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Part III: Lyapunov functions and quantitative aspects



ISS

Consider

ẋ(t) = f(x(t), w(t))

with solutions ϕ(t, x, w)

The system is called ISS, if there exist β ∈ KL and γ ∈ K∞ such

that for all initial values x, all perturbation functions w and all

times t ≥ 0 the following inequality holds:

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

In this part of the course, we will investigate ISS Lyapunov func-

tions and quantitative aspects of ISS



ISS Lyapunov functions

Theorem: A system is ISS if and only if there exists an ISS Lya-

punov function, i.e. a smooth function V : Rn → R and functions

α1, α2, χ ∈ K∞, α3 ∈ K such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

and

‖w‖ ≤ χ(‖x‖) ⇒ DV (x)f(x, w) ≤ −α3(‖x‖)

hold for all x ∈ Rn, w ∈ Rm



ISS Lyapunov functions

Proof: “existence of V ⇒ ISS”

1. For g = α3 ◦ α−1
2 and κ = χ ◦ α−1

2 we obtain

‖w‖ ≤ κ(V (x)) ⇒ DV (x)f(x, w) ≤ −g(V (x))

2. Integration yields V (ϕ(t, x, w)) ≤ max{µ(V (x), t), κ−1(‖w‖∞)}

for µ ∈ KL given by d
dtµ(r, t) = −g(µ(r, t)), µ(r,0) = r

3. ‖ϕ(t, x, w)‖ ≤ α−1
1 (V (ϕ(t, x, w)))

≤ max{α−1
1 (µ(α2(‖x‖), t)), α−1

1 (κ−1(‖w‖∞))}

⇒ ISS with β(r, t) = α−1
1 (µ(α2(r), t)) and γ(r) = α−1

1 ◦α2◦χ−1



ISS Lyapunov functions

Proof: “ISS ⇒ existence of V ”

1. ISS ⇒ existence of stability margin, i.e., ρ ∈ K∞ such that

for any Lipschitz feedback map k : R × Rn → R with ‖k(t, x)‖ ≤
ρ(‖x‖) the closed loop system

ẋ(t) = f(x(t), k(t, x(t)))

is globally asymptotically stable, i.e., its solutions ϕk(t, x) satisfy

‖ϕk(t, x)‖ ≤ β̃(‖x‖, t)

for some suitable β̃ ∈ KL independent of k

In particular, this holds for k(t, x) = ρ(‖x‖)d(t), ‖d(t)‖ ≤ 1



ISS Lyapunov functions

Proof: “ISS ⇒ existence of V ”

1. The solutions ϕρ(t, x, d) of

ẋ(t) = f(x(t), ρ(‖x‖)d(t))

satisfy ‖ϕρ(t, x, d)‖ ≤ β̃(‖x‖, t) for each d(t) with ‖d(t)‖ ≤ 1

2. Converse Lyapunov theorem for perturbed GAS systems:

there exists a smooth Lyapunov function V , i.e.,

‖d‖ ≤ 1 ⇒ DV (x)f(x, ρ(‖x‖)d) ≤ −α3(‖x‖)

3. This implies

‖w‖ ≤ ρ(‖x‖) ⇒ DV (x)f(x, w) ≤ −α3(‖x‖)

⇒ V is ISS Lyapunov function



Equivalent ISS Lf characterizations

(1) Implication form:

‖w‖ ≤ χ(‖x‖) ⇒ DV (x)f(x, w) ≤ −α3(‖x‖)

(2) Supremum form:

sup
‖w‖≤χ(‖x‖)

DV (x)f(x, w) ≤ −α3(‖x‖)

(3) Dissipation Form:

DV (x)f(x, w) ≤ −α3(‖x‖) + α4(‖w‖)

with α3 ∈ K∞

Note: in general V from (1) or (2) needs to be transformed

to satisfy (3)



iISS Lyapunov functions

The existence of a Lyapunov function in dissipation form

DV (x)f(x, w) ≤ −α3(‖x‖) + α4(‖w‖)

with α3 ∈ K (instead of K∞) is equivalent to integral ISS (iISS):

‖ϕ(t, x, w)‖ ≤ β(‖x‖, t) + γ1

(∫ t

0
γ2(‖w(s)‖)ds

)



Computing ISS Lyapunov functions

It is in general a hard task to find ISS Lyapunov functions, only

few constructive techniques are known:

• optimal control and set valued approaches (only feasible

numerically in low dimensions)

• backstepping approaches (under suitable structural

assumptions, typically strict feedback form)

Both approaches are linked via the inverse optimality formalism

References: Freeman/Kokotović, Krstić/Kannelakopoulos/Kokotović, Krstić/Deng



Quantitative “Problems” of ISS

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

• No explicit estimate if w(t) → 0

• No representation of β and γ in the ISS Lyapunov

function V

• No easy method to compute (or estimate) the stability

margin ρ (= gain for Lyapunov function V )



Facts about comparison functions

K := {α : R+
0 → R+

0 | continuous, strictly increasing, α(0) = 0}

K∞ := {α ∈ K | unbounded}

KL := {β : R+
0 × R+

0 → R+
0 | continuous, β(·, r) ∈ K and β strictly

converging to 0 in the 2nd argument}

r t(0, 0) (0, 0)

r, t*β(       ) r*, tβ(       )



Facts about comparison functions

For any α ∈ K∞ and any function ρ : R+
0 → R+

0 with ρ(r) > 0 for
r > 0 there is a smooth α1 ∈ K∞ with

α(r) ≤ α1(r) ≤ α(r) + ρ(r)

and
d

dr
α1(r) > 0 for all r > 0

r(0, 0)

α
α+ρ

α
1



Facts about comparison functions

Sontag’s KL–Lemma: For any β ∈ KL there exists α1, α2 ∈ K∞
such that

β(r, t) ≤ α1(α2(r)e
−t)

Corollary: For smooth α1 and µ(r, t) = α1(re−t), σ(r) = α2(r):

β(r, t) ≤ µ(σ(r), t)

and there exists g : R+
0 → R+

0 with g(r) > 0 for r > 0 such that

d

dt
µ(r, t) = −g(µ(r, t)), µ(r,0) = r

KLD := {µ ∈ KL | d
dtµ(r, t) = −g(µ(r, t)), µ(r,0) = r}



Gain Preserving Lyapunov Functions

 without loss of generality β is of the form

β(r, t) = µ(σ(r), t), µ ∈ KLD, σ ∈ K∞

For systems without input

ẋ(t) = f(x(t))

this is exactly the form we get from integrating

DV (x)f(x) ≤ −g(V (x))

if V satisfies ‖x‖ ≤ V (x) ≤ σ(‖x‖):

‖ϕ(t, x)‖ ≤ V (ϕ(t, x)) ≤ µ(V (x), t) ≤ µ(σ(‖x‖), t)



Converse Gain Preserving Theorem

The converse is “almost true”:

An ODE ẋ = f(x) is GAS with β(r, t) = µ(σ(r), t), µ ∈ KLD,

σ ∈ K∞ if and only if for each ε > 0 there exists Vε satisfying

DVε(x)f(x) ≤ −(1− ε)g(Vε(x))

and

‖x‖ ≤ Vε(x) ≤ σ(‖x‖)

Idea for the construction of Vε [Yoshizawa 66]:

Vε(x) := max
t≥0

µ(‖ϕ(t, x)‖,−(1− ε)t)

+ subsequent smoothing

(same construction with ε = 0 yields discontinuous V0)



Input–to–state Stability

Question: can we do the same for ISS?

What do we get when we integrate

γ(‖w‖) ≤ V (x) ⇒ DV (x)f(x) ≤ −g(V (x))

with V satisfying ‖x‖ ≤ V (x) ≤ σ(‖x‖)?



Input–to–state Stability

Proceeding as before we get

‖ϕ(t, x, w)‖ ≤ max{µ(σ(‖x‖), t), γ(‖w‖∞)}

for γ, σ ∈ K∞ and µ ∈ KLD



Input–to–state dynamical Stability

In fact we get more: input–to–state dynamical stability (ISDS)

‖ϕ(t, x, w)‖ ≤ max{µ(σ(‖x‖), t), ν(w, t) }

for γ, σ ∈ K∞ and µ ∈ KLD, where

ν(w, t) := ess sup
τ∈[0,t]

µ(γ(‖w(τ)‖), t− τ)

ISDS
ISS

|| ||
|| ||w(t)

(t,x,w)ϕ

t(0, 0)



Input–to–state dynamical Stability

Sketch of proof: Fix ∆t > 0 and set ti = i∆t

Iterative integration, i = 1,2,3, . . ., yields for t ∈ [ti+1, ti]

‖ϕ(t, x, w)‖ ≤ max{µ(σ(‖x‖), t), ν∆t(w, t)}

where

ν∆t(w, t) := max
ti≤t

µ(γ(‖w|[ti−1,ti]
‖), t− ti)

For ∆t → 0 we obtain

ν∆t(w, t) → ν(w, t) = ess sup
τ∈[0,t]

µ(γ(‖w(τ)‖), t− τ)



Converse Gain Preserving ISDS Theorem

Theorem: A system is ISDS with rate µ(σ(r), t) and robustness

gain γ if and only if for each ε > 0 there exists Vε with

γ

(
‖w‖
1 + ε

)
≤ Vε(x) ⇒ DVε(x)f(x, w) ≤ −(1− ε)g(Vε(x))

and

‖x‖
1 + ε

≤ Vε(x) ≤ σ(‖x‖)

Construction of Vε:

Vε(x) = sup
w

inf{α ≥ 0 | ‖ϕ(t, x, w)‖ ≤ ρε(µ(γ(α), t))max{µ(γ(α), (1−ε)t), ν(w, t)} }

with ρε ∈ [1,1 + ε] strictly increasing + subsequent smoothing

Again, ε = 0 is possible and yields discontinuous V



Converse Gain Preserving ISDS Theorem

Consequence:

For ISDS there is a one–to–one correspondence between

• the rate and gains in the trajectorywise formulation

and

• the rate and gains in the Lyapunov function formulation

This allows to

• compute ISDS rate and gains from Lyapunov functions

• use Lyapunov functions in quantitative statements

— at least theoretically



Computing ISDS gains

Example 1: ẋ = f(x, w) := −x + w3

Set V (x) = |x|, then

DV (x)f(x,0) ≤ −V (x) =: −g0(V (x))

Choose γ such that the implication

γ(|w|) ≤ V (x) ⇒ DV (x)w3 ≤ g0(V (x))/2

holds  γ(r) = 2r3.

Then V , γ and g = g0/2 satisfy the theorem, and we obtain ISDS

with µ(r, t) = e−t/2r and γ(r) = 2r3



Computing ISDS gains

Example 2: ẋ = f(x, w) := −x3 + w

Set V (x) = |x|, then

DV (x)f(x,0) ≤ −V (x)3 =: −g0(V (x))

Choose γ such that the implication

γ(|w|) ≤ V (x) ⇒ DV (x)w ≤ g0(V (x))/2

holds  γ(r) = 3√2r.

Then V , γ and g = g0/2 satisfy the theorem, and we obtain ISDS

with µ(r, t) = r√
2tr2+1

and γ(r) = 3√2r



Stability margins and ISDS

Recall: ρ ∈ K∞ is a stability margin if for any Lipschitz feedback

map k : R×Rn → R with ‖k(t, x)‖ ≤ ρ(‖x‖) the closed loop system

ẋ(t) = f(x(t), k(t, x(t)))

is GAS, i.e., ‖ϕk(t, x)‖ ≤ β̃(‖x‖, t) for some β̃ ∈ KL

Thm: ISDS ⇒ ρ = γ−1 is stability margin with β̃(r, t) = µ(σ(r), t)

Proof: for arbitrary ε > 0 take Vε and ‖k(t, x)‖ ≤ ρ(‖x‖)

DVε(x)f(x, (1− ε)k(t, x)) ≤ −(1− ε)g(Vε(x))

⇒ ‖ϕ(1−ε)k(t, x)‖ ≤ µ(σ(‖x‖), (1− ε)t)

ε→0⇒ ‖ϕk(t, x)‖ ≤ µ(σ(‖x‖), t)



ISDS vs. ISS

Obviously, ISDS implies ISS with same γ and β(r, t) = µ(σ(r), t)

Theorem: Assume ISS with γ ∈ K∞ and β ∈ KL

Then the system is ISDS for each γ̃ ∈ K∞ satisfying

γ̃(r) > γ(r) for all r > 0,

σ(r) = β(r,0) and suitable attraction rate µ ∈ KLD depending

on the choice of γ̃

Idea of Proof: Use stability and asymptotic gain property

Corollary: ISS ⇒ any ρ < γ−1 is a stability margin



Summary of Part III

• ISS ⇔ existence of ISS Lyapunov function V

• iISS ⇔ existence of iISS Lyapunov function V in

dissipation form

• ISDS ⇔ existence of ISDS Lyapunov function Vε maintaining

the quantitative information

• ISDS allows to compute gains from Lyapunov function

• ISDS allows to use Lyapunov function in quantitative

estimates, e.g., for stability margins


