Model Predictive Control

Lars Grüne

Mathematisches Institut, Universität Bayreuth

IDK Winter School, Thurnau, March 4-6, 2009

Contents

Part 1:

- (1) Introduction: What is Model Predictive Control?
- (2) Background: Infinite horizon optimal control
- (3) The stability problem and its classical solutions:
 - (3a) Equilibrium endpoint constraint
 - (3b) Regional endpoint constraint and terminal cost
- (4) Inverse optimality and suboptimality estimates

Part 2:

- (5) Stability and suboptimality without stabilizing constraints
- (6) Examples for the design of MPC schemes
- (7) Varying control horizons (time permitting)
- (8) Demonstration (T. Gebelein and J. Pannek)

(1) Introduction What is Model Predictive Control (MPC)?

Setup

We consider nonlinear discrete time control systems

x(n+1) = f(x(n), u(n))

with $x(n) \in X$, $u(n) \in U$

- we consider discrete time systems for simplicity of exposition
- continuous time systems can be treated in an analogous way or as discrete time sampled data systems
- X and U depend on the model. These may be Euclidean spaces ℝⁿ and ℝ^m or more general (e.g., infinite dimensional) spaces
- state and control constraints can be added explicitly or included implicitly by chosing X and U as suitable subsets of the respective spaces

Prototype Problem

Assume there exists an equilibrium $x^* \in X$ for u = 0, i.e.

 $f(x^*, 0) = x^*$

Task: stabilize the system

$$x(n+1) = f(x(n), u(n))$$

at x^* via static state feedback

i.e., find $F:X\to U,$ such that x^* is asymptotically stable for the feedback controlled system

$$x_F(n+1) = f(x_F(n), F(x_F(n)))$$

Prototype Problem

Recall: Asymptotic stability means

Attraction: $x_F(n) \to x^*$ as $n \to \infty$ for all $x_F(0) \in X$

plus

Stability: Solutions starting close to 0 remain close to 0 or, formally: for each $\delta > 0$ there exists $\varepsilon > 0$ such that

 $||x_F(n) - x^*|| \leq \delta$ for all $||x_F(0) - x^*|| \leq \varepsilon, n \in \mathbb{N}_0$

This prototype "equilibrium stabilization problem" is easily generalizable to tracking, set stabilization, ...

In the sequel, we always assume that the problem is solvable, i.e., that a stabilizing feedback $F:X\to U$ exists

The basic idea of MPC

(1) At each time $\tau \in \mathbb{N}_0$, for the current state x_{τ} , use the model to predict solutions

 $x(n+1) = f(x(n), u(n)), \quad n = 0, \dots, N-1, \ x(0) = x_{\tau},$

(2) Use these predictions in order to optimize

$$J_N(x_{\tau}, u) = \sum_{n=0}^{N-1} \ell(x(n), u(n))$$

over the control sequences $u = (u(0), \ldots, u(N-1)) \in U^N$, where $\ell(x, u)$ penalizes the distance from the equilibrium and control effort, e.g., $\ell(x, u) = \|x - x^*\|^2 + \lambda \|u\|^2$

(3) From the optimal control sequence $u^*(0), \ldots, u^*(N-1)$, use the first element as feedback value, i.e.,

$$F(x_{\tau}) := u^*(0)$$

MPC from the control point of view

minimize
$$J_N(x_{\tau}, u) = \sum_{n=0}^{N-1} \ell(x(n), u(t)), \quad x(0) = x_{\tau}$$

 \rightsquigarrow optimal control $u^*(0), \ldots, u^*(N-1) \rightsquigarrow$ set $F_N(x_\tau) := u^*(0)$

MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop

Model predictive control (aka Receding horizon control) Idea first formulated in [A.I. Propoi, Use of linear programming methods for synthesizing sampled-data automatic systems, Automation and Remote Control 1963], often rediscovered

used in industrial applications since the mid 1970s, mainly for constrained linear systems [Qin & Badgwell, 1997, 2001]

more than 9000 industrial MPC applications in Germany counted in [Dittmar & Pfeifer, 2005]

development of theory since \sim 1980 (linear), \sim 1990 (nonlinear)

Central questions:

- When does MPC stabilize the system?
- How good is the performance of the MPC feedback law?
- How long does the optimization horizon N need to be?

and, of course, the development of good algorithms (not topic of this course)

An example

with
$$\alpha = \|(x_1, 2x_2)^T\|$$
, $\varphi = \begin{cases} \arccos(x_2/\alpha), & x_1 \ge 0\\ 2\pi - \arccos(x_2/\alpha), & x_1 < 0, \end{cases}$
 $X = \mathbb{R}^2$, $U = [0, u_{\max}]$, $x^* = (0, -1/2)^T$, $x_0 = (0, 1/2)^T$

MPC with $\ell(x, u) = ||x - x^*||^2 + |u|^2$ and $u_{\max} = 0.2$ yields asymptotic stability for N = 11 but not for $N \le 10$

(2) Background Infinite horizon optimal control

Stabilization via optimal control

For continuous running cost $\ell: X \times U \to \mathbb{R}^+_0$ with

$$\min_{u\in U}\ell(x,u)>0 \text{ for } x\neq x^* \quad \text{and} \quad \ell(x^*,0)=0$$

define the infinite horizon functional

$$J_{\infty}(x,u) := \sum_{n=0}^{\infty} \ell(x(n), u(n))$$

and the optimal value function

$$V_{\infty}(x) := \inf_{u:\mathbb{N}_0 \to U} J_{\infty}(x, u)$$

Stabilization via optimal control

$$V_{\infty}(x) = \inf_{u:\mathbb{N}_{0}\to U} J_{\infty}(x, u) = \inf_{u:\mathbb{N}_{0}\to U} \sum_{n=0}^{\infty} \ell(x(n), u(n))$$

Facts (for suitable ℓ):

- if the feedback stabilization problem is solvable, then the function V_∞ is finite and continuous
- V_{∞} satisfies the Dynamic Programming Principle $V_{\infty}(x) = \min_{u \in U} \left\{ \ell(x, u) + V_{\infty}(f(x, u)) \right\}$
- if we choose $F_{\infty}(x) \in U$ as the minimizer, i.e.,

$$F_{\infty}(x) = \operatorname*{argmin}_{u \in U} \{\ell(x, u) + V_{\infty}(f(x, u))\}$$

then ${\it F}_\infty$ is the optimal feedback

Asymptotic stability of the optimal feedback law

Furthermore F_∞ is asymptotically stabilizing: This follows from

$$V_{\infty}(f(x, F_{\infty}(x))) \leq \underbrace{V_{\infty}(x) - \ell(x, F_{\infty}(x))}_{< V_{\infty}(x) \text{ for } x \neq x^{*}}$$

 $\Rightarrow V_{\infty}$ is a Lyapunov function

→ approach for MPC:

Prove similar inequalities for F_N and $V_N(x(0)) := \inf_{u:\mathbb{N}_0 \to U} J_N(x(0), u) = \inf_{u:\mathbb{N}_0 \to U} \sum_{n=0}^{N-1} \ell(x(n), u(n))$ and use V_N as a Lyapunov function

(3) The Stability Problem

V_N as a Lyapunov Function

Problem: Prove that the MPC feedback law F_N is stabilizing Approach: Define the finite time optimal value function

$$V_N(x(0)) := \inf_{u:\mathbb{N}_0 \to U} J_N(x(0), u) = \inf_{u:\mathbb{N}_0 \to U} \sum_{n=0}^{N-1} \ell(x(n), u(n))$$

and prove that V_N is Lyapunov function, i.e., that V_N has suitable upper and lower bounds (automatically inherited from ℓ) and

$$V_N(f(x, F_N(x))) \le V_N(x) - \tilde{\ell}(x, F_N(x))$$

for some $\tilde{\ell}: X \times U \to \mathbb{R}^+_0$ with $\tilde{\ell}(x, F_N(x)) > 0$ for $x \neq x^*$

 \Rightarrow $V_N(x_{F_N}(n)) \rightarrow 0$ \Rightarrow $x_{F_N}(n) \rightarrow x^* + \text{stability}$

(most commonly used approach in the literature)

Why is this difficult?

We want

$$V_N(f(x, F_N(x))) \le V_N(x) - \underbrace{\tilde{\ell}(x, F_N(x))}_{<0 \text{ for } x \neq x^*}$$
(*)

For $N = \infty$, the dynamic programming principle immediately implies (*) with $\tilde{\ell}(x, F_{\infty}(x)) = \ell(x, F_{\infty}(x))$:

 $V_{\infty}(x) = \ell(x, F_{\infty}(x)) + V_{\infty}(f(x, F_{\infty}(x)))$

The dynamic programming principle for V_N reads

$$V_N(x) = \min_{u \in U} \{ \ell(x, u) + V_{N-1}(f(x, u)) \}$$

= $\ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x)))$

Thus, (*) follows with

 $\tilde{\ell}(x,u) = \ell(x,u) + V_{N-1}(f(x,u)) - V_N(f(x,u))$

 \rightsquigarrow Problem: ensure $\tilde{\ell}(x, F_N(x)) > 0$ for $x \neq x^*$

Why is this difficult?

Task: Give conditions under which

 $\tilde{\ell}(x, F_N(x)) := \ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x))) - V_N(f(x, F_N(x))) > 0$

holds for $x \neq x^*$.

For the basic (and most widely used) MPC formulation

$$V_N(x(0)) := \inf_{u:\mathbb{N}_0 \to U} J_N(x(0), u) = \inf_{u:\mathbb{N}_0 \to U} \sum_{n=0}^{N-1} \ell(x(n), u(n))$$

this appeared to be out of reach until the mid 1990s (note: $V_{N-1} - V_N \le 0$ by definition; typically with strict "<")

 \rightsquigarrow additional stabilizing constraints were proposed

(3a) Classical solution of the stability problem: Equilibrium endpoint constraint

Equilibrium endpoint constraint I

Optimal control problem

minimize
$$J_N(x(0), u) = \sum_{n=0}^{N-1} \ell(x(n), u(n))$$

Recall: $f(x^*, 0) = x^*$ and $\ell(x^*, 0) = 0$

 \rightsquigarrow add equilibrium endpoint constraint

$$x(N) = x^*$$

 $[{\sf Keerthi}/{\sf Gilbert '88, \ldots}]$

Equilibrium endpoint constraint II

Then, each feasible trajectory for horizon N-1 with control $u(0), \ldots, u(N-2)$ can be prolonged with no cost by setting u(N-1) := 0, i.e.

$$\ell(x(N-1), u(N-1)) = \ell(x^*, 0) = 0$$

and thus

$$J_{N-1}(x(0), u) = \sum_{n=0}^{N-2} \ell(x(n), u(n))$$

=
$$\sum_{n=0}^{N-1} \ell(x(n), u(n)) = J_N(x(0), u).$$

Since this prolonged trajectory is again feasible, we get

 $V_N(x) \le V_{N-1}(x)$

Note: $V_{N-1}(x) \leq V_N(x)$ does no longer hold under $x(N) = x^*$

Equilibrium endpoint constraint III

From

 $V_N(x) \le V_{N-1}(x)$

we get

$$\tilde{\ell}(x, F_N(x)) = \ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x))) - V_N(f(x, F_N(x))) \geq \ell(x, F_N(x)) > 0$$

for all $x \neq x^*$ by choice of ℓ .

 $\rightsquigarrow \qquad V_N(f(x, F_N(x))) \le V_N(x) - \ell(x, F_N(x)) \qquad (*)$

i.e., stability with Lyapunov function V_N and $\widetilde{\ell}=\ell$

Note: In general, $x(N) = x^*$ does not imply $x_{F_N}(N) = x^*$

Equilibrium endpoint constraint — Discussion

The additional condition

 $x(N) = x^*$

ensures asymptotic stability in a rigorously provable way, but

- online optimization may become harder
- large feasible set

 $\{x(0) \in \mathbb{R}^n \,|\, x(N) = x^* \text{ for some } u \in \mathcal{U}\}$

typically needs large optimization horizon ${\cal N}$

- system needs to be controllable to x^* in finite time
- not very often used in industrial practice

(3b) Classical solution of the stability problem: Regional endpoint constraint and terminal cost

Regional constraint and terminal cost I Optimal control problem

minimize
$$J_N(x(0), u) = \sum_{n=0}^{N-1} \ell(x(n), u(n))$$

We want V_N to become a Lyapunov function

 \rightsquigarrow add local Lyapunov function $W: B_{\delta}(x^*) \rightarrow \mathbb{R}^+_0$ as terminal cost

minimize
$$J_N(x(0), u) = \sum_{n=0}^{N-1} \ell(x(n), u(n)) + W(x(N))$$

and use terminal constraint

$$||x(N) - x^*|| \le \delta, \ W(x(N)) \le \varepsilon$$

[Chen & Allgöwer '98, Jadbabaie et al. '98 ...]

Regional constraint and terminal cost II

minimize
$$J_N(x(0), u) = \sum_{n=0}^{N-1} \ell(x(n), u(n)) + W(x(N))$$

plus terminal constraint

$$||x(N) - x^*|| \le \delta, \ W(x(N)) \le \varepsilon$$

We choose W , ℓ , ε such that

• cl $\{x \in B_{\delta}(x^*) | W(x) \le \varepsilon\} \subseteq B_{\delta}(x^*)$

• $W(x) \le \varepsilon$ implies the existence of $F_W(x) \in U$ with $W(f(x, F_W(x)) \le W(x) - \ell(x, F_W(x))$

Regional constraint and terminal cost II

Then, each feasible trajectory for horizon N-1 with control $u(0), \ldots, u(N-2)$ can be prolonged by setting $u(N-1) := F_W(x(N-1))$. This yields

 $\ell(x(N-1), u(N-1)) \le W(x(N-1)) - W(x(N))$

and thus

$$J_{N-1}(x(0), u) = \sum_{n=0}^{N-2} \ell(x(n), u(n)) + W(x(N-1))$$

$$\geq \sum_{n=0}^{N-1} \ell(x(n), u(n)) + W(x(N)) = J_N(x(0), u).$$

Since this prolonged trajectory is again feasible, we get $V_N(x) \le V_{N-1}(x)$

and we obtain stability just as for the equilibrium constraint

Regional constraint and terminal cost — Discussion

Compared to the equilibrium constraint, the regional constraint

- yields easier online optimization problems
- yields larger feasible sets
- does not need exact controllability to x^*

But:

- $\bullet\,$ large feasible set still needs a large optimization horizon N
- \bullet additional analytical effort for computing W
- hardly ever used in industrial practice

In **Part 2** we will see how stability can be proved without stabilizing terminal constraints

(4) Inverse optimality and suboptimality

Performance of F_N

Once stability can be guaranteed, we can investigate the performance of the MPC feedback law F_N

Performance of a feedback $F:X \rightarrow U$ is measured via the infinite horizon functional

$$J_{\infty}(x_F(0), F) := \sum_{n=0}^{\infty} \ell(x_F(n), F(x_F(n)))$$

Recall: $F = F_{\infty}$ is optimal: $J_{\infty}(x_{F_{\infty}}(0), F_{\infty}) = V_{\infty}(x_{F_N}(0))$

In the literature, two different concepts can be found:

- Inverse Optimality: show that F_N is optimal for an altered running cost $\tilde{\ell} \neq \ell$
- Suboptimality: derive upper bounds for $J_{\infty}(x_{F_N}(0), F_N)$

Inverse optimality

Theorem: [Poubelle/Bitmead/Gevers '88, Magni/Sepulchre '97] F_N is optimal for the problem

minimize
$$\widetilde{J}_{\infty}(x(0), u) = \sum_{n=0}^{\infty} \widetilde{\ell}(x(n), u(n))$$

with

$$\tilde{\ell}(x,u) := \ell(x,u) + V_{N-1}(f(x,u)) - V_N(f(x,u))$$

Idea of proof: By the dynamic programming principle:

$$V_N(x) = \inf_{u \in U} \{ \ell(x, u) + V_{N-1}(f(x, u)) \}$$

=
$$\inf_{u \in U} \{ \tilde{\ell}(x, u) + V_N(f(x, u)) \}$$

Hence, it satisfies the Bellman equation for $\tilde{\ell}$, implying

$$J_{\infty}(x_{F_N}(0), F_N) = V_N(x_{F_N}(0))$$

Lars Grüne, Model Predictive Control, p. 32

Inverse optimality

Inverse optimality

- shows that F_N is an infinite horizon optimal feedback law
- thus implies several good properties of F_N , like, e.g., some inherent robustness againts perturbations

But

the running cost

 $\tilde{\ell}(x,u) := \ell(x,u) + V_{N-1}(f(x,u)) - V_N(f(x,u))$

is unknown and difficult to compute

• knowing that F_N is optimal for $\widetilde{J}_{\infty}(x_{F_N}(0), F_N)$ doesn't give us a simple way to estimate $J_{\infty}(x_{F_N}(0), F_N)$

Suboptimality

Theorem [???]: For both stabilizing terminal constraints the estimate

$$J_{\infty}(x_{F_N}(0), F_N) \le V_N(x_{F_N}(0))$$

holds.

Sketch of proof: Both constraints imply $V_{N-1} \ge V_N$. Hence $l(x_{F_N}(n), F_N(x_{F_N}(n))) = V_N(x_{F_N}(n)) - V_{N-1}(x_{F_N}(n+1))$ $\le V_N(x_{F_N}(n)) - V_N(x_{F_N}(n+1))$

Summing over $n = 0, \ldots, k$ yields

 $\sum_{n=0}^{k} l(x_{F_N}(n), F_N(x_{F_N}(n)) \leq V_N(x_{F_N}(0)) - V_N(x_{F_N}(k+1)) \\ < V_N(x_{F_N}(0))$

Now letting $k \to \infty$ yields the assertion.

Suboptimality

Suboptimality gives us an easy to evaluate bound

 $J_{\infty}(x_{F_N}(0), F_N) \le V_N(x_{F_N}(0))$

for the infinite horizon performance of F_N .

However, due to the terminal constraints, $V_N(x)$ can be much larger than the optimal upper bound $V_{\infty}(x)$.

In **Part 2** we will see that MPC without stabilizing terminal constraints allows for suboptimality estimates in terms of $V_{\infty}(x)$.

Summary of Part 1

- MPC is an online optimal control based method for computing stabilizing feedback laws
- MPC computes the feedback law by iteratively solving finite horizon optimal control problems using the current state x_{τ} as initial value
- the feedback value $F_N(x_\tau)$ is the first element of the resulting optimal control sequence
- \bullet suitable terminal constraints ensure stability with V_N as Lyapunov function
- F_N is infinite horizon optimal for a suitably altered running cost
- the infinite horizon functional along the ${\cal F}_N\text{-controlled}$ trajectory is bounded by V_N

Part 2

(5) Stability and suboptimality without stabilizing constraints

We return to the basic MPC formulation

minimize
$$J_N(x(0), u) = \sum_{n=0}^{N-1} \ell(x(n), u(n)), \quad x(0) = x_{\tau}$$

without any stabilizing terminal constraints

How can we prove stability for this setting?

Recall: we need to prove

 $V_N(f(x, F_N(x))) \le V_N(x) - \tilde{\ell}(x, F_N(x))$

for some $\tilde{\ell}(x, F_N(x)) > 0$ for $x \neq x^*$

Since by dynamic programming we have

 $\tilde{\ell}(x, F_N(x)) = \ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x))) - V_N(f(x, F_N(x))),$

this is equivalent to proving

 $\ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x))) - V_N(f(x, F_N(x))) > 0$

for $x \neq x^*$

Theorem: [Alamir/Bornard '95, Jadbabaie/Hauser '05, Grimm et al. '05] Under suitable conditions. MPC without terminal constraints stabilizes the system for sufficiently large optimization horizon N. Idea of proof: Use convergence $\lim_{N\to\infty} V_N = V_\infty$ to prove $\ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x))) - V_N(f(x, F_N(x))) \approx \ell(x, F_N(x)) > 0$ The crucial condition for sufficiently uniform convergence is Exponential controllability "through ℓ ": for real numbers $C > 0, \sigma \in (0, 1)$ and each $x \in X$ there exists $u(\cdot)$ with

 $\ell(x(n), u(n)) \le C\sigma^n \ell^*(x(0))$

with $\ell^*(x) = \min_u \ell(x, u)$

Theorem: [Alamir/Bornard '95, Jadbabaie/Hauser '05, Grimm et al. '05] Under suitable conditions, MPC without terminal constraints stabilizes the system for sufficiently large optimization horizon N.

Question: How large is "sufficiently large" for N?

- $\bullet\,$ the first two references are non-constructive in terms of $N\,$
- [Grimm et al.] leads to the following estimate: Let

$$\gamma := \sum_{n=0}^{\infty} C\sigma^n = \frac{C}{1-\sigma}$$

for C, σ from $\ell(x(n),u(n)) \leq C \sigma^n \ell^*(x(0)).$ Then

 $N = \mathcal{O}(\gamma^2)$

(the constants in " \mathcal{O} " can be computed, if desired)

MPC without stabilizing terminal constraints A better estimate can be obtained, if

 $\ell(x, F_N(x)) + V_{N-1}(f(x, F_N(x))) - V_N(f(x, F_N(x))) > 0$

is established via directly estimating $|V_N - V_{N-1}|$ instead of using the detour $|V_N - V_{N-1}| \le |V_N - V_\infty| + |V_{N-1} - V_\infty|$

This way, in [Grüne/Rantzer '08] the estimate

 $N = \mathcal{O}(\gamma \log \gamma)$

is shown, again for

 $\gamma := \sum_{n=0}^{\infty} C \sigma^n = \frac{C}{1-\sigma}$

with C, σ from $\ell(x(n), u(n)) \leq C\sigma^n \ell^*(x(0))$

MPC without stabilizing terminal constraints All these estimates rely on the parameter

$$\gamma := \sum_{n=0}^{\infty} C\sigma^n = \frac{C}{1-\sigma}$$

with C , σ from $\ell(x(n),u(n)) \leq C \sigma^n \ell^*(x(0))$

This is because of the inequality

$$V_N(x) \le V_\infty(x) \le \gamma \ell^*(x),$$

since these estimates rely on bounds on the value functions

Main drawback of these approaches:

we cannot distinguish between the influence of C and σ (or other parameters in alternative controllability conditions)

Lars Grüne, Model Predictive Control, p. 43

Relaxed Lyapunov inequality

We want

$$V_N(f(x, F_\infty(x))) \le V_N(x) - \tilde{\ell}(x, F_\infty(x))$$

Ansatz: $\tilde{\ell} = \alpha \ell$ for $\alpha \in (0, 1]$

Theorem [Grüne/Rantzer '08]: If there exists $\alpha \in (0,1]$ such that the "relaxed Lyapunov inequality"

 $V_N(f(x, F_N(x))) \le V_N(x) - \alpha \ell(x, F_N(x))$

holds, then asymptotic stability follows (with V_N as Lyapunov function) and we get the suboptimality estimate

 $J_{\infty}(x, F_N) \le V_{\infty}(x)/\alpha$

 \rightsquigarrow we get stability and suboptimality at once

Computing α

Goal: Compute α in the relaxed Lyapunov inequality

 $V_N(f(x, F_N(x))) \le V_N(x) - \alpha \ell(x, F_N(x))$

Related approach in the literature:

estimate stability and suboptimality from numerical approximation to V_N [Shamma/Xiong '97, Primbs/Nevestic '01]

Here: compute α analytically from the controllability property

 $\ell(x(n), u(n)) \le C\sigma^n \ell^*(x(0))$

via

$$V_m(x) \le C \sum_{k=0}^{m-1} \sigma^k \ell^*(x) =: B_m(x)$$

using optimality conditions for (pieces of) trajectories

Computing α

The desired α -inequality

 $V_N(f(x, F_N(x))) \le V_N(x) - \alpha \ell(x, F_N(x))$

is satisfied for all $x \in X$ iff

 $V_N(x^*(1)) \le V_N(x^*(0)) - \alpha \ell(x^*(0), u^*(0))$

holds for all optimal trajectories $x^*(n), u^*(n)$ for V_N .

From the controllability property we get:

 $V_N(x^*(1)) \leq B_N(x^*(1))$ $V_N(x^*(1)) \leq \ell(x^*(1), u^*(1)) + B_{N-1}(x^*(2))$ $V_N(x^*(1)) \leq \ell(x^*(1), u^*(1)) + \ell(x^*(2), u^*(2)) + B_{N-2}(x^*(3))$

Computing α

 $\rightsquigarrow V_N(x^*(1))$ is bounded by sums over $\ell(x^*(n), u^*(n))$

For sums of these values, in turn, we get bounds from the optimality principle and the controllability property:

$$\sum_{n=0}^{N-1} \ell(x^*(n), u^*(n)) = V_N(x^*(0)) \leq B_N(x^*(0))$$

$$\sum_{n=1}^{N-1} \ell(x^*(n), u^*(n)) = V_{N-1}(x^*(1)) \leq B_{N-1}(x^*(1))$$

$$\sum_{n=2}^{N-1} \ell(x^*(n), u^*(n)) = V_{N-2}(x^*(2)) \leq B_{N-2}(x^*(2))$$

1

Verifying the relaxed Lyapunov inequality Find α , such that for all optimal trajectories x^* , u^* :

$$V_N(x^*(1)) \le V_N(x^*(0)) - \alpha \ell(x^*(0), u^*(0))$$

Define $\lambda_n := \ell(x^*(n), u^*(n)), \quad \nu := V_N(x^*(1))$

Then: (*)
$$\Leftrightarrow \nu \leq \sum_{n=0}^{N-1} \lambda_n - \alpha \lambda_0$$

I

The inequalities from the last slides translate to

$$\sum_{n=k}^{N-1} \lambda_n \le \sum_{n=0}^{N-k-1} C\sigma^n \lambda_k, \quad k = 0, \dots, N-2$$
(1)
$$\nu \le \sum_{n=1}^j \lambda_n + \lambda_{j+1} \sum_{n=0}^{N-j-1} C\sigma^n, \quad j = 0, \dots, N-2$$
(2)

We call $\lambda_0, \ldots, \lambda_{N-1}, \nu \ge 0$ with (1), (2) admissible

(*)

Stability and suboptimality condition

Theorem: [Grüne '09] Assume that all admissible $\lambda_0, \ldots, \lambda_{N-1}$, $\nu \ge 0$ satisfy

$$\nu \leq \sum_{n=0}^{N-1} \lambda_n - \alpha \lambda_0 \quad \text{for some} \quad \alpha > 0,$$

Then the MPC feedback F_N stabilizes all control systems, which satisfy the controllability condition and we get $J_{\infty}(x, F_N) \leq V_{\infty}(x)/\alpha$.

If, conversely, there exist admissible $\lambda_0,\ldots,\lambda_{N-1},\nu\geq 0$ with

$$\nu \geq \sum_{n=0}^{N-1} \lambda_n - \alpha \lambda_0 \quad \text{for some} \quad \alpha < 0,$$

then there exists a control system, which satisfies the controllability condition but is not stabilized by F_N .

Verifying the condition by Linear Programming

In order to apply the theorem, we need to check

$$\nu \le \sum_{n=0}^{N-1} \lambda_n - \alpha \lambda_0$$

for all admissible $\lambda_0, \ldots, \lambda_{N-1}, \nu \ge 0$ and some $\alpha > 0$.

Equivalently:

minimize
$$\alpha = \sum_{n=0}^{N-1} \lambda_n - \nu$$

over all admissible $\lambda_0, \ldots, \lambda_{N-1}, \nu \ge 0$ with $\lambda_0 = 1$

This is a (small!) linear program which is explicitly solvable

Computation of stability and optimality bounds

We thus obtain the explicit formula [Grüne/Pannek/Worthmann '09]

$$\alpha = 1 - \frac{(\gamma_N - 1)\prod_{i=2}^N (\gamma_i - 1)}{\prod_{i=2}^N \gamma_i - \prod_{i=2}^N (\gamma_i - 1)} \quad \text{with} \quad \gamma_i = \sum_{k=0}^{i-1} C\sigma^k$$

depending on the optimization horizon N and the parameters $C,\ \sigma$ in

$$\ell(x(n), u(n)) \le C\sigma^n \ell^*(x(0))$$

In particular, for given α_0 we can compute the minimal horizon N with $\alpha > \alpha_0$

We illustrate this for $\alpha_0=0,$ i.e., for the minimal stabilizing horizon

Horizon depending on C and σ Horizons N for different C, σ with $\sum_{n=0}^{\infty} C\sigma^n = 6$:

Other types of controllability condition

The procedure is easily extended to the more general controllability condition:

for a sequence $(c_n)_{n\in\mathbb{N}_0}$ with $c_n\to 0$ and every $x\in X$ there exists $u(\cdot)$ with

 $\ell(x(n), u(n)) \le c_n \ell^*(x(0)), \qquad n = 0, 1, 2, \dots$

with $\ell^*(x) = \min_u \ell(x, u)$ (as before)

Horizons for finite time controllability Horizons N for different c_n with $\sum c_n = 6$:

 → for obtaining short horizons smaller (and later) overshoot is more important than fast controllability

we can use this for the design of ℓ

(6) Examples for the design of MPC schemes

Design of "good" MPC running costs ℓ

We want small overshoot C in the estimate

 $\ell(x(n),u(n)) \leq C \sigma^n \ell^*(x(0))$

or, more generally, small values c_n in

 $\ell(x(n), u(n)) \le c_n \ell^*(x(0))$

The trajectories x(n) are given, but we can use the running cost ℓ as design parameter

The car-and-mountains example reloaded

MPC with $\ell(x, u) = ||x - x^*||^2 + |u|^2$ and $u_{\text{max}} = 0.2$ \Rightarrow asymptotic stability for N = 11 but not for $N \le 10$

Reason: detour around mountains causes large overshoot CRemedy: put larger weight on x_2 :

 $\ell(x, u) = (x_1 - x_1^*)^2 + 5(x_2 - x_2^*)^2 + |u|^2 \rightsquigarrow \text{ as. stab. for } N = 2$

Example: pendulum on a cart

Example: Inverted Pendulum

Reducing overshoot for swingup of the pendulum on a cart:

$$\dot{x}_1 = x_2,$$
 $\dot{x}_2 = -g\sin(x_1) - kx_2 - u\cos(x_1)$
 $\dot{x}_3 = x_4,$ $\dot{x}_4 = u$

Let
$$\ell(x) = \sqrt{\ell_1(x_1, x_2) + x_3^2 + x_4^2}$$
 with

A PDE example

Our results are also applicable for infinite dimensional system We illustrate this with the 1d controlled PDE

$$y_t = y_x + \nu y_{xx} + \mu y(y+1)(1-y) + u$$

with

domain $\Omega = [0, 1]$ solution y = y(t, x)boundary conditions y(t, 0) = y(t, 1) = 0parameters $\nu = 0.1$ and $\mu = 10$

The uncontrolled PDE

all equilibrium solutions

Lars Grüne, Model Predictive Control, p. 62

MPC for the PDE example

 $y_t = y_x + \nu y_{xx} + \mu y(y+1)(1-y) + u$

Goal: stabilize the sampled data solution $y(n, \cdot)$ at $y \equiv 0$ Usual approach: quadratic L^2 cost

 $\ell(y(n,\cdot), u(n,\cdot)) = \|y(n,\cdot)\|_{L^2}^2 + \lambda \|u(n,\cdot)\|_{L^2}^2$

For $y \approx 0$ the control u must compensate for $y_x \rightsquigarrow u \approx -y_x$ \rightsquigarrow controllability condition

$$\begin{split} \ell(y(n,\cdot), u(n,\cdot)) &\leq C\sigma^n \ell^*(y(0,\cdot)) \\ \Leftrightarrow & \|y(n,\cdot)\|_{L^2}^2 + \lambda \|u(n,\cdot)\|_{L^2}^2 &\leq C\sigma^n \|y(0,\cdot)\|_{L^2}^2 \\ \approx & \|y(n,\cdot)\|_{L^2}^2 + \lambda \|y_x(n,\cdot)\|_{L^2}^2 &\leq C\sigma^n \|y(0,\cdot)\|_{L^2}^2 \\ \text{for } \|y_x\|_{L^2} \gg \|y\|_{L^2} \text{ this can only hold if } C \gg 0 \end{split}$$

MPC for the PDE example Conclusion: because of

 $\|y(n,\cdot)\|_{L^2}^2 + \lambda \|y_x(n,\cdot)\|_{L^2}^2 \le C\sigma^n \|y(0,\cdot)\|_{L^2}^2$

the controllability condition may only hold for very large C Remedy: use $H^1 \mbox{ cost}$

$$\ell(y(n,\cdot),u(n,\cdot)) = \underbrace{\|y(n,\cdot)\|_{L^2}^2 + \|y_x(n,\cdot)\|_{L^2}^2}_{=\|y(n,\cdot)\|_{H^1}^2} + \lambda \|u(n,\cdot)\|_{L^2}^2.$$

Then an analogous computation yields

$$\|y(n,\cdot)\|_{L^2}^2 + (1+\lambda)\|y_x(n,\cdot)\|_{L^2}^2 \le C\sigma^n \Big(\|y(0,\cdot)\|_{L^2}^2 + \|y_x(0,\cdot)\|_{L^2}^2\Big)$$

MPC with L_2 vs. H_1 cost

Boundary Control

Now we change our PDE from distributed to (Dirichlet-) boundary control, i.e.

$$y_t = y_x + \nu y_{xx} + \mu y(y+1)(1-y)$$

with

domain $\Omega = [0, 1]$ solution y = y(t, x)

boundary conditions $y(t,0) = u_0(t)$, $y(t,1) = u_1(t)$

parameters $\nu = 0.1$ and $\mu = 10$

with boundary control, stability can only be achieved via large gradients in the transient phase $\rightsquigarrow L_2$ should perform better that H_1

Boundary control, L_2 vs. H_1 , N = 20

Boundary control, L_2 , N = 10, 12, 20

(7) Varying control horizon

[Grüne/Pannek/Worthmann '09]

Packet loss

- Idea: send several values of optimal open loop control sequence (instead of just the first value)
 - use these values until next values arrive

Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Rigorous formulation

Denote successful transmission times by n_i , i = 1, 2, ...

Define a buffer length $M \in \mathbb{N}$, $M \leq N-1$

At each transmission time n_i , the plant receives and buffers the feedback control sequence

$$F_N(x_{n_i},k) = u^*(k), \quad k = 0, 1, 2, \dots, M-1$$

and implements

$$F_N(x_{n_i}, 0), F_N(x_{n_i}, 1), \ldots, F_N(x_{n_i}, m_i - 1)$$

on the control horizon $m_i = n_{i+1} - n_i \leq M$, i.e., until the next sequence arrives

Note: m_i is unknown at time n_i

Stability theorem

Theorem: If there exists $\alpha \in (0,1]$ such that the relaxed Lyapunov inequality

$$V_N(x(m, x_0, u^*)) \le V_N(x) - \alpha \sum_{k=0}^{m-1} \ell(x(m, x_0, u^*), u^*(m))$$

holds for all m = 1, ..., M, then asymptotic stability follows for the MPC closed loop with arbitrary transmission times n_i , $i \in \mathbb{N}$, satisfying $m_i = n_{i+1} - n_i \ge M$.

Furthermore, V_N is Lyapunov function at the transmission times n_i and we get the suboptimality estimate

 $J_{\infty}(x, F_N) \le V_{\infty}(x)/\alpha$

Note: The stability for arbitrary but fixed m carries over to time varying m_i because V_N is a common Lyapunov function

Computation of $\alpha(N,m)$

We want $\alpha = \alpha(N,m)$ satisfying

$$V_N(x(m, x_0, u^*)) \le V_N(x) - \alpha \sum_{k=0}^{m-1} \ell(x(m, x_0, u^*), u^*(m)),$$

for all $m = 1, \ldots, M$.

Again, for each m this can be computed via an explicitly solvable linear program which yields

$$\alpha = 1 - \frac{\prod_{i=m+1}^{N} (\gamma_i - 1) \prod_{i=N-m+1}^{N} (\gamma_i - 1)}{\left(\prod_{i=m+1}^{N} \gamma_i - \prod_{i=m+1}^{N} (\gamma_i - 1)\right) \left(\prod_{i=N-m+1}^{N} \gamma_i - \prod_{i=N-m+1}^{N} (\gamma_i - 1)\right)}$$

with
$$\gamma_i = \sum_{k=0}^{i-1} C \sigma^k$$

Example

 $\alpha(N,m)$ for C=2, $\sigma=0.68$, N=8, $m=1,\ldots,7$

This symmetry and monotonicity is not a coincidence

Lars Grüne, Model Predictive Control, p. 75

Property of $\alpha(N,m)$

Theorem: The values $\alpha(N,m)$ satisfy

$$\alpha(N,m) = \alpha(N,N-m), \ m = 1,...,N-1$$

and

$$\alpha(N,m) \le \alpha(N,m+1), \ m = 1, \dots \lceil N/2 \rceil$$

Corollary: If N is such that all C, σ -exponentially controllable systems are stabilized with "classical" MPC (m = 1), then they are stabilized for arbitrary varying control horizons $m_i \in \{1, \ldots, N-1\}$

Conservatism of worst case analysis

The symmetry states that the worst case system for m behaves exactly as good as the worst case system for N - m. However, in general these worst case systems do not coincide. How conservative is this worst case approach?

Example: linearized inverted pendulum

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ g & -k & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} u, \qquad x_0 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \end{pmatrix}$$

sampling time $T=0.5,~\ell(x,u)=2\|x\|_1+4\|u\|_1,~N=11$

Monte Carlo simulation

Alternative to worst case approach: probabilistic analysis:

We generate random trajectories satisfying the LP-optimality conditions derived from the C, σ -exponential controllability condition and compute α by Monte Carlo simulation

This results are qualitatively similar to the numerical simulations

Summary of Part 2

- Stability of unconstrained MPC problems can be ensured using exponential controllability conditions
- First proofs used convergence $V_N \to V_\infty$ in order to establish stability
- Tighter and more useful estimates can be obtained by using optimality conditions for (pieces of) trajectories
- The conditions lead to an explicitly solvable linear program
- The knowledge obtained from this analysis can be used to design good MPC schemes by choosing suitable running costs ℓ
- The analysis can be extended to variable control horizons useful for networked control systems

