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(1) Introduction

What is Model Predictive Control (MPC)?

Setup
We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x0

or, briefly
x+ = f(x, u)

with x ∈ X, u ∈ U

we consider discrete time systems for simplicity of
exposition
continuous time systems can be treated by using the
discrete time representation of the corresponding sampled
data system
X and U depend on the model. These may be Euclidean
spaces Rn and Rm or more general (e.g., infinite
dimensional) spaces. For simplicity of exposition we
assume that we have a norm ‖ · ‖ on both spaces
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Prototype Problem

Assume there exists an equilibrium x∗ ∈ X for u = 0, i.e.

f(x∗, 0) = x∗

Task: stabilize the system x+ = f(x, u)
at x∗ via static state feedback, i.e., find µ : X → U , such that
x∗ is asymptotically stable for the feedback controlled system

xµ(n+ 1) = f(xµ(n), µ(xµ(n))), xµ(0) = x0

Additionally, we impose state constraints xµ(n) ∈ X
and control constraints µ(x(n)) ∈ U
for all n ∈ N and given sets X ⊆ X, U ⊆ U
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Prototype Problem

Asymptotic stability means

Attraction: xµ(n)→ x∗ as n→∞
plus

Stability: Solutions starting close to x∗ remain close to x∗

(we will later formalize this property using KL functions)

Informal interpretation: control the system to x∗ and keep it
there while obeying the state and control constraints

Idea of MPC: use an optimal control problem which minimizes
the distance to x∗ in order to synthesize a feedback law µ

Lars Grüne, Nonlinear Model Predictive Control, p. 6

The idea of MPC
For defining the MPC scheme, we choose a stage cost `(x, u)
penalizing the distance from x∗ and the control effort, e.g.,
`(x, u) = ‖x− x∗‖2 + λ‖u‖2 for λ ≥ 0

The basic idea of MPC is:

minimize the summed stage cost along trajectories
generated from our model over a prediction horizon N

use the first element of the resulting optimal control
sequence as feedback value

repeat this procedure iteratively for all sampling instants
n = 0, 1, 2, . . .

Notation in what follows:

general feedback laws will be denoted by µ

the MPC feedback law will be denoted by µN

Lars Grüne, Nonlinear Model Predictive Control, p. 7

The basic MPC scheme
Formal description of the basic MPC scheme:

At each time instant n solve for the current state xµN
(n)

minimize
u admissible

JN(xµN
(n),u) =

N−1∑
k=0

`(xu(k),u(k)), xu(0) = xµN
(n)

(u admissible ⇔ u ∈ UN and xu(k) ∈ X)

 optimal trajectory x?(0), . . . , x?(N)

with optimal control u?(0), . . . ,u?(N − 1)

Define the MPC feedback law µ(xµ(n)) := u∗(0)

 xµN (n+ 1) = f(xµN (n), µN (xµN (n))) = f(xµN (n),u?(0)) = x?(1)
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MPC from the trajectory point of view
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Model predictive control (aka Receding horizon control)

Idea first formulated in [A.I. Propoi, Use of linear programming

methods for synthesizing sampled-data automatic systems,

Automation and Remote Control 1963], often rediscovered

used in industrial applications since the mid 1970s, mainly for
constrained linear systems [Qin & Badgwell, 1997, 2001]

more than 9000 industrial MPC applications in Germany
counted in [Dittmar & Pfeifer, 2005]

development of theory since ∼1980 (linear), ∼1990 (nonlinear)

Central questions:

When does MPC stabilize the system?
How good is the performance of the MPC feedback law?
How long does the optimization horizon N need to be?

and, of course, the development of good algorithms (not topic of this course)

Lars Grüne, Nonlinear Model Predictive Control, p. 10

An example

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x+
1 = sin(ϕ+ u)

x+
2 = cos(ϕ+ u)/2

with ϕ =

{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0,

X = {x ∈ R2 : ‖(x1, 2x2)
T‖ = 1}, U = [0, umax]

x∗ = (0,−1/2)T , x0 = (0, 1/2)T

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2 yields
asymptotic stability for N = 11 but not for N ≤ 10
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Summary of Section (1)

MPC is an online optimal control based method for
computing stabilizing feedback laws

MPC computes the feedback law by iteratively solving
finite horizon optimal control problems using the current
state x0 = xµN

(n) as initial value

the feedback value µN(x0) is the first element of the
resulting optimal control sequence

the example shows that MPC does not always yield an
asymptotically stabilizing feedback law

Lars Grüne, Nonlinear Model Predictive Control, p. 12



(2a) Background material:

Lyapunov functions

Purpose of this section
We introduce Lyapunov functions as a tool to rigorously verify
asymptotic stability

In the subsequent sections, this will be used in order to
establish asymptotic stability of the MPC closed loop

In this section, we consider discrete time systems without
input, i.e.,

x+ = g(x)

with x ∈ X or, in long form

x(n+ 1) = g(x(n)), x(0) = x0

(later we will apply the results to g(x) = f(x, µN (x)))

Note: we do not require g to be continuous

Lars Grüne, Nonlinear Model Predictive Control, p. 14

Comparison functions
For R+

0 = [0,∞) we use the following classes of comparison
functions

K :=

{
α : R+

0 → R+
0

∣∣∣∣ α is continuous and strictly
increasing with α(0) = 0

}

K∞ :=
{
α : R+

0 → R+
0

∣∣∣α ∈ K and α is unbounded
}

KL :=

β : R+
0 × R+

0 → R+
0

∣∣∣∣∣∣
β(·, t) ∈ K for all t ∈ R+

0

and β(r, ·) is strictly de-
creasing to 0 for all r ∈ R+

0


Lars Grüne, Nonlinear Model Predictive Control, p. 15

Asymptotic stability revisited

A point x∗ is called an equilibrium of x+ = g(x) if g(x∗) = x∗

A set Y ⊆ X is called forward invariant for x+ = g(x) if
g(x)x ∈ Y holds for each x ∈ Y

We say that x∗ is asymptotically stable for x+ = g(x) on a
forward invariant set Y if there exists β ∈ KL such that

‖x(n)− x∗‖ ≤ β(‖x(0)− x∗‖, n) for all n ∈ N

How can we check whether this property holds?

Lars Grüne, Nonlinear Model Predictive Control, p. 16



Lyapunov function

Let Y ⊆ X be a forward invariant set and x∗ ∈ X. A function
V : Y → R+

0 is called a Lyapunov function for x+ = g(x) if
the following two conditions hold for all x ∈ Y :

(i) There exists α1, α2 ∈ K∞ such that

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖)

(ii) There exists αV ∈ K such that

V (x+) ≤ V (x)− αV (‖x− x∗‖)

Lars Grüne, Nonlinear Model Predictive Control, p. 17

Stability theorem

Theorem: If the system x+ = g(x) admits a Lyapunov
function V on a forward invariant set Y , then x∗ is an
asymptotically stable equilibrium on Y

Idea of proof: V (x+) ≤ V (x)− αV (‖x− x∗‖) implies that V
is strictly decaying along solutions away from x∗

This allows to construct β̃ ∈ KL with V (x(n)) ≤ β̃(V (x(0)), n)

The bounds α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖) imply that
asymptotic stability holds with β(r, t) = α−1

1 (β̃(α2(r), t))

Lars Grüne, Nonlinear Model Predictive Control, p. 18

Lyapunov functions — discussion

While the convergence x(n)→ x∗ is typically non-monotone
for an asymptotically stable system, the convergence
V (x(n))→ 0 is strictly monotone

It is hence sufficient to check the decay of V in one time step

 it is typically quite easy to check whether a given function
is a Lyapunov function

But it is in general difficult to find a candidate for a Lyapunov
function

For MPC, we will use the optimal value functions which we
introduce in the next section

Lars Grüne, Nonlinear Model Predictive Control, p. 19

(2b) Background material:

Dynamic Programming



Purpose of this section

We define the optimal value functions VN for the optimal
control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

used within the MPC scheme (with x0 = xµN
(n))

We present the dynamic programming principle, which
establishes a relation for these functions and will eventually
enable us to derive conditions under which VN is a Lyapunov
function

Lars Grüne, Nonlinear Model Predictive Control, p. 21

Optimal value functions

We define the optimal value function

VN(x0) := inf
u admissible

JN(x0,u)

setting VN(x0) :=∞ if x0 is not feasible, i.e., if there is no
admissible u (recall: u admissible ⇔ xu(k) ∈ X, u(k) ∈ U)

An admissible control sequence u? is called optimal, if

JN(x0,u
?) = VN(x0)

Note: an optimal u? does not need to exist in general. In the
sequel we assume that u? exists if x0 is feasible

Lars Grüne, Nonlinear Model Predictive Control, p. 22

Dynamic Programming Principle
Theorem: (Dynamic Programming Principle) For any feasible
x0 ∈ X the optimal value function satisfies

VN(x0) = inf
u∈U
{`(x0, u) + VN−1(f(x0, u))}

Moreover, if u? is an optimal control, then

VN(x0) = `(x0,u
∗(0)) + VN−1(f(x0,u

?(0)))

holds.

Idea of Proof: Follows by taking infima in the identity

JN(x0,u) = `(xu(0),u(0)) +
N−1∑
k=1

`(xu(k),u(k))

= `(x0,u(0)) + JN−1(f(x0,u(0)),u(·+ 1))

Lars Grüne, Nonlinear Model Predictive Control, p. 23

Corollaries
Corollary: Let x? be an optimal trajectory of length N with
optimal control u? and x?(0) = x. Then

(i) The “tail” (
x?(k), x?(k + 1), . . . , x?(N − 1)

)
is an optimal trajectory of length N − k.

(ii) The MPC feedback µN satisfies

µN(x) = argmin
u∈U

{`(x, u) + VN−1(f(x, u))}

(i.e., u = µN (x) minimizes this expression),

VN(x) = `(x, µN(x)) + VN−1(f(x, µN(x)))

and
u?(k) = µN−k(x

?(k)), k = 0, . . . , N − 1

Lars Grüne, Nonlinear Model Predictive Control, p. 24



Dynamic Programming Principle — discussion

We will see later, that under suitable conditions the optimal
value function will play the role of a Lyapunov function for the
MPC closed loop

The dynamic programming principle and its corollaries will
prove to be important tools to establish this fact

In order to see why this can work, in the next section we
briefly look at infinite horizon optimal control problems

Moreover, for simple systems the principle can be used for
computing VN and µN — we will see an example in the
excercises

Lars Grüne, Nonlinear Model Predictive Control, p. 25

(2c) Background material:

Relaxed Dynamic Programming

Infinite horizon optimal control

Just like the finite horizon problem we can define the infinite
horizon optimal control problem

minimize
u admissible

J∞(x0,u) =
∞∑
k=0

`(xu(k),u(k)), xu(0) = x0

and the corresponding optimal value function

V∞(x0) := inf
u admissible

J∞(x0,u)

If we could compute an optimal feedback µ∞ for this problem
(which is — in contrast to computing µN — in general a very

difficult problem), we would have solved the stabilization
problem

Lars Grüne, Nonlinear Model Predictive Control, p. 27

Infinite horizon dynamic programming principle
Recall the corollary from the finite horizon dynamic
programming principle

VN(x) = `(x, µN(x)) + VN−1(f(x, µN(x)))

The corresponding result which can be proved for the infinite
horizon problem reads

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

 if `(x, µ∞(x)) ≥ αV (‖x− x∗‖) holds, then we get

V∞(f(x, µ∞(x))) ≤ V∞(x)− αV (‖x− x∗‖)

and if in addition α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖) holds,
then V∞ is a Lyapunov function  asymptotic stability

Lars Grüne, Nonlinear Model Predictive Control, p. 28



Relaxing dynamic programming
Unfortunately, an equation of the type

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

cannot be expected if we replace “∞” by “N” everywhere
(in fact, it would imply VN = V∞)

However, we will see that we can establish relaxed versions of
this inequality in which we

relax “=” to “≥”

relax `(x, µ(x)) to α`(x, µ(x)) for some α ∈ (0, 1]

 VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

“relaxed dynamic programming inequality” [Rantzer et al. ’06ff]

What can we conclude from this inequality?

Lars Grüne, Nonlinear Model Predictive Control, p. 29

Relaxed dynamic programming
We define the infinite horizon performance of the MPC closed
loop system x+ = f(x, µN(x)) as

J cl∞(x0, µN) =
∞∑
k=0

`(xµN
(k), µN(xµN

(k))), xµN
(0) = x0

Theorem: [Gr./Rantzer ’08, Gr./Pannek ’11] Let Y ⊆ X be a
forward invariant set for the MPC closed loop and assume that

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

holds for all x ∈ Y and some N ∈ N and α ∈ (0, 1]

Then for all x ∈ Y the infinite horizon performance satisfies

J cl∞(x0, µN) ≤ VN(x0)/α

Lars Grüne, Nonlinear Model Predictive Control, p. 30

Relaxed dynamic programming

Theorem (continued): If, moreover, there exists α2, α3 ∈ K∞
such that the inequalities

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

hold for all x ∈ Y , then the MPC closed loop is asymptotically
stable on Y with Lyapunov function VN .

Proof: The assumed inequalities immediately imply that
V = VN is a Lyapunov function for x+ = g(x) = f(x, µN(x))
with

α1(r) = α3(r), αV (r) = αα3(r)

⇒ asymptotic stability

Lars Grüne, Nonlinear Model Predictive Control, p. 31

Relaxed dynamic programming
For proving the performance estimate J cl∞(x0, µN) ≤ VN(x0)/α,
the relaxed dynamic programming inequality implies

α

K−1∑
n=0

`(xµN
(k), µN(xµN

(k)))

≤
K−1∑
n=0

(
VN(xµN

(n))− VN(xµN
(n+ 1))

)
= VN(xµN

(0))− VN(xµN
(K)) ≤ VN(xµN

(0))

Since all summands are ≥ 0, this implies that the limit for
K →∞ exists and we get

αJ cl∞(x0, µN) = α

∞∑
n=0

`(xµN
(k), µN(xµN

(k))) ≤ VN(xµN
(0))

⇒ assertion
Lars Grüne, Nonlinear Model Predictive Control, p. 32



Summary of Section (2)

Lyapunov functions are our central tool for verifying
asymptotic stability

Dynamic programming provides us with equations which
will be heavily used in the subsequent analysis

Infinite horizon optimal control would solve the
stabilization problem — if we could compute the feedback
law µ∞

The performance of the MPC controller can be measured
by looking at the infinite horizon value along the MPC
closed loop trajectories

Relaxed dynamic programming gives us conditions under
which both asymptotic stability and performance results
can be derived

Lars Grüne, Nonlinear Model Predictive Control, p. 33

Application of background results
The main task will be to verify the assumptions of the relaxed
dynamic programming theorem, i.e.,

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

for some α ∈ (0, 1], and

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

for all x in a forward invariant set Y for x+ = f(x, µN(x))

To this end, we present two different approaches:

modify the optimal control problem in the MPC loop by
adding terminal constraints and costs

derive assumptions on f and ` under which MPC works
without terminal constraints and costs

Lars Grüne, Nonlinear Model Predictive Control, p. 34

(3) Stability with stabilizing constraints

VN as a Lyapunov Function
Problem: Prove that the MPC feedback law µN is stabilizing

Approach: Verify the assumptions

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

for some α ∈ (0, 1], and

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

of the relaxed dynamic programming theorem for the optimal
value function

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

Lars Grüne, Nonlinear Model Predictive Control, p. 36



Why is this difficult?
Let us first consider the inequality

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

The dynamic programming principle for VN yields

VN(x) ≥ `(x, µN(x)) + VN−1(f(x, µN(x)))

 we have VN−1 where we would like to have VN

 we would get the desired inequality if we could ensure

VN−1(f(x, µN(x))) ≥ VN(f(x, µN(x))) + “small error”

(where “small” means that the error can be compensated replacing

`(x, µN (x)) by α`(x, µN (x)) with α ∈ (0, 1))

Lars Grüne, Nonlinear Model Predictive Control, p. 37

Why is this difficult?

Task: Find conditions under which

VN−1(f(x, µN(x))) ≥ VN(f(x, µN(x))) + “small error”

holds

For

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

this appeared to be out of reach until the mid 1990s

Note: VN−1 ≤ VN by definition; typically with strict “<”

 additional stabilizing constraints were proposed

Lars Grüne, Nonlinear Model Predictive Control, p. 38

(3a) Equilibrium terminal constraint (3a)

Equilibrium terminal constraint
Optimal control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

Assumption: f(x∗, 0) = x∗ and `(x∗, 0) = 0

Idea: add equilibrium terminal constraint

xu(N) = x∗

[Keerthi/Gilbert ’88, . . . ]

 we now solve

minimize
u∈UN

x∗ (x0)
JN(x0,u) =

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

with UNx∗(x0) := {u ∈ UN admissible and xu(N) = x∗}
Lars Grüne, Nonlinear Model Predictive Control, p. 40



Prolongation of control sequences
Let ũ ∈ UN−1

x∗ (x0) ⇒ xũ(N − 1) = x∗

Define u ∈ UN as u(k) :=

{
ũ(k), k = 0, . . . , N − 2
0, k = N − 1

⇒ xu(N) = f(xũ(N − 1),u(N − 1)) = f(x∗, 0) = x∗

⇒ uN ∈ UNx∗(x0)

 every ũ ∈ UN−1
x∗ (x0) can be prolonged to an uN ∈ UNx∗(x0)

Moreover, since

`(xuN
(N − 1),uN(N − 1)) = `(x∗, 0) = 0,

the prolongation has zero stage cost

Lars Grüne, Nonlinear Model Predictive Control, p. 41

Reversal of VN−1 ≤ VN
Now, let ũ? ∈ UN−1

x∗ (x0) be the optimal control for JN−1, i.e.,

VN−1(x0) = JN−1(x0, ũ
?)

Denote by u ∈ UNx∗(x0) its prolongation

⇒ VN−1(x0) = JN−1(x0, ũ
?) =

N−2∑
k=0

`(xũ?(k), ũ?(k))

=
N−2∑
n=0

`(xu(k),u(k)) + `(xu(N − 1),u(N − 1))︸ ︷︷ ︸
=0

=
N−1∑
n=0

`(xu(k),u(k)) = JN(x0,u) ≥ VN(x0)

 The inequality VN−1 ≤ VN is reversed to VN−1 ≥ VN

Note: VN−1 ≤ VN does no longer hold now

But: the dynamic programming principle remains valid
Lars Grüne, Nonlinear Model Predictive Control, p. 42

Relaxed dynamic programming inequality
From the reversed inequality

VN−1(x) ≥ VN(x)

and the dynamic programming principle

VN(x) ≥ `(x, µN(x)) + VN−1(f(x, µN(x)))

we immediately get

VN(x) ≥ `(x, µN(x)) + VN(f(x, µN(x)))

This is exactly the desired relaxed dynamic programming
inequality, even with α = 1, since no “small error” occurs

 stability follows if we can ensure the additional inequalities

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

Lars Grüne, Nonlinear Model Predictive Control, p. 43

Feasible sets
The inequality infu∈U `(x, u) ≥ α3(‖x− x∗‖) is easy to satisfy,
e.g., `(x, u) = ‖x− x∗‖2 + λ‖u‖2 will work (with α3(r) = r2)

What about VN(x) ≤ α2(‖x− x∗‖) ?

Recall: by definition VN(x) =∞ if x is not feasible, i.e., if
there is no u ∈ UNx∗(x)

 define the feasible set XN := {x ∈ X |UNx∗(x) 6= ∅}

For x 6∈ XN the inequality VN(x) ≤ α2(‖x− x∗‖) cannot hold

But: for all x ∈ XN we can ensure this inequality under rather
mild conditions (details can be given if desired)

 the feasible set XN is the “natural” operating region of
MPC with equilbrium terminal constraints

Lars Grüne, Nonlinear Model Predictive Control, p. 44



Stability theorem
Theorem: Consider the MPC scheme with equilibrium terminal
constraint xu(N) = x∗ where x∗ satisfies f(x∗, u) = x∗ and
`(x∗, 0) = 0. Assume that

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

holds for all x ∈ XN .

Then XN is forward invariant, the MPC closed loop is
asymptotically stable on XN and the performance estimate

J cl∞(x, µN) ≤ VN(x)

holds.

Note: The constraint xu(N) = x∗ does not imply xµN
(N) = x∗

Lars Grüne, Nonlinear Model Predictive Control, p. 45

Stability theorem — sketch of proof

Sketch of proof: All assertions follow from the relaxed dynamic
programming theorem if we prove forward invariance of XN for
the MPC closed loop system x+ = f(x, µN(x))

 we need to prove x ∈ XN ⇒ x+ ∈ XN

(1) The prolongation property implies XN−1 ⊆ XN
(2) For x ∈ XN , the definition µN(x) := u?(0) implies

x+ = f(x, µN(x)) = f(x, u?(0)) = x?(1)

and since x?(N) = x∗, the sequence (x?(1), . . . , x?(N − 1))
is an admissible trajectory of length N − 1 from x?(1) = x+ to
x?(N − 1) = x∗

(3) This implies x+ ∈ XN−1 ⊆ XN

Lars Grüne, Nonlinear Model Predictive Control, p. 46

Equilibrium terminal constraint — Discussion

The additional condition

x(N) = x∗

ensures asymptotic stability in a rigorously provable way, but

online optimization may become harder

if we want a large feasible set XN we typically need a
large optimization horizon N
(see the car-and-mountains example)

system needs to be controllable to x∗ in finite time

not very often used in industrial practice

Lars Grüne, Nonlinear Model Predictive Control, p. 47

(3b) Regional terminal constraint

and terminal cost



Regional constraint and terminal cost
Optimal control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

We want VN to become a Lyapunov function

Idea: add local Lyapunov function F : X0 → R+
0 as terminal cost

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

F is defined on a region X0 around x∗ which is imposed as
terminal constraint x(N) ∈ XN

[Chen & Allgöwer ’98, Jadbabaie et al. ’98 . . . ]
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Regional constraint and terminal cost

We thus change the optimal control problem to

minimize
u∈UN

X0
(x0)

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

with

UNX0
(x0) := {u ∈ UN admissible and xu(N) ∈ X0}

Which properties do we need for F and X0 in order to make
this work?

Lars Grüne, Nonlinear Model Predictive Control, p. 50

Regional constraint and terminal cost
Assumptions on F : X0 → R+

0 and X0

There exists a controller κ : X0 → U with the following
properties:

(i) X0 is forward invariant for x+ = f(x, κ(x)):

for each x ∈ X0 we have f(x, κ(x)) ∈ X0

(ii) F is a Lyapunov function for x+ = f(x, κ(x)) on X0

which is compatible with the stage cost ` in the following
sense:

for each x ∈ X0 the inequality

F (f(x, κ(x))) ≤ F (x)− `(x, κ(x))

holds
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Prolongation of control sequences
Let ũ ∈ UN−1

X0
(x0) ⇒ x̃ := xũ(N − 1) ∈ X0

Define u ∈ UN as u(k) :=

{
ũ(k), k = 0, . . . , N − 2
κ(x̃), k = N − 1

with κ from (i)

⇒ xu(N) = f(xũ(N − 1),u(N − 1)) = f(x̃, κ(x̃)) ∈ X0

⇒ u ∈ UNX0
(x0)

 every ũ ∈ UN−1
X0

(x0) can be prolonged to an u ∈ UNX0
(x0)

By (ii) the stage cost of the prolongation is bounded by

`(xu(N − 1),u(N − 1)) ≤ F (xu(N − 1))− F (xu(N))
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Reversal of VN−1 ≤ VN
Let ũ? ∈ UN−1

X0
(x0) be the optimal control for JN−1, i.e.,

VN−1(x0) = JN−1(x0, ũ
?)

Denote by u ∈ UNX0
(x0) its prolongation

⇒ VN−1(x0) = JN−1(x0, ũ
?)

=
N−2∑
k=0

`(xũ?(k), ũ?(k)) + F (xũ?(N − 1))︸ ︷︷ ︸
≥`(xu(N−1),u(N−1))+F (xu(N))

≥
N−1∑
n=0

`(xu(k),u(k)) + F (xu(N))

= JN(x0,u) ≥ VN(x0)

 again we get VN−1 ≥ VN
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Feasible sets

Define the feasible set

XN := {x ∈ X |UNX0
(x) 6= ∅}

Like in the equilibrium constrained case, on XN one can
ensure the inequality

VN(x) ≤ α2(‖x− x∗‖)

for some α2 ∈ K∞ under mild conditions, while outside XN we
get VN(x) =∞

Lars Grüne, Nonlinear Model Predictive Control, p. 54

Stability theorem
Theorem: Consider the MPC scheme with regional terminal
constraint xu(N) ∈ X0 and Lyapunov function terminal cost
F compatible with `. Assume that

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

holds for all x ∈ XN .

Then XN is forward invariant, the MPC closed loop is
asymptotically stable on XN and the performance estimate

J cl∞(x, µN) ≤ VN(x)

holds.

Proof: Almost identical to the equilibrium constrained case
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Regional constraint and terminal cost —

Discussion
Compared to the equilibrium constraint, the regional
constraint

yields easier online optimization problems

yields larger feasible sets

does not need exact controllability to x∗

But:

large feasible set still needs a large optimization horizon N
(see again the car-and-mountains example)

additional analytical effort for computing F

hardly ever used in industrial practice

In Section (5) we will see how stability can be proved without
stabilizing terminal constraints

Lars Grüne, Nonlinear Model Predictive Control, p. 56



Summary of Section (3)

terminal constraints yield that the usual inequality
VN−1 ≤ VN is reversed to VN−1 ≥ VN

this enables us to derive the
relaxed dynamic programming inequality (with α = 1)
from the dynamic programming principle

equilibrium constraints demand more properties of the
system than regional constraints but do not require a
Lyapunov function terminal cost

in both cases, the operating region is restricted to the
feasible set XN

Lars Grüne, Nonlinear Model Predictive Control, p. 57

(4) Inverse optimality and suboptimality

Performance of µN
Once stability can be guaranteed, we can investigate the
performance of the MPC feedback law µN

As already mentioned, we measure the performance of the
feedback µN : X → U via the infinite horizon functional

J cl∞(x0, µN) :=
∞∑
n=0

`(xµN
(n), µN(xµN

(n)))

Recall: the optimal feedback µ∞ satisfies J cl∞(x0, µ∞) = V∞(x0)

In the literature, two different concepts can be found:

Inverse Optimality: show that µN is optimal for an
altered running cost ˜̀ 6= `

Suboptimality: derive upper bounds for J cl∞(x0, µN)

Lars Grüne, Nonlinear Model Predictive Control, p. 59

Inverse optimality
Theorem: [Poubelle/Bitmead/Gevers ’88, Magni/Sepulchre ’97]

For both types of terminal constraints, µN is optimal for

minimize
u admissible

J̃∞(x0,u) =
∞∑
k=0

˜̀(xu(n),u(n)), xu(0) = x0

with ˜̀(x, u) := `(x, u) + VN−1(f(x, u))− VN(f(x, u))

Note: ˜̀≥ `

Idea of proof: By the dynamic programming principle

VN(x) = inf
u∈U
{`(x, u) + VN−1(f(x, u))}

= inf
u∈U
{˜̀(x, u) + VN(f(x, u))}

and VN(x) = ˜̀(x, µN) + VN(f(x, µN))

⇒ VN and µN satisfy the principle for ˜̀⇒ optimality
Lars Grüne, Nonlinear Model Predictive Control, p. 60



Inverse optimality

Inverse optimality

shows that µN is an infinite horizon optimal feedback law

thus implies inherent robustness against perturbations
(sector margin (1/2,∞))

But

the running cost

˜̀(x, u) := `(x, u) + VN−1(f(x, u))− VN(f(x, u))

is unknown and difficult to compute

knowing that µN is optimal for J̃∞(x0, u) doesn’t give us
a simple way to estimate J cl∞(x0, µN)
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Suboptimality

Recall: For both stabilizing terminal constraints the relaxed
dynamic programming theorem yields the estimate

J cl∞(x0, µN) ≤ VN(x0)

But: How large is VN ?

Without terminal constraints, the inequality VN ≤ V∞ is
immediate

However, the terminal constraints also reverse this inequality,
i.e., we have VN ≥ V∞ and the gap is very difficult to estimate
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Suboptimality — example

We consider two examples with X = R, U = R for N = 2

Example 1: x+ = x+ u, `(x, u) = x2 + u2

Terminal constraints xu(N) = x∗ = 0

V∞(x) ≈ 1.618x2, J cl∞(x, µ2) = 1.625x2

Example 2: as Example 1, but with `(x, u) = x2 + u4

V∞(20) ≤ 1726, J cl∞(x, µ2) ≈ 11240

General estimates for fixed N appear difficult to obtain. But
we can give an asymptotic result for N →∞

Lars Grüne, Nonlinear Model Predictive Control, p. 63

Asymptotic Suboptimality

Theorem: For both types of terminal constraints the
assumptions of the stability theorems ensure

VN(x)→ V∞(x)

and thus
J cl∞(x, µN)→ V∞(x)

as N →∞ uniformly on compact subsets of the feasible sets,
i.e., the MPC performance converges to the optimal one

Idea of proof: uses that any approximately optimal trajectory
for J∞ converges to x∗ and can thus be modified to meet the
constraints with only moderately changing its value

Lars Grüne, Nonlinear Model Predictive Control, p. 64



Summary of Section (4)

µN is infinite horizon optimal for a suitably altered
running cost

the infinite horizon functional along the µN -controlled
trajectory is bounded by VN , i.e.,

J cl∞(x, µN) ≤ VN(x)

VN >> V∞ is possible under terminal constraints

VN → V∞ holds for N →∞

Lars Grüne, Nonlinear Model Predictive Control, p. 65

(5) Stability and suboptimality without

stabilizing constraints

MPC without stabilizing terminal constraints

We return to the basic MPC formulation

minimize
u admissible

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0 = xµN
(n)

without any stabilizing terminal constraints and costs

In order to motivate why we want to avoid terminal
constraints and costs, we consider an example of P double
integrators in the plane

Lars Grüne, Nonlinear Model Predictive Control, p. 67

A motivating example for avoiding terminal

constraints
Example: [Jahn ’10] Consider P 4-dimensional systems

ẋi = f(xi, ui) := (xi2, ui1, xi4, ui2)
T , i = 1, . . . , P

Interpretation: (xi1, xi3)
T = position, (xi2, xi4)

T = velocity

Stage cost: `(x, u) =
P∑
i=1

‖(xi1, xi3)T − xd‖+ ‖(xi2, xi4)T‖/50

with xd = (0, 0)T until t = 20s and xd = (3, 0)T afterwards

Constraints: no collision, obstacles, limited speed and control

The simulation shows MPC for P = 128 ( system dimension
512) with sampling time T = 0.02s and horizon N = 6
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Stabilizing NMPC without terminal constraint

(Some) stability and performance results known in the literature:

[Alamir/Bornard ’95]
use a controllability condition for all x ∈ X

[Shamma/Xiong ’97, Primbs/Nevistić ’00]
use knowledge of optimal value functions

[Jadbabaie/Hauser ’05]
use controllability of linearization in xe

[Grimm/Messina/Tuna/Teel ’05, Tuna/Messina/Teel ’06,
Gr./Rantzer ’08, Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10]

use bounds on optimal value functions

Here we explain the last approach

Lars Grüne, Nonlinear Model Predictive Control, p. 69

Bounds on the optimal value function

Recall the definition of the optimal value function

VN(x) := inf
u admissible

N−1∑
k=0

`(xu(k, x),u(k))

Boundedness assumption: there exists γ > 0 with

VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

where `?(x) := min
u∈U

`(x, u)

(sufficient conditions for and relaxations of this bound will be

discussed later)

Lars Grüne, Nonlinear Model Predictive Control, p. 70

Stability and performance index
We choose `, such that

α3(‖x− x∗‖) ≤ `?(x) ≤ α4(‖x− x∗‖)

holds for α3, α4 ∈ K∞ (again, `(x, u) = ‖x− x∗‖2 + λ‖u‖2
works)

Then, the only inequality left to prove in order to apply the
relaxed dynamic programming theorem is

VN(f(x, µN(x))) ≤ VN(x)− αN`(x, µN(x))

for some αN ∈ (0, 1) and all x ∈ X

We can compute αN from the bound VN(x) ≤ γ`?(x)

Lars Grüne, Nonlinear Model Predictive Control, p. 71

Computing αN
We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N (∗)
We want VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0))

• use (∗) to find ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

• concatenate x?(1), . . . , x?(k?) and the optimal trajectory
starting in x?(k?)  x̃(·), ũ(·)

⇒ VN (x?(1)) ≤ JN (x?(1), ũ) ≤ VN (x?(0))− (1− γηN )︸ ︷︷ ︸
=αN

`(x?(0),u?(0))

x?(k)
*k

k
Lars Grüne, Nonlinear Model Predictive Control, p. 72



Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N
We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`

?(x?(0))

Variant 1 [Grimm/Messina/Tuna/Teel ’05]

VN(x) ≤ γ`?(x) ⇒ `(x?(k), u?(k)) ≤ γ`?(x)/N for at least

one k? ⇒ αN = 1− γ(γ − 1)/N

x?(k) k*

k

Lars Grüne, Nonlinear Model Predictive Control, p. 73

Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N
We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`

?(x?(0))

Variant 2 [Tuna/Messina/Teel ’06, Gr./Rantzer ’08]

VN(x) ≤ γ`?(x) ⇒ `(x?(N − 1), u?(N − 1)) ≤ γ
(
γ−1
γ

)
`?(x)

⇒ k? = N − 1 ⇒ αN = 1− (γ − 1)N/γN−2

x?(k)
*k

k
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Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N
We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`

?(x?(0))

Variant 3 [Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10]

VN(x) ≤ γ`?(x) ⇒ formulate all constraints and trajectories

⇒ optimize for αN ⇒ αN = 1− (γ−1)N

γN−1−(γ−1)N−2

x?(k) *k

k
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Optimization approach to compute αN
We explain the optimization approach (Variant 3) in more
detail. We want αN such that

VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0))

holds for all optimal trajectories x?(n),u?(n) for VN

The bound and the dynamic programming principle imply:

VN(x?(1)) ≤ γ`?(x?(1))

VN(x?(1)) ≤ `(x?(1),u?(1)) + γ`?(x?(2))

VN(x?(1)) ≤ `(x?(1),u?(1)) + `(x?(2),u?(2)) + γ`?(x?(3))

...
...

...

Lars Grüne, Nonlinear Model Predictive Control, p. 76



Optimization approach to compute αN
 VN(x?(1)) is bounded by sums over `(x?(n),u?(n))

For sums of these values, in turn, we get bounds from the
dynamic programming principle and the bound:

N−1∑
n=0

`(x?(n),u?(n)) = VN(x?(0)) ≤ γ`?(x?(0))

N−1∑
n=1

`(x?(n),u?(n)) = VN−1(x
?(1)) ≤ γ`?(x?(1))

N−1∑
n=2

`(x?(n), u?(n)) = VN−2(x
?(2)) ≤ γ`?(x?(2))

...
...

Lars Grüne, Nonlinear Model Predictive Control, p. 77

Verifying the relaxed Lyapunov inequality
Find αN , such that for all optimal trajectories x?, u?:

VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0)) (∗)
Define λn := `(x?(n),u?(n)), ν := VN(x?(1))

Then: (∗) ⇔ ν ≤
N−1∑
n=0

λn − αNλ0

The inequalities from the last slides translate to

N−1∑
n=k

λn ≤ γλk, k = 0, . . . , N − 2 (1)

ν ≤
j∑

n=1

λn + γλj+1, j = 0, . . . , N − 2 (2)

We call λ0, . . . , λN−1, ν ≥ 0 with (1), (2) admissible

Lars Grüne, Nonlinear Model Predictive Control, p. 78

Optimization problem
⇒ if αN is such that the inequality

ν ≤
N−1∑
n=0

λn − αNλ0 ⇔ αN ≤
∑N−1

n=0 λn − ν
λ0

holds for all admissible λn and ν, then the desired inequality
will hold for all optimal trajectories

The largest αN satisfying this condition is

αN := min
λn, ν admissible

∑N−1
n=0 λn − ν
λ0

This is a linear optimization problem whose solution can be
computed explicitly (which is nontrivial) and reads

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1

Lars Grüne, Nonlinear Model Predictive Control, p. 79

Stability and performance theorem
Theorem: [Gr./Pannek/Seehafer/Worthmann ’10]: Assume
VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N. If

αN > 0 ⇔ N > 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
∼ γ ln γ

then the NMPC closed loop is asymptotically stable with
Lyapunov function VN and we get the performance estimate
J cl∞(x, µN) ≤ V∞(x)/αN with

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
→ 1 as N →∞

Conversely, if N < 2 + ln(γ−1)
ln γ−ln(γ−1)

, then there exists a system

for which VN(x) ≤ γ`?(x) holds but the NMPC closed loop is
not asymptotically stable.
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Horizon dependent γ-values

The theorem remains valid if we replace the bound condition

VN(x) ≤ γ`?(x)

by
VN(x) ≤ γN`

?(x)

for horizon-dependent bounded values γN ∈ R, N ∈ N

 αN = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏
i=2

(γi − 1)

This allows for tighter bounds and a refined analysis

Lars Grüne, Nonlinear Model Predictive Control, p. 81

Controllability condition
A refined analysis can be performed if we compute γN from a
controllability condition, e.g., exponential controllability:

Assume that for each x0 ∈ X there exists an admissible control
u such that

`(xu(k),u(k)) ≤ Cσk`?(x0), k = 0, 1, 2, . . .

for given overshoot constant C > 0 and decay rate σ ∈ (0, 1)

 VN(x) ≤ γN`
?(x) for γN =

N−1∑
k=0

Cσk

This allows to compute the minimal stabilizing horizon

min{N ∈ N |αN > 0}
depending on C and σ

Lars Grüne, Nonlinear Model Predictive Control, p. 82

Stability chart for C and σ

(Figure: Harald Voit)

Conclusion: for short optimization horizon N it is
more important: small C (“small overshoot”)
less important: small σ (“fast decay”)

(we will see in the next section how to use this information)
Lars Grüne, Nonlinear Model Predictive Control, p. 83

Comments and extensions

for unconstrained linear quadratic problems:
existence of γ ⇔ (A,B) stabilizable

additional weights on the last term can be incorporated
into the analysis [Gr./Pannek/Seehafer/Worthmann ’10]

instead of using γ, α can be estimated numerically online
along the closed loop [Pannek et al. ’10ff]

positive definiteness of ` can be replaced by a
detectability condition [Grimm/Messina/Tuna/Teel ’05]
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Comments and extensions
The “linear” inequality VN(x) ≤ γ`?(x) may be too
demanding for nonlinear systems under constraints

Generalization: VN(x) ≤ ρ(`?(x)), ρ ∈ K∞

• there is γ > 0 with ρ(r) ≤ γr for all r ∈ [0,∞]
⇒ global asymptotic stability

• for each R > 0
there is γR > 0 with ρ(r) ≤ γRr for all r ∈ [0, R]

⇒ semiglobal asymptotic stability

• ρ ∈ K∞ arbitrary
⇒ semiglobal practical asymptotic stability

[Grimm/Messina/Tuna/Teel ’05, Gr./Pannek ’11]
Lars Grüne, Nonlinear Model Predictive Control, p. 85

Summary of Section (5)

Stability and performance of MPC without terminal
constraints can be ensured by suitable bounds on VN

An optimization approach allows to compute the best
possible αN in the relaxed dynamic programming theorem

The γ or γN can be computed from controllability
properties, e.g., exponential controllability

The overshoot bound C > 0 plays a crucial role or
obtaining small stabilizing horizons

Lars Grüne, Nonlinear Model Predictive Control, p. 86

(6) Examples for the design of MPC schemes

Design of “good” MPC running costs `

We want small overshoot C in the estimate

`(xu(n),u(n)) ≤ Cσn`?(x0)

The trajectories xu(n) are given, but we can use the running
cost ` as design parameter

Lars Grüne, Nonlinear Model Predictive Control, p. 88



The car-and-mountains example reloaded
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MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2
 asymptotic stability for N = 11 but not for N ≤ 10

Reason: detour around mountains causes large overshoot C

Remedy: put larger weight on x2:

`(x, u) = (x1 − x∗1)2 + 5(x2 − x∗2)2 + |u|2  as. stab. for N = 2
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Example: pendulum on a cart

θ

θ

m=l=1

u

−ucos( )

−u

x1 = θ = angle
x2 = angular velocity
x3 = cart position
x4 = cart velocity
u = cart acceleration

 control system

ẋ1 = x2(t)

ẋ2 = −g sin(x1)− kx2

−u cos(x1)

ẋ3 = x4

ẋ4 = u

Lars Grüne, Nonlinear Model Predictive Control, p. 90

Example: Inverted Pendulum
Reducing overshoot for swingup of the pendulum on a cart:

ẋ1 = x2, ẋ2 = g sin(x1)− kx2 + u cos(x1)
ẋ3 = x4, ẋ4 = u

Let `(x) =
√
`1(x1, x2) + x2

3 + x2
4 with

`1(x1, x2) = x2
1 +x2

2 4(1− cosx1)+x2
2 (sin x1, x2)P (sin x1, x2)T

+2((1− cos x1)(1− cos x2)2)2

N = 15 N = 10 N = 4 (swingup only)

sampling time T = 0.15
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A PDE example

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1− y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

and distributed control u : R× Ω→ R

Discrete time system: y(n) = y(nT, ·), sampling time T = 0.025

Lars Grüne, Nonlinear Model Predictive Control, p. 92



The uncontrolled PDE
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all equilibrium solutions

Lars Grüne, Nonlinear Model Predictive Control, p. 93

MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1− y) + u

Goal: stabilize the sampled data system y(n) at y ≡ 0

Usual approach: quadratic L2 cost

`(y(n), u(n)) = ‖y(n)‖2L2 + λ‖u(n)‖2L2

For y ≈ 0 the control u must compensate for yx  u ≈ −yx
 controllability condition

`(y(n), u(n)) ≤ Cσn`∗(y(0))

⇔ ‖y(n)‖2L2 + λ‖u(n)‖2L2 ≤ Cσn‖y(0)‖2L2

≈ ‖y(n)‖2L2 + λ‖yx(n)‖2L2 ≤ Cσn‖y(0)‖2L2

for ‖yx‖L2 >> ‖y‖L2 this can only hold if C >> 0

Lars Grüne, Nonlinear Model Predictive Control, p. 94

MPC for the PDE example
Conclusion: because of

‖y(n)‖2L2 + λ‖yx(n)‖2L2 ≤ Cσn‖y(0)‖2L2

the controllability condition may only hold for very large C

Remedy: use H1 cost

`(y(n), u(n)) = ‖y(n)‖2L2 + ‖yx(n)‖2L2︸ ︷︷ ︸
=‖y(n)‖2

H1

+λ‖u(n)‖2L2 .

Then an analogous computation yields

‖y(n)‖2L2 + (1 + λ)‖yx(n)‖2L2 ≤ Cσn
(
‖y(0)‖2L2 + ‖yx(0)‖2L2

)
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MPC with L2 vs. H1 cost
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1− y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
 L2 should perform better that H1
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Boundary control, L2 vs. H1, N = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.85

 

 
Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025
Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Summary of Section (6)

Reducing the overshoot constant C by choosing `
appropriately can significantly reduce the horizon N
needed to obtain stability

Computing tight estimates for C is in general a difficult if
not impossible task

But structural knowledge of the system behavior can be
sufficient for choosing a “good” `
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(7) Feasibility



Feasibility

Consider the feasible sets

FN := {x ∈ X | there exists an admissible u of length N}

So far we have assumed

VN(x) ≤ γ`?(x) for all x ∈ X

which implicitly includes the assumption

FN = X

because VN(x) =∞ for x ∈ X \ FN

What happens if FN 6= X for some N ∈ N?
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The MPC feasibility problem

Even though the open-loop optimal trajectories are forced to
satisfy x?(k) ∈ X, the closed loop solutions xµN

(n) may
violate the state constraints, i.e., xµN

(n) 6∈ X for some n

We illustrate this phenomenon by the simple example(
x+

1

x+
2

)
=

(
x1 + x2 + u/2
x2 + u

)
with X = [−1, 1]2 and U = [−1/4, 1/4]. For initial value
x0 = (−1, 1)T , the system can be controlled to 0 without
leaving X

We use MPC with N = 2 and `(x, u) = ‖x‖2 + 5u2

Lars Grüne, Nonlinear Model Predictive Control, p. 102

The MPC feasibility problem: example
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The MPC feasibility problem

How can this happen?

Explanation: In this example FN  X

 at time n, the finite horizon state constraints guarantee
x?(1) ∈ X but in general not x?(1) ∈ FN

 the optimal control problem at time n+ 1 with initial value
xµN

(n+ 1) = x?(1) may be infeasible

 xµN
(n+ k) is inevitable for some k ≥ 2
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The MPC feasibility problem: example again
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Recursive feasibility
The MPC scheme with horizon N is well defined on a set
A ⊆ FN if the following recursive feasibility condition holds:

x ∈ A ⇒ f(x, µN(x)) ∈ A

In terminal constrained MPC, forward invariance of the
terminal constraint set X0 implies recursive feasibility of the
feasible set

XN := {x ∈ X | there is an admissible u with xu(N, x) ∈ X0}

(this was part of the stability theorem in Section 3)

Can we find recursively feasible sets for NMPC without
terminal constraints?
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Recursive feasibility

Theorem: [Kerrigan ’00, Gr./Pannek 11] Assume that

FN0 = FN0−1

holds for some N0 ∈ N. Then the set FN is recursively feasible
for all N ≥ N0.

Idea of proof:

(1) FN0 = FN0−1 implies FN = FN0−1 for all N ≥ N0 − 1

(2) x?(0) = x ∈ FN implies

f(x, µN(x)) = x?(1) ∈ FN−1 = FN0−1 = FN

⇒ recursive feasibility of FN

Lars Grüne, Nonlinear Model Predictive Control, p. 107

Feasible sets for our example
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Recursive feasibility
Problem: What if this condition does not hold / cannot be
checked?

Theorem: [Gr./Pannek ’11, extending Primbs/Nevistić ’00]

Assume VN(x) ≤ γ`?(x) for all x ∈ FN , N ∈ N
Assume there exists a forward invariant neighborhood N of x∗

Then for each c > 0 there exists Nc > 0 such that for all
N ≥ Nc the level set

Ac := {x ∈ FN |VN(x) ≤ c}

is recursively feasible and the MPC closed loop is
asymptotically stable with basin of attraction containing Ac

If X is compact, then Ac = F∞ for all sufficiently large N
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Idea of proof

VN(x) ≤ γ`?(x) implies exponential decay of `?(x?(k))
(as in Variant 2 of the stability proof in Section 5)

⇒ x?(N − 1) ∈ N for x ∈ Ac and N ≥ Nc

⇒ forward invariance of N implies that solution can be
extended

⇒ recursive feasibility
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Discussion

Feasibility properties of MPC without terminal constraints

Advantage: In contrast to X0 in the terminal constrained
setting, N does not need to be known, mere existence is
sufficient

Drawback: In terminal constrained MPC, feasibility at
time n = 0 implies recursive feasibility. This property is
lost without terminal constraints

If this is desired, a forward invariant terminal constraint
X0 can be used without terminal cost — the stability
proof without terminal constraints also works for this
setting
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Final discussion: comparison of MPC with and

without terminal constraints

Properties of MPC without terminal constraints compared to
terminal constrained MPC

⊕ needs fewer a priori information to set up the scheme

	 results are typically less constructive

⊕ may exhibit larger operating regions

	 may need larger N for obtaining stability near x∗
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