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(1) Introduction

What is Model Predictive Control (MPC)?



Setup
We consider nonlinear discrete time control systems

x(n + 1) = f(x(n), u(n))

with x(n) ∈ X, u(n) ∈ U

we consider discrete time systems for simplicity of
exposition

continuous time systems can be treated in an analogous
way or as discrete time sampled data systems

X and U depend on the model. These may be Euclidean
spaces Rn and Rm or more general (e.g., infinite
dimensional) spaces

state and control constraints can be added explicitly or
included implicitly by chosing X and U as suitable
subsets of the respective spaces
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Prototype Problem
Assume there exists an equilibrium x∗ ∈ X for u = 0, i.e.

f(x∗, 0) = x∗

Task: stabilize the system

x(n + 1) = f(x(n), u(n))

at x∗ via static state feedback

i.e., find F : X → U , such that x∗ is asymptotically stable for
the feedback controlled system

xF (n + 1) = f(xF (n), F (xF (n)))

Lars Grüne, Model Predictive Control, p. 5



Prototype Problem
Recall: Asymptotic stability means

Attraction: xF (n) → x∗ as n →∞ for all xF (0) ∈ X

plus

Stability: Solutions starting close to 0 remain close to 0 or,
formally: for each δ > 0 there exists ε > 0 such that

‖xF (n)− x∗‖ ≤ δ for all ‖xF (0)− x∗‖ ≤ ε, n ∈ N0

This prototype “equilibrium stabilization problem” is easily
generalizable to tracking, set stabilization, . . .

In the sequel, we always assume that the problem is solvable,
i.e., that a stabilizing feedback F : X → U exists

Lars Grüne, Model Predictive Control, p. 6



The basic idea of MPC
(1) At each time τ ∈ N0, for the current state xτ , use the
model to predict solutions

x(n + 1) = f(x(n), u(n)), n = 0, . . . , N − 1, x(0) = xτ ,

(2) Use these predictions in order to optimize

JN(xτ , u) =
N−1∑
n=0

`(x(n), u(n))

over the control sequences u = (u(0), . . . , u(N − 1)) ∈ UN ,
where `(x, u) penalizes the distance from the equilibrium and
control effort, e.g., `(x, u) = ‖x− x∗‖2 + λ‖u‖2

(3) From the optimal control sequence u∗(0), . . . , u∗(N − 1),
use the first element as feedback value, i.e.,

F (xτ ) := u∗(0)

Lars Grüne, Model Predictive Control, p. 7



MPC from the control point of view

minimize JN(xτ , u) =
N−1∑
n=0

`(x(n), u(t)), x(0) = xτ

 optimal control u∗(0), . . . , u∗(N − 1)  set FN(xτ ) := u∗(0)
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MPC from the trajectory point of view
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Model predictive control (aka Receding horizon control)

Idea first formulated in [A.I. Propoi, Use of linear programming

methods for synthesizing sampled-data automatic systems,

Automation and Remote Control 1963], often rediscovered

used in industrial applications since the mid 1970s, mainly for
constrained linear systems [Qin & Badgwell, 1997, 2001]

more than 9000 industrial MPC applications in Germany
counted in [Dittmar & Pfeifer, 2005]

development of theory since ∼1980 (linear), ∼1990 (nonlinear)

Central questions:

When does MPC stabilize the system?
How good is the performance of the MPC feedback law?
How long does the optimization horizon N need to be?

and, of course, the development of good algorithms (not topic of this course)

Lars Grüne, Model Predictive Control, p. 10



An example
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x1(n + 1) = α sin(ϕ + u)

x2(n + 1) = α cos(ϕ + u)/2

with α = ‖(x1, 2x2)
T‖, ϕ =

{
arccos(x2/α), x1 ≥ 0
2π − arccos(x2/α), x1 < 0,

X = R2, U = [0, umax], x∗ = (0,−1/2)T , x0 = (0, 1/2)T

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2 yields
asymptotic stability for N = 11 but not for N ≤ 10

Lars Grüne, Model Predictive Control, p. 11



(2) Background

Infinite horizon optimal control



Stabilization via optimal control

For continuous running cost ` : X × U → R+
0 with

min
u∈U

`(x, u) > 0 for x 6= x∗ and `(x∗, 0) = 0

define the infinite horizon functional

J∞(x, u) :=
∞∑

n=0

`(x(n), u(n))

and the optimal value function

V∞(x) := inf
u:N0→U

J∞(x, u)

Lars Grüne, Model Predictive Control, p. 13



Stabilization via optimal control

V∞(x) = inf
u:N0→U

J∞(x, u) = inf
u:N0→U

∞∑
n=0

`(x(n), u(n))

Facts (for suitable `):

if the feedback stabilization problem is solvable, then the
function V∞ is finite and continuous

V∞ satisfies the Dynamic Programming Principle

V∞(x) = min
u∈U

{`(x, u) + V∞(f(x, u))}

if we choose F∞(x) ∈ U as the minimizer, i.e.,

F∞(x) = argmin
u∈U

{`(x, u) + V∞(f(x, u))}

then F∞ is the optimal feedback

Lars Grüne, Model Predictive Control, p. 14



Asymptotic stability of the optimal feedback law
Furthermore F∞ is asymptotically stabilizing:
This follows from

V∞(f(x, F∞(x))) ≤ V∞(x)− `(x, F∞(x))︸ ︷︷ ︸
<V∞(x) for x 6=x∗

...

⇒ V∞ is a Lyapunov function
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 approach for MPC:

Prove similar inequalities for FN and

VN(x(0)) := inf
u:N0→U

JN(x(0), u) = inf
u:N0→U

N−1∑
n=0

`(x(n), u(n))

and use VN as a Lyapunov function

Lars Grüne, Model Predictive Control, p. 15



(3) The Stability Problem



VN as a Lyapunov Function
Problem: Prove that the MPC feedback law FN is stabilizing

Approach: Define the finite time optimal value function

VN(x(0)) := inf
u:N0→U

JN(x(0), u) = inf
u:N0→U

N−1∑
n=0

`(x(n), u(n))

and prove that VN is Lyapunov function, i.e., that VN has
suitable upper and lower bounds (automatically inherited from `)

and
VN(f(x, FN(x))) ≤ VN(x)− ˜̀(x, FN(x))

for some ˜̀ : X × U → R+
0 with ˜̀(x, FN(x)) > 0 for x 6= x∗

⇒ VN(xFN
(n)) → 0 ⇒ xFN

(n) → x∗ + stability

(most commonly used approach in the literature)

Lars Grüne, Model Predictive Control, p. 17



Why is this difficult?
We want

VN(f(x, FN(x))) ≤ VN(x)− ˜̀(x, FN(x)) (∗)︸ ︷︷ ︸
<0 for x 6=x∗

For N = ∞, the dynamic programming principle immediately
implies (∗) with ˜̀(x, F∞(x)) = `(x, F∞(x)):

V∞(x) = `(x, F∞(x)) + V∞(f(x, F∞(x)))

The dynamic programming principle for VN reads

VN(x) = min
u∈U

{`(x, u) + VN−1(f(x, u))}

= `(x, FN(x)) + VN−1(f(x, FN(x)))

Thus, (∗) follows with

˜̀(x, u) = `(x, u) + VN−1(f(x, u))− VN(f(x, u))

 Problem: ensure ˜̀(x, FN(x)) > 0 for x 6= x∗

Lars Grüne, Model Predictive Control, p. 18



Why is this difficult?

Task: Give conditions under which

˜̀(x, FN (x)) := `(x, FN (x))+VN−1(f(x, FN (x)))−VN (f(x, FN (x))) > 0

holds for x 6= x∗.

For the basic (and most widely used) MPC formulation

VN(x(0)) := inf
u:N0→U

JN(x(0), u) = inf
u:N0→U

N−1∑
n=0

`(x(n), u(n))

this appeared to be out of reach until the mid 1990s

(note: VN−1 − VN ≤ 0 by definition; typically with strict “<”)

 additional stabilizing constraints were proposed

Lars Grüne, Model Predictive Control, p. 19



(3a) Classical solution of the stability problem:

Equilibrium endpoint constraint



Equilibrium endpoint constraint I

Optimal control problem

minimize JN(x(0), u) =
N−1∑
n=0

`(x(n), u(n))

Recall: f(x∗, 0) = x∗ and `(x∗, 0) = 0

 add equilibrium endpoint constraint

x(N) = x∗

[Keerthi/Gilbert ’88, . . . ]

Lars Grüne, Model Predictive Control, p. 21



Equilibrium endpoint constraint II
Then, each feasible trajectory for horizon N − 1 with control
u(0), . . . , u(N − 2) can be prolonged with no cost by setting
u(N − 1) := 0, i.e.

`(x(N − 1), u(N − 1)) = `(x∗, 0) = 0

and thus

JN−1(x(0), u) =
N−2∑
n=0

`(x(n), u(n))

=
N−1∑
n=0

`(x(n), u(n)) = JN(x(0), u).

Since this prolonged trajectory is again feasible, we get

VN(x) ≤ VN−1(x)

Note: VN−1(x) ≤ VN(x) does no longer hold under x(N) = x∗

Lars Grüne, Model Predictive Control, p. 22



Equilibrium endpoint constraint III
From

VN(x) ≤ VN−1(x)

we get

˜̀(x, FN(x)) = `(x, FN(x)) + VN−1(f(x, FN(x)))

− VN(f(x, FN(x)))

≥ `(x, FN(x)) > 0

for all x 6= x∗ by choice of `.

 VN(f(x, FN(x))) ≤ VN(x)− `(x, FN(x)) (∗)

i.e., stability with Lyapunov function VN and ˜̀= `

Note: In general, x(N) = x∗ does not imply xFN
(N) = x∗

Lars Grüne, Model Predictive Control, p. 23



Equilibrium endpoint constraint — Discussion

The additional condition

x(N) = x∗

ensures asymptotic stability in a rigorously provable way, but

online optimization may become harder

large feasible set

{x(0) ∈ Rn |x(N) = x∗ for some u ∈ U}

typically needs large optimization horizon N

system needs to be controllable to x∗ in finite time

not very often used in industrial practice

Lars Grüne, Model Predictive Control, p. 24



(3b) Classical solution of the stability problem:

Regional endpoint constraint and terminal cost



Regional constraint and terminal cost I
Optimal control problem

minimize JN(x(0), u) =
N−1∑
n=0

`(x(n), u(n))

We want VN to become a Lyapunov function

 add local Lyapunov function W : Bδ(x
∗) → R+

0 as terminal cost

minimize JN(x(0), u) =
N−1∑
n=0

`(x(n), u(n)) + W (x(N))

and use terminal constraint

‖x(N)− x∗‖ ≤ δ, W (x(N)) ≤ ε

[Chen & Allgöwer ’98, Jadbabaie et al. ’98 . . . ]

Lars Grüne, Model Predictive Control, p. 26



Regional constraint and terminal cost II

minimize JN(x(0), u) =
N−1∑
n=0

`(x(n), u(n)) + W (x(N))

plus terminal constraint

‖x(N)− x∗‖ ≤ δ, W (x(N)) ≤ ε

We choose W , `, ε such that

cl {x ∈ Bδ(x
∗) |W (x) ≤ ε} ⊆ Bδ(x

∗)

W (x) ≤ ε implies the existence of FW (x) ∈ U with

W (f(x, FW (x)) ≤ W (x)− `(x, FW (x))

Lars Grüne, Model Predictive Control, p. 27



Regional constraint and terminal cost II
Then, each feasible trajectory for horizon N − 1 with control
u(0), . . . , u(N − 2) can be prolonged by setting
u(N − 1) := FW (x(N − 1)). This yields

`(x(N − 1), u(N − 1)) ≤ W (x(N − 1))−W (x(N))

and thus

JN−1(x(0), u) =
N−2∑
n=0

`(x(n), u(n)) + W (x(N − 1))

≥
N−1∑
n=0

`(x(n), u(n)) + W (x(N)) = JN (x(0), u).

Since this prolonged trajectory is again feasible, we get

VN(x) ≤ VN−1(x)

and we obtain stability just as for the equilibrium constraint

Lars Grüne, Model Predictive Control, p. 28



Regional constraint and terminal cost —

Discussion
Compared to the equilibrium constraint, the regional
constraint

yields easier online optimization problems

yields larger feasible sets

does not need exact controllability to x∗

But:

large feasible set still needs a large optimization horizon N

additional analytical effort for computing W

hardly ever used in industrial practice

In Part 2 we will see how stability can be proved without
stabilizing terminal constraints

Lars Grüne, Model Predictive Control, p. 29



(4) Inverse optimality and suboptimality



Performance of FN

Once stability can be guaranteed, we can investigate the
performance of the MPC feedback law FN

Performance of a feedback F : X → U is measured via the
infinite horizon functional

J∞(xF (0), F ) :=
∞∑

n=0

`(xF (n), F (xF (n)))

Recall: F = F∞ is optimal: J∞(xF∞(0), F∞) = V∞(xFN
(0))

In the literature, two different concepts can be found:

Inverse Optimality: show that FN is optimal for an
altered running cost ˜̀ 6= `

Suboptimality: derive upper bounds for J∞(xFN
(0), FN)

Lars Grüne, Model Predictive Control, p. 31



Inverse optimality
Theorem: [Poubelle/Bitmead/Gevers ’88, Magni/Sepulchre ’97]

FN is optimal for the problem

minimize J̃∞(x(0), u) =
∞∑

n=0

˜̀(x(n), u(n))

with

˜̀(x, u) := `(x, u) + VN−1(f(x, u))− VN(f(x, u))

Idea of proof: By the dynamic programming principle:

VN(x) = inf
u∈U

{`(x, u) + VN−1(f(x, u))}

= inf
u∈U

{˜̀(x, u) + VN(f(x, u))}

Hence, it satisfies the Bellman equation for ˜̀, implying

J̃∞(xFN
(0), FN) = VN(xFN

(0))
Lars Grüne, Model Predictive Control, p. 32



Inverse optimality

Inverse optimality

shows that FN is an infinite horizon optimal feedback law

thus implies several good properties of FN , like, e.g.,
some inherent robustness againts perturbations

But

the running cost

˜̀(x, u) := `(x, u) + VN−1(f(x, u))− VN(f(x, u))

is unknown and difficult to compute

knowing that FN is optimal for J̃∞(xFN
(0), FN) doesn’t

give us a simple way to estimate J∞(xFN
(0), FN)

Lars Grüne, Model Predictive Control, p. 33



Suboptimality
Theorem [???]: For both stabilizing terminal constraints the
estimate

J∞(xFN
(0), FN) ≤ VN(xFN

(0))

holds.

Sketch of proof: Both constraints imply VN−1 ≥ VN . Hence

l(xFN
(n), FN(xFN

(n)) = VN(xFN
(n))− VN−1(xFN

(n + 1))

≤ VN(xFN
(n))− VN(xFN

(n + 1))

Summing over n = 0, . . . , k yields

k∑
n=0

l(xFN
(n), FN(xFN

(n)) ≤ VN(xFN
(0))− VN(xFN

(k + 1))

≤ VN(xFN
(0))

Now letting k →∞ yields the assertion.

Lars Grüne, Model Predictive Control, p. 34



Suboptimality

Suboptimality gives us an easy to evaluate bound

J∞(xFN
(0), FN) ≤ VN(xFN

(0))

for the infinite horizon performance of FN .

However, due to the terminal constraints, VN(x) can be much
larger than the optimal upper bound V∞(x).

In Part 2 we will see that MPC without stabilizing terminal
constraints allows for suboptimality estimates in terms of
V∞(x).

Lars Grüne, Model Predictive Control, p. 35



Summary of Part 1

MPC is an online optimal control based method for
computing stabilizing feedback laws

MPC computes the feedback law by iteratively solving
finite horizon optimal control problems using the current
state xτ as initial value

the feedback value FN(xτ ) is the first element of the
resulting optimal control sequence

suitable terminal constraints ensure stability with VN as
Lyapunov function

FN is infinite horizon optimal for a suitably altered
running cost

the infinite horizon functional along the FN -controlled
trajectory is bounded by VN

Lars Grüne, Model Predictive Control, p. 36



Part 2

(5) Stability and suboptimality without

stabilizing constraints



MPC without stabilizing terminal constraints

We return to the basic MPC formulation

minimize JN(x(0), u) =
N−1∑
n=0

`(x(n), u(n)), x(0) = xτ

without any stabilizing terminal constraints

How can we prove stability for this setting?

Lars Grüne, Model Predictive Control, p. 38



MPC without stabilizing terminal constraints

Recall: we need to prove

VN(f(x, FN(x))) ≤ VN(x)− ˜̀(x, FN(x))

for some ˜̀(x, FN(x)) > 0 for x 6= x∗

Since by dynamic programming we have

˜̀(x, FN(x)) = `(x, FN(x))+VN−1(f(x, FN(x)))−VN(f(x, FN(x))),

this is equivalent to proving

`(x, FN(x)) + VN−1(f(x, FN(x)))− VN(f(x, FN(x))) > 0

for x 6= x∗

Lars Grüne, Model Predictive Control, p. 39



MPC without stabilizing terminal constraints

Theorem: [Alamir/Bornard ’95, Jadbabaie/Hauser ’05, Grimm et al. ’05]

Under suitable conditions, MPC without terminal constraints
stabilizes the system for sufficiently large optimization horizon N .

Idea of proof: Use convergence limN→∞ VN = V∞ to prove

`(x, FN (x))+VN−1(f(x, FN (x)))−VN (f(x, FN (x))) ≈ `(x, FN (x)) > 0

The crucial condition for sufficiently uniform convergence is

Exponential controllability “through ` ”: for real numbers
C > 0, σ ∈ (0, 1) and each x ∈ X there exists u(·) with

`(x(n), u(n)) ≤ Cσn`∗(x(0))

with `∗(x) = minu `(x, u)

Lars Grüne, Model Predictive Control, p. 40



MPC without stabilizing terminal constraints
Theorem: [Alamir/Bornard ’95, Jadbabaie/Hauser ’05, Grimm et al. ’05]

Under suitable conditions, MPC without terminal constraints
stabilizes the system for sufficiently large optimization horizon N .

Question: How large is “sufficiently large” for N?

the first two references are non-constructive in terms of N

[Grimm et al.] leads to the following estimate: Let

γ :=
∞∑

n=0

Cσn =
C

1− σ

for C, σ from `(x(n), u(n)) ≤ Cσn`∗(x(0)). Then

N = O(γ2)

(the constants in “O” can be computed, if desired)

Lars Grüne, Model Predictive Control, p. 41



MPC without stabilizing terminal constraints
A better estimate can be obtained, if

`(x, FN(x)) + VN−1(f(x, FN(x)))− VN(f(x, FN(x))) > 0

is established via directly estimating |VN − VN−1| instead of
using the detour |VN − VN−1| ≤ |VN − V∞|+ |VN−1 − V∞|
This way, in [Grüne/Rantzer ’08] the estimate

N = O(γ log γ)

is shown, again for

γ :=
∞∑

n=0

Cσn =
C

1− σ

with C, σ from `(x(n), u(n)) ≤ Cσn`∗(x(0))

Lars Grüne, Model Predictive Control, p. 42



MPC without stabilizing terminal constraints
All these estimates rely on the parameter

γ :=
∞∑

n=0

Cσn =
C

1− σ

with C, σ from `(x(n), u(n)) ≤ Cσn`∗(x(0))

This is because of the inequality

VN(x) ≤ V∞(x) ≤ γ`∗(x),

since these estimates rely on bounds on the value functions

Main drawback of these approaches:

we cannot distinguish between the influence of C and σ
(or other parameters in alternative controllability conditions)

Lars Grüne, Model Predictive Control, p. 43



Relaxed Lyapunov inequality
We want

VN(f(x, F∞(x))) ≤ VN(x)− ˜̀(x, F∞(x))

Ansatz: ˜̀= α` for α ∈ (0, 1]

Theorem [Grüne/Rantzer ’08]: If there exists α ∈ (0, 1] such that
the “relaxed Lyapunov inequality”

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

holds, then asymptotic stability follows (with VN as Lyapunov
function) and we get the suboptimality estimate

J∞(x, FN) ≤ V∞(x)/α

 we get stability and suboptimality at once

Lars Grüne, Model Predictive Control, p. 44



Computing α
Goal: Compute α in the relaxed Lyapunov inequality

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

Related approach in the literature:

estimate stability and suboptimality from numerical
approximation to VN [Shamma/Xiong ’97, Primbs/Nevestic ’01]

Here: compute α analytically from the controllability property

`(x(n), u(n)) ≤ Cσn`∗(x(0))

Here: via Vm(x) ≤ C
m−1∑
k=0

σk`∗(x) =: Bm(x)

using optimality conditions for (pieces of) trajectories

Lars Grüne, Model Predictive Control, p. 45



Computing α
The desired α–inequality

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

is satisfied for all x ∈ X iff

VN(x∗(1)) ≤ VN(x∗(0))− α`(x∗(0), u∗(0))

holds for all optimal trajectories x∗(n), u∗(n) for VN .

From the controllability property we get:

VN(x∗(1)) ≤ BN(x∗(1))

VN(x∗(1)) ≤ `(x∗(1), u∗(1)) + BN−1(x
∗(2))

VN(x∗(1)) ≤ `(x∗(1), u∗(1)) + `(x∗(2), u∗(2)) + BN−2(x
∗(3))

...
...

...

Lars Grüne, Model Predictive Control, p. 46



Computing α
 VN(x∗(1)) is bounded by sums over `(x∗(n), u∗(n))

For sums of these values, in turn, we get bounds from the
optimality principle and the controllability property:

N−1∑
n=0

`(x∗(n), u∗(n)) = VN(x∗(0)) ≤ BN(x∗(0))

N−1∑
n=1

`(x∗(n), u∗(n)) = VN−1(x
∗(1)) ≤ BN−1(x

∗(1))

N−1∑
n=2

`(x∗(n), u∗(n)) = VN−2(x
∗(2)) ≤ BN−2(x

∗(2))

...
...

Lars Grüne, Model Predictive Control, p. 47



Verifying the relaxed Lyapunov inequality
Find α, such that for all optimal trajectories x∗, u∗:

VN(x∗(1)) ≤ VN(x∗(0))− α`(x∗(0), u∗(0)) (∗)
Define λn := `(x∗(n), u∗(n)), ν := VN(x∗(1))

Then: (∗) ⇔ ν ≤
N−1∑
n=0

λn − αλ0

The inequalities from the last slides translate to

N−1∑
n=k

λn ≤
N−k−1∑

n=0

Cσnλk, k = 0, . . . , N − 2 (1)

ν ≤
j∑

n=1

λn + λj+1

N−j−1∑
n=0

Cσn, j = 0, . . . , N − 2 (2)

We call λ0, . . . , λN−1, ν ≥ 0 with (1), (2) admissible
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Stability and suboptimality condition
Theorem: [Grüne ’09] Assume that all admissible λ0, . . . , λN−1,
ν ≥ 0 satisfy

ν ≤
N−1∑
n=0

λn − αλ0 for some α > 0,

Then the MPC feedback FN stabilizes all control systems,
which satisfy the controllability condition and we get
J∞(x, FN) ≤ V∞(x)/α.

If, conversely, there exist admissible λ0, . . . , λN−1, ν ≥ 0 with

ν ≥
N−1∑
n=0

λn − αλ0 for some α < 0,

then there exists a control system, which satisfies the
controllability condition but is not stabilized by FN .
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Verifying the condition by Linear Programming

In order to apply the theorem,we need to check

ν ≤
N−1∑
n=0

λn − αλ0

for all admissible λ0, . . . , λN−1, ν ≥ 0 and some α > 0.

Equivalently:

minimize α =
N−1∑
n=0

λn − ν

over all admissible λ0, . . . , λN−1, ν ≥ 0 with λ0 = 1

This is a (small!) linear program which is explicitly solvable
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Computation of stability and optimality bounds
We thus obtain the explicit formula [Grüne/Pannek/Worthmann ’09]

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi =

i−1∑
k=0

Cσk

depending on the optimization horizon N and the parameters
C, σ in

`(x(n), u(n)) ≤ Cσn`∗(x(0))

In particular, for given α0 we can compute the minimal horizon
N with α > α0

We illustrate this for α0 = 0, i.e., for the minimal stabilizing
horizon

Lars Grüne, Model Predictive Control, p. 51



Horizon depending on C and σ
Horizons N for different C, σ with

∑∞
n=0 Cσn = 6:
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C = 3/2, σ = 3/4 C = 6/5, σ = 4/5
N = 7 N = 4
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Stability chart for C and σ

(Figure: Harald Voit)

Conclusion: for short optimization horizon N it is
Conclusion: more important: small C (“small overshoot”)
Conclusion: less important: small σ (“fast decay”)
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Other types of controllability condition

The procedure is easily extended to the more general
controllability condition:

for a sequence (cn)n∈N0 with cn → 0 and every x ∈ X there
exists u(·) with

`(x(n), u(n)) ≤ cn`
∗(x(0)), n = 0, 1, 2, . . .

with `∗(x) = minu `(x, u) (as before)
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Horizons for finite time controllability
Horizons N for different cn with

∑
cn = 6:

0 2 4 6 8
0

1

2

3

4

5

6

0 2 4 6 8
0

1

2

3

4

5

6

N = 11 N = 10

0 2 4 6 8
0

1

2

3

4

5

6

0 2 4 6 8
0

1

2

3

4

5

6

N = 7 N = 6

 for obtaining short horizons smaller (and later) overshoot
 is more important than fast controllability

 we can use this for the design of `
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(6) Examples for the design of MPC schemes



Design of “good” MPC running costs `

We want small overshoot C in the estimate

`(x(n), u(n)) ≤ Cσn`∗(x(0))

or, more generally, small values cn in

`(x(n), u(n)) ≤ cn`
∗(x(0))

The trajectories x(n) are given, but we can use the running
cost ` as design parameter
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The car-and-mountains example reloaded
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0.8

1

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2
 asymptotic stability for N = 11 but not for N ≤ 10

Reason: detour around mountains causes large overshoot C

Remedy: put larger weight on x2:

`(x, u) = (x1 − x∗1)
2 + 5(x2 − x∗2)

2 + |u|2  as. stab. for N = 2
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Example: pendulum on a cart

θ

θ

m=l=1

u

−ucos( )

−u

x1 = θ = angle
x2 = angular velocity
x3 = cart position
x4 = cart velocity
u = cart acceleration

 control system

ẋ1 = x2(t)

ẋ2 = −g sin(x1)− kx2

−u cos(x1)

ẋ3 = x4

ẋ4 = u
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Example: Inverted Pendulum
Reducing overshoot for swingup of the pendulum on a cart:

ẋ1 = x2, ẋ2 = −g sin(x1)− kx2 − u cos(x1)
ẋ3 = x4, ẋ4 = u

Let `(x) =
√

`1(x1, x2) + x2
3 + x2

4 with

`1(x1, x2) = x2
1 +x2

2 4(1− cos x1)+x2
2 (sin x1, x2)P (sin x1, x2)T

+2((1− cos x1)(1− cos x2)2)2

N = 15 N = 10 N = 4 (swingup only)

sampling time T = 0.15
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A PDE example

Our results are also applicable for infinite dimensional system

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1− y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10
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The uncontrolled PDE
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all equilibrium solutions
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1− y) + u

Goal: stabilize the sampled data solution y(n, ·) at y ≡ 0

Usual approach: quadratic L2 cost

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2
L2 + λ‖u(n, ·)‖2

L2

For y ≈ 0 the control u must compensate for yx  u ≈ −yx

 controllability condition

`(y(n, ·), u(n, ·)) ≤ Cσn`∗(y(0, ·))
⇔ ‖y(n, ·)‖2

L2 + λ‖u(n, ·)‖2
L2 ≤ Cσn‖y(0, ·)‖2

L2

≈ ‖y(n, ·)‖2
L2 + λ‖yx(n, ·)‖2

L2 ≤ Cσn‖y(0, ·)‖2
L2

for ‖yx‖L2 >> ‖y‖L2 this can only hold if C >> 0
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MPC for the PDE example
Conclusion: because of

‖y(n, ·)‖2
L2 + λ‖yx(n, ·)‖2

L2 ≤ Cσn‖y(0, ·)‖2
L2

the controllability condition may only hold for very large C

Remedy: use H1 cost

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2
L2 + ‖yx(n, ·)‖2

L2︸ ︷︷ ︸
=‖y(n,·)‖2

H1

+λ‖u(n, ·)‖2
L2 .

Then an analogous computation yields

‖y(n, ·)‖2
L2+(1+λ)‖yx(n, ·)‖2

L2 ≤ Cσn
(
‖y(0, ·)‖2

L2+‖yx(0, ·)‖2
L2

)
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MPC with L2 vs. H1 cost
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t=0.3

 

 
N= 3, L2
N=11, L2
N= 3, H1

MPC with L2 and H1 cost, λ = 0.1, sampling time T = 0.025
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1− y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
 L2 should perform better that H1
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Boundary control, L2 vs. H1, N = 20
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Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025
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Boundary control, L2, N = 10, 12, 20
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Horizont 10 (L2)
Horizont 12 (L2)
Horizont 20 (L2)

Boundary control, λ = 0.001, sampling time T = 0.025
(PDE computations: N. Altmüller, A. Grötsch, J. Pannek, S. Trenz, K. Worthmann)
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(7) Varying control horizon

[Grüne/Pannek/Worthmann ’09]



Packet loss

Network

MPC Controller

Plant

F (x(n))

x(n)

N

Idea: • send several values of optimal open loop
Idea: • control sequence (instead of just the first value)
Idea: • use these values until next values arrive
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Schematic illustration of the idea

n

x

0 1 2 3 4 5 6

...

...

...
x6

black = predictions (open loop optimization)
red = MPC closed loop
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Rigorous formulation
Denote successful transmission times by ni, i = 1, 2, . . .

Define a buffer length M ∈ N, M ≤ N − 1

At each transmission time ni, the plant receives and buffers
the feedback control sequence

FN(xni
, k) = u∗(k), k = 0, 1, 2, . . . ,M − 1

and implements

FN(xni
, 0), FN(xni

, 1), . . . , FN(xni
, mi − 1)

on the control horizon mi = ni+1 − ni ≤ M , i.e., until the
next sequence arrives

Note: mi is unknown at time ni
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Stability theorem
Theorem: If there exists α ∈ (0, 1] such that the relaxed
Lyapunov inequality

VN(x(m, x0, u
∗)) ≤ VN(x)− α

m−1∑
k=0

`(x(m, x0, u
∗), u∗(m))

holds for all m = 1, . . . ,M , then asymptotic stability follows
for the MPC closed loop with arbitrary transmission times ni,
i ∈ N, satisfying mi = ni+1 − ni ≥ M .

Furthermore, VN is Lyapunov function at the transmission
times ni and we get the suboptimality estimate

J∞(x, FN) ≤ V∞(x)/α

Note: The stability for arbitrary but fixed m carries over to
time varying mi because VN is a common Lyapunov function
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Computation of α(N, m)
We want α = α(N, m) satisfying

VN(x(m, x0, u
∗)) ≤ VN(x)− α

m−1∑
k=0

`(x(m, x0, u
∗), u∗(m)),

for all m = 1, . . . ,M .

Again, for each m this can be computed via an explicitly
solvable linear program which yields

α = 1−

N∏
i=m+1

(γi − 1)
N∏

i=N−m+1

(γi − 1)(
N∏

i=m+1

γi −
N∏

i=m+1

(γi − 1)
) (

N∏
i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)
)

with γi =
∑i−1

k=0 Cσk
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Example
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α(N, m) for C = 2, σ = 0.68, N = 8, m = 1, . . . , 7

This symmetry and monotonicity is not a coincidence
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Property of α(N, m)

Theorem: The values α(N, m) satisfy

α(N, m) = α(N, N −m), m = 1, . . . , N − 1

and
α(N, m) ≤ α(N, m + 1), m = 1, . . . dN/2e

Corollary: If N is such that all C, σ-exponentially controllable
systems are stabilized with “classical” MPC (m = 1), then
they are stabilized for arbitrary varying control horizons
mi ∈ {1, . . . , N − 1}
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Conservatism of worst case analysis
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The symmetry states that the worst case system for m
behaves exactly as good as the worst case system for N −m.

However, in general these worst case systems do not coincide.

How conservative is this worst case approach?

Lars Grüne, Model Predictive Control, p. 77



Example: linearized inverted pendulum

ẋ =


0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

 x +


0
1
0
1

 u, x0 =


0
0

−2
0


sampling time T = 0.5, `(x, u) = 2‖x‖1 + 4‖u‖1, N = 11
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α after 1 MPC step α at time n = 20
Symmetry is not present in this example
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Monte Carlo simulation
Alternative to worst case approach: probabilistic analysis:

We generate random trajectories satisfying the LP-optimality
conditions derived from the C, σ-exponential controllability
condition and compute α by Monte Carlo simulation

1 2 3 4 5 6 7 8 9
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Monte−Carlo, 1000 samples

m

α

This results are qualitatively similar to the numerical
simulations
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Summary of Part 2

Stability of unconstrained MPC problems can be ensured
using exponential controllability conditions

First proofs used convergence VN → V∞ in order to
establish stability

Tighter and more useful estimates can be obtained by
using optimality conditions for (pieces of) trajectories

The conditions lead to an explicitly solvable linear
program

The knowledge obtained from this analysis can be used to
design good MPC schemes by choosing suitable running
costs `

The analysis can be extended to variable control horizons
useful for networked control systems
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