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Part IV: Applications



ISS

Consider

z(t) = f(x(t), w(t))

with solutions (¢, x, w)

The system is called ISS, if there exist 7 € KL and v € K~ such
that for all initial values =, all perturbation functions w and all
times ¢t > 0 the following inequality holds:

lo(t, z, w) || < max{B([|lz||,t), v([lwlloc)}

In this part of the course, we will investigate applications and
some aspects of ISS controller design

Applications: stability of interconnected and discretized systems



Consider

GAS Cascades

z1(t)

ro(t)

= f1(z1(%))

fa(z2(t), w(t))




GAS Cascades

Coupling via w = xq vields

r1(t) = f1(z1(t))

zo(t)

T heorem:

r1 GAS 4 25 ISS =

fo(za(t),z1(t))

coupled system GAS



GAS Cascades

Proof: The proof is easier with ISDS formulation
le1(t 2Dl < w1(or(|=3]]), 1))

lpa(t, 23, )| < max{ua(o2(ll23]), 1), va(w,t)}

vo(w,t) = esssup po(v2(flw(r)|),t—17)
7€[0,t]

For w = 1 we obtain

vo(p1,t) < Trg[%ﬁ] uo(y2(p1 (o1 (|250), 7),t — 1) =: Ba(||2Y||,¢) € KL

Thus ¢ = (¢1,92) with |lof| = max{[[¢1l], [} satisfies

lo(t, z°0)|| < max{pu1(o1(|28]), 1)), ualoa(l|29]1),t), B2(||=]], )}



GAS Cascades

Note: The function

Ba(||z?],t) == max o (ya(u1 (o1 (|2, 7), ¢ — 7)

takes care of the coupling

For
p1 = —g1(p1) and o = —go(uo)
it is bounded by
Bo(r,t) < no(ypo001(r),t)

with 7o € LD given by

2 = max{—g2(n2), —v5(75 1 (12)) 91 (75 *(12))}



Consider

Small Gain Theorem

r1(t) = f1(z1(t), w1(t))
zo(t) fo(za(t), wa(t))




Small Gain Theorem

Coupling via wy = xo, wo = x1 Yields

r1(t) = f1(z1(t),z2(t))
zo(t) fo(za(t),z1(t))

X

Theorem: 1 ISS 4 25 ISS 4+ v1(vo(r)) < r
= coupled system GAS



Small Gain Theorem

Proof: For 6 < 1 we use ISDS in order to analyze

z1(t) = f1(x1(t),0z2(1)), (1) = fol(xo(t),0x1(t))
Induction over a suitable time sequence yields GAS with
s (29| < i (i ([12°])), 1)
where
a;(x) < max{o;(||lz;|]), vioo;(lz;])}
with 7, € LD determined by
= max{—g;(n), —v(v; *(m:)) g;(v; ()}
1=1,2,5=2,1

By continuity, the estimate also holds for 6 = 1



Example
o 3 .3
r1 = —x1 +wi/2 and zo = —x5 4+ wo

Using Vi (z) = Vo(x) = |z| we obtain

|
N
=
w
~—
N

pr(r,t) = e /4, 71(7)

r2
po(rt) = VEEMT () = {4r/3

~» the coupled system is asymptotically stable with
i (t, 29| < nia;(29),1), where

5
o1(z) = max{lz1], 3lz2l3}, A1 = max{—cin1, —coni}

as(z) = max{|zo|, Jalz1]t, 72
3

max{—c3n2, —can3}



Small Gain Theorem — ISS version
([Jiang/Teel/Praly 94, Teel 95])

Consider
r1(t) = f1(z1(t),w1(t),v1(t))
ro(t) = fo(xa(t), wa(t),va(t))
Y vy
Wi X = X Wy X — X%

writeISS as  [|w;(¢, z, wy, vy) || < max{B;([|z|l,£), yuw; (|willoo), yv; (|villoc) }



Small Gain Theorem — ISS version
([Jiang/Teel/Praly 94, Teel 95])
Coupling via wy = xo, wo = x1 Yields

r1(t) = f1(z1(t),z2(),v1())
zo(t) fo(zo(t), z1(t),va2(2))

Theorem: z1 & x5 ISS + v (Y (1)) <7
= coupled system ISS



Small Gain Theorems

Recall the notion of input-to-output stability (IOS) for systems
with output v = h(x):

ly(D} < max{B([[z]], ), v(llwlloc) }

Using IOS, the small gain results are easily extended to systems
with output



Numerical Discretization
All stability concepts are easily extended to compact sets A C R"

Denoting the Euclidean distance of =z € R"™ to A by |[x| 4 we can,
e.g., define

A is called (locally) asymptotically stable with neighborhood B
and attraction rate g € ICL, if for all x € B

|o(t, z)]|a < B(||z][a,t), t>0

Similarly, all the ISS concepts can be generalized



Numerical Discretization

Goal: find asymptotically stable sets by numerical simulations,
e.d., using a one step method

z(t +h) = ¢px(t)),

with solution trajectories ¢, (¢, zg)



Numerical Discretization

Theorem [Kloeden/Lorenz 86] Let A be an asymptotically stable

set for o(t, ) and let be ¢;, an approximation of ¢ by a numerical
one—step method with

|&n (R, x) — p(h, )| < chdT!

Then ¢; has “numerical” asymptotically stable sets flh with
Hausdorff limit Lim;, oA, = A.

But: For arbitrary numerical as. stable sets A4, the limit A =Lim;_ oA},
is not asymptotically stable for ¢

Question: When is A =Lim,,_.gA; as. stable for ¢?

Idea: Interpret ¢, as perturbed system = = f(z) + w



Numerical Discretization

Theorem: A = }I;inaflh asymptotically stable

=

the sets A, are locally ISS with 3, € KL, 7, € Koo such that

By, — pe kL and v, — v e K for h — 0
<~

the sets A, have attraction rates ), € £ with

B, — B e KL for h — 0



Numerical Discretization: Example

For = = < il ) c R? consider
>

[0 1
T = ( 10 ) r — max{||xz|| — 1,0}z

Euler approximation suggests that

S1={z e R?|||z|| = 1}

IS asymptotically stable

In fact,

Dy = {z € R?|||z| < 1}

is the only asymptotically stable set



Construction of ISS Feedbacks

Consider

z(t) = f(x(t),u(t), w(t))




Construction of ISS Feedbacks

Find a feedback law « such that

z(t) = f(z(t), u(z(t)), w(t))
is ISS




Construction of ISS Feedbacks

This is a special case of stabilization via feedback, hence the
same obstructions arise:

e continuous static state feedbacks might not exist (Brockett's
condition)

e NO ‘‘universal” design method for the general nonlinear case
Here, we will focus on
e an abstract existence result

e a design procedure based on an ISS Lyapunov function



Sampled solutions

How to define solutions for a discontinuous feedback map
uw: R" — U? — by sampling:

Consider a sampling sequence

™= (t)ieNgy O=tlo<ty1<ta<...—o00

with maximal sampling rate

A(m) :=supt; —t;_1 < o©
1eN

Define sampled solution ¢, (t,x) recursively for : = 0,1,2,... via

Tj .= @W(tiax)a @W(tam) L= Sp(t - tivxiau(mi))a t € [ti7ti—|—1]



Stabilization by discontinuous feedback
This framework allows for a general abstract stabilization result

Theorem [Clarke/Ledyaev/Sontag/Subbotin 97]:

If the system is asymptotically controllable to O then there ex-
ists a feedback uw : R"™ — U such that the sampled system is
semiglobally practically asymptotically stable, i.e.:

there exists 7 € ICL such that for all R, > 0 there is 6 > 0 with

lon(t, )| < B([|x]],t) + €

if ||z|| < R and A(r) <6



ISS Stabilization by discontinuous feedback
Consider the input affine system = = f(x) + G(x)u + G(x)w

Theorem: If the system is asymptotically controllable to O for
w = 0 then there exists a feedback « : R"™ — U such that the
sampled system is semiglobally practically ISS, i.e.:

there exists 0 € KL, v € Kx such that for all R, > 0 there is
o > 0 with

lor (2, 2, w)[| < max{B(|lz][,t),y([lw]lec)} + €

if |z <R, v([lwl]leo) < R and A(r) <6

Idea of Proof: Use control Lyapunov function V and nonsmooth
analysis techniques to make VV an ISS Lyapunov function



ISS Stabilization via universal formula

A more constructive approach is based on ISS control Lyapunov
functions (ISS clf) for control affine systems = = f(z, w)+G(x)u:

A smooth function V : R"™ — R is called an ISS clIf (in dissipation
form), if there exist o; € K, 2 = 1,2,3,4, such that

ar(|lz]]) < V(x) < ax(||z]])

and

nt, DV (z)(f(z,w) + G(z)u) < —az({|z]]) 4+ aa(f|w]])

hold for all x € R", w & R™



ISS Stabilization via universal formula

Given: 1121;] DV (z)(f(z,w) + G(z)u) < —asz(||z]]) + as(||w|)

Theorem: Consider u(z) = K(@(x), DV (2)G(x)1) with

K(a,b) ;=

p

\

a+ /a2 + [|p]*
- b, b=£0
1612

0, b=0

and w being a continuous and outside O smooth function with

w(z) = w(r) :=max{DV(z)f(z,w) — as(|lw]))}

and assume the small control property, i.e., for small ||z|| there
exists small ||u|| with w(z) + DV (2)G(x)u < —as(||z])

Then u is continuous and smooth outside O and the closed loop
system = = f(x,w) + G(x)u(x) is ISS (in the classical sense)



ISS Stabilization via universal formula

A similar result is available for integral ISS

Proof: Show that V is an ISS Lyapunov function for the closed
loop system



Summary of Part IV

e ISS can be used for the stability analysis of cascades and
fully interconnected systems

e ISS can be used for the analysis of numerical discretizations

e ISS controller design: abstract result and universal formula



