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Summary
We study dynamic minimization problems of the calculus of variations with Lagrangian function-
als containing Riemann–Liouville fractional integrals, classical and Caputo fractional derivatives.
Under assumptions of regularity, coercivity and convexity, we prove existence of solutions.

Introduction
Fractional calculus of variations

• was first introduced in 1996, by Fred Riewe, because classical Lagrangian and Hamiltonian
mechanics is unable to deal with nonconservative forces like friction;

• is a generalization of classical calculus of variations, considering derivatives (and integrals)
of real or complex order.

Many results regarding to traditional variational problems were extended to the non-integer
case e.g.,

• necessary optimality conditions;
• Noether’s theorem.

However, if we ask about results addressed to the existence of solutions for problems of fractional
calculus of variations, we will see that they are rare and are discussed only in

• M. Klimek, ’Existence-uniqueness result for a certain equation of motion in fractional me-
chanics’, Bulletin of the Polish Academy of Science, vol. 58, 2010, no.4, 73–78.

• L. Bourdin, ’Existence of weak solutions for fractional Eler–Lagrange equations’, Journal of
Mathematical Analysis and Applications, vol. 399, 2013, no. 1, 239–251.

It is important to remark that existence theorems are essential ingredients of the deductive
method for solving variational problems, which

• starts with the proof of existence;
• next one shows necessary conditions;
• finally candidates are examined to arrive at a solution.

These arguments make the question of existence an emergent topic, which requires serious
attention and more interest.

Basic Notions
Let a, b ∈ R (a < b), d ∈ N

∗, 1 ≤ r ≤ ∞. We will denote by:

•
∥
·
∥ the standard Euclidean norm of Rd;

• Lr := Lr(a, b;Rd) the usual space of r-Lebesgue integrable functions endowed with its usual
norm · Lr .

• W1,r := W1,r(a, b;Rd) the usual r-Sobolev space endowed with its usual norm · W1,r;
• C := C ([a, b];Rd) the standard space of continuous functions;
• C ∞

c := C ∞
c ([a, b];Rd) the standard space of infinitely differentiable functions compactly

supported in ]a, b[.

Moreover, let us remind that the compact embedding W1,r
։֒ C holds.

We define the left and the right Riemann–Liouville fractional integrals Iα− and Iα+ of order α ∈ R

(α > 0) by
Iα−[f ](t) := 1

Γ(α)

∫ t

a

f (y)dτ

(t − y)1−α
, t > a

and
Iα+[f ](t) := 1

Γ(α)

∫ b

t

f (y)dτ

(y − t)1−α
, t < b,

respectively. Here Γ(α) denotes the Euler’s Gamma function. Note that, operators Iα− and Iα+
are well defined a.e. on (a, b) for f ∈ L1.
Let 0 < α < 1. Then the left and the right Caputo fractional derivatives of order α are given by

∀t ∈]a, b], cDα
−[f ](t) := I1−α

− [ḟ ](t) and ∀t ∈ [a, b[, cDα
+[f ](t) := −I1−α

+ [ḟ ](t),

respectively. Later in the text, we will make use of the following property yelding boundedness
of Riemann-Liouville fractional integrals in the space Lp.
Property 1. The left Riemann–Liouville fractional inegral Iα− with α > 0 is linear and bounded

operator in Lr:

∀ f ∈ Lr,
∥∥Iα−[f ]

∥∥
Lr ≤

(b − a)α
Γ(1 + α)

∥∥f
∥∥

Lr .

Main Results
Let 1 < p < ∞, p′ be the adjoint of p and let α ∈ R (0 < α < 1). We deal with variational
functional

L : E −→ R

u 7−→

∫ b

a
L(u, Iα−[u], u̇, cDα

−[u], t) dt,

and ask about existence of minimizers for L. We assume that

• E is weakly closed subset of W1,p;
• u̇ is the derivative of u;
• L is a Lagrangian of class C 1:

L : (Rd)4 × [a, b] −→ R

(x1, x2, x3, x4, t) 7−→ L(x1, x2, x3, x4, t).

Moreover, we will denote by ∂iL partial derivatives of L with respect to its i-th argument,
i = 1, 2, 3, 4.
Now, using general assumptions of regularity, coercivity and convexity, we prove fractional
analog of Tonelli theorem, ensuring the existence of minimizer for L.
Definition 1. We will say that L is regular, if for any u ∈ W1,p it satisfies

• L(u, K [u], u̇, K [u̇], t) ∈ L1;

• ∂1L(u, Iα−[u], u̇, cDα
−[u], t) ∈ L1;

• ∂2L(u, Iα−[u], u̇, cDα
−[u], t) ∈ Lp′

;

• ∂3L(u, Iα−[u], u̇, cDα
−[u], t) ∈ Lp′

;

• ∂4L(u, Iα−[u], u̇, cDα
−[u], t) ∈ Lp′

.

Definition 2. We will say that L is coercive, if it satisfies

lim
u

W1,p→∞
u∈E

L(u) = +∞.

Next result gives Tonelli-type theorem for Lagrangian functionals containing Caputo fractional
derivatives.
Theorem 1 (TONELLI-TYPE THEOREM). Let us assume that:

• L is regular;

• L is coercive on E ;

• L(·, t) is convex on (Rd)4 for any t ∈ [a, b].

Then, there exists a minimizer for L.

In order to make the hypotheses of Theorem 1 more concrete, we give more precise sufficient
conditions on the Lagrangian L, that imply regularity and coercivity of functional L. In this
fashion, we define the family of sets denoted by PM , for any M ≥ 1.
For M ≥ 1, we define PM to be the set of maps P : (Rd)4 × [a, b] → R

+ such that for any
(x1, x2, x3, x4, t) ∈ (Rd)4 × [a, b]:

P(x1, x2, x3, x4, t) =
N∑

k=0
ck (x1, t)x2

d2,kx3
d3,kx4

d4,k ,

with N ∈ N and where, for any k = 0, . . . , N , ck : Rd × [a, b] −→ R
+ is continuous and

satisfies d2,k + d3,k + d4,k ≤ (p/M).
Proposition 1. Suppose that there exist P0 ∈ P1, P1 ∈ P1, P2 ∈ Pp′, P3 ∈ Pp′ and

P4 ∈ Pp′ such that for any (x1, x2, x3, x4, t) ∈ (Rd)4 × [a, b]:

• |L(x1, x2, x3, x4, t)| ≤ P0(x1, x2, x3, x4, t);
• ∂1L(x1, x2, x3, x4, t) ≤ P1(x1, x2, x3, x4, t);
• ∂2L(x1, x2, x3, x4, t) ≤ P2(x1, x2, x3, x4, t);
• ∂3L(x1, x2, x3, x4, t) ≤ P3(x1, x2, x3, x4, t);
• ∂4L(x1, x2, x3, x4, t) ≤ P4(x1, x2, x3, x4, t).

Then, L is regular.

Namely, let us consider u0 ∈ R
d and E = W1,p

a , where W1,p
a := {u ∈ W1,p, u(a) = u0}. Note

that, W1,p
a is a weakly closed subset of W1,p, because the compact embedding W1,p

։֒ C holds.
Next proposition gives sufficient condition for coercive Lagrangian L implying its coercivity.
Proposition 2. Assume that, for any (x1, x2, x3, x4, t) ∈ (Rd)4 × [a, b]:

L(x1, x2, x3, x4, t) ≥ c0x3
p +

N∑

k=1
ckx1

d1,kx2
d2,kx3

d3,kx4
d4,k ,

with c0 > 0 and N ∈ N
∗ and where, for any k = 1, . . . , N , ck ∈ R and

0 ≤ d1,k + d2,k + d3,k + d4,k < p.

Then, L is coercive on W
1,p
a .

Example 1. As an example, let us consider the following Lagrangian

L(x1, x2, x3, x4, t) = 1
2

4∑

i=1
xi

2.

It is not difficult to verify, that L is convex and satisfies hypotheses of Propositions 1 and 2 with

p = 2. Therefore, there exists a minimizer of L defined on W1,2.


