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ISS

Consider

ẋ(t) = f(x(t), w(t))

with solutions ϕ(t, x, w)

The system is called ISS, if there exist β ∈ KL and γ ∈ K∞ such

that for all initial values x, all perturbation functions w and all

times t ≥ 0 the following inequality holds:

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

In this part of the course, we will investigate applications and

some aspects of ISS controller design

Applications: stability of interconnected and discretized systems



GAS Cascades

Consider

ẋ1(t) = f1(x1(t))

ẋ2(t) = f2(x2(t), w(t))

x2x2wx1 x1



GAS Cascades

Coupling via w = x1 yields

ẋ1(t) = f1(x1(t))

ẋ2(t) = f2(x2(t), x1(t))

x2x2x1
x1

Theorem: x1 GAS + x2 ISS ⇒ coupled system GAS



GAS Cascades

Proof: The proof is easier with ISDS formulation

‖ϕ1(t, x
0
1)‖ ≤ µ1(σ1(‖x0

1‖), t))

‖ϕ2(t, x
0
2, w)‖ ≤ max{µ2(σ2(‖x0

2‖), t), ν2(w, t)}

ν2(w, t) := ess sup
τ∈[0,t]

µ2(γ2(‖w(τ)‖), t− τ)

For w = ϕ1 we obtain

ν2(ϕ1, t) ≤ max
τ∈[0,t]

µ2(γ2(µ1(σ1(‖x0
1‖), τ), t− τ) =: β2(‖x0

1‖, t) ∈ KL

Thus ϕ = (ϕ1, ϕ2) with ‖ϕ‖ = max{‖ϕ1‖, ‖ϕ2‖} satisfies

‖ϕ(t, x0)‖ ≤ max{µ1(σ1(‖x0
1‖), t)), µ2(σ2(‖x0

2‖), t), β2(‖x0
1‖, t)}



GAS Cascades

Note: The function

β2(‖x0
1‖, t) := max

τ∈[0,t]
µ2(γ2(µ1(σ1(‖x0

1‖), τ), t− τ)

takes care of the coupling

For

µ̇1 = −g1(µ1) and µ̇2 = −g2(µ2)

it is bounded by

β2(r, t) ≤ η2(γ2 ◦ σ1(r), t)

with η2 ∈ KLD given by

η̇2 = max{−g2(η2), −γ′2(γ
−1
2 (η2)) g1(γ

−1
2 (η2))}



Small Gain Theorem

Consider

ẋ1(t) = f1(x1(t), w1(t))

ẋ2(t) = f2(x2(t), w2(t))

x2w1 x1 x1 xw2 2



Small Gain Theorem

Coupling via w1 = x2, w2 = x1 yields

ẋ1(t) = f1(x1(t), x2(t))

ẋ2(t) = f2(x2(t), x1(t))

x2x1
x1

x2

Theorem: x1 ISS + x2 ISS + γ1(γ2(r)) < r

⇒ coupled system GAS



Small Gain Theorem

Proof: For θ < 1 we use ISDS in order to analyze

ẋ1(t) = f1(x1(t), θx2(t)), ẋ2(t) = f2(x2(t), θx1(t))

Induction over a suitable time sequence yields GAS with

‖ϕi(t, x
0)‖ ≤ ηi(αi(‖x0‖), t)

where

αi(x) ≤ max{σi(‖xi‖), γi ◦ σj(‖xj‖)}

with ηi ∈ KLD determined by

η̇i = max{−gi(ηi), −γ′i(γ
−1
i (ηi)) gj(γ

−1
i (ηi))}

i = 1, 2, j = 2, 1

By continuity, the estimate also holds for θ = 1



Example

ẋ1 = −x1 + w3
1/2 and ẋ2 = −x3

2 + w2

Using V1(x) = V2(x) = |x| we obtain

µ1(r, t) = e−t/4r, γ1(r) = 2r3/2

µ2(r, t) =
√

2t+4/r2

t+2/r2
, γ2(r) = 3

√
4r/3

 the coupled system is asymptotically stable with

|ϕi(t, x
0)| ≤ ηi(αi(x

0), t), where

α1(x) = max
{
|x1|, 2

3|x2|3
}

, η̇1 = max{−c1η1, −c2η
5
3
1}

α2(x) = max
{
|x2|, 3

√
4
3|x1|

}
, η̇2 = max{−c3η2, −c4η3

2}



Small Gain Theorem — ISS version

([Jiang/Teel/Praly 94, Teel 95])

Consider

ẋ1(t) = f1(x1(t), w1(t), v1(t))

ẋ2(t) = f2(x2(t), w2(t), v2(t))

x2w1 x1 x1 xw2 2

21v v

write ISS as ‖ϕi(t, x, wi, vi)‖ ≤ max{βi(‖x‖, t), γwi(‖wi‖∞), γvi(‖vi‖∞)}



Small Gain Theorem — ISS version

([Jiang/Teel/Praly 94, Teel 95])

Coupling via w1 = x2, w2 = x1 yields

ẋ1(t) = f1(x1(t), x2(t), v1(t))

ẋ2(t) = f2(x2(t), x1(t), v2(t))

x2

1v

x2x1x1
x1

x2

2v

Theorem: x1 & x2 ISS + γw1(γw2(r)) < r

⇒ coupled system ISS



Small Gain Theorems

Recall the notion of input-to-output stability (IOS) for systems

with output y = h(x):

‖y(t)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}

Using IOS, the small gain results are easily extended to systems

with output



Numerical Discretization

All stability concepts are easily extended to compact sets A ⊂ Rn

Denoting the Euclidean distance of x ∈ Rn to A by ‖x‖A we can,

e.g., define

A is called (locally) asymptotically stable with neighborhood B

and attraction rate β ∈ KL, if for all x ∈ B

‖ϕ(t, x)‖A ≤ β(‖x‖A, t), t ≥ 0

Similarly, all the ISS concepts can be generalized



Numerical Discretization

Goal: find asymptotically stable sets by numerical simulations,

e.g., using a one step method

x(t + h) = ϕ̃h(x(t)),

with solution trajectories ϕ̃h(t, x0)



Numerical Discretization

Theorem [Kloeden/Lorenz 86] Let A be an asymptotically stable

set for ϕ(t, x) and let be ϕ̃h an approximation of ϕ by a numerical

one–step method with

‖ϕ̃h(h, x)− ϕ(h, x)‖ ≤ chq+1

Then ϕ̃h has “numerical” asymptotically stable sets Ãh with

Hausdorff limit Limh→0Ãh = A.

But: For arbitrary numerical as. stable sets Ãh the limit A =Limh→0Ãh

is not asymptotically stable for ϕ

Question: When is A =Limh→0Ãh as. stable for ϕ?

Idea: Interpret ϕ̃h as perturbed system ẋ = f(x) + w



Numerical Discretization

Theorem: A = Lim
h→0

Ãh asymptotically stable

⇔

the sets Ãh are locally ISS with βh ∈ KL, γh ∈ K∞ such that

βh → β ∈ KL and γh → γ ∈ K∞ for h → 0

⇔

the sets Ãh have attraction rates βh ∈ KL with

βh → β ∈ KL for h → 0



Numerical Discretization: Example

For x =

(
x1
x2

)
∈ R2 consider

ẋ =

(
0 1
−1 0

)
x−max{‖x‖ − 1,0}x

Euler approximation suggests that

S1 = {x ∈ R2 | ‖x‖ = 1}

is asymptotically stable –2

–1

0

1

2

y

–2 –1 1 2x

In fact,

D1 = {x ∈ R2 | ‖x‖ ≤ 1}

is the only asymptotically stable set –2

–1

0

1

2

y

–2 –1 1 2x



Construction of ISS Feedbacks

Consider

ẋ(t) = f(x(t), u(t), w(t))

u

w
x x



Construction of ISS Feedbacks

Find a feedback law u such that

ẋ(t) = f(x(t), u(x(t)), w(t))

is ISS

w
x x

u



Construction of ISS Feedbacks

This is a special case of stabilization via feedback, hence the

same obstructions arise:

• continuous static state feedbacks might not exist (Brockett’s

condition)

• no “universal” design method for the general nonlinear case

Here, we will focus on

• an abstract existence result

• a design procedure based on an ISS Lyapunov function



Sampled solutions

How to define solutions for a discontinuous feedback map

u : Rn → U? — by sampling:

Consider a sampling sequence

π = (ti)i∈N0
, 0 = t0 < t1 < t2 < . . . →∞

with maximal sampling rate

∆(π) := sup
i∈N

ti − ti−1 < ∞

Define sampled solution ϕπ(t, x) recursively for i = 0,1,2, . . . via

xi := ϕπ(ti, x), ϕπ(t, x) := ϕ(t− ti, xi, u(xi)), t ∈ [ti, ti+1]



Stabilization by discontinuous feedback

This framework allows for a general abstract stabilization result

Theorem [Clarke/Ledyaev/Sontag/Subbotin 97]:

If the system is asymptotically controllable to 0 then there ex-

ists a feedback u : Rn → U such that the sampled system is

semiglobally practically asymptotically stable, i.e.:

there exists β ∈ KL such that for all R, ε > 0 there is δ > 0 with

‖ϕπ(t, x)‖ ≤ β(‖x‖, t) + ε

if ‖x‖ ≤ R and ∆(π) ≤ δ



ISS Stabilization by discontinuous feedback

Consider the input affine system ẋ = f(x) + G(x)u + G(x)w

Theorem: If the system is asymptotically controllable to 0 for

w ≡ 0 then there exists a feedback u : Rn → U such that the

sampled system is semiglobally practically ISS, i.e.:

there exists β ∈ KL, γ ∈ K∞ such that for all R, ε > 0 there is

δ > 0 with

‖ϕπ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)}+ ε

if ‖x‖ ≤ R, γ(‖w‖∞) ≤ R and ∆(π) ≤ δ

Idea of Proof: Use control Lyapunov function V and nonsmooth

analysis techniques to make V an ISS Lyapunov function



ISS Stabilization via universal formula

A more constructive approach is based on ISS control Lyapunov

functions (ISS clf) for control affine systems ẋ = f(x, w)+G(x)u:

A smooth function V : Rn → R is called an ISS clf (in dissipation

form), if there exist αi ∈ K∞, i = 1,2,3,4, such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

and

inf
u∈U

DV (x)(f(x, w) + G(x)u) ≤ −α3(‖x‖) + α4(‖w‖)

hold for all x ∈ Rn, w ∈ Rm



ISS Stabilization via universal formula

Given: inf
u∈U

DV (x)(f(x, w) + G(x)u) ≤ −α3(‖x‖) + α4(‖w‖)

Theorem: Consider u(x) = K(ω̄(x), DV (x)G(x)T ) with

K(a, b) :=

 −
a +

√
a2 + ‖b‖4

‖b‖2
b, b 6= 0

0, b = 0

and ω̄ being a continuous and outside 0 smooth function with

ω̄(x) ≈ ω(x) := max
w
{DV (x)f(x, w)− α4(‖w‖)}

and assume the small control property, i.e., for small ‖x‖ there

exists small ‖u‖ with ω(x) + DV (x)G(x)u ≤ −α3(‖x‖)

Then u is continuous and smooth outside 0 and the closed loop

system ẋ = f(x, w) + G(x)u(x) is ISS (in the classical sense)



ISS Stabilization via universal formula

A similar result is available for integral ISS

Proof: Show that V is an ISS Lyapunov function for the closed

loop system



Summary of Part IV

• ISS can be used for the stability analysis of cascades and

fully interconnected systems

• ISS can be used for the analysis of numerical discretizations

• ISS controller design: abstract result and universal formula


