
1 MAPLE for Stochastic Differential
Equations

S. Cyganowski1, L. Grüne2, and P.E. Kloeden2

1 Trinity College, Royal Parade, Parkville 3052, Australia,
e-mail: scyganowski@trinity.unimelb.edu.au

2 Fachbereich Mathematik, Johann Wolfgang Goethe-Universität,
D–60054 Frankfurt am Main, Germany,
e-mail: gruene, kloeden@math.uni-frankfurt.de

Abstract. This chapter introduces the maple software package stochastic con-
sisting of maple routines for stochastic calculus and stochastic differential equa-
tions and for constructing basic numerical methods for specific stochastic differen-
tial equations, with simple examples illustrating the use of the routines. A website
address is given from which the software can be downloaded and where up to date
information about installment, new developments and literature can be found.

1.1 Introduction

Stochastic calculus and stochastic differential equations (SDEs), and in par-
ticular numerical schemes for SDEs, provide an ideal context for the use
of symbolic manipulator software [4,5,8,11,18,22,23]. These issues were men-
tioned briefly by the third co-author in his lectures at the summer school in
Durham. A copy of the overhead projector transparencies of these lectures
can be downloaded from

http://www.math.uni-frankfurt.de/~numerik/kloeden

Since extensive expositions of the contents of these lectures are readily avail-
able in the text books [13,16] as well as in review articles [14,15,17,21] and
other books [1,2,9,19], the details will not be repeated here. Instead this
chapter will focus on the maple software package stochastic that consists
of maple routines for stochastic calculus, stochastic differential equations
(SDEs) and numerical methods for SDEs.

The presentation is not self contained. It is assumed that the reader will
consult the above references for the necessary background on stochastic cal-
culus as well as suitable maple textbooks and handbooks. Some historical
remarks on SDEs will given in the next section, followed by a brief intro-
duction to the stochastic package in Section 3 and then, in the subsequent
sections, the procedures of this package will be presented and illustrated
through simple examples.

2 S. Cyganowski et al.

1.2 Stochastic Differential Equations

FollowingEinstein’s explanation of physically observed Brownian motion dur-
ing the first decade of the 1900s, the physicists Langevin and Smoluchowski,
and others, attempted to model the dynamics of such motion in terms of dif-
ferential equations. Instead of a deterministic ordinary differential equation

dx

dt
= a(t, x)

they obtained a noisy differential equation of the form

d

dt
Xt = a(t, Xt) + b(t, Xt) ξt (1.1)

with a deterministic or averaged drift term a(t, Xt) perturbed by a noise
intensity term b(t, Xt) ξt, where the ξt are independent N(0, 1)–distributed
Gaussian random variables for each t and b(t, x) is an intensity factor that
may, in general, depend on both the t and x variables. (Note a subscript will
be used to denote the time dependence of a stochastic process, i.e. Xt will be
written instead of X(t)).

The driving process ξt, which is called Gaussian white noise, appears
formally to be the pathwise derivative of a mathematical Brownian motion or
Wiener process Wt, a Gaussian process with W0 = 0 and N(0, t)–distributed
Wt for each t ≥ 0, i.e. with

E (Wt) = 0, E
(
(Wt)

2
)

= t,

which has independent increments

E ((Wt4 −Wt3) (Wt2 −Wt1)) = 0

for all 0 ≤ t1 < t2 ≤ t3 < t4.
However, the Gaussian white noise process is not a conventional process,

having, for example, covariance equal to a constant multiple of the Dirac delta
function. Moreover, it is now known that the sample paths of a Wiener process
Wt are nowhere differentiable. This suggests that equation (1.1), which might
be written symbolically in terms of differentials as

dXt = a(t, Xt) dt+ b(t, Xt) dWt,

should be interpreted in some sense as an integral equation

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+

∫ t

t0

b(s,Xs) dWs. (1.2)

The first integral here is just pathwise an ordinary Riemann integral. While it
might seem that the second integral could be a Riemann–Stieltjes integral for

1 MAPLE for Stochastic Differential Equations 3

each sample path, this is not possible because the sample paths of a Wiener
process are not just not differentiable, but not even of bounded variation on
any bounded time interval. In the 1940s the Japanese mathematician K. Ito
proposed a means to overcome this difficulty with the definition of new type
of integral, a stochastic integral which is now called an Ito stochastic integral.
Later, in the 1960s, the Russian physicist R.L. Stratonovich proposed another
kind of stochastic integral, now called the Stratonovich stochastic integral,
which is distinguished from the Ito integral by a “◦” before the differential
dWt, i.e. written symbolically in the differential form

dXt = a(t, Xt) dt+ b(t, Xt) ◦ dWt,

but really an integral equation,

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+

∫ t

t0

b(s,Xs) ◦ dWs. (1.3)

There are thus two types of stochastic calculus, the Ito stochastic calculus
and the Stratonovich stochastic calculus depending on the type of stochastic
integral used. Both have their advantages as well as their disadvantages.
Which one should be used is more a modelling than mathematical issue, but
once one has been chosen a corresponding equation of the other type with
the same solutions can be determined, so it is possible to switch between
the two stochastic calculi. The reader is referred to text books on stochastic
calculus and stochastic differential equations for the appropriate definitions
and mathematical development, e.g. [1,9,13].

1.2.1 Terminology

AnN -dimensional Ito stochastic differential equation with anM -dimensional
Wiener process Wt = (W 1

t , . . . ,W
M
t), i.e. withM pairwise independent scalar

Wiener processes W 1
t , . . ., WM

t as its components, will be written in vector
form as

dXt = a(t, Xt) dt+
M∑
j=1

bj(t, Xt) dW
j
t , (1.4)

where Xt = (X1
t , . . . , X

N
t), and componentwise as

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) dW
j
t , i = 1, . . . , N. (1.5)

Note that superscripts are being used for for the indices of vectors and matri-
ces here. Also, the indexing of the bi,j appears to be the reverse of what may
have been expected, with this term representing the ith component of the
column vector bj. In fact, bi,j written in this way is the (i, j)th component

4 S. Cyganowski et al.

of the N×M -matrix B = [b1| · · · |bM] with bj as its jth column vector. The
vector SDE (1.4) could thus have written as

dXt = a(t, Xt) dt+ B(t, Xt) dWt.

Similar notation will be used for Stratonovich SDE.

1.3 The maple software package “stochastic”

The maple software package stochastic consisting of maple routines for
stochastic calculus and SDEs was developed by the first co-author, initially
as an honours degree thesis supervised by the third co-author, with additional
routines being added later by the three co-authors and Thomas Pohl from
time to time as they were required. The basic routines will be described here.
(The technical report [8] is a preliminary version of this article). All of the
software and copies of the cited papers of the co-authors can be downloaded
from

http://www.math.uni-frankfurt.de/~numerik/maplestoch

The maple software package stochastic is known to work for maple V,
Release 5.1 for Windows, Unix and Macintosh and maple 6 for Unix. An
older version with a reduced number of routines is available for maple V,
Release 3 for Windows, Unix and Macintosh. Information on downloading
and installing the package can be found under the above link, as well as a
maple-worksheet containing all the examples in this paper.
The stochastic package contains routines useful for finding explicit solutions
of SDEs and routines for constructing numerical schemes up to strong order
2.0 and weak order 3.0. Additional features include a routine that converts an
SDE from Ito to Stratonovich form and vice versa, a routine that converts an
SDE with white noise into the corresponding SDE with coloured noise, and
routines that check whether an SDE has commutative noise of the first or
second kinds. Other useful routines are also available, in particular procedures
for the partial differential operators L0 and LJ that arise in the Ito (stochastic
chain rule) formula with which users can easily construct numerical schemes
other than those available here.

The functions available are

LO SL0 LJ MLJ LFP

itoformula chainrule correct conv explicit

linearsde reducible colour comm1 comm2

linearize momenteqn position sphere

Euler Milstein milcomm Taylor1hlf Taylor2

wkeuler wktay2 wktay3

pa ap bpb pmatrix2pvector pvector2pmatrix

1 MAPLE for Stochastic Differential Equations 5

For most of the functions you can type the command ?<function> for more
information.

To use a stochastic function, either define that function alone using the
command with(stochastic, <function>), or define all stochastic func-
tions using the command with(stochastic). Alternatively, invoke the func-
tion using the long form stochastic[<function>]. This long form notation
is necessary whenever there is a conflict between a package function name
and another function used in the same session.

As an example, to find the explicit solution of a scalar SDE with drift
coefficient a(t, x) = 1/2a2x and diffusion coefficient b(t, x) = ax use

> with(stochastic,explicit); explicit(1/2*a^2*x,a*x);

1.3.1 maple-terminology

Recall the componentwise notation (1.5) of the stochastic differential equation

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) dW
j
t , i = 1, . . . , N,

which in matrix notation reads

dXt = a(t, Xt) dt+ B(t, Xt) dWt,

where

a =

 a1

...
aN

 and B = [b1| · · · |bM] =

 b1,1 · · · b1,M

...
. . .

...
bN,1 · · · bN,M

 .

In the maple stochastic package such an equation is represented by the drift
coefficient vector a and the diffusion coefficient matrix B written, e.g. for
N = 2 and M = 3 as [a1,a2] and [[b11, b12, b13],[b21, b22, b23]].
Deviations from this rule are explicitly stated in the description of the re-
spective routine.

1.4 Ito Stochastic Calculus

Consider the N -dimensional Ito SDE (1.4) with an M -dimensional Wiener
process Wt = (W 1

t , · · · ,W
M
t) written componentwise as

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) dW
j
t , i = 1, . . . , N, (1.6)

6 S. Cyganowski et al.

and define differential operators L0, L1, . . ., LM with respect to this SDE by

L0 =
∂

∂t
+

N∑
k=1

ak
∂

∂xk
+

1

2

N∑
k,l=1

M∑
j=1

bk,jbl,j
∂2

∂xk∂xl
(1.7)

and

Lj =
N∑
k=1

bk,j
∂

∂xk
, j = 1, . . . ,M. (1.8)

These operators play a fundamental role in Ito stochastic calculus through
the Ito formula for the stochastic chain rule and subsequently for stochastic
Taylor expansions and numerical schemes for the SDE that are based on
stochastic Taylor expansions. They are ideally suited to implementation with
maple.

1.4.1 Partial differential operators

Separate routines will be given for the operator L0 and for the operators Lj

with j = 1, . . ., M , and then a combined routine with j = 0 as well as j =
1, . . ., M .

L0 Operator routine The routine stochastic[L0], which applies the
partial differential operator L0 defined by (1.7), is given by

stochastic[L0]:=proc(X::algebraic,a::list(algebraic),

b::list(list(algebraic)))

local part1,part2,part3;

part1 := diff(X,t);

part2 := sum(’a[k]*diff(X,x[k])’,’k’ = 1 .. nops(a));

part3 := 1/2*sum(

’sum(’sum(’op(j,op(k,b))*op(j,op(l,b))*diff(X,x[k],x[l])’,

’j’ = 1 .. nops(op(1,b)))’,’k’ = 1 .. nops(a))’,

’l’ = 1 .. nops(a));

part1+part2+part3;

end:

The call L0(X, [a1,..,aN], [[b11,..,b1M],..,[bN1,..,bNM]]); applies
the partial differential operator L0 to a scalar valued function X (which is
arbitrary, not necessarily the solution of the SDE (1.6)). The output variables
are consistent with the variables used as input following the terminology from
Section 1.3.1.

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process

d

(
X1
t

X2
t

)
=

(
X1
t

X2
t

)
dt+

(
r

s

)
dW 1

t +

(
u

v

)
dW 2

t ,

1 MAPLE for Stochastic Differential Equations 7

where r, s, u and v are constants, that is with drift with components a1 =
x1, a

2 = x2 and the constant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
.

Apply the corresponding operator L0 to the function X(t, x1, x2) = x2.

> L0(x[2],[x[1],x[2]],[[r,u],[s,v]]);

x[2]

The result is L0X(t, x1, x2) = x2.

LJ Operator routine The routine stochastic[LJ] for the partial differ-
ential operator Lj defined by (1.8), is given by

stochastic[LJ]:=proc(X::algebraic,b::list(list(algebraic)),j::integer)

sum(’op(j,op(k,b))*diff(X,x[k])’,’k’ = 1 .. nops(b))

end:

The call LJ(X,[[b11,..,b1M],..,[bN1,..,bNM]],j); applies the partial
differential operator Lj to a function X. Here j = 1, . . ., M denotes the “cur-
rent” component of the Wiener process. The output variables are consistent
with the variables used as input.

EXAMPLE: Consider the functionX(t, x1, x2) = x2 and a 2-dimensional SDE
driven by a 2-dimensional Wiener process with diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r, s, u and v are constants.

> LJ(x[2],[[r,u],[s,v]],2);

v

> LJ(x[2],[[r,u],[s,v]],1);

s

The results are thus L2X(t, x1, x2) = v and L1X(t, x1, x2) = s

8 S. Cyganowski et al.

Combined MLJ Operator routine The routine stochastic[MLJ] applies
one of the partial differential operators, L0 or LJ to a function X, thus
combining the routines stochastic[L0] and stochastic[LJ] in a single
routine through an appropriate choice of index j.

stochastic[MLJ]:=proc(X::algebraic, a::list(algebraic),

b::list(list(algebraic)), j::integer)

local flag;

flag := 0;

if j = 0 then flag := L0(X,a,b) fi;

if flag = 0 then flag := sum(’op(j,op(k,b))*diff(X,x[k])’,

’k’ = 1 .. nops(b)) fi;

RETURN(flag)

end:

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process given by

d

(
X1
t

X2
t

)
=

(
X2
t

X1
t

)
dt+

(
r

s

)
dW 1

t +

(
u

v

)
dW 2

t ,

where r, s, u and v are constants, that is with drift with components a1 =
x2, a

2 = x1 and the constant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
.

Applying the corresponding operators L2 and L0 to the function X(t, x1, x2)
= x2 produces

> MLJ(x[2],[x[2],x[1]],[[r,u],[s,v]],2);

v

> MLJ(x[2],[x[2],x[1]],[[r,u],[s,v]],0);

x[1]

which means L2X(t, x1, x2) = v and L0X(t, x1, x2) = x1.

1.4.2 Ito Formula

For a sufficiently smooth transformation U : [0, T]×RN → R of the solution
Xt of the Ito SDE

dXt = a(t, Xt) dt+
M∑
j=1

bj(t, Xt) dW
j
t ,

1 MAPLE for Stochastic Differential Equations 9

the scalar process Yt = U(t, Xt) satisfies the a vector stochastic differential

dYt = L0U(t, X)t) dt+
M∑
j=1

LjU(t, Xt) dW
j
t .

where the operators L0 and Lj were defined by (1.7) and (1.8), respectively.
This is called the Ito Formula and is the chain rule for the Ito stochastic cal-
culus. It differs from what might be expected from deterministic calculus by
the presence of the second order term in the L0 operator, which is essentially
due to the fact that E((∆W)2) = ∆t for the increment of a Wiener process
over an interval of length ∆t.

stochastic[itoformula]:=proc(U::list(algebraic),a::list(algebraic),

b::list(list(algebraic)))

local i,k,l0,lj,soln;

for i from 1 to nops(U) do

l0:=L0(U[i],a,b)*dt;

lj:=0;

for k from 1 to nops(b) do

lj:=lj+LJ(U[i],b,k)*dW.i;

od;

soln[i]:=dX.i=l0 +lj;

od;

RETURN(eval(soln));

end:

EXAMPLE: Consider the function Yt = U(t, Xt) = X2
t where Xt is a solution

of the Ito SDE
dXt = aXt dt+ bXt dWt

Then

> itoformula([(x[1])^2],[a*x[1]],[[b*x[1]]]);

table([

2 2 2 2

1 = (dX1 = (2 a x[1] + b x[1]) dt + 2 b x[1] dW1)

])

that is
dYt = (2aY 2

t + b2Y 2
t) dt+ 2bY 2

t dWt.

1.4.3 LFP Operator: Fokker–Planck Equation

The transition probabilities of the diffusion process solution of Ito SDE (1.6)
have densities p(s, x; t, y) which satisfy the Fokker–Planck equation,

∂p

∂t
+

N∑
i=1

∂

∂yi

{
ai(t, y)p

}
−

1

2

N∑
k,l=1

M∑
j=1

∂2

∂yk∂yl

{
bk,j(t, y)bl,j (t, y)p

}
= 0 (1.9)

10 S. Cyganowski et al.

(s, x in p fixed) with the initial condition

lim
t↓s

p(s, x; t, y) = δ(x− y),

where δ is the Dirac delta function on RN . The corresponding differential
operator L∗, which is in fact the adjoint of the L = L0 operator (1.7) is
defined as

L∗p
∂p

∂t
+

N∑
i=1

∂

∂yi

{
ai(t, y)p

}
−

1

2

N∑
k,l=1

M∑
j=1

∂2

∂yk∂yl

{
bk,j(t, y)bl,j(t, y)p

}
.

The maple routine LFP for the operator L∗ is given by

stochastic[LFP]:=proc(P::algebraic,a::list(algebraic),

b::list(list(algebraic)))

local part1,part2,part3;

part1 := diff(P,t);

part2 := sum(’diff(a[k]*P,y[k])’,’k’ = 1 .. nops(a));

part3 := 1/2*sum(

’sum(’sum(’diff(op(j,op(k,b))*op(j,op(l,b))*P,y[k],y[l])’,

’j’ = 1 .. nops(op(1,b)))’,’k’ = 1 .. nops(a))’,

’l’ = 1 .. nops(a));

part1+part2-part3;

end:

The call is LFP(P,[a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);where
P is the transition density, and the ai and bij as usual denote the coefficients
of the Ito SDE (1.6).

EXAMPLE: Consider the Ito SDE

dXt = a dt+ b dWt,

where a and b are constant. To obtain the Fokker–Planck equation (1.9) for
this Ito SDE call

> LFP(p(s,x,t,y[1],[a],[[b]]);

which gives

(
∂

∂t
p(s, x, t, y1)) + a (

∂

∂y1
p(s, x, t, y1))−

1

2
b2 (

∂2

∂y1
2

p(s, x, t, y1)) = 0.

On the other hand, to check that a density function

p(s, x, t, y) =
1√

2πb2(t − s)
e
−(y−x−a∗(t−s))2

2b2(t−s)
)
.

satisfies a particular Fokker–Planck equation call

1 MAPLE for Stochastic Differential Equations 11

> p:=(s,x,t,y)->1/(sqrt(2*pi*b^2*(t-s)))

exp(-(y-x-a(t-s))^2/(2*b^2*(t-s))):

> LFP(p(s,x,t,y[1]),[a],[[b]]);

The output of LFP is:

1

4

√
2 %2π b2

(π b2 (t − s))3/2
+

1

2

√
2 (

%1a

b2 (t − s)
+

1

2

%1
2

b2 (t − s)2
)%2√

π b2 (t− s)

−
1

2

a
√

2%1 %2√
π b2 (t − s) b2 (t− s)

+
1

4

√
2%2√

π b2 (t − s) (t− s)
−

1

4

√
2 %12 %2√

π b2 (t− s) (t− s)2 b2

%1 := y1 − x− a (t− s)

%2 := e
(−1/2 %12

b2 (t−s)
)
.

The maple command

> simplify(%);

reduces this to 0, so this p(s, x, t, y) satisfies the Fokker–Planck equation with
the given coefficients.

1.5 Stratonovich Stochastic Calculus

The Stratonovich SDE

dXt = a(t, Xt) dt+
M∑
j=1

bj(t, Xt) ◦ dW
j
t (1.10)

with the same solutions as the N -dimensional Ito SDE with an M -dimensio-
nal Wiener process

dXt = a(t, Xt) dt+
M∑
j=1

bj(t, Xt) dW
j
t (1.11)

has drift coefficient a that is defined given a componentwise by

ai(t, X) = ai(t, X)−
1

2

N∑
k=1

M∑
j=1

bk,j(t, X)
∂bi,j

∂xk
(t, X), i = 1, . . . , N,

(1.12)

12 S. Cyganowski et al.

whereas a given a is defined componentwise by

ai(t, X) = ai(t, X) +
1

2

N∑
k=1

M∑
j=1

bk,j(t, X)
∂bi,j

∂xk
(t, X), i = 1, . . . , N.

(1.13)
These are called the drift-correction formulas. Note that the diffusion coeffi-
cients are the same in both the Ito and Stratonovich SDEs.

1.5.1 Ito-Stratonovich drift correction procedures

A procedure for the Ito to Stratonovich drift conversion (1.12) will be pre-
sented and then a combined procedure for conversion of the drift in either
direction.

Ito to Stratonovich drift correction procedure

The routine stochastic[correct], which converts the Ito drift coefficient a
into the corresponding Stratonovich drift coefficient a, is given by

stochastic[correct]:=proc(a::list(algebraic),

b::list(list(algebraic)),i)

a[i]-1/2*sum(’LJ(op(j,op(i,b)),b,j)’,’j’ = 1 .. nops(op(1,b)));

end:

Stratonovich to Ito drift correction procedure

The call correct([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]],i); is
used to convert the drift coefficient of the Ito SDE (1.11) into that of its
Stratonovich form (1.10). The index i = 1, . . ., N denotes the “current” com-
ponent of the SDE. The output variables are consistent with the variables
used as input which follow the terminology of Section 1.3.1.
EXAMPLES: Consider two Ito SDEs with N = M = 2 having the same Ito
drift vector

a1(t, x1, x2) = x1, a2(t, x1, x2) = x2,

and the constant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

0

)
, b2 =

(
b1,2

b2,2

)
=

(
0

r

)

in the first case and the variable diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
x1

0

)
, b2 =

(
b1,2

b2,2

)
=

(
0

r

)

in the second case, where r is a constant in both cases.

1 MAPLE for Stochastic Differential Equations 13

> correct([x[1],x[2]],[[r,0],[0,r]],2);

x[2]

> correct([x[1],x[2]],[[x[1],0],[0,r]],1);

1/2 x[1]

The applications of the routine here produces the result a1(t, x1, x2) = x2 in
the first case and a2(t, x1, x2) = 1

2x1 in the second case.

Ito–Stratonovich drift correction: both directions

The next procedure combines the Stratonovich to Ito conversion formula
(1.13) with the procedure for the Ito to Stratonovich conversion formula
(1.12) of the last subsection.

stochastic[conv]:=proc(a::list(algebraic),b::list(list(algebraic)),

c::algebraic)

local temp,i;

if c=ito then

for i from 1 to nops(a) do

temp[i]:=op(i,a)-1/2*sum(’sum(’op(k,op(j,b))

*diff(op(k,op(i,b)),x[j])’,

’k’=1..nops(op(1,b)))’,’j’=1..nops(a));

od;

elif c=strat then

for i from 1 to nops(a) do

temp[i]:=op(i,a)+1/2*sum(’sum(’op(k,op(j,b))

*diff(op(k,op(i,b)),x[j])’,

’k’=1..nops(op(1,b)))’,’j’=1..nops(a));

od;

else

ERROR(‘Must enter either ito or strat for the 3rd argument‘)

fi;

RETURN(map(simplify,eval(temp)))

end:

EXAMPLE: Consider the Ito SDE

dXt = −a2Xt(1−X
2
t) dt+ a(1−X2

t) dWt

To derive the Stratonovich SDE apply

> conv([-a^2*x[1](1-x[1]^2)],[[a*(1-x[1]^2)]],ito);

and obtain

table([

1 = 0

]),

14 S. Cyganowski et al.

which means that the desired Stratonovich SDE is

dXt = 0 dt+ a(1−X2
t) ◦ dWt = a(1−X2

t) ◦ dWt.

The other direction gives the original Ito SDE back.

> conv([0],[[a*(1-x[1]^2)]],strat);

table([

1 = −a2 x1 (−1 + x1
2)

]).

1.5.2 Stratonovich L0 operator

The L0 operator of Ito calculus needs to be changed in Stratonovich calculus
to

L0 =
∂

∂t
+

N∑
i=1

ai
∂

∂xi
, (1.14)

while the Lj operators of Ito calculus remain unchanged in Stratonovich
calculus. The Stratonovich operator L0 applied to a scalar valued function
X is produced by the routine stochastic[SL0] given by

stochastic[SL0]:=proc(X:algebraic,a:list(algebraic),

b:list(list(algebraic)))

local part1,part2;

part1 := diff(X,t);

part2 := sum(’a[k]*diff(X,x[k])’,’k’ = 1 .. nops(a));

part1 + part2;

end:

The call SL0(X, [a1,..,aN], [[b11,..,b1M],..,[bN1,..,bNM]]); com-
putes the application of the Stratonovich version of the operator L0 to a
scalar valued function X.

EXAMPLE: Compute L0X for the function X(t, x1, x2) = x2 and the 2-
dimensional Stratonovich SDE with drift components

a1(t, x1, x2) = x1, a2(t, x1, x2) = x2,

and the constant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r is a constant, i.e. apply

1 MAPLE for Stochastic Differential Equations 15

> SL0(x[2],[x[1],x[2]],[[r,u],[s,w]]);

x[2]

giving the result L0X(t, x1, x2) = x2.

1.5.3 Stratonovich chain rule transformation

For a sufficiently smooth transformation U : [0, T]×RN → R of the solution
Xt of the Stratonovich SDE

dXt = a(t, Xt) dt+
M∑
j=1

bj(t, Xt) ◦ dW
j
t

the scalar process Yt = U(t, Xt) satisfies the vector Stratonovich stochastic
differential

dYt =

(
∂U

∂t
+

N∑
i=1

ai
∂U

∂xi

)
dt+

N∑
i=1

M∑
j=1

bi,j
∂U

∂xi
◦ dW j

t (1.15)

where the terms are all evaluated at (t, Xt). (This expression corresponds to
what would be obtained if the rules of deterministic calculus were valid here).
In operator form this is

dYt = L0U(t, X)t) dt+
M∑
j=1

LjU(t, Xt) ◦ dW
j
t .

It is computed by the procedure

stochastic[chainrule]:=proc(U::list(algebraic),a::list(algebraic),

b::list(list(algebraic)))

local i,k,l0,lj,soln;

for i from 1 to nops(U) do

l0:=SL0(U[i],a,b)*dt;

lj:=0;

for k from 1 to nops(b) do

lj:=lj+LJ(U[i],b,k)*odW.i;

od;

soln[i]:=dX.i=l0 +lj;

od;

RETURN(eval(soln));

end:

EXAMPLE: Consider the function U(t, Xt) = X2
t and the Stratonovich SDE

dXt = aXt dt+ bXt ◦ dWt.

Then

16 S. Cyganowski et al.

> chainrule([(x[1])^2],[a*x[1]],[[b*x[1]]]);

table([

2 2

1 = (dX1 = 2 a x[1] dt + 2 b x[1] odW1)

])

which corresponds to the Stratonovich SDE

dYt = 2aY 2
t dt+ 2bY 2

t ◦ dWt.

1.6 Explicitly Solvable Scalar SDEs

Several classes of scalar Ito SDEs

dXt = a(t, Xt) dt+ b(t, Xt) dWt (1.16)

that can be solved explicitly will be considered in this Section. It begins
with a general linear scalar Ito SDE for which an explicit solution is always
available and then turns to certain types of nonlinear scalar Ito SDEs that
can be reduced to linear scalar Ito SDEs and hence solved explicitly. These
methods can also be applied to a scalar Stratonovich SDE provided it is first
converted to the corresponding Ito SDE.

1.6.1 Linearsde routine

The general form of a scalar linear SDE is

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dWt (1.17)

where the coefficients a1, a2, b1, b2 are specified functions of time t or con-
stants. The SDE is said to have additive noise when b1(t) ≡ 0 in (2.1) or
multiplicative noise when b1(t) 6= 0.

In the general case the SDE (1.17) has the explicit solution

Xt = Φt,t0

(
Xt0 +

∫ t

t0

(a2(s) − b1(s)b2(s))Φ−1
s,t0 ds+

∫ t

t0

b2(s)Φ
−1
s,t0 dWs

)
(1.18)

where

Φt,t0 = exp

(∫ t

t0

(
a1(s) −

1

2
b21(s)

)
ds+

∫ t

t0

b1(s) dWs

)
. (1.19)

1 MAPLE for Stochastic Differential Equations 17

In the additive noise case, the SDE (1.17) reduces to

dXt = (a1(t)Xt + a2(t)) dt+ b2(t) dWt, (1.20)

and the explicit solution to

Xt = Φt,t0

(
Xt0 +

∫ t

t0

a2(s)Φ
−1
s,t0 ds+

∫ t

t0

b2(s)Φ
−1
s,t0 dWs

)
, (1.21)

where

Φt,t0 = exp

(∫ t

t0

a1(s) ds

)
.

These solutions can be confirmed with the Ito formula.

The routine stochastic[linearsde] determines the explicit solution of
an Ito SDE (1.16) with the linear drift coefficient a(t, x) = α(t)x + γ(t) and
linear diffusion coefficient b(t, x) = β(t)x + δ(t).

stochastic[linearsde]:=proc(a::algebraic,b::algebraic)

local temp1,alpha,beta,gamma,delta,fundsoln,fundsoln2,soln,

default1,default2,default3;

if diff(a,x,x) <> 0 or diff(b,x,x) <> 0 then

ERROR(‘SDE not linear, try a reducible procedure‘)

else

alpha := diff(a,x);

alpha := subs(t = s,alpha);

beta := diff(b,x);

beta := subs(t = s,beta);

if diff(beta,s) = 0 then temp1 := beta*W;

else temp1:=Int(beta,W = 0 .. t);

fi;

gamma := coeff(a,x,0);

gamma := subs(t = s,gamma);

delta := coeff(b,x,0);

delta := subs(t = s,delta);

fundsoln := exp(int(alpha-1/2*beta^2,s = 0 .. t)+temp1);

fundsoln2 := subs(t = s,fundsoln);

if beta = 0 then

soln := fundsoln*(X[0]+int(1/fundsoln2*(gamma-beta*delta),

s = 0 .. t)+Int(1/fundsoln2*delta,W = 0 .. t))

else soln := fundsoln*(X[0]+Int(1/fundsoln2*(gamma-beta*delta),

s = 0 .. t)+Int(1/fundsoln2*delta,W = 0 .. t))

fi;

default1 := Int(0,W = 0 .. t) = 0;

default2 := Int(0,W = 0 .. s) = 0;

default3 := Int(0,s = 0 .. t) = 0;

soln := X[t] = subs(default1,default2,default3,soln);

fi;

end:

18 S. Cyganowski et al.

The call linearsde(a,b); returns the explicit solution for a linear SDE
(1.17) with linear drift coefficient a and linear diffusion coefficient b. The
output consists of the variables X[t], X[0] and W , where X[t] denotes the
explicit solution, X[0] the initial value of the solution, W a standard Wiener
process, and t time. An error message is returned if the coefficients of a non-
linear SDE are used.

EXAMPLE: Consider the scalar linear Ito SDE with additive noise

dXt = −Xt dt+ 2 dWt,

i.e. with drift coefficient a(t, x) = −x and diffusion coefficient b(t, x) = 2. The
call linear(-x,2); returns the explicit solution in the following form.

> linearsde(-x,2);

Xt = e(−t)

(
X0 +

∫ t

0

2
1

e(−s)
dW

)
The required solution is thus

Xt = e−t
{
X0 +

∫ t

0

2es dWs

}
.

1.6.2 Reducible routine

An autonomous nonlinear scalar Ito SDE

dXt = a(Xt) dt+ b(Xt) dWt (1.22)

with drift coefficient

a(x) =
1

2
b(x)b′(x).

can be reduced to the linear scalar SDE

dYt = dWt

by the substitution

y = h(x) =

∫ x ds

b(s)
,

giving the solution
Xt = h−1(Wt + h(X0)),

where x = h−1(y) is the inverse function of the function y = h(x).

1 MAPLE for Stochastic Differential Equations 19

More generally, if the drift has the form

a(x) = αb(x)h(x) +
1

2
b(x)b′(x) (1.23)

then the SDE (1.22) can be reduced to the Langevin equation

dYt = αYt dt+ β dWt

with the explicit solution

Xt = h−1

(
eαth(X0) + eαt

∫ t

0

e−αs dWs

)
.

The following routine stochastic[reducible] returns the explicit so-
lution of a reducible SDE (1.22) with drift of the form (1.23). Its calling
sequence is reducible(a,b); with parameters a and b representing the drift
and diffusion coefficient of the SDE, which should not depend explicitly on
the t variable.

stochastic[reducible]:=proc(a::algebraic,b::algebraic)

local beta,temp1,h,temp3,alpha,soln,soln1;

h := int(1/b,x);

temp1 := alpha*b*h+1/2*b*simplify(diff(b,x));

temp1 = a;

alpha := simplify(solve(",alpha));

beta := alpha*h;

if diff(alpha,x) = 0 then

if alpha=0 then

soln:=h=subs(x=X[0],h)+W;

X[t]=simplify(solve(soln,x));

else

soln1 := h = exp(alpha*t)*subs(

x = X[0],h)+exp(alpha*t)*Int(exp(-alpha

*s),W = 0 .. t);

X[t] = solve(soln1,x);

fi

elif diff(beta,x) = 0 then

X[t]=simplify(solve(h = beta*t+W+subs(x = X[0],h),x));

else ERROR(‘non-linear SDE not reducible‘)

fi

end:

The call reducible(a,b); returns the explicit solution for a reducible SDE
with drift a and diffusion coefficient b if the SDE is of the appropriate re-
ducible form. The output consists of the variables X[t], X[0] and W, where
X[t] denotes the explicit solution, X[0] the initial value of the solution, W a
standard Wiener process and t time. If the SDE is not of the above reducible

20 S. Cyganowski et al.

form, then a suitable error message is returned.

EXAMPLE: Consider the scalar nonlinear Ito SDE

dXt = X3
t dt+X2

t dWt.

> reducible(x^3,x^2);

X[0]

X[t] = - -----------

-1 + W X[0]

This SDE is reducible and the required solution is

Xt =
X0

1−WtX0
.

1.6.3 Explicit routine

The routine stochastic[explicit] combines the two previously described
routines stochastic[linear] and stochastic[reducible], which are ap-
plied to a general scalar Ito SDE: It returns the explicit solution if the SDE is
either linear or reducible as in the preceding subsections, otherwise a suitable
error message is returned.

stochastic[explicit]:= proc(a::algebraic,b::algebraic)

if diff(a,x,x) = 0 and diff(b,x,x) = 0

then linear (a,b)

else reducible(a,b)

fi

end:

EXAMPLE: Consider the scalar Ito SDE

dXt =
1

2
a2Xt dt+ aXt dWt,

with drift a(x) = 1
2a

2x and diffusion coefficient b(x) = ax, where a is a
constant.

> explicit(1/2*a^2*x,a*x);

X[t]=exp(aW)X[0]

This SDE is linear and thus explicitly solvable with the solution

Xt = X0e
aWt .

1 MAPLE for Stochastic Differential Equations 21

1.7 Linear Vector SDEs

The general form of a N -dimensional linear vector Ito SDE is

dXt = {A(t)Xt + a(t)} dt+
M∑
l=1

{
Bl(t)Xt + bl(t)

}
dW l

t (1.24)

where A(t), B1(t), B2(t), . . ., BM (t) are N×N -matrix functions and a(t),
b1(t), b2(t), . . ., bM(t) are N -dimensional vector functions. The SDE (1.24)
is said to be linear in the narrow-sense or to have additive noise when the
Bl are all identically zero and to be homogeneous when a and the bl are all
zero.

The solution of the linear SDE (1.24) is

Xt = Φt,t0

(
Xt0 +

∫ t

t0

Φ−1
s,t0

(
a(s) −

M∑
l=1

Bl(s)bl(s)

)
ds (1.25)

+
M∑
l=1

∫ t

t0

Φ−1
s,t0b

l(s) dW l
s

)
,

where Φt,t0 is the N×N -matrix satisfying Φt0,t0 = I and the homogeneous
matrix SDE

dΦt,t0 = A(t)Φt,t0 dt+
M∑
l=1

Bl(t)Φt,t0 dW
l
t , (1.26)

which is interpreted columnwise as N vector SDEs. Unlike the scalar homo-
geneous linear equations, it is generally not possible to solve (1.26) explicitly
for Φt,t0, even when all of the matrices are constant matrices. If, however, the
matrices A, B1,B2, . . ., BM are constants and commute, i.e. if

ABl = BlA and BlBk = BkBl

for all k, l = 1, 2, . . ., M , then Φt,t0 is given explicitly by

Φt,t0 = exp

((
A−

1

2

M∑
l=1

(
Bl
)2)

(t− t0) +
M∑
l=1

Bl
(
W l
t −W

l
t0

))
, (1.27)

which can be evaluated with the help of maple for specific values of t ≥ t0
and for a specific sample path of the Wiener process. In the special case that
the linear SDE (1.24) has additive noise it reduces to

Φt,t0 = exp (A(t − t0)) , (1.28)

the fundamental matrix of the deterministic linear system ẋ = Ax, which can
be evaluated for all t − t0 ≥ 0 using the procedure exponential(A,t-t_0)

from the maple linalg package.

22 S. Cyganowski et al.

1.7.1 Linearization

The linearization of anN -dimensional vector Ito SDE with anM -dimensional
Wiener process

dXt = a(t, Xt) dt+
M∑
j=1

bj(t, Xt) dW
j
t (1.29)

about a given point or solution X̄t, results in the linear vector SDE

dZt = A(t)Zt dt+
M∑
j=1

Bj(t)Zt dW
j
t (1.30)

where the N ×N -matrices A, B1, . . ., BM are defined componentwise by

A(t)i,j =
∂ai

∂xj
(t, X̄t), Bk(t)i,j =

∂bi,k

∂xj
(t, X̄t)

for i, j = 1, . . ., N and k = 1, . . ., M . These matrices are determined by the
following maple procedure.

stochastic[linearize]:=proc(a::list(algebraic),

b::list(list(algebraic)),

c::list(algebraic))

local i,tempA,tempB,j,k,l;

tempA:=array(1..nops(a),1..nops(a));

for i from 1 to nops(a) do

for j from 1 to nops(a) do

tempA[i,j]:=diff(op(i,a),x[j]);

od; od;

for i from 1 to nops(a) do

for j from 1 to nops(a) do

for l from 1 to nops(c) do

tempA[i,j]:=subs(x[l]=op(l,c),tempA[i,j]);

od; od; od;

for k from 1 to nops(op(1,b)) do

tempB[k]:=array(1..nops(a),1..nops(a));

for i from 1 to nops(a) do

for j from 1 to nops(a) do

tempB[k][i,j]:=diff(op(k,op(i,b)),x[j]);

od; od;

for i from 1 to nops(a) do

for j from 1 to nops(a) do

for l from 1 to nops(c) do

tempB[k][i,j]:=subs(x[l]=op(l,c),tempB[k][i,j]);

od; od; od;

od;

RETURN(A=map(simplify,convert(eval(tempA),matrix)),B=eval(tempB))

end:

1 MAPLE for Stochastic Differential Equations 23

The call

linearize([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]],[c1,..,cN]);

determines the coefficient matrices of the linearized SDE (1.30) for the SDE
(1.29) about a point or solution X̄. Here the coefficients ai and bij again
follow the convention from Section 1.3.1 and the c1,..,cN denote the com-
ponents of the point or solution X̄ about which the linearization is taken.

EXAMPLE: Linearize the 2-dimensional Ito SDE

dX1
t = X2

t dt,

dX2
t = (−bX2

t − sinX1
t − c sin2X1

t)dt+ (−a(X2
t)2 + sinX1

t)dWt,

where a, b and c are constants and Wt is a scalar Wiener process, about the
zero solution X̄1

t = X̄2
t = 0, i.e. apply

> linearize([x[2],-b*x[2]-sin(x[1])-c*sin(2*x[1])],[[0],

-a*(x[2])^2+sin(x[1])]],[0,0]);

to obtain

A =

[
0 1

−1− 2c −b

]
and B =

[
0 0
1 0

]
.

The linearized SDE (1.30) is thus

dZ1
t = Z2

t dt

dZ2
t =

(
(−1− 2c)Z1

t − bZ
2
t

)
dt+ Z1

t dWt.

1.7.2 Spherical coordinates

The N -dimensional linear Stratonovich SDE with an M -dimensional Wiener
process

dZt = A(t)Zt dt+
M∑
k=1

Bk(t)Zt ◦ dW
k
t , (1.31)

where A,B1,B2, . . .,BM areN×N matrices, converts in spherical coordinates
r = |z| and s = z/|z| ∈ SN−1 (assuming z 6= 0) to the system of Stratonovich
SDEs

dRt = Rt q
0(St) dt+

M∑
k=1

Rt q
k(St) ◦ dW

k
t (1.32)

dSt = h(St, A) dt+
M∑
k=1

h(St, B
k) ◦ dW k

t (1.33)

24 S. Cyganowski et al.

where

q(s) = s>As+
M∑
k=1

(
1

2
s>
(
Bk +

(
Bk
)>)

s−
(
s>Bks

)2)
,

q0(s) = s>As, qk(s) = s>Bks, h(s, A) =
(
A− (s>As)I

)
s.

This system is used to investigate the stability of the zero solution of the orig-
inal linear SDE (1.31). The above coefficients are determined by the routine
stochastic[sphere].

stochastic[sphere]:=proc(a,b)

global q,q0,qk,h,hk;

local i,j,k,tempa,tempb,stempbs,N,tmp;

if type(a,array) then tmp:=convert(a,listlist);else tmp:=a; fi;

N:=nops(tmp);

hk:=evaln(hk); h:=evaln(h); qk:=evaln(qk);

q:=evaln(q); q0:=evaln(q0);

tempa:=evaln(tempa);tempb:=evaln(tempb);

q0:=sum(’sum(’s[i]*a[i,j]’,’i’=1..N)*s[j]’,’j’=1..N);

for k from 1 to nops(b) do

qk[k]:=sum(’sum(’s[i]*b[k][i,j]’,’i’=1..N)*s[j]’,’j’=1..N);

od;

for k from 1 to nops(b) do

stempbs[k]:=sum(’sum(’s[i]*(b[k][i,j]+b[k][j,i])’,’i’=1..N)

*s[j]’,’j’=1..N);

od;

q:=q0+ sum(’0.5*stempbs[k]-qk[k]^2’,’k’=1..nops(b));

for i from 1 to N do

for j from 1 to N do

if (i=j) then tempa[i,i]:=a[i,i]-q0;

else tempa[i,j]:=a[i,j];

fi;

od; od;

for i from 1 to N do

h[i]:=sum(’tempa[i,j]’,’j’=1..N);

od;

for k from 1 to nops(b) do

for i from 1 to N do

for j from 1 to N do

if (i=j) then tempb[k][i,i]:=b[k][i,i]-qk[k];

else tempb[k][i,j]:=b[k][i,j];

fi;

od; od; od;

for k from 1 to nops(b) do

for i from 1 to N do

hk[k][i]:=sum(’tempb[k][i,j]’,’j’=1..N);

od; od;

1 MAPLE for Stochastic Differential Equations 25

end:

The variables here are defined as global, which means that to determine the
value of q(s), for example, one uses the call sphere(A,B): q;. Note that here
a list of matrices B1, . . ., BM is needed as input. Each of the input matrices
can be entered either following the terminology from Section 1.3.1 or as a
maple array. This second method is used in the following example.

EXAMPLE: Consider the linear Stratonovich SDE (1.31) with coefficient
matrices

A :=

[
2 2
1 1

]
and B :=

[
3 1
4 2

]
which are input into Maple as

>A:=array(1..2,1..2,[[2,2],[1,1]]):

>B1:=array(1..2,1..2,[[3,1],[4,2]]):

>B:=[B1]:

Then the coefficients of the system (1.32)–(1.33) are determined then as

> sphere(A,B):

> q;

(2 s1 + s2) s1 + (2 s1 + s2) s2 + .5000000000 (6. s1 + 5. s2) s1

+ .5000000000 (5. s1 + 4. s2) s2 − 1. ((3. s1 + 4. s2) s1 + (s1 + 2. s2) s2)
2

> q0;

(2 s1 + s2) s1 + (2 s1 + s2) s2

> print(qk);

table([

1 = (3 s1 + 4 s2) s1 + (s1 + 2 s2) s2

])

> print(h);

table([

1 = 4− (2 s1 + s2) s1 − (2 s1 + s2) s2

2 = 2− (2 s1 + s2) s1 − (2 s1 + s2) s2

])

> print(hk);

26 S. Cyganowski et al.

table([

1 = table([

1 = 4− (3 s1 + 4 s2) s1 − (s1 + 2 s2) s2

2 = 6− (3 s1 + 4 s2) s1 − (s1 + 2 s2) s2

])

])

1.7.3 Second moment equation

The N -dimensional linear Ito SDE

dZt = A(t)Zt dt+
M∑
j=1

Bj(t)Zt dW
j (1.34)

with N×N matrices A, B1, B2, . . ., BM has the N×N matrix valued second
moment P (t) = E(ZtZ

>
t) which satisfies the deterministic matrix differential

equation

dP

dt
= A(t)P + PA(t)> +

M∑
k=1

Bk(t)PBk(t)>,

which is linear in P . Due to the symmetry of the matrix P this equation can
be rewritten as a linear system of the from

dp̃

dt
= A(t)p̃ (1.35)

where p̃ is an 1
2
N(N+1)-dimensional vector consisting of the free components

of P and A(t) is a 1
2N(N + 1)!× 1

2N(N + 1)! matrix.
The following procedure stochastic[momenteqn] calculates this matrix

A(t).

stochastic[momenteqn]:=proc(A,B)

local i,j,k,N,Btmp,Ctmp;

global New_A;

if type(A,array) then Btmp:=convert(A,listlist);

else Btmp:=A;

fi;

N:=nops(Btmp);

New_A:=array(1..N*(N+1)/2,1..N*(N+1)/2);

Ctmp:=array(1..N*(N+1)/2,1..N*(N+1)/2);

stochastic[ap](A);

stochastic[pa](A);

for i from 1 to N*(N+1)/2 do

for j from 1 to N*(N+1)/2 do

1 MAPLE for Stochastic Differential Equations 27

Ctmp[i,j]:=0;

od; od;

for k from 1 to nops(B) do

stochastic[bpb](B[k]);

for i from 1 to N*(N+1)/2 do

for j from 1 to N*(N+1)/2 do

Ctmp[i,j]:=Ctmp[i,j]+B3[i,j];

od; od; od;

for i from 1 to N*(N+1)/2 do

for j from 1 to N*(N+1)/2 do

New_A[i,j]:=B1[i,j]+B2[i,j]+Ctmp[i,j];

od; od;

RETURN(evalm(New_A));

end:

The input format is similar to the sphere command. Note that this proce-
dure requires other procedures that are described in the Section 1.7.5.

EXAMPLE: We apply the routine to the matrices

A =

[
a11 a12

a21 a22

]
and B1 =

[
b11 b12

b21 b22

]
.

> A:=array(1..2,1..2,[[a11,a12],[a21,a22]]):

> B1:=array(1..2,1..2,[[b11,b12],[b21,b22]]):

> B:=[B1];

> momenteqn(A,B); 2 a11 + b112 2 a12 + 2 b12 b11 b122

a21 + b11 b21 a11 + a22 + b12 b21 + b11 b22 a12 + b12 b22
b212 2 a21 + 2 b22 b21 2 a22 + b222


The equation (1.35) is thus

dp̃1 =
(
2 a11 + b11

2
)
p̃1 + (2 a12 + 2 b12 b11) p̃2 +

(
b12

2
)
p̃3

dp̃2 = (a21 + b11 b21) p̃1 + (a11 + a22 + b12 b21 + b11 b22) p̃2

+(a12 + b12 b22) p̃3

dp̃3 =
(
b21

2
)
p̃1 + (2 a21 + 2 b22 b21) p̃2 +

(
2 a22 + b22

2
)
p̃3

1.7.4 The procedures pmatrix2pvector and pvector2pmatrix

The procedures pmatrix2pvector and pvector2pmatrix transform a sym-
metric matrix to a vector and a vector to a symmetric matrix, respectively.
They are useful above to change the matrix P to the vector p̃ and the vector
p̃ to the matrix P , respectively.

The procedure stochastic[pmatrix2pvector] has the following code.

28 S. Cyganowski et al.

stochastic[pmatrix2pvector]:=proc(p)

local i,j,k,ptmp;

global pvector;

if type(p,array) then ptmp:=convert(p,listlist);

else ptmp:=p;

fi;

pvector:=array(1..nops(ptmp)*(nops(ptmp)+1)/2);

k:=0;

for i from 1 to nops(ptmp) do

if (i>1) then k:=k+(nops(ptmp)-i+2); fi;

for j from i to nops(ptmp) do

pvector[k+j-i+1]:=ptmp[i,j];

od; od;

RETURN(eval(pvector));

end:

The matrix P can be entered following Section 1.3.1 or as a maple array.

EXAMPLE: We apply the procedure to the matrix

P =


2 5 10 17 26
5 6 11 18 27

10 11 12 19 28
17 18 19 20 29
26 27 28 29 30


in array notation.

> P:=array(1..5,1..5,[[2,5,10,17,26],[5,6,11,18,27],

[10,11,12,19,28],[17,18,19,20,29],[26,27,28,29,30]]):

> pmatrix2pvector(P);

[2, 5, 10, 17, 26, 6, 11, 18, 27, 12, 19, 28, 20, 29, 30]

EXAMPLE: Now we use the notation of Section 1.3.1.

> P:=[[1,2],[2,4]]:

> pmatrix2pvector(P);

[1, 2, 4]

The procedure pvector2pmatrix is the inverse of pmatrix2pvector. It trans-
forms a vector to a symmetric matrix (in maple array notation) and has
following code:

stochastic[pvector2pmatrix]:=proc(pvector)

local i,j,k,ptmp,N;

global p;

if type(pvector,array) then ptmp:=convert(pvector,list);

else ptmp:=pvector;

1 MAPLE for Stochastic Differential Equations 29

fi;

N:=-1/2+sqrt(1/4+2*nops(ptmp));

p:=array(1..N,1..N);

k:=0;

for i from 1 to N do

if (i>1) then k:=k+(N-i+2); fi;

for j from i to N do

p[i,j]:=ptmp[k+j-i+1];

if (i<>j) then p[j,i]:=p[i,j]; fi;

od; od;

RETURN(eval(p));

end:

EXAMPLE :

> p:=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]:

> pvector2pmatrix(p);


1 2 3 4 5
2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15



1.7.5 Subprocedures for momenteqn

The following procedures are subprocedures for the calculation or transforma-
tion parts of the procedure momenteqn. For example, the procedure position

determines the position in the new vector and the procedure ap transforms
the product AP in a vector equation.

stochastic[position]:=proc(N,i,j)

global stelle;

stelle:=sum(’N-k+1’,’k’=1..i-1)+j-i+1;

end:

stochastic[ap]:=proc(A)

local i,j,k,Atmp,N,counter;

global B1;

if type(A,array) then Atmp:=convert(A,listlist);

else Atmp:=A;

fi;

N:=nops(Atmp);

B1:=array(1..N*(N+1)/2,1..N*(N+1)/2);

for i from 1 to N*(N+1)/2 do

for j from 1 to N*(N+1)/2 do

B1[i,j]:=0;

30 S. Cyganowski et al.

od; od;

counter:=0:

for i from 1 to N do

for j from i to N do

counter:=counter+1;

for k from 1 to N do

if (j<=k) then B1[counter,position(N,j,k)]:=A[i,k];

else B1[counter,position(N,k,j)]:=A[i,k];

fi;

od; od; od;

RETURN(evalm(B1));

end:

stochastic[pa]:=proc(A)

local i,j,k,Atmp,N,counter;

global B2;

if type(A,array) then Atmp:=convert(A,listlist);

else Atmp:=A;

fi;

N:=nops(Atmp);

B2:=array(1..N*(N+1)/2,1..N*(N+1)/2);

for i from 1 to N*(N+1)/2 do

for j from 1 to N*(N+1)/2 do

B2[i,j]:=0;

od; od;

counter:=0:

for i from 1 to N do

for j from i to N do

counter:=counter+1;

for k from 1 to N do

if (i<=k) then B2[counter,position(N,i,k)]:=A[j,k];

else B2[counter,position(N,k,i)]:=A[j,k];

fi;

od; od; od;

RETURN(evalm(B2));

end:

stochastic[bpb]:=proc(B)

local i,j,k,l,Btmp,N,counter;

global B3;

if type(B,array) then Btmp:=convert(B,listlist);

else Btmp:=B;

fi;

N:=nops(Btmp);

B3:=array(1..N*(N+1)/2,1..N*(N+1)/2);

for i from 1 to N*(N+1)/2 do

for j from 1 to N*(N+1)/2 do

B3[i,j]:=0;

1 MAPLE for Stochastic Differential Equations 31

od; od;

counter:=0:

for i from 1 to N do

for j from i to N do

counter:=counter+1;

for l from 1 to N do

for k from 1 to N do

if (k<=l) then

B3[counter,position(N,k,l)]:=B3[counter,position(N,k,l)]

+B[i,k]*B[j,l];

else

B3[counter,position(N,l,k)]:=B3[counter,position(N,l,k)]

+B[i,k]*B[j,l];

fi;

od; od; od; od;

RETURN(evalm(B3));

end:

1.8 Commutative and Coloured Noise

Certain structural relationships between the noise coefficient vectors bj, j =
1, . . ., M , of an SDE that are known as commutative noise allow considerable
simplifications to numerical schemes, in particular the avoidance of the need
to simulate multiple stochastic integrals. maple routines that test for these
conditions are presented here along with a routine that converts the SDE
driven by Wiener processes to the corresponding SDE driven by a coloured
noise Ornstein–Uhlenbeck process.

1.8.1 Commutative noise of 1st kind

An N -dimensional Ito SDE with an M -dimensional Wiener process in com-
ponent form

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) dW
j
t , i = 1, . . . , N, (1.36)

is said to have commutative noise of the first kind when the diffusion coeffi-
cients satisfy the condition

Lj1bi,j2(t, x) = Lj2bi,j1(t, x) (1.37)

for all i = 1, . . ., N , j1, j2 = 1, . . ., M , and (t, x) ∈ R+×RN .

For instance, additive noise, diagonal noise and linear noise all satisfy this
commutativity condition. Here diagonal noise means that

bk,j(t, x) ≡ 0 and
∂bj,j

∂xk
(t, x) ≡ 0

32 S. Cyganowski et al.

and linear noise means that

bi,j(t, x) = bi,j(t)xi

for all i = 1, . . ., N , j = 1, . . ., M , and (t, x) ∈ R+×RN .

The routine stochastic[comm1] informs the user whether or not an Ito SDE
(1.36) has commutative noise of the first kind.

stochastic[comm1]:=proc()

local LJ1,LJ2,k,j1,j2,flag,p;

for p to nargs do

if type(args[p],list) <> true then

ERROR(‘Expecting input to be an expression sequence of lists‘)

fi;

od;

for k to nargs do

for j1 to nops(args[1]) do

for j2 to nops(args[1]) do

LJ1 := sum(’op(j1,args[l])*diff(op(j2,args[k]),x[l])’,

’l’ = 1 .. nargs);

LJ2 := sum(’op(j2,args[l])*diff(op(j1,args[k]),x[l])’,

’l’ = 1 .. nargs);

if LJ1 <> LJ2 then flag := 1 fi;

od; od; od;

if flag = 1 then

RETURN(‘Commutative noise of the first kind

doesn’t exist for this system‘)

else

RETURN(‘This system exhibits commutative noise

of the first kind‘)

fi;

end:

The call comm1([b11,..,b1M],..,[bN1,..,bNM]); returns a statement in-
dicating whether or not the SDE with this diffusion coefficient matrix has
commutative noise of the first kind (1.37).

EXAMPLE: Consider a 2-dimensional Ito SDE with the variable diffusion
coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
1

0

)
, b2 =

(
b1,2

b2,2

)
=

(
0

x1

)
.

> comm1([1,0],[0,x[1]]);

Commutative noise of the first kind doesn’t exist for this system

1 MAPLE for Stochastic Differential Equations 33

1.8.2 Commutative noise of 2nd kind

The SDE (1.36) has commutative noise of the second kind when the noise
coefficients satisfy the condition

Lj1Jj2bk,j3(t, x) = Lj2Lj1bk,j3(t, x) (1.38)

for all j1, j2, j3 = 1, . . ., M , k = 1, . . ., N , and (t, x) ∈ R+×RN .

The routine stochastic[comm2] informs the user if the diffusion matrix of
an Ito SDE has commutative noise of the second kind.

stochastic[comm2]:= proc()

local LJ1LJ2,LJ2LJ1,k,p,j1,j2,j3,flag;

for p to nargs do

if type(args[p],list) <> true then

ERROR(‘Expecting input to be an expression sequence of lists‘)

fi;

od;

for k to nargs do

for j1 to nops(args[1]) do

for j2 to nops(args[1]) do

for j3 to nops(args[1]) do

LJ1LJ2 := sum(’op(j1,args[m])*diff(sum(’op(j2,args[l])*

diff(op(j3,args[k]),x[l])’,

’l’ = 1 .. nargs),x[m])’, ’m’ = 1 .. nargs);

LJ2LJ1 := sum(’op(j2,args[m])*diff(sum(’op(j1,args[l])*

diff(op(j3,args[k]),x[l])’,

’l’ = 1 .. nargs),x[m])’, ’m’ = 1 .. nargs);

if LJ1LJ2 <> LJ2LJ1 then flag := 1 fi;

od; od; od; od;

if flag = 1 then

RETURN(‘Commutative noise of the second kind

doesn’t exist for this system‘)

else

RETURN(‘This system exhibits commutative noise

of the second kind‘)

fi;

end:

The call comm2([b11,..,b1M],..,[bN1,..,bNM]); returns a statement in-
dicating whether or not the diffusion matrix of the SDE has commutative
noise of the second kind (1.38).

EXAMPLE: Consider an 2-dimensional Ito SDE with the variable diffusion
coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
1

(x2)
2(x1)

4

)
, b2 =

(
b1,2

b2,2

)
=

(
0

(x1)
2

)
.

34 S. Cyganowski et al.

> comm2([1,0],[(x[2])^2*(x[1])^4,(x[1])^2]);

Commutative noise of the second kind doesn’t exist for this system

1.8.3 Coloured Noise

An N -dimensional Ito SDE with a scalar Wiener process Wt (i.e., with M =
1)

dXt = a(t, Xt) dt+ b(t, Xt) dWt (1.39)

can be converted into into an associated SDE with coloured noise, i.e., driven
by an Ornstein–Uhlenbeck or exponentially correlated coloured noise process
Zt [20]. The resulting coloured noise equation is the (N + 1)-dimensional Ito
SDE with scalar additive noise

dXt = (a(t, Xt) + b(t, Xt)Zt) dt (1.40)

dZt = −γZt dt+ β dWt (1.41)

The routine stochastic[colour] converts the SDE (1.39) with scalar white
noise into its coloured noise counterpart (1.40)–(1.41).

stochastic[colour]:=proc(a:list(algebraic),b:list(algebraic))

local temp1,i;

for i to nops(a) do

temp1[i] := dx[i][t] = a[i]*dt+b[i]*z[t]*dt

od;

temp1[i] := dz[t] = -gamma*z[t]*dt+beta*dW[t];

RETURN(eval(temp1))

end:

The call colour([a1,..,aN], [b1,..,bN]); converts an SDE (1.39) in di-
mension N with scalar white noise into its coloured noise form (1.40)–(1.41).
The output consists of the variables z, x[N], W , gamma, beta and t. Here z
denotes the Ornstein–Uhlenbeck process, (x[N], z) the state variable of the
(N + 1)-dimensional SDE (1.40)–(1.41) and W a standard Wiener process,
while gamma and beta denote parameters and t denotes time.

EXAMPLE: Convert the 2-dimensional SDE with scalar white noise

dX1
t = X2

t dt, dX2
t =

(
X1
t

(
α−

(
X1
t

)2)
−X2

t

)
dt+ σ dWt

into its coloured noise counterpart.

> colour([x[2],x[1]*(alpha-x[1]^2)-x[2]],[0,sigma*x[1]]);

table([

1 MAPLE for Stochastic Differential Equations 35

1 = (dx[1][t] = x[2] dt)

2

2 = (dx[2][t] = (x[1] (alpha - x[1]) - x[2]) dt

+ sigma x[1] z[t] dt)

3 = (dz[t] = - gamma z[t] dt + beta dW[t])

])

The resulting coloured noise system is

dX1
t = X2

t dt

dX2
t =

(
X1
t

(
α−

(
X1
t

)2)
−X2

t + σ Zt

)
dt

dZt = −γ Zt dt+ β dWt

1.9 Strong Numerical Schemes

Strong stochastic Taylor schemes of orders 0.5, 1.0 and 1.5 are considered for
the N -dimensional Ito SDE with an M -dimensional Wiener process

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) dW
j
t , i = 1, . . . , N, (1.42)

as well as the strong order 2.0 stochastic Taylor scheme for the corresponding
Stratonovich SDE.

The coefficients are all evaluated at the point (tn, Yn) in all of the schemes
that follow, although for conciseness (tn, Yn) will not be explicitly written.

1.9.1 Euler scheme

The strong stochastic Taylor scheme of order 0.5 for the SDE (1.42), usually
called the stochastic Euler scheme, has the componentwise form

Y in+1 = Y in + ai∆n +
M∑
j=1

bi,j∆W j
n, i = 1, . . . , N, (1.43)

where ∆n = tn+1 − tn is the length of the nth time step and ∆W j
n =

W j
tn+1
−W j

tn is the N(0;∆n)–distributed increment of the jth component of
the M -dimensional standard Wiener process Wt on the discretization subin-
terval [tn, tn+1]. Here ∆W j1

n and ∆W j2
n are independent for j1 6= j2.

The routine stochastic[Euler] constructs the stochastic Euler scheme
for the Ito SDE (1.42).

36 S. Cyganowski et al.

stochastic[Euler]:=proc(a::list(algebraic),b::list(list(algebraic)))

local i,u,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] = Y.i[n]+L0(x[i],a,b)*Delta[n]+

sum(’LJ(x[i],b,j)*Delta*W.j[n]’,’j’ = 1 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od;

od;

RETURN(eval(soln))

end:

The call Euler([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns
the Euler scheme for an N -dimensional Ito SDE with M -dimensional noise
which has drift coefficient components a1,. . ., aN and diffusion coefficient
matrix [bi,j] with rows [b11, . . . , b1M],. . ., [bN1, . . . , bNM].

The output variables are consistent with the variables used as input. The out-
put consists of the variables Y N [n], DeltaWM [n], and Delta[n]. Y N [n] de-
notes the Euler approximation to x[N] at the nth step. DeltaWM [n] denotes
the change in the M -dimensional Wiener process at the nth step. Delta[n]
denotes the step size at the nth step.

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X2
t

X1
t

)
dt+

(
r

s

)
dW 1

t +

(
u

vX1
t

)
dW 2

t ,

i.e. with drift components a1(t, x1, x2) = x2, a
2(t, x1, x2) = x1 and the con-

stant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

vX1
t

)
,

where r, s, u and v are constants.

> Euler([x[2],x[1]],[[r,u],[s,v*x[1]]]);

table([

1 = (Y1[n + 1] = Y1[n] + Y2[n] Delta[n]

+ r Delta W1[n] + u Delta W2[n])

2 = (Y2[n + 1] = Y2[n] + Y1[n] Delta[n]

+ s Delta W1[n] + v Y1[n] Delta W2[n])

])

The resulting Euler scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 2
n

Y 1
n

)
∆n +

(
r

s

)
∆W 1

n +

(
u

vY 1
n

)
∆W 2

n.

1 MAPLE for Stochastic Differential Equations 37

1.9.2 Milstein scheme

The strong stochastic Taylor scheme of order 1.0 for the SDE (1.42), usually
called the Milstein scheme, has the componentwise form

Y in+1 = Y in+ai∆n+
M∑
j=1

bi,j∆W j
n +

M∑
j1,j2=1

Lj1bk,j2I(j1,j2);n, i = 1, . . . , N,

(1.44)
where I(j1,j2);n is the multiple Ito integral

I(j1,j2);n =

∫ tn+1

tn

∫ s1

tn

dW j1
s2 dW

j2
s1 , (1.45)

which simplifies to

I(j,j);n =
1

2

{(
∆W j

n

)2
−∆n

}
for j1 = j2 = j.
The routine stochastic[Milstein] constructs the Milstein scheme for the
Ito SDE (1.42).

stochastic[Milstein]:=proc(a::list(algebraic),

b::list(list(algebraic)))

local u,i,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] = Y.i[n]+L0(x[i],a,b)*Delta[n]

+sum(’LJ(x[i],b,j)*Delta*W.j[n]’,’j’ = 1 .. nops(op(1,b)))

+sum(’sum(’LJ(op(j2,op(i,b)),b,j1)*I[j1,j2]’,

’j1’ = 1 .. nops(op(1,b)))’,’j2’ = 1 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od;

od;

RETURN(eval(soln))

end:

The call Milstein([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); re-
turns the Milstein scheme for an N -dimensional SDE (1.42) with M -dimen-
sional white noise which has drift coefficient components a1,. . ., aN and dif-
fusion coefficient matrix [bi,j] with rows [b11, . . . , b1M],. . ., [bN1, . . . , bNM].

The output consists of the variables Y N [n], DeltaWM [n], Delta[n] and I[(j1,
j2)]. Here Y N [n] denotes the Milstein approximation to x[N] at the nth step,
DeltaWM [n] denotes the increment in the M -dimensional Wiener process at
the nth step, Delta[n] denotes the step size at the nth step, and I[(j1, j2)]
denotes the double Ito integral (1.45).

38 S. Cyganowski et al.

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X2
t

X1
t

)
dt+

(
r

s

)
dW 1

t +

(
u

vX1
t

)
dW 2

t ,

i.e. with drift components a1(t, x1, x2) = x2, a
2(t, x1, x2) = x1 and the con-

stant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

vX1
t

)
,

where r and s are constants.

> Milstein([x[2],x[1]],[[r,u],[s,v*x[1]]]);

table([

1 = (Y1[n + 1] = Y1[n] + Y2[n] Delta[n]

+ r Delta W1[n] + u Delta W2[n])

2 = (Y2[n + 1] = Y2[n] + Y1[n] Delta[n]

+ s Delta W1[n] + v Y1[n] Delta W2[n]

+ r v I[1, 2] + u v I[2, 2])

])

The resulting Milstein scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 2
n

Y 1
n

)
∆n +

(
r

s

)
∆W 1

n +

(
u

vY 1
n

)
∆W 2

n

+

(
0

r v

)
I(1,2);n+

(
0

u v

)
I(2,2);n.

1.9.3 Milstein scheme for commutative noise

Recall from (1.37) that the SDE is said to have commutative noise (of the
first kind) when

Lj1bk,j2(t, x) ≡ Lj2bk,j1(t, x)

for k = 1, . . ., n and j1, j2 = 1, . . ., m. Then the identities∫ tn+1

tn

∫ t

tn

dW j1
s dW j2

t +

∫ tn+1

tn

∫ t

tn

dW j2
s dW j1

t = ∆W j1
n ∆W j2

n (1.46)

for j1, j2 = 1, . . ., m with j1 6= j2 can be used to simplify the Milstein scheme
(1.44) to give

Xi
n+1 = Xi

n + ai(tn, Xn)∆n +
m∑
j=1

bi,j(tn, Xn)∆W
j
n (1.47)

1 MAPLE for Stochastic Differential Equations 39

+
1

2

m∑
j1=1

Lj1bi,j1(tn, Xn)
{
(∆W j1

n)2 −∆n

}
+

1

2

m∑
j1,j2=1
j1 6=j2

Lj1bi,j2(tn, Xn)∆W
j1
n ∆W j2

n

which is called the Milstein scheme for commutative noise.

The routine stochastic[milcomm] constructs the Milstein scheme for SDEs
with commutative noise. Input and output format are the same as for the
stochastic[Milstein] routine.

stochastic[milcomm]:=proc(a::list(algebraic),b::list(list(algebraic)))

local u,i,l,soln;

for i to nops(a) do

soln[i]:=Y.i[n+1]=Y.i[n]+L0(x[i],a,b)*Delta[n]

+sum(’LJ(x[i],b,j)*Delta.W.j[n]’,’j’=1..nops(op(1,b)))

+1/2*sum(’sum(’LJ(op(j2,op(i,b)),b,j1)*

(Delta.W.j1[n])*(Delta.W.j2[n])’,

’j1’=1..nops(op(1,b)))’,’j2’=1..nops(op(1,b)));

for l to nops(op(1,b)) do

soln[i]:=subs((Delta.W.l[n])^2=((Delta.W.l[n])^2-Delta[n]),

soln[i]) od;

for u to nops(a) do

soln[i]:=subs(x[u]=Y.u[n],soln[i]);

od; od;

RETURN(eval(soln));

end:

EXAMPLE: The scalar bilinear Ito SDE with two independent Wiener pro-
cesses,

dXt = aXt dt+ bXt dW
1
t + cXt dW

2
t

has commutative noise.

> comm1([b*x[1],c*x[1]]);

"This system exhibits commutative noise of the first kind"

Thus we can apply the stochastic[milcomm] routine.

> milcomm([a*x[1]], [[b*x[1],c*x[1]]]);

table([

1 = (Y1[n + 1] = Y1[n] + a Y1[n] Delta[n]

+ b Y1[n] DeltaW1[n] + c Y1[n] DeltaW2[n]

2 2

+ 1/2 b Y1[n] (DeltaW1[n] - Delta[n])

40 S. Cyganowski et al.

+ c Y1[n] b DeltaW2[n] DeltaW1[n]

2 2

+ 1/2 c Y1[n] (DeltaW2[n] - Delta[n]))

])

i.e., the Milstein scheme for commutative noise here is

Xn+1 = Xn + aXn∆n + bXn∆W
1
n + cXn∆W

1
n

+
1

2
b2Xn

{
(∆W 1

n)2 −∆n

}
+

1

2
c2Xn

{
(∆W 2

n)2 −∆n

}
+bcXn∆W

1
n∆W

2
n

1.9.4 Order 1.5 strong stochastic Taylor scheme

The ith component of the order 1.5 strong Taylor scheme for the Ito SDE
(1.42) is given by

Y in+1 = Y in + ai∆n +
1

2
L0ai∆2

n (1.48)

+
M∑
j=1

(
bi,j∆W j

n + L0bi,jI(0,j);n + Ljai I(j,0);n

)

+
M∑

j1,j2=1

Lj1bi,j2I(j1,j2);n +
M∑

j1,j2,j3=1

Lj1Lj2bi,j3I(j1,j2,j3);n,

for i = 1, . . ., N , where I(j1,j2,j3);n is the multiple Ito integral

I(j1,j2,j3);n =

∫ tn+1

tn

∫ s1

tn

∫ s2

tn

dW j1
s3 dW

j1
s2 dW

j2
s1 , (1.49)

with the special case

I(j,j,j);n =
1

2

{
1

3

(
∆W j

n

)2
−∆n

}
∆W j

n

for j1 = j2 = j3 = j. Also

I(0,j);n = ∆W j1
n ∆n − I(j,0);n,

where the random variable ∆Zjn := I(j,0);n is N(0; 1
3∆

3
n)–distributed and has

covariance E(∆Zjn∆W
j
n) = 1

2∆
2
n.

The routine stochastic[Taylor1hlf] constructs the strong order 1.5 Taylor
scheme for an Ito SDE (1.42).

1 MAPLE for Stochastic Differential Equations 41

stochastic[Taylor1hlf]:=proc(a::list(algebraic),

b::list(list(algebraic)))

local u,i,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] =

Y.i[n]+a[i]*Delta[n]+1/2*L0(a[i],a,b)*Delta[n]^2

+sum(’op(j,op(i,b))*Delta*W.j[n]+L0(op(j,op(i,b)),a,b)*I[0,j]

+LJ(a[i],b,j)*I[j,0]’,’j’ = 1 .. nops(op(1,b)))

+sum(’sum(’LJ(op(j2,op(i,b)),b,j1)*I[j1,j2]’,

’j1’ = 1 .. nops(op(1,b)))’,’j2’ = 1 .. nops(op(1,b)))+sum(

’sum(’sum(’LJ(LJ(op(p3,op(i,b)),b,p2),b,p1)*I[p1,p2,p3]’,

’p1’ = 1 .. nops(op(1,b)))’,’p2’ = 1 .. nops(op(1,b)))’,

’p3’ = 1 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od;

od;

RETURN(eval(soln))

end:

The call Taylor1hlf([a1,..,aN], [[b11,..,b1M],.., [bN1,..,bNM]]);

returns the strong order 1.5 approximation for an N-dimensional SDE (1.42)
with M -dimensional noise, which has drift coefficient components a1, . . ., aN
and diffusion matrix with rows [b11, . . . , b1M], . . ., [bN1, . . . , bNM].

The routine returns the variables Y N [n], DeltaWM [n], Delta[n], I[(j1, j2)],
and I[(j1, j2, j3)]. Here Y N [n] denotes the order 1.5 strong stochastic Taylor
approximation to x[N] at the nth step, DeltaWM [n] denotes the change in
the M -dimensional Wiener process at the nth step, Delta[n] denotes the step
size at the nth step, while I[(j1, j2)] and I[(j1, j2, j3)] denote the multiple
Ito integrals (1.45) and (1.49).

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X2
t

X1
t

)
dt+

(
r

s

)
dW 1

t +

(
u

v

)
dW 2

t ,

i.e. with drift components a1(t, x1, x2) = x2, a
2(t, x1, x2) = x1 and the con-

stant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r, s, u and v are constants.

> Taylor1hlf([x[2],x[1]],[[r,u],[s,v]]);

table([

42 S. Cyganowski et al.

2

1 = (Y1[n + 1] = Y1[n] + Y2[n] Delta[n] + 1/2 Y1[n] Delta[n]

+ r Delta W1[n] + s I[1, 0] + u Delta W2[n] + v I[2, 0])

2

2 = (Y2[n + 1] = Y2[n] + Y1[n] Delta[n] + 1/2 Y2[n] Delta[n]

+ s Delta W1[n] + r I[1, 0] + v Delta W2[n] + u I[2, 0])

])

The resulting order 1.5 strong Taylor scheme scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 2
n

Y 1
n

)
∆n +

1

2

(
Y 2
n

Y 1
n

)
∆2
n +

(
r

s

)
∆W 1

n

+

(
s

r

)
∆W 2

n +

(
u

v

)
I(1,0);n +

(
v

u

)
I(2,0);n,

1.9.5 Order 2.0 strong stochastic Taylor scheme

The order 2.0 strong Taylor scheme for the N -dimensional Stratonovich SDE
with an M -dimensional Wiener process

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) ◦ dW
j
t , i = 1, . . . , N, (1.50)

is given componentwise by

Y in+1 = Y in + ai∆n +
1

2
L0ai∆2

n (1.51)

+
m∑
j=1

(
bi,j∆W j

n + L0bi,jJ(0,j);n + Ljai J(j,0);n

)

+
m∑

j1,j2=1

(
Lj1bi,j2J(j1,j2);n + L0Lj1bi,j2J(0,j1,j2);n

+Lj1L0bi,j2J(j1,0,j2);n + Lj1Lj2ai J(j1,j2,0);n

)

+
m∑

j1,j2,j3=1

Lj1Lj2bi,j3J(j1,j2,j3);n

+
m∑

j1,j2,j3,j4=1

Lj1Lj2Lj3bi,j4J(j1,j2,j3,j4);n

1 MAPLE for Stochastic Differential Equations 43

for i = 1, . . ., N . The J(j1,j2);n and J(j1,j2,j3);n expressions here denote the
corresponding double and triple Stratonovich integrals with respect to the
components of the given Wiener process.

The routine stochastic[Taylor2] constructs the order 2.0 strong stochastic
Taylor scheme for the Stratonovich SDE (1.50).

stochastic[Taylor2]:=proc(a::list(algebraic),b::list(list(algebraic)))

local u,i,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] = Y.i[n]+correct(a,b,i)*Delta[n]+

1/2*SL0(correct(a,b,i),a,b)*Delta[n]^2+

sum(’op(j,op(i,b))*Delta*W.j[n]+SL0(op(j,op(i,b)),a,b)*J[0,j]+

LJ(correct(a,b,i),b,j)*J[j,0]’,’j’ = 1 .. nops(op(1,b)))

+sum(’sum(’LJ(op(j2,op(i,b)),b,j1)*J[j1,j2]+

SL0(LJ(op(j2,op(i,b)),b,j1),a,b)*J[0,j1,j2]+

LJ(SL0(op(j2,op(i,b)),a,b),b,j1)*J[j1,0,j2]+

LJ(LJ(correct(a,b,i),b,j2),b,j1)*J[j1,j2,0]’,

’j1’ = 1 .. nops(op(1,b)))’,

’j2’ = 1 .. nops(op(1,b)))+sum(

’sum(’sum(’LJ(LJ(op(p3,op(i,b)),b,p2),b,p1)*J[p1,p2,p3]’,

’p1’ = 1 .. nops(op(1,b)))’,’p2’ = 1 .. nops(op(1,b)))’,

’p3’ = 1 .. nops(op(1,b)))+sum(’sum(’sum(

’sum(’LJ(LJ(LJ(op(m4,op(i,b)),b,m3),b,m2),b,m1)*J[m1,m2,m3,m4]’,

’m1’ = 1 .. nops(op(1,b)))’,’m2’ = 1 .. nops(op(1,b)))

’,’m3’ = 1 .. nops(op(1,b)))’,’m4’ = 1 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od

od;

RETURN(eval(soln))

end:

The call Taylor2([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); com-
putes the order 2.0 strong stochastic Taylor approximation for the N -dimen-
sional Stratonovich SDE (1.50) with M -dimensional noise which has drift co-
efficient components a1,. . .,aN and diffusion matrix with rows [b11, . . . , b1M],
. . ., [bN1, . . . , bNM].

The output gives the variables Y N [n], DeltaWM [n], Delta[n], J [(j1, j2)],
J [(j1, j2, j3)], and J [(j1, j2, j3, j4)]. here Y N [n] denotes the strong order
2.0 stochastic Taylor approximation to x[N] at the nth step, DeltaWM [n]
denotes the increment in the M -dimensional Wiener process at the nth step,
Delta[n] denotes the step size at the nth step, while J [(j1, j2)], J [(j1, j2, j3)],
and J [(j1, j2, j3, j4)] denote multiple Stratonovich integrals.

44 S. Cyganowski et al.

EXAMPLE: Consider the 2-dimensional Stratonovich SDE driven by a 2-
dimensional Wiener process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X2
t

X1
t

)
dt+

(
r

s

)
◦ dW 1

t +

(
u

v

)
◦ dW 2

t ,

that is with drift components a1(t, x1, x2) = x2, a
2(t, x1, x2) = x1 and the

constant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r, s, u and v are constants.

> Taylor2([x[2],x[1]],[[r,u],[s,v]]);

table([

2

1 = (Y1[n + 1] = Y1[n] + Y2[n] Delta[n] + 1/2 Y1[n] Delta[n]

+ r Delta W1[n] + s J[1, 0] + u Delta W2[n] + v J[2, 0])

2

2 = (Y2[n + 1] = Y2[n] + Y1[n] Delta[n] + 1/2 Y2[n] Delta[n]

+ s Delta W1[n] + r J[1, 0] + v Delta W2[n] + u J[2, 0])

])

The resulting order 2.0 strong Stratonovich Taylor scheme scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 2
n

Y 1
n

)
∆n +

1

2

(
Y 2
n

Y 1
n

)
∆2
n +

(
r

s

)
∆W 1

n

+

(
s

r

)
J(1,0);n +

(
u

v

)
∆W 2

n +

(
v

u

)
J(2,0);n.

1.10 Weak Numerical Schemes

Weak Taylor schemes of order 1.0, 2.0 and 3.0 along with various simplifica-
tions will be considered for anN -dimensional Ito SDE with anM -dimensional
Wiener process

dXi
t = ai(t, Xt) dt+

M∑
j=1

bi,j(t, Xt) dW
j
t , i = 1, . . . , N. (1.52)

1 MAPLE for Stochastic Differential Equations 45

1.10.1 Weak Euler scheme

The weak stochastic Taylor scheme of order 1.0 for the SDE (1.52) is known
as the weak Euler scheme and has the componentwise form

Y in+1 = Y in + ai∆n +
M∑
j=1

bi,j∆W j
n, i = 1, . . . , N, (1.53)

where ∆n = tn+1 − tn and ∆W j
n = W j

tn+1
−W j

tn .
Since only the probability measure induced by the solution process Xt

needs to be approximated for weak convergence, the Gaussian increments
∆W j

n in (1.53) can be replaced by simpler random variables ∆Ŵ j with sim-
ilar lower moment properties that are easier to generate. This leads to the
simplified weak Euler scheme

Y in+1 = Y in + ai∆n +
M∑
j=1

bi,j∆Ŵ j
n, i = 1, . . . , N, (1.54)

for i = 1, . . ., N , where the ∆Ŵ j
n are independent two-point distributed

random variables with

P
(
∆Ŵ j

n = ±
√
∆n

)
=

1

2

for j = 1, 2, . . ., M .

The routine stochastic[wkeuler] constructs the (simplified) weak Euler
scheme for the SDE (1.52).

stochastic[wkeuler]:=proc(a::list(algebraic),b::list(list(algebraic)))

local u,i,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] = Y.i[n]+L0(x[i],a,b)*Delta[n]+

sum(’LJ(x[i],b,j)*Delta*Ws.j[n]’,’j’ = 1 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od

od;

RETURN(eval(soln))

end:

The call wkeuler([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); com-
putes the (simplified) weak Euler scheme for an N -dimensional SDE with
M -dimensional noise which has drift coefficients a1, . . ., aN and diffusion
matrix with rows [b11, . . . , b1M], . . ., [bN1, . . . , bNM].

The output consists of the variables Y N [n], DeltaWsM [n] and Delta[n]. Here
Y N [n] denotes the first order simplified weak approximation to x[N] at the

46 S. Cyganowski et al.

nth step, DeltaWsM [n] denotes the increment in the M -dimensional noise
process at the nth step (note here that WsM [n] does not need to denote a
standard Wiener processes, but can instead be independent random variables
as described above) and Delta[n] denotes the step size at the nth step.

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X1
t

X2
t

)
dt+

(
r

s

)
dW 1

t +

(
u

v

)
dW 2

t ,

i.e. with drift components a1(t, x1, x2) = x1, a
2(t, x1, x2) = x2 and the con-

stant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r is a constant.

> wkeuler([x[1],x[2]],[[r,u],[s,v]]);

table([

1 = (Y1[n + 1] = Y1[n] + Y1[n] Delta[n]

+ r Delta Ws1[n] + u Delta Ws2[n])

2 = (Y2[n + 1] = Y2[n] + Y2[n] Delta[n]

+ s Delta Ws1[n] + v Delta Ws2[n])

])

The resulting simplified weak Euler scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 2
n

Y 1
n

)
∆n +

(
r

s

)
∆Ŵ 1

n +

(
u

v

)
∆Ŵ 2

n .

1.10.2 Order 2.0 weak stochastic Taylor scheme

The order 2.0 weak stochastic Taylor scheme for the SDE (1.52) takes the
form

Y in+1 = Y in + ai∆n +
1

2
L0ai∆2

n (1.55)

+
M∑
j=1

{
bi,j∆W j

n + L0bk,j I(0,j);n + Ljai I(j,0);n

}

+
m∑

j1,j2=1

Lj1bk,j2 I(j1,j2);n

1 MAPLE for Stochastic Differential Equations 47

for i = 1, . . ., N . Here multiple Ito integrals involving different components of
the Wiener process are used. Since these are generally not easy to generate,
the above scheme is more of theoretical interest than of practical use. How-
ever, for weak convergence the multiple integrals can be replaced by simpler
random variables, which leads to the simplified order 2.0 weak Taylor scheme

Y in+1 = Y in + ai∆n +
1

2
L0ai∆2

n (1.56)

+
M∑
j=1

{
bi,j +

1

2
∆n

(
L0bi,j + Ljai

)}
∆Ŵ j

n

+
1

2

M∑
j1,j2=1

Lj1bi,j2
(
∆Ŵ j1

n ∆Ŵ
j2
n + V(j1,j2);n

)
.

Here the ∆Ŵ j
n for j = 1, 2, . . ., M are independent three-point distributed

random variables with

P
(
∆Ŵ j

m = ±
√

3∆n

)
=

1

6
, P

(
∆Ŵ j

n = 0
)

=
2

3
. (1.57)

and the V(j1,j2);n are independent two-point distributed random variables
with

P
(
V(j1,j2);n = ±∆n

)
=

1

2
(1.58)

for j2 = 1, . . ., j1 − 1, with

V(j1,j1);n = −∆n (1.59)

and
V(j1,j2);n = −V(j2,j1);n (1.60)

for j2 = j1 + 1, . . ., M and j1 = 1, . . ., M .

The routine stochastic[wktay2] constructs the simplified stochastic Taylor
scheme of weak order 2.0.

stochastic[wktay2]:=proc(a::list(algebraic),b::list(list(algebraic)))

local u,i,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] =

Y.i[n]+a[i]*Delta[n]+1/2*L0(a[i],a,b)*Delta[n]^2+

sum(’(op(j,op(i,b))+1/2*Delta[n]*(L0(op(j,op(i,b)),a,b)+

LJ(a[i],b,j)))*Delta*Ws.j[n]’,’j’ = 1 .. nops(op(1,b)))+1/2*

sum(’sum(’LJ(op(j2,op(i,b)),b,j1)*(Delta^2*Ws.j1[n]*Ws.j2[n]+

V[j1,j2])’,’j1’ = 1 .. nops(op(1,b)))’,

’j2’ = 1 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od;

od;

RETURN(eval(soln))

end:

48 S. Cyganowski et al.

The call wktay2([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns
the simplified order 2.0 weak stochastic Taylor scheme for an N -dimensional
SDE with M -dimensional noise which has drift coefficients a1, . . .,aN and
diffusion matrix with rows [b11, . . ., b1M],. . ., [bN1, . . . , bNM].

The output consists of the variables Y N [n], DeltaWsM [n], V [(j1, j2)], and
Delta[n]. Here Y N [n] denotes the 2nd order simplified weak approximation to
x[N] at the nth step, DeltaWsM [n] denotes the change in the M -dimensional
noise process at the nth step (note here that WsM [n] does not denote
standard Wiener processes, but the three-point random variables described
above), V [(j1, j2)] denotes the independent two-point random variables de-
scribed above, and Delta[n] denotes the step size at the nth step.

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X1
t

X2
t

)
dt+

(
r

s

)
dW 1

t +

(
u

v

)
dW 2

t ,

that is with drift components a1(t, x1, x2) = x1, a
2(t, x1, x2) = x2 and the

constant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r, s, u and v are constants.

> wktay2([x[1],x[2]],[[r,u],[s,v]]);

table([

2

1 = (Y1[n + 1] = Y1[n] + Y1[n] Delta[n] + 1/2 Y1[n] Delta[n]

+ (r + 1/2 Delta[n] r) Delta Ws1[n]

+ (u + 1/2 Delta[n] u) Delta Ws2[n])

2

2 = (Y2[n + 1] = Y2[n] + Y2[n] Delta[n] + 1/2 Y2[n] Delta[n]

+ (s + 1/2 Delta[n] s) Delta Ws1[n]

+ (v + 1/2 Delta[n] v) Delta Ws2[n])

])

The resulting order 2.0 weak stochastic Taylor scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 1
n

Y 2
n

)
∆n +

1

2

(
Y 1
n

Y 2
n

)
∆2
n

+

(
r + 1

2r∆n

s+ 1
2
s∆n

)
∆Ŵ 1

n +

(
u+ 1

2u∆n

v + 1
2
v∆n

)
∆Ŵ 2

n.

1 MAPLE for Stochastic Differential Equations 49

1.10.3 Order 3.0 weak stochastic Taylor scheme

The order 3.0 weak stochastic Taylor scheme for the SDE (1.52) has the form

Y in+1 = Y in + ai∆n +
m∑
j=1

bk,j∆W j
n +

m∑
j=0

Ljai I(j,0);n (1.61)

+
m∑
j1=0

m∑
j2=1

Lj1bk,j2 I(j1,j2);n +
m∑

j1,j2=0

Lj1Lj2ai I(j1,j2,0);n

+
m∑

j1,j2=0

m∑
j3=1

Lj1Lj2bk,j3 I(j1,j2,j3);n.

Various simplifications are possible in special cases that avoid the need to
generate the multiple stochastic integrals. See Chapter 14.3 of Kloeden and
Platen [13]

The routine stochastic[wktay3] constructs stochastic Taylor schemes of
weak order 3.0.

stochastic[wktay3]:=proc(a::list(algebraic),b::list(list(algebraic)))

local u,i,soln;

for i to nops(a) do

soln[i] := Y.i[n+1] = Y.i[n]+a[i]*Delta[n]+

sum(’op(j,op(i,b))*Delta*W.j[n]’,’j’ = 1 .. nops(op(1,b)))+

sum(’MLJ(a[i],a,b,j0)*I[j0,0]’,’j0’ = 0 .. nops(op(1,b)))+

sum(’sum(’MLJ(op(j2,op(i,b)),a,b,j1)*I[j1,j2]’,

’j2’ = 1 .. nops(op(1,b)))’,’j1’ = 0 .. nops(op(1,b)))+

sum(’sum(’MLJ(MLJ(a[i],a,b,k2),a,b,k1)*I[k1,k2,0]’,

’k1’ = 0 .. nops(op(1,b)))’,’k2’ = 0 .. nops(op(1,b)))+sum(

’sum(’sum(’MLJ(MLJ(op(m3,op(i,b)),a,b,m2),a,b,m1)*I[m1,m2,m3]’,

’m3’ = 1 .. nops(op(1,b)))’,’m2’ = 0 .. nops(op(1,b)))’,

’m1’ = 0 .. nops(op(1,b)));

for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od;

od;

RETURN(eval(soln))

end:

The call wktay3([a1,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns
the order 3.0 weak stochastic Taylor scheme for an N -dimensional SDE with
M -dimensional noise which has drift coefficients a1, . . ., aN and diffusion
matrix with rows [b11, . . . , b1M], . . ., [bN1, . . . , bNM].

The output consists of the variables Y N [n], DeltaWM [n], I[(j1, j2)], I[(j1,
j2, j3)] and Delta[n]. Here Y N [n] denotes the third order weak approxi-
mation to x[N] at the nth step, DeltaWM [n] denotes the increment in the
M -dimensional Wiener process at the nth step, I[(j1, j2)] and I[(j1, j2, j3)]

50 S. Cyganowski et al.

denote multiple Ito integrals, and Delta[n] denotes the step size at the nth
step.

EXAMPLE: Consider the 2-dimensional SDE driven by a 2-dimensional Wie-
ner process Wt = (W 1

t ,W
2
t), given by

d

(
X1
t

X2
t

)
=

(
X2
t

X1
t

)
dt+

(
r

s

)
dW 1

t +

(
u

v

)
dW 2

t ,

i.e. with drift components a1(t, x1, x2) = x2, a
2(t, x1, x2) = x1 and the con-

stant diffusion coefficient vectors

b1 =

(
b1,1

b2,1

)
=

(
r

s

)
, b2 =

(
b1,2

b2,2

)
=

(
u

v

)
,

where r, s, u and v are constants.

> wktay3([x[2],x[1]],[[r,u],[s,v]]);

table([

1 = (Y1[n + 1] = Y1[n] + Y2[n] Delta[n] + r Delta W1[n]

+ u Delta W2[n] + Y1[n] I[0, 0] + s I[1, 0]

+ v I[2, 0] + Y2[n] I[0, 0, 0]

+ r I[1, 0, 0] + u I[2, 0, 0])

2 = (Y2[n + 1] = Y2[n] + Y1[n] Delta[n] + s Delta W1[n]

+ v Delta W2[n] + Y2[n] I[0, 0] + r I[1, 0]

+ u I[2, 0] + Y1[n] I[0, 0, 0]

+ s I[1, 0, 0] + v I[2, 0, 0])

])

The resulting order 3.0 weak stochastic Taylor scheme scheme is(
Y 1
n+1

Y 2
n+1

)
=

(
Y 1
n

Y 2
n

)
+

(
Y 2
n

Y 1
n

)
∆n +

(
r

s

)
∆W 1

n +

(
u

v

)
∆W 2

n

+

(
Y 1
n

Y 2
n

)
I(0,0);n +

(
s

r

)
I(1,0);n +

(
v

u

)
I(2,0);n

+

(
Y 1
n

Y 2
n

)
I(0,0,0);n +

(
r

s

)
I(1,0,0);n +

(
u

v

)
I(2,0,0);n.

References

1. L. Arnold, Stochastic Differential Equations. Wiley, New York, 1974.

1 MAPLE for Stochastic Differential Equations 51

2. S.S. Artemiev and T.A. Averina, Numerical Analysis of Systems of Ordinary
and of Stochastic Differential Equations. VSP, Utrecht, 1997.

3. R.E. Crandall, Topics in Advanced Scientific Computation, Springer–Verlag,
Heidelberg,1996.

4. S.O. Cyganowski, Solving Stochastic Differential Equations with Maple, Maple-
Tech Newsletter 3(2) (1996), 38–40.

5. S.O. Cyganowski, A MAPLE Package for stochastic differential equations, in
“Computational Techniques and Applications: CTAC95” (Editors A. Easton,
& R. May), World Scientific Publishers, Singapore, 1996, 223–230.

6. S. Cyganowski and P.E. Kloeden, Stochastic stability examined through
MAPLE, in Proc. 15th IMACS World Congress, Volume 1: Computational
Mathematics (Editor: A. Sydow), Wissenschaft & Technik Verlag, Berlin, 1997,
437–432.

7. S. Cyganowski, P.E. Kloeden and J. Ombach, From Elementary Probability to
Stochastic DEs with MAPLE, Springer–Verlag, Heidelberg, 2001.

8. S. Cyganowski, P.E. Kloeden and T. Pohl, MAPLE for stochastic differential
equations WIAS Berlin, Preprint Nr. 453, 1998. Availability: Postscript 467
KB, http://www.wias-berlin.de/publications/preprints/453

9. T. Gard, Introduction to Stochastic Differential Equations, Marcel–Dekker,
New York, 1988.

10. W. Gander and J. Hrebicek, Solving Problems in Scientific Computing using
Maple and Matlab, Second Edition, Springer–Verlag, Heidelberg, 1995.

11. W.S. Kendall, Computer algebra and stochastic calculus, Notices Amer. Math.
Soc. 37 (1990), 1254–1256.

12. P.E. Kloeden, Stochastic differential equations in environmental modelling and
their numerical solution, in Stochastic and Statistical Modelling with Ground-
water and Surface Water Applications, (Editor: K. Hipel), Kluwer Academic
Publ., Dordrecht, 1994, 21–32.

13. P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equa-
tions Springer-Verlag, Heidelberg, 1992; second revised printing 1999.

14. P.E. Kloeden and E. Platen, A survey of numerical methods for stochastic
differential equations, J. Stoch. Hydrol. Hydraul. 3 (1989), 155-178.

15. P.E. Kloeden and E. Platen, Numerical methods for stochastic differential equa-
tions, in Stochastic Modelling and Nonlinear Dynamics: Applications to Me-
chanical Systems, (Editor: W. Kliemann), CRC Press, 1994, S. 437–461.

16. P.E. Kloeden, E. Platen and H. Schurz, Numerical Solution of Stochastic Differ-
ential Equations through Computer Experiments, Springer-Verlag, Heidelberg,
1993.

17. P.E. Kloeden, E. Platen and H. Schurz, The numerical solution of nonlinear
stochastic dynamical systems: a brief introduction, J. Bifurcation & Chaos 1
(1991), 277-286.

18. P.E. Kloeden and W.D. Scott, Construction of Stochastic Numerical Schemes
through Maple, MapleTech Newsletter 10 (1993), 60–65.

19. G.N. Milstein, Numerical Integration of Stochastic Differential Equations,
Kluwer, Dordrecht, 1995.

20. G.G. Milstein and M.V. Tret’yakov, Numerical Solution of Differential Equa-
tions with Coloured Noise, J. Stat. Physics, 77 (1994) 691–715.

21. E. Platen, Numerical methods for stochastic differential equations, Acta Nu-
merica, (1999) 197–246.

52 S. Cyganowski et al.

22. E. Valkeila, Computer algebra and stochastic analysis, some possibilities, CWI
Quarterly 4 (1991), 229–238.

23. Xu Kedai, Stochastic pitchfork bifurcation: numerical simulations and symbolic
calculations using MAPLE, Mathematics and Computers in Simulation 38
(1995), 199–207.

