Digital redesign of nonlinear multi-input systems

Lars Grüne

(joint work with Dragan Nesić, Karl Worthmann)

1. Introduction

At the Oberwolfach Control Theory Meeting 2005 I presented the following open problem:

Consider a single input control affine closed loop system

\begin{equation}
\dot{x}(t) = g_0(x(t)) + g_1(x(t))u(x(t))
\end{equation}

with \(x \in \mathbb{R}^n \) and a smooth feedback controller \(u : \mathbb{R}^n \to \mathbb{R} \) and the corresponding sampled-data system

\begin{equation}
\dot{x}_T(t) = g_0(x_T(t)) + g_1(x_T(t))u_T(x_T(iT)), \quad t \in [iT, (i + 1)T), \ i = 0, 1, \ldots
\end{equation}

with a family of sampled-data controllers \(u_T : \mathbb{R}^n \to \mathbb{R} \) parameterized with the (sufficiently small) sampling rate \(T > 0 \) which are locally bounded uniformly in \(T \) but not necessarily continuous. We consider the mismatch after one time step given by

\(\Delta_T(x_0) := \|x(T, x_0, u) - x_T(T, x_0, u_T)\| \),

with \(x(t, x_0, u) \) and \(x_T(t, x_0, u_T) \) denoting the solutions of (1) and (2), respectively, with initial value \(x_0 \) at time \(t = 0 \).

It is easy to prove that for \(u_T \equiv u \) we obtain \(\Delta_T = O(T^2) \) while for

\begin{equation}
u_T(x) = u(x) + \frac{T}{2} \frac{\partial u(x)}{\partial x} [g_0(x) + g_1(x)u(x)]
\end{equation}

we obtain \(\Delta_T = O(T^3) \) (this follows from [4, Theorem 4.11] setting \(V(x) = x_i \) observing that positive definiteness of \(V \) is not needed). Remark 4.12 in [4] suggests that higher order cannot be obtained in general.

Problem: Find conditions on \(g_0, g_1, u \) under which \(\Delta_T \leq O(T^4) \) can be achieved.

In this report a solution to the problem and an extension to multi-input systems will be presented. In the talk, we will in addition discuss performance issues and present a novel numerical optimization approach based on these results.

2. Single-Input systems

We use the following notation: for two vector fields \(f, g : \mathbb{R}^n \to \mathbb{R}^n \) we define the usual Lie bracket by \([f, g] = \frac{d}{dx} g \cdot f - \frac{d}{dx} f \cdot g\). Furthermore, for \(k \in \mathbb{N} \) we define

\begin{equation}
u^k(x_0) := \left. \frac{d^k}{dt^k} \right|_{t=0} u(x(t, x_0, u)).
\end{equation}

\(1\Delta_T = O(T^m) \) means: for each compact \(K \subset \mathbb{R}^n \) there is \(C > 0 \) with \(\sup_{x \in K} \Delta_T(x) \leq CT^m \)
Note that with this notation (3) can be written as

\[u_T(x) = u(x) + \frac{T}{2} u^1(x). \]

Theorem 2.1: A feedback law \(u_T \) with \(\Delta_T = O(T^4) \) exists if and only if there exists a bounded function \(\alpha : \mathbb{R}^n \to \mathbb{R} \) satisfying

\[[g_0, g_1](x)u^1(x) = \alpha(x)g_1(x). \]

If this condition holds, then the feedback laws \(u_T \) are given by

\[u_T(x) = u(x) + \frac{T}{2} u^1(x) + \frac{T^2}{6} u^2(x) + \frac{T^2}{12} \alpha(x) \]

and these \(u_T \) are uniquely determined up to terms of order \(O(T^3) \) for all \(x \) with \(g_1(x) \neq 0 \).

The proof of this theorem relies on comparing the Taylor expansion of \(x(T, x_0, u) \) with the Fliess expansion of \(x_T(T, x_0, u_T) \) in \(T = 0 \), see [1, Theorem 3.6] for details.

Remark 2.2:

(i) Conditions for higher order \(\Delta_T \leq O(T^5) \) can be stated similarly but become more and more involved. However, computer mathematics systems like, e.g., MAPLE can be used to check the conditions recursively and compute the corresponding \(u_T \).

(ii) The condition (5) is rather restrictive. Hence, Theorem 2.1 shows that a mismatch \(\Delta_T \leq O(T^4) \) can hardly be expected in general, regardless of how \(u_T \) is chosen. In particular, the seemingly “natural” Taylor-like choice

\[u_T(x) = u(x) + \frac{T}{2} u^1(x) + \frac{T^2}{6} u^2(x) \]

only works if \(\alpha \equiv 0 \). A sufficient condition for \(\alpha \equiv 0 \) is \([g_0, g_1] \equiv 0 \), i.e., the vector fields commute.

(iii) A sufficient condition for (5) is \([g_0, g_1] \in \text{span}(g_1) \). In [3] it was shown that this condition is necessary and sufficient for the fact that for each smooth controller \(u : \mathbb{R}^n \to \mathbb{R} \) there exists \(u_T \) satisfying \(\Delta_T \leq O(T^k) \) for arbitrary \(k \in \mathbb{N} \).

3. **Multi-Input systems**

We now extend our result to multi-input control affine systems of the form

\[\dot{x}(t) = g_0(x(t)) + \sum_{i=1}^{m} g_i(x(t))u_i(x(t)) \]

with vector fields \(g_i = (g_{i,1}, \ldots, g_{i,n})^T, i = 1, \ldots, m, m \in \mathbb{N}, m \leq n \), and controller \(u = (u_1, \ldots, u_m)^T \). We write the right hand side of the system briefly as

\[g_0(x) + G(x)u(x) \quad \text{with} \quad G(x) = \begin{pmatrix} g_{1,1}(x) & \cdots & g_{m,1}(x) \\ \vdots & \ddots & \vdots \\ g_{1,n}(x) & \cdots & g_{m,n}(x) \end{pmatrix}, \]

and use definition (4) also for these vector valued feedback laws.
As in the single input case for \(u_T \equiv u \) we get \(\Delta_T = O(T^2) \) sets while for \(u_T(x) = u(x) + \frac{T}{2} u^1(x) \) we obtain \(\Delta_T = O(T^3) \), cf. [2, Theorem 4.1 (i)-(ii)]. For \(\Delta_T \leq O(T^4) \), Theorem 2.1 generalizes as follows, see [2, Theorem 4.1 (iii)]. Again, the proof relies on Taylor and Fliess expansions of the solution.

Theorem 3.1: For the multi-input system (6), a feedback law \(u_T \) with \(\Delta_T \leq O(T^4) \) exists if there exists a bounded function \(\alpha : \mathbb{R}^n \to \mathbb{R}^m \) satisfying

\[
\sum_{i=1}^{m} \left[g_0, g_i \right](x) + \sum_{j=1}^{m} \sum_{j \neq i} g_j, g_i(x) u_{0,j}(x) \right] u_i^1(x) = \sum_{i=1}^{m} \alpha_i(x) g_i(x).
\]

If this condition holds, then the feedback laws \(u_T \) are given by

\[
u_T(x) = u(x) + T^2 \frac{T}{2} u^1(x) + T^2 \frac{T^2}{6} u^2(x) + \frac{T^2}{12} \alpha(x)
\]

and these \(u_T \) are uniquely determined up to terms of order \(O(T^3) \) for all \(x \) for which \(G(x) \) has full column rank. For these \(x \) condition (8) is also necessary.

As in the case of Theorem 2.1, the results can be extended to higher orders which is most conveniently done recursively using a computer mathematics system such as maple. This recursive design procedure leads to a feedback of the form

\[u_T(x) = u(x) + T^2 \frac{T}{2} u^1(x) + \frac{T^2}{6} u^2(x) + \ldots \]

in which each \(\tilde{u}^k \) is the solution of a least squares problem of the form \(G(x) \tilde{u}^k(x) = b^k(x) \). If this problem is solvable with residual 0 for \(k = 1, \ldots, m \), then \(u_T \) is a sampled-data feedback yielding \(\Delta_T \leq O(T^{m+2}) \). In particular, this shows that

(i) the problem is solvable for arbitrary order \(O(T^k) \), \(k \in \mathbb{N} \), if \(G(x) \) is square and invertible for all \(x \in \mathbb{R}^n \)

(ii) the problem is in general not solvable for \(\Delta_T \leq O(T^3) \) if \(G(x) \) is not square, i.e., when \(m < n \).

References

