Input-to-state Stability

Mini course, Universität Stuttgart, November 2004

Lars Grüne, Mathematisches Institut, Universität Bayreuth

Part IV: Applications

ISS

Consider

$$\dot{x}(t) = f(x(t), w(t))$$

with solutions $\varphi(t, x, w)$

The system is called ISS, if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that for all initial values x, all perturbation functions w and all times $t \geq 0$ the following inequality holds:

$$\|\varphi(t,x,w)\| \le \max\{\beta(\|x\|,t),\,\gamma(\|w\|_{\infty})\}$$

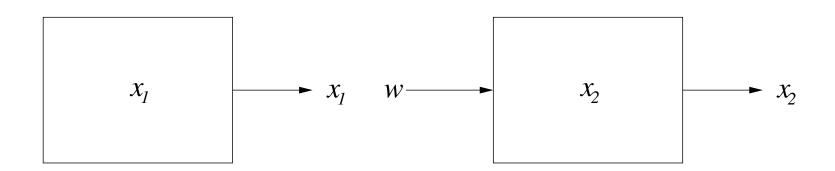
In this part of the course, we will investigate applications and some aspects of ISS controller design

Applications: stability of interconnected and discretized systems

Consider

$$\dot{x}_1(t) = f_1(x_1(t))$$

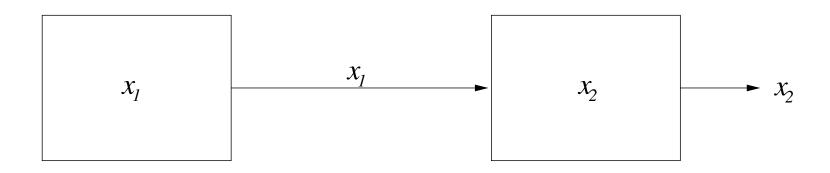
 $\dot{x}_2(t) = f_2(x_2(t), w(t))$



Coupling via $w = x_1$ yields

$$\dot{x}_1(t) = f_1(x_1(t))$$

 $\dot{x}_2(t) = f_2(x_2(t), x_1(t))$



Theorem: $x_1 \text{ GAS} + x_2 \text{ ISS} \Rightarrow \text{ coupled system GAS}$

Proof: The proof is easier with ISDS formulation

$$\|\varphi_{1}(t, x_{1}^{0})\| \leq \mu_{1}(\sigma_{1}(\|x_{1}^{0}\|), t))$$

$$\|\varphi_{2}(t, x_{2}^{0}, w)\| \leq \max\{\mu_{2}(\sigma_{2}(\|x_{2}^{0}\|), t), \nu_{2}(w, t)\}$$

$$\nu_{2}(w, t) := \underset{\tau \in [0, t]}{\operatorname{ess sup}} \mu_{2}(\gamma_{2}(\|w(\tau)\|), t - \tau)$$

For $w = \varphi_1$ we obtain

$$\nu_2(\varphi_1, t) \le \max_{\tau \in [0, t]} \mu_2(\gamma_2(\mu_1(\sigma_1(\|x_1^0\|), \tau), t - \tau) =: \beta_2(\|x_1^0\|, t) \in \mathcal{KL}$$

Thus
$$\varphi = (\varphi_1, \varphi_2)$$
 with $\|\varphi\| = \max\{\|\varphi_1\|, \|\varphi_2\|\}$ satisfies
$$\|\varphi(t, x^0)\| \le \max\{\mu_1(\sigma_1(\|x_1^0\|), t)), \mu_2(\sigma_2(\|x_2^0\|), t), \beta_2(\|x_1^0\|, t)\}$$

Note: The function

$$\beta_2(\|x_1^0\|,t) := \max_{\tau \in [0,t]} \mu_2(\gamma_2(\mu_1(\sigma_1(\|x_1^0\|),\tau),t-\tau))$$

takes care of the coupling

For

$$\dot{\mu}_1 = -g_1(\mu_1)$$
 and $\dot{\mu}_2 = -g_2(\mu_2)$

it is bounded by

$$\beta_2(r,t) \leq \eta_2(\gamma_2 \circ \sigma_1(r),t)$$

with $\eta_2 \in \mathcal{KLD}$ given by

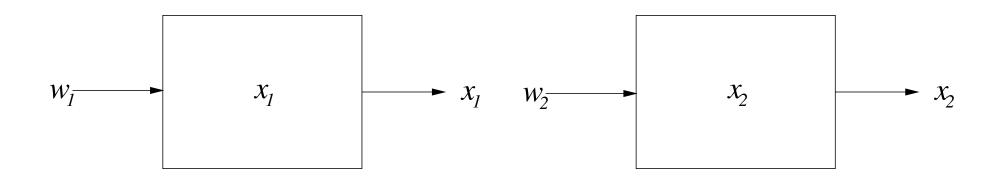
$$\dot{\eta}_2 = \max\{-g_2(\eta_2), -\gamma_2'(\gamma_2^{-1}(\eta_2)) g_1(\gamma_2^{-1}(\eta_2))\}$$

Small Gain Theorem

Consider

$$\dot{x}_1(t) = f_1(x_1(t), w_1(t))$$

$$\dot{x}_2(t) = f_2(x_2(t), w_2(t))$$

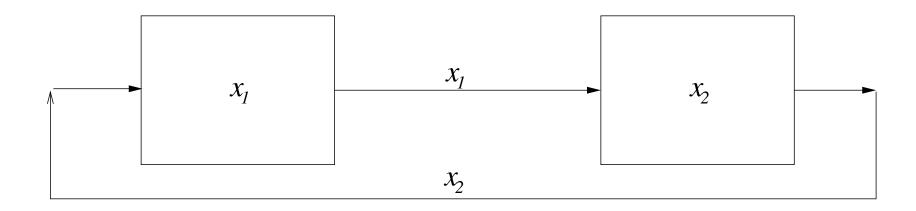


Small Gain Theorem

Coupling via
$$w_1 = x_2$$
, $w_2 = x_1$ yields

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t))$$

$$\dot{x}_2(t) = f_2(x_2(t), x_1(t))$$



Theorem: x_1 ISS + x_2 ISS + $\gamma_1(\gamma_2(r)) < r$

⇒ coupled system GAS

Small Gain Theorem

Proof: For $\theta < 1$ we use ISDS in order to analyze

$$\dot{x}_1(t) = f_1(x_1(t), \theta x_2(t)), \qquad \dot{x}_2(t) = f_2(x_2(t), \theta x_1(t))$$

Induction over a suitable time sequence yields GAS with

$$\|\varphi_i(t, x^0)\| \le \eta_i(\alpha_i(\|x^0\|), t)$$

where

$$\alpha_i(x) \le \max\{\sigma_i(\|x_i\|), \, \gamma_i \circ \sigma_i(\|x_i\|)\}$$

with $\eta_i \in \mathcal{KLD}$ determined by

$$\dot{\eta}_i = \max\{-g_i(\eta_i), -\gamma_i'(\gamma_i^{-1}(\eta_i)) g_j(\gamma_i^{-1}(\eta_i))\}$$

 $i = 1, 2, j = 2, 1$

By continuity, the estimate also holds for $\theta = 1$

Example

$$\dot{x}_1 = -x_1 + w_1^3/2$$
 and $\dot{x}_2 = -x_2^3 + w_2$

Using $V_1(x) = V_2(x) = |x|$ we obtain

$$\mu_1(r,t) = e^{-t/4}r, \qquad \gamma_1(r) = 2r^3/2$$

$$\mu_2(r,t) = \frac{\sqrt{2t+4/r^2}}{t+2/r^2}, \quad \gamma_2(r) = \sqrt[3]{4r/3}$$

→ the coupled system is asymptotically stable with

$$|\varphi_i(t,x^0)| \leq \eta_i(\alpha_i(x^0),t)$$
, where

$$\alpha_1(x) = \max\{|x_1|, \frac{2}{3}|x_2|^3\}, \quad \dot{\eta}_1 = \max\{-c_1\eta_1, -c_2\eta_1^{\frac{5}{3}}\}$$

$$\alpha_2(x) = \max\left\{|x_2|, \sqrt[3]{\frac{4}{3}|x_1|}\right\}, \quad \dot{\eta}_2 = \max\{-c_3\eta_2, -c_4\eta_2^3\}$$

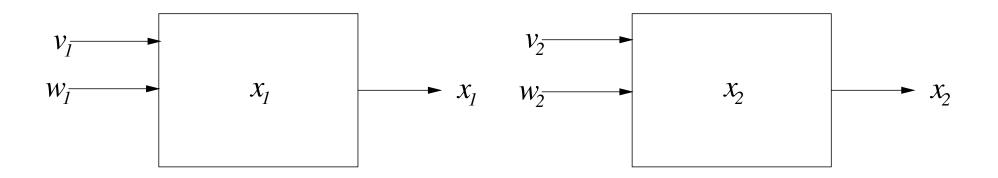
Small Gain Theorem — ISS version

([Jiang/Teel/Praly 94, Teel 95])

Consider

$$\dot{x}_1(t) = f_1(x_1(t), w_1(t), v_1(t))$$

$$\dot{x}_2(t) = f_2(x_2(t), w_2(t), v_2(t))$$



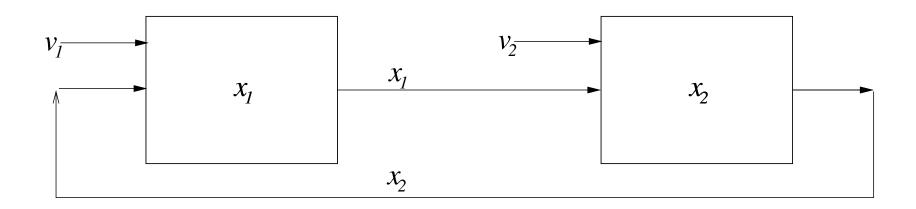
write ISS as $\|\varphi_i(t, x, w_i, v_i)\| \le \max\{\beta_i(\|x\|, t), \gamma_{w_i}(\|w_i\|_{\infty}), \gamma_{v_i}(\|v_i\|_{\infty})\}$

Small Gain Theorem — ISS version

([Jiang/Teel/Praly 94, Teel 95])

Coupling via
$$w_1 = x_2$$
, $w_2 = x_1$ yields
$$\dot{x}_1(t) = f_1(x_1(t), x_2(t), v_1(t))$$

$$\dot{x}_2(t) = f_2(x_2(t), x_1(t), v_2(t))$$



Theorem: $x_1 \& x_2 \text{ ISS} + \gamma_{w_1}(\gamma_{w_2}(r)) < r$

⇒ coupled system ISS

Small Gain Theorems

Recall the notion of input-to-output stability (IOS) for systems with output y = h(x):

$$||y(t)|| \le \max\{\beta(||x||, t), \gamma(||w||_{\infty})\}$$

Using IOS, the small gain results are easily extended to systems with output

All stability concepts are easily extended to compact sets $A \subset \mathbb{R}^n$

Denoting the Euclidean distance of $x \in \mathbb{R}^n$ to A by $||x||_A$ we can, e.g., define

A is called (locally) asymptotically stable with neighborhood B and attraction rate $\beta \in \mathcal{KL}$, if for all $x \in B$

$$\|\varphi(t,x)\|_A \le \beta(\|x\|_A,t), \quad t \ge 0$$

Similarly, all the ISS concepts can be generalized

Goal: find asymptotically stable sets by numerical simulations, e.g., using a one step method

$$x(t+h) = \widetilde{\varphi}_h(x(t)),$$

with solution trajectories $\widetilde{\varphi}_h(t,x_0)$

Theorem [Kloeden/Lorenz 86] Let A be an asymptotically stable set for $\varphi(t,x)$ and let be $\widetilde{\varphi}_h$ an approximation of φ by a numerical one—step method with

$$\|\widetilde{\varphi}_h(h,x) - \varphi(h,x)\| \le ch^{q+1}$$

Then $\widetilde{\varphi}_h$ has "numerical" asymptotically stable sets \widetilde{A}_h with Hausdorff limit $\lim_{h\to 0}\widetilde{A}_h=A.$

But: For arbitrary numerical as. stable sets \widetilde{A}_h the limit $A=\lim_{h\to 0}\widetilde{A}_h$ is not asymptotically stable for φ

Question: When is $A = \lim_{h\to 0} \widetilde{A}_h$ as. stable for φ ?

Idea: Interpret $\tilde{\varphi}_h$ as perturbed system $\dot{x} = f(x) + w$

Theorem: $A = \underset{h \to 0}{\text{Lim}} \widetilde{A}_h$ asymptotically stable

the sets \widetilde{A}_h are locally ISS with $\beta_h \in \mathcal{KL}$, $\gamma_h \in \mathcal{K}_{\infty}$ such that

$$\beta_h \to \beta \in \mathcal{KL}$$
 and $\gamma_h \to \gamma \in \mathcal{K}_{\infty}$ for $h \to 0$

the sets \widetilde{A}_h have attraction rates $\beta_h \in \mathcal{KL}$ with

$$\beta_h \to \beta \in \mathcal{KL} \text{ for } h \to 0$$

Numerical Discretization: Example

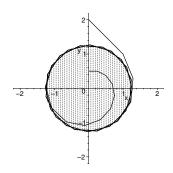
For
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$$
 consider

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x - \max\{||x|| - 1, 0\}x$$

Euler approximation suggests that

$$\mathbb{S}_1 = \{ x \in \mathbb{R}^2 \, | \, ||x|| = 1 \}$$

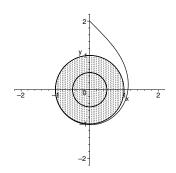
is asymptotically stable



In fact,

$$D_1 = \{ x \in \mathbb{R}^2 \, | \, ||x|| \le 1 \}$$

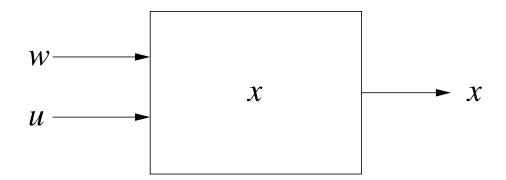
is the only asymptotically stable set



Construction of ISS Feedbacks

Consider

$$\dot{x}(t) = f(x(t), u(t), w(t))$$

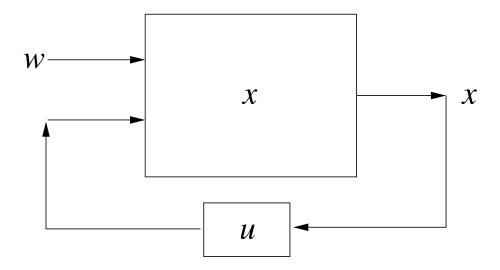


Construction of ISS Feedbacks

Find a feedback law \boldsymbol{u} such that

$$\dot{x}(t) = f(x(t), u(x(t)), w(t))$$

is ISS



Construction of ISS Feedbacks

This is a special case of stabilization via feedback, hence the same obstructions arise:

- continuous static state feedbacks might not exist (Brockett's condition)
- no "universal" design method for the general nonlinear case

Here, we will focus on

- an abstract existence result
- a design procedure based on an ISS Lyapunov function

Sampled solutions

How to define solutions for a discontinuous feedback map $u: \mathbb{R}^n \to U$? — by sampling:

Consider a sampling sequence

$$\pi = (t_i)_{i \in \mathbb{N}_0}, \quad 0 = t_0 < t_1 < t_2 < \dots \to \infty$$

with maximal sampling rate

$$\Delta(\pi) := \sup_{i \in \mathbb{N}} t_i - t_{i-1} < \infty$$

Define sampled solution $\varphi_{\pi}(t,x)$ recursively for $i=0,1,2,\ldots$ via

$$x_i := \varphi_{\pi}(t_i, x), \quad \varphi_{\pi}(t, x) := \varphi(t - t_i, x_i, u(x_i)), \quad t \in [t_i, t_{i+1}]$$

Stabilization by discontinuous feedback

This framework allows for a general abstract stabilization result

Theorem [Clarke/Ledyaev/Sontag/Subbotin 97]:

If the system is asymptotically controllable to 0 then there exists a feedback $u: \mathbb{R}^n \to U$ such that the sampled system is semiglobally practically asymptotically stable, i.e.:

there exists $\beta \in \mathcal{KL}$ such that for all $R, \varepsilon > 0$ there is $\delta > 0$ with

$$\|\varphi_{\pi}(t,x)\| \le \beta(\|x\|,t) + \varepsilon$$

if
$$||x|| \leq R$$
 and $\Delta(\pi) \leq \delta$

ISS Stabilization by discontinuous feedback

Consider the input affine system $\dot{x} = f(x) + G(x)u + G(x)w$

Theorem: If the system is asymptotically controllable to 0 for $w \equiv 0$ then there exists a feedback $u : \mathbb{R}^n \to U$ such that the sampled system is semiglobally practically ISS, i.e.:

there exists $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{K}_{\infty}$ such that for all $R, \varepsilon > 0$ there is $\delta > 0$ with

$$\|\varphi_{\pi}(t, x, w)\| \le \max\{\beta(\|x\|, t), \gamma(\|w\|_{\infty})\} + \varepsilon$$

if
$$||x|| \le R$$
, $\gamma(||w||_{\infty}) \le R$ and $\Delta(\pi) \le \delta$

Idea of Proof: Use control Lyapunov function V and nonsmooth analysis techniques to make V an ISS Lyapunov function

ISS Stabilization via universal formula

A more constructive approach is based on ISS control Lyapunov functions (ISS clf) for control affine systems $\dot{x} = f(x, w) + G(x)u$:

A smooth function $V: \mathbb{R}^n \to \mathbb{R}$ is called an ISS clf (in dissipation form), if there exist $\alpha_i \in \mathcal{K}_{\infty}$, i = 1, 2, 3, 4, such that

$$\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|)$$

and

$$\inf_{u \in U} DV(x)(f(x, w) + G(x)u) \le -\alpha_3(||x||) + \alpha_4(||w||)$$

hold for all $x \in \mathbb{R}^n$, $w \in \mathbb{R}^m$

ISS Stabilization via universal formula

Given: $\inf_{u \in U} DV(x)(f(x, w) + G(x)u) \le -\alpha_3(||x||) + \alpha_4(||w||)$

Theorem: Consider $u(x) = K(\bar{\omega}(x), DV(x)G(x)^T)$ with

$$K(a,b) := \begin{cases} -\frac{a + \sqrt{a^2 + ||b||^4}}{||b||^2}b, & b \neq 0\\ 0, & b = 0 \end{cases}$$

and $\bar{\omega}$ being a continuous and outside 0 smooth function with

$$\bar{\omega}(x) \approx \omega(x) := \max_{w} \{DV(x)f(x,w) - \alpha_4(\|w\|)\}$$

and assume the small control property, i.e., for small ||x|| there exists small ||u|| with $\omega(x) + DV(x)G(x)u \le -\alpha_3(||x||)$

Then u is continuous and smooth outside 0 and the closed loop system $\dot{x} = f(x, w) + G(x)u(x)$ is ISS (in the classical sense)

ISS Stabilization via universal formula

A similar result is available for integral ISS

Proof: Show that V is an ISS Lyapunov function for the closed loop system

Summary of Part IV

- ISS can be used for the stability analysis of cascades and fully interconnected systems
- ISS can be used for the analysis of numerical discretizations
- ISS controller design: abstract result and universal formula