ERROR BOUNDS FOR EULER APPROXIMATION OF LINEAR-QUADRATIC CONTROL PROBLEMS WITH BANG-BANG SOLUTIONS

WALTER ALT, ROBERT BAIER, MATTHIAS GERDTS, AND FRANK LEMPIO

Abstract. We analyze the Euler discretization to a class of linear-quadratic optimal control problems. First we show convergence of order h for the optimal values, where h is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the continuous controls coincide except on a set of measure $O(p h)$. Under a slightly stronger assumption on the smoothness of the coefficients of the system equation we obtain an error estimate of order $O(h)$.

1. Introduction

We consider the following linear-quadratic control problem:

$$(OQ) \quad \min f(x, u)$$

s.t.

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad \forall t \in [0, T],$$

$$x(0) = a,$$

$$u(t) \in U \quad \forall t \in [0, T],$$

where f is a linear-quadratic cost functional defined by

$$f(x, u) = \frac{1}{2} x(T)^T Q x(T) + q^T x(T)$$

$$+ \int_0^T \frac{1}{2} x(t)^T W(t)x(t) + w(t)^T x(t) + r(t)^T u(t) dt.$$

Here, $u(t) \in \mathbb{R}^m$ is the control, and $x(t) \in \mathbb{R}^n$ is the state of a system at time t. Further Q is a symmetric and positive semidefinite $n \times n$-matrix, $q \in \mathbb{R}^n$, and the functions $W : [0, T] \rightarrow \mathbb{R}^{n \times n}$, $w : [0, T] \rightarrow \mathbb{R}^n$, $r : [0, T] \rightarrow \mathbb{R}^m$, $A : [0, T] \rightarrow \mathbb{R}^{n \times n}$, $B : [0, T] \rightarrow \mathbb{R}^{n \times m}$ are Lipschitz continuous. The matrices $W(t)$ are assumed to be symmetric and positive semidefinite, and the set $U \subset \mathbb{R}^m$ is defined by lower and upper bounds, i.e.,

$$U = \{ u \in \mathbb{R}^m | b_l \leq u \leq b_u \}$$

with $b_l, b_u \in \mathbb{R}^m$, $b_l < b_u$, where all inequalities are to be understood component-wise.

Our aim is to derive error estimates for the Euler discretization of problem (OQ). There are some papers dealing with Euler approximations to nonlinear control
problems (see e.g. [3, 13, 15, 14, 23] and the papers cited therein). The analysis in these papers is based on the assumption that the optimal control is Lipschitz continuous. Since an optimal control for (OQ) has typically bang-bang structure this assumption is not satisfied. For bang-bang controls only simple convergence results have been obtained (see e.g. [6] and the papers cited therein).

There are also a number of articles dealing with set-valued Euler’s method for nonlinear differential inclusions ([12], [32], [9], [8], [7]) which prove order of convergence equal to 1 for the approximation of the reachable set. From this fact the same order of convergence can be concluded for the approximation of the state and of the optimal value (see [30]).

Veliov [31] seems to be the only paper dealing with error estimates for control problems with control appearing linearly. In contrast to problem (OQ) he considers problems with a possibly nonlinear cost functional of Mayer type. His approach is based on Runge-Kutta methods of at least third order local consistency. In a recent paper [4] we have shown that for linear control problems with an optimal control of bang-bang structure the discrete and continuous controls coincide except on a set of measure $O(h)$, where h is the mesh size of the discretization. Here we extend this result to linear-quadratic control problems. The analysis in [4] is based on the fact that for linear problems the adjoint equation does not depend on the state and can therefore be solved independently. Here we use a different approach based on a second-order condition known from the stability analysis [17] of bang-bang controls (compare also [25, 24]).

For elliptic control problems an approach similar to the one presented here has been developed recently in [10]. Errors for the controls are obtained also based on a variant of a stability condition used in the context of parameter dependent control problems in Felgenhauer [17]–[20]. Another variant of these conditions has been used in [11] in the context of bang-bang solutions for parabolic control problems.

The organization of the paper is as follows. After this introduction we define in Section 2 the Euler discretization for Problem (OQ). In Section 3 we derive error estimates for the optimal values for the discretized problems. Assuming that the optimal control is of bang-bang type, we then derive in Section 4 error estimates of order $O(\sqrt{h})$ for optimal solutions of the discretized problems. In Section 5 we use slightly stronger assumptions for the problem data in order to show structural stability of the discretized controls and to improve the error estimates for the discretized solutions to order $O(h)$. Finally, we discuss a numerical example.

We use the following notation: \mathbb{R}^n is the n-dimensional Euclidean space with the inner product denoted by $\langle x, y \rangle$ and the norm $|x| = \langle x, x \rangle^{1/2}$. For an $m \times n$-matrix B we denote by $\|B\| = \sup_{|z| \leq 1} |Bz|$ the spectral norm. For $1 \leq p < \infty$ we denote by $L^p(0, T; \mathbb{R}^n)$ the Banach space of measurable vector functions $u: [0, T] \to \mathbb{R}^n$ with

$$\|u\|_p = \left(\int_0^T |u(t)|^p \, dt \right)^{\frac{1}{p}} < \infty,$$

and $L^\infty(0, T; \mathbb{R}^n)$ is the Banach space of essentially bounded vector functions with the norm

$$\|u\|_\infty = \max_{1 \leq i \leq n} \text{ess sup}_{t \in [0,T]} |u_i(t)|.$$
By $W^1_p(0, T; \mathbb{R}^n)$ we denote the Sobolev spaces of absolutely continuous functions

$$W^1_p(0, T; \mathbb{R}^n) = \{ x \in L^p(0, T; \mathbb{R}^n) \mid \dot{x} \in L^p(0, T; \mathbb{R}^n) \}$$

with

$$\| x \|_{1,p} = (\| x(0) \|_p + \| \dot{x} \|_p^p)^{1/p}$$

for $1 \leq p < \infty$ and

$$\| x \|_{1,\infty} = \max \{ \| x(0) \|, \| \dot{x} \|_\infty \}.$$

We define $X = X_1 \times X_2$, $X_1 = W^1_\infty(0, T; \mathbb{R}^n)$, $X_2 = L^\infty(0, T; \mathbb{R}^m)$, and we denote by

$$\mathcal{U} = \{ u \in X_2 \mid u(t) \in U \forall t \in [0, T] \}$$

the set of admissible controls, and by

$$\mathcal{F} = \{ (x, u) \in X_1 \times X_2 \mid u \in \mathcal{U}, \dot{x}(t) = A(t)x(t) + B(t)u(t) \forall t \in [0, T], x(0) = a \}$$

the feasible set of (OQ).

Definition 1.1. A pair $(x^*, u^*) \in \mathcal{F}$ is called a minimizer for Problem (OQ), if $f(x^*, u^*) \leq f(x, u)$ for all $(x, u) \in \mathcal{F}$, and a strict minimizer, if $f(x^*, u^*) < f(x, u)$ for all $(x, u) \in \mathcal{F}$, $(x, u) \neq (x^*, u^*)$.

Since the feasible set \mathcal{F} is nonempty, closed, convex and bounded, and the cost functional is convex and continuous, a minimizer $(x^*, u^*) \in W^1_\infty(0, T; \mathbb{R}^n) \times L^2(0, T; \mathbb{R}^m)$ of this problem exists (see e.g. Ekeland/Temam [16], Chap. II, Proposition 1.2), and since U is bounded we have $(x^*, u^*) \in X = W^1_\infty(0, T; \mathbb{R}^n) \times L^\infty(0, T; \mathbb{R}^m)$. Moreover, the cost functional is Lipschitz continuous on \mathcal{F}, i.e., there is a constant L_f such that

$$| f(x, u) - f(z, v) | \leq L_f (\| x - z \|_\infty + \| u - v \|_1) \quad \forall (x, u), (z, v) \in \mathcal{F}. \tag{1.1}$$

An immediate consequence of the compactness of U, the Lipschitz continuity of A and B as well as the solution formula for linear differential equations, is the existence of a constant K such that for any feasible control $u \in \mathcal{U}$ and the associated solution x of the system equation we have with some constant L_x

$$\| x \|_{1,\infty} \leq L_x. \tag{1.2}$$

This estimate shows that the feasible trajectories are uniformly Lipschitz with Lipschitz modulus L_x.

Let $(x^*, u^*) \in \mathcal{F}$ be a minimizer of (OQ). Then there exists a function $\lambda \in W^1_\infty(0, T; \mathbb{R}^n)$ such that the adjoint equation

$$\dot{\lambda}(t) = A(t)^T \lambda(t) + W(t)x^*(t) + w(t) \forall t \in [0, T], \quad \lambda(T) = Qx^*(T) + q, \tag{1.3}$$

and the minimum principle

$$\| r(t)^T + \lambda(t)^T B(t) \| (u - u^*(t)) \geq 0 \quad \forall u \in U \tag{1.4}$$

hold for a.a. $t \in [0, T]$. Denoting by

$$\sigma(t) := r(t) + B(t)^T \lambda(t) \tag{1.5}$$

the switching function, it is well-known that (1.4) implies for $i \in \{1, \ldots, m\}$

$$u_i^*(t) = \begin{cases} b_{i,i}, & \text{if } \sigma_i(t) > 0, \\ b_{u,i}, & \text{if } \sigma_i(t) < 0, \\ \text{undetermined,} & \text{if } \sigma_i(t) = 0. \end{cases} \tag{1.6}$$
Remark. Since λ satisfies the adjoint equation and W, v, r, A, B are Lipschitz continuous, λ is bounded and hence λ is Lipschitz continuous, which implies that σ is also Lipschitz continuous.

\section{Euler Approximation}

Given a natural number N, let $h_N = T/N$ be the mesh size. We approximate the space X_2 of controls by functions in the subspace $X_{2,N} \subset X_2$ of piecewise constant functions represented by their values $u(t_j) = u_j$ at the gridpoints jh_N, $j = 0, 1, \ldots, N - 1$. Further, we approximate state and adjoint state variables by functions in the subspace $X_{1,N} \subset X_1$ of continuous, piecewise linear functions represented by their values $x(t_j) = x_j$, $\lambda(t_j) = \lambda_j$ at the gridpoints jh_N, $j = 0, 1, \ldots, N$. Then the Euler discretization of (OQ) is given by

\[(OQ)_N \min_{(x,u) \in X_{1,N} \times X_{2,N}} \quad \text{s.t.} \quad \begin{array}{l}
x_{j+1} = x_j + h_N [A(t_j)x_j + B(t_j)u_j], \quad j = 0, 1, \ldots, N - 1, \\
x_0 = a, \\
u_j \in U, \quad j = 0, 1, \ldots, N - 1,
\end{array} \]

where f_N is the linear-quadratic cost functional defined by

\[f_N(x, u) = \frac{1}{2} x_T^T Q x_N + q^T x_N + h_N \sum_{j=0}^{N-1} \left[\frac{1}{2} x_j^T W(t_j) x_j + w(t_j)^T x_j + r(t_j)^T u_j \right]. \]

By F_N we denote the feasible set of $(OQ)_N$.

Definition 2.1. A pair $(x_N^*, u_N^*) \in F_N$ is called a \textit{minimizer} $(OQ)_N$, if $f_N(x_N^*, u_N^*) \leq f_N(x, u)$ for all $(x, u) \in F_N$, and a \textit{strict minimizer}, if $f_N(x_N^*, u_N^*) < f_N(x, u)$ for all $(x, u) \in F_N$, $(x, u) \neq (x_N^*, u_N^*)$. \hfill \Box

Again, since U is compact there exists a constant L_x independent of N such that for any feasible control $u_N \in U$ and the associated solution x of the discrete system equation seen as a continuous, piecewise linear function we have

\[|\dot{x}_h(t)| \leq L_x \quad \forall t \in [0, T], \]

which shows that the discrete feasible trajectories are uniformly Lipschitz with Lipschitz modulus L_x independent of h_N, where w.l.o.g. L_x is the same constant as in (1.2).

Compactness of U further implies that Problem $(OQ)_N$ has a solution (x_N^*, u_N^*), and for any solution there exists a continuous, piecewise linear multiplier $\lambda_h \in X_{1,N}$ such that the discrete adjoint equation

\[-\frac{\lambda_{h,j+1} - \lambda_{h,j}}{h_N} = A(t_j)^T \lambda_h, \quad j = 0, \ldots, N - 1, \]

with end condition

\[\lambda_{h,N} = Q x_{h,N}^* + q, \]

and the discrete minimum principle

\[(r(t_j) + \lambda_{h,j+1}^T B(t_j))(u - u_{h,j}) \geq 0 \quad \forall u \in U, \quad j = 0, \ldots, N - 1, \]

are satisfied.
By $\sigma_h: [0, t_{N-1}] \to \mathbb{R}^m$ we denote the discrete switching function, the continuous and piecewise linear function defined by the values
\begin{equation}
 \sigma_h(t_j) := r(t_j) + B(t_j)\lambda_{t_{j+1}, j}, \quad j = 0, \ldots, N - 1.
\end{equation}
From (2.4) we obtain for $i = 1, \ldots, m, j = 0, \ldots, N - 1$,
\begin{equation}
 u^*_h, i(t_j) = \begin{cases}
 b_{t, i}, & \text{if } \sigma_h, i(t_j) > 0, \\
 b_{u, i}, & \text{if } \sigma_h, i(t_j) < 0, \\
 \text{undetermined}, & \text{if } \sigma_h, i(t_j) = 0.
 \end{cases}
\end{equation}

3. Error Estimates for Optimal Values

Without assuming a special structure of the optimal controls we can derive error estimates of order 1 for the optimal values. To this end we need some auxiliary results. For a function $z: [0, T] \to \mathbb{R}$ of bounded variation and $s_1, s_2 \in [0, T]$, $s_1 < s_2$, we denote by $\mathcal{V}_{s_2}^z$ the total variation of z on $[s_1, s_2]$.

Lemma 3.1. Suppose that $(x, u) \in \mathcal{F}$ and u has bounded variation. Then there exists $(x_h, u_h) \in \mathcal{F}_N$ such that
\begin{equation}
 \|u - u_h\|_1 \leq h_N \mathcal{V}_0^u, \quad \|u - u_h\|_2 \leq \sqrt{h_N \mathcal{V}_0^u},
\end{equation}
and
\begin{equation}
 \|x_h - x\|_{\infty} \leq c_1 h_N \mathcal{V}_0^u \hat{x} \leq (c_2 + c_3 \mathcal{V}_0^u) h_N,
\end{equation}
where c_1, c_2, c_3 are constants independent of N.

Proof. Let u_h be the piecewise constant function defined by the values $u(t_j), j = 0, \ldots, N - 1$. Then $u_h \in \mathcal{U}$. Since for $s \in [t_j, t_{j+1}]
\begin{align*}
 |u(s) - u(t_j)| &\leq |u(t_{j+1}) - u(s)| + |u(s) - u(t_j)| \\
 \leq \mathcal{V}_{t_{j+1}}^{t_j} u,
\end{align*}
we have
\begin{align*}
 \|u - u_h\|_1 &= \sum_{j=0}^{N-1} \int_{t_j}^{t_{j+1}} |u(s) - u(t_j)| \, ds \\
 &\leq \sum_{j=0}^{N-1} \int_{t_j}^{t_{j+1}} \mathcal{V}_{t_{j+1}}^{t_j} u \\
 &\leq h_N \mathcal{V}_0^u u,
\end{align*}
which shows the first estimate in (3.1). For the L^2-norm we have
\begin{align*}
 \|u - u_h\|_2^2 &= \sum_{j=0}^{N-1} \int_{t_j}^{t_{j+1}} |u(s) - u(t_j)|^2 \, ds \\
 &\leq \sum_{j=0}^{N-1} h_N \left(\mathcal{V}_{t_{j+1}}^{t_j} u \right)^2 \\
 &\leq \mathcal{V}_0^u u \sum_{j=0}^{N-1} h_N \mathcal{V}_{t_{j+1}}^{t_j} u = h_N \left(\mathcal{V}_0^u u \right)^2,
\end{align*}
which shows the second estimate in (3.1).

Let x_h be the solution of the discrete system equation of (OQ)$_N$ for $u = u_h$. Then $(x_h, u_h) \in \mathcal{F}_N$ and x_h is the Euler approximation of x. Since u has bounded variation and x is the solution of the system equation, \hat{x} has bounded variation. By Sendov/Popov [28, Theorem 6.1] (see also [28, (7) on p. 10]) this implies
\begin{equation}
 \max_{1 \leq j \leq N} |x_h(t_j) - x(t_j)| \leq 2T \exp(T \|A\|_{\infty}) h_N \mathcal{V}_0^u \hat{x}.
\end{equation}
From this one easily obtains the first estimate in (3.2) (compare [4], Lemma 2.2). The variation of \(\dot{x} \) can be estimated by the variation of the right hand side of the system equation. If we denote by \(L_A \), resp. \(L_B \), the Lipschitz modulus of \(A(\cdot) \), resp. \(B(\cdot) \), then a simple calculation shows that for \(t, s \in [0, T] \)
\[
|\dot{x}(t) - \dot{x}(s)| \leq L_A \|x\|_\infty |t - s| + \|A(\cdot)\|_\infty |x(t) - x(s)| + L_B \|u\|_\infty |t - s| + \|A(\cdot)\|_\infty |u(t) - u(s)|.
\]

By (1.2) and the boundedness of \(U \) we further obtain with some constants \(L_x \), \(L_u \) independent of \(N \)
\[
\nabla^T \dot{x} \leq (L_A \|x\|_\infty + L_x \|A(\cdot)\|_\infty + L_B L_u)T + \|A(\cdot)\|_\infty \nabla^T u,
\]
which implies the second estimate in (3.2).

\[\square\]

Remark. In many applications the optimal control \(u^* \) is a piecewise Lipschitz continuous function. In this case \(u^* \) has bounded variation.

Lemma 3.2. Suppose that \((x_h, u_h) \in F_N\). Then there exists a function \(z \), such that \((z, u_h) \in F\) and

\[
(3.4) \quad \|z - x_h\|_\infty \leq c h_N
\]

with a constant \(c \) independent of \(N \) and the choice of \((x_h, u_h) \in F_N\).

Proof. By assumption \(u_h \in U \). Let \(z \) be the solution of the system equation of (OQ) for \(u = u_h \). Then \((z, u_h) \in F\) and \(x_h \) solves the differential equation (remember that \(u_h(t) = u_h(t_j) \) for \(t \in [t_j, t_{j+1}] \))
\[
\dot{x}_h = A(t_j)x_h(t_j) + B(t_j)u_h(t_j) = A(t)x_h(t) + B(t)u_h(t) + y(t) \quad \forall t \in [0, T],
\]
where
\[
y(t) = A(t_j)x_h(t_j) - A(t)x_h(t) + (B(t_j) - B(t))u_h(t), \quad t \in [t_j, t_{j+1}].
\]

Since \(u_h \) is bounded and \(y(t_j) = 0 \), the functions \(A, B \), are Lipschitz-continuous and the feasible trajectories are Lipschitz uniformly with respect to \(h_N \) by (2.1), it follows that
\[
\|y(t)\| \leq c_{1} h_N \quad \forall t \in [0, T]
\]
with a constant \(c_{1} \) independent of \(N \) and the choice of \((x_h, u_h)\). This together with
\[
\dot{x}_h(t) - \dot{z}(t) = y(t) \text{ implies}
\]
\[
|x_h(t) - z(t)| \leq \int_{0}^{t} |\dot{x}_h(s) - \dot{z}(s)| ds = \int_{0}^{t} |y(s)| ds \leq c_{1} T h_N
\]
for \(t \in [t_j, t_{j+1}] \) which proves (3.4).

\[\square\]

Lemma 3.3. Suppose that \((x_h, u_h) \in F_N\). Then

\[
(3.5) \quad |f(x_h, u_h) - f_N(x_h, u_h)| \leq c h_N
\]

with a constant \(c \) independent of \(N \) and the choice of \((x_h, u_h) \in F_N\).

Proof. It follows from (2.1) and the boundedness of \(U \) that there are constants \(c_x \), \(c_u \) independent of \(N \) such that

\[
(3.6) \quad \|x_h\|_\infty \leq c_x, \quad \|u_h\|_\infty \leq c_u \quad \forall (x_h, u_h) \in F_N.
\]
By the definition of f and f_N we have

$$(3.7)\quad f(x_h, u_h) - f_N(x_h, u_h) = \sum_{j=0}^{N-1} \int_{t_j}^{t_{j+1}} \left[\frac{1}{2} I_1(t) + I_2(t) + I_3(t) \right] dt,$$

where

$$I_1(t) = x_h(t)^TW(t)x_h(t) - x_h(t_j)^TW(t_j)x_h(t_j),$$

$$I_2(t) = w(t)^Tx_h(t) - w(t_j)^Tx_h(t_j),$$

$$I_3(t) = r(t)^Tu_h(t) - r(t_j)^Tu_h(t_j) = (r(t) - r(t_j))^Tu_h(t_j)$$

for $t \in [t_j, t_{j+1}]$. Since

$$I_1(t) = x_h(t)^TW(t)x_h(t) - x_h(t_j)^TW(t_j)x_h(t_j) + x_h(t_j)^TW(t_j)x_h(t_j) - x_h(t_j)^TW(t_j)x_h(t_j) = (x_h(t) + x_h(t_j))^TW(t)(x_h(t) - x_h(t_j)) + x_h(t_j)^TW(t - W(t_j))x_h(t_j),$$

we get by (2.1) and (3.6)

$$|I_1(t)| \leq 2c_3\|W(t)\|L_\infty h_N + c_2^2 L_w h_N,$$

where L_w is the Lipschitz modulus of W. Similar results can be easily obtained for $I_2(t)$ and $I_3(t)$. Together with (3.7) this implies the assertion. \hfill \Box

We can now derive an estimate for the optimal values of solutions. By approximation results for reachable sets (see [12, 30, 31]), the assumption on the bounded variation of the optimal control in the following theorem could be weakened by demanding only bounded variation and Lipschitz continuity of a corresponding set-valued right-hand side. To avoid additional notations, we include a direct proof for the simpler result needed here (compare [1]).

Theorem 3.4. Let $(x^*, u^*) \in F$ be a solution of (OQ) such that u^* has bounded variation. Then for any solution $(x_h^*, u_h^*) \in F_N$ of (OQ)$_N$ we have

$$(3.8)\quad |f_N(x_h^*, u_h^*) - f(x^*, u^*)| \leq c h_N \quad \forall t \in [0, T]$$

with a constant c independent of N and the choice of x_h^*, u_h^*. \hfill \diamond

Proof. By Lemma 3.1 and the boundedness of $T_0^3 u^*$ there exists $(x_h, u_h) \in F_N$ such that

$$(3.9)\quad \|x_h - x^*\|_\infty \leq c_1 h_N, \quad \|u_h - u^*\|_1 \leq c_2 h_N,$$

where c_1, c_2 are constants independent of N. Let $(x_h^*, u_h^*) \in F_N$ be any solution of (OQ)$_N$. Since $f_N(x_h^*, u_h^*) \leq f_N(x_h, u_h)$ we obtain

$$0 \leq f_N(x_h, u_h) - f_P(x_h^*, u_h^*) = f_N(x_h, u_h) - f(x^*, u^*) + f(x^*, u^*) - f(x_h^*, u_h^*),$$

and therefore

$$f_N(x_h^*, u_h^*) - f(x^*, u^*) \leq f_N(x_h, u_h) - f(x^*, u^*) \leq f_N(x_h, u_h) - f(x_h, u_h) + f(x_h, u_h) - f(x^*, u^*).$$

By (3.5), (1.1) and (3.9) this implies

$$(3.10)\quad f_N(x_h^*, u_h^*) - f(x^*, u^*) \leq c_3 h_N + L_f(c_1 + c_2) h_N$$

with a constant c_3 independent of N and of x_h, u_h.\hfill \Box
On the other hand, by Lemma 3.2 there exists z^* such that $(z^*, u^*_h) \in \mathcal{F}$ and
(3.11) $\|z^* - x^*_h\|_\infty \leq c_4 h_N,$
where c_4 is a constant independent of N and the choice of x^*_h, u^*_h. Since $f(x^*, u^*) \leq f(z^*, u^*_h)$ we obtain

$$0 \leq f(z^*, u^*_h) - f(x^*, u^*) = f(z^*, u^*_h) - f_N(x^*_h, u^*_h) + f_N(x^*_h, u^*_h) - f(x^*, u^*),$$
and therefore

$$f(x^*, u^*) - f_N(x^*_h, u^*_h) \leq f(z^*, u^*_h) - f_N(x^*_h, u^*_h) \leq f(z^*, u^*_h) - f_N(x^*_h, u^*_h) - f_N(x^*_h, u^*_h).$$

By (3.5), (1.1) and (3.11) this implies

$$f(x^*, u^*) - f_N(x^*_h, u^*_h) \leq L_f c_4 h_N + c_3 h_N.$$ Together with (3.10) we obtain (3.8). \hfill \Box

Remark. The constant c in (3.8) depends on the variation of u^*, but is independent of N. Since we assume in the following that $\mathcal{V}_0 u^*$ is bounded, we suppress the explicit dependence of constants on $\mathcal{V}_0 u^*$. \hfill \Diamond

4. Error estimates for bang-bang solutions

4.1. A lower minorant for minimal values.

The convergence analysis of Euler discretizations is usually based on a second-order optimality condition (compare e.g. [15], [23]). We show in the following that for Problem (OQ) a similar condition holds, if the optimal control is of bang-bang type. To this end we assume that

(A1) There exists a solution $(x^*, u^*) \in \mathcal{F}$ of (OQ) such that the set Σ of zeros of the components σ_i, $i = 1, \ldots, m$, of the switching function σ defined by (1.5) is finite and $0, T \notin \Sigma$, i.e., $\Sigma = \{s_1, \ldots, s_l\}$ with $0 < s_1 < \ldots < s_l < T$.

Remark. If $0, T \notin \Sigma$ then $s_1 > t_1$ and $s_l < t_{N-1}$ for sufficiently large N. Assumption (A1) implies bounded variation of u^*. \hfill \Diamond

Let $I(s_j) := \{1 \leq i \leq m : \sigma_i(s_j) = 0\}$ be the set of active indices for the components of the switching function. In order to get a bang-type structure for the discrete optimal controls we need an additional assumption:

(A2) There exist $\hat{\sigma} > 0, \hat{\tau} > 0$ such that

$$|\sigma_i(\tau)| \geq \hat{\sigma}|\tau - s_j|$$

for all $j \in \{1, \ldots, l\}$, $i \in I(s_j)$, and all $\tau \in [s_j - \hat{\tau}, s_j + \hat{\tau}]$, and

$$\sigma_i(s_j - \hat{\tau})\sigma_i(s_j + \hat{\tau}) < 0,$$
i.e., σ_i changes sign in s_j.

Assumptions (A1)–(A2) imply uniqueness of the optimal control u^* (see the remark following (4.12)).

For $0 < \delta \leq \hat{\tau}$ we define

$$I(\delta) = \bigcup_{1 \leq j \leq l} [s_j - \delta, s_j + \delta].$$

Let $i \in \{1, \ldots, m\}$ be arbitrary, and let

$$\Sigma_i = \{\tau_1, \ldots, \tau_{l_i}\} \subset \Sigma \text{ with } 0 < \tau_1 < \ldots < \tau_{l_i} < T$$
be the set of zeros of σ_i and
\begin{equation}
I_-(\delta) = \bigcup_{j=1,\ldots,i} [\tau_j - \bar{\tau}, \tau_j + \bar{\tau}], \quad I_+(\delta) = [0,T] \setminus I_-(\delta).
\end{equation}
Since σ_i is Lipschitz there exists
\begin{equation}
0 < \sigma_{i,\min} = \min_{t \in [0,T] \setminus I_+(\tau)} |\sigma_i(t)|.
\end{equation}
We choose $0 < \delta \leq \bar{\tau}$ such that
\begin{equation}
\delta \sigma \leq \min_{1 \leq i \leq m} \sigma_{i,\min}.
\end{equation}
Then by (A2) for any $0 < \delta \leq \bar{\tau}$ and arbitrary $i \in \{1, \ldots, m\}$ we have
\begin{equation}
|\sigma_i(t)| \geq \delta \sigma \quad \forall t \in [0,T] \setminus I(\delta).
\end{equation}
The following result is extracted from the proof of Lemma 3.3 in Felgenhauer [17] and forms an important tool for the forthcoming analysis. For the reader’s convenience the proof is included.

Lemma 4.1. Let (x^*, u^*) be a minimizer for Problem (OQ), and let the switching function σ be defined by (1.5). If Assumptions (A1)--(A2) are satisfied, then there are constants $\alpha, \gamma, \delta > 0$ such that for any feasible pair (x, u)
\begin{equation}
\int_0^T \sigma(t)^T(u(t) - u^*(t))dt \geq \alpha \|u - u^*\|_1^2
\end{equation}
if $\|u - u^*\|_1 \leq 2\gamma \delta$, and
\begin{equation}
\int_0^T \sigma(t)^T(u(t) - u^*(t))dt \geq \alpha \|u - u^*\|_1
\end{equation}
if $\|u - u^*\|_1 > 2\gamma \delta$. \diamond

Proof. Let $(x, u) \in \mathcal{F}$ be arbitrary. Since by the minimum principle (1.4) the signs of $\sigma_i(t)$ and $u_i(t) - u^*_i(t)$ coincide it follows from (4.5) that
\begin{equation}
J = \int_0^T \sigma(t)^T(u(t) - u^*(t))dt \geq \int_{[0,T] \setminus I(\delta)} \sigma(t)^T(u(t) - u^*(t))dt
\end{equation}

\begin{equation}
= \int_{[0,T] \setminus I(\delta)} \sum_{i=1}^m |\sigma_i(t)||u_i(t) - u^*_i(t)| dt \geq \delta \sigma \sum_{i=1}^m \int_{[0,T] \setminus I(\delta)} |u_i(t) - u^*_i(t)| dt.
\end{equation}

Since for $1 \leq i \leq m$, $|u_i(t) - u^*_i(t)| \leq b_{u,i} - b_{t,i} \quad \forall t \in [0,T]$,
we have
\begin{equation}
\sum_{i=1}^m \int_{I(\delta)} |u_i(t) - u^*_i(t)| dt \leq \gamma \delta,
\end{equation}
where $\gamma = 2\alpha m \max_{1 \leq i \leq m} (b_{u,i} - b_{t,i})$, so that
\begin{equation}
J \geq \delta \sigma (\|u - u^*\|_1 - \gamma \delta).
\end{equation}
We choose $\delta = \min\{\delta, \frac{1}{2\gamma^2||u - u^*||_1}\}$. If $\delta = \bar{\tau}$, i.e. if $\|u - u^*\|_1 > 2\gamma \delta$, we obtain
\begin{equation}
J \geq \frac{\delta^2}{2\gamma^2\|u - u^*\|_1}.
\end{equation}
If \(\delta = \frac{1}{2\gamma} ||u - u^*||_1 \) (note that in this case \(\delta \) depends on \(u \) and is not a constant), i.e. if \(||u - u^*||_1 \leq 2\gamma \delta \), we obtain

\[
J \geq \frac{\sigma}{4\gamma} ||u - u^*||_1^2,
\]

which proves the assertion. \(\square \)

Lemma 4.1 implies a quadratic minorant for the minimal values of Problem (OQ) in a sufficiently small \(L^1 \)-neighbourhood, and a linear minorant outside this neighbourhood.

Theorem 4.2. Let \((x^*, u^*)\) be a minimizer for Problem (OQ). If Assumptions (A1)–(A2) are satisfied, then there are constants \(\alpha, \gamma, \delta > 0 \) such that for any feasible pair \((x, u)\)

\[
(4.9) \quad f(x, u) - f(x^*, u^*) \geq \alpha ||u - u^*||_1^2
\]

if \(||u - u^*||_1 \leq 2\gamma \delta \), and

\[
(4.10) \quad f(x, u) - f(x^*, u^*) \geq \alpha ||u - u^*||_1
\]

if \(||u - u^*||_1 > 2\gamma \delta \).

Proof. Let \((x, u)\) be feasible for problem (OQ), let \((x^*, u^*)\) be optimal, and let \(\lambda \) be the adjoint state. Defining \(z = x - x^* \), \(v = u - u^* \) we have

\[
f(x, u) - f(x^*, u^*) = (Qx^*(T) + q)^Tz(T) + \frac{1}{2}z(T)^TQz(T)
\]

\[
+ \int_0^T (x^*(t)^TW(t) + w(t)^T)z(t) + r(t)^Tv(t) dt + \frac{1}{2} \int_0^T z(t)^TW(t)z(t) dt
\]

\[
\geq (Qx^*(T) + q)^Tz(T) + \int_0^T (x^*(t)^TW(t) + w(t)^T)z(t) + r(t)^Tv(t) dt,
\]

since \(Q \) and \(W(\cdot) \) are positive semidefinite. From \(\lambda(T) = Qx^*(T) + q \) it follows

\[
f(x, u) - f(x^*, u^*) \geq \lambda(T)^Tz(T) + \int_0^T (x^*(t)^TW(t) + w(t)^T)z(t) + r(t)^Tv(t) dt.
\]

Since \(z(0) = 0 \) we further obtain

\[
f(x, u) - f(x^*, u^*) \geq \int_0^T (x^*(t)^TW(t) + w(t)^T)z(t) + r(t)^Tv(t) dt + \lambda(T)^Tz(T)
\]

\[
= \int_0^T (x^*(t)^TW(t) + w(t)^T)z(t) + r(t)^Tv(t) dt
\]

\[
+ \int_0^T z(t)^T\dot{\lambda}(t) dt + \int_0^T z(t)^T\ddot{\lambda}(t) dt.
\]
Since \(\dot{z}(t) = A(t)z(t) + B(t)v(t) \) and \(\lambda \) solves the adjoint equation, this implies
\[
f(x, u) - f(x^*, u^*) = \int_0^T (x^*(t))^T W(t) + w(t)^T)z(t) + r(t)^Tv(t) dt
+ \int_0^T [A(t)z(t) + B(t)v(t)]^T \lambda(t) dt
- \int_0^T z(t)^T [A(t)^T \lambda(t) + W(t)x^*(t) + w(t)] dt
= \int_0^T [\lambda(t)^TB(t) + r(t)^Tv(t)] dt = \int_0^T \sigma(t)^Tv(t) dt.
\]
The assertion now follows from Lemma 4.1.

Since \(x^* \) solves the state equation for \(u^* \) and \(x \) solves the state equation for \(u \), we have
\[
\dot{x}(t) - \dot{x}^*(t) = A(t)(x(t) - x^*(t)) + B(t)(u(t) - u^*(t)) \quad \forall t \in [0, T],
\]
and \(x(0) - x^*(0) = 0 \). This implies
\[
\|x - x^*\|_{1,1} \leq c\|u - u^*\|_1
\]
with some constant \(c \). Together with (4.9), (4.10) we obtain with some constant \(\bar{\alpha} > 0 \)

(4.11) \[f(x, u) - f(x^*, u^*) \geq \bar{\alpha} (\|u - u^*\|_1^2 + \|x - x^*\|_{1,1}^2) \]
for any feasible pair \((x, u) \) with \(\|u - u^*\|_1 \leq 2\gamma\delta \), and

(4.12) \[f(x, u) - f(x^*, u^*) \geq \bar{\alpha} (\|u - u^*\|_1 + \|x - x^*\|_{1,1}) \]
for any feasible pair \((x, u) \) with \(\|u - u^*\|_1 > 2\gamma\delta \).

Remark. (compare [17], Theorem 2.2) These estimates also imply uniqueness of the solution of (OQ). If \((x, u) \in \mathcal{F} \) is an arbitrary solution of (OQ), then \(f(x, u) = f(x^*, u^*) \). By (4.11) resp. (4.12) we then obtain \((x, u) = (x^*, u^*) \). \(\diamond \)

4.2. Hölder type error estimates. Based on the estimate (4.11) for the optimal values we now prove error estimates for the optimal controls. To this end we proceed similar to [2] (compare also [26]) and prove Hölder type error estimates first.

As above we denote by \((x^*, u^*) \) a solution of Problem (OQ) and by \((x_h^*, u_h^*) \) a solution of Problem (OQ)$_N$. Suppose that Assumptions (A1), (A2) are satisfied. Let \(z^* \) be the solution of the system equation for \(u = u_h^* \). Then \((z^*, u_h^*) \in \mathcal{F} \) and by Lemma 3.2

(4.13) \[\|z^* - x_h^*\| \leq c_1h_N \]
with a constant \(c_1 \) independent of \(N \). By (4.11) and (4.12) we have with some constant \(\bar{\alpha} \) independent of \(N \)

(4.14) \[f(z^*, u_h^*) - f(x^*, u^*) \geq \bar{\alpha} (\|u_h^* - u^*\|_1^2 + \|z^* - x^*\|_{1,1}^2) \]
if \(\|u_h^* - u^*\|_1 \leq 2\gamma\delta \), and

(4.15) \[f(z^*, u_h^*) - f(x^*, u^*) \geq \bar{\alpha} (\|u_h^* - u^*\|_1 + \|z^* - x^*\|_{1,1}) \]
Let it remain to show (4.20). To this end we prove that for sufficiently large \(c\) with a constant \(\|V_n\|\) of \(V\) estimating (4.17) \(\max_{1 \leq j \leq N} |\dot{x}_h(t_j) - x^*(t_j)| \leq 2T \exp(T\|A\|_{\infty})h_N V_0^T \dot{x}^*\).

Further we denote by \(\hat{x}_h\) the solution of the discrete system equation of \((OQ)\) for \(u_j = \hat{u}_{h,j}\). Then \((\hat{x}_h, \hat{u}_h) \in \mathcal{F}_N\), hence \(f(\hat{x}_h, \hat{u}_h) \geq f(x_h^*, u_h^*)\), and (see (3.3))

\[
\max_{1 \leq j \leq N} |\dot{x}_h(t_j) - x^*(t_j)| \leq 2T \exp(T\|A\|_{\infty})h_N V_0^T \dot{x}^*.
\]

Estimating \(V_0^T \dot{x}^*\) according to the proof of Lemma 3.1 and using the boundedness of \(V_0^T u^*\) this implies (compare [4], Lemma 2.2)

\[
\|x^* - \hat{x}_h\|_{\infty} \leq c_2 h_N
\]

with a constant \(c_2\) independent of \(N\). Now using (1.1), (4.18), (4.16) the left hand side of (4.14), (4.15) can be estimated by

\[
f(z^*, u_h^*) - f(x^*, u^*) = f(z^*, u_h^*) - f(x_h^*, u_h^*) + f(x_h^*, u^*) - f(x^*, u^*)
\]

\[
\leq f(z^*, u_h^*) - f(x_h^*, u_h^*) + f(\hat{x}_h, \hat{u}_h) - f(x^*, u^*) \leq c_3 L_f h_N
\]

with a constant \(c_3\) independent of \(N\). By (4.14), (4.15) this implies

\[
\|u_h^* - u^*\|_1 \leq c_4 \max\{h_N, h_N^{\frac{1}{2}}\}
\]

with a constant \(c_4\) independent of \(N\). Therefore, if \(N\) is sufficiently large, we have \(\|u_h^* - u^*\|_1 \leq 2\gamma \delta\), and by (4.14) we finally obtain the following result, where \(\lambda_h\) denotes the continuous, piecewise linear function defined by \(\lambda_h(t_j) = \lambda_{h,j}\).

Theorem 4.3. Let \((x^*, u^*)\) be a solution of Problem \((OQ)\) for which Assumptions (A1), (A2) are satisfied. Then for sufficiently large \(N\) any minimizer \((x_h^*, u_h^*)\) of Problem \((OQ)\) can be estimated by

\[
\|u_h^* - u^*\|_1 \leq c_u h_N^{\frac{1}{2}}, \quad \|x_h^* - x^*\|_{\infty} \leq c_x h_N^{\frac{1}{2}}.
\]

further, the associated multipliers can be estimated by

\[
\|\lambda_h - \lambda\|_{\infty} \leq c_\lambda h_N^{\frac{1}{2}}
\]

with constants \(c_u\), \(c_x\), \(c_\lambda\) independent of \(N\).

Proof. It remains to show (4.20). To this end we prove that for sufficiently large \(N\)

\[
\|\lambda_h - \lambda\|_{\infty} \leq c_\lambda (h_N + |x_h^*(T) - x^*(T)|)
\]

with a constant \(c_\lambda\) independent of \(N\). We denote by \(\Phi\) the matrix function forming the fundamental solution of the adjoint system

\[
-\Phi(t) = A(t)^T \Phi(t) \quad \forall t \in [0, T], \quad \Phi(T) = I.
\]

Further we denote by \(\mu_h\) the solution of the adjoint equation

\[
-\dot{\mu}(t) = A(t)^T \mu(t) + W(t)x^*(t) + w(t) \quad \forall t \in [0, T]
\]

with end condition

\[
\mu_h(T) = Qx_h^*(T) + q.
\]

Then we have

\[
\mu_h(t) - \lambda(t) = \Phi(t)Q(x_h^*(T) - x^*(T)).
\]
This implies
\begin{equation}
\|\mu_h - \lambda\|_\infty \leq c_1|x_h^*(T) - x^*(T)|
\end{equation}
with some constant c_1 independent of N. Furthermore, we have
\begin{equation}
\dot{\mu}_h(t) = -A(t)^T\Phi(t)(Qx_h^*(T) + q) - A(t)^T\Phi(t) \int_t^T \Phi(s)^{-1} [W(s)x^*(s) + w(s)] ds
- W(t)x^*(t) - w(t).
\end{equation}
With $c_2 = \mathcal{V}_0^h(-A(\cdot)^T\Phi(\cdot))$ and
\begin{equation}
c_3 = \mathcal{V}_0^h \left[-A(\cdot)^T\Phi(\cdot) \int_t^T \Phi(s)^{-1} [W(s)x^*(s) + w(s)] ds - W(\cdot)x^*(\cdot) - w(\cdot) \right]^{\bullet}
\end{equation}
we have
\[
\mathcal{V}_0^h \dot{\mu}_h \leq c_2|Qx_h^*(T) + q| + c_3.
\]
Together with (3.6) it follows, that $\dot{\mu}_h$ has bounded variation uniformly with respect to h. By [28, 1.3 (7) and Theorem 6.1] this implies that
\begin{equation}
\max_{0 \leq j \leq N} |\nu_h(t_j) - \mu_h(t_j)| \leq 2T \exp(T\|A\|_\infty) h_N \mathcal{V}_0^h \dot{\mu}_h,
\end{equation}
where ν_h is the Euler discretization of equation (4.21) with end condition (4.22).

Further, it can be easily shown that for sufficiently large N
\[
\max_{0 \leq j \leq N} |\lambda_h(t_j) - \nu_h(t_j)| \leq c_4 h_N
\]
holds with a constant c_4 independent of N. Together with (4.23) and (4.24) this implies
\[
\max_{0 \leq j \leq N} |\lambda_h(t_j) - \lambda(t_j)| \leq c_4|x_h^*(T) - x^*(T)| + c_1 h_N
\]
with a constant c_4 independent of N. The assertion now easily follows (see e.g. the proof of Lemma 2.2 in [4]).

Theorem 4.3 immediately implies an error estimate for the switching function. For the simple proof we refer to [4], Theorem 2.3.

Corollary 4.4. Let the assumptions of Theorem 4.3 be satisfied. Further let σ be defined by (1.5), and let σ_h be defined by (2.5). Then for sufficiently large N
\begin{equation}
\max_{t \in [0, T_{N-1}]} |\sigma_h(t) - \sigma(t)| \leq c_5 h_N^{\frac{3}{2}}
\end{equation}
with a constant c_5 independent of N.

We now show that the discrete optimal controls are bang-bang except on a set of measure $\leq \kappa h_N^{\frac{3}{2}}$ with a constant κ independent of N. To this end we use the following result. A proof for $\beta = 1$ can be found in [4].

Theorem 4.5. Let Assumptions (A1), (A2) be satisfied, and suppose that for sufficiently large N
\begin{equation}
\max_{t \in [0, T_{N-1}]} |\sigma_h(t) - \sigma(t)| \leq c_6 h_N^{\beta}
\end{equation}
with a constant c_6 independent of N and $\beta > 0$. Then there exists a constant $\bar{\kappa}$ independent of N such that for sufficiently large N any discrete optimal control u_h^* coincides with u^* except on a set of measure $\leq \bar{\kappa} h_N^{\beta}$.\[\square\]
Proof. Let \(i \in \{1, \ldots, m\} \) be arbitrary, and let \(\sigma_{i, \text{min}} \) be defined by (4.3). Then (4.26) implies
\[
|\sigma_{h,i}(t)| \geq |\sigma_i(t)| - c_\sigma h_N^\beta \geq \sigma_{i, \text{min}} - c_\sigma h_N^\beta \quad \forall t \in I_+(\bar{t}),
\]
where \(I_+(\bar{t}) \) is defined by (4.2). This shows that
\[
|\sigma_{h,i}(t)| \geq \frac{1}{2} \sigma_{i, \text{min}} > 0 \quad \forall t \in I_+(\bar{t}),
\]
if we choose \(N \) sufficiently large such that
\[
h_N^\beta \leq \frac{\sigma_{i, \text{min}}}{2c_\sigma}.
\]
For \(\tau \in [\tau_j - \bar{t}, \tau_j + \bar{t}] \), \(j \in \{1, \ldots, l_i\} \), it follows by (A2) and (4.26) that
\[
|\sigma_{h,i}(\tau)| \geq |\sigma_i(\tau)| - c_\sigma h_N^\beta \geq \sigma_i(\tau) - c_\sigma h_N^\beta.
\]
Therefore, \(\sigma_{h,i}(\tau) \neq 0 \) if
\[
|\tau - \tau_j| > \frac{c_\sigma}{\sigma} h_N^\beta.
\]
Let \(l \in \{1, \ldots, N - 1\} \) with \(\tau_j \in [t_l, t_{l+1}] \). We choose \(k \in \mathbb{N} \) to be the smallest number such that
\[
k > \frac{c_\sigma}{\sigma} h_N^{\beta - 1}.
\]
Then
\[
t_{l+k+1} - \tau_j \geq t_{l+k+1} - t_{l+1} = kh_N \geq \frac{c_\sigma}{\sigma} h_N^\beta,
\]
\[
\tau_j - t_{l-k} \geq \tau_j - t_{l} = kh_N \geq \frac{c_\sigma}{\sigma} h_N^\beta,
\]
and
\[
\frac{c_\sigma}{\sigma} h_N^{\beta - 1} < k \leq \frac{c_\sigma}{\sigma} h_N^{\beta - 1} + 1.
\]
Defining \(k_j^+ := l + k + 1, k_j^- := l - k \), we have
\[
t_{k_j^+} - t_{k_j^-} = (2k + 1)h_N \leq \left(\frac{c_\sigma}{\sigma} h_N^{\beta - 1} + 3\right)h_N = \left(\frac{2c_\sigma}{\sigma} + 3h_N^{1-\beta}\right)h_N^\beta
\]
and therefore
\[
t_{k_j^+} - t_{k_j^-} \leq \left(\frac{2c_\sigma}{\sigma} + 3T^{1-\beta}\right)h_N^\beta = \kappa h_N^\beta
\]
with a constant \(\kappa \) independent of \(N \). For sufficiently large \(N \) we then have
\[
[t_{k_j^-}, t_{k_j^+}] \subset [\tau_j - \bar{t}, \tau_j + \bar{t}],
\]
and it follows from (4.2) that \(|\sigma_{h,i}(t)| > 0 \) on \([t_{k_j^-}, \tau_j + \bar{t}]\) and on \([\tau_j - \bar{t}, t_{k_j^+}]\). Thus, defining
\[
I_- := \bigcup_{j=1, \ldots, l_i} [t_{k_j^-}, t_{k_j^+}] \subset I_-(\bar{t}), \quad I_+ := [0, T] \setminus I_- \supset I_+(\bar{t}),
\]
we have shown that
\[
|\sigma_{h,i}(t)| > 0 \quad \forall t \in I_+.
\]
By (2.6) this implies for any discrete optimal control \(u_h^* \) that
\[
u_{h,i}(t) = u_h^*(t) \quad \forall t \in I_+.
\]
EULER APPROXIMATION OF LINEAR-QUADRATIC CONTROL PROBLEMS

i.e. the continuous and the discrete optimal control coincide on I_+. Since the measure of I_- is bounded by

$$\tilde{\kappa} = \kappa \sum_{i=1}^m l_i,$$

the theorem is proved.

By Corollary 4.4 and Theorem 4.5 applied with $\beta = \frac{1}{2}$ we immediately obtain the following result.

Theorem 4.6. Let Assumptions (A1), (A2) be satisfied. Then there exists a constant $\tilde{\kappa}$ independent of N such that for sufficiently large N any discrete optimal control u_h^* coincides with u^* except on a set of measure $\leq \tilde{\kappa}h^\frac{3}{2}$.

5. Structural stability and improved error estimates

Let again $i \in \{1, \ldots, m\}$ be arbitrary and let $\tau_j \in \Sigma_i$ be a zero of σ_i. Then by (4.28), $\sigma_{h,i}$ has no zero in I_+ and at least one zero in $[t_{k_{i,j}}, t_{k_{i,j}+1}]$. We show that this zero is unique, i.e. u_h^* has the same structure as u^*, if we replace Assumption (A2) by the following slightly stronger assumption:

(A3) The matrix function B is differentiable, \dot{B} is Lipschitz continuous, and there exists $\bar{\sigma} > 0$ such that

$$\min_{1 \leq j \leq l_i \in I(s_j)} \{ |\dot{\sigma}_i(s_j)| \} \geq 2\bar{\sigma}.$$

Since λ satisfies the adjoint equation, $\dot{\lambda}$ is Lipschitz continuous, and therefore, if (A3) holds, $\dot{\sigma}$ is also Lipschitz continuous. Therefore, $\bar{\tau} > 0$ can be chosen such that for all $i \in I(s_j)$

(5.1) $$|\dot{\sigma}_i(\tau)| \geq \bar{\sigma} \text{ on } [s_j - \bar{\tau}, s_j + \bar{\tau}] \quad \forall i \in I(s_j),$$

which shows that Assumption (A3) implies (A2).

The function σ_h defined by (2.5) is differentiable on $[t_j, t_{j+1}]$, $j = 0, \ldots, N - 1$. For $t = t_j$ we define $\sigma_h(t) = \frac{1}{h^3}(\sigma_h(t_{j+1}) - \sigma_h(t_j))$, $j = 0, \ldots, N - 1$. Based on Assumption (A3) one easily obtains an error estimate for the derivative of the switching function. The proof is almost identical to that of Theorem 2.6 in [4] and hence omitted.

Theorem 5.1. Let Assumptions (A1), (A3) be satisfied. Let σ be defined by (1.5), and let σ_h be defined by (2.5). Then for sufficiently large N

(5.2) $$|\dot{\sigma}_h(t) - \dot{\sigma}(t)|_{\infty} \leq \tilde{\sigma}_\sigma h^\frac{3}{2} \quad \forall t \in [0, t_{N-1}]$$

with a constant $\tilde{\sigma}_\sigma$ independent of N.

We now show that the error estimates of the last section can be improved, if (A3) holds. To this end let $i \in I(s_j)$, i.e. $\sigma_i(s_j) = 0$. From (5.1) and (5.2) we obtain for sufficiently large N

(5.3) $$|\dot{\sigma}_{h,i}(\tau)| \geq \frac{1}{2}\bar{\sigma} \text{ on } [s_j - \bar{\tau}, s_j + \bar{\tau}].$$

This implies that $\sigma_{h,i}$ is strictly increasing or decreasing on $[s_j - \bar{\tau}, s_j + \bar{\tau}]$. Since $\sigma_{h,i}(s_j - \bar{\tau})\sigma_{h,i}(s_j + \bar{\tau}) \neq 0$, it follows that $\sigma_{h,i}$ has exactly one zero $s_{h,j}$ in $[s_j - \bar{\tau}, s_j + \bar{\tau}]$. This shows that σ_h has the same structure as σ (finitely many isolated zeros of its components). Note that this does not imply uniqueness of the discrete
optimal controls, since it may happen that one of the zeros is a discretization point and therefore \(\sigma_{h,i}(t_j) = 0\) for some \(i, j\).

By (4.28) it further follows that \(s_{h,j} \in [t_{k_j}, t_{k_j}']\), and by (4.27) we get the error estimate
\[
|s_j - s_{h,j}| \leq \kappa h_N^2, \quad j = 1, \ldots, l,
\]
for the zeros of the components of \(\sigma\) and \(\sigma_h\).

Theorem 5.2. Let Assumptions (A1), (A3) be satisfied. Then for sufficiently large \(N\) the discrete switching function \(\sigma_h\) has the same structure as \(\sigma\), i.e., the components of \(\sigma_h\) have \(l\) zeros, and the error estimates (5.4) hold with a constant \(\kappa\) independent of \(N\).

We assume that Assumptions (A1), (A3) are satisfied, so that, as shown above, \(\sigma_h\) has the same structure as \(\sigma\). Let \((x^*, u^*)\) be an optimal solution for Problem (OQ) and \((x_{h}^*, u_{h}^*)\) an optimal solution for Problem \((OQ)_N\). As in (4.1) we define for \(0 < \delta \leq \bar{\tau}\)
\[
I_h(\delta) = \bigcup_{1 \leq j \leq l} [s_{h,j} - \delta, s_{h,j} + \delta].
\]
Let \(i \in \{1, \ldots, m\}\) be arbitrary, and let
\[
\Sigma_{h,i} = \{\tau_{h,1}, \ldots, \tau_{h,l_i}\} \quad \text{with} \quad 0 < \tau_{h,1} < \ldots < \tau_{h,l_i} < T
\]
be the set of zeros of \(\sigma_{h,i}\) and
\[
I_{h,-}(\delta) = \bigcup_{j=1, \ldots, l_i} [\tau_{h,j} - \bar{\tau}, \tau_{h,j} + \bar{\tau}], \quad I_{h,+}(\delta) = [0, T] \setminus I_{h,-}(\delta).
\]
Since \(\sigma_{h,i}\) is Lipschitz, there exists
\[
0 < \sigma_{h,i,\min} = \min_{t \in [0, T] \setminus I_{h,+}(\bar{\tau})} |\sigma_{h,i}(t)|.
\]
It then follows from the continuity of \(\sigma_{h,i}\), (4.3) and Corollary 4.4 that for sufficiently large \(N\)
\[
|\sigma_{h,i}(t)| \geq \sigma_{h,i,\min} \geq \frac{1}{2} \sigma_{i,\min} \quad \forall t \in [0, T] \setminus I_{h,+}(\bar{\tau}).
\]
Moreover, by (5.3) and the Lipschitz continuity of \(\dot{\sigma}\), we have
\[
|\dot{\sigma}_{h,i}(\tau)| \geq \frac{1}{2} \sigma \quad \text{on} \quad [s_{h,j} - \bar{\tau}, s_{h,j} + \bar{\tau}]
\]
for all \(s_{h,j} \in \Sigma_{h,i}\), which implies that for \(0 < \delta \leq \bar{\tau}\)
\[
|\sigma_{h,i}(t)| \geq \frac{1}{2} \sigma \delta \quad \forall t \notin [s_{h,j} - \delta, s_{h,j} + \delta].
\]
We choose \(0 < \delta \leq \bar{\tau}\) such that
\[
\delta \sigma \leq \min_{1 \leq i \leq m} \sigma_{i,\min}.
\]
Note that \(\delta\) is independent of \(N\). Then it follows that for \(0 \leq \delta \leq \bar{\delta}\)
\[
|\sigma_{h,i}(t)| \geq \frac{1}{2} \sigma \delta \quad \forall t \in [0, T] \setminus I_h(\delta).\]
For \(\tau_i \in \Sigma_{h,i}\) we define
\[
k_1 = k_1(i) = \max\{j \mid t_j \leq \tau_i - \delta\}, \quad k_2 = k_2(i) = \min\{j \mid t_j \geq \tau_i + \delta\}.
\]
Then \(t_{k_2} - t_{k_1} \leq 2(\delta + h_N) \). Further we define
\[
I_i(\delta) = \bigcup_{t_{k_1} \leq j \leq t_{k_2}} \{0 \leq j \leq N \mid k_1(i) \leq j \leq k_2(i)\}
\]
and
\[
D_i(\delta) = \bigcup_{t_{k_1} \leq j \leq t_{k_2}} [t_{k_1(i)}, t_{k_2(i)}].
\]
Then the measure \(m(D_i(\delta)) \) can be estimated by \(m(D_i(\delta)) \leq 2l_i(\delta + h_N) \), and since \([t_{k_1(i)}, t_{k_2(i)}] \supset [\tau_i - \delta, \tau_i + \delta] \) we have by (5.8)
\[
|\sigma_{h,i}(t)| \geq \frac{1}{2} \delta \delta \quad \forall t \in [0, T] \setminus D_i(\delta).
\]
Now let \((x, u) \in \mathcal{F}_N\) and \(i \in \{1, \ldots, m\}\) be arbitrary. Then the discrete minimum principle (2.4) implies that the signs of \(\sigma_{h,i}(t)\) and \(u_i(t) - u^*_{h,i}(t)\) coincide at the grid points. Therefore
\[
J_{N,i} = h_N \sum_{j=0}^{N-1} \sigma_{h,i}(t_j)(u_i(t_j) - u^*_{h,i}(t_j)) \geq h_N \sum_{j \notin I_i(\delta)} \sigma_{h,i}(t_j)(u_i(t_j) - u^*_{h,i}(t_j))
\]
\[
\geq \frac{1}{4} \delta \delta h_N \sum_{j \notin I_i(\delta)} |u_i(t_j) - u^*_{h,i}(t_j)|.
\]
Moreover, we have
\[
h_N \sum_{j \notin I_i(\delta)} |u_i(t_j) - u^*_{h,i}(t_j)| \leq \max_{1 \leq i \leq m} (b_{u,i} - b_{l,i}) \sum_{j \notin I_i(\delta)} h_N
\]
\[
\leq \max_{1 \leq i \leq m} (b_{u,i} - b_{l,i}) m(D_i(\delta)) \leq \gamma_i(\delta + h_N),
\]
where
\[
\gamma_i = 2l_i \max_{1 \leq i \leq m} (b_{u,i} - b_{l,i}).
\]
Therefore
\[
J_{N,i} \geq \frac{1}{4} \delta \delta h_N \sum_{j=0}^{N-1} |u_i(t_j) - u^*_{h,i}(t_j)| - \frac{1}{4} \delta \delta \gamma_i(\delta + h_N)
\]
and
\[
(5.9) \quad J_N = \sum_{i=1}^{m} J_{N,i} = h_N \sum_{j=0}^{N-1} \sigma_h(t_j)^T (u(t_j) - u^*_h(t_j))
\]
\[
= h_N \sum_{i=1}^{m} \sum_{j=0}^{N-1} \sigma_{h,i}(t_j)(u_i(t_j) - u^*_{h,i}(t_j))
\]
\[
\geq \frac{1}{4} \delta \delta h_N \sum_{i=1}^{m} \sum_{j=0}^{N-1} |u_i(t_j) - u^*_{h,i}(t_j)| - \frac{1}{4} \delta \delta \sum_{i=1}^{m} \gamma_i(\delta + h_N).
\]
Defining \(\gamma = \sum_{i=1}^{m} \gamma_i \), we obtain
\[
(5.10) \quad J_N \geq \frac{1}{4} \delta \delta \left(\|u - u^*_h\|_1 - \gamma(\delta + h_N) \right).
\]
We now make the special choice \(u = \tilde{u}_h \in X_{2,N} \), where \(\tilde{u} \) is defined by the values \(\tilde{u}_h(t_j) = u^*(t_j), j = 0, \ldots, N-1 \) (compare the proof of Lemma 3.1). Then we have \(\tilde{u}_h \in \mathcal{U} \), and by \((3.1) \)
\[
\|u^* - \tilde{u}_h\|_1 \leq h_N V_0^T u^*.
\]
Together with \((4.19) \) this implies
\[
\|u^*_h - \tilde{u}_h\|_1 \leq \|u^*_h - u^*\|_1 + \|u^* - \tilde{u}_h\|_1 \leq c_w h_N^{\frac{1}{2}} + h_N V_0^T u^* \leq \tilde{\delta}
\]
for sufficiently large \(N \). With
\[
\delta = \frac{1}{2\gamma} \|\tilde{u}_h - u^*_h\|_1
\]
we obtain from \((5.10) \)
\[
J_N \geq \frac{\sigma}{8\gamma} \|\tilde{u}_h - u^*_h\|_1 \left(\|\tilde{u}_h - u^*_h\|_1 - \frac{1}{2} \|\tilde{u}_h - u^*_h\|_1 - \gamma h_N \right)
= \frac{\sigma}{16\gamma} \|\tilde{u}_h - u^*_h\|_1 (\|\tilde{u}_h - u^*_h\|_1 - 2\gamma h_N).
\]
Now we consider two cases. If
\[
(5.11) \quad \|\tilde{u}_h - u^*_h\|_1 \leq 4\gamma h_N,
\]
we have a discrete error estimate of order 1. Otherwise we have
\[
\|\tilde{u}_h - u^*_h\|_1 - 2\gamma h_N > 2\gamma h_N > \frac{1}{2} \|\tilde{u}_h - u^*_h\|_1
\]
and therefore
\[
(5.12) \quad J_N \geq \frac{\sigma}{32\gamma} \|\tilde{u}_h - u^*_h\|_1^2.
\]
We can now adapt known proof techniques (see e.g. [27, 22, 5]) to derive an upper bound for \(J_N \). By Assumption (A1) the optimal control \(u^* \) is piecewise continuous. Therefore the minimum principle (1.4) holds for all \(t \in [0,T] \) (see e.g. [21]). With \(t = t_j \) and \(u = u^*_h(t_j) \) we obtain
\[
\sigma(t_j)^T (u^*_h(t_j) - u^*(t_j)) = \sigma(t_j)^T (u^*_h(t_j) - \tilde{u}_h(t_j)) \geq 0, \quad j = 0, \ldots, N-1.
\]
Together with \((5.9) \) we obtain
\[
J_N \leq h_N \sum_{j=0}^{N-1} (\sigma_h(t_j) - \sigma(t_j))^T (\tilde{u}_h(t_j) - u^*_h(t_j))
= h_N \sum_{j=0}^{N-1} (\lambda(t_{j+1}) - \lambda(t_j))^T B(t_j) (\tilde{u}_h(t_j) - u^*_h(t_j))
= J_{N,1} + J_{N,2},
\]
where
\[
J_{N,1} = h_N \sum_{j=0}^{N-1} (\lambda(t_{j+1}) - \lambda(t_j))^T B(t_j) (\tilde{u}_h(t_j) - u^*_h(t_j)),
J_{N,2} = h_N \sum_{j=0}^{N-1} (\lambda(t_{j+1}) - \lambda(t_{j+1}))^T B(t_j) (\tilde{u}_h(t_j) - u^*_h(t_j)).
\]
The term $J_{N,1}$ can be estimated by

\[(5.13) \quad J_{N,1} \leq h_N^2 \| \mathcal{L} \| \sum_{j=0}^{N-1} |\hat{u}_h(t_j) - u_h^*(t_j)| = h_N \| \mathcal{L} \| \| \hat{u}_h - u_h^* \|_1.\]

In order to estimate $J_{N,2}$ let z_h be the solution of the discrete system equation for $u = \hat{u}_h$, i.e.,

\[z_h(t_{j+1}) = z_h(t_j) + h_N \left[A(t_j) z_h(t_j) + B(t_j) \hat{u}_h(t_j) \right], \quad j = 0, 1, \ldots, N-1\]

with initial condition $z_h(0) = a$, and let μ_h be the solution of the associated discrete adjoint equation, i.e.,

\[-\frac{\mu_h(t_{j+1}) - \mu_h(t_j)}{h_N} = A(t_j)^T \mu_h(t_{j+1}) + W(t_j) z_h(t_j) + w(t_j)\]

for $j = 0, \ldots, N-1$ with end condition

\[(5.14) \quad \mu_h(T) = Q z_h(T) + q.\]

Then

\[(5.15) \quad \| z_h - x^* \|_\infty \leq c h_N, \quad \| \mu_h - \lambda \|_\infty \leq c h_N,\]

where c is a constant independent of N (compare the proof of Lemma 3.1), and $J_{N,2} = J_{N,3} + J_{N,4}$ with

\[J_{N,3} = h_N \sum_{j=0}^{N-1} (\lambda_h(t_{j+1}) - \mu_h(t_{j+1})) B(t_j) (\hat{u}_h(t_j) - u_h^*(t_j)),\]

\[J_{N,4} = h_N \sum_{j=0}^{N-1} (\mu_h(t_{j+1}) - \lambda(t_{j+1})) B(t_j) (\hat{u}_h(t_j) - u_h^*(t_j)).\]

Using (5.15), $J_{N,4}$ can be estimated by

\[(5.16) \quad J_{N,4} \leq c h_N^2 \| \mathcal{L} \| \sum_{j=0}^{N-1} |\hat{u}_h(t_j) - u_h^*(t_j)| = c h_N \| \mathcal{L} \| \| \hat{u}_h - u_h^* \|_1.\]

We now show $J_{N,3} \leq 0$. By the definition of z_h we have

\[h_N B(t_j) (\hat{u}_h(t_j) - u_h^*(t_j)) = -h_N A(t_j) (z_h(t_j) - x^*_h(t_j)) + z_h(t_{j+1}) - z_h(t_j) - (x^*_h(t_{j+1}) - x^*_h(t_j))\]

for $j = 0, \ldots, N-1$. Using this, the term $J_{N,3}$ can be written in the form

\[J_{N,3} = -h_N \sum_{j=0}^{N-1} (\lambda_h(t_{j+1}) - \mu_h(t_{j+1}))^T A(t_j) (z_h(t_j) - x^*_h(t_j)) + h_N W(t_j) (x^*_h(t_j) - z_h(t_j))\]

By the definition of μ_h we have

\[-h_N A(t_j)^T (\lambda_h(t_{j+1}) - \mu_h(t_{j+1})) = \lambda_h(t_{j+1}) - \lambda_h(t_j) - (\mu_h(t_{j+1}) - \mu_h(t_j)) + h_N W(t_j) (x^*_h(t_j) - z_h(t_j))\]
for \(j = 0, \ldots, N - 1 \). Using this, we further obtain
\[
J_{N,3} = \sum_{j=0}^{N-1} [\lambda_h(t_{j+1}) - \lambda_h(t_j) - (\mu_h(t_{j+1}) - \mu_h(t_j)))(z_h(t_j) - x_h^*(t_j))
\]
\[+ h_N \sum_{j=0}^{N-1} (x_h^*(t_j) - z_h(t_j))^T W(t_j)(z_h(t_j) - x_h^*(t_j))
\]
\[+ \sum_{j=0}^{N-1} (\lambda_h(t_{j+1}) - \mu_h(t_{j+1}))^T [z_h(t_{j+1}) - z_h(t_j) - (x_h^*(t_{j+1}) - x_h^*(t_j))].
\]

By the end conditions (2.3) and (5.14) this implies
\[
J_{N,3} = (\lambda_h(T) - \mu_h(T))^T (z_h(T) - x_h^*(T))
\]
\[+ h_N \sum_{j=0}^{N-1} (x_h^*(t_j) - z_h(t_j))^T W(t_j)(z_h(t_j) - x_h^*(t_j))
\]
\[= (x_h^*(T) - z_h(T))^T Q(z_h(T) - x_h^*(T))
\]
\[+ h_N \sum_{j=0}^{N-1} (x_h^*(t_j) - z_h(t_j))^T W(t_j)(z_h(t_j) - x_h^*(t_j)).
\]

Since the matrices \(W(t_j), j = 0, \ldots, N \), and \(Q \) are positive semidefinite, this shows \(J_{N,3} \leq 0 \). Together with (5.13) we obtain
\[
(5.17) \quad J_N = J_{N,1} + J_{N,2} = J_{N,1} + J_{N,3} + J_{N,4} \leq J_{N,1} + J_{N,4} \leq c h_N \|\hat{u}_h - u_h^*\|_1
\]
with some constant \(c \) independent of \(N \). We can now state a first order error estimate for the discrete solutions improving the results of Theorem 4.3 under the stronger assumption (A3).

Theorem 5.3. Let \((x^*, u^*)\) be a solution of Problem (OQ) for which Assumptions (A1), (A3) are satisfied. Then for sufficiently large \(N \) any minimizer \((x_h^*, u_h^*)\) of Problem (OQ)\(_N\) can be estimated by
\[
(5.18) \quad \|u_h^* - u^*\|_1 \leq c_u h_N, \quad \|x_h^* - x^*\|_\infty \leq c_x h_N.
\]

Further, the associated multipliers can be estimated by
\[
(5.19) \quad \|\lambda_h - \lambda\|_\infty \leq c_\lambda h_N
\]
with constants \(c_u, c_x, c_\lambda \) independent of \(N \).

Proof. If (5.11) holds, then by (3.1) we have
\[
\|u_h^* - u^*\|_1 \leq \|u_h^* - \hat{u}_h\|_1 + \|\hat{u}_h - u^*\|_1 \leq 4\gamma h_N + h_N V_0^T u^*,
\]

and, as a consequence, the estimate (5.18) is satisfied with \(c_u = 4\gamma + V_0^T u^* \). Otherwise it follows from (5.12) and (5.17) that
\[
\|\hat{u}_h - u_h^*\|_1^2 \leq \frac{32\gamma}{\sigma} J_N \leq \frac{32\gamma}{\sigma} h_N c \|\hat{u}_h - u_h^*\|_1.
\]

Dividing both sides by \(\|\hat{u}_h - u_h^*\|_1 \) it follows that the estimate (5.18) is satisfied with \(c_u = \frac{32\gamma}{\sigma} c + V_0^T u^* \). The estimates for \(x_h^* \) and \(\lambda_h \) can now be derived as in the proof of Theorem 4.3. \(\square\)
Theorem 5.3 immediately implies a first order error estimate for the switching function (compare Corollary 4.4).

Corollary 5.4. Let the assumptions of Theorem 4.3 be satisfied. Further let σ be defined by (1.5), and let σ_h be defined by (2.5). Then for sufficiently large N

$$\max_{t \in [0,t_N-1]} |\sigma_h(t) - \sigma(t)| \leq c_\sigma h_N$$

with a constant c_σ independent of N. \hfill \diamond

Analogously to Theorems 4.6 and 5.2, applying Theorem 4.5 with $\beta = 1$ we finally obtain the following result.

Theorem 5.5. Let Assumptions (A1), (A3) be satisfied. Then there exists a constant $\bar{\kappa}$ independent of N such that for sufficiently large N any discrete optimal control u^*_h coincides with u^* except on a set of measure $\leq \bar{\kappa} h_N$. Moreover, the error estimates

$$(5.20) \quad |s_j - s_{h,j}| \leq \kappa h_N, \quad j = 1, \ldots, l,$$

hold for the zeros of the components of σ and σ_h with a constant κ independent of N. \hfill \diamond

6. Numerical results

Example 6.1 (Rocket car).

(OQ1) $\min \frac{1}{2}(x_1(5)^2 + x_2(5)^2)$

s.t.

$$\begin{align*}
\dot{x}_1(t) &= x_2(t), \quad \dot{x}_2(t) = u(t) \quad \forall t \in [0,5], \\
x_1(0) &= 6, \quad x_2(0) = 1, \\
-1 &\leq u(t) \leq 1 & \forall t \in [0,5].
\end{align*}$$

The optimal control is

$$u^*(t) = \begin{cases}
-1, & 0 \leq t < \tau, \\
+1, & \tau < t \leq 5,
\end{cases}$$

where τ is computed in the following. From the system equations we obtain

$$x_1^*(t) = \begin{cases}
-t + 1, & 0 \leq t \leq \tau, \\
t - 2\tau + 1, & \tau \leq t \leq 5,
\end{cases}$$

and

$$x_2^*(t) = \begin{cases}
-\frac{1}{2}t^2 + t + 6, & 0 \leq t \leq \tau, \\
\frac{1}{2}t^2 - 2\tau t + t + \tau^2 + 6, & \tau \leq t \leq 5.
\end{cases}$$

Especially we obtain $x_1^*(5) = \tau^2 - 10\tau + 23.5, x_2^*(5) = -2\tau + 6$. Since

$$A(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

the adjoint equations are

$$\dot{\lambda}_1(t) = 0, \quad \lambda_1(5) = x_1^*(5),$$

and

$$-\dot{\lambda}_2(t) = \lambda_2(t), \quad \lambda_2(5) = x_2^*(5).$$
with the solutions

\[\lambda_1(t) \equiv \tau^2 - 10\tau + 23.5 \]

and

\[\lambda_2(t) = -(\tau^2 - 10\tau + 23.5)t + 5\tau^2 - 52\tau + 123.5. \]

Since \(\tau \) is a zero of \(\sigma(t) = \lambda_2(t) \) we must have \(\sigma(\tau) = \lambda_2(\tau) = 0 \), i.e.,

\[-\tau^3 + 15\tau^2 - 75.5\tau + 123.5 = 0. \]

This implies \(\tau \approx 3.5174292 \).

Fig. 1 shows the discrete optimal control \(u_h^* \) and the discrete switching function \(\sigma_h \) for \(N = 240 \).

Table 1. Rocket car

<table>
<thead>
<tr>
<th>(N)</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>20</td>
<td>3.75</td>
<td>4.0</td>
</tr>
<tr>
<td>50</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>100</td>
<td>3.5</td>
<td>3.55</td>
</tr>
<tr>
<td>200</td>
<td>3.525</td>
<td>3.55</td>
</tr>
<tr>
<td>400</td>
<td>3.5125</td>
<td>3.5250</td>
</tr>
</tbody>
</table>

Table 1 shows the bounds of the discretization interval, where the discrete switching function changes sign, for different values of \(N \). The results confirm the error estimates (5.20).
Acknowledgement. This work together with [4] was partially supported by the Hausdorff Research Institute for Mathematics, Bonn, within the HIM Junior Semester Program “Computational Mathematics” from February to April 2008. The authors would like to thank Ursula Felgenhauer for very helpful discussions, which improved the results of Sections 3 and 4.

References

Institut für Angewandte Mathematik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
E-mail address: walter.alt@uni-jena.de

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
E-mail address: robert.baier@uni-bayreuth.de

Institut für Mathematik und Rechenanwendung, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr, München, Germany
E-mail address: matthias.gerdts@unibw.de

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
E-mail address: frank.lempio@uni-bayreuth.de