
Analysis and design of unconstrained nonlinear MPC schemes

for finite and infinite dimensional systems∗

Lars Grüne
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Abstract: We present a technique for computing stability and performance bounds for uncon-
strained nonlinear model predictive control (MPC) schemes. The technique relies on controllability
properties of the system under consideration and the computation can be formulated as an opti-
mization problem whose complexity is independent of the state space dimension. Based on the
insight obtained from the numerical solution of this problem we derive design guidelines for non-
linear MPC schemes which guarantee stability of the closed loop for small optimization horizons.
These guidelines are illustrated by a finite and an infinite dimensional example.
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1 Introduction

Model predictive control (MPC, often also termed receding horizon control) is a well es-
tablished method for the optimal control of linear and nonlinear systems [1, 2, 15]. The
stability and suboptimality analysis of MPC schemes has been a topic of active research
during the last decades. While in the MPC literature in order to prove stability and sub-
optimality of the resulting closed loop often stabilizing terminal constraints or terminal
costs are used (see, e.g., [12],[3], [9] or the survey paper [15]), here we consider the simplest
class of MPC schemes for nonlinear systems, namely those without terminal constraints
and cost. These schemes are attractive for their numerical simplicity, do not require the
introduction of stabilizing state space constraints — which are particularly inconvenient
when treating infinite dimensional systems — and are easily generalized to time varying
tracking type problems and to the case where more complicated sets than equilibria are
to be stabilized. Essentially, these unconstrained MPC schemes can be interpreted as a
simple truncation of the infinite optimization horizon to a finite horizon N .
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For such unconstrained schemes without terminal cost, Jadbabaie and Hauser [11] and
Grimm et al. [4] show under different types of controllability and detectability conditions
for nonlinear systems that stability of the closed loop can be expected if the optimization
horizon N is sufficiently large, however, no explicit bounds for N are given. The paper
[6] (see also [5]) uses controllability conditions and techniques from relaxed dynamic pro-
gramming [13, 18] in order to compute explicit estimates for the degree of suboptimality,
which in particular lead to bounds on the stabilizing optimization horizon N which are,
however, in general not optimal. Such optimal estimates for the stabilizing horizon N have
been obtained in [19, 17] using the explicit knowledge of the finite horizon optimal value
functions, which could be computed numerically in the (linear) examples considered in
these papers.

Unfortunately, for large scale or infinite dimensional and also for moderately sized nonlinear
systems in general neither an analytical expression nor a sufficiently accurate numerical
approximation of optimal value functions is available. Furthermore, an analysis based
on such numerical approximations typically does not provide analytic insight into the
dependence between the stability properties and the system structure. For these reasons,
in this paper we base our analysis on (open loop) controllability properties, which can
often be estimated or characterized in sufficient detail by analyzing the system structure.
More precisely, for our analysis we use KL bounds of the chosen running cost along (not
necessarily optimal) trajectories. Such bounds induce upper bounds on the optimal value
functions and the main feature we exploit is the fact that the controllability properties
do not only impose bounds on the optimal value function at the initial value but — via
Bellman’s optimality principle — also along “tails” of optimal trajectories. The resulting
stability and suboptimality condition can be expressed as an optimization problem whose
complexity is independent of the dimension of the state space of the system and which is
actually an easily solvable linear program if the KL function involved in the controllability
assumption is linear in its first argument. As in [6], this procedure gives a bound on the
degree of suboptimality of the MPC feedback which in particular allows to determine a
bound on the minimal stabilizing horizon N , but in contrast to [6] the bound derived
here turns out to be optimal with respect to the class of systems satisfying the assumed
controllability property.

Since the resulting optimization problem is small and thus easy to solve, we can perform a
comprehensive numerical analysis of many different controllability situations, which we use
in order to derive design guidelines for the formulation of stable MPC schemes with small
optimization horizon N . A distinctive feature of our approach is that our analysis applies
to finite and infinite dimensional systems alike and we demonstrate the effectiveness of
our approach in an infinite dimensional setting by an example of a sampled data system
governed by a parabolic PDE.

The paper is organized as follows: in Section 2 we describe the setup and the relaxed
dynamic programming inequality our approach is based upon. In Section 3 we describe
the controllability condition we are going to use and its consequences to the optimal value
functions and trajectories. In Section 4 we use these results in order to obtain a condition for
suboptimality and show how this condition can be formulated as an optimization problem.
Section 5 shows how our condition can be used for the closed loop stability analysis. In
Section 6 we perform a case study in which we analyze the impact of different controllability
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bounds and MPC parameters on the minimal stabilizing horizon N . Based on the numerical
findings from this analysis, in Section 7 we formulate our design guidelines for MPC schemes
and illustrate them by two examples. We finish the paper by giving conclusions and outlook
in Section 8 and the formulation and proof of a technical lemma in the Appendix.

2 Setup and preliminary results

We consider a nonlinear discrete time system given by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (2.1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here we denote the space of control sequences
u : N0 → U by U and the solution trajectory for some u ∈ U by xu(n). Here the state space
X is an arbitrary metric space, i.e., it can range from a finite set to an infinite dimensional
space.

A typical class of systems we consider are sampled-data systems governed by a controlled
— finite or infinite dimensional — differential equation ẋ(t) = g(x(t), ũ(t)) with solution
ϕ(t, x0, ũ) for initial value x0. These are obtained by fixing a sampling period T > 0 and
setting

f(x, u) := ϕ(T, x, ũ) with ũ(t) ≡ u. (2.2)

Then, for any discrete time control function u ∈ U the solutions xu of (2.1),(2.2) satisfy
xu(n) = ϕ(nT, x0, ũ) for the piecewise constant continuous time control function ũ : R → U
with ũ|[nT,(n+1)T ) ≡ u(n). Note that with this construction the discrete time n corresponds
to the continuous time t = nT .

Our goal is to find a feedback control law minimizing the infinite horizon cost

J∞(x0, u) =
∞∑

n=0

l(xu(n), u(n)), (2.3)

with running cost l : X ×U → R+
0 . We denote the optimal value function for this problem

by
V∞(x0) = inf

u∈U
J∞(x0, u).

Here we use the term feedback control in the following general sense.

Definition 2.1 For m ≥ 1, an m–step feedback law is a map µ : X × {0, . . . ,m− 1} → U
which is applied according to the rule

xµ(n + 1) = f(xµ(n), µ(xµ([n]m), n− [n]m)), xµ(0) = x0 (2.4)

where [n]m denotes the largest product km, k ∈ Z, with km ≤ n.

In other words, the feedback is evaluated at the times 0,m, 2m . . . and generates a sequence
of m control values which is applied in the m steps until the next evaluation. Note that
for m = 1 we obtain the usual static state feedback concept in discrete time.
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If the optimal value function V∞ is known, it is easy to prove using Bellman’s optimality
principle that the optimal feedback law µ is given by

µ(x0, ·) := argmin
u∈Um

{
V∞(xu(m)) +

m−1∑
n=0

l(xu(n), u(n))

}
. (2.5)

Remark 2.2 We assume throughout this paper that in all relevant expressions the mini-
mum with respect to u ∈ Um is attained. Although it is possible to give modified statements
using approximate minimizers, we decided to make this assumption in order to simplify
and streamline the presentation.

Since infinite horizon optimal control problems are in general computationally infeasible, we
use a receding horizon approach in order to compute an approximately optimal controller,
To this end we consider the finite horizon functional

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) (2.6)

for N ∈ N0 (using
∑−1

n=0 = 0) and the optimal value function

VN (x0) = inf
u∈U

JN (x0, u). (2.7)

Note that this is the conceptually simplest receding horizon approach in which neither
terminal costs nor terminal constraints are imposed.

Based on this finite horizon optimal value function for m ≤ N we define an m–step feedback
law µN,m by picking the first m elements of the optimal control sequence for this problem
according to the following definition.

Definition 2.3 Let u∗ be a minimizing control for (2.6) and initial value x0. Then we
define the m–step MPC feedback law by

µN,m(x0, n) = u∗(n), n = 0, . . . ,m− 1.

Here the value N is called the optimization horizon while we refer to m as the control
horizon.

Note that we do not need uniqueness of u∗ for this definition, however, for µN,m(x0, ·) being
well defined we suppose that for each x0 we select one specific u∗ from the set of optimal
controls.

The first goal of the present paper is to give estimates about the suboptimality of the
feedback µN,n for the infinite horizon problem. More precisely, for an m–step feedback law
µ with corresponding solution trajectory xµ(n) from (2.4) we define

V µ
∞(x0) :=

∞∑
n=0

l(xµ(n), µ(xµ([n]m), n− [n]m))
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and are interested in upper bounds for the infinite horizon value V
µN,m
∞ , i.e., in an estimate

about the “degree of suboptimality” of the controller µN,m. Based on this estimate, the
second purpose of this paper is to derive results on the asymptotic stability of the resulting
closed loop system using VN as a Lyapunov function.

The approach we take in this paper relies on results on relaxed dynamic programming
[13, 18] which were already used in an MPC context in [5, 6]. Next we state the basic
relaxed dynamic programming inequality adapted to our setting.

Proposition 2.4 Consider an m–step feedback law µ̃ : X × {0, . . . ,m − 1} → U , the
corresponding solution xµ̃(k) with xµ̃(0) = x0 and a function Ṽ : X → R+

0 satisfying the
inequality

Ṽ (x0) ≥ Ṽ (xµ̃(m)) + α

m−1∑
k=0

l(xµ̃(k), µ̃(x0, k)) (2.8)

for some α ∈ (0, 1] and all x0 ∈ X. Then for all x ∈ X the estimate

αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x)

holds.

Proof: The proof is similar to that of [18, Proposition 3] and [6, Proposition 2.2]: Consider
x0 ∈ X and the trajectory xµ̃(n) generated by the closed loop system using µ̃. Then from
(2.8) for all n ∈ N0 we obtain

α

m−1∑
k=0

l(xµ̃(nm + k), µ̃(xµ̃(nm), k)) ≤ Ṽ (xµ̃(mn))− Ṽ (xµ̃(m(n + 1))).

Summing over n yields

α

Km∑
n=0

l(xµ̃(n), µ̃(xµ̃(n), µ̃(xµ̃([n]m), n− [n]m)) = α

K∑
n=0

m−1∑
k=0

l(xµ̃(nm + k), µ̃(xµ̃(nm), k))

≤ Ṽ (x(0))− Ṽ (x(mK)) ≤ Ṽ (x(0)).

For K →∞ this yields that Ṽ is an upper bound for αV µ̃
∞ and hence

αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x).

Remark 2.5 The term “unconstrained” only refers to constraints which are introduced
in order to ensure stability of the closed loop. Other constraints can be easily included in
our setup, e.g., the set U of admissible control values could be subject to — possibly state
dependent — constraints or X could be the feasible set of a state constrained problem on
a larger state space.
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3 Asymptotic controllability and optimal values

In this section we introduce an asymptotic controllability assumption and deduce several
consequences for our optimal control problem. In order to facilitate this relation we will
formulate our basic controllability assumption, below, not in terms of the trajectory but
in terms of the running cost l along a trajectory.

To this end we say that a continuous function ρ : R≥0 → R≥0 is of class K∞ if it satisfies
ρ(0) = 0, is strictly increasing and unbounded. We say that a continuous function β :
R≥0 × R≥0 → R≥0 is of class KL0 if for each r > 0 we have limt→∞ β(r, t) = 0 and for
each t ≥ 0 we either have β(·, t) ∈ K∞ or β(·, t) ≡ 0. Note that in order to allow for
tighter bounds for the actual controllability behavior of the system we use a larger class
than the usual class KL. It is, however, easy to see that each β ∈ KL0 can be overbounded
by a β̃ ∈ KL, e.g., by setting β̃(r, t) = maxτ≥t β(r, t) + e−tr. Furthermore, we define
l∗(x) := minu∈U l(x, u).

Assumption 3.1 Given a function β ∈ KL0, for each x0 ∈ X there exists a control
function ux0 ∈ U satisfying

l(x(n, ux0), ux0(n)) ≤ β(l∗(x0), n)

for all n ∈ N0.

Special cases for β ∈ KL0 are
β(r, n) = Cσnr (3.1)

for real constants C ≥ 1 and σ ∈ (0, 1), i.e., exponential controllability, and

β(r, n) = cnr (3.2)

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0 for all n ≥ n0, i.e., finite time
controllability (with linear overshoot).

For certain results it will be useful to have the property

β(r, n + m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0. (3.3)

Property (3.3) ensures that any sequence of the form λn = β(r, n), r > 0, also fulfills
λn+m ≤ β(λn,m). It is, for instance, always satisfied in case (3.1) and satisfied in case
(3.2) if cn+m ≤ cncm. If needed, this property can be assumed without loss of generality,
because by Sontag’s KL-Lemma [20] β in Assumption 3.1 can be replaced by a β of the
form β(r, t) = α1(α2(r)e−t) for α1, α2 ∈ K∞. Then, (3.3) is easily verified if α2 ◦α1(r) ≥ r
which is equivalent to α1 ◦α2(r) ≥ r which in turn is a necessary condition for Assumption
3.1 to hold for n = 0 and β(r, t) = α1(α2(r)e−t).

Under Assumption 3.1, for any r ≥ 0 and any N ≥ 1 we define the value

BN (r) :=
N−1∑
n=0

β(r, n). (3.4)

An immediate consequence of Assumption 3.1 is the following lemma.
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Lemma 3.2 For each N ≥ 1 the inequality

VN (x0) ≤ BN (l∗(x0)) (3.5)

holds.

Proof: Using ux0 from Assumption 3.1, the inequality follows immediately from

VN (x0) ≤ JN (x0, ux0) =
N−1∑
n=0

l(x(n, ux0), ux0(n))

≤
N−1∑
n=0

β(l∗(x0), n) = BN (l∗(x0)).

In the special case (3.1) BN , N ≥ 1, evaluates to

BN (r) = C
1− λN

1− λ
r

while for (3.2) we obtain

BN (r) = CNr, where CN =
min{n0,N−1}∑

j=0

cn.

The following lemma gives bounds on the finite horizon functional along optimal trajecto-
ries.

Lemma 3.3 Assume Assumption 3.1 and consider x0 ∈ X and an optimal control u∗ for
the finite horizon optimal control problem (2.7) with optimization horizon N ≥ 1. Then
for each k = 0, . . . , N − 1 the inequality

JN−k(xu∗(k), u∗(k + ·)) ≤ BN−k(l∗(xu∗(k))

holds for BN from (3.4).

Proof: Pick any k ∈ {0, . . . , N − 1}. Using ux0 from Assumption 3.1 with x0 = xu∗(k),
from (3.5) we obtain

JN−k(xu∗(k), ux0(·)) ≤ BN−k(l∗(xu∗(k))). (3.6)

Hence, for the control function defined by

ũ(n) =
{

u∗(n), n ≤ k − 1
ux0(n), n ≥ k

we obtain
VN (x0) ≤ JN (x0, ũ) = Jk(x0, u

∗) + JN−k(xu∗(k), ux0(·)).
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On the other hand we have

VN (x0) = JN (x0, u
∗) = Jk(x0, u

∗) + JN−k(xu∗(k), u∗(k + ·)).

Subtracting the latter from the former yields

0 ≤ JN−k(xu∗(k), ux0(·))− JN−k(xu∗(k), u∗(k + ·))

which using (3.6) implies

JN−k(xu∗(k), u∗(k + ·)) ≤ JN−k(xu∗(k), ux0(·)) ≤ BN−k(l∗(xu∗(k)),

i.e., the assertion.

A similar inequality can be obtained for VN .

Lemma 3.4 Assume Assumption 3.1 and consider x0 ∈ X and an optimal control u∗ for
the finite horizon optimal control problem (2.7) with optimization horizon N . Then for
each m = 1, . . . , N − 1 and each j = 0, . . . , N −m− 1 the inequality

VN (xu∗(m)) ≤ Jj(xu∗(m), u∗(m + ·)) + BN−j(l∗(xu∗(m + j))

holds for BN from (3.4).

Proof: We define the control function

ũ(n) =
{

u∗(m + n), n ≤ j − 1
ux0(n), n ≥ j

for ux0 from Assumption 3.1 with x0 = xu∗(m + j). Then we obtain

VN (xu∗(m)) ≤ J(xu∗(m), ũ)
= Jj(xu∗(m), u∗(m + ·)) + JN−j(xu∗(m + j), ux0)
≤ Jj(xu∗(m), u∗(m + ·)) + BN−j(l∗(xu∗(m + j)))

where we used (3.5) in the last step. This is the desired inequality.

4 Computation of performance bounds

In this section we provide a constructive approach in order to compute α in (2.8) for systems
satisfying Assumption 3.1. For this purpose we consider arbitrary values λ0, . . . , λN−1 > 0
and ν > 0 and start by deriving necessary conditions under which these values coincide
with an optimal sequence l(xu∗(n), u∗(n)) and an optimal value VN (xu∗(m)), respectively.

Proposition 4.1 Assume Assumption 3.1 and consider N ≥ 1, m ∈ {1, . . . , N − 1}, a
sequence λn > 0, n = 0, . . . , N − 1 a value ν > 0. Consider x0 ∈ X and assume that there
exists an optimal control function u∗ ∈ U for the finite horizon problem (2.7) with horizon
length N , such that

λn = l(xu∗(n), u∗(n)), n = 0, . . . , N − 1
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holds. Then
N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (4.1)

holds. If, furthermore,
ν = VN (xu∗(m)),

holds then

ν ≤
j−1∑
n=0

λn+m + BN−j(λj+m), j = 0, . . . , N −m− 1 (4.2)

holds.

Proof: If the stated conditions hold, then λn and ν must meet the inequalities given in
Lemmas 3.3 and 3.4, which is exactly (4.1) and (4.2).

Using this proposition we can give a sufficient condition for suboptimality of the MPC
feedback law µN,m.

Theorem 4.2 Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, and assume that all
sequences λn > 0, n = 0, . . . , N − 1 and values ν > 0 fulfilling (4.1), (4.2) satisfy the
inequality

N−1∑
n=0

λn − ν ≥ α

m−1∑
n=0

λn (4.3)

for some α ∈ (0, 1].

Then for each optimal control problem (2.1), (2.7) satisfying Assumption 3.1 the assump-
tions of Proposition 2.4 are satisfied for the m-step MPC feedback law µN,m and in partic-
ular the inequality

αV∞(x) ≤ αV
µN,m
∞ (x) ≤ VN (x)

holds for all x ∈ X.

Proof: Consider an initial value x0 ∈ X and the m-step MPC-feedback law µN,m. Then
there exists an optimal control u∗ for x0 such that

u∗(k) = µN,m(x0, k), k = 0, . . . ,m− 1 and xµN,m(k) = xu∗(k), k = 0, . . . ,m

and consequently also

l(xµN,m(k), µN,m(x0, k)) = l(xu∗(k), u∗(k)), k = 0, . . . ,m− 1

holds. These equalities imply

VN (xµN,m(m)) + α

m−1∑
n=0

l(xµN,m(n), µN,m(x0, n)) = VN (xu∗(m)) + α

m−1∑
n=0

l(xu∗(n), u∗(n)).

(4.4)
for any α ∈ R.



10 LARS GRÜNE

Now by Proposition 4.1 the values λn = l(xu∗(k), u∗(k)) and ν = VN (xu∗(m)) satisfy (4.1)
and (4.2), hence by assumption also (4.3). Thus we obtain

VN (xu∗(m)) + α

m−1∑
n=0

l(xu∗(n), u∗(n)) = ν + α

m−1∑
n=0

λn ≤
N−1∑
n=0

λn

=
N−1∑
n=0

l(xu∗(n), u∗(n)) = VN (x0).

Together with (4.4) this yields (2.8) and thus the assertion.

Remark 4.3 Our analysis is easily extended to more general settings. As an example
we show how an additional weight on the final term in the finite horizon optimal control
problem can be included. In this case, the functional JN is generalized to

Jω
N (x0, u) =

N−2∑
n=0

l(xu(n), u(n)) + ωl(xu(N − 1), u(N − 1)) (4.5)

for some ω ≥ 1. Note that the original form of the functional JN from (2.6) is obtained
by setting ω = 1, i.e., JN = J1

N . A straightforward extension of the proofs in the previous
section reveals, that the inequalities in Lemma 3.3 and Lemma 3.4 become

Jω
N−k(xu∗(k), u∗(k + ·)) ≤ Bω

N−k(l
∗(xu∗(k))

and
VN (xu∗(m)) ≤ J1

j (xu∗ , u
∗(m + ·)) + Bω

N−j(l
∗(xu∗(m + j))),

respectively, with

Bω
N (r) :=

N−2∑
n=0

β(r, n) + ωβ(r, N − 1).

Consequently, the inequalities (4.1), (4.2) and (4.3) change to

N−2∑
n=k

λn + ωλN−1 ≤ Bω
N−k(λk), ν ≤

j−1∑
n=0

λn+m + Bω
N−j(λj+m)

and
N−2∑
n=0

λn + ωλN−1 − ν ≥ α

m−1∑
n=0

λn,

respectively.

In view of Theorem 4.2, the value α can be interpreted as a performance bound which
indicates how good the receding horizon MPC strategy approximates the infinite hori-
zon problem. In the remainder of this section we present an optimization approach for
computing α. To this end consider the following optimization problem.
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Problem 4.4 Given β ∈ KL0, N ≥ 1 and m ∈ {1, . . . , N − 1}, compute

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1

n=0 λn

subject to the constraints (4.1) and (4.2) and

λ0, . . . , λN−1, ν > 0. (4.6)

The following is a straightforward corollary from Theorem 4.2.

Corollary 4.5 Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, and assume that the
optimization Problem 4.4 has an optimal value α ∈ (0, 1].

Then for each optimal control problem (2.1), (2.7) satisfying Assumption 3.1 the assump-
tions of Proposition 2.4 are satisfied for the m-step MPC feedback law µN,m and in partic-
ular the inequality

αV∞(x) ≤ αV
µN,m
∞ (x) ≤ VN (x)

holds for all x ∈ X.

Proof: The proof follows immediately from Theorem 4.2 and the definition of Problem
4.4.

Problem 4.4 is an optimization problem of a much lower complexity than the original
MPC optimization problem. Still, it is in general nonlinear. However, it becomes a linear
program if we assume that β(r, n) and thus Bk(r) are linear in r.

Lemma 4.6 If β(r, t) is linear in r, then Problem 4.4 yields the same optimal value α as

α := min
λ0,λ1,...,λN−1,ν

N−1∑
n=1

λn − ν (4.7)

subject to the (now linear) constraints (4.1) and (4.2) and

λ0, . . . , λN−1, ν ≥ 0,

m−1∑
n=0

λn = 1. (4.8)

Proof: Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄ satisfying (4.1), (4.2) and (4.6)
can be written as γλ0, . . . , γλN−1, γν for some λ0, . . . , λN−1, ν satisfying (4.1), (4.2), (4.6)

and (4.8), where γ =
(∑m−1

n=0 λ̄n

)−1
. Since

∑N−1
n=0 λ̄n − ν̄∑m−1

n=0 λ̄n

=
∑N−1

n=0 γλn − γν∑m−1
n=0 γλn

=
∑N−1

n=0 λn − ν∑m−1
n=0 λn

=
N−1∑
n=0

λn − ν,
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under the constraints (4.6) and (4.8) the values α in Problem 4.4 and (4.7) coincide. Now
by continuity we can weaken (4.6) to λ1, . . . , λN−1, ν ≥ 0 without changing α in (4.7), i.e.,
we can omit the constraints (4.6) in the linear problem. This shows the claim.

MATLAB implementations for the linear program described in Lemma 4.6 for (3.1) and
(3.2), including also the weights ω from Remark 4.3 are available from the web site
www.math.uni-bayreuth.de/∼lgruene/publ/mpcbound.html.

5 Asymptotic stability

In this section we show how the performance bound α can be used in order to conclude
asymptotic stability of the MPC closed loop. More precisely, we investigate the asymptotic
stability of the zero set of l∗. To this end we make the following assumption.

Assumption 5.1 There exists a closed set A ⊂ X satisfying:

(i) For each x ∈ A there exists u ∈ U with f(x, u) ∈ A and l(x, u) = 0, i.e., we can stay
inside A forever at zero cost.

(ii) There exist K∞–functions α1, α2 such that the inequality

α1(‖x‖A) ≤ l∗(x) ≤ α2(‖x‖A) (5.1)

holds for each x ∈ X where ‖x‖A := miny∈A ‖x− y‖.

This assumption assures global asymptotic stability of A under the optimal feedback (2.5)
for the infinite horizon problem, provided β(r, n) is summable. We remark that condition
(ii) can be relaxed in various ways, e.g., it could be replaced by a detectability condition
similar to the one used in [4]. However, in order to keep the presentation in this paper
technically simple we will work with Assumption 5.1(ii) here. Our main stability result is
formulated in the following theorem. As usual, we say that a feedback law µ asymptoti-
cally stabilizes a set A if there exists β̃ ∈ KL0 such that the closed loop system satisfies
‖xµ(n)‖A ≤ β̃(‖x0‖A, n).

Theorem 5.2 Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, and assume that the
optimization Problem 4.4 has an optimal value α ∈ (0, 1].

Then for each optimal control problem (2.1), (2.7) satisfying the Assumptions 3.1 and 5.1
the m-step MPC feedback law µN,m asymptotically stabilizes the set A. Furthermore, VN

is a corresponding m-step Lyapunov function in the sense that

VN (xµN,m(m)) ≤ VN (x)− αVm(x). (5.2)
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Proof: From (5.1) and Lemma 3.2 we immediately obtain the inequality

α1(‖x‖A) ≤ VN (x) ≤ BN (α2(‖x‖A)). (5.3)

Note that BN ◦ α2 is again a K∞-function. The stated Lyapunov inequality (5.2) follows
immediately from (2.8) which holds according to Corollary 4.5. Again using (5.1) we obtain
Vm(x) ≥ α1(‖x‖A) and thus a standard construction (see, e.g., [16]) yields a KL–function
ρ for which the inequality

VN (xµN,m(km)) ≤ ρ(VN (x), k)

holds. In addition, using the definition of µN,m, for n = 1, . . . ,m− 1 we obtain

VN (xµN,m(n)) =
m−1∑
k=n

l(xµN,m(k), µN,m(xµN,m(0), k)) + VN−m+n(xµN,m(m))

≤
m−1∑
k=0

l(xµN,m(k), µN,m(xµN,m(0), k)) + VN−m+n(xµN,m(m))

≤ VN (x) + VN (xµN,m(m)) ≤ 2VN (x)

where we have used (5.2) in the last inequality. Thus, for all n ∈ N0 we obtain the estimate

VN (xµN,m(n)) ≤ 2ρ(VN (x), [n]m/m)

which eventually implies

‖xµN,m(n)‖A ≤ α−1
1 (VN (xµN,m(n))) ≤ α−1

1 (2ρ(VN (x), [n]m/m))

≤ α−1
1 (2ρ(BN (α2(‖x‖A)), [n]m/m))

and thus the desired asymptotic stability with KL-function given by, e.g.,

β̃(r, n) = α−1
1 (2ρ(BN (α2(r)), [n]m/m)) + re−n.

Of course, Theorem 5.2 gives a conservative criterion in the sense that for a given system
satisfying the Assumptions 3.1 and 5.1 asymptotic stability of the closed loop may well
hold for smaller optimization horizons N . A trivial example for this is an asymptotically
stable system (2.1) which does not depend on u at all, which will of course be “stabilized”
regardless of N .

Hence, the best we can expect is that our condition is tight under the information we
use, i.e., that given β, N,m such that the assumption of Theorem 5.2 is violated we can
always find a system satisfying Assumptions 3.1 and 5.1 which is not stabilized by the MPC
feedback law. The following Theorem 5.3 shows that this is indeed the case if β satisfies
(3.3). Its proof relies on the explicit construction of an optimal control problem which is
not stabilized. Although this is in principle possible for all m ∈ {1, . . . , N − 1}, we restrict
ourselves to the classical feedback case, i.e., m = 1, in order to keep the construction
technically simple.
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Theorem 5.3 Consider β ∈ KL0 satisfying (3.3), N ≥ 1, m = 1 and assume that the
optimization Problem 4.4 has an optimal value α < 0.

Then there exists an optimal control problem (2.1), (2.7) satisfying the Assumptions 3.1
and 5.1 which is not asymptotically stabilized by the MPC feedback law µN,1.

Proof: If α < 0 then there exists λn, ν > 0 meeting the constraints of Problem 4.4
satisfying

∑N−1
n=0 λn − ν/

(∑m−1
n=0 λn

)
=: α̃ < 0. By Lemma 9.1 we can without loss of

generality assume that the inequalities (4.1) are strict for λn.

Now we construct an optimal control problem on the set X = {0}∪{2−k|k ∈ N0}×{−N +
1, . . . , N} with control values U = {−1, 0, 1} and dynamics given by

f((1, p),−1) = (1,max{−N + 1, p− 1})
f((1, p), 0) = (1/2, p)
f((1, p), 1) = (1,min{N, p + 1})
f(q, p), u) = (q/2, p), q ≤ 1/2, u ∈ U

The running cost is given by

l((1, p), 1) = λp, p ∈ {0, N − 1}
l((1, p), 1) = ν, p /∈ {0, N − 1}

l((1, p),−1) = l((1,−p + 1), 1)
l((1, p), 0) = β(min{l((1, n), 1), l((1, n),−1)}, 0)

l((2−k, p), u) = β(min{l((1, p), 1), l((1, p)},−1), k), k ≥ 1, u ∈ U

We intend to show that the set A = {x ∈ X | l∗(x) = 0} is not asymptotically stabilized.
This set A satisfies Assumption 5.1(i) for u = 0 and (ii) for α̃1(r) = infx∈X,‖x‖A≥r l∗(x) and
α̃2(r) = supx∈X,‖x‖A≤r l∗(x). Due to the discrete nature of the state space α̃1 and α̃2 are
discontinuous but they are easily under- and overbounded by continuous K∞ functions α1

and α2, respectively. Furthermore, by virtue of (3.3) the optimal control problem satisfies
Assumption 3.1 for ux ≡ 0.

Now we prove the existence of a trajectory which does not converge to A, which shows
that asymptotic stability does not hold. To this end we abbreviate Λ =

∑N−1
n=0 λn (note

that (9.1) implies ν > λ) and investigate the values JN ((1, 0), u) for different choices of u:

Case 1: u(0) = 0. In this case, regardless of the values u(n), n ≥ 1, we obtain x(n, u) =
(2−n, 0) and thus

JN ((1, 0), u) =
N−1∑
n=0

β(min{l((1, 0), 1), l((1, 0),−1)}, n)

= BN (min{l((1, 0), 1), l((1, 0),−1)}) = BN (min{λ0, λ1}).

In case that the minimum is attained in λ0 by the (strict) inequality (4.1) for k = 0 we
obtain JN ((1, 0), u) > Λ. If the minimum is attained in λ1 then by (4.2) for j = 0 and
(9.1) we obtain JN ((1, 0), u) ≥ ν > Λ. Thus, in both cases the inequality JN ((1, 0), u) > Λ
holds.
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Case 2: u(n) = −1, n = 0, . . . , N − 2. This choice yields x(n, u) = (1,−n) for n =
0, . . . , N − 2 and thus

JN ((1, 0), u) =
N−2∑
n=0

λn+1 + l((1,−N + 1), u(N − 1)) ≥ l((1,−N + 1), u(N − 1)) ≥ ν > Λ.

Case 3: u(n) = −1, n = 0, . . . , k − 1, and u(k) = 1 for a k ∈ {1, . . . , N − 2}. In this case
we obtain x(n, u) = (1,−n) for n = 0, . . . , k implying

JN ((1, 0), u) =
k−1∑
n=0

λn+1 + l((1,−k), 1) ≥ l((1,−k), 1) = ν > Λ.

Case 4: u(n) = −1, n = 0, . . . , k − 1, and u(k) = 0 for a k ∈ {1, . . . , N − 2}. This
control sequence yields x(n, u) = (1,−n) for n = 0, . . . , k and x(n, u) = (2−(n−k),−k) for
n = k + 1, . . . , N − 1 and thus

JN ((1, 0), u) =
k−1∑
n=0

λn+1 +
N−1∑
n=k

β(min{l((1,−k), 1), l((1,−k),−1)}, n− k)

=
k−1∑
n=0

λn+1 + BN−k(λk+1) ≥ ν > Λ

where we have used (4.2) for j = k in the second last inequality.

Case 5: u(n) = 1, n = 0, . . . , N − 1. This yields x(n, u) = (1, n) and thus

JN ((1, 0), u) =
N−1∑
n=0

λn = Λ.

Summarizing, we obtain that any optimal control u∗x for x = (1, 0) must satisfy u∗x(0) = 1
because for u(0) = 1 we can realize a value ≤ Λ while for u(0) 6= 1 we inevitably obtain a
value > Λ. Consequently, the MPC feedback law will steer the system from x = (1, 0) to
x+ := (1, 1).

Now we use that by construction f and l have the symmetry properties

f((q, p), u)− (0, p) = −f((q,−p + 1),−u) + (0,−p + 1), l((q, p), u) = l((q,−p + 1),−u)

for all (q, p) ∈ X which implies J((q, p), u) = J(q,−p + 1),−u). Observe that x+ = (1, 1)
is exactly the symmetric counterpart of x = (1, 0). Thus, any optimal control u∗x+ from
x+ must satisfy u∗x+(n) = −u∗x(n) for some optimal control u∗x for initial value x. Hence,
we obtain u∗x+(0) = −1 which means that the MPC feedback steers x+ back to x. Thus,
under the MPC-Feedback law we obtain the closed loop trajectory (x, x+, x, x+, . . .) which
clearly does not converge to A. This shows that the closed loop system is not asymptotically
stable.
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6 Analysis of MPC schemes

Using the optimization Problem 4.4 we are now able to analyze the optimization horizon
N needed in order to ensure stability and desired performance of the MPC closed loop.
More precisely, given β from Assumption 3.1 and a desired α0 ≥ 0, by solving Problem 4.4
we can compute the minimal horizon

N̂ := min{N ∈ N |α > α0} (6.1)

which yields asymptotic stability and — in case α0 > 0 — ensures the performance

V
µ bN,m
∞ (x) ≤ V bN (x)/α0.

Note that even without sophisticated algorithms for finding the minimum in (6.1) the
determination of N̂ needs at most a couple of seconds using our MATLAB code.

We first observe that α from Problem 4.4 is monotone decreasing in β, i.e., for β1 and
β2 ∈ KL0 satisfying β1(r, n) ≥ β2(r, n) for all r ∈ R≥0, n ∈ N0, we obtain α1 ≤ α2 for the
corresponding solutions of Problem 4.4. This property immediately follows from the fact
that a smaller β induces stronger constraints in the optimization problem. Consequently,
the horizon N̂ in (6.1) is monotone increasing in β. We emphasize that this is an impor-
tant feature because in practice it will rarely be possible to compute a tight bound β in
Assumption 3.1 and typically only a — more or less — conservative upper bound will be
available. Then the monotonocity property ensures that any N̂ computed using such an
upper bound β will also give an upper bound on the real minimal horizon N̂ for the system.

In the sequel, we will on the one hand investigate how different choices of the control
horizon m and the terminal weight ω (cf. Remark 4.3) affect the horizon N . On the other
hand, we will highlight how different characteristic features of β in Assumption 3.1, like,
e.g., overshoot and decay rate, influence the horizon N̂ . Since the controllability Assump-
tion 3.1 involves the running cost l, the results of this latter analysis will in particular
yield guidelines for the choice of l allowing to design stable MPC schemes with small op-
timization horizons, which we formulate and illustrate in the ensuing Section 7 for finite
and infinite dimensional examples. In our analysis we will concentrate on mere asymptotic
stability, i.e., we will consider α0 = 0, however, all computations yield qualitatively similar
results for α0 > 0. In what follows, for the sake of brevity we concentrate on a couple of
particularly illuminating controllability functions β, noting that much more details could
be investigated, if desired.

We start by investigating how our estimated minimal stabilizing horizon N depends on the
accumulated overshoot represented by β, i.e., on the value γ > 0 satisfying

∞∑
n=0

β(r, n) ≤ γr. (6.2)

To this end, we use the observation that if N is large enough in order to stabilize each
system satisfying Assumption 3.1 with

β(r, 0) = γr, β(r, n) = 0, n ≥ 1, (6.3)
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then N is also large enough to stabilize each system satisfying Assumption 3.1 with β from
(6.2). In particular, this applies to β(r, n) = Cσnr with C/(1−σ) ≤ γ. The reason for this
is that the inequalities (4.1), (4.2) for (6.3) form weaker constraints than the respective
inequalities for (6.2), hence the minimal value α for (6.3) must be less or equal than α for
(6.2).

Thus, we investigate the “worst case” (6.3) numerically and compute how the minimal
stabilizing N depends on γ. To this end we computed N̂ from (6.1) for β from (6.3) with
γ = 1, 2, . . . , 50 and m = 1. The resulting values N̂ are shown in Figure 6.1.

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200

Figure 6.1: Minimal stabilizing horizon N̂ for m = 1

It is interesting to observe that the resulting values almost exactly satisfy N̂ ≈ γ log γ,
which leads to the conjecture that this expression describes the analytical “stability mar-
gin”.

In order to see the influence of the control horizon m we have repeated this computation
for m = [N/2] + 1, which numerically appears to be the optimal choice of m. The results
are shown in Figure 6.2.

Here, one numerically observes N̂ ≈ 1.4γ, i.e., we obtain a linear dependence between γ
and N̂ and in particular we obtain stability for much smaller N than in the case m = 1.
However, when using such control horizons m > 1, one should keep in mind that the control
loop is closed only every m steps, i.e., the re-computation of the control value based on the
current measurement is performed at the times 0, m, 2m, . . .. This implies that the larger
m is chosen, the more limited the ability of the feedback controller to react to perturbations
(caused, e.g., by external disturbances or modelling errors) becomes. On the other hand, if
a large overshoot γ cannot be avoided and hardware constraints restrict the computational
resources, then moderately increasing m may provide a good compromise in order to reduce
N and thus the complexity of the optimization problem to be solved online.

Figures 6.1 and 6.2 show how fast the necessary control horizon grows depending on γ and
obviously the smaller γ is, the smaller N̂ becomes. However, when dealing with a specific
system, there are several ways in order to reduce γ. For instance, in an exponentially
decaying running cost with β(r, n) = Cσnr, it will be interesting to know whether small
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Figure 6.2: Minimal stabilizing horizon N̂ for m = [N/2] + 1

overshoot (i.e., small C) or fast decay (i.e., small σ) are more important in order to ensure
stability for small N̂ . In order to analyze this dependence, we consider the clasical feedback
case m = 1 and compare the four different functions of the form β(r, n) = Cσnr with

(a) C = 3, σ = 1/2 (b) C = 12/5, σ = 3/5

(c) C = 3/2, σ = 3/4 (d) C = 6/5, σ = 4/5.
(6.4)

These four functions have in common that γ = C/(1 − σ) = 6, but — as illustrated in
Figure 6.3 for r = 1 — they differ in both the size of the overshoot C, which is decreasing
from (a) to (d) and the speed of decay σ which becomes slower from (a) to (d).
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Figure 6.3: Exponentially decaying functions β with C, σ from (6.4) (a)–(d) (left to right)

It is surpising to see how much the minimal stabilizing horizons N̂ differ from (a) to (d):
solving (6.1) using Problem 4.4 we obtain (a) N̂ = 11, (b) N̂ = 10, (c) N̂ = 7 and (d) N̂ = 4.
Thus, in order to ensure stability with small optimization horizon N for exponentially
decaying β in Assumption 3.1, small overshoot is considerably more important than fast
decay.

A similar analysis can be carried out for different types of finite time controllability. Here we
can investigate the case of non-strict decay, a feature which is not present when considering
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exponentially decaying functions β. To this end, consider the function β(r, n) = cnr with

(a) c0 = 6, cn = 0, n ≥ 1

(b) c0 = c1 = c2 = 2, cn = 0, n ≥ 3

(c) c0 = c1 = c2 = c3 = 3/2, cn = 0, n ≥ 4

(d) c0 = c1 = c2 = c3 = c4 = c5 = c6 = 1, cn = 0, n ≥ 7

(6.5)

which again satisfy
∑∞

n=0 cn = 6 and which are depicted in Figure 6.4 for r = 1.
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Figure 6.4: Finite time decaying functions β from (6.5) (a)–(d) (left to right)

Here the respective minimal stabilizing horizons computed from Problem 4.4 evaluate to
(a) N̂ = 11, (b) N̂ = 11, (c) N̂ = 10 and (d) N̂ = 7. These results confirm the conclusion
drawn for the exponentially decaying functions (6.4) (a)–(d), i.e., that fast controllability
with large overshoot requires a longer optimization horizon N than slower controllability
with smaller overshoot. However, here the differences are less pronounced than in the
exponentially decaying case. In fact, the results show that besides the overshoot a decisive
feature determining the length of the stabilizing horizon N is the minimal time nc for which
β(r, nc) < r, i.e., contraction, can be observed. The longer horizon observed in (6.5)(c)
compared to (6.4)(d) is mainly due to the fact that in the former we have nc = 1 while in
the latter we have nc = 6.

Finally, we investigate the effect of the weight ω introduced in Remark 4.3. To this end for
all the functions from (6.4) and (6.5) we have determined a weight ω such that the corre-
sponding stabilizing optimization horizon N̂ becomes as small as possible. The following
table summarizes our numerical findings.

Function N̂ with ω = 1 N̂ with ω > 1 corresponding ω

(6.4)(a) 11 9 9
(6.4)(b) 10 9 5
(6.4)(c) 7 6 3
(6.4)(d) 4 2 6
(6.5)(a) 11 2 6
(6.5)(b) 11 10 4
(6.5)(c) 10 8 25
(6.5)(d) 7 7 arbitrary ≥ 1

Table 6.1: Minimal stabilizing optimization horizons N̂ for ω = 1 and ω > 1
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These results show that suitable tuning of ω reduces the optimization horizon in all cases
except for (6.5)(d) (in (6.5)(d), a further reduction to N̂ < 7 is not possible because
N = 7 is the smallest horizon for which controllability to 0 is “visible” in the finite horizon
functional JN ). It should, however, be noted that terminal weights ω > 1 have to be used
with care, since a wrong choice of ω may also have a destabilizing effect: for instance, using
ω = 25 in Case (6.4)(c) leads to N̂ = 9 instead of N̂ = 7 for ω = 1.

The results also show that (6.3) is no longer the worst case for ω > 1. On the contrary, in
the case (6.5)(a) (which is exactly (6.3) for γ = 6) we obtain the largest reduction of N̂
from 11 to 2.

A reduction to N̂ = 2, i.e., to the shortest possible horizon given that N = 1 results in a
trivial optimal control problem, is possible in cases (6.4)(d) and (6.5)(a). The reason for
this is that these two cases exhibit β(r, 1) < r, i.e., we observe contraction already after
one time step. Numerical evidence indicates that stabilization with N = 2 and m = 1 is
always possible in this case. This result actually carries over to the general case β(r, n) < r
for all n ≥ nc and some nc ≥ 1, but only if we increase the control horizon m appropriately:
our numerical investigations suggest that in this case we always obtain a stabilizing MPC
controller when we chose chosing N = nc + 1, m = nc and ω sufficiently large, e.g., in
Example (6.4)(b), where we have nc = 2 we obtain N̂ = 3 for m = 2 and ω = 15.

In the case just discussed we have N = m+1, i.e., summation up to N−1 = m in JN from
(2.6), and thus the effective optimization horizon coincides with the control horizon. In
the PDE optimal control literature, this particular choice of N and m in an MPC scheme
is often termed “instantaneous control” (cf., e.g., [7, 8, 10, 14] and the references therein)
and thus an interesting spin off from our analysis is an additional systems theoretic insight
into why and when instantaneous control renders a stable closed loop system.

7 Design of MPC schemes

Our numerical findings from the previous section immediately lead to design guidelines1

for the choice of l, ω and m for obtaining stable MPC schemes with small optimization
horizons N . These can be summarized as follows:

• design l in such a way that the overshoot γ =
∑∞

n=0 β(r, n)/r becomes as small as
possible

• in case of exponential controllability β(r, n) = Cσnr, reducing the overshoot by
reducing C is more efficient than by reducing σ

• in case of finite time controllability β(r, n) = cnr, reducing the overshoot by reducing
the cn is more efficient than by reducing the time to reach l∗(x) = 0

• terminal weights ω > 1 often lead to smaller N , but too large ω may have the opposite
effect, so ω should be tuned with care

1These guidelines are derived from numerical evidence by solving Problem 4.4 for a couple of test
examples, however, it seems likely that rigorously provable versions could be formulated for most of these
statements.
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• enlarging m always leads to smaller N but may decrease the robustness of the closed
loop since the feedback is evaluated less frequently

• systems which are contracting after some time nc, i.e., β(r, n) < r for all n ≥ nc

are always stabilized by chosing the “instantaneous control” parameters N = nc + 1,
m = nc and ω suffiently large

We illustrate the effectiveness of these guidelines by two examples. We start with a two
dimensional example from [19] given by

x(n + 1) =
(

1 1.1
−1.1 1

)
x(n) +

(
0
1

)
u(n)

with running cost

l(x, u) = max{‖x‖∞, |u|} = max{|x1|, |x2|, |u|}.

Since this example is low dimensional and linear, VN can be computed numerically. This
fact was used in [19] in order to compute the minimal optimization horizon for a stabilizing
MPC feedback law with m = 1, which turns out to be N = 5 (note that the numbering in
[19] differs from ours).

In order to apply our approach we construct β and ux meeting Assumption 3.1. Because
the system is finite time controllable to 0 this is quite easy to accomplish: using the control

ux(0) =
21
110

x1 − 2x2, ux(1) =
221
110

x1 +
221
100

x2, ux(n) = 0, n ≥ 2

for x(0) = (x1, x2)T one obtains the trajectory

xux(1) =
(

x1 + 1.1x2

−10
11x1 − x2

)
, xux(n) =

(
0
0

)
, n ≥ 2.

Since l∗(x) = ‖x‖∞ we can estimate

‖xux(0)‖∞ = l∗(x), ‖xux(1)‖∞ ≤ 2.1l∗(x), |ux(0)| ≤ 2.2l∗(x), |ux(1)| ≤ 4.22l∗(x) (7.1)

implying l(xux(0), ux(0)) ≤ 2.2l∗(x), l(xux(1), ux(1)) ≤ 4.22l∗(x) and l(xux(n), ux(n)) = 0
for n ≥ 2 and thus Assumption 3.1 with

β(r, 0) = 2.2 r, β(r, 1) = 4.22 r, β(r, n) = 0, n ≥ 2.

Solving Problem 4.4 for this β we obtain a minimal stabilizing horizon N = 12, which is
clearly conservative compared to the value N = 5 computed in [19]. Note, however, that
instead of using the full information about the functions VN , which are in general difficult
to compute, we only use controllability information on the system.

Now we demonstrate that despite this conservatism our design guidelines can be used derive
a modified design of the MPC scheme which yields stability for horizons N < 5. Recall
that the estimate for N becomes the better, the smaller the overshoot γ is. A look at (7.1)



22 LARS GRÜNE

reveals that in this example a reduction of the overshoot can be achieved by reducing the
weight of u in l. For instance, if we modify l to

l(x, u) = max{‖x‖∞, |u|/2}

then (7.1) leads to

β(r, 0) = 1.1 r, β(r, 1) = 2.11 r, β(r, n) = 0, n ≥ 2.

Solving Problem 4.4 for this β leads to a minimal stabilizing horizon N = 5. Using
the terminal weight ω = 4 yields a further reduction to N = 4 and if, in addition, we
are willing to implement a two step feedback, i.e., use m = 2, then we can reduce the
stabilizing optimization horizon even further to N = 3. This illustrates how, just by using
the controllability information of the system, our analysis can be used to the design an
MPC scheme reducing the optimization horizon N by 40%.

Our second example demonstrates that our design guidelines are also applicable to infinite
dimensional systems. Even though in this case an explicit construction of the controllability
function β and the control ux in Assumption 3.1 is in general rather difficult, we can still
apply our results by using the structure of the system equation in order to extract the
necessary information about β. To this end, consider the infinite dimensional control system
governed by the parabolic reaction-advection-diffusion PDE with distributed control

yt = yx + νyxx + µy(y + 1)(1− y) + u (7.2)

with solutions y = y(t, x)2 for x ∈ Ω = (0, 1), boundary conditions y(t, 0) = y(t, 1) = 0,
initial condition y(0, x) = y0(x) and distributed control u(t, ·) ∈ L2(Ω). The corresponding
discrete time system (2.1), whose solutions and control functions we denote by y(n, x) and
u(n, x), respectively, is the sampled-data system obtained according to (2.2) with sampling
period T = 0.025.

For the subsequent numerical computations we discretized the equation in space by finite
differences on a grid with nodes xi = i/M , i = 0, . . . ,M , using backward (i.e., upwind)
differences for the advection part yx. Figure 7.1 shows the equilibria of the discretized
system for u ≡ 0, ν = 0.1, µ = 10 and M = 25.

Our goal is to stabilize the unstable equilibrium y∗ ≡ 0, which is possible because with the
additive distributed control we can compensate the whole dynamics of the system. In order
to achieve this task, a natural choice for a running cost l is the tracking type functional

l(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2
L2(Ω) + λ‖u(n, ·)‖2

L2(Ω) (7.3)

which we implemented with λ = 10−3 for the discretized model in matlab using the
lsqnonlin solver for the resulting optimization problem.

The simulations shown in Figure 7.2 reveal that the performance of this controller is not
completely satisfactory: for N = 11 the solution remains close to y∗ = 0 but does not
converge while for N = 3 the solution even grows.

2Note the change in the notation: x is the independent state variable while y(t, ·) is the new state, i.e.,
X is now an infinite dimensional space.
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Figure 7.1: Equilibria for u ≡ 0; solid=asymptotically stable, dashed=unstable
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Figure 7.2: Receding horizon with l from (7.3), N = 3 (left) and N = 11 (right)

The reason for this behavior lies in the fact that in order to control the system to y∗ = 0,
in (7.2) the control needs to compensate for yx, i.e., any stabilizing control must satisfy
‖u(n, ·)‖2

L2(Ω) & ‖yx(n, ·)‖2
L2(Ω). Thus, for any stabilizing control sequence u we obtain

J∞(y0, u) & λ‖yx(n, ·)‖2
L2(Ω) which — even for small values of λ — may be considerably

larger than l∗(y) = ‖y‖2
L2(Ω), resulting in a large β and thus the need for a large optimization

horizon N in order to achieve stability.

This effect can be avoided by changing l in such a way that l∗(y) includes ‖yx‖2
L2(Ω), e.g.,

by setting

l(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2
L2(Ω) + ‖yx(n, ·)‖2

L2(Ω) + λ‖u(n, ·)‖2
L2(Ω). (7.4)

For this l the control effort needed in order to control (7.2) to y∗ = 0 is proportional
to l∗(y). Thus, the overshoot reflected in the controllability function β is now essentially
proportional to 1+λ and thus, in particular, small for our choice of λ = 10−3 which implies
stability even for small optimization horizon N . The simulations using the corresponding
discretized running cost illustrated in Figure 7.3 show that this is indeed the case: we
obtain asymptotic stability even for the very small optimization horizons N = 2 (i.e., for
instantaneous control) and N = 3, with slightly better performance for the latter case.
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Figure 7.3: Receding horizon with l from (7.4), N = 2 (left) and N = 3 (right)

8 Conclusions and outlook

We have presented a stability and performance analysis technique for unconstrained nonlin-
ear MPC schemes which relies on a suitable controllability condition for the running cost.
The proposed technique leads to a stability condition which can be formulated as a small
optimization problem and which is tight with respect to the class of systems satisfying the
assumed controllability condition. The numerical analysis based on this optimization prob-
lem was used to derive guidelines for the design of MPC schemes guaranteeing stability for
small optimization horizons N . The effectiveness of these guidelines has been illustrated
by a finite and an infinite dimensional example.

Future research will include the generalization of the approach to situations where VN

cannot be expected to be a Lyapunov function, the inclusion of deterministic and stochastic
uncertainties in the analysis and the relaxation of the Assumptions 3.1 and 5.1(ii) to more
general controllability and detectability assumptions.

9 Appendix: a technical lemma

Lemma 9.1 Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, a sequence λn > 0, n =
0, . . . , N − 1 and ν > 0 fulfilling (4.1), (4.2) and

N−1∑
n=0

λn − ν ≤ α

m−1∑
n=0

λn (9.1)

for some α < 0. Then there exist λ̄n > 0, ν̄ > 0 and ᾱ < 0 satisfying (4.1), (4.2) and (9.1)
for which the inequalities (4.1) are strict.

Proof: We label the inequalities for λ̄n, ν̄ and ᾱ by (4.1), (4.2) and (9.1), respectively,
and set λ̄n = λn, n = 0, . . . , N − 2 and λ̄N−1 = λN−1 − ε where ε ∈ (0, λN−1) is specified
below. Since this implies λ̄N−1 < λN−1 the inequalities (4.1) are strict. Furthermore (9.1)
holds for all ᾱ ≥ α and (4.2) holds for j = 1, . . . , N −m− 2.
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It thus remains to choose ε, ν̄ and ᾱ such that (4.2) holds for j = N−m−1 while (9.1) and
(4.2) for j = 1, . . . , N −m− 2 remain valid. In case the inequality (4.2) for j = N −m− 1
is strict, we choose ν̄ = ν, ᾱ = α and ε > 0 sufficiently small such that (4.2) holds for
j = N −m− 1, which is possible since Bk is continuous.

In case that (4.2) for j = N −m − 1 is an equality, we set ν̄ (depending on ε) such that
equality in (4.2) for j = N − m − 1 holds, as well. This implies ν̄ ≤ ν and thus all
other inequalities in (4.2) remain valid for all ε ∈ (0, λN−1). Now by continuity of Bk the
value ν̄ depends continuously on ε, hence for ε > 0 sufficiently small we obtain (9.1) for
ᾱ = α/2 < 0.

Acknowledgment: I would like to thank Karl Worthmann for his help with the numerical com-
putations for the PDE example (7.2).
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