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Part II: Relation to Other Stability Concepts



ISS

Consider

ẋ(t) = f(x(t), w(t))

with solutions ϕ(t, x, w)

The system is called ISS, if there exist β ∈ KL and γ ∈ K∞ such

that for all initial values x, all perturbation functions w and all

times t ≥ 0 the following inequality holds:

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

In this part of the course, we will investigate how ISS is related

to other stability concepts



Local ISS

We start with the property which is easiest to treat:

The system is called locally ISS, if there exist a neighborhood

B ⊂ Rn of 0, a value R > 0 and functions β ∈ KL and γ ∈ K∞
such that for all initial values x ∈ B, all perturbation functions w

with ‖w‖∞ ≤ R and all times t ≥ 0 the following inequality holds:

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}



Local 0–AS

Setting w ≡ 0, local ISS

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

implies local asymptotic stability for w ≡ 0 (local 0–AS):

The system is called locally 0–AS, if there exist a neighborhood

B ⊂ Rn of 0 and a function β ∈ KL such that for all initial values

x ∈ B and all times t ≥ 0 the following inequality holds:

‖ϕ(t, x,0)‖ ≤ β(‖x‖, t)

Theorem: local ISS ⇔ local 0–AS



Local 0–AS

local ISS ⇔ local 0–AS

Idea of Proof: local ISS ⇒ local 0–AS immediate for w ≡ 0

Conversely, local 0–AS implies existence of Lyapunov function

DV (x)f(x,0) ≤ −α3(‖x‖)

Choosing χ ∈ K∞ with

max
‖x‖=r, ‖w‖≤χ(r)

‖DV (x)‖‖f(x,w)− f(x,0)‖ ≤ α3(r)/2

for all r ∈ [0, R], x ∈ B, we obtain

‖w‖ ≤ χ(‖x‖) ⇒ DV (x)f(x,w) ≤ −α3(‖x‖)/2

⇒ ISS Lyapunov function ⇒ ISS



Local vs. global 0–AS

Note: the maximal function χ̃ satisfying

max
‖x‖=r, ‖w‖≤χ̃(r)

‖DV (x)‖‖f(x,w)− f(x,0)‖ ≤ α3(r)/2

can always be underbounded by χ ∈ K∞ for r ∈ [0, R]

(0, 0) r

χ( )r~

R

χ( )r

This may not be possible for r ∈ [0,∞). This is why

0–GAS 6⇒ global ISS



0–GAS & asymptotic gain

there exist β ∈ KL, γ ∈ K∞ with

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

0–GAS: ‖ϕ(t, x,0)‖ ≤ β(‖x‖, t)

Recall the asymptotic gain property:

lim sup
t→∞

‖ϕ(t, x, w)‖ ≤ γ(‖w‖∞)

Theorem (ISS superposition principle):

ISS ⇔ 0–GAS & asymptotic gain

Sketch of Proof: “⇒” immediate



0–GAS & asymptotic gain

“ISS ⇐ 0–GAS & asymptotic gain”

Step 1: 0–GAS implies local ISS

Step 2: local ISS and asymptotic gain imply uniform as. gain:

For all ε > 0, ∆ > 0 there exists T = T (ε,∆) > 0 such that

‖ϕ(t, x, w)‖ ≤ γ(‖w‖∞) + ε

whenever ‖x‖ ≤∆, t ≥ T

Step 3: local ISS and uniform as. gain imply ISS, where the β

for large ‖x‖ is built from T (ε,∆)



Stability margins

We say that the system admits a stability margin ρ ∈ K∞ if for any

feedback map k : R×Rn → R Lipschitz in x with ‖k(t, x)‖ ≤ ρ(‖x‖)
the closed loop system

ẋ(t) = f(x(t), k(t, x(t)))

is globally asymptotically stable, i.e., its solutions ϕk(t, x) satisfy

‖ϕk(t, x)‖ ≤ β̃(‖x‖, t)

for some suitable β̃ ∈ KL independent of k

Theorem: ISS ⇔ existence of a stability margin



Stability margins

Proof: ISS ⇒ existence of a stability margin

We have ϕk(t, x) = ϕ(t, x, w) for w(t) = k(t, ϕk(t, x)).

For T > 0 and t ∈ [0, T ], ISS implies

‖ϕk(t, x)‖ ≤ max

{
β(‖x‖, t), max

t∈[0,T ]
γ(ρ(‖ϕk(t, x)‖))

}

Now ρ(r) ≤ γ−1(β(‖x‖, T )) for r ∈ [β(‖x‖, T ), β(‖x‖,0)] implies

‖ϕk(t, x)‖ ≤ β(‖x‖, t), t ∈ [0, T ]

For sufficiently large T = T (‖x‖) we can now proceed inductively

in order to construct β̃ from β

Note: β̃ and ρ are only implicitly given



Stability margins

Proof: ISS ⇐ existence of a stability margin

Given w and t > 0 set k(·, x) = w(·) and consider three cases

1. ‖ϕ(s, x, w)‖ ≥ ρ−1(‖w‖∞) for all s ∈ [0, t]

⇒ ‖ϕ(t, x, w)‖ ≤ β̃(‖x‖, t)

2. ‖ϕ(t, x, w)‖ ≥ ρ−1(‖w‖∞) and ‖ϕ(s, x, w)‖ ≤ ρ−1(‖w‖∞) for

some (maximal) s ∈ [0, t)

⇒ ‖ϕ(t, x, w)‖ ≤ β̃(ρ−1(‖ϕ(s, x, w)‖), t− s) ≤ β̃(ρ−1(‖w‖∞),0)

3. ‖ϕ(t, x, w)‖ ≤ ρ−1(‖w‖∞) ≤ β̃(ρ−1(r),0)

⇒ ISS with β(r, t) = β̃(r, t) and γ(r) = β̃(ρ−1(r),0)



Coordinate changes

Coordinate changes formalize the idea of deforming the space:

A map T : Rn → Rn is called a nonlinear change of coordinates if

• T (0) = 0

• T is a homeomorphism, i.e., T is continuous, invertible and

T−1 is continuous

• T is a diffeomorhpism on Rn \ {0}, i.e., T and T−1 are

differentiable for x 6= 0

Solutions in new coordinates y = T (x) are ψ(t, y, w) = T (ϕ(t, T−1(y), w))

and satisfy

ẏ(t) = f̃(y(t), w(t)), f̃(y, w) = DT (T−1(y)) f(T−1(y), w)



Coordinate changes

E.D. Sontag’s “mantra”: Nonlinear stability concepts should be

invariant under nonlinear coordinate changes, i.e.,

if ϕ has a certain stability property then ψ should have the same

property

This is true for ISS, since from ψ(t, y, w) = T (ϕ(t, T−1(y), w)):

ψ(t, y, w) ≤ max{ρ1(β(t, ρ2(‖y‖)))︸ ︷︷ ︸
∈KL

, ρ1(γ(‖w‖∞))︸ ︷︷ ︸
∈K∞

}

for

ρ1(r) = max
‖x‖=r

‖T (x)‖ ∈ K∞ and ρ2(r) = max
‖y‖=r

‖T−1(y)‖ ∈ K∞



Coordinate changes and H∞

E.D. Sontag’s “mantra”: Nonlinear stability concepts should be

invariant under nonlinear coordinate changes

This is not true for H∞, because the quadratic H∞ inequality∫ t

0
‖ϕ(t, x, w)‖2ds ≤ c‖x‖2 + c

∫ t

0
‖w(s)‖2ds

becomes the — in general weaker — nonlinear inequality∫ t

0
α(ψ(t, y, w))ds ≤ κ(‖y‖) +

∫ t

0
γ(‖w(s)‖)ds

Theorem: this inequality is equivalent to ISS

Proof: “⇐” by integration, “⇒” via 0–GAS and asymptotic gain



ISS and H∞

Summary: For any system ϕ we have

H∞ for ϕ ⇒
6⇐ ISS for ϕ

For any coordinate change T and the corresponding ψ we have

H∞ for ϕ ⇒ ISS for ψ

Question: Can we reverse this coordinate change, i.e., given an

ISS system ϕ, can we find T such that

ISS for ϕ ⇒ H∞ for ψ

holds? — Yes, but we need coordinate changes for x and w



ISS and H∞

Construction of coordinate change:

ISS ⇒ there exists ISS Lyapunov function

‖w‖ ≤ χ(‖x‖) ⇒ DV (x)f(x,w) ≤ −α3(‖x‖)

Replacing V by ρ(V ) for suitable ρ ∈ K∞ yields

‖w‖ ≤ χ(‖x‖) ⇒ DV (x)f(x,w) ≤ −V (x)

Suppose we can find an x–coordinate change T with

Ṽ (y) := V (T−1(y)) = ‖y‖2

(details later)



ISS and H∞

⇒ for the transformed system f̃ and Ṽ (y) = ‖y‖2 we obtain

‖w‖ ≤ χ̃(‖y‖) ⇒ DṼ (y)f̃(y, w) = DV (T−1(y))f(T−1(y), w)

≤ −V (T−1(y)) = −Ṽ (y)

For α(r) = sup
χ̃(‖y‖)≤r, ‖w‖≤r

DṼ (y)f̃(y, w) we obtain

DṼ (y)f̃(y, w) ≤ −Ṽ (y) + α(‖w‖)

Now, using the w–coordinate change v = R(w) = α(‖w‖)2w/‖w‖:

DṼ (y)f̃(y,R−1(v)) ≤ −Ṽ (y) + ‖v‖2

 integration yields H∞ inequality for the system ẏ = f̃(y,R−1(v))



Transformation of V

It remains to construct T with V (T−1(y)) = ‖y‖2 ⇔ ‖T (x)‖ =
√
V (x)

n 6= 4,5: there exists diffeo. S : {V (x) = 1} → Sn−1 [Milnor ’65]

(n = 4,5: there exists at least a homeomorphism [Poincaré conjecture, Perel-

man (2002, 2003)], diffeomorphism open)

Ψ solution of the normed gradient flow ẋ = ∇V (x)/‖∇V (x)‖2

Define T (x) :=
√
V (x)S(Ψ(1− V (x), x))

0

0

I

x

T(x)

(1-V(x), x)Ψ ΨS (    (1-V(x), x))

Sn-1{V(x)=1}



ISS and H∞

This leads to the following

Theorem: If n 6= 4,5, then for any ISS system there exists a

coordinate change T for the state x and a coordinate change R

for the input w such that the transformed system has the H∞
property

Short version: ISS and H∞ are equivalent under coordinate

changes

Distinct feature: ISS is invariant under coordinate changes, H∞
is not!



Summary of Part II

• local ISS ⇔ local 0–AS

• ISS ⇔ 0–GAS & asymptotic gain

• ISS ⇔ existence of a stability margin

• ISS is invariant under nonlinear coordinate changes in space

• ISS ⇔ H∞ — in appropriate coordinates


