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Part III: Lyapunov functions and quantitative aspects



ISS

Consider

z(t) = f(x(t), w(t))

with solutions (¢, x, w)

The system is called ISS, if there exist 7 € KL and v € K~ such
that for all initial values =, all perturbation functions w and all
times ¢t > 0 the following inequality holds:

lo(t, z, w) || < max{B([|lz||,t), v([lwlloc)}

In this part of the course, we will investigate ISS Lyapunov func-
tions and quantitative aspects of ISS



ISS Lyapunov functions

Theorem: A system is ISS if and only if there exists an ISS Lya-
punov function, i.e. a smooth function V : R"™ — R and functions
a1, ao, X € Ko, agz € I such that

ai(|lz|]) < V(z) < ax(||z]|)

and

lw]| < x(lz]) = DV(z)f(z,w) < —az(]lz])

hold for all x € R"™, w ¢ R™



ISS Lyapunov functions

Proof: "existence of V = ISS”

1 1

1. For g=azoa,” and x = yoa,~ we obtain

Jw|| < k(V(2)) = DV(z)f(z,w) < —g(V(z))

2. Integration yields V (o(t,z,w)) < max{u(V(z),t), L ([|w||s0)}

for 1€ KL given by $pu(r.t) = —g(u(r,t)), p(r,0) =r

3. |le(tz,w)| < a7 H(V(e(t 2, w)))
< max{ay (u(az(llz]), 1)), a1t (v ([lw]l0))}

— 1SS with 8(r, 1) = a7 (u(as(r), 1)) and v(r) = a7 toasox ™!



ISS Lyapunov functions
Proof: "ISS = existence of V"

1. ISS = existence of stability margin, i.e., p € Ko such that
for any Lipschitz feedback map £ : R x R" — R with [[k(t,z)| <
p(||z]|) the closed loop system

z(t) = f(x(t), k(¢ z(¢)))

is globally asymptotically stable, i.e., its solutions ;. (¢, x) satisfy

len(t, )] < B(ll, )

for some suitable 5 € £ independent of k

In particular, this holds for k(t,z) = p(||z||)d(t), ||d(t)| <1



ISS Lyapunov functions

Proof: "ISS = existence of V"

1. The solutions ¢,(t,z,d) of

z(t) = f(z(), p(||z]])d(t))
satisfy |[|¢,p(t, 2, d)|| < B(||z|,t) for each d(t) with |d(t)| <1
2. Converse Lyapunov theorem for perturbed GAS systems:
there exists a smooth Lyapunov function V, i.e.,
|d]| <1 = DV(z)f(z,p(l|lz])d) < —az(]z|])
3. This implies
|w| < p(J|z]]) = DV(z)f(z,w) < —az(||z])

= V' is ISS Lyapunov function



Equivalent ISS Lf characterizations

(1) Implication form:

Jwl| < x([lz]]) = DV(z)f(z,w) < —az(|z])

(2) Supremum form:
sup DV (z)f(z,w) < —az((|z|])
[|wl| <x (=)
(3) Dissipation Form:
DV (z) f(z,w) < —az(||z]]) + as(||w]])

Note: in general V from (1) or (2) needs to be transformed
to satisfy (3)



IISS Lyapunov functions

The existence of a Lyapunov function in dissipation form

DV (z)f(z,w) < —az([[z]]) + aa((|w]])

with a3 € K (instead of ) is equivalent to integral ISS (iISS):

ity < BC 0 + 1 ( [ 22l ds )



Computing ISS Lyapunov functions

It is in general a hard task to find ISS Lyapunov functions, only
few constructive techniques are known:

e optimal control and set valued approaches (only feasible
numerically in low dimensions)

e backstepping approaches (under suitable structural
assumptions, typically strict feedback form)

Both approaches are linked via the inverse optimality formalism

References: Freeman/Kokotovic¢, Krsti¢/Kannelakopoulos/Kokotovi¢, Krsti¢/Deng



Quantitative “Problems’” of ISS

lo(t, z, w)|| < max{B([lz||,£), y([lwllcc)}

e No explicit estimate if w(t) — O

e NO representation of 8 and ~ in the ISS Lyapunov
function V

e No easy method to compute (or estimate) the stability
margin p (= gain for Lyapunov function V")



Facts about comparison functions
K:={«a: IR{S' — IR{S'| continuous, strictly increasing, «(0) = 0}
Coo i={a € K| unbounded}

KL :={5: Rj X IR%SL — RS’| continuous, S(-,r) € KL and 3 strictly
converging to 0 in the 2nd argument}

B(r, t*) B(r, 1)

(0. 0) r 0, 0) t



Facts about comparison functions

For any a € K~ and any function p : IR{SF — RS’ with p(r) > O for
r > 0 there is a smooth a1 € I with

a(r) < ay(r) < alr) + p(r)

and

d
—a1(r) >0 for all » >0
dr

o+p
]

(0, 0) r



Facts about comparison functions

Sontag’'s KL—Lemma: For any (g € ICL there exists a1, as € K
such that

B(r,t) < ag(az(r)e™™)

Corollary: For smooth «q and u(r,t) = aq1(re t), o(r) = as(r):
B(r,t) < u(o(r),t)
and there exists ¢ : Rg' — IR%SL with ¢g(r) > 0 for » > 0 such that

d

a:u(’ra t) — —g(,u(r, t))a U(Ta O) — T

KLD :={p € KL| Lu(r,t) = —g(u(r, 1)), p(r,0) =r}



Gain Preserving Lyapunov Functions

~~ without loss of generality 3 is of the form

B(r,t) = p(o(r),t), pnekKLD,o¢c Ko

For systems without input

z(t) = f(x(t))

this is exactly the form we get from integrating

DV (z)f(z) < —g(V(z))
if V' satisfies  |[|z|| < V(z) <o(||z]):

le(t, )| < V(e z)) < pu(V(x),t) < plo(lz]]),t)



Converse Gain Preserving Theorem

The converse is “almost true’:

An ODE =z = f(x) is GAS with g(r,t) = u(o(r),t), n € KLD,
o€ KCx iIf and only if for each £ > 0 there exists V- satisfying

DVe(z)f(z) < —(1 —¢e)g(Ve(x))
and
z]| < Ve(=) < o(||z])

Idea for the construction of V. [Yoshizawa 66]:

Ve(x) = rpzaoxu(\lw(t,x)l\, —(1 —e)t)

-+ subsequent smoothing

(same construction with ¢ = 0 yields discontinuous Vj)



Input—to—state Stability
Question: can we do the same for ISS~?

What do we get when we integrate

Y(llwl)) <V(z) = DV(z)f(x) < —g(V(z))

with V satisfying  [|z]| < V(z) < o(||z]])?



Input—to—state Stability

Proceeding as before we get

lo(t, 2, w)[| < max{u(a(llz]]), ), y(llwlleo)}

for v, 0 € Ko and p € ICLD



Input—to—state dynamical Stability

In fact we get more: input—to—state dynamical stability (ISDS)

lo(t, z, w)|| < max{u(o(llz])),t), v(w,t)}

for v, 0 € K and p € LD, where

v(w,t) :=esssup p(y([lw(r)|),t—7)

7€[0,t]
ISS
ISDS
lo (Lxw)
wol |

(0, 0) t



Input—to—state dynamical Stability
Sketch of proof: Fix At > 0 and set ¢; = 1At

Iterative integration, ¢ = 1,2,3,..., vyields for ¢ € [t;41,1;]

lo(t, 2, w)|| < max{u(o(llz]]),t), var(w,t)}

where

var(w,t) = max p(y([[wly, ;10D.t =)

For At — O we obtain

var(w,t) — v(w,t) =esssup p(y(lw(m)|),t—7)
7€[0,t]



Converse Gain Preserving ISDS Theorem

Theorem: A system is ISDS with rate u(o(r),t) and robustness
gain ~ if and only if for each £ > O there exists V- with

7@ﬁ1)gva@ = DVe@)f(w,w) < —(1 - )g(Ve(@))

and

=
1oL < Ve(@) S o(flal)

Construction of V.:
Ve(z) = Sup inf{a > Of|lp(t, z, w)|| < pe(u(y(a),t)) max{p(y(a), (1—-e)t), v(w,t)} }

with p- € [1,1 -+ £] strictly increasing + subsequent smoothing
Again, ¢ = 0 is possible and vields discontinuous V



Converse Gain Preserving ISDS Theorem

Consequence:

For ISDS there is a one—to—one correspondence between

e the rate and gains in the trajectorywise formulation

and

e the rate and gains in the Lyapunov function formulation

T his allows to

e compute ISDS rate and gains from Lyapunov functions

e Use Lyapunov functions in quantitative statements
— at least theoretically



Computing ISDS gains

Example 1: &= f(z,w) = —z + w3
Set V(xz) = |z[, then
DV (z)f(z,0) < -V (z) =: —go(V(x))
Choose ~+ such that the implication
y(jw)) <V (z) = DV(z)w> < go(V(x))/2
holds ~~ ~(r) = 213,

Then V, v and g = gg/2 satisfy the theorem, and we obtain ISDS
with u(r,t) = e /2y and ~(r) = 203



Computing ISDS gains

Example 2: = f(z,w) = —z3+w
Set V(xz) = |z[, then
DV () f(x,0) < =V(2)> =1 —go(V(2))
Choose ~ such that the implication
Y(Jw]) < V(z) = DV(z)w < go(V(z))/2
holds ~ ~(r) = /2r.

Then V, v and g = gg/2 satisfy the theorem, and we obtain ISDS
ith t) = ——=L and = /2
with u(r,t) = Lo and 7(r) = /27




Stability margins and ISDS

Recall: p € s is a stability margin if for any Lipschitz feedback
map Lk : RxR™ — R with ||k(t,z)| < p(||z||) the closed loop system

z(t) = f(z(t), k(t,z(t)))
is GAS, i.e., |¢u(t,2)| < B(||z|,t) for some € KL

Thm: ISDS = p = ~ ! is stability margin with 3(r,t) = u(o(r),t)

Proof: for arbitrary ¢ > 0 take V- and |[|k(t,2)| < p(]|z]))

DVe(z) f(z, (1 — )k(t,z)) < —(1—e)g(Ve(z))
= loq_eplta)ll < pla(a]), (1 - &)t)
=S lert, )| < pulo(ll=l),t)



ISDS vs. ISS
Obviously, ISDS implies ISS with same ~ and g(r,t) = p(o(r),t)

Theorem: Assume ISS with v € IC and g € KL

Then the system is ISDS for each 7 € C satisfying

Y(r) > ~(r) for all » > 0,

o(r) = [(r,0) and suitable attraction rate u € LD depending
on the choice of v

Idea of Proof: Use stability and asymptotic gain property

Corollary: ISS = any p < 4! is a stability margin



Summary of Part III

e ISS & existence of ISS Lyapunov function V

e IISS & existence of IISS Lyapunov function V in
dissipation form

e ISDS & existence of ISDS Lyapunov function V: maintaining
the quantitative information

e ISDS allows to compute gains from Lyapunov function

e ISDS allows to use Lyapunov function in quantitative
estimates, e.g., for stability margins



