Input-to-state Stability

Mini course, Universität Stuttgart, November 2004

Lars Grüne, Mathematisches Institut, Universität Bayreuth

Part II: Relation to Other Stability Concepts

ISS

Consider

$$\dot{x}(t) = f(x(t), w(t))$$

with solutions $\varphi(t, x, w)$

The system is called ISS, if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that for all initial values x, all perturbation functions w and all times $t \geq 0$ the following inequality holds:

$$\|\varphi(t,x,w)\| \le \max\{\beta(\|x\|,t),\,\gamma(\|w\|_{\infty})\}$$

In this part of the course, we will investigate how ISS is related to other stability concepts

Local ISS

We start with the property which is easiest to treat:

The system is called locally ISS, if there exist a neighborhood $B \subset \mathbb{R}^n$ of 0, a value R > 0 and functions $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that for all initial values $x \in B$, all perturbation functions w with $||w||_{\infty} \leq R$ and all times $t \geq 0$ the following inequality holds:

$$\|\varphi(t,x,w)\| \le \max\{\beta(\|x\|,t),\,\gamma(\|w\|_{\infty})\}$$

Local 0-AS

Setting $w \equiv 0$, local ISS

$$\|\varphi(t,x,w)\| \le \max\{\beta(\|x\|,t),\,\gamma(\|w\|_{\infty})\}$$

implies local asymptotic stability for $w \equiv 0$ (local 0-AS):

The system is called locally 0-AS, if there exist a neighborhood $B \subset \mathbb{R}^n$ of 0 and a function $\beta \in \mathcal{KL}$ such that for all initial values $x \in B$ and all times $t \geq 0$ the following inequality holds:

$$\|\varphi(t,x,0)\| \le \beta(\|x\|,t)$$

Theorem: local ISS ⇔ local 0-AS

Local 0-AS

local ISS ⇔ local 0-AS

Idea of Proof: local ISS \Rightarrow local 0-AS immediate for $w \equiv 0$

Conversely, local 0-AS implies existence of Lyapunov function

$$DV(x)f(x,0) \le -\alpha_3(||x||)$$

Choosing $\chi \in \mathcal{K}_{\infty}$ with

$$\max_{\|x\|=r, \|w\| \le \chi(r)} \|DV(x)\| \|f(x,w) - f(x,0)\| \le \alpha_3(r)/2$$

for all $r \in [0, R]$, $x \in B$, we obtain

$$||w|| \le \chi(||x||) \Rightarrow DV(x)f(x,w) \le -\alpha_3(||x||)/2$$

 \Rightarrow ISS Lyapunov function \Rightarrow ISS

Local vs. global 0-AS

Note: the maximal function $\tilde{\chi}$ satisfying

$$\max_{\|x\|=r, \|w\| \le \tilde{\chi}(r)} \|DV(x)\| \|f(x,w) - f(x,0)\| \le \alpha_3(r)/2$$

can always be underbounded by $\chi \in \mathcal{K}_{\infty}$ for $r \in [0, R]$

This may not be possible for $r \in [0, \infty)$. This is why

0−GAS \neq global ISS

0-GAS & asymptotic gain

there exist $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{K}_{\infty}$ with

$$\|\varphi(t,x,w)\| \le \max\{\beta(\|x\|,t),\,\gamma(\|w\|_{\infty})\}$$

0-GAS:
$$\|\varphi(t, x, 0)\| \le \beta(\|x\|, t)$$

Recall the asymptotic gain property:

$$\limsup_{t \to \infty} \|\varphi(t, x, w)\| \le \gamma(\|w\|_{\infty})$$

Theorem (ISS superposition principle):

ISS ⇔ 0–GAS & asymptotic gain

Sketch of Proof: "⇒" immediate

0-GAS & asymptotic gain

"ISS ← 0-GAS & asymptotic gain"

Step 1: 0-GAS implies local ISS

Step 2: local ISS and asymptotic gain imply uniform as. gain:

For all $\varepsilon > 0$, $\Delta > 0$ there exists $T = T(\varepsilon, \Delta) > 0$ such that

$$\|\varphi(t,x,w)\| \le \gamma(\|w\|_{\infty}) + \varepsilon$$

whenever $||x|| \leq \Delta$, $t \geq T$

Step 3: local ISS and uniform as. gain imply ISS, where the β for large ||x|| is built from $T(\varepsilon, \Delta)$

Stability margins

We say that the system admits a stability margin $\rho \in \mathcal{K}_{\infty}$ if for any feedback map $k : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ Lipschitz in x with $||k(t,x)|| \le \rho(||x||)$ the closed loop system

$$\dot{x}(t) = f(x(t), k(t, x(t)))$$

is globally asymptotically stable, i.e., its solutions $\varphi_k(t,x)$ satisfy

$$\|\varphi_k(t,x)\| \le \tilde{\beta}(\|x\|,t)$$

for some suitable $\tilde{\beta} \in \mathcal{KL}$ independent of k

Theorem: ISS ⇔ existence of a stability margin

Stability margins

Proof: ISS ⇒ existence of a stability margin

We have
$$\varphi_k(t,x) = \varphi(t,x,w)$$
 for $w(t) = k(t,\varphi_k(t,x))$.

For T > 0 and $t \in [0, T]$, ISS implies

$$\|\varphi_k(t,x)\| \le \max \left\{ \beta(\|x\|,t), \max_{t \in [0,T]} \gamma(\rho(\|\varphi_k(t,x)\|)) \right\}$$

Now $\rho(r) \leq \gamma^{-1}(\beta(||x||, T))$ for $r \in [\beta(||x||, T), \beta(||x||, 0)]$ implies

$$\|\varphi_k(t,x)\| \le \beta(\|x\|,t), \quad t \in [0,T]$$

For sufficiently large $T=T(\|x\|)$ we can now proceed inductively in order to construct $\tilde{\beta}$ from β

Note: $\tilde{\beta}$ and ρ are only implicitly given

Stability margins

Proof: ISS ← existence of a stability margin

Given w and t > 0 set $k(\cdot, x) = w(\cdot)$ and consider three cases

- 1. $\|\varphi(s, x, w)\| \ge \rho^{-1}(\|w\|_{\infty})$ for all $s \in [0, t]$
 - $\Rightarrow \|\varphi(t,x,w)\| \leq \tilde{\beta}(\|x\|,t)$
- 2. $\|\varphi(t,x,w)\| \ge \rho^{-1}(\|w\|_{\infty})$ and $\|\varphi(s,x,w)\| \le \rho^{-1}(\|w\|_{\infty})$ for some (maximal) $s \in [0,t)$
 - $\Rightarrow \|\varphi(t,x,w)\| \leq \tilde{\beta}(\rho^{-1}(\|\varphi(s,x,w)\|),t-s) \leq \tilde{\beta}(\rho^{-1}(\|w\|_{\infty}),0)$
- 3. $\|\varphi(t,x,w)\| \le \rho^{-1}(\|w\|_{\infty}) \le \tilde{\beta}(\rho^{-1}(r),0)$
- \Rightarrow ISS with $\beta(r,t) = \tilde{\beta}(r,t)$ and $\gamma(r) = \tilde{\beta}(\rho^{-1}(r),0)$

Coordinate changes

Coordinate changes formalize the idea of deforming the space:

A map $T:\mathbb{R}^n \to \mathbb{R}^n$ is called a nonlinear change of coordinates if

- T(0) = 0
- \bullet T is a homeomorphism, i.e., T is continuous, invertible and T^{-1} is continuous
- T is a diffeomorphism on $\mathbb{R}^n \setminus \{0\}$, i.e., T and T^{-1} are differentiable for $x \neq 0$

Solutions in new coordinates y=T(x) are $\psi(t,y,w)=T(\varphi(t,T^{-1}(y),w))$ and satisfy

$$\dot{y}(t) = \tilde{f}(y(t), w(t)), \quad \tilde{f}(y, w) = DT(T^{-1}(y)) f(T^{-1}(y), w)$$

Coordinate changes

E.D. Sontag's "mantra": Nonlinear stability concepts should be invariant under nonlinear coordinate changes, i.e.,

if φ has a certain stability property then ψ should have the same property

This is true for ISS, since from $\psi(t,y,w) = T(\varphi(t,T^{-1}(y),w))$:

$$\psi(t, y, w) \leq \max\{\underbrace{\rho_1(\beta(t, \rho_2(||y||)))}_{\in \mathcal{KL}}, \underbrace{\rho_1(\gamma(||w||_{\infty}))}_{\in \mathcal{K}_{\infty}}\}$$

for

$$\rho_1(r) = \max_{\|x\|=r} \|T(x)\| \in \mathcal{K}_{\infty} \quad \text{and} \quad \rho_2(r) = \max_{\|y\|=r} \|T^{-1}(y)\| \in \mathcal{K}_{\infty}$$

Coordinate changes and H_{∞}

E.D. Sontag's "mantra": Nonlinear stability concepts should be invariant under nonlinear coordinate changes

This is not true for H_{∞} , because the quadratic H_{∞} inequality

$$\int_0^t \|\varphi(t, x, w)\|^2 ds \le c \|x\|^2 + c \int_0^t \|w(s)\|^2 ds$$

becomes the — in general weaker — nonlinear inequality

$$\int_0^t \alpha(\psi(t, y, w)) ds \le \kappa(\|y\|) + \int_0^t \gamma(\|w(s)\|) ds$$

Theorem: this inequality is equivalent to ISS

Proof: "←" by integration, "⇒" via 0-GAS and asymptotic gain

Summary: For any system φ we have

$$H_{\infty}$$
 for $\varphi \quad \stackrel{\Rightarrow}{\not=} \quad ISS \text{ for } \varphi$

For any coordinate change T and the corresponding ψ we have

$$H_{\infty}$$
 for $\varphi \Rightarrow ISS$ for ψ

Question: Can we reverse this coordinate change, i.e., given an ISS system φ , can we find T such that

ISS for
$$\varphi \Rightarrow H_{\infty}$$
 for ψ

holds? — Yes, but we need coordinate changes for x and w

Construction of coordinate change:

ISS ⇒ there exists ISS Lyapunov function

$$||w|| \le \chi(||x||) \Rightarrow DV(x)f(x,w) \le -\alpha_3(||x||)$$

Replacing V by $\rho(V)$ for suitable $\rho \in \mathcal{K}_{\infty}$ yields

$$||w|| \le \chi(||x||) \Rightarrow DV(x)f(x,w) \le -V(x)$$

Suppose we can find an x-coordinate change T with

$$\tilde{V}(y) := V(T^{-1}(y)) = ||y||^2$$

(details later)

 \Rightarrow for the transformed system \tilde{f} and $\tilde{V}(y) = ||y||^2$ we obtain

$$||w|| \le \tilde{\chi}(||y||) \Rightarrow D\tilde{V}(y)\tilde{f}(y,w) = DV(T^{-1}(y))f(T^{-1}(y),w)$$

 $\le -V(T^{-1}(y)) = -\tilde{V}(y)$

For $\alpha(r) = \sup_{\tilde{\chi}(\|y\|) \leq r, \, \|w\| \leq r} D\tilde{V}(y) \tilde{f}(y,w)$ we obtain

$$D\widetilde{V}(y)\widetilde{f}(y,w) \le -\widetilde{V}(y) + \alpha(\|w\|)$$

Now, using the w-coordinate change $v = R(w) = \alpha(||w||)^2 w/||w||$:

$$D\widetilde{V}(y)\widetilde{f}(y, R^{-1}(v)) \le -\widetilde{V}(y) + ||v||^2$$

 \longrightarrow integration yields H_{∞} inequality for the system $\dot{y} = \tilde{f}(y, R^{-1}(v))$

Transformation of V

It remains to construct T with $V(T^{-1}(y)) = ||y||^2 \iff ||T(x)|| = \sqrt{V(x)}$

 $n \neq 4,5$: there exists diffeo. $S: \{V(x) = 1\} \to \mathbb{S}^{n-1}$ [Milnor '65]

(n = 4,5: there exists at least a homeomorphism [Poincaré conjecture, Perelman (2002, 2003)], diffeomorphism open)

 Ψ solution of the normed gradient flow $\dot{x} = \nabla V(x) / ||\nabla V(x)||^2$

Define
$$T(x) := \sqrt{V(x)}S(\Psi(1 - V(x), x))$$

This leads to the following

Theorem: If $n \neq 4,5$, then for any ISS system there exists a coordinate change T for the state x and a coordinate change R for the input w such that the transformed system has the H_{∞} property

Short version: ISS and H_{∞} are equivalent under coordinate changes

Distinct feature: ISS is invariant under coordinate changes, H_{∞} is not!

Summary of Part II

- local ISS ⇔ local 0–AS
- ISS ⇔ 0−GAS & asymptotic gain
- ISS ⇔ existence of a stability margin
- ISS is invariant under nonlinear coordinate changes in space
- ISS $\Leftrightarrow H_{\infty}$ in appropriate coordinates