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Part II: Relation to Other Stability Concepts



ISS

Consider

z(t) = f(x(t), w(t))

with solutions (¢, x, w)

The system is called ISS, if there exist 7 € KL and v € K~ such
that for all initial values =, all perturbation functions w and all
times ¢t > 0 the following inequality holds:

lo(t, z, w) || < max{B([|lz||,t), v([lwlloc)}

In this part of the course, we will investigate how ISS is related
to other stability concepts



Local ISS
We start with the property which is easiest to treat:

The system is called locally ISS, if there exist a neighborhood
B C R"™ of 0, a value R > 0 and functions g € L and v € K«
such that for all initial values = € B, all perturbation functions w
with ||w|cc < R and all times ¢ > 0 the following inequality holds:

lo(t, z, w)|| < max{B([|lz||,t), v([lwlloc)}



Local 0—AS

Setting w = 0, local ISS

lo(t, z, w) || < max{B([|zl,t), v([[wlleo) }

implies local asymptotic stability for w = 0 (local 0—AS):

The system is called locally O—AS, if there exist a neighborhood
B C R™ of 0 and a function g € ICL such that for all initial values
r € B and all times ¢t > 0 the following inequality holds:

lo(t, 2, O) || < (|||, £)

Theorem: local ISS < local 0—AS



Local 0—AS

local ISS < local 0—AS

Idea of Proof: local ISS = local 0—AS immediate for w = 0

Conversely, local 0—AS implies existence of Lyapunov function

DV (z)f(z,0) < —az(|[z])
Choosing y € Koo with

DV (x r,w)— f(z,0)]| < az(r)/2
||33H=7“':r|]\?v>|\<§x(r)” (@) ||| f (z,w) — f(z,0) 3(r)/

for all » € [0, R], x € B, we obtain

Jwl| < x(lzl]) = DV(z)f(z,w) < —az(|z]])/2

= ISS Lyapunov function = ISS



Local vs. global 0—AS

Note: the maximal function y satisfying

_max__ [IDV(@)||f(xw) — £z, 0)|| < as(r)/2
][=r, [[w][<x(r)

can always be underbounded by y € Ko for » € [0, R]
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This may not be possible for r» € [0,00). This is why
0—GAS # global ISS



0—GAS & asymptotic gain

there exist € L, v € Koo With

lo(t, 2, w)[| < max{B([|z||,t), v([lwlloc) }

0—-GAS: [ (t, z,0)|| < B(||z]],t)
Recall the asymptotic gain property:
limsup ||o(t, z, w)|| < v(||w]lco)
{—00
Theorem (ISS superposition principle):
ISS & 0—GAS & asymptotic gain

Sketch of Proof: “=" immediate



0—GAS & asymptotic gain

“ISS <= 0—GAS & asymptotic gain”

Step 1: 0—GAS implies local ISS

Step 2: local ISS and asymptotic gain imply uniform as. gain:

For all e >0, A > 0 there exists T'=T'(¢, /A) > 0 such that

lo(t, 2, w) || < y([lwlloo) 4
whenever |[[z|| < A, t > T

Step 3: local ISS and uniform as. gain imply ISS, where the
for large ||z|| is built from T'(e, AA)



Stability margins

We say that the system admits a stability margin p € L~ if for any
feedback map k£ : RxR"™ — R Lipschitz in = with |[k(t, z)|| < p(]|=]|)
the closed loop system

z(t) = f(x(t), k(t, z()))

is globally asymptotically stable, i.e., its solutions ;. (¢, ) satisfy

ler(t, )| < Bz, ¢)
for some suitable 5 € £ independent of k

Theorem: ISS < existence of a stability margin



Stability margins

Proof: ISS = existence of a stability margin
We have ¢.(t,2) = p(t,z,w) for w(t) = k(t,on(t,x)).

For 7" >0 and ¢ € [0,T], ISS implies

lon(t, )] < max{mnxn,w, max v(p(Hsok(t,x)n))}

te[0,T]
Now p(r) <~ 1(B(||z|, 7)) for r € [B(||z|, 1), 8(]|z]],0)] implies

lox(t, z)|| < B(llx][, ), te[0,T]

For sufficiently large 7" = T'(||x||) we can now proceed inductively
in order to construct 3 from g3

Note: 3 and p are only implicitly given



Stability margins

Proof: ISS « existence of a stability margin
Given w and ¢ > 0 set k(-,2) = w(-) and consider three cases
1. [le(s,z,w)|| > p~t(Jlwllec) for all s € [0, 1]

= e, z,w)|| < B(|z]],t)

2. ot z,w)l| > p~tH(|lwlleo) and (s, z, w)l| < p~(|Jwllec) for
some (maximal) s € [0,1)

= ot z,w)| < B (lels, z, w)|),t —s) < Blp~  (lwll), 0)

3. [le(t,z, w)|| < p~t(lwlleo) < Blp~1(r),0)

= ISS with 8(r,t) = 3(r,t) and v(r) = G(p~1(r),0)



Coordinate changes

Coordinate changes formalize the idea of deforming the space:
A map 7 : R" — R™ js called a nonlinear change of coordinates if

e T(0)=0

e /' is a homeomorphism, i.e., 7" is continuous, invertible and
T—1 is continuous

e 7' is a diffeomorhpism on R”\ {0}, i.e., 7" and 7! are
differentiable for x #+ 0

Solutions in new coordinates y = 7'(z) are ¢ (t,y, w) = T(p(t, T (y), w))
and satisfy

y(t) = Fly(®), w(t)), [y, w) = DT(T(y)) (T~ (y),w)



Coordinate changes

E.D. Sontag’s “mantra”: Nonlinear stability concepts should be
invariant under nonlinear coordinate changes, i.e.,

if © has a certain stability property then ¢ should have the same
property

This is true for ISS, since from ¢ (t,y,w) = T(p(t, T (y), w)):

P(t,y, w) < max{p1(BQ, p2(llyl))), p1(v(|wlloo))}

cKL o0

for

p1(r) = max [[T(z)|| € Koo and  po(r) = max [T (y)|| € Keo

z||=r lyl[=r



Coordinate changes and H

E.D. Sontag’s “mantra”: Nonlinear stability concepts should be
invariant under nonlinear coordinate changes

This is not true for H~,, because the quadratic H- inequality

! 2 2 ! 2
| etz w)lPds < cllall + ¢ [ lw(s)]|Pds

becomes the — in general weaker — nonlinear inequality

[ et v, w))ds < wClyl) + [ 7(lwls)])ds
0 » Y, >~ Yy O’Y

Theorem: this inequality is equivalent to ISS

Proof: “<«" by integration, “=" via 0—GAS and asymptotic gain



ISS and H

Summary: For any system ¢ we have

Hoo for ¢ j_Z ISS for ¢

For any coordinate change 7" and the corresponding » we have

Hy for o = 1ISS for ¢

Question: Can we reverse this coordinate change, i.e., given an
ISS system ¢, can we find 7" such that

ISS for ¢ = Hy fOr ¢

holds? — Yes, but we need coordinate changes for x and w



ISS and H
Construction of coordinate change:

ISS = there exists ISS Lyapunov function

lw]| < x(lz]) = DV(z)f(z,w) < —az(]lz])

Replacing V' by p(V) for suitable p € K yields

Jw]| < x(lz]]) = DV(z)f(z,w) < -V(z)

Suppose we can find an x—coordinate change 7" with

V(y) = V(T ) = |yl
(details later)



ISS and H

— for the transformed system [ and V(y) = ||y[|? we obtain

lwl| < X(lyl) = DV()Ff(y,w) = DV(T (y))F(T (), w)
< -V(T71(y) = -V(y)

For a(r) = sup DV (y) f(y,w) we obtain
XUlylD<r, Jwl| <r

DV (y) f(y,w) < =V (y) + a(|Jw]])
Now, using the w—coordinate change v = R(w) = a(||w|])?w/||w]|:

DV () f(y, B () < =V (y) + ||o]1?
~ integration yields H.. inequality for the system v = f(y, R~ 1(v))



Transformation of V

It remains to construct 7" with V(7 1(y)) = [|y[|? < [|T(2)| = /V(z)

n # 4,5: there exists diffeo. S : {V(z) = 1} — S*»~! [Milnor '65]

(n = 4,5: there exists at least a homeomorphism [Poincaré conjecture, Perel-
man (2002, 2003)], diffeomorphism open)

W solution of the normed gradient flow @ = V'V (2)/||VV (2)[/?
Define T'(z) = /V(2)S(W(1 —V(x),z))

{Vix)=1}




ISS and H

This leads to the following

Theorem: If n %= 4.5, then for any ISS system there exists a
coordinate change 7' for the state x and a coordinate change R
for the input w such that the transformed system has the Hxo
property

Short version: ISS and Hy are equivalent under coordinate
changes

Distinct feature: ISS is invariant under coordinate changes, Hxo
IS not!



Summary of Part II

e local ISS « local 0—AS

e ISS & 0—GAS & asymptotic gain

e [ISS & existence of a stability margin

e ISS is invariant under nonlinear coordinate changes in space

e ISS & H, — in appropriate coordinates



