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Exercise 1 (Lyapunov Functions) Consider the two-dimensional difference equation

x+ = (1− ‖x‖)
(

0 1
−1 0

)
x

with x = (x1, x2)
> ∈ R2.

(a) Check that V (x) = x21 + x22 is a Lyapunov function for the equilibrium x∗ = 0 on S =
{x ∈ R2 | ‖x‖ ≤ 1}.

(b) Is V also a Lyapunov function on S = R2?

(c) Solve (a) and (b) for the difference equation

x+ =
1

1 + ‖x‖

(
0 1
−1 0

)
x.

Exercise 2 (Dynamic Programming) Consider the discrete-time control system

x+ = x+ u

with x ∈ X = R and u ∈ U = R and the stage cost `(x, u) = x2 + u2.

(a) Compute by dynamic programming the optimal value function V2 and the optimal feed-
back law µ2 without stabilizing terminal constraints.

(b) Check whether the resulting MPC closed loop is asymptotically stable.

(c) Compute the value J cl∞(x, µ2).

(d) Repeat (a)–(c) with the terminal constraint xu(N) = 0. Which feedback law µ2 yields
the better value J cl∞(x, µ2)?
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Exercise 3 (MPC Computer Exercise)

(a) Perform experiments with the file double integrator.m, which implements an MPC
controller without terminal constraints for the exact discrete-time model of a sampled-
data double integrator. Get acquainted with the code and with the way constraints are
encoded in Matlab by changing parameters and constraints.
Note: The Matlab files are coded directly in Matlab without using Simulink.

(b) Add equilibrium terminal constraints and compare the solutions to those without terminal
constraints for different N .

(c) Use the file as a template in order to implement the “car-and-mountains” example

x+ =

(
x+1
x+2

)
=

(
sin(ϑ(x) + u)
cos(ϑ(x) + u)/2

)
with

ϑ(x) =

{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0,

with equilibrium x∗ = (0,−1/2)T , stage cost `(x, u) = ‖x− x∗‖2 + u2, control constraints
U = [0, 0.2] and initial value (0, 1/2)T . Determine the minimal stabilizing horizon by
experiments for MPC without terminal constraints and with equilibrium terminal con-
straints.

Exercise 4 (Concept of MPC) After your return from Elgersburg School you explain the
basic NMPC idea to a friend. After you finished your explanation, your friend asks:

“If I ride my bicycle and want to make a turn to the left, I first steer a little bit to the right to
make my bicycle tilt to the left. Let us assume that this way of making a turn is optimal for
a suitable finite horizon optimal control problem. This would mean that the optimal control
sequence will initially steer to the right and later steer to the left. If we use this optimal
control sequence in an NMPC algorithm, only the first control action will be implemented. As
a consequence, we will always steer to the right, and we will make a turn to the right instead
of a turn to the left. Does this mean that NMPC does not work for controlling my bicycle?”

What do you respond?
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Exercise 5 (Terminal constrained vs. unconstrained MPC) Consider again the control
system

x+ = x+ u

with x ∈ X = R and stage cost `(x, u) = x2 + u2, cf. Exercise 2, but now with U = [−1, 1].

(a) Consider the terminal constraint set X0 = [−a, a] for some a ≥ 0 (note that a = 0
coresponds to the equilibrium terminal constraint xu(N) = x∗ = 0). Show that for each
N > 0 and a ≥ 0 there exists initial values x0 ∈ R which are not contained in the feasible
set XN .

(b) Check that without terminal constraints the MPC closed loop is asymptotically stable
for N = 2 for arbitrary initial values x0 ∈ R. You can do this either by computing µ2

and V2 by dynamic programming and checking the conditions of the relaxed dynamic
programming theorem or by implementing the closed loop in Matlab (using the code
from Exercise 3) and performing numerical experiments.

Exercise 6 (MPC Computer Exercise)

(a) Write a Matlab code simulating an MPC controller for the inverted pendulum on a cart

ẋ1 = x2

ẋ2 = g sin(x1)− kx2 + u cos(x1)

ẋ3 = x4

ẋ4 = u

with g = 9.81 and k = 0.1. Use the sampling time T = 0.15, the control constraints
U = [−10, 10] and the stage cost

`(x, u) = 10x21 + x22 + x23 + x24 + 0.01u2.

Determine a horizon N ∈ N for which the closed loop is asymptotically stable by running
simulations for different initial values. Implement different state constraints of your choice
and observe the effect on the closed-loop behavior.

(b) Reduce the control constraints to U = [−3, 3] (removing all state constraints) and check
whether the closed loop is still stable.



(c) Change the stage cost to

`(x, u) = 20(1− cosx1) + x22 + x23 + x24 + 0.01u2

and observe what happens.
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Exercise 7 (Optimal equilibria) Consider the following economic MPC example from the
course:

X = U = R, X = [0.1, 10], U = [0.1, 5], x+ = u, `(x, u) = − ln
(
5x0.34 − u

)
.

(a) Compute the set
E := {(x, u) ∈ X× U | f(x, u) = x},

i.e., compute all equilibria of the example.

(b) Determine the equilibrium (xe, ue) ∈ E with the minimal value

`(xe, ue) = min{`(x, u) | (x, u) ∈ E}.

(c) Prove that the problem is strictly dissipative.
Hint: For such a problem we can find a linear storage function λ.

Exercise 8 (MPC Computer Exercise) Implement the economic MPC problem from Ex-
ercise 7 in the Matlab MPC code and perform the following simulations.

(a) Impose terminal constraints and verify that the solutions indeed satisfy the convergence

lim
k→∞

`(xµN (k), µN(xµN (k))) = `(xe, ue).

(b) In a simulation without terminal constraints, determine the limit

lim
k→∞

`(xµN (k), µN(xµN (k)))

numerically and compute its distance to `(xe, ue) depending onN . Verify that the distance
decreases exponentially fast as N grows.

(c) Define stabilizing stage costs `stab : X×U→ R+
0 , that are positive definite w.r.t. xe. For

different N , run a simulation without terminal constraints using `stab and compare the
MPC closed-loop trajectory to the closed loop resulting from the original cost `.

(d) Compute µN and µstab
N based on ` and `stab, respectively, and compare JK(x, µN) to

JK(x, µstab
N ) for fixed K and varying N . What do you observe?

Note: The functional JK(x,u) refers to the original stage costs `.


