

Proof:
(a) First we establish that the full information cost is bounded for all \(T \geq 1 \) including \(T = \infty \). Consider a candidate set of decision variables

\[
\chi(0) = x_0 \quad \omega(i) = w(i) \quad 0 \leq i \leq T - 1
\]

The full information cost for this choice is

\[
V_T(\chi(0), \omega) = \ell_x(x_0 - \bar{x}_0) + \sum_{i=0}^{T-1} \ell_i(w(i), v(i))
\]

From Remark 4, the sum is bounded for all \(T \) including the limit \(T = \infty \). Therefore, let \(V_\infty \) be an upper bound for the right-hand side.

The optimal cost exists for all \(T \geq 0 \) because \(V_T \) is a continuous function and goes to infinity as any of its arguments goes to infinity due to the lower bounds in Assumption 5.

Robust GAS of full information estimates

Next we show that the optimal cost sequence converges:
Evaluate the cost at time \(T - 1 \) using the optimal solution from time \(T \). We have that

\[
V_{T-1}(\hat{x}(0|T), \hat{w}_T) = V_T^0 - \ell_T(\hat{w}(T|T), \hat{v}(T|T))
\]

Optimization at time \(T - 1 \) can only improve the cost giving

\[
V_T^0 \geq V_{T-1}^0 + \ell_T(\hat{w}(T|T), \hat{v}(T|T))
\]

and we see that the optimal sequence \(\{V_T^0\} \) is nondecreasing and bounded above by \(V_\infty \). Therefore the sequence converges and the convergence implies

\[
\ell_T(\hat{w}(T|T), \hat{v}(T|T)) \to 0
\]

as \(T \to \infty \). The lower bound in (5) then gives that

\[
\hat{v}(T) = y(T) - h(\hat{x}(T|T)) \to 0 \quad \text{and} \quad \hat{w}(T|T) \to 0 \quad \text{as} \quad T \to \infty.
\]
Robust GAS of full information estimates

Since the measurement satisfies $y = h(x) + v$, and $v(T)$ converges to zero, we have that

$$h(x(T)) - h(\hat{x}(T | T)) \to 0 \quad \hat{v}(T | T) \to 0 \quad T \to \infty$$

Because the system is i-IOSS, we have the following inequality for all x_0, $\hat{x}(0|k)$, w, \hat{w}_k, and $k \geq 0$,

$$|x(k; x_0, w) - x(k; \hat{x}(0|k), \hat{w}_k)| \leq \beta(|x_0 - \hat{x}(0|k)|, k) +$$

$$\gamma_1(\|w - \hat{w}_k\|_{0:k}) + \gamma_2(\|h(x) - h(\hat{x})\|_{0:k})$$

(7)

Since $w(k)$ converges to zero, $w(k) - \hat{w}(k)$ converges to zero, and $h(x(k)) - h(\hat{x}(k))$ converges to zero.

Robust GAS of full information estimates

Assume that (6) holds for some arbitrary $\delta > 0$. This gives immediately an upper bound on the optimal full information cost function for all T, $0 \leq T \leq \infty$, i.e., $V_\infty = \delta$. We then have the following bounds on the initial state estimate for all $k \geq 0$, and the initial state

$$\gamma_x(|\hat{x}(0|k) - x_0|) \leq \delta \quad \gamma_x(|x_0 - \hat{x}_0|) \leq \delta$$

These two imply a bound on the initial error estimate,

$$0 \leq T \leq \infty, i.e., V_\infty = \delta.$$

We then have the following bounds on the initial state estimate for all $k \geq 0$, and the initial state

$$\gamma_x(|\hat{x}(0|k) - x_0|) \leq \delta \quad \gamma_x(|x_0 - \hat{x}_0|) \leq \delta$$

in which $\beta(s) := \beta(s, 0)$ is a \mathcal{K}-function. Finally we choose δ such that the right-hand side is less than ε, which is possible since the right-hand side defines a \mathcal{K}-function, which goes to zero with δ. This gives for all $k \geq 0$

$$|x(k) - \hat{x}(k)| \leq \varepsilon$$

and part 2 of the robust GAS definition is established.

Robust GAS of full information estimates

From Proposition 2 we conclude that $|x(k; x_0, w) - x(k; \hat{x}(0|k), \hat{w}_k)|$ converges to zero. Since the state estimate is $\hat{x}(k) := x(k; \hat{x}(0|k), \hat{w}_k)$ and the state is $x(k) = x(k; x_0, w)$, we have that

$$\hat{x}(k) \to x(k) \quad k \to \infty$$

and the estimate converges to the system state. This establishes part 1 of the robust GAS definition.\(^1\)

\(^1\)It is not difficult to extend this argument to conclude $\hat{x}(i|k) \to x(i; x_0, w)$ as $k \to \infty$ for $k - N \leq i \leq k$ and any finite $N \geq 0$.\(^2\)
Consider again the estimation problem in the simplest possible setting with a linear time invariant model and Gaussian noise
\[
\begin{align*}
x^+ &= Ax + Gw & w &\sim N(0, Q) \\ y &= Cx + v & v &\sim N(0, R)
\end{align*}
\]
and random initial state \(x(0) \sim N(\bar{x}(0), P^-(0)) \). In full information estimation, we define the objective function
\[
V_T(\chi(0), \omega) = \frac{1}{2} \left(|\chi(0) - \bar{x}(0)|_2^2 + \sum_{i=0}^{T-1} |\omega(i)|_Q^{-1} + |\nu(i)|_R^{-1} \right)
\]
subject to \(\chi^+ = A\chi + G\omega, y = C\chi + \nu \).

Define estimate error as \(\tilde{x}(i|T) = x(i) - \hat{x}(i|T) \) for \(0 \leq i \leq T - 1 \), \(T \geq 1 \).

The noise-free measurement satisfies
\[
y(i) - C\tilde{x}(i|T) = C\tilde{x}(i|T), 0 \leq i \leq T.
\]

The initial condition term can be written in estimate error as \(\tilde{x}(0) - \bar{x}(0) = -(\hat{x}(0) - a) \) in which \(a = x(0) - \bar{x}(0) \).

The cost function of \textit{noise-free measurement} is
\[
V_T(a, \tilde{x}(0), w) = \frac{1}{2} \left(|\tilde{x}(0) - a|_{(P^-(0))^{-1}}^2 + \sum_{i=0}^{T-1} |C\tilde{x}(i) |_Q^{-1} + |w(i)|_R^{-1} \right)\tag{9}
\]

Denote the solution to this optimization as
\[
(\hat{x}(0|T), \hat{w}_T) = \arg \min_{\chi(0), \omega} V_T(\chi(0), \omega)
\]
\[
\hat{x}(i+1|T) = A\hat{x}(i|T) + G\hat{w}(i|T)
\]

Because the system is \textit{linear}, the estimator is stable if and only if it is stable with zero process and measurement disturbances.

An equivalent question

If noise-free data are provided to the estimator, \((w(i), \nu(i)) = 0\) for all \(i \geq 0\) in (8), is the estimate error asymptotically stable as \(T \to \infty\) for all \(x_0\)?

Then we make this statement precise:

- Define estimate error as \(\tilde{x}(i|T) = x(i) - \hat{x}(i|T) \) for \(0 \leq i \leq T - 1 \), \(T \geq 1 \).
- The noise-free measurement satisfies
\[
y(i) - C\tilde{x}(i|T) = C\tilde{x}(i|T), 0 \leq i \leq T.
\]
- The initial condition term can be written in estimate error as \(\tilde{x}(0) - \bar{x}(0) = -(\hat{x}(0) - a) \) in which \(a = x(0) - \bar{x}(0) \).

The cost function of \textit{noise-free measurement} is
\[
V_T(a, \tilde{x}(0), w) = \frac{1}{2} \left(|\tilde{x}(0) - a|_{(P^-(0))^{-1}}^2 + \sum_{i=0}^{T-1} |C\tilde{x}(i) |_Q^{-1} + |w(i)|_R^{-1} \right)\tag{9}
\]

For estimation we solve
\[
\tilde{x}^0(0; a), w^0(a) = \min_{\tilde{x}(0),w} V_T(a, \tilde{x}(0), w)
\]
subject to \(\tilde{x}^+ = A\tilde{x} + Gw \).

Now consider problem (10) as an optimal control problem using \(w \) as manipulated variable and minimizing an objective that measures size of estimate error \(\tilde{x} \) and control \(w \).

The stability analysis in estimation is to show that the origin for \(\tilde{x} \) is \textit{asymptotically stable}, i.e., if there exists \(K\mathcal{L}\)-function \(\beta \) such that
\[
|\tilde{x}^0(T; a)| \leq \beta(|a|, T) \text{ for all } T \in \mathbb{I}_{\geq 0}.
\]
Differences between standard regulation and the estimation problem (10):

- (10) is slightly nonstandard because it contains an extra decision variable, the initial state, and an extra term in the cost function, (9).
- Convergence is a question about the terminal state in a sequence of different optimal control problems with increasing horizon length T. It is also not the standard regulator convergence question which asks how the state trajectory evolves using the optimal control law.
- In standard regulation, we inject the optimal first input and ask whether we are successfully moving the system to the origin as time increases.
- In estimation, we do not inject anything into the system; we are provided more information as time increases and ask whether our explanation of the data is improving (terminal estimate error is decreasing) as time increases.

Choose forward DP to seek the optimal terminal state $\tilde{x}^0(T; a)$ as a function of the parameter a appearing in the cost function. (Check Exercise 4.12 to see how to solve (10).) There exists the following recursion for the optimal terminal state

$$\tilde{x}^0(k + 1; a) = (A - \tilde{L}(k)C)\tilde{x}^0(k; a)$$ (11)

for $k \geq 0$. The initial condition for the recursion is $\tilde{x}^0(0; a) = a$.

The time-varying gains $\tilde{L}(k)$ and associated cost matrices $P^-(k)$ are

$$P^-(k + 1) = GQG' + AP^-(k)A' - AP^-(k)C'(CP^-(k)C' + R)^{-1}CP^-(k)A$$ (12)

$$\tilde{L}(k) = AP^-(k)C'(CP^-(k)C' + R)^{-1}$$ (13)

in which $P^-(0)$ is specified in the problem.

Asymptotic stability of the estimate error can be established by showing that $V(k, \tilde{x}) := (1/2)\tilde{x}'P(k)^{-1}\tilde{x}$ is a Lyapunov function for (11) (Jazwinski, 1970, Theorem 7.4).

Although one can find Lyapunov functions valid for estimation, they do not have the same simple connection to optimal cost functions as in standard regulation problems, even in the linear, unconstrained case.

Stability arguments based instead on properties of $V_0^f(a)$ are simpler and more easily adapted to cover new situations arising in research problems.

If a Lyapunov function is required for further analysis, a converse theorem guarantees its existence.

Duality of Linear Estimation and Regulation

Estimator problem:

$$x(k + 1) = Ax(k) + Gw(k)$$

$$y(k) = Cx(k) + v(k)$$

$$R > 0 \quad Q > 0 \quad (A, C) \text{ detectable} \quad (A, G) \text{ stabilizable}$$

$$\tilde{x}(k + 1) = \left(A - \tilde{L}C \right)\tilde{x}(k)$$

Regulator problem:

$$x(k + 1) = Ax(k) + Bu(k)$$

$$y(k) = Cx(k)$$

$$R > 0 \quad Q > 0 \quad (A, B) \text{ stabilizable} \quad (A, C) \text{ detectable}$$

$$x(k + 1) = (A + BK)x(k)$$
Duality of Linear Estimation and Regulation

<table>
<thead>
<tr>
<th>Regulator</th>
<th>Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R > 0$, $Q > 0$</td>
<td>$R > 0$, $Q > 0$</td>
</tr>
<tr>
<td>(A, B) stabilizable</td>
<td>(A, C) detectable</td>
</tr>
<tr>
<td>(A, C) detectable</td>
<td>(A, G) stabilizable</td>
</tr>
</tbody>
</table>

Lemma 9 (Duality of controllability and observability)

(A, B) is controllable (stabilizable) if and only if (A', B') is observable (detectable).

MHE introduction

- In MHE we consider only the N most recent measurements, $y_N(T) = \{y(T - N), y(T - N + 1), \ldots y(T - 1)\}$.
- For $T > N$, the MHE problem is defined to be:

$$
\min_{\chi(T - N), \omega} \hat{V}_T(\chi(T - N), \omega) = \Gamma_{T - N}(\chi(T - N)) + \sum_{i = T - N}^{T - 1} \ell_i(\omega(i), \nu(i))
$$

subject to:

$$
\begin{align*}
\chi^+ &= f(\chi, \omega) \\
y &= h(\chi) + \nu \\
\omega &= \{\omega(T - N), \ldots, \omega(T - 1)\}
\end{align*}
$$

Prior Information

- The designer chooses the prior weighting $\Gamma_k(\cdot)$ for $k > N$ until the data horizon is full.
- For times $T \leq N$, we generally define the MHE problem to be the full information problem.

Zero Prior Weighting

When we choose $\Gamma_i(\cdot) = 0$ for all $i \geq N$:

$$
\hat{V}_T(\chi(T - N), \omega) = \sum_{i = T - N}^{T - 1} \ell_i(\omega(i), \nu(i))
$$

Establishing the convergence of the estimate error to zero for this form of MHE is straightforward.

Observability

To ensure solution existence, the system needs to be restricted further than i-IOSS:

Definition 10 (Observability)

The system $x^+ = f(x, w), y = h(x)$ is observable if there exist finite $N_0 \in \mathbb{I}_{\geq 2}$, $\gamma_1(\cdot), \gamma_2(\cdot) \in \mathcal{K}$ such that for every two initial states z_1 and z_2, and any two disturbance sequences w_1, w_2, and all $k \geq N_0$

$$
|z_1 - z_2| \leq \gamma_1(\|w_1 - w_2\|_{0,k - 1}) + \gamma_2(\|y_{z_1, w_1} - y_{z_2, w_2}\|_{0,k})
$$

At any time $T \geq N$, for the decision variables of $\chi(T - N) = x(T - N)$ and $\omega(i) = w(i)$ for $T - N \leq i \leq T - 1$, recall the cost function:

$$
\hat{V}_T(\chi(T - N), \omega) = \sum_{i = T - N}^{T - 1} \ell_i(\omega(i), \nu(i))
$$

which is less than V_∞ defined in the full information problem.
Observability Ensures Existence of Solution

Observability ensures that for all $k \geq N \geq N_o$,
\[|x(k - N) - \hat{x}(k - N||k)| \leq \gamma_2 (\|\nu\|_{k-N:k}) \]

- Since $\nu(k)$ is bounded for all $k \geq 0$, observability has bounded the distance between the initial estimate in the horizon and the system state for all $k \geq N$.
- This fact along with continuity of $\hat{V}_T(\chi, \omega)$ ensures existence of the solution to the MHE problem by the Weierstrass theorem.
- But the solution does not have to be unique.

Final-state observability

Definition 11 (Final-state observability)

The system $x^+ = f(x, w)$, $y = h(x)$ is final-state observable (FSO) if there exist finite $N_o \in \mathbb{I}_{\geq 1}$, $\gamma_1(\cdot)$, $\gamma_2(\cdot) \in \mathcal{K}$ such that for every two initial states z_1 and z_2, and any two disturbance sequences w_1, w_2, and all $k \geq N_o$
\[|x(k; z_1, w_1) - x(k; z_2, w_2)| \leq \gamma_1 (\|w_1 - w_2\|_{0:k-1}) + \gamma_2 (\|y_{z_1, w_1} - y_{z_2, w_2}\|_{0:k}) \]

- FSO is the natural system requirement for MHE with zero prior weighting to provide stability and convergence.
- FSO is weaker than observability and stronger than i-IOSS (detectability) as discussed in Exercise 4.11.

Convergence of MHE Cost Function

- Since $(w(i), v(i))$ converges to zero, (31) implies that \hat{V}_T converges to zero as $T \to \infty$.
- The optimal cost at T, \hat{V}_T^0, is bounded above by \hat{V}_T so \hat{V}_T^0 also converges to zero:
\[\hat{V}_T^0 = \sum_{i=T-N}^{T-1} \ell_i (\hat{w}(i|T), y(i) - h(\hat{x}(i|T))) \to 0 \]
- Therefore $y(i) - h(\hat{x}(i|T)) \to 0$ and $\hat{w}(i|T) \to 0$.
- Since $y = h(x) + v$ and $v(i)$ converges to zero, and $w(i)$ converges to zero, we also have
\[h(x(i)) - h(\hat{x}(i|T)) \to 0 \quad w(i) - \hat{w}(i|T) \to 0 \]
\[(15) \]
for $T - N \leq i \leq T - 1$, $T \geq N$.

Robust GAS of MHE with zero prior weighting

Theorem 12 (Robust GAS of MHE with zero prior weighting)

Consider an observable system and measurement sequence generated by (1) with disturbances satisfying Assumption 3. The MHE estimate with zero prior weighting, $N \geq N_o$, and stage cost satisfying (5), is robustly GAS.
Nonzero Prior Weighting

There are two drawbacks of zero prior weighting:

- The system had to be assumed observable rather than detectable to ensure existence of the solution to the MHE problem.
- A large horizon N may be required to obtain performance comparable to full information estimation.

We address these disadvantages by using nonzero prior weighting:

$$\min_{\chi(T-N),\omega} \hat{V}_T(\chi(T-N),\omega) = \Gamma_{T-N}(\chi(T-N)) + \sum_{i=T-N}^{T-1} \ell_i(\omega(i),\nu(i))$$

Full information arrival cost

Definition 13 (Full information arrival cost)

The full information arrival cost is defined as

$$Z_T(p) = \min_{\chi(0),\omega} V_T(\chi(0),\omega)$$

subject to

$$\chi^+ = f(\chi,\omega), \quad y = h(\chi) + \nu, \quad \chi(T;\chi(0),\omega) = p$$

Here forward DP is used to decompose the full information problem exactly into the MHE problem (30) in which $\Gamma(\cdot)$ is chosen as arrival cost.

Lemma 14 (MHE and full information estimation)

The MHE problem (30) is equivalent to the full information problem (3) for the choice $\Gamma_k(\cdot) = Z_k(\cdot)$ for all $k > N$ and $N \geq 1$.

MHE arrival cost

Definition 15 (MHE arrival cost)

The MHE arrival cost $\hat{Z}(\cdot)$ is defined for $T > N$ as

$$\hat{Z}_T(p) = \min_{z,\omega} \hat{V}_T(z,\omega)$$

$$= \min_{z,\omega} \Gamma_{T-N}(z) + \sum_{i=T-N}^{T-1} \ell_i(\omega(i),\nu(i))$$

subject to

$$\chi^+ = f(\chi,\omega), \quad y = h(\chi) + \nu, \quad \chi(T;z,T-N,\omega) = p$$

For $T \leq N$, usually define the MHE problem to be the full information problem, so $\hat{Z}_T(\cdot) = Z_T(\cdot)$ and $\hat{V}_T^0 = V_T^0$.

Prior weighting

Choosing a prior weighting that underbounds the MHE arrival cost is the key sufficient condition for stability and convergence of MHE.

Assumption 16 (Prior weighting)

We assume that $\Gamma_k(\cdot)$ is continuous and satisfies the following inequalities for all $k > N$

- **Upper bound**

$$\Gamma_k(p) \leq \hat{Z}_k(p) = \min_{z,\omega} \Gamma_{k-N}(z) + \sum_{i=k-N}^{k-1} \ell_i(\omega(i),\nu(i))$$

subject to $\chi^+ = f(\chi,\omega), y = h(\chi) + \nu, \chi(k; z, k-N, \omega) = p$.

- **Lower bound**

$$\Gamma_k(p) \geq \hat{V}_k^0 + \gamma_p (|p - \hat{x}(k)|)$$

in which $\gamma_p \in K_\infty$.

SADCO 2013

MHE state estimation

37 / 65

SADCO 2013

MHE state estimation

38 / 65

SADCO 2013

MHE state estimation

39 / 65

SADCO 2013

MHE state estimation

40 / 65
Upper Bound of MHE Arrival Cost

- An upper bound for the MHE optimal cost is necessary to establish convergence of the MHE estimates.
- A stronger result is that the MHE arrival cost is bounded above by the full information arrival cost.

Proposition 17 (Arrival cost of full information greater than MHE)

\[\hat{Z}_T(\cdot) \leq Z_T(\cdot) \quad T \geq 1 \]

Given (20) we also have the analogous inequality for the optimal costs of MHE and full information:

\[\hat{V}_T^0 \leq V_T^0 \quad T \geq 1 \]

Robust GAS of MHE

Theorem 19 (Robust GAS of MHE)

Consider an MHE detectable system and measurement sequence generated by (1) with disturbances satisfying Assumption 3. The MHE estimate defined by (30) using the prior weighting function \(\Gamma_k(\cdot) \) satisfying Assumption 16 and stage cost satisfying Assumption 5 is robustly GAS.

MHE Detectable

Assumption 18 (MHE detectable system)

We say a system \(x^+ = f(x, w) \), \(y = h(x) \) is **MHE detectable** if the system augmented with an extra disturbance \(w_2 \)

\[x^+ = f(x, w_1) + w_2 \quad y = h(x) \]

is i-IOSS with respect to the augmented disturbance \((w_1, w_2)\).

- Note that MHE detectable is stronger than i-IOSS (detectable) but weaker than observable and FSO.
- See also Exercise 4.10.
Robust GAS of MHE

Constraints

- For estimation problem, some physically known facts should also be enforced such as:
 - Concentrations of impurities must be nonnegative,
 - Fluxes of mass must have the correct sign given concentration gradients.
 - Fluxes of energy must have the correct sign given temperature gradients.
 - ...
- However, unlike the regulator, the estimator has no way to enforce these constraints on the system.
- It is important that any constraints imposed on the estimator are satisfied by the system generating the measurements.

Constrained MHE

It is straightforward to add constraints in MHE since it is posed as an optimization formulation.

Assumption 20 (Estimator constraint sets)

- For all $k \in \mathbb{I}_{\geq 0}$, the sets W_k, X_k, and V_k are nonempty and closed, and W_k and V_k contain the origin.
- For all $k \in \mathbb{I}_{\geq 0}$, the disturbances and state satisfy
 $$x(k) \in X_k \quad w(k) \in W_k \quad v(k) \in V_k$$
- The prior satisfies $x_0 \in X_0$.

Constrained full information

Constrained full information. The constrained full information estimation objective function is:

$$V_T(x(0), \omega) = \ell_x(x(0) - x_0) + \sum_{i=0}^{T-1} \ell_i(\omega(i), v(i)) \quad (22)$$

subject to

$$x^+ = f(x, \omega) \quad y = h(x) + v$$
$$x(i) \in X_i \quad \omega(i) \in W_i \quad v(i) \in V_i \quad i \in \mathbb{I}_{0:T-1}$$

The constrained full information problem is

$$\min_{x(0), \omega} V_T(x(0), \omega) \quad (23)$$
Robust GAS of constrained full information

Theorem 21 (Robust GAS of constrained full information)

Consider an i-IOSS (detectable) system and measurement sequence generated by (1) with constrained, convergent disturbances satisfying Assumptions 3 and 20. The constrained full information estimator (23) with stage cost satisfying Assumption 5 is robustly GAS.

Robust GAS of constrained MHE

Theorem 22 (Robust GAS of constrained MHE)

Consider an MHE detectable system and measurement sequence generated by (1) with convergent, constrained disturbances satisfying Assumptions 3 and 20. The constrained MHE estimator (25) using the prior weighting function $\Gamma_k(\cdot)$ satisfying Assumption 16 and stage cost satisfying Assumption 5 is robustly GAS.

- Because the system satisfies the state and disturbance constraints due to Assumption 20, both full information and MHE optimization problems are feasible at all times.
- The proofs of Theorems 21 and 22 closely follow the proofs of their respective unconstrained versions, Theorems 8 and 19, and are omitted.

Constrained MHE

Constrained MHE. The constrained moving horizon estimation objective function is

$$\hat{V}_T(\chi(T - N), \omega) = \Gamma_{T-N}(\chi(T - N)) + \sum_{i=T-N}^{T-1} \ell_i(\omega(i), \nu(i))$$ (24)

subject to

$$\chi^+ = f(\chi, \omega) \quad y = h(\chi) + \nu$$

$$\chi(i) \in X_i \quad \omega(i) \in W_i \quad \nu(i) \in V_i \quad i \in \mathbb{I}_{T-N:T-1}$$

The constrained MHE is given by the solution to the following problem

$$\min_{\chi(T-N), \omega} \hat{V}_T(\chi(T - N), \omega)$$ (25)

Constrained Linear Systems

For the constrained linear systems:

$$x^+ = Ax + Gw \quad y = Cx + v$$ (26)

- First, the i-IOSS assumption of full information estimation and the MHE detectability assumption both reduce to the assumption that (A, C) is detectable in this case.
- We usually choose a constant quadratic function for the estimator stage cost for all $i \in \mathbb{I}_{\geq 0}$

$$\ell_i(w, v) = (1/2)(|w|_Q^{-1} + |v|_R^{-1}) \quad Q, R > 0$$ (27)

- In the unconstrained linear problem, we can of course find the full information arrival cost exactly; it is:

$$Z_k(z) = V_k^0 + (1/2)|z - \hat{x}(k)|_{(P_k^{-1})} \quad k \geq 0$$
Constrained Linear Systems

We use this unconstrained arrival cost to be the prior weighting in MHE:

Assumption 23 (Prior weighting for linear system)

\[
\Gamma_k(z) = \hat{V}_0^k + (1/2)|z - \hat{x}(k)|_2^2 - 1\quad k > N
\]

in which \(\hat{V}_0^k\) is the optimal MHE cost at time \(k\).

This choice implies robust GAS of the MHE estimator also for the constrained case as we next demonstrate.

To ensure the form of the estimation problem to be solved online is a quadratic program, we specialize the constraint sets to be polyhedral regions.

Assumption 24 (Polyhedral constraint sets)

For all \(k \in \mathbb{Z}_{\geq 0}\), the sets \(W_k\), \(X_k\), and \(V_k\) in Assumption 20 are nonempty, closed polyhedral regions containing the origin.

Robust GAS of constrained MHE

Corollary 25 (Robust GAS of constrained MHE)

Consider a detectable linear system and measurement sequence generated by (26) with convergent, constrained disturbances satisfying Assumptions 3 and 24. The constrained MHE estimator (25) using prior weighting function satisfying (28) and stage cost satisfying (27) is robustly GAS.

This corollary follows as a special case of Theorem 22.

Filtering Update

- The MHE approach uses the MHE estimate \(\hat{x}(T - N)\) and prior weighting function \(\Gamma_{T - N}(\cdot)\) derived from the unconstrained arrival cost as shown in (28).
- We call this approach a “filtering update” because the prior weight at time \(T\) is derived from the solution of the MHE “filtering problem” at time \(T - N\), i.e., the estimate of \(\hat{x}(T - N) := \hat{x}(T - N|T - N)\) given measurements up to time \(T - N - 1\).
- For implementation, this choice requires storage of a window of \(N\) prior filtering estimates to be used in the prior weighting functions as time progresses.

Smoothing Update

- In the smoothing update we wish to use \(\hat{x}(T - N|T - 1)\) (instead of \(\hat{x}(T - N|T - N)\)) for the prior and wish to find an appropriate prior weighting based on this choice.
- When constraints are added to the problem, the smoothing update provides a different MHE than the filtering update.
- The smoothing prior weighting maintains the stability and GAS robustness properties of MHE with the filtering update.

Recall the unconstrained full information arrival cost is given by

\[
Z_{T-N}(z) = V_0^T_{T-N} + (1/2)|z - \hat{x}(T - N)|_2^2 - 1\quad T > N
\]

Now consider the proper weight when using \(\hat{x}(T - N|T - 2)\) in place of \(\hat{x}(T - N) := \hat{x}(T - N|T - 1)\) ...
Smoothing Update

Should it be the smoothed covariance \(P(T - N|T - 2) \) instead of \(P^-(T - N) := P(T - N|T - 1) \)?

Correct, but not complete.

- The smoothed prior \(\hat{x}(T - N|T - 2) \) is influenced by the measurements \(y_{0:T-2} \).
- But the sum of stage costs in the MHE problem at time \(T \) depends on measurements \(y_{T-N:T-1} \).
- Therefore we have to adjust the prior weighting so we do not double count the data \(y_{T-N:T-2} \).

For any square matrix \(R \) and integer \(k \geq 1 \), define \(\text{diag}_k(R) \) to be the following

\[
\text{diag}_k(R) := \begin{bmatrix}
R \\
R \\
... \\
R
\end{bmatrix}_{k \text{ times}}
\]

\[
O_k = \begin{bmatrix}
0 & C & C & \cdots \\
C & CA & C & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
CA^{k-2} & CA^{k-3} & \cdots & C
\end{bmatrix}
\]

\[
W_k = \text{diag}_k(R) + O_k(\text{diag}_k(Q))O_k'
\]

The smoothing arrival cost is then given by \(^2\)

\[
\tilde{Z}_{T-N}(z) = \tilde{V}_{T-1}^N + \frac{1}{2} |z - \hat{x}(T - N|T - 2)|^2(P(T-N|T-2))^{-1} - \frac{1}{2} |y_{T-N:T-2} - O_{N-1}z|^2(W_{N-1})^{-1} \quad T > N
\]

- The second term accounts for the use of the smoothed covariance and the smoothed estimate.
- The third term subtracts the effect of the measurements that have been double counted in the MHE objective as well as the smoothed prior estimate.

\(^2\)See Rao, Rawlings, and Lee (2001) and Rao (2000, pp.80–93) for a derivation that shows \(\tilde{Z}_T(z) = Z_T(z) \) for \(T > N \).
Smoothing Update

\[y(T) \]

\[y(T) - N - 1 \]

\[y(T) - N - 2 \]

\[y(T) \]

\[y(T) - N - 1 \]

\[y(T) - N - 2 \]

\[T - 2N \]

\[T - N \]

\[k \]

\[T \]

Recommended exercises

- Observability, detectability, i-IOSS. Exercises 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.10, 4.11.\(^3\)

Further Reading I

Further Reading II

\(^3\)Rawlings and Mayne (2009, Chapter 4). Downloadable from www.che.wisc.edu/~jbraw/mpc.
The author is indebted to Luo Ji of the University of Wisconsin and Ganzhou Wang of the Universität Stuttgart for their help in organizing the material and preparing the overheads.