
Introduction to
Numerical Mathematics

Lars Grüne
Chair of Applied Mathematics

Mathematical Institute
University of Bayreuth

95440 Bayreuth
Germany

lars.gruene@uni-bayreuth.de
num.math.uni-bayreuth.de

Lecture Notes

English translation of the 7th edition
Winter Semester 2023/2024

Preface

These notes are prepared for a lecture with the same name that will be taught during the
winter semester 2023/2024 at the University of Bayreuth. It is the English translation of the
seventh edition of a document originally developed during the winter semester 2002/2003
under the title “Numerical Mathematics I”. This edition has been partially updated and
corrected in comparison to the sixth edition from the winter semester 2018/2019. These
lecture notes were translated from the German with the help of ChatGPT, followed by a
careful proofreading.

This text serves as lecture notes and primarily aims to provide a concise written summary
of the material covered in the lecture for the participants. It is not intended to be a
replacement for a textbook on Numerical Mathematics. While writing various sections, I
found the textbooks [1, 7, 8, 9] and the lecture notes [3, 4, 5] to be very helpful.

Bayreuth, February 2024 Lars Grüne

i

Contents

Preface i

1 Introduction 1

1.1 Correctness . 1

1.2 Efficiency . 2

1.3 Robustness and Condition . 2

1.4 Mathematical Techniques . 3

2 Systems of linear equations 5

2.1 An Application: Least Squares Estimation 6

2.2 The Gauss Elimination Method . 7

2.3 LR Factorization . 10

2.4 The Cholesky Method . 12

2.5 Error Estimation and Condition Numbers 15

2.6 QR Factorization . 22

2.7 Computational Effort . 29

2.8 Iterative Methods . 33

2.9 Gauss-Seidel and Jacobi Methods . 34

2.10 Relaxation . 41

2.11 The Conjugate Gradient Method . 43

3 Interpolation 45

3.1 Polynomial Interpolation . 46

3.1.1 Lagrange Polynomials and Barycentric Coordinates 47

3.1.2 Condition . 50

3.1.3 The Newton Scheme . 51

3.2 Hermite Interpolation . 55

iii

iv CONTENTS

3.2.1 Error Estimates . 57

3.3 Function Interpolation and Orthogonal Polynomials 61

3.3.1 Orthogonal Polynomials . 61

3.4 Spline Interpolation . 67

3.5 Trigonometric Interpolation . 73

3.5.1 Interpolation with Trigonometric Polynomials 73

3.5.2 Fast Fourier Transform . 76

3.5.3 Applications . 78

4 Integration 83

4.1 Newton-Cotes Formulas . 83

4.2 Composite Newton-Cotes Formulas . 88

4.3 Gaussian Quadrature . 90

4.4 Romberg Extrapolation . 93

4.5 Adaptive Romberg Quadrature . 99

4.6 Higher-Dimensional Integration . 104

5 Systems of Nonlinear Equation 107

5.1 Fixed-Point Iteration . 107

5.2 The Bisection Method . 110

5.3 Order of Convergence . 112

5.4 The Newton Method . 117

5.5 The Secant Method . 123

5.6 The Gauss-Newton Method for Nonlinear Least Squares Problems 126

Literaturverzeichnis 132

Index 134

Chapter 1

Introduction

Numerical Mathematics — often also called Numerical Analysis or short Numerics — deals
with the development and analysis of algorithms for solving mathematical problems on a
computer. Unlike symbolic or analytic calculations, the goal here is not to obtain closed-
form formulas or algebraic expressions as results, but quantitative numerical values1, hence
the name “Numerical Mathematics”.

In this introductory course on Numerics, traditionally, various mathematical problems are
addressed. In this lecture, we will focus on the following topics:

• Systems of linear equations

• Interpolation

• Integration

• Nonlinear equations and systems of nonlinear equations

An important area missing in this list are differential equations, which will be covered in
detail in subsequent lectures on ordinary and partial differential equations.

The multitude of different problems from analysis and linear algebra means that various
mathematical techniques from these areas are used for numerical solutions. For this reason,
the first Numerics lecture is often perceived as a “grab bag” in which different topics are
discussed seemingly without a clear connection. However, despite the diverse mathematics
involved, there are a number of fundamental principles that are important in Numerics.
Before we delve into the “hard” mathematics in the next chapter, we will briefly and
informally explain these principles in this introduction.

1.1 Correctness

One of the essential tasks of numerical mathematics is to verify the correctness of algo-
rithms, i.e., to ensure when and under what conditions the correct result is computed for

1which are often graphically presented

1

2 CHAPTER 1. INTRODUCTION

the given problem data. This verification should be done using mathematical methods,
resulting in a formal mathematical proof that guarantees the correct functioning of an
algorithm. In many cases, an algorithm will not provide an exact result in a finite number
of steps but rather an approximate solution or a sequence of approximate solutions. In
this case, it is also necessary to examine how large the error of the approximate solution
is depending on the available parameters and how quickly the sequence of approximate
solutions converges to the exact value.

1.2 Efficiency

Once the correctness of an algorithm has been established, the next step is to consider the
efficiency of the algorithm. If the algorithm provides an exact result in a finite number of
steps, the essential task is to count the number of operations. If a sequence of approximate
solutions is computed, it is necessary to investigate the number of operations needed for
computing the approximate solution and the convergence rate towards the exact solution.

There are often many different algorithms for solving a problem, and their efficiency can
vary depending on the specific properties of the problem.

1.3 Robustness and Condition

Even if an algorithm theoretically delivers an exact result in a finite number of steps,
this will rarely be the case in numerical practice. The reason for this lies in the so-called
roundoff errors: Internally, a computer can only represent a finite set of numbers, so it is
impossible to represent every real (and not even every rational) number exactly. We will
examine this point more formally. For a given base B ∈ N, every real number x ∈ R can
be represented as

x = m ·Be,

where m ∈ R is the mantissa, and e ∈ Z is the exponent. By choosing e appropriately, it
is sufficient to use numbers of the form m = ±0.m1m2m3 . . . with digits m1,m2, . . . such
that mi ∈ {0, 1, . . . , B − 1}. Computers typically use the base B = 2 because numbers are
represented as binary numbers. In a computer, only a finite number of digits are available
for m and e, e.g., l digits for m and n digits for e. We write m = ±0.m1m2m3 . . .ml and
e = ±e1e2 . . . en. Subject to the additional normalization condition m1 6= 0, there is a
unique representation of the so-called machine-representable numbers

M = {x ∈ R | ± 0.m1m2m3 . . .ml ·B±e1e2...en} ∪ {0}.

Numbers that do not belong to this setM must be rounded to obtain a machine-represen-
table number.

These resulting inaccuracies obviously affect the results of numerical algorithms. The ro-
bustness of an algorithm (also referred to as numerical stability) is determined by how
much these roundoff errors affect the result. In fact, robustness is mathematically consid-
ered for general errors, so it does not matter whether they are caused by roundoff or other
error sources (input or transmission errors, inaccuracies in previous calculations, etc.).

1.4. MATHEMATICAL TECHNIQUES 3

An important tool for examining this problem is the concept of the condition of a math-
ematical problem. If we abstractly view the problem as a mapping A : D → S from
problem data d ∈ D (e.g., matrices, measurements, etc.) to the solution s = A(d) ∈ S of
the problem (e.g., a vector), the condition indicates how small changes ∆d in the data d
affect the solution s, i.e., how large ∆s in

s+ ∆s = A(d+ ∆d)

is compared to ∆d. This is quantitatively determined by analyzing the derivative of A.
When small changes ∆d cause significant changes ∆s, the problem it called ill conditioned.
Note that the condition is a property of the posed problem and is independent of the
algorithm used. However, the robustness of an algorithm is particularly important for
poorly conditioned problems since small errors in the algorithm can result in large errors in
the result. This theory is maturely developed in the context of linear systems of equations,
which we will also examine in detail within this framework.

1.4 Mathematical Techniques

As mentioned earlier, different problem classes require quite different mathematical tech-
niques. However, there are some recurrent methods, i.e., techniques that appear in one way
or another repeatedly. For example, consider the principle of orthogonality or orthogonal
projection: We encounter this in the efficient solution of linear systems of equations (in
the Householder algorithm), polynomial interpolation (with Chebyshev polynomials), and
numerical integration (with Gaussian quadrature). All these methods have in common
that, with respect to suitable criteria, they belong to the best methods in their class. How-
ever, their operation is not immediately apparent, as their derivation relies on sophisticated
mathematical ideas. Other examples include Banach’s fixed-point theorem, by which we
can analyze many different iterative methods, or the Taylor expansion, which forms the
basis of many algorithms in numerical analysis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Systems of linear equations

Algorithms for solving systems of linear equations form the basis for many applications in
numerical mathematics and are therefore traditionally covered at the beginning of many
numerical mathematics courses. When written out in detail, the problem is to determine
numbers x1, . . . , xn ∈ R for which the equation system

a1 1x1 + a1 2x2 + . . . + a1nxn = b1
...

an 1x1 + an 2x2 + . . . + annxn = bn

(2.1)

is satisfied. The detailed notation in (2.1) is somewhat cumbersome, which is why we will
write linear equation systems in the usual matrix form, namely as

Ax = b, (2.2)

with

A =




a1 1 a1 2 . . . a1n
...

...
...

an 1 an 2 . . . ann


 , x =




x1
...
xn


 and b =




b1
...
bn


 . (2.3)

This notation not only allows us to write an equation system much more concisely, but
it will also be shown that certain properties of the matrix A determine what method can
sensibly be used to solve (2.2).

A few short remarks on notation: We will typically denote matrices with capital letters
(e.g., A) and vectors with lowercase letters (e.g., b). Their entries will be denoted with
indexed lowercase letters, as in (2.3). A superscript “T” denotes transposed matrices and
vectors, so for A and x from (2.3), for example,

x = (x1, . . . , xn)T , AT =




a1 1 a2 1 . . . an 1
...

...
...

a1n a2n . . . ann


 .

Since the number n of equations in (2.1) is equal to the number of unknowns x1, . . . , xn,
A in (2.2) is a square matrix of dimension n × n. For square matrices, it is known from

5

6 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

linear algebra that a unique solution to (2.2) exists if and only if the matrix is invertible.
In this chapter, we will always assume that this is the case.

In the next section we will consider an application problem whose solution leads to the
problem of solving a system of linear equations.

2.1 An Application: Least Squares Estimation

Our first application example is particularly important for many practical purposes, which
is why we want to examine it in more detail.

Suppose we have conducted an experiment in which we obtained measurement values
z1, z2, . . . , zm for various input values t1, t2, . . . , tm. Based on theoretical considerations
(e.g., based on an underlying physical law), we know of a function f(t) for which f(ti) = zi
should hold. This function, in turn, depends on unknown parameters x1, . . . , xn, and we
write f(t;x) to emphasize this. For example, f(t;x) could be given by

f(t;x) = x1 + x2t or f(t;x) = x1 + x2t+ x3t
2.

In the first case, the sought-after function describes a straight line, while in the second case,
it describes a (generalized) parabola. If we assume that the function f exactly describes
the experiment and there are no measurement errors, we could determine the parameters
xi by solving the (in general nonlinear) equation system

f(t1;x) = z1
...

f(tk;x) = zk

(2.4)

for x. In many practical cases, this equation system is linear, such as in the two examples
above, where (2.4) reduces to Ãx = z with

Ã =




1 t1
...

...
1 tm


 or Ã =




1 t1 t21
...

...
...

1 tm t2m


 and z =




z1
...
zm


 .

These systems of linear equations have m equations (one for each data pair (ti, zi)) and
n unknowns (namely, the unknown parameters xi), with m typically much larger than
n. This equation system is said to be over-determined. Since measurement values of an
experiment are practically always subject to errors, it is overly optimistic to assume that
the equation system Ãx = z is solvable (over-determined equation systems often have no
solution!). Instead of attempting the (presumably futile) task of finding an exact solution
x to this system, we want to try to find the best possible approximation solution. That is,
if Ãx = z is not solvable, we want to find an x such that Ãx is as close as possible to z.
To do this, we need to choose a criterion for ”as close as possible” that makes sense and
allows for a straightforward solution. The so-called Least Squares Problem (also known as
the Method of Least Squares) is a suitable choice:

Find x = (x1, . . . , xn)T such that ϕ(x) := ‖Ãx− z‖2 is minimized.

2.2. THE GAUSS ELIMINATION METHOD 7

Here, ‖y‖ denotes the Euclidean norm of a vector y ∈ Rn, i.e.,

‖y‖ =

√√√√
n∑

i=1

y2
i .

To minimize the function ϕ, we set the gradient ∇ϕ(x) to zero. Note that the gradient
of the function g(x) := ‖f(x)‖2 for any f : Rn → Rn is given by ∇g(x) = 2Df(x)T f(x).
Thus, we obtain

∇ϕ(x) = 2ÃT Ãx− 2ÃT z.

If Ã has full column rank, the second derivative D2ϕ(x) = 2ÃT Ã is positive definite,
which means that every zero of the gradient ∇ϕ is a minimum of ϕ. Therefore, a vector x
minimizes the function ϕ if and only if the so-called Normal Equations are satisfied:

ÃT Ãx = ÃT z.

So, the least squares problem is solved as follows:

solve Ax = b with A = ÃT Ã and b = ÃT z.

The initially seemingly complicated minimization problem for ϕ is thus reduced to solving
a linear system of equations.

In addition to the method of least squares, there are many other applications in numerical
analysis that lead to solving a linear system of equations. Some of these will be encountered
later in this lecture, such as solving nonlinear systems of equations using the Newton
method, which requires solving a sequence of linear systems, or interpolation of points
using splines.

2.2 The Gauss Elimination Method

Now we introduce the first method for solving systems of linear equations. The Gauss
elimination method is an intuitive approach that is relatively easy to implement. It is
based on the simple fact that a linear system Ax = b is easily solvable if the matrix A is
in upper triangular form, i.e.,

A =




a1,1 a1,2 . . . a1,n

0 a2,2 . . . a2,n
...

. . .
. . .

...
0 . . . 0 an,n


 .

In this case, we can solve Ax = b easily using the recursive formula:

xn =
bn
an,n

, xn−1 =
bn−1 − an−1,nxn

an−1,n−1
, . . . , x1 =

b1 − a1,2x2 − . . .− a1,nxn
a1,1

8 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

or, compactly,

xi =

bi −
n∑

j=i+1

ai,jxj

ai,i
, i = n, n− 1, . . . , 1 (2.5)

(with the convention
∑n

j=n+1 ai,jxj = 0). This method is known as backward substitution.

The idea of the Gauss elimination method is to transform the equation system Ax = b into
a system Ãx = b̃ such that the matrix Ã is in upper triangular form. Let us illustrate this
method with an example.

Example 2.1 Consider the linear equation system with matrix A and vector b as follows:

A =




1 5 6
7 9 6
2 3 4


 , b =




29
43
20


 .

To transform matrix A into upper triangular form, we need to eliminate the entries 7, 2,
and 3 below the diagonal by performing row operations. We start with the entry 2. To
eliminate it, we subtract 2 times the first row from the third row, resulting in:

A1 =




1 5 6
7 9 6
0 −7 −8




We perform the same operation on vector b:

b1 =




29
43
−38




Next, we eliminate the 7 in the third row by subtracting 7 times the first row from the
second row:

A2 =




1 5 6
0 −26 −36
0 −7 −8


 , b2 =




29
−160
−38




Finally, we eliminate the −7 in the third row by subtracting 7
26 times the second row from

the third row:

A3 =




1 5 6
0 −26 −36
0 0 22

13


 , b3 =




29
−160

66
13




2.2. THE GAUSS ELIMINATION METHOD 9

Now, we have Ã = A3 and b̃ = b3. We can solve for x using backward substitution, resulting
in:

x3 =
66
13
22
13

= 3, x2 =
−160− 3 · (−36)

−26
= 2, x1 =

29− 2 · 5− 3 · 6
1

= 1.

We now formulate the algorithm for general square matrices A.

Algorithm 2.2 (Gaussian Elimination, Basic Version)
Let A be a matrix in Rn×n and b be a vector in Rn.

(1) For j from 1 to n− 1 (j = column index of the entry to be eliminated)

(2) For i from n to j + 1 (counting backward)
(i = row index of the entry to be eliminated)

Subtract
ai j
aj j

times the j-th row from the i-th row:

Let α :=
ai j
aj j

and compute

ai k := ai k − αaj k for k = j, . . . , n, bi := bi − α bj

End of the i-loop

(3) End of the j-loop

It is possible that this algorithm does not lead to a result, even if the system of equations
is solvable. The reason for this is in step (1), where division by the diagonal element aj j
occurs. It is assumed here, without explicit verification, that this element is nonzero, which
is not necessarily the case. Fortunately, there is a way to address this.

Let us assume that we want to execute step (1) for given indices i and j, and aj j = 0.
Now, there are two possibilities: In the first case, ai j = 0. In this case, there is no need to
do anything because the element ai j that should be brought to 0 is already equal to 0. In
the second case, ai j 6= 0. In this case, we can swap the i-th and j-th rows of matrix A as
well as the corresponding entries in vector b, which achieves the desired property ai j = 0,
but not through elimination, but by swapping. This procedure is called pivoting, and the
following algorithm indeed transforms any linear system into triangular form.

Algorithm 2.3 (Gaussian Elimination with Pivoting)
Let A be a matrix in Rn×n and b be a vector in Rn.

(1) For j from 1 to n− 1 (j = column index of the entry to be eliminated)

(1a) If aj j = 0, choose a p ∈ {j + 1, . . . , n} with ap j 6= 0 and
swap aj k and ap k for k = j, . . . , n as well as bp and bj

10 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

(2) For i from n to j + 1 (counting backward)
(i = row index of the entry to be eliminated)

Subtract
ai j
aj j

times the j-th row from the i-th row:

Let α :=
ai j
aj j

and compute

ai k := ai k − αaj k for k = j, . . . , n, bi := bi − α bj

End of the i-loop

(3) End of the j-loop

The element ap j that is swapped with aj j in step (1a) is called the pivot element. In
Section 2.5 we will learn to know a strategy where — even if aj j 6= 0 — an element ap j 6= 0
is deliberately selected as the pivot element, since this can improve the robustness of the
algorithm.

2.3 LR Factorization

In the previous version of the Gaussian method, we transformed the matrix A into upper
triangular form and applied all the necessary operations to the vector b at the same time.
There are alternative methods for solving linear systems where the vector b remains un-
changed. We will now introduce a procedure in which the matrix A is decomposed into a
product of two matrices L and R, i.e., A = LR, where R is an upper triangular matrix and
L is a lower triangular matrix

L =




l1 1 0 . . . 0

...
. . .

. . .
...

ln−1 1 . . . ln−1n−1 0
ln 1 ln 2 . . . lnn



.

The decomposition A = LR is referred to as the LR factorization.

To solve Ax = b, one can solve LRx = b in two steps: First, solve the equation system
Ly = b. This can be done using forward substitution, similar to backward substitution
(2.5):

yi =

bi −
i−1∑

j=1

li jyj

li i
, i = 1, 2, . . . , n (2.6)

In the second step, solve the equation system Rx = y by backward substitution. Then, we
have

Ax = LRx = Ly = b,

which solves the desired system Ax = b.

2.3. LR FACTORIZATION 11

The Gaussian elimination method can be extended in such a way that, except for row
swaps in A, it yields an LR factorization of an invertible matrix A.

The subtraction ”‘i-th row − α times j-th row”’ in the m-th step of the algorithm can be
achieved by left multiplication with the matrix

Fm =




1
. . .

. . .

−α . . .
. . .

1




with F−1
m =




1
. . .

. . .

α
. . .

. . .

1




where α is in the i-th row and j-th column.

If Gaussian elimination can be performed without row swapping, then only operations
with such matrices are needed. If we multiply the matrices F1, F2, . . . , Fq required for this
process into a single matrix F = Fq · Fq−1 · · ·F1, we obtain A = LR with L = F−1 =
F−1

1 · F−1
2 · · ·F−1

q , which is the LR factorization (note that the inverse of F−1, a product
of lower triangular matrices, is still a lower triangular matrix). The construction of L can
also be done recursively as follows

L(0) := Id, L(m+1) = L(m)F−1
m+1 (2.7)

for m = 0, . . . , q − 1, and L = L(q).

If row swaps are necessary due to pivoting, then an LR factorization cannot be obtained
in general.1 The swapping of the p-th and j-th rows in A in the m-th step of the algorithm
can be achieved by left multiplication with matrices of the form

Pm =




1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1




where the 0 entries are precisely at the p-th and j-th positions. If such row swaps are
required, you can also multiply the necessary matrices P1, . . . , Pq into a single matrix
P = Pq · · ·P1 (P is called a permutation matrix). For simplicity, we assign a permutation

1In fact, for general invertible matrices, an LR factorization does not always exist.

12 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

matrix Pm to each elimination matrix Fm and set Pm = Id if no swap is performed before
the m-th elimination. Therefore, we have the same number of permutation matrices Pm
as elimination matrices Fm. Note that P−1

m = Pm always holds.

This permutation must be taken into account when constructing the matrix L using (2.7).
To explain this, we use the following notation:

Let Am be the matrix generated after the m-th step of the algorithm (i.e., A0 = A and
Aq = R if q is the total number of steps in the algorithm). Let P (m) = Pm · · ·P1 be the
accumulated matrix of permutations up to step m. Finally, let L(m) be the lower triangular
matrix with

P (m)A = L(m)Am. (2.8)

For this, we have L(0) = Id, and if no permutation is performed up to step m, we have
L(m) = F−1

1 · F−1
2 · · ·F−1

m as described above.

Let Pm+1 and Fm+1 be the pivoting and elimination matrices in the (m+ 1)-th step. We
want to calculate L(m+1) such that

P (m+1)A = L(m+1)Am+1 (2.9)

holds. Since the Gaussian algorithm first performs pivoting and then elimination, we have

Am+1 = Fm+1Pm+1Am, so Am = Pm+1F
−1
m+1Am+1.

It follows that

P (m+1)A = Pm+1P
(m)A = Pm+1L

(m)Am = Pm+1L
(m)Pm+1F

−1
m+1Am+1.

Therefore, if we set

L(m+1) := Pm+1L
(m)Pm+1F

−1
m+1,

we get (2.9). Note that the multiplication of L(m) with Pm+1 from the right just swaps
the p-th and j-th columns; only row and column swaps are added compared to (2.7).
Because this swap only affects the diagonal and entries below the diagonal up to column
j − 1, and since p > j during swapping, L(m) remains a lower triangular matrix after this
operation. We can calculate the matrices L(m) recursively, starting with L(0) = Id, and
obtain PA = LR, an LR factorization of the row-swapped matrix A.

Further details on implementing this algorithm can be found in books such as Deufl-
hard/Hohmann [1], Schwarz/Köckler [8], or Stoer [9].

2.4 The Cholesky Method

Another way to obtain an LR factorization is through the following algorithm, known as
the Cholesky method. This method works not for general matrices but only for symmetric,
positive definite matrices, providing a particularly elegant form of the LR factorization.

Definition 2.4 (i) A matrix A ∈ Rn×n is called symmetric if AT = A.

2.4. THE CHOLESKY METHOD 13

(ii) A matrix A ∈ Rn×n is called positive definite if 〈x, Ax〉 > 0 for all vectors x ∈ Rn with
x 6= (0 . . . 0)T .

Here, 〈x, y〉 denotes the Euclidean or standard scalar product in Rn, i.e., for vectors x, y ∈
Rn,

〈x, y〉 = xT y =

n∑

i=1

xiyi.

This property is clearly restrictive, but it holds in many applications. For example, the least
squares problem generally leads to a system of equations with a symmetric and positive
definite matrix A.

For such matrices, it can be shown that there always exists an LR factorization that
additionally has the elegant form R = LT , meaning that it suffices to compute the lower
triangular matrix L. The proof follows constructively from the following algorithm.

Algorithm 2.5 (Cholesky Method) Let A ∈ Rn×n be a given symmetric and positive
definite matrix.

(0) Set i = 1 and j = 1 (row and column indices of the current entry li j of L).

(1) (a) If i > j, set

li j =

ai j −
j−1∑

k=1

li klj k

lj j

(b) If i = j, set

li i =

√√√√ai i −
i−1∑

k=1

l2i k

(c) If i < j, set li j = 0

(2) If i ≤ n−1, set i := i+1 and continue with (1); otherwise: If j ≤ n−1, set j := j+1
and i := 1 and continue with (1); otherwise: End of the algorithm

Clearly, this algorithm is not as intuitive as Gaussian elimination. To prove that this
algorithm provides the correct result, we explicitly write the equation A = LLT and solve
for L. However, doing this directly for arbitrary dimensions can be very cumbersome,
which is why we proceed by induction on the dimension of matrix A. In order to start
the induction, for 2× 2 matrices, we obtain:

(
a1 1 a1 2

a2 1 a2 2

)
=

(
l1 1 0
l2 1 l2 2

)(
l1 1 l2 1

0 l2 2

)
=

(
l21 1 l1 1l2 1

l2 1l1 1 l22 1 + l22 2

)
. (2.10)

14 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

From this, we obtain the following:

l1 1 =
√
a1 1

l2 1 = a2 1/l1 1

l2 2 =
√
a2 2 − l22 1

which exactly corresponds to the calculations in Algorithm 2.5 for i = 1, 2 and j = 1, 2.
The first and last equations are real solutions because A is positive definite, which implies
a1 1 > 0 and det(A)/a1 1 > 0.

For larger matrices, we proceed by induction. We express A as:

A =

(
An−1 ān
āTn ann

)

If A is symmetric and positive definite, then An−1 also possesses these properties. As the
induction hypothesis, we assume that the Cholesky algorithm for the (n− 1)× (n− 1)
matrix An−1 correctly computes the LR factorization in the form An−1 = Ln−1L

T
n−1.

We express the sought lower triangular matrix L as:

L =

(
Ln−1 0
l̄Tn lnn

)

with l̄n = (ln 1 . . . lnn−1)T .

For the induction step, we must verify the equations in the Cholesky algorithm for i = n
and j = 1, . . . , n (the equations for i ≤ n− 1 already yield the correct matrix Ln−1 due to
the induction hypothesis). To do this, we consider the equation A = LLT , which, with the
above notation, becomes:

(
An−1 ān
āTn ann

)
=

(
Ln−1 0
l̄Tn lnn

)(
LTn−1 l̄n

0 lnn

)
=

(
Ln−1L

T
n−1 Ln−1 l̄n

(Ln−1 l̄n)T l̄Tn l̄n + l2nn

)
.

(2.11)

If we solve for the entries in the vector l̄n through forward substitution from the equation
system Ln−1 l̄n = ān, we precisely obtain the equations for ln,j , j = 1, . . . , n − 1 from
Algorithm 2.5. Furthermore, by solving the equation l̄Tn l̄n + l2nn = ann, we derive the
equation for j = n in Algorithm 2.5. It can be seen as follows that this equation has
real solution: Certainly, there exists a solution lnn, which may be complex. As a result,
the factorization A = LLT exists, where L may have complex entries. Then, det(A) =
det(L)2, and from the induction hypothesis, we have det(An−1) = det(Ln−1)2 (due to
An−1 = Ln−1L

T
n−1). Moreover, det(L)2 = det(Ln−1)2l2nn (due to the form of L), which

implies:

l2nn = det(L)2/ det(Ln−1)2 = det(A)/det(An−1)

Since A is positive definite (and thus An−1 is as well), l2nn is real and positive, making lnn
real.

2.5. ERROR ESTIMATION AND CONDITION NUMBERS 15

2.5 Error Estimation and Condition Numbers

As explained in the introductory chapter, computers cannot represent all real numbers
exactly. Therefore, all numbers are internally rounded to fit into the finite set of machine-
representable numbers. This leads to rounding errors. Even when both the input values
and the result of an algorithm are machine-representable numbers, such errors can occur
because intermediate results of an algorithm (which may not be representable) are also
rounded. Due to these errors, as well as input or measurement errors in the given data
or errors from previous numerical computations, an algorithm typically computes not the
exact solution x of the linear equation system

Ax = b

but an approximate solution x̃. To formalize this, we introduce a “perturbed” or “dis-
turbed” equation system. First, we consider perturbations in the vector b; we will investi-
gate perturbations in the matrix A in Theorem 2.13.

Therefore, we consider the equation system

Ax̃ = b+ ∆b,

for which x̃ = x + ∆x is the exact solution. Here, the vector ∆b is called the residual or
the defect of the approximate solution x̃. We call the vector ∆x = x̃ − x the error of the
approximate solution x̃. Since rounding and other sources of errors typically only result in
small errors, it is justified to assume that ‖∆b‖ is “small”. The goal of this section is to
relate the size of the residual ‖∆b‖ to the size of the error ‖∆x‖. In particular, we want
to examine how sensitive the size ‖∆x‖ is to ‖∆b‖, i.e., whether small residuals ‖∆b‖ can
cause large errors ‖∆x‖. This analysis is independent of the solution method used, as we
are only considering the equation system itself and not a specific method.

To conduct this analysis, we need the concept of a matrix norm. Matrix norms can be
defined quite generally, but for our purposes, the concept of an induced matrix norm is
sufficient. We will first recall various vector norms for vectors x ∈ Rn. In this lecture, we
typically use the Euclidean norm or 2-norm

‖x‖2 =

√√√√
n∑

i=1

x2
i ,

which we usually denote simply as ‖x‖. Other norms include the 1-norm

‖x‖1 =

n∑

i=1

|xi|

and the maximum or ∞-norm
‖x‖∞ = max

i=1,...,n
|xi|.

We will see shortly that the last two norms have certain advantages in the context of
systems of linear equations.

For all norms in Rn, one can define an associated induced matrix norm.

16 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Definition 2.6 Let Rn×n be the set of n× n matrices, and let ‖ · ‖p be a vector norm in
Rn. Then, we define the induced matrix norm ‖A‖p associated with ‖ · ‖p for A ∈ Rn×n as
follows:

‖A‖p := max
x∈Rn
‖x‖p=1

‖Ax‖p = sup
x∈Rn\{0}

‖Ax‖p
‖x‖p

.

The equality of the two expressions on the right side follows from the relationship ‖αx‖p =
|α| ‖x‖p for α ∈ R. It will be proven in the exercises that these are indeed norms on the
vector space Rn×n.

Since there is usually no risk of confusion, we use the same symbol for vector norms and
the induced matrix norms associated with them.

Theorem 2.7 For the induced matrix norms associated with the vector norms mentioned
above and A ∈ Rn×n, the following equations hold:

‖A‖1 = maxj=1,...,n
∑n

i=1 |ai j | (column sum norm)

‖A‖∞ = maxi=1,...,n
∑n

j=1 |ai j | (row sum norm)

‖A‖2 =
√
ρ(ATA) (spectral norm),

where ρ(ATA) denotes the maximum eigenvalue of the symmetric and positive definite
matrix ATA.

Proof: We prove the equations by proving the corresponding inequalities.

“‖A‖1, ≤”: For any vector x ∈ Rn, we have

‖Ax‖1 =

n∑

i=1

∣∣∣∣∣∣

n∑

j=1

ai jxj

∣∣∣∣∣∣
≤

n∑

i=1

n∑

j=1

|ai j | |xj | =
n∑

j=1

|xj |
n∑

i=1

|ai j |.

Let j∗ be the index for which the inner sum is maximized, i.e.,

n∑

i=1

|ai j∗ | = max
j=1,...,n

n∑

i=1

|ai j |.

Then, for vectors with ‖x‖1 = 1, we have

n∑

j=1

|xj |
n∑

i=1

|ai j | ≤
n∑

j=1

|xj |

︸ ︷︷ ︸
=1

n∑

i=1

|ai j∗ | =
n∑

i=1

|ai j∗ |,

which implies, since x was arbitrary, the inequality

‖A‖1 ≤
n∑

i=1

|ai j∗ | = max
j=1,...,n

n∑

i=1

|ai j |.

2.5. ERROR ESTIMATION AND CONDITION NUMBERS 17

“≥”: For the j∗-th unit vector ej∗ we obtain

‖A‖1 ≥ ‖Aej∗‖1 =
n∑

i=1

∣∣∣∣∣∣

n∑

j=1

ai j [ej∗]j

∣∣∣∣∣∣
︸ ︷︷ ︸

=|ai j∗ |

=
n∑

i=1

|ai j∗ | = max
j=1,...,n

n∑

i=1

|ai j |

and thus, the claimed inequality.

“‖A‖∞”: Similar to the 1-norm, with x∗ = (±1, . . . ,±1)T instead of ej∗ .

“‖A‖2, ≤”: Since ATA is symmetric, we can choose an orthonormal basis of eigenvectors
v1, . . . , vn, i.e., ‖vi‖2 = 1 and 〈vi, vj〉 = 0 for i 6= j. Let x ∈ Rn be an arbitrary vector with
length 1, then x can be expressed as a linear combination x =

∑n
i=1 µivi with

∑n
i=1 µ

2
i = 1.

Let λi be the eigenvalues of ATA corresponding to the eigenvectors vi, and let λi∗ be the
maximal eigenvalue, i.e., λi∗ = ρ(ATA). Then, we have

‖Ax‖22 = 〈Ax,Ax〉 = 〈ATAx, x〉

=
n∑

i,j=1

µiµj〈ATAvi︸ ︷︷ ︸
=λivi

, vj〉

=
n∑

i,j=1
i 6=j

µiµjλi 〈vi, vj〉︸ ︷︷ ︸
=0

+
n∑

i=1

µ2
iλi 〈vi, vi〉︸ ︷︷ ︸

=1

=
n∑

i=1

µ2
iλi.

Therefore, we have

‖Ax‖22 =
n∑

i=1

µ2
iλi ≤

n∑

i=1

µ2
i

︸ ︷︷ ︸
=1

λi∗ = λi∗ ,

which implies that, since x was arbitrary,

‖A‖22 ≤ λi∗ = ρ(ATA).

“≥”: For proving the converse inequality, we use the inequality

‖A‖22 ≥ ‖Avi∗‖22 = 〈ATAvi∗ , vi∗〉 = λi∗ 〈vi∗ , vi∗〉︸ ︷︷ ︸
=1

= λi∗ = ρ(ATA).

For any matrix norm, we can define the corresponding condition number of an invertible
matrix.

Definition 2.8 For a given matrix norm ‖·‖p, the condition number of an invertible matrix
A (with respect to ‖ · ‖p) is defined as

condp(A) := ‖A‖p‖A−1‖p.

18 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

When we consider the ratio between the error ∆x and the residual ∆b, we can either
consider the absolute values of these values, i.e., ‖∆x‖p and ‖∆b‖p, or, which is often more
meaningful, the relative sizes ‖∆x‖p/‖x‖p and ‖∆b‖p/‖b‖p. The following theorem shows
how to estimate the error from the residual.

Theorem 2.9 Let ‖ · ‖p be a vector norm with the associated (and equally denoted)
induced matrix norm. Let A ∈ Rn×n be a given invertible matrix, and b, ∆b ∈ Rn be given
vectors. Let x, x̃ ∈ Rn be the solutions to the linear systems

Ax = b and Ax̃ = b+ ∆b.

Then, for the error ∆x = x̃− x, the following estimates hold:

‖∆x‖p ≤ ‖A−1‖p‖∆b‖p (2.12)

and
‖∆x‖p
‖x‖p

≤ condp(A)
‖∆b‖p
‖b‖p

. (2.13)

Proof: Let C ∈ Rn×n and y ∈ Rn be any matrix and vector, respectively. Then, as proved
in the exercises

‖Cy‖p ≤ ‖C‖p‖y‖p. (2.14)

Let x̃ = x+ ∆x, and subtract the equation

Ax = b

from the equation

A(x+ ∆x) = b+ ∆b

to obtain

A∆x = ∆b.

Since A is invertible, we can multiply both sides of the equation on the left by A−1 to
obtain

∆x = A−1∆b.

Thus, we have

‖∆x‖p = ‖A−1∆b‖p ≤ ‖A−1‖p‖∆b‖p,

where we have used (2.14) with C = A−1 and y = ∆b. This proves (2.12). From (2.14)
with C = A and y = x, we have

‖b‖p = ‖Ax‖p ≤ ‖A‖p‖x‖p,

and therefore
1

‖x‖p
≤ ‖A‖p
‖b‖p

.

2.5. ERROR ESTIMATION AND CONDITION NUMBERS 19

If we apply this inequality first and then (2.12), we obtain

‖∆x‖p
‖x‖p

≤ ‖A‖p‖∆x‖p
‖b‖p

≤ ‖A‖p‖A
−1‖p‖∆b‖p
‖b‖p

= condp(A)
‖∆b‖p
‖b‖p

,

which proves (2.13).

For matrices whose condition number condp(A) is large, small errors in the vector b (or
rounding errors in the procedure) can lead to large errors in the result x. In this case, one
speaks of ill-conditioned matrices. The following example illustrates this phenomenon.

Example 2.10 Consider the system of equations Ax = b with

A =

(
1 0

1000 1

)
and b =

(
0.001

1

)
.

It is easy to check that the solution is given by x = (0.001, 0)T . Similarly, one can easily
verify that

A−1 =

(
1 0

−1000 1

)

holds. In the row sum norm, we have ‖A‖∞ = 1001 and ‖A−1‖∞ = 1001, and therefore,

cond∞(A) = 1001 · 1001 ≈ 1, 000, 000.

For the perturbed right-hand side b̃ = (0.002, 1)T , i.e., ∆b = (0.001, 0)T , the solution
obtained is x̃ = (0.002,−1)T . This means ∆x = (0.001,−1)T , and thus,

‖∆x‖∞
‖x‖∞

=
1

0.001
= 1000 and

‖∆b‖∞
‖b‖∞

=
0.001

1
= 0.001.

The relative error of 0.001 in b̃ is amplified by a factor of 1, 000, 000 compared to the
relative error of 1000 in x̃, which is nearly equal to the condition number cond∞(A).

In addition to perturbations in b, disturbances in A can also occur. In that case, the
equation system Ax = b is replaced by

(A+ ∆A)x̃ = b (2.15)

is solved. In this case, the error ∆x in x̃ = x + ∆x no longer depends linearly on the
perturbation ∆A, and we need to define the condition concept differently. We do so as
follows.

Definition 2.11 Let GL(n) ⊂ Rn×n be the set of invertible matrices, and let f : GL(n)→
Rn be given by f(A) := A−1b. Then we define the absolute condition number of the problem

(2.15) as κabs := ‖Df(A)‖p and the relative condition number as κrel :=
‖A‖p
‖f(A)‖p ‖Df(A)‖p.

20 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

This definition is based on the fact that the Taylor expansion f(A + ∆A) ≈ f(A) +
Df(A)∆A implies that for the solution x̃ of (2.15), we have

x̃ = (A+ ∆A)−1b = f(A+ ∆A) ≈ f(A) +Df(A)∆A = x+Df(A)∆A.

This results in an approximate relationship

‖∆x‖p ≈ ‖Df(A)∆A‖p ≤ ‖Df(A)‖p ‖∆A‖p

and with x = A−1b = f(A)

‖∆x‖p
‖x‖p

≈ ‖Df(A)∆A‖p
‖x‖p

≤ ‖Df(A)‖p ‖∆A‖p
‖x‖p

=
‖A‖p
‖f(A)‖p

‖Df(A)‖p
‖∆A‖p
‖A‖p

,

which motivates the definitions. To calculate Df(A), the following lemma is helpful.

Lemma 2.12 The map g : GL(n) → GL(n), g(A) = A−1 is differentiable, and for all
C ∈ Rn×n, it holds that

Dg(A)C = −A−1CA−1.

Proof: Since A is invertible, A+tC is also invertible for t sufficiently close to 0. Therefore,
the expressions in the equation

Id = (A+ tC)(A+ tC)−1

are well-defined for t ∈ (−ε, ε) and sufficiently small ε > 0. We can differentiate both sides
with respect to t using the product and chain rules, yielding

0 = C(A+ tC)−1 + (A+ tC)
d

dt
(A+ tC)−1,

which leads to
d

dt
(A+ tC)−1 = −(A+ tC)−1C(A+ tC)−1

as the result. Since Dg(A)C is precisely the directional derivative of g at point A in the
direction of C, we have Dg(A)C = d

dt

∣∣
t=0

(A+ tC)−1, which confirms the claim.

This leads to the following theorem.

Theorem 2.13 For the condition numbers in Definition 2.11, it holds with x = A−1b

κabs ≤ ‖A−1‖p‖x‖p and κrel ≤ condp(A).

Proof: We have

Df(A)C =
d

dt

∣∣∣∣
t=0

f(A+ tC) =
d

dt

∣∣∣∣
t=0

g(A+ tC)b = Dg(A)Cb

2.5. ERROR ESTIMATION AND CONDITION NUMBERS 21

and, consequently, using Lemma 2.12, Df(A)C = Dg(A)Cb = −A−1CA−1b = −A−1Cx.
This results in

κabs = ‖Df(A)‖p = max
‖C‖p=1

‖Df(A)C‖p = max
‖C‖p=1

‖A−1Cx‖p ≤ ‖A−1‖p‖x‖p

and, as f(A) = x,

κrel =
‖A‖p
‖x‖p

‖Df(A)‖p ≤
‖A‖p
‖x‖p

‖A−1‖p‖x‖p = ‖A‖p‖A−1‖p = condp(A).

The condition with respect to disturbances in A is determined by the same factors as the
condition with respect to disturbances in b.

For poorly conditioned matrices, rounding errors in the algorithm can have a similar impact
to errors in the matrix A or the right-hand side b. An important criterion in designing
a solution method is that the method should still work reliably for poorly conditioned
matrices. In the Gauss elimination method, one can achieve this by choosing the pivot
elements in a way that minimizes rounding errors.

To do this, we need to consider which operations in Gauss elimination are particularly
error-prone. While this can be done in great detail and formality, we will focus on a
more heuristic criterion here: The computational operations in Gauss elimination involve
subtractions

ai k −
ai j
aj j

aj k, bi −
ai j
aj j

bj

In principle, in step (1a) of the algorithm, we can swap any other row with the j-th row
as long as it has the same number of leading zero entries, which is true for rows j, . . . , n.
This gives us the freedom to replace the row index ”‘j”’ with any index p ∈ {j, . . . , n},
which is accomplished in the algorithm by swapping the j-th row with the p-th row. Note
that the ”‘j”’ in ”‘ai j”’ is the column index of the element to be eliminated, and it doesn’t
change with the row swapping. Therefore, row swapping can only affect the elements aj j ,
aj k, and bj , or in other words, the fractions aj k/aj j and bj/aj j .

The main source of rounding errors in a subtraction “c − d” on a computer occurs when
the difference to be calculated is small in magnitude, and the individual terms c and
d are significantly larger in magnitude in comparison. To illustrate this, let us assume
we are performing calculations in the decimal system with 5-digit precision. If we sub-
tract the numbers 1.234 from 1.235, we get the correct result of 0.001, but if we subtract
1000.234 from 1000.235, due to internal rounding to 5 digits, the calculation becomes
1000.2− 1000.2 = 0, which introduces a significant error (this specific error is also known
as subtractive cancellation). The strategy to minimize such errors in Gauss elimination
is to choose the row index p during pivoting in a way that makes the expressions to be
subtracted small in magnitude, a technique called pivot search. Since we can only influence
the fractions aj k/aj j (k = j, . . . , n) and bj/aj j through row swapping, we should choose p
so that these fractions become as small as possible in magnitude. A simple approach often
found in literature is to choose the pivot element ap j (the denominator of the fractions) to
maximize |ap j |.
In the following Algorithm 2.14, we use a slightly more sophisticated strategy that takes
into account the numerators of the appearing fractions as well.

22 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Algorithm 2.14 (Gauss Elimination with Pivot Search)
Given a matrix A ∈ Rn×n and a vector b ∈ Rn.

(1) For j from 1 to n− 1 (j = column index of the entry to be eliminated)

(1a) Choose from the row indices p ∈ {j, . . . , n | ap j 6= 0} the one for which
the expression

K(p) = max

{
max

k=j,...,n

|ap k|
|ap j |

,
|bp|
|ap j |

}

is minimized. If p 6= j, swap aj k and ap k for k = j, . . . , n as well as bp and bj .

(2) For i from n to j + 1 (counting backwards)
(i = row index of the entry to be eliminated)

Subtract ai j/aj j times the j-th row from the i-th row:

Set α := ai j/aj j and compute

ai k := ai k − αaj k for k = j, . . . , n, bi := bi − α bj

End of the i loop

(3) End of the j loop

The pivot search method used here is called column pivot search, as it searches for the
best pivot element ap j within the j-th column. An extended form is the complete or total
pivot search, where rows are also searched, and column swaps may be performed as well.
Good implementations of Gauss elimination always use such pivot search methods. These
methods enhance robustness but do not provide complete protection against large errors
in the case of poor conditioning — due to fundamental mathematical reasons, as we will
explain in the next section.

A more general strategy for dealing with poorly conditioned systems of equations is called
preconditioning, where a matrix P ∈ Rn×n is sought such that the condition of PA is
smaller than that of A, so that the better conditioned problem PAx = Pb can be solved.
We will revisit this when discussing iterative methods.

Another strategy for addressing poorly conditioned systems of equations, which we will
examine in more detail, is the QR factorization (or QR decomposition) of a matrix.

2.6 QR Factorization

The LR factorization, which has been explicitly or implicitly the basis for the solution
methods considered so far, has a significant drawback from a conditioning perspective. It
can happen that the individual matrices L and R of the decomposition have much larger
condition numbers than the decomposed matrix A.

2.6. QR FACTORIZATION 23

Example 2.15 Consider the matrix

A =

(
0.001 0.001
1 2

)
with A−1 =

(
2000 −1
−1000 1

)

and the LR factorization

L =

(
1 0

1000 1

)
, R =

(
0.001 0.001
0 1

)
.

Due to

L−1 =

(
1 0

−1000 1

)
and R−1 =

(
1000 −1

0 1

)

we have

cond∞(A) ≈ 6000, cond∞(L) ≈ 1000000, and cond∞(R) ≈ 1000.

So, the ∞-condition of L is approximately 166 times larger than that of A.

Even if we neglect possible errors in the computation of R and L or reduce them through
clever pivot selection, the poor conditioning of R and L can lead to large errors ∆x due to
the amplification of rounding errors during forward and backward substitution, especially
when the matrix A itself is poorly conditioned. In the LR factorization, it can happen that
the condition of the subproblems that arise in the algorithm is significantly worse than
that of the original problem. Note that the condition of the original problem depends only
on the problem statement, while that of the subproblems depends on the algorithm used,
which is why they are also referred to as numerical condition.

To reduce the numerical condition, we now want to consider a different form of factorization
in which the condition of the individual subproblems (or the associated matrices) is not
greater than that of the original problem (i.e., the original matrix A).

To do this, we use the following matrices.

Definition 2.16 A matrix Q ∈ Rn×n is called orthogonal if QQT = Id holds2.

Our goal now is an algorithm that decomposes a matrix A into a product QR, where Q is
an orthogonal matrix and R is an upper triangular matrix.

It is clear that a system of equations in the form of Qy = b is easy to solve by performing
the matrix multiplication y = QT b. Therefore, we can solve the equation system Ax = b
as in the LR factorization by solving the subproblems Qy = b and Rx = y.

Before deriving the corresponding algorithm, we want to prove that with this form of
factorization, the condition indeed remains the same — at least for the Euclidean norm.

Theorem 2.17 Let A ∈ Rn×n be an invertible matrix with a QR factorization. Then,

cond2(Q) = 1 and cond2(R) = cond2(A).

2The complex counterpart of this is the unitary matrix, which allows us to perform everything we do
here in real numbers in the complex field.

24 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Proof: Since Q is orthogonal, Q−1 = QT . For any vector x ∈ Rn,

‖Qx‖22 = 〈Qx,Qx〉2 = 〈QTQx, x〉2 = 〈x, x〉2 = ‖x‖22,

which implies ‖Qx‖2 = ‖x‖2. Therefore, for invertible matrices B ∈ Rn×n,

‖QB‖2 = max
‖x‖2=1

‖QBx‖2 = max
‖x‖2=1

‖Q(Bx)‖2 = max
‖x‖2=1

‖Bx‖2 = ‖B‖2

and with Qx = y,

‖BQ‖2 = max
‖x‖2=1

‖BQx‖2 = max
‖QT y‖2=1

‖By‖2 = max
‖y‖2=1

‖By‖2 = ‖B‖2,

since Q and QT = Q−1 are both orthogonal. Hence,

cond2(Q) = ‖Q‖2‖Q−1‖2 = ‖QId‖2‖Q−1Id‖2 = ‖Id‖2‖Id‖2 = 1

and

cond2(R) = cond2(QTA) = ‖QTA‖2‖(QTA)−1‖2 = ‖QTA‖2‖A−1Q‖2

= ‖A‖2‖A−1‖2 = cond2(A).

While this theorem does not hold for other matrix norms, the estimate ‖x‖p ≤ Cp,q‖x‖q
that is valid for any two vector norms ensures that at least there is no extreme degradation
of the numerical condition concerning other induced matrix norms.

Example 2.18 As an example we reconsider the equation system from Example 2.15. A
QR factorization of A is given by

Q =
1

η

(
−0.001 −1
−1 0.001

)
and R =

(
−η −η − 1

η

0 0.001
η

)
≈
(
−1 −2

0 0.001

)

with

Q−1 =
1

η

(
−0.001 −1
−1 0.001

)
and R−1 =

(
− 1
η − 4000

η+ 1
η

0 1000η

)
≈
(
−1 −2000

0 1000

)
.

So, we have cond∞(Q) ≈ 1 and cond∞(R) ≈ 6000, which means there is no significant
deterioration of the condition number in the ∞-norm.

The idea of the algorithms for QR factorization is to consider the columns of the matrix A
as vectors and transform them into the desired form through orthogonal transformations.
Orthogonal transformations are precisely the linear transformations that can be represented
by orthogonal matrices. Geometrically, these transformations are the ones that preserve
the (Euclidean) length of the transformed vector as well as the angle between two vectors
— nothing else was exploited in the proof of Theorem 2.17.

2.6. QR FACTORIZATION 25

To implement such an algorithm, two possible transformations are available: rotations and
reflections. Here, we will derive the Householder algorithm, named after its inventor, which
is based on reflections3. We will first illustrate the idea geometrically.

Let a· j ∈ Rn be the j-th column of the matrix A. We want to find a reflection H(j) that

maps a· j to a vector of the form a
(j)
· j = (∗, ∗, . . . , ∗︸ ︷︷ ︸

j positions

, 0)T . In other words, the vector should

be reflected onto the plane Ej = span(e1, . . . , ej).

To construct this reflection, we consider general reflection matrices of the form

H = H(v) = Id− 2vvT

vT v

where v ∈ Rn is an arbitrary vector (note that vvT ∈ Rn×n and vT v ∈ R). These matrices
are called Householder matrices. Clearly, H is symmetric, and it satisfies

HHT = H2 = Id− 4vvT

vT v
+

2vvT

vT v

2vvT

vT v
= Id,

which means it is orthogonal. Geometrically, multiplying by H corresponds to reflection
about the plane with the normal vector n = v/‖v‖.
To realize the desired reflection into the plane Ej , we must choose v appropriately. The
following lemma helps with this.

Lemma 2.19 Consider a vector w = (w1, . . . , wn)T ∈ Rn. For a given index j ∈ {1, . . . , n},
consider

c = sgn(wj)
√
w2
j + w2

j+1 + · · ·+ w2
n ∈ R

v = (0, . . . , 0, c+ wj , wj+1, . . . , wn)T

H = Id− 2vvT

vT v

with the conventions sgn(a) = 1 if a ≥ 0, sgn(a) = −1 if a < 0, and H = Id if v = 0. Then,

Hw = (w1, w2, . . . , wj−1,−c, 0, . . . , 0)T .

Furthermore, for any vector z ∈ Rn of the form z = (z1, . . . , zj−1, 0, . . . , 0)T , we have
Hz = z.

Proof: If v 6= 0, then

2vTw

vT v
=

2((c+ wj)wj + w2
j+1 + · · ·+ w2

n)

c2 + 2cwj + w2
j + w2

j+1 + · · ·+ w2
n

=
2(cwj + w2

j + w2
j+1 + · · ·+ w2

n)

2cwj + 2w2
j + 2w2

j+1 + · · ·+ 2w2
n

= 1.

3An algorithm based on rotations is the so-called Givens algorithm

26 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

From this, it follows that

Hw = w − v2vTw

vT v
= w − v =




w1
...

wj−1

wj
wj+1

...
wn




−




0
...
0

c+ wj
wj+1

...
wn




=




w1
...

wj−1

−c
0
...
0




.

If v = 0, it is immediately seen that wj+1 = . . . = wn = 0 must hold. Thus, c = wj , so
wj + c = 2wj , which implies wj = 0. All in all, this yields wj = wj+1 = . . . = wn = 0 and
thus the claim holds with H = Id.

For the second claim, we use the fact that for vectors z of the given form, we have vT z = 0,
from which we immediately get Hz = z, and the claim follows.

The idea of the algorithm now becomes apparent:

We set A(1) = A and construct H(1) in the first step according to Lemma 2.19 with j = 1

and w = a
(1)
· 1 , the first column of the matrix A(1). Thus, A(2) = H(1)A(1) is of the form

A(2) = H(1)A(1) =




a
(2)
1 1 a

(2)
1 2 · · · a

(2)
1n

0 a
(2)
2 2 · · · a

(2)
2n

...
...

...

0 a
(2)
n 2 · · · a

(2)
nn



.

In the second step, we construct H(2) according to Lemma 2.19 with j = 2 and w = a
(2)
· 2 , the

second column of matrix A(2). Since the first column of matrix A(2) satisfies the conditions
for the vector z in Lemma 2.19, the form follows:

A(3) = H(2)A(2) =




a
(3)
1 1 a

(3)
1 2 a

(3)
1 3 · · · a

(3)
1n

0 a
(3)
2 2 a

(3)
2 3 · · · a

(3)
2n

0 0 a
(3)
3 3 · · · a

(3)
3n

...
...

...
...

0 0 a
(3)
n 3 · · · a

(3)
nn



.

Continuing this process successively for n−1 steps yields the desired QR factorization with

QT = H(n−1) · · ·H(1) and R = A(n),

as it holds

QR = H(1)T · · ·H(n−1)TA(n)

= H(1)T · · ·H(n−2)TA(n−1)

...

= H(1)TA(2)

= A(1) = A

2.6. QR FACTORIZATION 27

Note that the QR factorization algorithm always works, even if A is not invertible, as the
above considerations provide a constructive proof of its existence. The resulting matrix Q
is always invertible, and the matrix R is invertible if and only if A is invertible.

In the following implementation of this algorithm, we do not explicitly calculate the matrix
QT but only store the vectors v(j). This is sufficient to reconstruct the application of QT .
In addition to the matrix R, we also calculate the vector y = QT b in the algorithm.
The matrix R is stored in the upper triangular part of matrix A, so the 0 elements are
not explicitly stored. Instead, we store the entries j + 1, . . . , n of vector v(j) in A. The
remaining j-th entry of v(j) is stored in a vector v. The multiplication H(j)w is performed
in the form

d =
2

vT v
, e = dvTw, H(j)w = w − ev

Algorithm 2.20 (QR Factorization using Householder Algorithm)
Input: Matrix A = (ai j), vector b = (bi)

(0) for i from 1 to n
set vi := 0

End of i loop

(1) for j from 1 to n− 1

set c := sgn(ajj)
√∑n

i=j a
2
i, j

if c = 0, continue with j + 1; otherwise
set aj j := c+ aj j (the entries vi, i ≥ j are now in ai j, i ≥ j)
set vj := aj,j

set d := 1/(caj j)

Computation of H(j)b(j):

set e := d
(∑n

i=j ai jbi

)

for i from j to n set bi := bi − eai j
End of i loop

Computation of H(j)A(j) for columns j + 1, . . . , n:
(the j-th column is still needed to store vj)
for k from j + 1 to n

set e := d
(∑n

i=j ai jai k

)

for i from j to n set ai k := ai k − eai j
End of i and k loops

Computation of the j-th column of H(j)A(j):
(only the diagonal element changes, see Lemma 2.19)
set aj j = −c

End of j loop

Output: R = (ai j)i≤j , v(j) = {vj , (ai j)i>j}, QT b = b(n) = (bi).

28 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

When solving a linear system of equations, the invertibility of R should be tested before
back-substitution (an upper triangular matrix is invertible if and only if all diagonal el-
ements are nonzero). This can be done within the algorithm by checking if the c values
(which form the diagonal elements of R) are nonzero.

The QR factorization can do more than just solve linear systems of equations. In Section
2.1, we learned about the linear least squares problem, where we seek a vector x ∈ Rn to
minimize the 2-norm of the vector:

r = Ãx− z

We have seen that this problem can be solved by solving the normal equations ÃT Ãx =
ÃT z. However, the matrix ÃT Ã can have a high condition number, making it desirable
to use a robust method and avoid explicitly solving the normal equations. With the QR
algorithm, both of these goals can be achieved, allowing us to directly solve the least squares
problem.

The QR factorization (and the algorithm provided) can also be applied to non-square
matrices Ã with n columns and m > n rows. In this case, you modify the algorithm by
allowing j to range from 1 to n and all other indices, except for k, to range from 1 to m in
the computation of H(j)A(j) up to m. The result is a factorization Ã = QR with

R =

(
R1

0

)

where R1 ∈ Rn×n is an upper triangular matrix. Note that the normal equations are
solvable if and only if Ã has full column rank, which we assume. In this case, R1 is also
invertible.

If we choose x such that the vector

s = QT r = QT Ãx−QT z

has the minimal 2-norm, then r will also have the minimal 2-norm because the orthogonality
of QT implies ‖r‖2 = ‖s‖2. Because of the form of R = QT Ã the vector s2 is independent
of x and since

‖s‖22 =
m∑

i=1

s2
i =

n∑

i=1

s2
i +

m∑

i=n+1

s2
i = ‖s1‖22 + ‖s2‖22,

this norm becomes mininal if and only of the norm ‖s1‖22 becomes minimal. We thus look
for an x ∈ Rn that mininizes

‖s1‖2 = ‖R1x− y1‖2,

where y1 denotes the first n components of the vector y = QT z. Since R1 is an invertible
upper triangular matrix, by backward substitution we can find a solution x of the system
of equations R1x = y1, for which

‖s1‖2 = ‖R1x− y1‖2 = 0

holds and which thus obviously realized the minimum. In summary, we can directly solve
the least squares problem with the QR factorization as follows:

2.7. COMPUTATIONAL EFFORT 29

Algorithm 2.21 (Solving the Least Squares Problem with QR Factorization)
Input: Matrix Ã ∈ Rm×n with m > n and maximal column rank n, vector z ∈ Rm

(1) Compute the factorization Ã = QR with R =

(
R1

0

)
and upper triangular matrix

R1 ∈ Rn×n

(2) Solve the equation system R1x = y(1) through backward substitution, where y(1)

denotes the first n components of the vector y = QT z ∈ Rm

Output: Vector x ∈ Rn that minimizes ‖Ãx− z‖2.

Geometrically, this algorithm projects the image of Ã onto the subspace spanned by
(e1, . . . , en) through the orthogonal transformation QT . Then, you can solve the resulting
equation system in that subspace, as shown in Figure 2.1.

z

Im(Ã)

Im(QT Ã) = Rn

Ãx

QT

y1 =

(
R1x
0

)

y2

y = QT z

Rn

Rm−n Rm−n

Figure 2.1: Illustration of Algorithm 2.21

2.7 Computational Effort

An important aspect in the analysis of numerical methods is to examine how long these
methods typically take to achieve the desired result. Since this crucially depends on the
performance of the computer used, one does not directly estimate the time but rather the
number of arithmetic operations that an algorithm requires. In this context, the floating-
point operations, such as addition, multiplication etc. of real numbers are typically the
focus of the analysis, because they are by far the most time-consuming operations4.

The methods we have considered so far provide a result after a finite number of steps
(referred to as direct methods), where the number of operations depends on the dimension
n of the matrix. To estimate the computational effort, it is sufficient to count the number

4In reality, multiplication, division, and square root calculations are somewhat more expensive than
addition and subtraction, but we will neglect this here.

30 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

of floating-point operations (in terms of n). The most efficient way to do this depends on
the algorithm’s structure. Additionally, some basic calculus rules need to be applied to
simplify the resulting expressions. Specifically, we need the equations

n∑

i=1

i =
(n+ 1)n

2
and

n∑

i=1

i2 =
1

3
n3 +

1

2
n2 +

1

6
n.

Let us start with the backward substitution and consider the multiplications and divi-
sions: For i = n, one division is required; for i = n− 1, one multiplication and one division
are needed, and so on. This results in the number of these operations as

1 + 2 + 3 + · · ·+ n =
n∑

i=1

i =
(n+ 1)n

2
=
n2

2
+
n

2
.

For the number of additions and subtractions, we count

0 + 1 + 2 + · · ·+ n− 1 =
n−1∑

i=1

i =
n(n− 1)

2
=
n2

2
− n

2
.

So, the total number of operations is

n2

2
+
n

2
+
n2

2
− n

2
= n2

floating-point operations. Since forward substitution works completely analogously, it
requires the same number of operations.

For the Gaussian elimination, we consider the version without pivot search as shown in
Algorithm 2.3, assuming the worst case scenario where Step (2) is performed every time. We
proceed column by column, examining the elements that need elimination for each j. For
each element in the j-th column that requires elimination, we need 2(n+2−j)+1 operations
(including the operation for b) to perform the required additions, multiplications, and
divisions. In the j-th column, there are n−j entries that need elimination for i = n, . . . , j+
1. Thus, for the j-th column, we have

(n−j)(2(n+2−j)+1) = 2n2 +4n−2nj−2jn−4j+2j2 +n−j = 2j2−(4n+5)j+5n+2n2

operations. This needs to be done for columns j = 1, . . . , n− 1, resulting in

n−1∑

j=1

(
2j2 − (4n+ 5)j + 5n+ 2n2

)

= 2

n−1∑

j=1

j2 − (4n+ 5)

n−1∑

j=1

j +

n−1∑

j=1

(
5n+ 2n2

)

=
2

3
(n− 1)3 + (n− 1)2 +

1

3
(n− 1)− (4n+ 5)

(n− 1)n

2
+ (n− 1)(5n+ 2n2)

=
2

3
n3 +

3

2
n2 − 13

6
n

2.7. COMPUTATIONAL EFFORT 31

operations.

For the Choleski method we can count as follows: For each i and each j < i we need to
perform j − 1 multiplications and additions, and one Division, which alltogether makes

i−1∑

j=1

(2(j − 1) + 1) = 2
i−1∑

j=1

j +
i−1∑

j=1

(−1) = i(i− 1)− (i− 1) = i2 − 2i+ 1

operations (note that this formula is also valid for i = 1). For i = j we obtain i−1 additios
and multiplications (for squaring the lj j) and one square root operation, which yields a
total of 2(i− 1) + 1 operations. All in all for each i we thus have

i2 − 2i+ 1 + 2(i− 1) + 1 = i2 − 2i+ 1 + 2i− 2 + 1 = i2

operations, which results in the total number of operations

n∑

i=1

i2 =
1

3
n3 +

1

2
n2 +

1

6
n.

For the QR factorization using Householder reflections, we consider only the com-
putation of R and y = QT b. For each j = 1, . . . , n − 1, we need to compute c (requiring
2(n − j + 1) operations, with the calculation of ‘sgn‘ being negligibly fast), aj j , and d
(additional 3 operations). For the computation of y, we first calculate e (2(n − j + 1)
operations) and then y (2(n− j + 1) operations again), resulting in a total of 4(n− j + 1)
operations. For computing R, these calculations need to be done (n − j) times, resulting
in (n− j)4(n− j + 1) = 4n2 + 4j2 − 8nj + 4n− 4j operations for each j. In total, we have

2(n− j + 1) + 3 + 4(n− j + 1) + 4n2 + 4j2 − 8nj + 4n− 4j

= 4j2 − (8n+ 10)j + 4n2 + 10n+ 9

operations for each j, and thus the sum over all j gives

n−1∑

j=1

(4j2 − (8n+ 10)j + 4n2 + 10n+ 9)

=
4

3
(n− 1)3 + 2(n− 1)2 +

2

3
(n− 1)

− (8n+ 10)
n(n− 1)

2
+ 4n2(n− 1) + 10n(n− 1) + 9(n− 1)

=
4

3
n3 +

14

3
n− 9

operations.

For the complete solution of a system of linear equations, we simply add up the
operations of the sub-algorithms.

For the Gaussian algorithm, we have:

2

3
n3 +

5

2
n2 − 13

6
n+ n2 =

2

3
n3 +

5

2
n2 − 13

6
n

32 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

operations. For the Cholesky factorization, we get:

1

3
n3 +

5

2
n2 +

1

6
n+ 2n2 =

1

3
n3 +

5

2
n2 +

1

6
n

operations, and for the QR factorization:

4

3
n3 + 4n2 +

14

3
n− 9 + n2 =

4

3
n3 + 4n2 +

14

3
n− 9

operations. Considering that for large n, the leading n3 terms dominate, we can conclude
that the Cholesky factorization is approximately twice as fast as Gaussian elimination, and
Gaussian elimination is roughly twice as fast as QR factorization.

To get an impression of the actual computation times, let’s assume that we are using
an Apple PC with an M2 processor, which achieves a performance of approximately 890
GFLOPS (FLOPS = floating-point operations per second; GFLOPS = GigaFLOPS = 109

Flops). Furthermore, let’s assume (very optimistically) that we have implementations of
the above algorithms that utilize this performance optimally. Then, for n × n systems of
equations, the following computation times arise:

n | Cholesky | Gauss | QR |

-------+------------+------------+------------+

1000 | 0.38 ms | 0.78 ms | 1.50 ms |

10000 | 0.37 s | 0.78 s | 1.50 s |

100000 | 6.25 min | 12.48 min | 24.96 min |

500000 | 0.54 d | 1.08 d | 2.16 d |

It is evident that in the last case n = 500, 000, the times are hardly acceptable for practical
purposes.

When calculating the computational effort, it must be taken into account that the effort
decreases when the matrix A has many zero entries that are ”favorably” distributed. What
is ”favorable” depends strongly on the algorithm. For example, Gaussian elimination is
very efficient for banded matrices where only the diagonal and some off-diagonal entries
are nonzero. The Cholesky algorithm is efficient for so-called skyline matrices, which are
banded matrices where the non-zero entries are compactly stored.

To conclude this section, we want to introduce a broader concept of effort estimation, which
is often sufficient for practical purposes. Often, one is not interested in the exact number
of operations for a given n but only in an estimation for large dimensions. Specifically,
one wants to know how quickly the effort grows depending on n, i.e., how it behaves
asymptotically as n→∞. This is referred to as the order of an algorithm.

Definition 2.22 An algorithm has the order O(nq) if q > 0 is the minimum number for
which there exists a constant C > 0 such that the algorithm requires fewer than Cnq

operations for all n ∈ N.

This number q can be easily read from the above effort calculations: it is precisely the
highest power of n that appears. Thus, forward and backward substitution have order
O(n2), while Gaussian, Cholesky, and QR methods have order O(n3).

2.8. ITERATIVE METHODS 33

2.8 Iterative Methods

In the previous section, we saw that the methods considered so far — called direct methods
— have order O(n3): if n is increased by a factor of ten, the number of operations and
thus the computation time increases by a factor of a thousand, as seen above. For large
systems of equations with several hundred thousand unknowns, which do occur in practice,
this leads to unacceptable computation times.

A class of methods that has lower order is the class of iterative methods. However, there
is a trade-off: with these methods, we cannot expect to obtain an exact solution (up to
rounding errors), but we must accept a certain level of inaccuracy in the result from the
outset.

The basic principle of iterative methods works as follows:

Starting from an initial vector x(0), a sequence of vectors

x(i+1) = Φ(x(i)), i = 0, 1, 2, . . . ,

is calculated iteratively using a computational rule Φ : Rn → Rn. This sequence converges
to the solution x∗ of the system of equations Ax = b as i→∞, i.e. limi→∞ ‖x(i)−x∗‖p = 0.
When the desired accuracy is reached, the iteration is terminated, and the last value x(i)

is used as an approximation of the result.

Before we look at specific examples of such methods, let us first review a theorem from
analysis that is helpful for the analysis of iterative methods.

Theorem 2.23 (Banach’s Fixed-Point Theorem) Let A be a closed subset of a com-
plete normed space with norm ‖ ·‖ and let Φ : A→ A be a contraction, meaning that there
exists a constant k ∈ (0, 1) such that the inequality

‖Φ(x)− Φ(y)‖ ≤ k‖x− y‖

holds for all x, y ∈ A. Then there exists a unique fixed point x∗ ∈ A to which all sequences
of the form x(i+1) = Φ(x(i)) with any x(0) ∈ A converge. Furthermore, the a priori and a
posteriori estimates

‖x(i) − x∗‖ ≤ ki

1− k
‖x(1) − x(0)‖

and

‖x(i) − x∗‖ ≤ k

1− k
‖x(i) − x(i−1)‖

hold.

Proof: First, we show that any sequence (x(i))i∈N0 of the form x(i+1) = Φ(x(i)) with
arbitrary x(0) ∈ A is a Cauchy sequence. Using induction, we can derive the following
estimates for any i, j ∈ N0 with j ≥ i:

‖x(j+1) − x(j)‖ ≤ kj−i‖x(i+1) − x(i)‖ and ‖x(i+1) − x(i)‖ ≤ ki‖x(1) − x(0)‖ (2.16)

34 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

From these inequalities, we obtain

‖x(i+n) − x(i)‖ =

∥∥∥∥∥∥

i+n−1∑

j=i

(
x(j+1) − x(j)

)
∥∥∥∥∥∥

≤
i+n−1∑

j=i

‖x(j+1) − x(j)‖ ≤
i+n−1∑

j=i

kj−i‖x(i+1) − x(i)‖

=
1− kn

1− k
‖x(i+1) − x(i)‖ ≤ 1

1− k
‖x(i+1) − x(i)‖

≤ k

1− k
‖x(i) − x(i−1)‖ ≤ ki

1− k
‖x(1) − x(0)‖, (2.17)

Since ki → 0, this sequence is a Cauchy sequence.

Next, we show that x(i) converges to a fixed point of Φ. Since A is a subset of a complete
space, the limit x∗ of this Cauchy sequence exists and belongs to A, i.e., limi→∞ x(i) =
x∗ ∈ A. Since Φ is a contraction, it is also continuous, so we have

Φ(x∗) = Φ(lim
i→∞

x(i)) = lim
i→∞

Φ(x(i)) = lim
i→∞

x(i+1) = x∗

This shows that x∗ is a fixed point of Φ. Therefore, every sequence of the given form
converges to a fixed point of Φ. Finally, we need to prove the uniqueness of the fixed point.
Suppose there are two fixed points x∗ and x∗∗ of Φ with x∗ 6= x∗∗, i.e., ‖x∗ − x∗∗‖ > 0.
From the contraction property, we have

‖x∗ − x∗∗‖ = ‖Φ(x∗)− Φ(x∗∗)‖ ≤ k‖x∗ − x∗∗‖ < ‖x∗ − x∗∗‖

This is a contradiction to ‖x∗ − x∗∗‖ > 0, which proves the uniqueness.

Finally, we show the two estimates. Both follow from the inequality derived earlier:

‖x(i) − x∗‖ = lim
n→∞

‖x(i+n) − x(i)‖ ≤ lim
n→∞

1

1− k
‖x(i+1) − x(i)‖

=
k

1− k
‖x(i) − x(i−1)‖ ≤ ki

1− k
‖x(1) − x(0)‖.

2.9 Gauss-Seidel and Jacobi Methods

We now want to introduce two classic iterative methods that both work based on the same
principle: The matrix A is decomposed into the difference of two matrices

A = M −N,

assuming that M is easy (i.e., with very little effort) to invert. Then, you choose an initial
vector x(0) (e.g., the zero vector) and calculate iteratively

x(i+1) = M−1Nx(i) +M−1b, i = 0, 1, 2, (2.18)

2.9. GAUSS-SEIDEL AND JACOBI METHODS 35

If the decomposition (under suitable assumptions about A) is chosen appropriately, you
can expect the vectors xi to converge to the desired solution. This is precisely described
in the following lemma.

Lemma 2.24 Consider the linear system of equations Ax = b with an invertible matrix
A and a decomposition A = M − N with an invertible matrix M . Let ‖ · ‖ be a vector
norm with the associated induced matrix norm such that the inequality k = ‖M−1N‖ < 1
holds. Then, the iteration (2.18) converges to the solution x∗ of the equation system for
any initial value x(0), and the iteration mapping is a contraction for the norm ‖ · ‖ with
contraction constant k. Moreover, the following estimates hold:

‖x(i) − x∗‖ ≤ k

1− k
‖x(i) − x(i−1)‖ ≤ ki

1− k
‖x(1) − x(0)‖.

Proof: First, we show that the mapping Φ : Rn → Rn defined by Φ(x) = M−1Nx+M−1b
is a contraction with respect to the induced matrix norm ‖ · ‖: It holds

‖Φ(x)− Φ(y)‖ = ‖M−1Nx+M−1b−M−1Ny −M−1b‖
= ‖M−1N(x− y)‖ ≤ ‖M−1N‖ ‖x− y‖ = k‖x− y‖.

Therefore, according to Banach’s Fixed Point Theorem 2.23, the iteration (2.18) converges
to a unique fixed point x∗, and the provided estimates hold.

Since

Φ(x∗) = x∗ ⇔ M−1Nx∗ +M−1b = x∗

⇔ Nx∗ + b = Mx∗

⇔ b = (M −N)x∗ = Ax∗

this fixed point is indeed the solution of the equation system.

In iterative algorithms, we need a termination criterion to decide when to stop the iteration.
There are several possibilities; a simple but efficient criterion is to specify ε > 0 and stop
the iteration when the condition

‖x(i+1) − x(i)‖ < ε (2.19)

is met for a given vector norm ‖ · ‖. When using the vector norm for which Lemma 2.24
holds, this criterion ensures the accuracy

‖x(i+1) − x∗‖ ≤ k

1− k
ε

is guaranteed. Here, you can also use the relative error

‖x(i+1) − x(i)‖
‖x(i+1)‖

< ε

if you want to iterate until achieving the maximum possible computational accuracy. In
that case, set ε as the machine precision (typically 10−8 for single precision and 10−16 for
double precision).

36 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Example 2.25 We illustrate such a procedure with the three-dimensional linear system

A =




15 3 4
2 17 3
2 3 21


 and b =




33
45
71


 .

For the decomposition A = M −N , we choose

M =




15 0 0
0 17 0
0 0 21


 and N = −




0 3 4
2 0 3
2 3 0


 ,

i.e., we decompose A into its diagonal part M and the non-diagonal part −N . Diagonal
matrices are easy to invert: You simply replace each element with its reciprocal, so

M−1 =




1/15 0 0
0 1/17 0
0 0 1/21


 .

This gives us

M−1N =




0 −1/5 −4/15
−2/17 0 −3/17
−2/21 −1/7 0


 and M−1b =




11/5
45/17
71/21


 .

Now, we calculate the vectors x(1), . . . , x(10) according to the rule (2.18), with x(0) = (0 0 0)T

as the initial value. The results are (rounded to four decimal places for each entry):




2.2000
2.6471
3.3810


 ,




0.7690
1.7916
2.7933


 ,




1.0968
2.0637
3.0518


 ,




0.9735
1.9795
2.9817


 ,




1.0090
2.0064
3.0055


 ,




0.9973
1.9980
2.9982


 ,




1.0009
2.0006
3.0005


 ,




0.9997
1.9998
2.9998


 ,




1.0001
2.0001
3.0001


 ,




1.0000
2.0000
3.0000


 .

Depending on the choice of M and N , you obtain different methods. Here, we want to
describe two methods in more detail and write out the iteration (2.18) explicitly for the

entries x
(i+1)
j of the vectors x(i+1), making the methods directly implementable. The first

method is the one we used in Example 2.25.

Algorithm 2.26 (Jacobi method or Total step method)
We choose M = MJ as a diagonal matrix

MJ =




a1 1 0 . . . 0

0 a2 2
. . .

...
...

. . .
. . . 0

0 . . . 0 ann




2.9. GAUSS-SEIDEL AND JACOBI METHODS 37

and N = NJ as NJ = MJ −A. Then, iteration (2.18) becomes

x
(i+1)
j =

1

aj j


bj −

n∑

k=1
k 6=j

aj kx
(i)
k


 , for j = 1, . . . , n.

A slightly different decomposition leads to the following method.

Algorithm 2.27 (Gauss-Seidel method or Single step method)
We choose M = MGS as a lower triangular matrix

MGS =




a1 1 0 . . . 0

a2 1 a2 2
. . .

...
...

. . .
. . . 0

an 1 . . . ann−1 ann




and N = NGS as NGS = MGS − A. When we multiply iteration (2.18) from the left by
MGS , we get

MGSx
(i+1) = NGSx

(i) + b.

Now, we can determine the components x
(i+1)
j by forward substitution, yielding

x
(i+1)
j =

1

aj j


bj −

j−1∑

k=1

aj kx
(i+1)
k −

n∑

k=j+1

aj kx
(i)
k


 , for j = 1, . . . , n.

The following theorem provides a criterion under which these methods converge.

Theorem 2.28 Let A be a (strictly) diagonally dominant matrix, i.e., the inequality

|ai i| >
n∑

j=1
j 6=i

|ai j |

holds for all i = 1, . . . , n.

Then, the assumption of Lemma 2.24 is satisfied for the Jacobi and Gauss-Seidel methods
with the row sum norm ‖ · ‖∞, and the constants k = kJ and k = kGS for both methods
can be estimated by

kGS ≤ kJ = max
i=1,...,n




n∑

j=1
j 6=i

|ai j |
|ai i|


 < 1

In particular, both methods converge for all initial values to the solution of the equation
system, and the estimates from Lemma 2.24 hold.

38 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Proof: It suffices to show the estimates k = ‖M−1N‖∞ < 1 for both methods.

We start with the Jacobi method. Here, we have M = MJ = diag(a1 1, . . . , ann) and
N = NJ = MJ −A. Since M−1

J = diag(a−1
1 1 , . . . , a

−1
nn), we have

M−1
J NJ =




0 −a1 2
a1 1

. . . −a1n
a1 1

−a2 1
a2 2

. . .
. . .

...
...

. . .
. . . − an−1n

an−1n−1

− an 1
ann

. . . −ann−1

ann
0



,

thus

‖M−1
J NJ‖∞ = max

i=1,...,n

n∑

j=1
j 6=i

|ai j |
|ai i|

.

Due to strict diagonal dominance, this sum is strictly less than 1 for all i, so we have
kJ := ‖M−1

J NJ‖∞ < 1.

For the Gauss-Seidel method, let M = MGS and N = NGS be given from Algorithm 2.27.
We set kGS := ‖M−1

GSNGS‖∞ and prove the desired estimate kGS < 1 by showing kGS ≤ kJ .

To prove this inequality, let x ∈ Rn be any vector with ‖x‖∞ = 1 and y = M−1
GSNGSx ∈ Rn,

so MGSy = NGSx. We need to show that ‖y‖∞ ≤ kJ . We show the estimate individually
for the entries |yi| of y by induction on i = 1, . . . , n:

For i = 1, we have from NGSx = MGSy = a1 1y1:

|y1| =

∣∣∣∣
1

a1 1
[NGSx]1

∣∣∣∣ ≤
1

|a1 1|

n∑

j=2

|a1 j ||xj | ≤
n∑

j=2

|a1 j |
|a1 1|

‖x‖∞︸ ︷︷ ︸
=1

=
n∑

j=2

|a1 j |
|a1 1|

≤ max
q=1,...,n

n∑

j=1
j 6=q

|aq j |
|aq q|

= ‖M−1
J NJ‖∞ = kJ .

For the induction step i− 1→ i, assuming |yj | ≤ kJ for j = 1, . . . , i− 1, because of

[NGSx]i = [MGSy]i =
i∑

j=1

ai jyj =
i−1∑

j=1

ai jyj + ai iyi

we obtain

|yi| ≤
1

|ai i|



i−1∑

j=1

|ai j ||yj |+ |[NGSx]i|


 ≤ 1

|ai i|



i−1∑

j=1

|ai j ||yj |+
n∑

j=i+1

|ai j ||xj |




=

i−1∑

j=1

|ai j |
|ai i|
|yj |+

n∑

j=i+1

|ai j |
|ai i|
|xj | ≤

i−1∑

j=1

|ai j |
|ai i|

kJ︸︷︷︸
<1

+

n∑

j=i+1

|ai j |
|ai i|

‖x‖∞︸ ︷︷ ︸
=1

≤



i−1∑

j=1

|ai j |
|ai i|

+

n∑

j=i+1

|ai j |
|ai i|


 ≤ max

q=1,...,n

n∑

j=1
j 6=q

|aq j |
|aq q|

= ‖M−1
J NJ‖∞ = kJ .

2.9. GAUSS-SEIDEL AND JACOBI METHODS 39

The proof shows, in particular, that the contraction constant kGS of the Gauss-Seidel
method is less than or equal to that of the Jacobi method kJ , and in fact, the Gauss-Seidel
method is often significantly faster in practice.

Strict diagonal dominance is a rather specific criterion but is often satisfied in practice
when discretizing differential equations.

For the Gauss-Seidel method, we can provide another condition under which this method
converges. For this, we first need another preparatory lemma that shows another condition
on M−1N for the convergence of the methods.

Lemma 2.29 Consider the linear equation system Ax = b with an invertible matrix A and
a decomposition A = M−N with an invertible matrix M . Let ρ(E) := maxi |λi(E)| denote
the spectral radius, i.e., the maximum absolute value of the eigenvalues λ1(E), . . . , λd(E) of
a matrix E ∈ Rn×n. Then, the iteration (2.18) converges to the solution x∗ of the equation
system for any initial values x(0), provided that ρ(M−1N) < 1.

Proof: First, we prove the following property for arbitrary matrices E ∈ Rn×n: For any
ε ∈ (0, 1), there exists a vector norm ‖ · ‖E,ε such that the induced matrix norm satisfies
the inequality

‖E‖E,ε ≤ ρ(E) + ε (2.20)

To prove this, we need to use the well-known Jordan Normal Form from Linear Algebra.

For any matrix E ∈ Rn×n, there exists an invertible matrix S ∈ Cn×n such that R = S−1ES
is in Jordan Normal Form. The matrix R has the eigenvalues of E as its diagonal elements,
denoted as ri i, and the elements above the diagonal satisfy ri, i+1 ∈ {0, 1}, while all other
entries are zero.

To construct the norm ‖ · ‖E,ε, note that for any invertible matrix C ∈ Cn×n the norm
‖x‖C := ‖C−1x‖∞ is a vector norm with induced matrix norm

‖A‖C = sup
x∈Cn\{0}

‖C−1Ax‖∞
‖C−1x‖∞

= sup
y=C−1x∈Cn\{0}

‖C−1ACy‖∞
‖y‖∞

= ‖C−1AC‖∞.

For the given ε ∈ (0, 1), we set Cε := SDε with S from above andDε = diag(1, ε, ε2, . . . , εn−1).
We write Rε = C−1

ε ECε. It can be easily shown that for the elements rε,i j of Rε, we have
rε,i j = εj−iri j . In particular, rε,i i = ri i and rε,i,i+1 = εri,i+1, while all other elements of
Rε are zero. Thus, we have

‖E‖Cε = ‖C−1
ε ECε‖∞ = ‖Rε‖∞ = max

i=1,...,n

n∑

j=1

|rε,i j |

= max
i=1,...,n

{|ri i|+ |εri,i+1|} ≤ max
k=1,...,d

{|λk|+ ε} = ρ(E) + ε,

which gives the desired estimate.

Now, for the proof of the lemma, let ρ(M−1N) < 1 and choose any ε ∈ (0, 1− ρ(M−1N)).
Then, according to (2.20), we find a norm ‖·‖M−1N,ε such that ‖M−1N‖M−1N,ε ≤ ρ(M−1N)+
ε < 1. Therefore, the claim follows from Lemma 2.24.

40 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Remark 2.30 Note that the spectral radius, denoted by k = ρ(M−1N) + ε, provides
a contraction constant and, therefore, through the estimates in Lemma 2.24, it gives a
measure of the convergence speed. However, this is in the generally unknown norm ‖ ·
‖M−1N,ε.

In fact, the condition in Lemma 2.29 is not only sufficient but also necessary for conver-
gence, making it the sharpest possible criterion (we will not discuss the proof here).

Lemma 2.29 applies to arbitrary iterative methods of the form (2.18), and it can be used
to prove the convergence of these methods for specific matrices or classes of matrices. For
the Gauss-Seidel method, the following theorem provides a corresponding result.

Theorem 2.31 Let A ∈ Rn×n be a symmetric, positive definite matrix. Then, the Gauss-
Seidel method from Algorithm 2.27 converges to the solution x∗ of the equation Ax = b
for all initial values x(0) ∈ Rn.

Proof: We show that for symmetric and positive definite matrices A the Gauss-Seidel
method satisfies the conditions of Lemma 2.29. Therefore, we need to prove that ρ(M−1N) <
1. Let λ ∈ C be an eigenvalue of M−1N with eigenvector z ∈ Cn, i.e.,

M−1Nz = λz,

or, equivalently,
2Nz = 2λMz. (2.21)

We must show that |λ| < 1. Now, let D := diag(a1 1, . . . , ann). For all i = 1, . . . , n, due to
the positive definiteness of A, we have the inequality ai i = eTi Aei > 0, where ei denotes the
i-th standard basis vector. Therefore, D is also a symmetric and positive definite matrix.
Because of the symmetry of A, we have the equations A = D−NT −N and M = D−NT ,
and thus (using M = A+N),

2N = D −A+N −NT and 2M = D +A+N −NT .

Substituting these expressions into (2.21) and multiplying the equation from the left by
z̄T , we obtain

z̄TDz − z̄TAz + z̄T (N −NT)z = λ(z̄TDz + z̄TAz + z̄T (N −NT)z).

Since A and D are symmetric and positive definite, the values a = z̄TAz and d = z̄TDz
are real and positive. Since N − NT is skew-symmetric, z̄T (N − NT)z attains a purely
imaginary value ib. From the above equation, we have

d− a+ ib = λ(d+ a+ ib), so λ =
d− a+ ib

d+ a+ ib
.

This is the quotient of two complex numbers with the same imaginary part, and the nu-
merator has a magnitude smaller than 1. Therefore, |λ| < 1, which was to be shown.

Now, let us estimate the computation effort of these iterative methods. To keep the dis-
cussion concise, we restrict ourselves to a simple case. Suppose we consider a family of

2.10. RELAXATION 41

matrices where the contraction constant k for a given norm ‖ · ‖ is independent of the
dimension n of the problem. Then, with an appropriate choice of initial values x(0), the
number of iterations Nε required to achieve a given accuracy ε is independent of n.

For one iteration step and one component x
(i+1)
j , we need n−1 multiplications and additions

for the sum and one division, totaling 2n− 1 operations. For the n components of x(i+1),
we have n(2n− 1) = 2n2 − n operations, resulting in a total of

Nε(2n
2 − n)

operations. In particular, under the assumptions made about the problems, these algo-
rithms have a computational effort of order of O(n2), meaning that the computational
effort grows significantly slower in n compared to Gaussian elimination or the Cholesky
factorization.

Additional assumptions about A can significantly reduce the computational effort of these
methods. Many large systems of equations have the property that in each row of the
(very large) matrix A, only relatively few entries are nonzero, known as a sparse matrix.
If we assume that, independent of n, each row of A has at most m nonzero entries, then

the number of operations for computing x
(i+1)
j is at most 2m − 1, and the total number

of operations is Nε2(m − 1)n. This results in a complexity of O(n), meaning that the
number of operations grows linearly with n. However, under such conditions, the number
of operations in Gaussian elimination or the Cholesky factorization may also decrease,
typically not going below O(n2). An exception is ”band matrices” with a very simple
band structure, for which algorithms for LR factorization with complexity O(n) can be
formulated, as discussed in the exercises.

Poor conditioning of A can also cause difficulties in iterative methods, often manifesting
as the iteration making no progress due to rounding errors before reaching the desired
accuracy. Typically, poor conditioning is reflected in contraction constants k that are
close to 1. Preconditioning, as mentioned earlier, can offer a solution, where a matrix P is
chosen to make PA better conditioned than A, and then we solve PAx = Pb. One possible
strategy for this was discussed in Exercise 5 on Sheet 2.

2.10 Relaxation

In this section, we want to briefly explain a variant of the two methods considered without
proofs. This variant is based on the so-called relaxation, which can be performed based on
either the Jacobi or the Gauss-Seidel method. The goal of this relaxation is to accelerate
the convergence of these methods.

The idea is as follows: In the Jacobi method, you choose a real parameter ω > 0 and
modify the iteration as follows:

x
(i+1)
j =

1

aj j


bj −

n∑

k=1
k 6=j

aj kx
(i)
k


 =: Φj(x

(i))

42 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

from Algorithm 2.26 to

x
(i+1)
j = (1− ω)x

(i)
j + ωΦj(x

(i)),

meaning that the new approximation value is chosen as a weighted sum between the old
value and the new value provided by the iteration rule Φ.

The same approach is applied to the Gauss-Seidel method. According to Algorithm 2.27,
for each component j, we have the rule:

x
(i+1)
j =

1

aj j


bj −

j−1∑

k=1

aj kx
(i+1)
k −

n∑

k=j+1

aj kx
(i)
k


 =: Φj(x

(i), x(i+1)),

which is changed to

x
(i+1)
j = (1− ω)x

(i)
j + ωΦj(x

(i), x(i+1))

In both methods, for ω < 1 the modification is called under-relaxation, while for ω > 1
we call it over-relaxation. In practice, over-relaxation is more commonly used, and it’s
also known as the SOR method (SOR = successive over-relaxation), often providing better
results. Typical values for ω in practice range between 1.1 and 1.3.

The convergence proofs for these relaxed methods are similar to the corresponding proofs
for the underlying methods. For details, see, e.g., Deuflhard/Hohmann [1, Chapter 8].

Let’s take a closer look at the variant based on the Gauss-Seidel method: We first decom-
pose the matrix A as follows: A = D − L−R

A =




a1 1 0 . . . 0

0 a2 2
. . .

...
...

. . .
. . . 0

0 . . . 0 ann




︸ ︷︷ ︸
=:D

−




0 0 . . . 0

−a2 1 0
. . .

...
...

. . .
. . . 0

−an 1 . . . −ann−1 0




︸ ︷︷ ︸
=:L

−




0 −a1 2 . . . −a1n

0
. . .

. . .
...

...
. . . 0 −an−1n

0 . . . 0 0




︸ ︷︷ ︸
=:R

The relaxed computation rule given above can be written as

Dx(i+1) = (1− ω)Dx(i) + ωLx(i+1) + ωRx(i) + ωb. (2.22)

To express this in the familiar form (2.18), we scale the given equation system to ωAx = ωb
(which doesn’t change the solution) and define an iteration method of the form (2.18) with
M = D − ωL and N = (1− ω)D + ωR, which implies M −N = ωA. In explicit form:

x(i+1) = (D − ωL)−1((1− ω)D + ωR)x(i) + (D − ωL)−1ωb, i = 0, 1, 2, . . . (2.23)

Note that this rule is equivalent to equation (2.22). For ω = 1, we recover the original
Gauss-Seidel method. Since, in many cases, ω > 1 provides faster convergence, the method
(2.23) is referred to as the SOR method (SOR = successive overrelaxation), even though
ω < 1 is theoretically allowed.

For different ranges of ω and different assumptions about the structure of A, convergence of
this method can be demonstrated. An example of such a result is provided by the following
theorem.

2.11. THE CONJUGATE GRADIENT METHOD 43

Theorem 2.32 Let A ∈ Rn×n be a symmetric, positive definite matrix. Then, the SOR
method (2.23) with ω ∈ (0, 2) converges for all initial values x(0) ∈ Rn to the solution x∗

of the equation system Ax = b.

Sketch of proof: The proof follows a similar approach to the proof of Theorem 2.31, with
equation (2.21) now being

2((1− ω)D + ωR)z = 2λ(D − ωL)z

With similar transformations as in this proof, we eventually arrive at the equation

λ =
(2− ω)d− ωa+ iωb

(2− ω)d+ ωa+ iωb

from which we conclude |λ| < 1 for ω ∈ (0, 2).

The particular “art” in this method is to choose ω > 0 in such a way that the method
converges as fast as possible. Considering Remark 2.30, it is advisable to choose ω so
that the spectral radius ρ((D+ ωL)−1((1− ω)D+ ωR)) becomes as small as possible. For
specific structures of A, explicit formulas can be derived, but often one relies on “try-and-
error” methods, where suitable values for ω are chosen based on numerical experience.
An example where the number of iterations can be significantly reduced with the optimal
choice of ω can be found in Schwarz/Köckler [8], Example 11.7 (Example 11.5 in the 4th
edition).

2.11 The Conjugate Gradient Method

All the methods discussed so far are based on an additive decomposition of the matrix A.
Another class of iterative methods follows a completely different idea; they are based on
optimization methods. To conclude this section, we will briefly consider a simple represen-
tative of this class, the Conjugate Gradient or CG Method.

The CG method is a technique for solving linear systems of the form Ax = b, where A is
a symmetric and positive definite matrix5. Instead of solving the linear system directly, it
rather solves the minimization problem

minimize f(x) =
1

2
xTAx− bTx.

For a solution of this minimization problem, we have

0 = ∇f(x) = Ax− b,

which, in turn, provides a solution to the original linear equation system. The CG method
is technically a direct method because, at least in theory (i.e., without roundoff errors),
it provides an exact result after a finite number of steps. However, it is categorized as

5Similar methods exist for general matrices, e.g., the CGS or BiCGstab methods, but they are more
complex

44 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

an iterative method because the intermediate results of the process already approximate
solutions, so the method is often terminated before reaching the exact solution. The
approximation x(i+1) is determined from the previous approximation by finding a search
direction d(i) ∈ Rn and a step size α(i) ∈ R, and then setting:

x(i+1) = x(i) + α(i)d(i),

where d(i) and α(i) are chosen to minimize f(x(i+1)) and satisfy f(x(i+1)) < f(x(i)).

Choosing the Step Size: For a given search direction d(i), the step size α(i) should be
chosen to minimize h(α) = f(x(i) +αd(i)). This is a one-dimensional optimization problem
since h maps from R to R. Due to the structure of h or f , it can be calculated that the
minimum is achieved at

α =
(b−Ax(i))Td(i)

d(i)TAd(i)
.

Choosing the Search Direction: The choice of the search direction differs from step
to step. In the first step, the direction of steepest descent is used. Since the gradient ∇f
points in the direction of the steepest ascent, we select

d(0) = −∇f(x(0)) = −(Ax(0) − b) = b−Ax(0).

For i ≥ 1, the subsequent search directions are chosen so that they are orthogonal to the
previous direction with respect to the scalar product 〈x, y〉A = xTAy. This ensures that
the search is conducted uniformly in all directions of Rn. Formally, d(i) is chosen such that:

〈d(i), d(i−1)〉A = 0.

In addition to this condition (which is satisfied by many vectors d(i)), the following approach
is taken:

d(i) = r(i) + β(i)d(i−1) with r(i) = −∇f(x(i)) = b−Ax(i).

In essence, we move in the direction of the negative gradient (which is also the residual
of the linear equation system) but modify this direction by adding βid

(i−1). This specific
correction allows for an easy calculation of β(i) as:

β(i) = − r(i)TAd(i−1)

d(i−1)TAd(i−1)
.

The vector d(i) constructed in this way is indeed orthogonal to all previous search directions
d(0), . . . , d(i−1), although this is not immediately apparent and requires some effort to prove.
Note that in all these calculations, the denominator of the fractions is not zero because A
is positive definite.

It can be proven that the CG method (in theory, without roundoff errors) finds an exact
solution to the problem after at most n steps. For large n, you may want to terminate
the iteration earlier, i.e., when a specified level of accuracy is reached. Typically, the
termination criterion used here is ‖r(i)‖ ≤ ε. Since r(i) = b−Ax(i), this estimate controls the
size of the residual, allowing us to obtain an estimate of the actual error using Theorem 2.9.

Chapter 3

Interpolation

Interpolation of functions or data is a common problem in both mathematics and many
applications.

The general problem, known as data interpolation, arises when we have a set of data points
(xi, fi) for i = 0, . . . , n (e.g., experimental measurements). The problem statement is as
follows: we are looking for a function F such that the equation

F (xi) = fi for i = 0, 1, . . . , n (3.1)

holds.

An important special case of this problem is function interpolation. Let’s assume we have
a real-valued function f : R→ R, which is, however, complicated to evaluate (e.g., because
no explicit formula is known). An example of such a function is the Gaussian distribution
function often needed in statistics

f(x) =
1

2π

∫ x

−∞
e−y

2/2dy,

for which no closed formula exists.

The goal of interpolation is to determine a function F (x) that is easy to evaluate and
satisfies the equation

F (xi) = f(xi) for i = 0, 1, . . . , n (3.2)

for given support points x0, x1, . . . , xn.

Using the notation
fi = f(xi),

we again obtain the condition (3.1), which is why (3.2) is indeed a special case of (3.1).

In this chapter, we will develop methods for solving (3.1), which can also be applied to the
special case (3.2). The importance of this special case lies in the fact that when interpo-
lating a function f , we can naturally define an interpolation error based on the distance
between f and F , providing a measure of the method’s quality. In data interpolation, this
doesn’t make much sense since there is no function f to measure the error against.

We will also examine methods tailored specifically for function approximation (3.2). In
these methods, the choice of support points xi arises from the procedure itself and cannot
be arbitrarily specified.

45

46 CHAPTER 3. INTERPOLATION

3.1 Polynomial Interpolation

A simple but often very effective method for interpolation is to choose F as a polynomial,
i.e., a function of the form

P (x) = a0 + a1x+ a2x
2 + . . .+ amx

m. (3.3)

Here, the values ai, i = 0, . . . ,m, are called the coefficients of the polynomial. The highest
occurring power (in this case m, if am 6= 0) is called the degree of the polynomial. To
emphasize that we are using polynomials in this section, we write ”P” instead of ”F”
for the interpolation function. The space of polynomials of degree ≤ m is denoted by
Pm. This function space is an m+ 1-dimensional vector space over R or C with the basis
B = {1, x, . . . , xm} since adding polynomials and multiplying them by scalars results in a
polynomial of the same degree. Other bases of this vector space will be discussed in the
exercises.

The problem of polynomial interpolation is to determine a polynomial P that satisfies (3.1).
First, we need to decide the degree of the polynomial we are looking for. The following
theorem helps us with this decision.

Theorem 3.1 Let n ∈ N, and let data points (xi, fi) be given for i = 0, . . . , n such that
the support points are pairwise distinct, i.e., xi 6= xj for all i 6= j. Then there exists a
unique polynomial P ∈ Pn, i.e., of degree ≤ n, that satisfies the condition

P (xi) = fi for i = 0, 1, . . . , n.

Proof: The coefficients ai of the interpolating polynomial satisfy the linear system of
equations 


1 x0 . . . xn0
...

...
. . .

...
1 xn . . . xnn







a0
...

an


 =




f0
...

fn


 .

The determinant of this matrix is

n∏

i=0




n∏

j=i+1

(xj − xi)




and is non-zero if the xi are pairwise distinct. Therefore, the matrix is invertible, and the
system of equations has a unique solution.

For n + 1 given data points (xi, fi), a polynomial of degree n precisely matches the data.
Now, for various reasons, it is not very efficient to actually solve this linear system of
equations to determine the ai (remember that direct solution of the linear system has a
computational complexity of O(n3)). Therefore, we will consider a different technique for
computing the polynomial P . Note that this technique provides the same polynomial, but
it is represented differently.

3.1. POLYNOMIAL INTERPOLATION 47

3.1.1 Lagrange Polynomials and Barycentric Coordinates

The idea behind Lagrange polynomials is based on a clever representation for polynomi-
als. For the given support points x0, x1, . . . , xn, we define, for i = 0, . . . , n, the Lagrange
Polynomials Li as

Li(x) :=

n∏

j=0
j 6=i

x− xj
xi − xj

.

It can be easily verified that these polynomials are all of degree n and, moreover, satisfy
the equation

Li(xk) =

{
1 for i = k
0 for i 6= k

With the help of Li, we can easily compute the interpolation polynomial explicitly.

Theorem 3.2 Let data points (xi, fi) for i = 0, . . . , n with pairwise distinct support points
xi be given. Then the unique interpolation polynomial P (x) with P (xi) = fi is given by

P (x) =

n∑

i=0

fiLi(x).

Proof: It is obvious that the given function is a polynomial of degree ≤ n. Furthermore,
we have

P (xk) =
n∑

i=0

fiLi(xk)︸ ︷︷ ︸
=0 if i 6=k
=fk if i=k

= fk,

thus satisfying the desired condition (3.1).

The Lagrange polynomials are orthogonal (even orthonormal) with respect to the scalar
product

〈P,Q〉 :=
n∑

i=0

P (xi)Q(xi)

in the space of polynomials Pn, making them an orthonormal basis of Pn with respect to
this scalar product. This is because every polynomial of degree ≤ n can be expressed as a
sum of the Li using

P =
n∑

i=0

P (xi)Li =
n∑

i=0

〈P,Li〉Li

We will see later that orthogonality (although with respect to different scalar products) is
a useful property in function interpolation.

Example 3.3 Consider the data points (3, 68), (2, 16), (5, 352). The corresponding La-
grange polynomials are given by

L0(x) =
x− 2

3− 2

x− 5

3− 5
= −1

2
(x− 2)(x− 5),

48 CHAPTER 3. INTERPOLATION

L1(x) =
x− 3

2− 3

x− 5

2− 5
=

1

3
(x− 3)(x− 5),

L2(x) =
x− 2

5− 2

x− 3

5− 3
=

1

6
(x− 2)(x− 3).

Thus, we obtain

P (x) = −68
1

2
(x− 2)(x− 5) + 16

1

3
(x− 3)(x− 5) + 352

1

6
(x− 2)(x− 3).

For x = 3, we get P (3) = −681
2(3 − 2)(3 − 5) = 68, for x = 2, we calculate P (2) =

161
3(2− 3)(2− 5) = 16, and for x = 5, we obtain P (5) = 3521

6(5− 2)(5− 3) = 352.

By counting the necessary operations, it can be seen that the direct evaluation of the
polynomial P in this form has a computational complexity of O(n2), which is significantly
more efficient than solving a linear system of equations. For an efficient direct evaluation,
the denominators of the Lagrange polynomials should be calculated and stored in advance,
so they don’t need to be recomputed for each evaluation of P .

However, we can make the evaluation even more efficient if we cleverly reformulate the
evaluation of the Lagrange polynomials. To do this, we express the numerator of

Li(x) =

n∏

j=0
j 6=i

x− xj
xi − xj

.

as
`(x)

x− xi
with `(x) :=

n∏

j=0

x− xj .

We write the denominator using the so-called barycentric coordinates

wi :=

n∏

j=0
j 6=i

1

xi − xj
.

Then we have
Li(x) = `(x)

wi
x− xi

and thus

P (x) =

n∑

i=0

Li(x)fi =

n∑

i=0

`(x)
wi

x− xi
fi = `(x)

n∑

i=0

wi
x− xi

fi.

Example 3.4 Consider again the data points (3, 68), (2, 16), (5, 352). The corresponding
` is given by

`(x) = (x− 2)(x− 3)(x− 5)

and the wi are calculated as

w0 =
1

3− 2

1

3− 5
= −1

2
,

w1 =
1

2− 3

1

2− 5
=

1

3
,

3.1. POLYNOMIAL INTERPOLATION 49

w3 =
1

5− 2

1

5− 3
=

1

6
.

This gives us

P (x) = `(x)

(
−1

2

x− 3
68 +

1
3

x− 2
16 +

1
6

x− 5
352

)

= −1

2
(x− 2)(x− 5) 68 +

1

3
(x− 3)(x− 5) 16 +

1

6
(x− 2)(x− 3) 352,

which is the same polynomial as before.

To implement this procedure efficiently, we divide the computation into two algorithms.

Algorithm 3.5 (Computation of Barycentric Coordinates)
Input: Support points x0,. . . ,xn

(1) for i from 0 to n:

(2) set wi := 1

(3) for j from 0 to n:

(4) if j 6= i, set wi := wi/(xi − xj)

(5) End of loops

Output: Barycentric coordinates w0,. . . ,wn

By counting the operations, it is easy to see that the computation of wi requires exactly
2(n+ 1)n = 2n2 + 2n = O(n2) operations. This corresponds to the order of complexity of
directly evaluating P . However, the trick is to calculate the wi values in advance and then
use the stored values in the evaluation of P .

Algorithm 3.6 (Evaluation of the Interpolation Polynomial)
Input: Support points x0,. . . ,xn, values f0,. . . ,fn, barycentric coordinates w0,. . . ,wn, eval-
uation point x

(0) set l := 1, s := 0 (variables for ` and
n∑
i=0

wi
x−xi fi)

(1) for i from 0 to n

(2) set y := x− xi
(3) if y = 0, set P := fi and terminate the algorithm

(4) set l := l ∗ y

(5) set s := s+ wi ∗ fi/y

(6) End of loop

(7) Set P := l ∗ s

Output: Polynomial value P = P (x)

50 CHAPTER 3. INTERPOLATION

By counting the operations, we see that the evaluation requires exactly 5(n + 1) + 1 =
5n+ 6 = O(n) operations. So, once the wi values are calculated, the evaluation for a given
x is significantly less computationally intensive than the direct evaluation of P . This is an
important advantage, especially when graphically representing the polynomial, as it needs
to be evaluated for many different x values.

3.1.2 Condition

In this section, we want to examine the condition of polynomial interpolation, considering
the polynomial interpolation problem with fixed given support points. In this case, the
mapping

φ : (f0, . . . , fn) 7→
n∑

i=0

fiLi

of the data vector (f0, . . . , fn) to the interpolating polynomial P ∈ Pn is a linear mapping
φ : Rn+1 → Pn. Therefore, we can calculate the (absolute) condition κabs as the induced
operator norm

κabs := ‖φ‖∞ = sup
f∈Rn+1

f 6=0

‖φ(f)‖∞
‖f‖∞

of this linear mapping. This induced operator norm is an extension of the induced matrix
norm to linear mappings that are not necessarily defined by a matrix. Unlike linear systems
of equations, here, we use absolute condition because a relative definition does not have an
intuitive interpretation. On the polynomial space Pn, we use the maximum norm

‖P‖∞ := max
x∈[a,b]

|P (x)|,

of the space of continuous real-valued functions C([a, b],R), where we choose a = mini=0,...,n xi
and b = maxi=0,...,n xi (note that we have not assumed any order of support points).

Theorem 3.7 Let x0, x1, . . . , xn be pairwise distinct support points, and Li be the corre-
sponding Lagrange polynomials. Then the absolute condition of the interpolation problem
with these support points is given by

κabs = Λn :=

∥∥∥∥∥
n∑

i=0

|Li|

∥∥∥∥∥
∞
,

where Λn is called the Lebesgue constant.

Proof: It holds that

|φ(f)(x)| =

∣∣∣∣∣
n∑

i=0

fiLi(x)

∣∣∣∣∣ ≤
n∑

i=0

|fi| |Li(x)|

≤ ‖f‖∞ max
x∈[a,b]

n∑

i=0

|Li(x)| = ‖f‖∞

∥∥∥∥∥
n∑

i=0

|Li|

∥∥∥∥∥
∞

= ‖f‖∞Λn,

3.1. POLYNOMIAL INTERPOLATION 51

for all x ∈ [a, b], implying ‖φ(f)‖∞ ≤ ‖f‖∞Λn for all f ∈ Rn+1 and thus ‖φ‖ ≤ Λn. For
the converse inequality we construct a g ∈ Rn+1 such that

|φ(g)(x∗)| = ‖g‖∞

∥∥∥∥∥
n∑

i=0

|Li|

∥∥∥∥∥
∞

holds for some x∗ ∈ [a, b]. To this end, let x∗ ∈ [a, b] be the point where the function
x 7→

∑n
i=0 |Li(x)| attains its maximum, i.e.

n∑

i=0

|Li(x∗)| =

∥∥∥∥∥
n∑

i=0

|Li|

∥∥∥∥∥
∞

= Λn.

We choose g ∈ Rn+1 as gi = sgn(Li(x
∗)). Then ‖g‖∞ = 1 und giLi(x

∗) = |Li(x∗)|, implying

‖φ(g)‖∞ ≥ |φ(g)(x∗)| =

∣∣∣∣∣
n∑

i=0

giLi(x
∗)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=0

|Li(x∗)|

∣∣∣∣∣ = ‖g‖∞

∣∣∣∣∣
n∑

i=0

|Li(x∗)|

∣∣∣∣∣ = ‖g‖∞Λn,

from whish ‖φ‖ ≥ Λn follows. Together the two inequalities show the claim κabs = ‖φ‖ =
Λn.

The Lebesgue constant Λn depends on the number and location of support points. In
the following Table 3.1, the conditions for the interval [−1, 1] and different numbers of
equidistant support points xi = −1 + 2i/n as well as for the so-called Chebyshev support
points xi = cos[(2i+ 1)π/(2n+ 2)] are presented.

n κabs for equidistant support points κabs for Chebyshev support points

5 3.11 2.10
10 29.89 2.49
15 512.05 2.73
20 10986.53 2.90
60 2.97 · 1015 3.58

100 1.76 · 1027 3.90

Table 3.1: Condition κabs for different support points

It can be seen that the problem is very poorly conditioned for equidistant support points
and large values of n.

3.1.3 The Newton Scheme

We now consider another method for calculating interpolation polynomials, the so-called
Newton Scheme, which has the advantage of being suitable for more general interpolation
tasks that we will introduce in the following section. For the Newton Scheme, we first
define the following values:

f[xi] = fi, i = 0, . . . , n

52 CHAPTER 3. INTERPOLATION

and recursively calculate the so-called divided differences for support point sets of the form
{xl, xl+1, . . . , xl+k} with 0 ≤ l < l + k ≤ n:

f[xl,xl+1,...,xl+k] :=
f[xl,xl+1,...,xl+k−1] − f[xl+1,xl+2,...,xl+k]

xl − xl+k
.

Figure 3.1 illustrates this recursive calculation.

f[x0]

↘
f[x0,x1]

↗ ↘
f[x1] f[x0,x1,x2]

↘ ↗ ↘
f[x1,x2] f[x0,x1,x2,x3]

↗ ↘ ↗ . . .

f[x2] f[x1,x2,x3]

↘ ↗ . . .

f[x2,x3]

↗ . . .

f[x3]

. . .

Figure 3.1: Illustration of the Newton Scheme

The following theorem shows how to calculate the interpolation polynomial from the di-
vided differences.

Theorem 3.8 Let data (xi, fi) for i = 0, . . . , n be given with pairwise distinct support
points xi. Then the unique interpolation polynomial P (x) with P (xi) = fi for i = 0, . . . , n
is given by

P (x) =
n∑

k=0


f[x0,...,xk]

k−1∏

j=0

(x− xj)




= f[x0] + f[x0,x1](x− x0) + f[x0,x1,x2](x− x0)(x− x1)

+ . . .+ f[x0,...,xn](x− x0)(x− x1) · · · (x− xn−1).

Proof: We first show that the interpolation polynomial P (x) = anx
n + . . . + a1x + a0

satisfies the equation

an = f[x0,...,xn]. (3.4)

3.1. POLYNOMIAL INTERPOLATION 53

The assertion is clear for n = 0. To prove (3.4) for n ≥ 1, we consider the interpolation
polynomials P 0

n−1 and Pnn−1 for the data {(xk, fk) : k = 1, . . . , n} and {(xk, fk) : k =
0, . . . , n− 1}, respectively. For these, the equation

P (x) =
(x0 − x)Pnn−1(x)− (xn − x)P 0

n−1(x)

x0 − xn
(3.5)

holds, as the right-hand side of this equation defines a polynomial of degree ≤ n that
satisfies the interpolation condition. The proof of (3.4) now follows by induction on n: For
n−1→ n, we consider (3.5). From this equation, we have an = (−ann−1 +a0

n−1)/(x0−xn),
where ann−1 and a0

n−1 are the leading coefficients of Pnn−1 and P 0
n−1, respectively. According

to the induction assumption, ann−1 = f[x0,...,xn−1] and a0
n−1 = f[x1,...,xn], so

an =
ann−1 − a0

n−1

x0 − xn
=
f[x0,...,xn−1] − f[x1,...,xn]

x0 − xn
= f[x0,...,xn].

We now prove the theorem by induction on n. For n = 0, the statement is clear. For
n− 1→ n, according to the induction assumption,

Pn−1(x) =
n−1∑

k=0


f[x0,...,xk]

k−1∏

j=0

(x− xj)




is the interpolation polynomial for the data {(xi, fi) : i = 0, . . . , n − 1}. Let Pn be the
interpolation polynomial for {(xi, fi) : i = 0, . . . , n}. Then, for Pn, according to (3.4), we
have

Pn(x) = f[x0,...,xn]x
n + an−1x

n−1 + . . .+ a0

= f[x0,...,xn]



n−1∏

j=0

(x− xj)


+Qn−1(x)

for some polynomial Qn−1 ∈ Pn−1. This polynomial

Qn−1(x) = Pn(x)− f[x0,...,xn]



n−1∏

j=0

(x− xj)




satisfies the conditions Qn−1(xi) = fi for i = 0, . . . , n−1, which implies that Qn−1 = Pn−1.
Therefore, the claimed equation

Pn(x) = f[x0,...,xn]



n−1∏

j=0

(x− xj)


+ Pn−1(x)

= f[x0,...,xn]



n−1∏

j=0

(x− xj)


+

n−1∑

k=0


f[x0,...,xk]

k−1∏

j=0

(x− xj)




follows.

It’s worth noting that for this polynomial, we only need the values from the first rows of
the scheme. However, the other rows are necessary for calculating these values.

We revisit our example from the previous section.

54 CHAPTER 3. INTERPOLATION

Example 3.9 Consider the data points (3; 68), (2; 16), (5; 352). The divided differences
are calculated as follows:

f[x0] = 68

↘
f[x0,x1] = 68−16

3−2 = 52

↗ ↘
f[x1] = 16 f[x0,x1,x2] = 52−112

3−5 = 30

↘ ↗
f[x1,x2] = 16−352

2−5 = 112

↗
f[x2] = 352

This gives us the interpolation polynomial:

P (x) = P2(x) = 68 + 52(x− 3) + 30(x− 3)(x− 2).

For x = 3, we have P (3) = 68, for x = 2, we get P (2) = 68 + 52(2− 3) = 68− 52 = 16, and
for x = 5, we calculate P (5) = 68+52(5−3)+30(5−3)(5−2) = 68+104+180 = 352.

Even though the computation of the interpolation polynomial through the Newton scheme
may appear complex, it offers several advantages. Firstly, additional data points (xi, fi)
can be easily added, as the polynomials for more interpolation points can be obtained by
adding extra terms to those with fewer interpolation points. (However, it’s important to
note that when a single value fi changes, all the divided differences depending on fi need
to be recalculated.)

Secondly, both the calculation of divided differences and the evaluation of the polynomial
can be efficiently implemented. The calculation of divided differences can be performed
using the following algorithm, where the notation

F0 = f[x0], F1 = f[x0,x1], . . . , Fn = f[x0,x1,...,xn]

is used.

Algorithm 3.10 (Calculation of Divided Differences)
Input: Data (x0, f0), . . . , (xn, fn).

(0) For i from 0 to n, set Fi := fi; end of loop

(1) For k from 1 to n

(2) For i from n to k (counting downwards)

(3) Calculate Fi := Fi−1−Fi
xi−k−xi

(4) End of loops

Output: Divided differences F0, . . . , Fn

3.2. HERMITE INTERPOLATION 55

This algorithm has a computational complexity of O(n2). Once these Fi values are calcu-
lated, the interpolation polynomial can be evaluated using the following formula, known
as the Horner’s scheme.

Algorithm 3.11 (Calculation of P (x) using Horner’s Scheme)
Input: Interpolation points x0, . . . , xn, divided differences F0, . . . , Fn from Algorithm 3.10,
x ∈ R.

(0) Set P := Fn

(1) For i from n− 1 to 0 (counting downwards)

(2) Calculate P := Fi + (x− xi)P

(3) End of loop

Output: P = P (x)

Similar to the calculation of P (x) using barycentric coordinates, this algorithm has a
computational complexity of O(n).

It is important to note that when using barycentric coordinates, it is easy to evaluate poly-
nomials for different fi values but with constant interpolation points xi, as the barycentric
coordinates wi remain unchanged. In contrast, when using the Newton scheme, the Fi
values must be completely recalculated for changed fi values. However, adding a new in-
terpolation point xn+1 is simpler with the Newton scheme (provided the complete scheme
is saved), as the F0, . . . , Fn remain the same, and only the bottom diagonal of the scheme
needs to be recalculated. In the case of barycentric coordinates, all wi values need to be
recalculated in such a scenario.

3.2 Hermite Interpolation

As previously mentioned, we will now consider a generalized interpolation problem known
as Hermite Interpolation1, where, in addition to function values, derivatives can also be
specified.

To formalize this, we relax the assumption made earlier that the interpolation nodes are
pairwise distinct. We require that identical nodes appear next to each other in the ordering,
which is, for instance, satisfied if the interpolation nodes are ordered in ascending order.
For example,

x0 < x1 = x2 = x3 < x4 < x5 = x6

is now a valid set of interpolation points. For each interpolation point xi, we define its
multiplicity, starting from 0. The previously mentioned set of interpolation nodes, along
with their multiplicities, would be as follows:

xi x0 < x1 = x2 = x3 < x4 < x5 = x6

di 0 0 1 2 0 0 1

1Named after the french mathematician Charles Hermite, 1822–1901.

56 CHAPTER 3. INTERPOLATION

The problem of Hermite interpolation now consists of finding a polynomial P given inter-
polation nodes x0, . . . , xn with multiplicities d0, . . . , dn and given values f ji such that the
condition

P (di)(xi) = f
(di)
i for i = 0, 1, . . . , n (3.6)

is satisfied, where P (j) represents the j-th derivative. In the special case of function inter-
polation, these values are given by

f
(di)
i = f (di)(xi) (3.7)

where f is assumed to be sufficiently differentiable.

We denote the interpolation interval as [a, b], and assume that all xi lie in [a, b]. However,
the boundary points a and b do not necessarily need to be interpolation points.

The following theorem shows that the problem is well-defined.

Theorem 3.12 For every set of support points x0, . . . , xn with multiplicities di ≤ r for
i = 0, . . . , n, there exists a unique polynomial P ∈ Pn that satisfies (3.6).

Proof: Consider the linear mapping

µ : Pn → Rn+1

defined by

µ(P) 7→
(
P (d0)(x0), P (d1)(x1), . . . , P (dn)(xn)

)
.

This mapping is injective, meaning that µ(P) = 0 implies P ≡ 0. This is because µ(P) = 0
implies that P has at least n+ 1 zeros (counting multiplicities), which can only happen for
a polynomial of degree n if it is the zero polynomial. Since dim(Pn) = n+ 1 = dim(Rn+1),
the mapping µ is surjective, and therefore invertible, leading to the unique existence of
P .

Two special cases of this problem are worth mentioning:

(1) If the xi are all distinct, we obtain the well-known interpolation problem.

(2) If all the xi are the same, the Hermite function interpolation polynomial with (3.6) and
(3.7) consists of the first n+ 1 terms of the Taylor expansion of f , given by

P (x) =
n∑

j=0

(x− x0)j

j!
f (j)(x0). (3.8)

It can be easily verified that this P satisfies the condition (3.6).

In the general case, Hermite interpolation polynomials can be computed using divided
differences as discussed in Section 3.1.3. We only need to extend their definition for the
case of coinciding support points. For that, we define

f[xi] := f0
i−di , i = 0, . . . , n,

3.2. HERMITE INTERPOLATION 57

and

f[xl,xl+1,...,xl+k] :=
f[xl,xl+1,...,xl+k−1] − f[xl+1,xl+2,...,xl+k]

xl − xl+k
, if xl 6= xl+k

f[xl,xl+1,...,xl+k] :=
f

(k)
l−dl+k
k!

, if xl = . . . = xl+k

This definition is meaningful only if identical nodes appear next to each other in the
ordering x0, . . . , xN , as otherwise not all possible cases are covered in the above definition.

With this definition, we can formulate the following theorem, which is completely analogous
to Theorem 3.8.

Theorem 3.13 Let x0, x1, . . . , xn be interpolation nodes with multiplicities di and corre-

sponding values f
(di)
i , which are ordered such that identical nodes appear next to each other.

Then, the unique interpolation polynomial P (x) with P (di)(xi) = f
(di)
i for i = 0, . . . , n is

given by

P (x) =
n∑

k=0


f[x0,...,xk]

k−1∏

j=0

(x− xj)




= f[x0] + f[x0,x1](x− x0) + f[x0,x1,x2](x− x0)(x− x1)

+ . . .+ f[x0,...,xn](x− x0)(x− x1) · · · (x− xn−1).

Proof: Completely analogous to the proof of Theorem 3.8, with the (simple) case of
x0 = xn in the proof of (3.4) considered separately.

3.2.1 Error Estimates

In this section, we consider the problem of function interpolation (3.2) for a given function
f : R → R, or its Hermite extension (3.6) with f ji = f (j)(xi). We want to estimate how
large the difference between the interpolating polynomial P and the function f is. Here,
we denote by [a, b] an interpolation interval with the property that all support points xi
satisfy xi ∈ [a, b].

For error analysis, we use divided differences and begin with some preparatory lemmas.

Lemma 3.14 Suppose the conditions of Theorem 3.13 are satisfied. Furthermore, assume
that f ∈ Cr+1[a, b]. Then, we have

f(x) = P (x) + f[x0,...,xn,x]

n∏

j=0

(x− xj)

for all x ∈ [a, b].

58 CHAPTER 3. INTERPOLATION

Proof: One either has x = xi for some i = 1, . . . , n. In this case, P (xi) = f(xi) and the
product on the right hand side equals zero. Hence, the assertion is true regardless of the
value of f[x0,...,xn,x]. Otherwise, we have x 6= xi for all i = 0, . . . , n, implying that the node
sequence x0, . . . , xn, x extended by x satisfies the assumptions of Theorem 3.13. Hence,

P̃ (x) = P (x) + f[x0,...,xi,xi+1,...,xn,x]

n∏

j=0

(x− xj)

which according to Theorem 3.13 is the Hermite interpolation polynomial through the
support points x0, . . . , xn, x. Hence, its value coincides with the value of f in the node x,
i.e., P̃ (x) = f(x).

We will use this lemma to estimate the size of the interpolation error in terms of the term
f[x0,...,xn,x]

∏n
j=0(x− xj). For this purpose, we need the following formula.

Lemma 3.15 For the n-th divided difference of an n-times continuously differentiable
function, the Hermite-Genocchi formula holds:

f[x0,...,xn] =

∫

Σn
f (n)

(
x0 +

n∑

i=1

si(xi − x0)

)
ds,

where, for n ≥ 1,

Σn :=

{
s = (s1, . . . , sn) ∈ Rn

∣∣∣∣∣
n∑

i=1

si ≤ 1 and si ≥ 0

}

denotes the n-dimensional standard simplex. We define for n = 0,

∫

Σ0

f(x0)ds = f(x0)

Proof: We prove the formula by induction on n. For n = 0, the claim follows from
f[x0] = f(x0) and the definition of the integral over Σ0.

For the induction step from n→ n+ 1, we first consider the special case where x0 = x1 =
. . . = xn+1. In this case, we have

f[x0,...,xn+1] :=
f (n+1)(x0)

(n+ 1)!
and x0 +

n+1∑

i=1

si(xi − x0) = x0,

which immediately proves the claim since, for all n ≥ 1, we have the equation

∫

Σn
1 ds = Vol Σn =

1

n!
(3.9)

3.2. HERMITE INTERPOLATION 59

If x0 6= xn+1, we denote for s = (s1, . . . , sn+1) ∈ Σn+1 and 1 ≤ i ≤ j ≤ n + 1, the vectors
si,j = (si, . . . , sj). With this notation, we have

∫

n+1∑
i=1

si≤1

f (n+1)

(
x0 +

n+1∑

i=1

si(xi − x0)

)
ds1,n+1

=

∫

n∑
i=1

si≤1

1−
n∑
i=1

si∫

sn+1=0

f (n+1)

(
x0 +

n∑

i=1

si(xi − x0) + sn+1(xn+1 − x0)

)
dsn+1 ds

1,n

=
1

xn+1 − x0

∫

n∑
i=1

si≤1

[
f (n)

(
xn+1 +

n∑

i=1

si(xi − xn+1)

)

− f (n)

(
x0 +

n∑

i=1

si(xi − x0)

)]
ds1,n

=
1

xn+1 − x0

(
f[x1,...,xn+1] − f[x0,...,xn]

)
= f[x0,...,xn+1]

where we used the induction assumption in the penultimate step and the definition of
divided differences in the last step.

This formula can be used as an alternative definition of divided differences. Note that the
integral expression remains unchanged upon reordering the support points, so no ascending
sorting is required in this alternative definition.

We state two consequences of Lemma 3.15.

Corollary 3.16 For f ∈ Cn[a, b], the following statements hold.

(i) The function g : Rn+1 → R defined by

g(x0, . . . , xn) = f[x0,...,xn]

is continuous.

(ii) There exists a ξ ∈ [a, b] such that

f[x0,...,xn] =
f (n)(ξ)

n!
.

Proof: (i) Continuity follows directly from the integral representation in Lemma 3.15.

(ii) From the integral representation in Lemma 3.15 and the mean value theorem of integral
calculus, we have the equation

f[x0,...,xn] =

∫

Σn
f (n)

(
x0 +

n∑

i=1

si(xi − x0)

)
ds = f (n)(ξ)

∫

Σn
1 ds

60 CHAPTER 3. INTERPOLATION

for some suitable ξ ∈ [a, b]. This implies the claim using (3.9).

Now it is easy to estimate the interpolation error.

Theorem 3.17 Let f be (n+1)-times continuously differentiable, and let P be the Hermite
interpolation polynomial for the support points x0, . . . , xn. The following statements hold:

(i) For all x ∈ [a, b], there exists ξ ∈ [a, b] such that the equation

f(x)− P (x) = f[x0,...,xn,x]

n∏

j=0

(x− xj) =
f (n+1)(ξ)

(n+ 1)!

n∏

j=0

(x− xj)

holds.

(ii) For all x ∈ [a, b], the inequality

|f(x)− P (x)| ≤ ‖f (n+1)‖∞

∣∣∣∣∣

∏n
j=0(x− xj)
(n+ 1)!

∣∣∣∣∣

holds.

(iii) The following inequality holds:

‖f − P‖∞ ≤ ‖f (n+1)‖∞
(b− a)n+1

(n+ 1)!
.

Proof: The equations in (i) follow directly from Lemma 3.14 and Corollary 3.16(ii). The
inequalities (ii) and (iii) follow from the definition of the maximum norm.

Remark 3.18 In the case where all xi coincide, from Theorem 3.17(i) and (3.8), we obtain
the equation

f(x)−
n∑

j=0

(x− x0)j

j!
f (j)(x0) =

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1,

which is precisely the Lagrange remainder of the Taylor expansion.

We illustrate Theorem 3.17 with two examples.

Example 3.19 Consider the function f(x) = sin(x) on the interval [0, 2π]. The derivatives
of f are

f (1)(x) = cos(x), f (2)(x) = − sin(x), f (3)(x) = − cos(x), f (4)(x) = sin(x), . . .

For all these functions, |f (k)(x)| ≤ 1 for all x ∈ R. With equidistant support points
xi = 2πi/n, we obtain the estimate

|f(x)− P (x)| ≤ max
y∈[a,b]

∣∣∣f (n+1)(y)
∣∣∣ (b− a)n+1

(n+ 1)!
≤ (2π)n+1

(n+ 1)!
.

This term converges very quickly to 0 for increasing n, so even for small n, we can expect
a very good match between the functions.

3.3. FUNCTION INTERPOLATION AND ORTHOGONAL POLYNOMIALS 61

Example 3.20 Consider the so-called Runge function f(x) = 1/(1 + x2) on the interval
[−5, 5]. The exact derivatives lead to quite complicated terms, but you can verify that for
even n, we have

max
y∈[a,b]

|f (n)(y)| = |f (n)(0)| = n!

and for odd n, at least approximately,

max
y∈[a,b]

|f (n)(y)| ≈ n!.

Thus, we obtain the estimate

|f(x)− P (x)| ≤ max
y∈[a,b]

∣∣∣f (n+1)(y)
∣∣∣ (b− a)n+1

(n+ 1)!
≈ (n+ 1)!

(b− a)n+1

(n+ 1)!
= 10n+1.

This term grows infinitely for large n, which means that the estimate does not provide a
useful error bound. Indeed, for this function and equidistant support points, significant
problems arise in numerical tests, with strong oscillations of the interpolating polynomial
observed for large n, despite the function being well-behaved.

Therefore, there are two reasons why polynomial interpolation with equidistant support
points is problematic: Firstly, for unsuitable functions, the interpolation error can be large
regardless of the number of support points. Secondly, numerically generated interpolation
polynomials tend to exhibit strong oscillations for a large number of support points due to
their extremely poor conditioning, even if the function to be interpolated is well-behaved.

In the following sections, we will explore other interpolation methods that circumvent
these problems, either by using better-positioned support points or by avoiding high-degree
polynomials.

3.3 Function Interpolation and Orthogonal Polynomials

In this section, we focus specifically on the issue of function interpolation 3.2 using poly-
nomials. As mentioned earlier, this differs algorithmically from data interpolation 3.1 in
that we can freely choose the support points xi. This leads to the question of how one can
optimally choose these support points for a given interpolation interval [a, b]. We want to
solve this problem without assuming knowledge of the function f to be interpolated.

3.3.1 Orthogonal Polynomials

A crucial tool for this purpose is orthogonal polynomials, which we want to examine first.
Orthogonality is always defined with respect to a scalar product, and here, we use the
following scalar product.

Definition 3.21 Let ω : (a, b) → R+ be a positive and Lebesgue-integrable weight func-
tion2. Then, we define the scalar product on the space P of polynomials as follows:

〈P1, P2〉ω :=

∫ b

a
ω(x)P1(x)P2(x)dx

2Note that ω may not be defined at the boundary points a and b when using the Lebesgue integral.

62 CHAPTER 3. INTERPOLATION

for P1, P2 ∈ P. We denote the corresponding norm as

‖P‖ω :=
√
〈P, P 〉ω =

√∫ b

a
ω(x)(P (x))2dx

With this scalar product, we can now define orthogonality.

Definition 3.22 A sequence (Pk)k∈N0 of polynomials with Pk ∈ Pk exactly of degree k
(i.e., with a leading coefficient 6= 0) is called orthogonal with respect to ω if

〈Pi, Pj〉ω = 0 for i 6= j and 〈Pi, Pi〉ω = ‖Pi‖2ω =: γi > 0

holds.

The following theorem shows that orthogonal polynomials always exist and can be calcu-
lated using a simple recursive formula.

Theorem 3.23 For any weight function ω : [a, b] → R+, there are uniquely determined
orthogonal polynomials (Pk)k∈N0 according to Definition 3.22 with a leading coefficient
of 1. They satisfy the recursive equation

Pk(x) = (x+ bk)Pk−1(x) + ckPk−2(x), k = 1, 2, . . .

with initial values P−1 ≡ 0, P0 ≡ 1, and coefficients

bk = −〈xPk−1, Pk−1〉ω
〈Pk−1, Pk−1〉ω

, k = 1, 2, . . . , c1 = 0 and ck = −〈Pk−1, Pk−1〉ω
〈Pk−2, Pk−2〉ω

, k = 2, 3,

Proof: We prove the theorem by induction on k, starting with k = 1. For this case, we
have

b1 = −
∫ b
a xω(x)dx
∫ b
a ω(x)dx

and, as a result of P1(x) = x− b1, the equation

〈P1, P0〉ω = 〈x+ b1, P0〉ω =

∫ b

a
xω(x)dx−

∫ b

a
ω(x)dx

∫ b
a xω(x)dx
∫ b
a ω(x)dx

= 0.

Therefore, P1 satisfies the orthogonality property with respect to P0 and has a leading
coefficient of 1. Since no other value of b1 satisfies the above equation, P1 is uniquely
determined.

For the induction step k − 1 → k, assume that P0, P1, . . . , Pk−1 are the first k orthogonal
polynomials that satisfy the given recursive equation. Take any Pk ∈ Pk with a leading
coefficient of 1. Since Pk−1 ∈ Pk−1 and the leading coefficients cancel out, we have Pk −

3.3. FUNCTION INTERPOLATION AND ORTHOGONAL POLYNOMIALS 63

xPk−1 ∈ Pk−1. Since P0, P1, . . . , Pk−1 are linearly independent due to orthogonality, they
form a basis for Pk−1, even an orthogonal basis with respect to 〈·, ·〉ω. Thus, the equation
holds

Pk − xPk−1 =

k−1∑

j=0

djPj with dj =
〈Pk − xPk−1, Pj〉ω
〈Pj , Pj〉ω

.

We now want to determine conditions on the coefficients dj under the assumption that Pk
is orthogonal to Pj for j = 0, . . . , k − 1. If Pk possesses this orthogonality property, then
it must necessarily hold that

dj = −〈xPk−1, Pj〉ω
〈Pj , Pj〉ω

= −〈Pk−1, xPj〉ω
〈Pj , Pj〉ω

.

For j = 0, . . . , k − 3, xPj ∈ Pk−2, so it can be expressed as a linear combination of
P0, . . . , Pk−2, which means that 〈Pk−1, xPj〉ω = 0, and therefore, d0 = d1 = . . . = dk−3 = 0
must hold. For the remaining coefficients dk−1 and dk−2, it must be true that

dk−1 = −〈Pk−1, xPk−1〉ω
〈Pk−1, Pk−1〉ω

, dk−2 = −〈Pk−1, xPk−2〉ω
〈Pk−2, Pk−2〉ω

= −〈Pk−1, Pk−1〉ω
〈Pk−2, Pk−2〉ω

,

where the last equation follows from the induction assumption

Pk−1(x) = (x+ bk−1)Pk−2(x) + ck−1Pk−3(x)

and the fact that

〈Pk−1, Pk−1〉ω = 〈Pk−1, xPk−2〉ω + 〈Pk−1, bk−1Pk−2 + ck−1Pk−3〉ω︸ ︷︷ ︸
= 0 due to orthogonality

Hence, we obtain

Pk = xPk−1 + dk−1Pk−1 + dk−2Pk−2 = (x+ bk)Pk−1 + ckPk−2.

Since the coefficients bk and ck and the polynomial Pk are uniquely determined by this
equation, the claim follows.

Remark 3.24 For numerical purposes, the recursive formula provided here is generally
not suitable, as its evaluation is numerically unstable, i.e., susceptible to rounding errors.
Numerically stable algorithms for computing orthogonal polynomials are discussed, for
example, in Chapter 6 of the book by Deuflhard/Hohmann [1].

For the construction of orthogonal polynomials, Theorem 3.23 allows us to start with a
recursive formula for given coefficients and then identify the corresponding scalar product
〈·, ·〉ω. It is worth noting that not every recursive formula automatically generates poly-
nomials with a leading coefficient of 1. However, you can easily obtain these normalized
polynomials through appropriate scaling.

Now, we will examine a specific recursive formula and the resulting Chebyshev Polynomials,
which play an important role in interpolation. In the chapter on numerical integration, we
will encounter other families of orthogonal polynomials.

64 CHAPTER 3. INTERPOLATION

The crucial recursive formula for interpolation is given by

Tk(x) = 2xTk−1(x)− Tk−2(x). (3.10)

with initial values T0(x) = 1 and T1(x) = x (we scale slightly differently here than in Satz
3.23, which simplifies some calculations below). The following theorem summarizes the
properties of the corresponding orthogonal polynomials, known as Chebyshev Polynomials.

Theorem 3.25 For the Chebyshev Polynomials Tk, k = 0, 1, 2, . . ., given by the recursion
(3.10), the following statements hold.

(i) For x ∈ [−1, 1] the polynomials are given by Tk(x) = cos(k arccos(x)).

(ii) For k ≥ 1, the Tk have the form

Tk(x) = 2k−1xk +

k−1∑

i=0

tk,ix
i

(iii) Each Tk has exactly k zeros

xk,l = cos

(
2l − 1

2k
π

)
for l = 1, . . . , k.

These are called Chebyshev Nodes.

(iv) The Tk are orthogonal with respect to the weight function defined on (−1, 1)

ω(x) =
1√

1− x2
.

More precisely, it holds that

〈Ti, Tj〉ω =





0, if i 6= j
π, if i = j = 0
π/2, if i = j > 0

Proof: (i)–(iii) can be verified by calculation, as seen in the current exercise sheet.

(iv): We consider the scalar product

〈Ti, Tj〉ω =

∫ 1

−1
ω(x)Ti(x)Tj(x)dx

To solve this integral, we use the substitution x = cos(α), so dx = − sin(α)dα, and the
representation of Tk from (i). Thus, we have

∫ 1

−1
ω(x)Ti(x)Tj(x)dx =

∫ 0

π

1√
1− cos2(α)︸ ︷︷ ︸

=sin(α)

cos(iα) cos(jα)(− sin(α))dα

=

∫ π

0
cos(iα) cos(jα)dα =

1

2

∫ π

−π
cos(iα) cos(jα)dα

=
1

4

∫ π

−π
cos((i+ j)α) + cos((i− j)α)dα,

3.3. FUNCTION INTERPOLATION AND ORTHOGONAL POLYNOMIALS 65

where we used cos(a) = cos(−a) in the penultimate step, and in the last step, we employed
the equation 2 cos(a) cos(b) = cos(a+ b) + cos(a− b).
For i 6= j, it follows from sin(kπ) = 0 for k ∈ Z that

〈Ti, Tj〉ω =
1

4

[
1

i+ j
sin((i+ j)α) +

1

i− j
sin((i− j)α)

]π

−π
= 0,

for i = j = 0, we have

〈T0, T0〉ω =
1

4

∫ π

−π
cos(0) + cos(0)dα =

1

4

[
2α
]π
−π

= π

and for i = j > 0, again using sin(kπ) = 0, we get

〈Ti, Ti〉ω =
1

4

∫ π

−π
cos(2iα) + cos(0)dα =

1

4

[
1

2i
sin(2iα) + α

]π

−π
=
π

2

The significance of the Chebyshev Polynomials for function interpolation arises from the
error estimation in Theorem 3.17(ii). There, we proved the inequality

|f(x)− P (x)| ≤ ‖f (n+1)‖∞
∣∣∣∣
(x− x0)(x− x1) · · · (x− xn)

(n+ 1)!

∣∣∣∣ . (3.11)

for x ∈ [a, b]. Now, we want to investigate how to choose the support points xi so that
this error bound becomes minimal. Since we do not want to specify a particular x (the
estimate should be optimal for all x, i.e., for ‖f −P‖∞), the task is to find support points
x0, . . . , xn such that the expression

max
x∈[a,b]

|(x− x0)(x− x1) · · · (x− xn)| (3.12)

becomes minimal.

Without loss of generality, we consider the interval [a, b] = [−1, 1] because if we find the
optimal support points xi on [−1, 1], the support points defined by x̃i = a+(xi+1)(b−a)/2
will also be optimal on [a, b], and it holds that

max
x∈[a,b]

|(x− x̃0)(x− x̃1) · · · (x− x̃n)| =
(
b− a

2

)n+1

max
x∈[−1,1]

|(x− x0)(x− x1) · · · (x− xn)|.

Now, for arbitrary support points x0, . . . , xn, let’s define the polynomial Rn+1(x) = (x −
x0)(x−x1) · · · (x−xn). This defines a polynomial with a leading coefficient of an+1 = 1. The
support points xi are precisely the zeros of Rn+1, and the expression (3.12) is precisely the
maximum norm ‖Rn+1‖∞. Minimizing (3.12) is thus equivalent to the following problem:
Among all polynomials Rn+1 of degree n + 1 with a leading coefficient of an+1 = 1, find
the one with the smallest maximum norm on [−1, 1].

The following theorem shows that the normalized Chebyshev polynomial Tn+1/2
n is pre-

cisely the polynomial we are looking for.

66 CHAPTER 3. INTERPOLATION

Theorem 3.26 Let ‖ · ‖∞ be the maximum norm on [−1, 1]. Then, for any polynomial
Rn+1 of the form Rn+1(x) = (x− x0)(x− x1) · · · (x− xn) with pairwise distinct zeros xi in
the interval [−1, 1], the inequality

‖Tn+1/2
n‖∞ ≤ ‖Rn+1‖∞.

holds. In particular, the Chebyshev nodes

xi = cos

(
2i+ 1

2n+ 2
π

)
, i = 0, . . . , n,

which are the zeros of Tn+1, minimize the expression (3.12) and thus the error estimate
(3.11).

Proof: From the representation Tn+1(x) = cos((n + 1) arccos(x)), it immediately follows
that ‖Tn+1‖∞ ≤ 1. Furthermore, we have

|Tn+1(x)| = 1 ⇔ (n+ 1) arccos(x) = mπ for some m ∈ N0

⇔ x = cos

(
m

n+ 1
π

)
for some m ∈ N0.

We denote x̄m := cos
(

m
n+1π

)
. Note that this defines exactly n + 2 values x̄0, . . . , x̄n+1,

and Tn+1(x̄m) = 1 if m is even or zero, and Tn+1(x̄m) = −1 if m is odd.

Now, we prove that for any polynomial Qn+1 of degree n + 1 with leading coefficient
an+1 = 2n, the inequality

‖Qn+1‖∞ ≥ ‖Tn+1‖∞ (3.13)

holds.

To prove this inequality, we assume the opposite, i.e., ‖Qn+1‖∞ < ‖Tn+1‖∞, and consider
the difference Qn+1 − Tn+1. Since the leading coefficients cancel out, this is a polynomial
of degree ≤ n. At the n+ 2 points x̄m, we have:

If m is even or 0 : Tn+1(x̄m) = 1, Qn+1(x̄m) < 1 ⇒ Qn+1(x̄m)− Tn+1(x̄m) < 0

If m is odd : Tn+1(x̄m) = −1, Qn+1(x̄m) > −1 ⇒ Qn+1(x̄m)− Tn+1(x̄m) > 0

Thus, Qn+1 − Tn+1 changes sign in each of the n+ 1 intervals [x̄i, x̄i+1], i = 0, . . . , n, and
therefore has (at least) n + 1 roots. This is only possible for a polynomial of degree n if
it is identically zero. So, Qn+1 − Tn+1 ≡ 0, which implies Qn+1 = Tn+1, contradicting the
assumption ‖Qn+1‖∞ < ‖Tn+1‖∞.

The result follows immediately by scaling Tn+1 and Qn+1 by 1/2n, as every polynomial of
the form stated in the theorem can be written as Rn+1 = Qn+1/2

n for some Qn+1 satisfying
(3.13).

For the Chebyshev nodes xi, we obtain in (3.12):

max
x∈[−1,1]

|(x− x0)(x− x1) · · · (x− xn)| = 1

2n
.

3.4. SPLINE INTERPOLATION 67

For general intervals [a, b], the transformed support points given by

x̃i = a+ (xi + 1) (b− a)/2

lead to the following expression:

max
x∈[a,b]

|(x− x̃0)(x− x̃1) · · · (x− x̃n)| = (b− a)n+1

22n+1
= 2

(
b− a

4

)n+1

.

For the Runge function from Example 3.20, we obtain from Theorem 3.17(ii) on the inter-
polation interval [−5, 5]:

‖f − P‖∞ ≤ 2

(
5

2

)n+1

.

Once again, we get an error bound that diverges as n → ∞. Surprisingly, interpolation
of the Runge function with Chebyshev nodes still works, as demonstrated in Exercise
34. It appears that the inequality underlying this result, |f (n+1)(ξ)| ≤ ‖f (n+1)‖∞, is too
pessimistic in this case.

Note that the endpoints −1 and 1 of the interpolation interval are not Chebyshev nodes
and, therefore, not support points. Hence, this method uses interpolation outside the
interval defined by the support points.

3.4 Spline Interpolation

We have seen that polynomial interpolation can be problematic from a conditioning per-
spective when we have many support points that are not optimally chosen like Chebyshev
nodes. This can particularly occur in data interpolation (3.1) when the support points are
fixed and cannot be freely chosen. Therefore, in this section, we will explore an alternative
interpolation technique that works smoothly even with a large number of support points.

The basic idea of Spline Interpolation is to choose the interpolating function (denoted as
“S” for “Spline” here) not globally but only on each subinterval [xi, xi+1] as a polynomial.
These sub-polynomials should smoothly merge at the interval boundaries. Such a function,
composed of smoothly merged piecewise polynomials, is called a Spline.

Formally, this concept is defined as follows:

Definition 3.27 Let x0 < x1 < . . . < xn be support points and k ∈ N. A continuous
and (k− 1)-times continuously differentiable function S : [x0, xn]→ R is called a Spline of
degree k if, on each interval Ii = [xi−1, xi] for i = 1, . . . , n, it is represented by a polynomial
Pi of degree ≤ k, i.e., for x ∈ Ii, we have:

S(x) = Pi(x) = ai 0 + ai 1(x− xi−1) + . . .+ ai k(x− xi−1)k =

k∑

j=0

ai j(x− xi−1)j .

The space of Splines of degree k with support point set ∆ = {x0, x1, . . . , xn} is denoted as
S∆,k.

68 CHAPTER 3. INTERPOLATION

Such a Spline, as defined in Definition 3.27, solves the interpolation problem if the addi-
tional condition (3.1) is satisfied, i.e., S(xi) = fi for all i = 0, . . . , n.

Before we delve into the computation of Splines, we establish a property of the function
space S∆,k.

Theorem 3.28 Let ∆ = {x0, x1, . . . , xn} with x0 < x1 < . . . < xn, and let k ∈ N be given.
Then, the space of Splines S∆,k is a k + n-dimensional vector space over R.

Proof: Clearly, aS1 + bS2 is also a Spline for a, b ∈ R, making S∆,k a vector space. Since
Splines depend linearly on the coefficients ai j and the functions (x − xi−1)j within each
restricted interval [xi−1, xi] are all linearly independent, it is sufficient to determine the
number of free parameters by calculating the dimension. On the first interval I1, P1 can
be freely chosen, giving k + 1 free parameters. On each subsequent interval Ii for i ≥ 2,

the values of the j-th derivative P
(j)
i (xi−1) = j!ai j for j = 0, . . . , k − 1 are already fixed,

as the composite function S is continuous and k − 1 times continuously differentiable at

xi−1. Hence, it must hold that ai j = P
(j)
i−1(xi−1)/j! for j = 0, . . . , k − 1. Therefore, only

the coefficient ai k remains free on each of the remaining n−1 intervals, resulting in a total
of k + n free parameters.

Remark 3.29 Instead of using the coefficients as in the proof, any other set of n + k
coefficients can be fixed, provided they satisfy the following condition: For any assignment
of the fixed coefficients, the remaining coefficients can be chosen in such a way that the
continuity and differentiability conditions are met. For each assignment of these n + k
coefficients, there exists exactly one Spline whose coefficients match the fixed ones.

In many applications, cubic splines (Spline of degree k = 3) are of particular importance.
We will discuss the reasons for this later. First, let us focus on the existence and uniqueness
of the interpolating cubic spline S ∈ S∆,3 for given data (xi, fi) with x0 < x1 < . . . < xn.
Clearly, the spline satisfies the interpolation problem (3.1) if the conditions

ai 0 = fi−1 for i = 1, . . . , n

and

an 1 =
fn − an 0 − an 2(xn − xn−1)2 − an 3(xn − xn−1)3

xn − xn−1

(3.14)

are met. This determines n+ 1 coefficients. As dimS∆,k = n+ 3, we have two additional
coefficients that need to be fixed, typically in the form of boundary conditions, i.e. con-
ditions on S or its derivatives at x0 and xn. The following lemma presents three possible
boundary conditions.

Lemma 3.30 Given data (xi, fi) for i = 0, . . . , n with x0 < x1 < . . . < xn and ∆ =
{x0, x1, . . . , xn}, for each of the following boundary conditions

(a) S′′(x0) = S′′(xn) = 0 (“natural boundary conditions”)

3.4. SPLINE INTERPOLATION 69

(b) S′(x0) = S′(xn) and S′′(x0) = S′′(xn) (“periodic boundary conditions”)

(c) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (“Hermite boundary conditions,” only mean-
ingful for function interpolation)

there exists exactly one cubic spline S ∈ S∆,3 that solves the interpolation problem and
satisfies the corresponding boundary condition (a), (b), or (c).

Proof: Each of the provided boundary conditions can be expressed as conditions on two
more coefficients of the spline. Therefore, together with (3.14), a total of n+ 3 coefficients
are determined. As per Remark 3.29, exactly one spline satisfying these conditions exists,
provided the remaining coefficients can be chosen to form a valid spline.

Cubic splines are commonly used in applications such as computer graphics, and we want
to explain the reason for this preference. One criterion for choosing the order of a spline,
especially in graphical applications but also in “classical” interpolation problems, is that
the curvature of the interpolating curve should be as small as possible. The curvature
of a curve y(x) at a point x is given by its second derivative y′′(x). The total curvature
for all x in [x0, xn] can be measured in various ways; here, we use the L2 norm ‖ · ‖2 for
square-integrable functions, which is defined for g : [x0, xn]→ R as

‖g‖2 :=

(∫ xn

x0

g2(x)dx

) 1
2

The curvature of a twice continuously differentiable function y : [x0, xn] → R over the
entire interval can thus be measured using ‖y′′‖2. The following theorem holds for this:

Theorem 3.31 Let S : [x0, xn] → R be a cubic spline interpolating the data (xi, fi) for
i = 0, . . . , n, satisfying one of the boundary conditions (a)-(c) from Lemma 3.30. Let
y : [x0, xn] → R be a twice continuously differentiable function that also solves the inter-
polation problem and satisfies the same boundary conditions as S. Then, we have:

‖S′′‖2 ≤ ‖y′′‖2.

Proof: Substituting the obvious equation y′′ = S′′ + (y′′ − S′′) into the squared norm
‖y′′‖22, we get:

‖y′′‖22 =

∫ xn

x0

(y′′(x))2dx

=

∫ xn

x0

(S′′(x))2dx

︸ ︷︷ ︸
=‖S′′‖22

+ 2

∫ xn

x0

S′′(x)(y′′(x)− S′′(x))dx

︸ ︷︷ ︸
=:J

+

∫ xn

x0

(y′′(x)− S′′(x))2dx

︸ ︷︷ ︸
≥0

≥ ‖S′′‖22 + J.

70 CHAPTER 3. INTERPOLATION

Now we examine the term J . From each of the three boundary conditions, we obtain the
equation:

[
S′′(x)(y′(x)−S′(x))

]xn
x=x0

= S′′(xn)(y′(xn)−S′(xn))−S′′(x0)(y′(x0)−S′(x0)) = 0. (3.15)

Using integration by parts, we have:

∫ xn

x0

S′′(x)(y′′(x)− S′′(x))dx =
[
S′′(x)(y′(x)− S′(x))

]xn
x=x0

−
∫ xn

x0

S′′′(x)(y′(x)− S′(x))dx.

The first term is zero due to the earlier equation. On each interval Ii = [xi−1, xi], S(x) =
Pi(x) is a cubic polynomial, so S′′′(x) ≡ di is constant for x ∈ Ii. Therefore, the second
term satisfies

∫ xn

x0

S′′′(x)(y′(x)− S′(x))dx =

n∑

i=1

∫ xi

xi−1

di(y
′(x)− S′(x))dx

=

n∑

i=1

di

∫ xi

xi−1

y′(x)− S′(x)dx

=

n∑

i=1

di [(y(xi)− y(xi−1)− S(xi) + S(xi−1)]︸ ︷︷ ︸
=0, since y(xi)=S(xi) and y(xi−1)=S(xi−1)

= 0.

Thus, we have J = 0, and consequently, the claim is proven.

This property also explains the name “Spline”. Literally, a “spline” is a thin wooden
strip. If you bend it to follow given points (i.e., “interpolate” them), the curvature, which
approximately describes the necessary bending energy, is minimal — at least for small
deflections of the strip.

We now move on to the practical computation of the spline coefficients for cubic splines.
There are various approaches to this. For example, you can directly set up a linear system
of equations for the 4n coefficients ai j for i = 1, . . . , n, but this is not very efficient.
Alternatively, you can use cleverly chosen basis functions for the vector space S∆, 3 (known
as B-splines) and compute S in this basis. This approach is described in the book by
Deuflhard/Hohmann. It leads to an n-dimensional linear system with a tridiagonal matrix
A. However, in this method, the coefficients ai j are not calculated; instead, the coefficients
with respect to the B-spline basis are computed, and the evaluation of S must also be done
using these basis functions.

Here, we present another approach where the coefficients ai j are calculated directly so that
S can be evaluated using the representation in Definition 3.27, similar to how Splines are
implemented in MATLAB. In this case, we also obtain an n-dimensional linear system with
a tridiagonal matrix A, resulting in a computational complexity of O(n). We first consider
the natural boundary conditions.

To do this, we first define the values:

f ′′i := S′′(xi) and hi := xi − xi−1

3.4. SPLINE INTERPOLATION 71

for i = 0, . . . , n and i = 1, . . . , n, respectively. From the interpolation condition and the
requirement for the second derivative to be continuous, we obtain four equations for the
sub-polynomials Pi:

Pi(xi−1) = fi−1, Pi(xi) = fi, P ′′i (xi−1) = f ′′i−1, P ′′i (xi) = f ′′i . (3.16)

Solving these equations, utilizing the differentiation rules for polynomials, for the coeffi-
cients ai j , we obtain:

ai 0 = fi−1

ai 1 =
fi − fi−1

hi
− hi

6
(f ′′i + 2f ′′i−1)

ai 2 =
f ′′i−1

2

ai 3 =
f ′′i − f ′′i−1

6hi
.

Since the values hi and fi are directly available from the data, we only need to calculate
the values of f ′′i . Since the natural boundary conditions immediately yield f ′′0 = 0 and
f ′′n = 0, we only need to calculate the values of f ′′1 , . . . , f

′′
n−1.

Note that in (3.16), we have already used the conditions on Pi and P ′′i at the support
points. From the equations for the first derivatives that have not been used yet, we can
now obtain equations for f ′′i . From P ′i (xi) = P ′i+1(xi), we get:

ai 1 + 2ai 2(xi − xi−1) + 3ai 3(xi − xi−1)2 = ai+1 1

for i = 1, . . . , n − 1. By substituting the values of f ′′i and hi according to the above
equations and definitions, we obtain:

hif
′′
i−1 + 2(hi + hi+1)f ′′i + hi+1f

′′
i+1 = 6

fi+1 − fi
hi+1

− 6
fi − fi−1

hi
=: δi

for i = 1, . . . , n − 1. This provides exactly n − 1 equations for the n − 1 unknowns
f ′′1 , . . . , f

′′
n−1. In matrix form, this gives us the equation system:




2(h1 + h2) h2 0 · · · · · · 0

h2 2(h2 + h3) h3
. . .

...

0 h3
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . hn−1

0 · · · · · · 0 hn−1 2(hn−1 + hn)







f ′′1
f ′′2
...
...

f ′′n−1




=




δ1

δ2
...
...

δn−1




To compute the interpolation spline, we first solve this equation system and then calculate
the coefficients ai j from the f ′′k using the above formula.

72 CHAPTER 3. INTERPOLATION

For equidistant support points, i.e., xk−xk−1 = hk = h for all k = 1, . . . , n, both sides can
be divided by h, resulting in the equation system:




4 1 0 · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . . 1
. . .

. . .
...

...
. . .

. . .
. . . 1

0 · · · · · · 0 1 4







f ′′1
f ′′2
...
...

f ′′n−1




=




δ̃1

δ̃2
...
...

δ̃n−1




with δ̃k = δk/h, which is an example of a linear equation system with a (obviously) diago-
nally dominant matrix.

For other boundary conditions, this equation system will change accordingly. If, for in-
stance, we want to use the Hermite boundary conditions, the conditions f ′′0 = f ′′n = 0 are
replaced by S′(x0) = f ′0 and S′(xn) = f ′n, which can be expressed in the above coefficients
as:

2h1f
′′
0 + h1f

′′
1 =

6

h1
(f1 − f0)− 6f ′0

hnf
′′
n−1 + 2hnf

′′
n = − 6

hn
(fn − fn−1) + 6f ′n

These equations should be added as the first and last rows to the above equation system.
For equidistant support points, the resulting system will be:




2 1 0 · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . . 1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1 0

...
. . . 1 4 1

0 · · · · · · · · · · · · 0 1 2







f ′′0
f ′′1
...
...

f ′′n−1

f ′′n




=




δ̃0

δ̃1
...
...

δ̃n−1

δ̃n




with δ̃k = δk/h for k = 1, . . . , n− 1 and

δ̃0 =
6

h2
(f1 − f0)− 6

h
f ′0 and δ̃n = − 6

h2
(fn − fn−1) +

6

h
f ′n,

resulting in a once again diagonally dominant equation system.

Finally, let’s briefly discuss the interpolation error in spline interpolation. Analyzing this
error is quite lengthy, but the result, which we provide here without proof, is straightforward
to state. The following theorem was proven by C.A. Hall and W.W. Meyer [2]:

3.5. TRIGONOMETRIC INTERPOLATION 73

Theorem 3.32 Let S ∈ S∆,3 be the interpolating spline of a function f that is four
times continuously differentiable, with Hermite boundary conditions and support points
∆ = {x0, . . . , xn}. Then, for h = maxk(xk − xk−1), the error estimate holds:

‖f − S‖∞ ≤
5

384
h4‖f (4)‖∞

3.5 Trigonometric Interpolation and
Fourier Transformation

To conclude our chapter on interpolation, we will delve into another class of interpolation
functions. The method of trigonometric interpolation that we will discuss here has appli-
cations that are quite different from pure interpolation; we will outline these applications
in Section 3.5.3. But first, let us consider the method as an interpolation problem.

3.5.1 Interpolation with Trigonometric Polynomials

Trigonometric polynomials are defined as sums of sinusoidal and cosine functions, rather
than powers of x.

Definition 3.33 A trigonometric polynomial of degree N is a complex-valued function
T : R→ C that for n = 2N + 1 is given by

T (x) = d0 +
N∑

k=1

(dk + dn−k) cos

(
k2π

x− x0

p

)
+ i

N∑

k=1

(dk − dn−k) sin

(
k2π

x− x0

p

)
.

Here, x0 ∈ R and p > 0 are given numbers, and d0, . . . , dn−1 ∈ C are the coefficients of the
trigonometric polynomial.

Remark 3.34 If we set d−k := dn−k for k = 1, . . . , N , then we can transform the expres-
sions using the identities

cos(−x) = cos(x) and sin(−x) = − sin(x),

74 CHAPTER 3. INTERPOLATION

which yields

T (x) = d0 +
N∑

k=1

(dk + d−k) cos

(
k2π

x− x0

p

)
+ i

N∑

k=1

(dk − d−k) sin

(
k2π

x− x0

p

)

= d0 +

N∑

k=1

dk cos

(
k2π

x− x0

p

)
+ d−k cos

(
−k2π

x− x0

p

)

+ i
N∑

k=1

dk sin

(
k2π

x− x0

p

)
+ d−k sin

(
−k2π

x− x0

p

)

=

N∑

k=−N
dk

(
cos

(
k2π

x− x0

p

)
+ i sin

(
k2π

x− x0

p

))

=

N∑

k=−N
dke

ik2π
x−x0
p .

Trigonometric polynomials are usually expressed with complex values. If T is supposed to
be real-valued, then the coefficients dk = ak + ibk must satisfy the conditions

b0 = 0, ak = an−k, bk = −bn−k for all k = 1, . . . , N. (3.17)

In this case, the trigonometric polynomial with coefficients dk = ak + ibk can be written as

T (x) = a0 +

N∑

k=1

2ak cos

(
k2π

x− x0

p

)
−

N∑

k=1

2bk sin

(
k2π

x− x0

p

)
.

Since a trigonometric polynomial can be complex-valued, we can also choose the fj as
complex numbers in the data to be interpolated, (xj , fj). If the fi are real, then the
computed coefficients automatically satisfy the conditions in (3.17). However, even in
the real-valued case, it is recommended to initially use the trigonometric polynomial in
complex form since the formulas for calculating the dk are much simpler than those for
directly computing ak and bk.

The trigonometric polynomial solves the following interpolation problem.

Let data points (x0, f0), . . . , (xn, fn) be given that satisfy the following conditions:

(i) The support points xj ∈ R are equidistantly distributed on the interval [x0, x0 + p], i.e.

xj = x0 + j
p

n
.

(ii) The values fj ∈ C satisfy f0 = fn.

Then there exist complex coefficients d0, . . . , dn−1 ∈ C such that the corresponding trigono-
metric polynomial solves the interpolation problem:

T (xj) = fj for all j = 0, . . . , n.

3.5. TRIGONOMETRIC INTERPOLATION 75

These coefficients are given by the matrix multiplication:




d0
...

dn−1


 =

1

n
V




f0
...

fn−1


 , (3.18)

where V is a so-called Vandermonde matrix :

V =




1 1 1 . . . 1
1 ω̄ ω̄2 . . . ω̄n−1

1 ω̄2 ω̄4 . . . ω̄2(n−1)

1 ω̄3 ω̄6 . . . ω̄3(n−1)

...
...

...
. . .

...

1 ω̄n−1 ω̄(n−1)2 . . . ω̄(n−1)2




with ω̄ = e−i2π/n.

The justification for (3.18) is as follows: The interpolation conditions imply the equations

fj = T (xj) =
N∑

k=−N
dke

ik2π
xj−x0
p .

If we set ω = ei2π/n, we can write this equation as

fj =
N∑

k=−N
dkω

jk.

Since ωn = 1, we have ωj(−k) = ωj(n−k) for k > 0. Due to d−k = dn−k, we can write
d−kωj(−k) = dn−kωj(n−k) for k = 1, . . . , N . This allows us to rewrite the equation as

fj =
n−1∑

k=0

dkω
jk,

in matrix form 


f0
...

fn−1


 = V




d0
...

dn−1




with

V =




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

1 ω3 ω6 . . . ω3(n−1)

...
...

...
. . .

...

1 ωn−1 ω(n−1)2 . . . ω(n−1)2



.

76 CHAPTER 3. INTERPOLATION

From the identities ωω̄ = 1 and
∑n−1

i=0 ω
ij = 0 for j = 1, . . . , n − 1, which follow from the

properties of the n-th roots of unity, we now obtain the equation V V = nId, hence

V −1 =
1

n
V ,

from which (3.18) follows.

Note that these calculations can be carried out independently of whether n is even or odd.
For even n, the representation of the polynomial is slightly different from that in Definition
3.33 (and the calculations are somewhat more complicated than in Remark 3.34, which is
why we do not perform them here). However, the interpretation of the dk as coefficients of
sine and cosine functions with different frequencies remains unchanged.

Due to time constraints, we do not delve into an analysis of the interpolation error here.
If the fj result from function values f(xj) of a function f : R → C using (3.2), it can be
proven that the corresponding trigonometric polynomial T — under suitable conditions on
f — provides an approximation of f .

We will now outline a method for the fast and numerically efficiently calculation the coef-
ficients di.

3.5.2 Fast Fourier Transform

The coefficients d0, . . . , dn−1 of the trigonometric interpolation polynomial are commonly
referred to as the discrete Fourier coefficients of the data f0, . . . , fn−1 (due to assumptions
(i) and (ii) from above, neither the xj nor the value fn are needed in the calculation of the
dj). The mapping 


f0
...

fn−1


 7→




d0
...

dn−1


 (3.19)

from (3.18), which can be viewed as a mapping from Cn to Cn, is called the discrete Fourier
transform or simply the DFT.

From (3.18), it follows that this is a linear transformation; furthermore, we have already
seen in the proof of (3.18) that the inverse transform




d0
...

dn−1


 7→




f0
...

fn−1


 , (3.20)

is given by the linear mapping




f0
...

fn−1


 = V




d0
...

dn−1


 (3.21)

Both the discrete Fourier transformation (3.19) and the inverse transformation (3.20) are
important mathematical operations. These could be performed using the mappings (3.18)

3.5. TRIGONOMETRIC INTERPOLATION 77

and (3.21), respectively, but the matrix-vector multiplication has a computational com-
plexity of order O(n2). Therefore, it is sensible to use a different algorithm. The so-called
Fast Fourier Transform (usually abbreviated as FFT) is a suitable choice. The idea be-
hind this algorithm is based on the observation that the Fourier coefficients for a dataset
(f0, . . . , fn−1) with an even number of coefficients, i.e., n = 2m, can be easily computed if
they are already known for the “halved” datasets (f0, f2, . . . , f2m−2) and (f1, f3, . . . , f2m−1)
with even and odd coefficients, respectively.

Let d
[m,e]
k and d

[m,o]
k denote the Fourier coefficients of the halved datasets, then the following

equations hold:

d
[2m]
k =

1

2

(
d

[m,e]
k + e−ikπ/md[m,o]

k

)
(3.22)

d
[2m]
m+k =

1

2

(
d

[m,e]
k − e−ikπ/md[m,o]

k

)
(3.23)

for k = 0, . . . ,m − 1. These equations follow directly from matrix multiplication, as ω̄ =
e−i2π/n = e−iπ/m:

d
[2m]
k =

1

n

n−1∑

j=0

fjω̄
jk

=
1

2m




n−1∑

j=0
j even

fjω̄
jk +

n−1∑

j=0
j odd

fjω̄
jk




=
1

2




1

m

m−1∑

j=0

f2jω̄
2jk

︸ ︷︷ ︸
=d

[m,e]
k

+ω̄k
1

m

m−1∑

j=0

f2j+1ω̄
2jk

︸ ︷︷ ︸
=d

[m,o]
k



,

where ω̄2jk = ω̃jk with ω̃ = ω̄2 = e−i2π/m.

Similarly, we obtain (3.23) from

d
[2m]
m+k =

1

n

n−1∑

j=0

fjω̄
j(m+k)

=
1

2




1

m

m−1∑

j=0

f2jω̄
2j(m+k)

︸ ︷︷ ︸
=d

[m,e]
k

+ ω̄m+k
︸ ︷︷ ︸
=−ω̄k

1

m

m−1∑

j=0

f2j+1ω̄
2j(m+k)

︸ ︷︷ ︸
=d

[m,o]
k



,

since

ω̄m+k = ω̄mω̄k = e−iπ︸︷︷︸
=−1

ω̄k = −ω̄k

78 CHAPTER 3. INTERPOLATION

and
ω̄2j(m+k) = ω̄2jmω̄2jk = (e−i2π︸ ︷︷ ︸

=1

)jω̄2jk = ω̄2jk

hold.

Since the Fourier transformation for datasets of length 1 is simply d0 = f0, equations (3.22)
and (3.23) lead to the following scheme for computing the Fourier coefficients, where d(. . .)
denotes the Fourier coefficients for the dataset indicated in parentheses:

d(f0) d(f4) d(f2) d(f6) d(f1) d(f5) d(f3) d(f7)

↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙
d(f0, f4) d(f2, f6) d(f1, f5) d(f3, f7)

↘ ↙ ↘ ↙
d(f0, f2, f4, f6) d(f1, f3, f5, f7)

↘ ↙
d(f0, f1, f2, f3, f4, f5, f6, f7)

Since the inverse Fourier transformation is based on a matrix multiplication with the same
structure, it can be performed using a similar scheme. The actual implementation of this
scheme is not straightforward, as the sorting of coefficients must be done efficiently. How-
ever, we won’t delve into this aspect here. There is a version of this algorithm implemented
in MATLAB, which also works for datasets where the number of data points n is not a
power of two, although it is slightly slower for non-powers of two compared to powers of
two.

Note that at each level of the scheme, O(n) operations must be performed, as there are n
values to compute. While the number of datasets decreases as we move down the scheme,
the number of coefficients to compute increases accordingly. The number of levels is pre-
cisely log2 n. In this case, it is said that the algorithm has a complexity of O(n log n). The
number of operations increases slightly faster than linearly (O(n)) but significantly slower
than quadratically (O(n2)).

3.5.3 Applications

As mentioned earlier, trigonometric interpolation is not the primary application of the
Fourier Transformation. However, the form of trigonometric polynomials is helpful for
understanding some essential applications, which we will briefly outline here. We will
focus on the real-valued case, assuming that the trigonometric polynomial is in the form:

T (x) = a0 +
N∑

k=1

2ak cos

(
k2π

x− x0

p

)
−

N∑

k=1

2bk sin

(
k2π

x− x0

p

)
.

with dk = ak + ibk. Furthermore, we assume that the interpolation data was generated
from a function f by using fj = f(xj), where f is a periodic function with a period p > 0,
i.e., f(x+ p) = f(x) for all x ∈ R.

3.5. TRIGONOMETRIC INTERPOLATION 79

Such functions f are mainly encountered in signal processing, where they describe signals
transmitted over a data line (x would be a time variable in this interpretation).

It should be noted that the fact that T (x) approximates the function f(x) is not explicitly
needed in any of the following applications, but it is essential for these applications to
work.

Frequency Analysis

Unlike the coefficients in usual polynomials or splines, the Fourier coefficients of trigono-
metric polynomials have a clear physical meaning: Each of the Fourier coefficients ak and
bk corresponds to a specific frequency in the sine or cosine. Let’s write briefly:

ck,p(x) = cos

(
k2π

x− x0

p

)
and sk,p(x) = sin

(
k2π

x− x0

p

)
.

So, ck,p(x) = ck,p(x + q) and sk,p(x) = sk,p(x + q) for q = p/k, which means that these
functions are q-periodic. If we interpret x as time in seconds, these functions have a
repetition frequency of k/p Hertz. The magnitude of the coefficients ak and bk indicates
the strength of the component of an oscillation with a frequency of k/p Hz in the signal f .

When you graph the magnitude of the Fourier coefficients as a function of frequency, you
can see which frequencies are present in the function being analyzed. The ”magnitude”

is given by the values 2
√
a2
k + b2k, which corresponds to the scaled (complex) norm 2|dk|

of the Fourier coefficient dk. The scaling ensures that a simple sinusoidal oscillation with
a frequency of k/p Hz corresponds to a value of 2|dk| = 1. The function displayed in the
resulting graph is called ”spectral density.”

As an example, consider the function:

f(x) = sin(2π 50x) + sin(2π 120x).

Here, two oscillations with frequencies of 50 Hz and 120 Hz are superimposed, as approx-
imately visible in the graphical representation of the function in Figure 3.2 on the left.
However, in the representation of the spectral density in Figure 3.2 on the right, the two
frequencies are clearly distinguishable.

The power of this frequency analysis becomes apparent when we add random noise g(x) to
the function (where g(x) is a normally distributed random value with an expected value
of 0 for each x). Such disturbances are practically unavoidable in signal transmission,
although not always as drastic as in our model example here. In the graph of the function
with noise in Figure 3.3 on the left, almost nothing is recognizable, but in the Fourier
coefficients shown in Figure 3.3 on the right, the two frequencies of the original signal are
still clearly visible.

Filtering

As we have seen above, the Fourier Transformation has the property that even with noisy
data, you can still recognize the ”main” frequencies. This property can be used for filtering
noisy data.

80 CHAPTER 3. INTERPOLATION

0 0.05 0.1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequenz (Hz)

|d
k
|/
N

Figure 3.2: Graph and Fourier coefficients of f(x) = sin(2π50x) + sin(2π120x)

0 0.05 0.1
−8

−6

−4

−2

0

2

4

6

8

x

f(
x
)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequenz (Hz)

|d
k
|/
N

Figure 3.3: Graph and Fourier coefficients of f(x) = sin(2π50x) + sin(2π120x) + g(x)

Here, we describe a very simple method called a ”low-pass filter”:

Consider the function f(x) = sin(2πx) and its noisy version as mentioned above, f(x) =
sin(2πx) + g(x), see Figure 3.4. Figure 3.5 on the left shows the Fourier coefficients of
the noisy function. Now, we set a threshold value s and set all Fourier coefficients whose
absolute value satisfies the inequality 2|dk| < s to zero. Figure 3.5 on the right shows the
filtered coefficients (d̃0, . . . , d̃n−1) for s = 0.5. Finally, we perform a reverse transformation
of the filtered coefficients and graphically represent the resulting dataset (f̃0, . . . , f̃n−1)
(Figure 3.6). The original signal is now clearly visible again.

Other Applications

Other applications include the decomposition of signals into different frequency ranges
(Fourier Transformation→ set all coefficients outside the desired frequency range to zero→
inverse transformation) or data compression (Fourier Transformation → set all coefficients

3.5. TRIGONOMETRIC INTERPOLATION 81

with “low contribution” [according to a suitable criterion, e.g., considering a specified
percentage of the largest magnitude coefficients] to zero → compact storage).

Since many of the described or sketched applications need to be performed in real-time,
the necessity for fast algorithms and efficient implementation is evident.

82 CHAPTER 3. INTERPOLATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

x

f(
x
)

Figure 3.4: Graph of f(x) = sin(2πx) and f(x) = sin(2πx) + g(x)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequenz (Hz)

|d
k
|/
N

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequenz (Hz)

|d
k
|/
N

Figure 3.5: Original and filtered Fourier coefficients of f(x) = sin(2π x) + g(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)

Figure 3.6: Reconstructed function from filtered Fourier coefficients

Chapter 4

Integration

The integration of functions is a fundamental mathematical operation required in many
formulas. Unlike the derivative, which can be explicitly computed for virtually all differen-
tiable functions, there are many functions for which integrals cannot be specified explicitly.
Numerical integration methods, also referred to as “quadrature”, play an essential role in
this context, both as standalone algorithms and as the basis for other applications such as
the numerical solution of differential equations.

The fundamental problem can be described as follows: For a function f : R → R, the
integral ∫ b

a
f(x)dx (4.1)

on an interval [a, b] needs to be computed. Some methods can also be applied to infinite
integration intervals.

We will explore various integration methods here: the classical “Newton-Cotes formulas”
and “composite Newton-Cotes formulas” (also known as “iterated” or “summed” Newton-
Cotes formulas), which are based on polynomial interpolation, as well as “Gaussian quadra-
ture”, which relies on orthogonal polynomials already known and “Romberg extrapolation”,
which exploits a detailed and clever analysis of the numerical error.

4.1 Newton-Cotes Formulas

The basic idea behind any numerical integration formula is to approximate the integral
(4.1) as a sum

∫ b

a
f(x)dx ≈ (b− a)

n∑

i=0

αif(xi) (4.2)

Here, the xi are called support points and the αi are the weights of the integration formula.

We first consider the case in which the support points xi can be arbitrarily chosen and
derive a formula to compute meaningful weights αi for the xi.

83

84 CHAPTER 4. INTEGRATION

The idea of the Newton-Cotes formulas is to approximate the function f first by an in-
terpolation polynomial P ∈ Pn to the support points x0, . . . , xn and then calculate the
(exact) integral over this polynomial. We now perform this construction:

To obtain an explicit expression in the f(xi), we use the representation of P by means of
Lagrange polynomials

P (x) =
n∑

i=0

f(xi)Li(x) where Li(x) =
n∏

j=0
j 6=i

x− xj
xi − xj

,

as described in Section 3.1.1. The integral over P then becomes

∫ b

a
P (x)dx =

∫ b

a

n∑

i=0

f(xi)Li(x) dx

=
n∑

i=0

f(xi)

∫ b

a
Li(x) dx.

To calculate the weights αi in (4.2), we set

(b− a)

n∑

i=0

αif(xi) =

n∑

i=0

f(xi)

∫ b

a
Li(x)dx.

Setting the individual terms equal and solving for αi yields

αi =
1

b− a

∫ b

a
Li(x)dx. (4.3)

These αi can then be explicitly calculated because the integrals over the Lagrange polyno-
mials Li have explicit solutions. These αi depend on the choice of the support points xi
but not on the function values f(xi).

For equidistant support points

xi = a+
i(b− a)

n

the weights from (4.3) are given in Table 4.1 for n = 0, . . . , 7.

Note that the weights always sum up to 1 and are symmetric in i, i.e., αi = αn−i. Fur-
thermore, the weights are independent of the interval boundaries a and b. Some of these
formulas have their own names. For example, the Newton-Cotes formula for n = 0 is called
the Rectangle Rule, for n = 1 the Trapezoidal Rule, for n = 2 Simpson’s Rule or Kepler’s
Barrel Rule, and the formula for n = 3 is known as Newton’s 3/8 Rule.

From the estimation of the interpolation error, we can derive an estimate for the integration
error

Fn[f] :=

∫ b

a
f(x)dx− (b− a)

n∑

i=0

αif(xi) =

∫ b

a
f(x)dx−

∫ b

a
P (x)dx

where the support points xi do not necessarily have to be equidistant.

4.1. NEWTON-COTES FORMULAS 85

n α0 α1 α2 α3 α4 α5 α6 α7

0 1

1 1
2

1
2

2 1
6

4
6

1
6

3 1
8

3
8

3
8

1
8

4 7
90

32
90

12
90

32
90

7
90

5 19
288

75
288

50
288

50
288

75
288

19
288

6 41
840

216
840

27
840

272
840

27
840

216
840

41
840

7 751
17280

3577
17280

1323
17280

2989
17280

2989
17280

1323
17280

3577
17280

751
17280

Table 4.1: Weights of the Newton-Cotes Formulas from (4.3) for equidistant support points
xi

Theorem 4.1 For n ≥ 1 and αi being the weights calculated according to (4.3) for the
support points a ≤ x0 < . . . < xn ≤ b, let h := (b−a)/n and zi := n(xi−a)/(b−a) ∈ [0, n]
for i = 0, . . . , n. Then the following holds.

(i) There exist constants cn depending only on z0, . . . , zn and n such that for all f ∈
Cn+1([a, b]), the estimate

|Fn[f]| ≤ cnhn+2‖f (n+1)‖∞
holds.

(ii) For even n, f ∈ Cn+2([a, b]), and symmetrically distributed support points xi, i.e.,
xi − a = b − xn−i for i = 0, . . . , n (e.g., equidistant support points), there exist constants
dn depending only on z0, . . . , zn and n such that the estimate

|Fn[f]| ≤ dnhn+3‖f (n+2)‖∞

holds.

Proof: (i) From Theorem 3.17(ii), we know that

|f(x)−P (x)| ≤
∥∥∥f (n+1)

∥∥∥
∞

∣∣∣∣
(x− x0)(x− x1) · · · (x− xn)

(n+ 1)!

∣∣∣∣ =
1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞

n∏

i=0

|x−xi|.

Thus, we have

|Fn[f]| ≤ 1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞

∫ b

a

n∏

i=0

|x− xi| dx,

From this, the claimed estimation follows with

cn =
1

(n+ 1)!

1

hn+2

∫ b

a

n∏

i=0

|x− xi| dx =
1

(n+ 1)!

(
n

b− a

)n+2 ∫ b

a

n∏

i=0

|x− xi| dx

(
Substitution: z = nx−ab−a , zi = nxi−ab−a

)
=

1

(n+ 1)!

∫ n

0

n∏

i=0

|z − zi| dz

86 CHAPTER 4. INTEGRATION

Note that the zi are in the interval [0, n], so the resulting expression is independent of a
and b.

(ii) From the construction of the Newton-Cotes formulas, it immediately follows that poly-
nomials Q ∈ Pn are exactly integrated because the interpolating polynomial P ∈ Pn over
which integration is performed coincides with Q in this case. The proof of (ii) follows from
the somewhat surprising property that for even n and symmetrically distributed support
points xi the Newton-Cotes formulas are exact also for polynomials Q ∈ Pn+1. To prove
this property, let Q ∈ Pn+1, and let P ∈ Pn be the interpolating polynomial at the support
points xi. Then, according to Theorem 3.17(i), for each x ∈ [a, b], there exists a point
ξ ∈ [a, b] such that

Q(x) = P (x) +
Q(n+1)(ξ)

(n+ 1)!︸ ︷︷ ︸
=:γ

(x− x0)(x− x1) · · · (x− xn)

holds. However, because Q(n+1) is a polynomial of degree 0 and thus constant, γ is inde-
pendent of ξ and, therefore, also of x. Consequently, we have

Fn[Q] =

∫ b

a
Q(x) dx−

∫ b

a
P (x) dx = γ

∫ b

a

n∏

i=0

(x− xi) dx.

From the symmetry of xi, we have x−xi = x− (−xn−i +a+ b) for x ∈ [a, b], and therefore

∫ (a+b)/2

a

n∏

i=0

(x− xi)dx =

∫ (a+b)/2

a

n∏

i=0

(x− (−xi + a+ b))dx

(
Substitution: x = −(x− a− b)

)
= −

∫ (a+b)/2

b

n∏

i=0

(−x+ xi)dx

= −
∫ b

(a+b)/2

n∏

i=0

(x− xi)dx,

which implies

∫ b

a

n∏

i=0

(x− xi) dx = 0,

and thus, Fn[Q] = 0, which means that Q is exactly integrated. To prove statement (ii), let
f be given as claimed. Let Q ∈ Pn+1 be an interpolation polynomial at the support points
x0, x1, . . . , xn, xn+1, where xn+1 is a support point distinct from x0, . . . , xn and is otherwise
arbitrary within the interval [x0, xn]. Then, the interpolation polynomials P ∈ Pn for f
and Q at support points x0, . . . , xn coincide, and according to Theorem 3.17(ii) (analogous
to part (i) of this proof with n+ 1 instead of n) and the previously proven fact FN [Q] = 0,

4.1. NEWTON-COTES FORMULAS 87

we have

|Fn[f]| =

∣∣∣∣
∫ b

a
f(x) dx−

∫ b

a
P (x) dx

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

∫ b

a
f(x) dx−

∫ b

a
Q(x) dx+

∫ b

a
Q(x) dx−

∫ b

a
P (x) dx

︸ ︷︷ ︸
=Fn[Q]=0

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
∫ b

a
f(x) dx−

∫ b

a
Q(x) dx

∣∣∣∣

≤ 1

(n+ 2)!
‖f (n+2)‖∞

∫ b

a
|x− xn+1|

n∏

i=0

|x− xi| dx.

Since the right-hand side of this inequality is continuous in xn+1 and the left-hand side is
independent of xn+1, the estimation also holds for xn+1 = xn/2. Therefore, this integral
expression can now be estimated analogously to part (i) by

1

(n+ 2)!
‖f (n+2)‖∞

∫ b

a
|x− xn/2|

n∏

i=0

|x− xi| dx ≤ dnhn+3‖f (n+2)‖∞,

where

dn =
1

(n+ 2)!

∫ n

0
|z − zn/2|

n∏

i=0

|z − zi| dz.

Note that part (ii) of the theorem only works for even values of n because the symmetry
of the n + 1 support points required in the proof is only possible when n + 1 is odd.
Additionally, the formulation and proof of the theorem are only meaningful for n ≥ 1 due
to the division by n, but similar estimates can be obtained for n = 0.

The constants cn and dn depend on n and the arrangement of the ”scaled” support points
zi and can be explicitly calculated for given values. We demonstrate this calculation for
n = 1 and the support points x0 = a and x1 = b. In this case, we have z0 = 0 and z1 = 1.
Thus, we obtain

c1 =
1

(1 + 1)!

∫ 1

0

1∏

i=0

|z − zi| dz =
1

2

∫ 1

0
(z − 0)(1− z)dz =

1

2

∫ 1

0
z − z2dz

=
1

2

[
1

2
z2 − 1

3
z3

]1

0

=
1

2

(
1

2
− 1

3

)
=

1

12
.

In Table 4.2, the error estimates calculated using this technique for n = 1, . . . , 7 and
equidistant support points are approximately given, where Mn := ‖f (n)‖∞.

Note that the formulas with odd n = 2m + 1 only provide a slight improvement over the
formulas with even n = 2m, but they require an additional function evaluation. Formulas
with even n are therefore preferable.

88 CHAPTER 4. INTEGRATION

n 1 2 3 4 5 6 7

(b−a)3M2

12
(b−a)5M4

2880
(b−a)5M4

6480
5.2(b−a)7M6

107
2.9(b−a)7M6

107
6.4(b−a)9M8

1010
3.9(b−a)9M8

1010

Table 4.2: Error estimates of the Newton-Cotes formulas for equidistant support points

As expected, accuracy increases with increasing n, but only if the norm of the derivatives
‖f (n)‖∞ does not increase simultaneously with n. Therefore, the same fundamental prob-
lems as with interpolation polynomials arise, which is not surprising since they are the
basis of this method. However, another problem arises here: for n = 8 and n ≥ 10, some
of the weights αi can become negative. This can lead to numerical issues (e.g., subtractive
cancellations) that should be avoided. For this reason, it is not advisable to keep increasing
the degree of the underlying polynomial. Nevertheless, Newton-Cotes formulas are impor-
tant as they form the basis for a range of more efficient integration formulas, which we will
discuss in the following sections.

4.2 Composite Newton-Cotes Formulas

One possible solution to the problem of increasing polynomial degrees in integration using
Newton-Cotes formulas works similarly to interpolation but is simpler. In interpolation,
we transitioned from polynomials to splines, which are piecewise polynomials. To maintain
a “nice” approximation in interpolation, we had to impose conditions at the seams that
enforce some smoothness of the approximating function. This required deriving coefficients
through a linear system of equations.

In integration, this procedure is unnecessary. Similar to splines, we use piecewise polyno-
mials to derive composite Newton-Cotes formulas but do not impose complex conditions
at the seams. This is because we are interested not in a nice approximation of the function
but rather in a good approximation of the integral. In practice, we do not actually com-
pute the underlying piecewise polynomials but apply the Newton-Cotes formulas to the
subintervals as follows:

Let N be the number of subintervals on which we want to use the Newton-Cotes formula
of degree n, with n+ 1 support points each. We set

xi = a+ ih, i = 0, 1, . . . , nN, h =
b− a
nN

and split the integral (4.1) via

∫ b

a
f(x)dx =

∫ xn

x0

f(x)dx+

∫ x2n

xn

f(x)dx+ · · ·+
∫ xNn

x(N−1)n

f(x)dx =
N∑

k=1

∫ xkn

x(k−1)n

f(x)dx.

On each subinterval [x(k−1)n, xkn], we then apply the Newton-Cotes formula, i.e., we ap-
proximate ∫ xkn

x(k−1)n

f(x)dx ≈ nh
n∑

i=0

αif(x(k−1)n+i)

4.2. COMPOSITE NEWTON-COTES FORMULAS 89

and sum up the partial approximations as follows:

∫ b

a
f(x)dx ≈ nh

N∑

k=1

n∑

i=0

αif(x(k−1)n+i).

The resulting integration error

FN,n[f] :=

∫ b

a
f(x)dx− nh

N∑

k=1

n∑

i=0

αif(x(k−1)n+i)

can be obtained as the sum of the errors Fn[f] on the subintervals. Therefore, from Theorem
4.1(i), we obtain the estimate

|FN,n[f]| ≤
N∑

k=1

cnh
n+2 max

y∈[x(k−1)n,xkn]
|f (n+1)(y)|

≤ Ncnhn+2‖f (n+1)‖∞ =
cn
n

(b− a)hn+1‖f (n+1)‖∞.

For even n, from Theorem 4.1(ii) we get the estimate

|FN,n[f]| ≤ dn
n

(b− a)hn+2‖f (n+2)‖∞.

Next, we present the composite Newton-Cotes formulas for n = 1, 2, 4 along with their
error estimations. In all the formulas, the support points xi are chosen as xi = a+ ih.

n = 1, Trapezoidal Rule:

∫ b

a
f(x)dx ≈ h

2

(
f(a) + 2

N−1∑

i=1

f(xi) + f(b)

)

|FN,1[f]| ≤ b− a
12

h2‖f (2)‖∞, h =
b− a
N

n = 2, Simpson’s Rule:

∫ b

a
f(x)dx ≈ h

3

(
f(a) + 2

N−1∑

i=1

f(x2i) + 4

N−1∑

i=0

f(x2i+1) + f(b)

)

|FN,2[f]| ≤ b− a
180

h4‖f (4)‖∞, h =
b− a
2N

n = 4, Milne’s Rule:

∫ b

a
f(x)dx ≈ 2h

45

(
7
(
f(a) + f(b)

)
+ 14

N−1∑

i=1

f(x4i)

+32

N−1∑

i=0

(
f(x4i+1) + f(x4i+3)

)
+ 12

N−1∑

i=0

f(x4i+2)

)

|FN,4[f]| ≤ 2(b− a)

945
h6‖f (6)‖∞, h =

b− a
4N

Let’s illustrate the practical implications of these error estimates with an example.

90 CHAPTER 4. INTEGRATION

Example 4.2 The integral ∫ 1

0
e−x

2/2dx

is to be numerically approximated with a guaranteed accuracy of ε = 10−10. The derivatives
of the function f(x) = e−x

2/2 can be computed relatively easily, and we have

f (2)(x) = (x2−1)f(x), f (4)(x) = (3−6x2+x4)f(x), f (6)(x) = (−15+45x2−15x4+x6)f(x).

With some calculation (or from their graphical representation), it can be seen that all these
functions attain their maximum absolute value on [0, 1] at y = 0, from which the following
values follow:

‖f (2)‖∞ = 1, ‖f (4)‖∞ = 3, and ‖f (6)‖∞ = 15.

Solving the provided error estimates FN,n[f] ≤ ε for the Trapezoidal, Simpson’s, and
Milne’s rules yields the following conditions on h:

h ≤
√

12ε
(b−a)‖f (2)‖∞ ≈ 1

28867.51 (Trapezoidal Rule)

h ≤ 4

√
180ε

(b−a)‖f (4)‖∞ ≈ 1
113.62 (Simpson’s Rule)

h ≤ 6

√
945ε

2(b−a)‖f (6)‖∞ ≈ 1
26.12 (Milne’s Rule)

The right-hand side fractions give the maximum allowable value for h. To achieve this,
1/(nN) ≤ h must hold for the number nN + 1 of support points. Since nN is an integer
multiple of n, we need 28869 support points for the Trapezoidal Rule, 115 support points
for Simpson’s Rule, and 29 support points for Milne’s Rule.

4.3 Gaussian Quadrature

So far, we have obtained numerical integration formulas by searching for suitable weights
for arbitrarily given support points. However, similar to interpolation, we can now attempt
to determine the support points using a suitable method and thereby reduce the numerical
error. In a Newton-Cotes formula of degree n, there are n + 1 support points and n + 1
weights, resulting in 2n+ 2 free parameters. The goal of Gaussian Quadrature is to choose
these parameters optimally in the Newton-Cotes formulas, where “optimal” in this context
means that we want to maximize the degree of polynomials that are integrated exactly. The
Newton-Cotes formulas are constructed so that the formula of degree n exactly integrates
polynomials of degree n for arbitrary support points. For symmetric support points and
even n, they even exactly integrate polynomials of degree n+1. If we “naively” argue with
the dimension of the spaces and the number of free parameters, one might assume that
with a clever choice of support points and weights, polynomials of degree 2n + 1 can be
exactly integrated, as the dimension 2n + 2 of the polynomial space P2n+1 then matches
the number of free parameters.

4.3. GAUSSIAN QUADRATURE 91

Before we delve into the theory of Gaussian Quadrature, let us illustrate this with the
example of n = 1. We want to determine support points x0 and x1 as well as weights α0

and α1 so that the equation

∫ b

a
Q(x)dx = (b− a)(α0Q(x0) + α1Q(x1))

is satisfied for every Q ∈ P3. Since both sides of this equation are linear in the coefficients
of Q, it suffices to determine the parameters such that the equation is satisfied for the
elements of the monomial basis B = {1, x, x2, x3} of P3. So we must have

b− a = (b− a)(α0 + α1)

b2 − a2

2
= (b− a)(α0x0 + α1x1)

b3 − a3

3
= (b− a)(α0x

2
0 + α1x

2
1)

b4 − a4

4
= (b− a)(α0x

3
0 + α1x

3
1)

This is a (non-linear) system of equations with 4 equations and 4 unknowns, which has the
solution

α0 =
1

2
, x0 = −b− a

2

1√
3

+
b+ a

2

α1 =
1

2
, x1 = +

b− a
2

1√
3

+
b+ a

2

The corresponding integration formula is called the Gauss-Legendre rule.

In fact, it can be shown that the resulting systems of equations are always solvable. A direct
proof is quite cumbersome; a much more elegant — and also more general — approach is
to prove this with orthogonal polynomials, which we will do next.

To do this, we consider the more general numerical integration problem

∫ b

a
ω(x)f(x)dx ≈

n∑

i=0

λif(xi)

where ω : (a, b)→ R is a non-negative weight function. Note that the factor (b−a) from the
Newton-Cotes formulas (4.2) is included in the weights λi here. The previously discussed
integration problem without a weight function is included here as the special case ω(x) ≡ 1,
but other functions ω are also possible, e.g., ω(x) = 1/(1− x2) on the interval [−1, 1]. If f
is bounded by a polynomial, it also makes sense to consider integration problems on infinite
integration intervals with exponentially decaying weight functions, e.g., with ω(x) = e−x

on [0,∞) or with ω(x) = e−x
2

on (−∞,∞).

The following theorem shows how to choose the support points and weights optimally, i.e.,
such that polynomials of degree 2n+ 1 are integrated exactly.

92 CHAPTER 4. INTEGRATION

Theorem 4.3 The Gaussian quadrature formula
∫ b

a
ω(x)f(x)dx ≈

n∑

i=0

λif(xi)

is exact for f = P ∈ P2n+1 if the following two conditions are met:

(1) The support points x0, . . . , xn are the zeros of the orthogonal polynomial Pn+1 according
to Definition 3.22 with respect to the weight function ω.

(2) The weights λi are (analogous to the Newton-Cotes formulas) given by

λi =

∫ b

a
ω(x)Li(x)dx

with the Lagrange polynomials

Li(x) =

n∏

j=0
j 6=i

x− xj
xi − xj

.

Proof: We first show that the formula is exact for P ∈ Pn. For P ∈ Pn, we have

P (x) =
n∑

i=0

P (xi)Li(x)

and therefore
∫ b

a
ω(x)P (x)dx =

∫ b

a
ω(x)

n∑

i=0

P (xi)Li(x)dx

=
n∑

i=0

P (xi)

∫ b

a
ω(x)Li(x)dx =

n∑

i=0

P (xi)λi.

It remains to be shown that the formula is also exact for P ∈ P2n+1. Let P ∈ P2n+1 \ Pn.
Then P can be written as

P (x) = Q(x)Pn+1(x) +R(x)

with Q,R ∈ Pn. Thus, we have
∫ b

a
ω(x)P (x)dx−

n∑

i=0

λiP (xi)

=

∫ b

a
ω(x)Q(x)Pn+1(x)dx

︸ ︷︷ ︸
=〈Q,Pn+1〉ω

+

∫ b

a
ω(x)R(x)dx−

n∑

i=0

λiQ(xi)Pn+1(xi)−
n∑

i=0

λiR(xi).

Since Q ∈ Pn, Q can be written as a linear combination of the orthogonal polynomials
P0, . . . , Pn. From 〈Pk, Pn+1〉ω = 0 for k = 0, . . . , n, it follows that 〈Q,Pn+1〉ω = 0. Since
the xi are the zeros of Pn+1, we have

n∑

i=1

λiQ(xi)Pn+1(xi) = 0.

4.4. ROMBERG EXTRAPOLATION 93

Thus, ∫ b

a
ω(x)P (x)dx−

n∑

i=1

λif(xi) =

∫ b

a
ω(x)R(x)dx−

n∑

i=1

λiR(xi) = 0,

because R ∈ Pn and the formula is exact for these polynomials.

Remark 4.4 Analogous to the proof of Theorem 4.1, here we can also estimate the inte-
gration error through the interpolation error, leading to the inequality

|Fn[f, ω]| ≤ 〈Pn+1, Pn+1〉ω
(2n+ 2)!

‖f (2n+2)‖∞.

Here Pn+1 is the orthogonal polynomial for weight function ω according to Definition 3.22
with leading coefficient 1.

We conclude this section with some examples of Gaussian quadrature formulas.

Example 4.5 (i) For ω(x) = 1 and the integration interval [−1, 1], we obtain the Legendre
polynomials as orthogonal polynomials; for n = 1, these yield the zero or support points
x0/1 = ±1/

√
3 and weights λ0/1 = 1. The corresponding integration formula is called the

Gauss-Legendre rule.

(ii) For ω(x) = 1/
√

1− x2 on [−1, 1], we obtain the well-known Chebyshev polynomials Tn.
Here, the integration formula can be explicitly given as

π

n+ 1

n∑

i=0

f

(
cos

(
2i+ 1

2n+ 2
π

))
.

Due to the singularities of the weight function at the boundary points, this formula cannot
be used in composite form.

(iii) For ω(x) = e−x on [0,∞) or ω(x) = e−x
2

on (−∞,∞), the corresponding polynomials
are called Laguerre and Hermite polynomials, respectively. For these, there are no closed-
form expressions for the zeros and weights, so they must be determined numerically. This
numerical calculation can be done using a numerically efficient evaluation of the recursive
formulas from Section 3.3, see Deuflhard/Hohmann [1], Section 9.3.2.

The Gaussian-Legendre integration from (i) is rarely used today, as methods like Romberg
extrapolation are often more efficient. However, Gaussian quadrature is useful when inte-
grating explicitly with given weight functions like in (ii) or on an infinite time horizon as
in (iii).

4.4 Romberg Extrapolation

So far, we have examined integration formulas in which we explicitly specified the number
of support points. In this and the following section, we will explore methods where the
number of support points is variable.

94 CHAPTER 4. INTEGRATION

These methods are based on the (composite) trapezoidal rule, which we denote here as
h = (b− a)/N with T (h):

T (h) =
h

2


f(a) + 2

N−1∑

j=1

f(a+ jh) + f(b)


 .

For this formula, there exists a theorem proven independently by Euler and McLaurin,
which goes beyond the error estimations considered so far.

Theorem 4.6 Let f ∈ C2m+1([a, b]) and h = (b − a)/N for some N ∈ N. Then, for the
trapezoidal rule, the equation holds:

T (h) =

∫ b

a
f(x)dx+ τ2h

2 + τ4h
4 + . . .+ τ2mh

2m +R2m+2(h)h2m+2

with coefficients

τ2k =
B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
,

where B2k are the so-called Bernoulli numbers. The remainder term is uniformly bounded
by

|R2m+2(h)| ≤ C2m+2(b− a) ‖f (2m)‖∞,

where C2m+2 is a constant independent of h.

The formal proof of this theorem is quite complicated, which is why we do not present it
here. A sketch of the proof can be found, for example, in the book by Stoer [9], Section
3.3.

The important aspect of this formula is that the coefficients τ2k do not depend on h
(and thus not on the number of support points), only the remainder term depends on
h. The function T (h) can be seen as a polynomial (disturbed by the remainder term
R2m+2(h)h2m+2). The explicit form of the Bernoulli numbers will not be needed when
applying this formula. For large k, it can be shown that

B2k ≈ (2k)!

holds, so the series (unlike the Taylor series) generally does not converge for m→∞ when
higher derivatives of f grow and/or h is large. However, the above expression is meaningful
for finite m and small h.

To present the extrapolation method in a more general context, we use the following
definition.

Definition 4.7 Let T (h) be a numerical method for approximating the value

τ0 = lim
h→0

T (h).

An asymptotic expansion in hp of this method up to order pm is a representation of the
form

T (h) = τ0 + τph
p + τ2ph

2p + . . .+ τmph
mp +O(h(m+1)p)

4.4. ROMBERG EXTRAPOLATION 95

with constants τip, i = 0, . . . ,m. Here, the Landau symbol O(hk) denotes any expression
with the property that O(hk)/hk ≤ C for some C > 0 and all sufficiently small h > 0.

According to Theorem 4.6, the trapezoidal rule possesses such an asymptotic expansion in
h2 up to order 2m.

Such an asymptotic expansion forms the basis for extrapolation. Extrapolation refers to the
method of evaluating an interpolation polynomial for a function g(x) with support points
on an interval [a, b] at a point x∗ 6∈ [a, b]. We will apply this method to the function T (h)
as follows:

(1) Calculate the approximation values T (hj) for m different step sizes h1, . . . , hm

(2) Compute the interpolation polynomial P (hp) using the data (hpi , T (hi)), i = 1, . . . ,m,
and evaluate it at hp = 0.

Thus, we aim to obtain an approximate value of T for step size h = 0 from values of T for
large step sizes (i.e., “coarse” approximations of the integral), hoping that this will provide
a more accurate approximation of the integral value.

We illustrate the method with a simple example with m = 2. Consider the function
f(x) = x4 on [0, 1]. Obviously, the desired integral is

∫ 1
0 x

4dx = 1/5 =: τ0. Now, let’s
consider the trapezoidal rule for N1 = 1 and N2 = 2, which gives h1 = 1 and h2 = 1/2.
This yields

T (1) =
h1

2
(f(0) + f(1)) =

1

2
(0 + 1) =

1

2

and

T

(
1

2

)
=
h2

2

(
f(0) + 2f

(
1

2

)
+ f(1)

)
=

1

4

(
0 +

2

16
+ 1

)
=

9

32
.

The error is thus |1/5− 1/2| = 3/10 = 0.3 or |1/5− 9/32| = 13/160 = 0.08125.

If we interpolate T by a polynomial P in h2 at the points h2
1 and h2

2, we obtain P as follows:

P (h2) = T (h1) +
7

24
(h2 − h2

1),

as can be easily verified by calculation. When evaluated at h2 = 0, we get

P (0) =
1

2
+

7

24
(−1) =

5

24
,

which, due to |1/5−5/24| = 1/120 = 0.0083, provides a significantly better approximation
of the integral value than T (h1) or T (h2).

Before we examine the improvement achievable in Theorem 4.8, let’s focus on the imple-
mentation. To efficiently program this method, we need an algorithm for quickly calculating
the value of an interpolation polynomial at a given point. For k ≥ 2, from Formula (3.5),
we have the identity

Pi,k(x) =
(xi−k+1 − x)Pi,k−1(x)− (xi − x)Pi−1,k−1(x)

xi−k+1 − xi
,

96 CHAPTER 4. INTEGRATION

which is also known as the Lemma of Aitken. Here, Pi,k(x) is the interpolation polynomial
through the data points (xi−k+1, fi−k+1), . . . , (xi, fi). By applying this formula with x = 0
and the values (xi, fi) = (hpi , T (hi)), we can easily deduce that the values Ti,k = Pi,k(0)
can be obtained using the recursive formula:

Ti,1 := T (hi), i = 1, 2, . . .

Ti,k := Ti,k−1 +
Ti,k−1 − Ti−1,k−1(

hi−k+1

hi

)p
− 1

, k = 2, 3, . . . ; i = k, k + 1, . . .

This calculation, referred to as the extrapolation scheme, can be graphically represented
similarly to the calculation of divided differences, as shown in Fig. 4.1 (also see Fig. 3.1).

T1,1

↘
T2,1 → T2,2

↘ ↘
T3,1 → T3,2 → T3,3

↘ ↘ ↘
T4,1 → T4,2 → T4,3 → T4,4

...
...

...
...

. . .

Figure 4.1: Illustration of the extrapolation scheme

Note that k can be increased arbitrarily by appending further rows, and the previously
calculated values for larger k can still be used. The next theorem provides the accuracy of
the approximation Tk,k.

Theorem 4.8 Let T (h) be a method with an asymptotic expansion according to Defini-
tion 4.7 in hp up to order pm. Then, for all sufficiently small step sizes h1, . . . , hm, the
approximation error

εi,k := |Ti,k − τ0|

satisfies the equation

εi,k = |τkp|hpi−k+1 . . . h
p
i +

i∑

j=i−k+1

O(h
(k+1)p
j).

Proof: We first prove the following equation for the Lagrange polynomials Li at support
points x1, . . . , xn:

n∑

i=1

Li(0)xmi =





1, if m = 0,
0, if 1 ≤ m ≤ n− 1
(−1)n−1x1 · · ·xn, if m = n

(4.4)

4.4. ROMBERG EXTRAPOLATION 97

To prove (4.4), we consider the polynomial P (x) = xm. Clearly, for m ≤ n− 1, this is the
interpolation polynomial through the data points (xi, x

m
i), i = 1, . . . , n: the polynomial

passes through these n− 1 points and has degree ≤ n− 1. Therefore,

P (x) = xm =

n∑

i=1

Li(x)P (xi) =

n∑

i=1

Li(x)xmi .

The assertion (4.4) for m = 1, . . . , n− 1 follows from this by substituting x = 0.

For m = n, the polynomial xm = xn also passes through the given n − 1 points but is of
degree n, and hence, it is not the unique interpolation polynomial due to its higher degree.
Therefore, in this case, we consider the difference between xn and the unique interpolation
polynomial of degree ≤ n− 1, i.e.,

Q(x) = xn −
n∑

i=1

Li(x)xni .

This polynomial has a leading coefficient of 1 and, because
∑n

i=1 Li(xj)x
n
i = xnj , it has the

n roots x1, . . . , xn. Consequently,

Q(x) = (x− x1) · · · (x− xn),

and thus,

n∑

i=1

Li(0)xni = −Q(0) = −(−x1) · · · (−xn) = (−1)n−1x1 · · ·xn,

which verifies (4.4).

To prove the theorem, we consider the asymptotic expansion of T (h). This leads to the
equation for j = 1, . . . ,m:

Tj,1 = T (hj) = τ0 + τph
p
j + . . .+ τkp(h

p
j)
k +O(h

(k+1)p
j). (4.5)

We demonstrate the claim for i = k, and estimates for i > k follow by renumber-
ing the step sizes hi. Let P (hp) be the interpolation polynomial in hp for the data
(hp1, T (h1)), . . . , (hpk, T (hk)). Furthermore, let L1(x), . . . , Lk(x) be the Lagrange polyno-
mials corresponding to the support points hp1, . . . , h

p
k. Then, we have:

P (hp) =

k∑

i=1

Li(h
p)Ti,1.

98 CHAPTER 4. INTEGRATION

Using (4.4) applied to xi = hpi for i = 1, . . . , k and (4.5), we obtain:

Tk,k = P (0)

=
k∑

i=1

Li(0)Ti,1

=
k∑

i=1

Li(0)
(
τ0 + τph

p
i + . . .+ τkp(h

p
i)
k +O(h

(k+1)p
i)

)

= τ0 + τkp(−1)k−1hp1 · · ·h
p
k +

k∑

i=1

O(h
(k+1)p
i)

︸ ︷︷ ︸
| · |=εk,k

,

and thus, we have proved the claim.

The theorem states that when we add a row with step size hm to the extrapolation scheme,
we can expect the error to decrease by a factor of order hpm, which is second order (h2

m) in
the trapezoidal scheme. Note that this statement holds only when all used step sizes are
sufficiently small. Intuitively, the step sizes hi must lie within a range where the values
T (hi) provide enough information about the value τ0 = limh→0 T (h).

In a practical implementation, it is advisable to choose the sequence of step sizes in a
decreasing manner, i.e., hi+1 < hi. Additionally, hi is typically chosen as part of a base
step size h = (b−a)/N , i.e., hi = h/Ni for Ni ∈ N. For the trapezoidal method with p = 2,
this leads to the following algorithm:

Algorithm 4.9 (Romberg Extrapolation)

(0) Choose a maximum number of iterations imax, a base step size h = (b− a)/N , and a
sequence of step sizes h1, h2, . . . with hi = h/Ni, Ni+1 > Ni. Set i := 1.

(1) Calculate Ti,1 := T (hi) =
hi
2


f(a) + 2

N ·Ni−1∑

j=1

f(a+ jhi) + f(b)


.

(2) Calculate

Ti,k := Ti,k−1 +
Ti,k−1 − Ti−1,k−1(

Ni

Ni−k+1

)2

− 1

for k = 2, . . . , i

(3) If i ≥ imax or Ti,i is accurate enough, end the algorithm; otherwise, set i = i+ 1 and
return to (1).

The termination criterion “accurate enough” is, of course, not very precise. Typically, a
desired accuracy ε is specified, and iterations continue until |Ti+1,i+1 − Ti,i| < ε holds. A

4.5. ADAPTIVE ROMBERG QUADRATURE 99

relative termination criterion is, for example, given by |Ti+1,i+1 − Ti,i| < ε · |Ti+1,i+1|. If
there is a bound for the integral

absint :=

∫ b

a
|f(x)|dx,

one can alternatively iterate until |Ti+1,i+1 − Ti,i| < ε · absint holds. The difference lies in
using the integrated quantity of |f | rather than the value of the integral to weight ε, which
provides a more easily achievable criterion when the sign of f changes. These termination
criteria work reasonably well in practice but only ensure the desired accuracy is reached
when the base step size h is sufficiently small.

In implementation, the choice of the sequence Ni also plays a crucial role. With cleverly
chosen Ni, you can reuse precomputed function values f(xj) when calculating T (hi). For
every step size h = (b− a)/N , the equation holds:

T (h/2) =
h

4


f(a) + 2

2N−1∑

j=1

f(a+ jh/2) + f(b)




=
h

4


f(a) + 2

N−1∑

j=1

f(a+ jh) + f(b)




︸ ︷︷ ︸
=T (h)/2

+
h

2

N∑

j=1

f(a+ (2j − 1)h/2),

so calculating T (h/2) only requires N evaluations of f if the remaining N − 1 values are
covered using T (h). This can be exploited by choosing Ni = 2i−1; this sequence of step
sizes is called the Romberg sequence and is commonly used in the implementation of the
extrapolation method. With this choice of Ni, you can replace the equation in step (1) for
i ≥ 2 with:

Ti,1 :=
1

2
Ti−1,1 + hi

N ·Ni−1∑

k=1

f(a+ (2k − 1)hi).

4.5 Adaptive Romberg Quadrature

In all the previous methods, we chose the support points independently of the integrand f .
However, it is reasonable to expect that for certain f , a clever placement of support points
dependent on f can yield significantly better results. Consider, for example, the ”needle
pulse function”:

f(x) =
1

10−4 + x2

in Figure 4.2.

For this function, it makes sense to concentrate many support points near 0 and use
relatively few support points outside of this region.

To be able to distribute support points variably, we divide the integration interval into
subintervals and approximate the integral on each subinterval using a numerical formula.

100 CHAPTER 4. INTEGRATION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 4.2: Plot of the needle pulse function

Regions where subintervals are small receive more support points than regions with larger
subintervals.

The idea of adaptive integration is to choose the size of these subintervals efficiently based
on f , making them adaptive to f . This should be done without prior complex analysis of
f and without additional information (such as derivatives of f), and it should be fast to
ensure that the computational effort in determining the interval size does not negate the
gained advantage. Additionally, it should be reliable, meaning it guarantees that a given
error threshold is met.

These last two criteria - low computational cost and high reliability - appear to be in
conflict, as the more certain such a method needs to be, the more effort is required to
determine the interval size. A good compromise between effort and reliability is achieved
through the concept of a posteriori error estimation, which we will discuss below.

Formally, an error estimator is defined by the following definition:

Definition 4.10 A numerically computable quantity ε̄ is called an ”error estimator” for
the actual error ε of a numerical method if there exist independent constants κ1 and κ2

such that the inequality holds:

κ1ε ≤ ε̄ ≤ κ2ε

Such error estimators are then computed iteratively for all subintervals of the integration
interval; where the estimated error is large, smaller subintervals are chosen to increase the
number of support points and reduce the error.

Now, we will derive such an error estimator ε̄ for the extrapolation method. We consider
the Romberg method with an integration interval [a, b] = [x, x+ h] and a base step size of

4.5. ADAPTIVE ROMBERG QUADRATURE 101

h = b− a, i.e., N = 1. On this interval, according to Theorem 4.8, the approximation is as
follows:

εi,k =

∣∣∣∣Ti,k −
∫ x+h

x
f(y) dy

∣∣∣∣ ≈ |τ2k|h2
i−k+1 . . . h

2
i . (4.6)

According to Theorem 4.6, the coefficients satisfy:

τ2k =
B2k

(2k)!

(
f (2k−1)(x+ h)− f (2k−1)(x)

)
≈ B2k

(2k)!
f (2k)(x)h

where this approximation is valid for small h. The approximate constants τ̄2k depend on
the integrand f . Substituting this approximation for τ2k into (4.6), we obtain:

εi,k ≈ |τ2k|h2
i−k+1 . . . h

2
i ≈ |τ̄2k|γi,kh2k+1 (4.7)

with γi,k = (Ni−k+1 · · ·Ni)
−2. The exponent 2k+ 1 of h here depends on the column index

k in the extrapolation scheme. Within a column, it holds that

εi+1,k

εi,k
≈
γi+1,k

γi,k
=

(
Ni−k+1

Ni+1

)2

� 1

(here the notation a � b means “a is much smaller than b”). In other words, for small
h (since all the approximations used here are only valid for small h), integration errors
within a column decrease rapidly, i.e., it holds that

εi+1,k � εi,k. (4.8)

We now make the assumption that the same holds within the rows, meaning we assume
that

εi,k+1 � εi,k. (4.9)

This assumption means that transitioning to a higher order k + 1 in the scheme results
in a smaller error. This inequality is also valid for sufficiently small h, but it may not
necessarily hold for the practical values of h used, which can be a potential source of error
in the method.

The construction of an error estimator for an error εi,k is based on comparing the values
Ti,k−1 and Ti,k. Relative to the coarse approximation Ti,k−1, the more accurate approxi-
mation Ti,k is nearly exact, so that

εi,k−1 =

∣∣∣∣Ti,k−1 −
∫ x+h

x
f(y) dy

∣∣∣∣ ≈ |Ti,k−1 − Ti,k| (4.10)

should hold. This method has the significant advantage that the error is calculated from
values that are already present in the scheme, anyway, thus requiring no additional com-
putation effort.

Now, suppose we have calculated an extrapolation diagram with k rows and k columns.
Under the assumptions (4.8) and (4.9), it is easy to see that in this diagram, the error εk,k
is the smallest, meaning that Tk,k represents the most accurate approximation. It would,

102 CHAPTER 4. INTEGRATION

therefore, be sensible to obtain an error estimator for εk,k. However, with the above idea,
this is not possible because we would need the value Tk,k+1 for this purpose, which is not
included in the diagram and would require considerable effort to compute. Thus, we settle
for an estimator for the “second-best” error εk,k−1. The following lemma shows that the
informal approximation (4.10) can be formally framed within the framework of Definition
4.10.

Lemma 4.11 If assumption (4.9) for εk,k−1 and εk,k holds or, more precisely, if there exists
α < 1 such that the inequality

εk,k ≤ αεk,k−1

holds, then the value
ε̄k,k−1 := |Tk,k−1 − Tk,k|

is an error estimator for εk,k−1 in the sense of Definition 4.10 with κ1 = 1−α and κ2 = 1+α.

Proof: Let us briefly denote I =
∫ x+h
x f(y) dy. Then, we have

ε̄k,k−1 = |(Tk,k−1 − I)− (Tk,k − I)| ≤ εk,k−1 + εk,k.

On the other hand, it follows from εk,k < εk,k−1

ε̄k,k−1 = |(Tk,k−1 − I)− (Tk,k − I)| ≥ εk,k−1 − εk,k.

Together, with α ≥ εk,k/εk,k−1, we obtain the desired estimates

(1− α)εk,k−1 ≤
(

1−
εk,k
εk,k−1

)
εk,k−1 = εk,k−1 − εk,k ≤ ε̄k,k−1

and

ε̄k,k−1 ≤ εk,k−1 + εk,k =

(
1 +

εk,k
εk,k−1

)
εk,k−1 ≤ (1 + α)εk,k−1.

Even though this error estimator estimates the error for Tk,k−1, in practical calculations,
one should use the value Tk,k as the result of the algorithm since, according to assumption
(4.9), it is more accurate than Tk,k−1.

Based on this error estimator, we now describe the adaptive algorithm. Here, we consider
a simple version that works with a fixed predefined order k. A more refined version, where
the order k is also adaptively chosen, can be found, for example, in the book by Deuflhard
and Hohmann [1].

We want to calculate the integral ∫ b

a
f(x) dx

using the extrapolation formula for a given k step by step, while maintaining a predefined
accuracy tol on each subinterval of the computation.1 To do this, we choose an initial step
size h1 ≤ b− a, set i := 1, and xi := a, and calculate the approximations

T ik,k−1 ≈
∫ xi+hi

xi

f(x) dx and T ik,k ≈
∫ xi+hi

xi

f(x) dx (4.11)

1Here, you can optionally use a relative termination criterion as well.

4.5. ADAPTIVE ROMBERG QUADRATURE 103

for the partial integral on [xi, xi + hi]. We initially assume that we know the integration
error εik,k−1 for T ik,k−1. According to (4.7), we have

εik,k−1 ≈ δih2k+1
i ,

so δi ≈ εik,k−1h
−(2k+1)
i . To guarantee εik,k−1 ≤ tol, the calculation should ideally be per-

formed with the ideal step size

h∗i = 2k+1

√
tol

εik,k−1

hi.

To calculate this ideal step size without using the unknown value εik,k−1, we replace it with
the error estimator

ε̄ik,k−1 = |T ik,k−1 − T ik,k|.

Since this estimator is not exact, we introduce a “safety parameter” ρ < 1 and calculate
the new step size as

h̃i := 2k+1

√
ρ tol

ε̄ik,k−1

hi.

If h̃i is smaller than hi, we repeat the calculation with hi = h̃i. If (possibly after repeating
the calculation) h̃i ≥ hi, we move on to the next subinterval. We choose h̃i as the new
step size, i.e. we set xi+1 = xi + hi and hi+1 = h̃i. This is reasonable because, due to the
continuity of f (2k) for small hi,

δi+1 ≈ δi

holds, so

εi+1
k,k−1 = δi+1h

2k+1
i+1 ≈ δih

2k+1
i+1 = δih̃

2k+1
i = tol

is the expected error with this step size. If xi+1 + hi+1 > b, we reduce the new step size
to hi+1 = b− xi+1 to avoid integrating beyond the upper limit. It is also recommended to
introduce an upper bound hmax for the allowed maximum step size and limit hi+1 to hmax.

If xi+1 < b, we set i := i+ 1 and continue with (4.11).

If xi+1 = b, we have reached the upper integration limit, and we can calculate the desired
integral approximation as

∑i
j=1 T

j
k,k since we can rely on the already calculated more

accurate values T ik,k.

Figure 4.3 shows the application of this algorithm to the needle impulse function f(x) =
1

10−4+x2
, with the parameters [a, b] = [−1, 1], k = 3, tol = 10−5, ρ = 0.8, and base step size

h = 1.

In this case, the integration interval was divided into 27 individual intervals by the adaptive
algorithm. The minimum step size was 0.005532, and the maximum was 0.350629. 2

The overall expected accuracy in this method is m ·tol, where m is the number of steps per-
formed. This accuracy can, of course, only be calculated after the algorithm has produced
its result.

2matlab files for this algorithm will be provided on the lecture homepage at the end of the semester.

104 CHAPTER 4. INTEGRATION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 4.3: Adaptive subintervals in the integration of the needle impulse function

Despite the very efficient “self-adjustment” to the integrands, problems can arise in adap-
tive Romberg quadrature, as in all numerical methods. If the step sizes are too large or
if the assumptions are not met, the error estimators can provide unreliable values. Actual
errors can then be “overlooked”, resulting in incorrect accuracy calculations and conver-
gence of the method with incorrect values. In such cases, one speaks of pseudo convergence.
Strategies for detecting this situation can also be found in the book by Deuflhard/Hohmann
[1].

Whether an adaptive or a non-adaptive method should be preferred for a given problem
depends on the task and the application area of the integration routine. Adaptive methods
provide a reliable and efficient strategy for solving integration problems for many integrands
f , especially when they are not uniform or no a priori analysis is performed. If more
information (e.g., about derivatives) of the integrand are available or can be computed
relatively inexpensively compared to the effort of the integration problem, for instance when
a specific function needs to be integrated frequently within an algorithm, non-adaptive
methods will generally be more efficient, provided that the necessary parameters (order,
step size, etc.) are well tuned.

4.6 Higher-Dimensional Integration

In practice, we often need to integrate functions not only on R but also on Rd. In this
overview section, we will focus on problems of a simple form

∫ b1

a1

∫ b2

a2

. . .

∫ bd

ad

f(x1, x2, . . . , xd)dxd . . . dx1

with d ≥ 2.

4.6. HIGHER-DIMENSIONAL INTEGRATION 105

For low dimensions, we can generalize the previous approach relatively directly. We define
the set of d-dimensional grid points as

Sd :=








x̄1
...
x̄d




∣∣∣∣∣∣∣
x̄j ∈ {aj , aj + hj , aj + 2hj , . . . , aj +Njhj = bj}, j = 1, . . . , d




.

Graphically, these points form a regular grid in Rd, known as a tensor grid. For fixed values
x̄1, . . . , x̄d−1, we can approximate

∫ bd

ad

f(x̄1, . . . , x̄d−1, xd)dxd ≈ (bd − ab)
Nd−1∑

i=0

αif(x̄1, . . . , x̄d−1, x̄d,i) =: Id(x̄1, . . . , x̄d−1)

with x̄d,i = ad + ihd. For the next component d− 1, we approximate

∫ bd

ad

∫ bd

ad

f(x̄1, . . . , x̄d−2, xd−1, xd)dxddxd−1 ≈ (bd − ab)
Nd−1∑

i=0

αiId(x̄1, . . . , x̄d−1,i)

=: Id(x̄1, . . . , x̄d−2)

with x̄d−1,i = ad−1 + ihd−1. Iterative continuation ultimately leads to a formula

∫ b1

a1

∫ b2

a2

. . .

∫ bd

ad

f(x1, x2, . . . , xd)dxd . . . dx1 ≈
d∏

i=1

(bi − ai)
N−1∑

j=0

βjf(x̄j,1, . . . , x̄j,d),

where the vectors (x̄j,1, . . . , x̄j,d) for j = 0, . . . , N − 1, N = (N1 + 1) · . . . · (Nd + 1), traverse
all vectors in the set of grid points Sd, and the βi are obtained through addition and
multiplication from the αi of the Newton-Cotes formulas. Error estimates for this method
can be derived from the one-dimensional error estimates.

While this method works reasonably well for low dimensions d = 2, 3, it quickly becomes
impractical for higher dimensions. The problem is that the number of grid points in Sd
increases very rapidly with growing d. If all Nj are identically equal to N̄ ∈ N, the number
of elements in Sd is (N̄ + 1)d, which grows exponentially with d. For example, with N = 9,
i.e. 10 grid points per coordinate direction, Sd contains 10d grid points. For d = 10 this
already amounts to 10 billion grid points. This phenomenon is known as the “curse of
dimensionality”.

Possible remedies include the following approaches, which we only briefly outline here:

• Methods on sparse grids: Here, specific points from Sd are deliberately omitted,
which, under certain conditions (such as sufficient differentiability of the integrand
f), contribute little to the integral value. This can reduce the growth of the number
of elements in Sd with d.

• Methods that exploit special structures: Consider an integrand of the form

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fd(xd).

106 CHAPTER 4. INTEGRATION

This can be integrated by integrating the individual component functions. The effort
is, therefore, d times the effort of one-dimensional integration, which is much less than
the effort of general d-dimensional integration (with 10 grid points per coordinate
direction and d = 10, we only need 100 instead of 10 billion grid points!). By
exploiting such (as well as other) special structures, the effort of numerical integration
can be significantly reduced.

• Monte Carlo methods: Here, the elements of the grid point set are not determined
by a deterministic rule like in the definition of Sd but by random numbers. This
initially has some disadvantages: the computed integral value is itself a random
number, which must be taken into account when interpreting the result. Moreover,
the accuracy increases relatively slowly with an increase in the number of grid points,
so these methods are not suitable for highly accurate calculations. On the other hand,
the number of grid points required for a certain level of accuracy also increases only
relatively slowly with the dimension. This means that these methods can actually
be much better in high dimensions than non-random methods. Additionally, Monte
Carlo methods are very easy to implement.

Chapter 5

Systems of Nonlinear Equation

Nonlinear equations or systems thereof must be solved in many applications of mathemat-
ics. Typically, the solutions of nonlinear equations are defined as the roots of a function
f : Rn → Rn, for which we seek an x∗ ∈ Rn such that

f(x∗) = 0.

Example (Square Root Computation): Compute x∗ ∈ R such that f(x) = 0 for
f(x) = x2 − 2. The unique positive real solution is

√
2. A numerical method for finding

roots can thus be used, in particular, for the computation of square roots.

5.1 Fixed-Point Iteration

Fixed-point iteration is a relatively simple method based on the idea of formulating the
solution of a nonlinear equation system as a fixed-point equation. If we define

g(x) = f(x) + x,

then f(x∗) = 0 is equivalent to g(x∗) = x∗. A point x ∈ Rn with g(x) = x is called a fixed
point of g. Instead of searching for a root of f , we can alternatively search for a fixed point
of g.

Recall Banach’s Fixed-Point Theorem 2.23.

Theorem 2.23 (Banach’s Fixed-Point Theorem) Let A be a closed subset of a com-
plete normed space with norm ‖ · ‖, and let Φ : A → A be a contraction, i.e., there exists
a constant k ∈ (0, 1) such that the inequality

‖Φ(x)− Φ(y)‖ ≤ k‖x− y‖

holds. Then, there exists a unique fixed point x∗ ∈ A, and all sequences of the form
x(i+1) = Φ(x(i)) with any x(0) ∈ A converge to x∗. Moreover, the a priori and a posteriori
estimates hold:

‖x(i) − x∗‖ ≤ ki

1− k
‖x(1) − x(0)‖ and ‖x(i) − x∗‖ ≤ k

1− k
‖x(i) − x(i−1)‖.

107

108 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

The simplest idea for finding a fixed point x∗ of g is to iterate this mapping.

Algorithm 5.1 (Fixed-Point Iteration) Given a function g : Rn → Rn and an initial
value x(0) ∈ Rn, as well as a termination tolerance ε > 0.

(0) Set i = 0 (index).

(1) Set x(i+1) := g(x(i)).

(2) If ‖x(i+1) − x(i)‖ ≤ ε or if a maximum number of iterations is exceeded, terminate
the algorithm;
otherwise, set i := i+ 1 and go to (1).

If g satisfies the conditions of Banach’s Fixed-Point Theorem on a neighborhood A of
x∗, then this procedure converges for all x(0) ∈ A. The Banach Fixed-Point Theorem
guarantees the accuracy

‖x(i+1) − x∗‖ ≤ k

1− k
ε.

Of course, not every mapping g satisfies the requirements of this theorem. If g is continu-
ously differentiable, the contraction property can be relatively easily verified.

Theorem 5.2 Let D ⊂ Rn and g ∈ C1(D,Rn) with a fixed point x∗ ∈ D. For an arbitrary
vector norm ‖ · ‖, let A = {x ∈ Rn | ‖x − x∗‖ ≤ δ} ⊂ D for some δ > 0. Then, g satisfies
the conditions of the Banach Fixed-Point Theorem with respect to this norm if

max
x∈A
‖Dg(x)‖ =: k < 1,

where Dg(x) ∈ Rn×n denotes the Jacobian matrix, which is the matrix-valued derivative
of the function g at point x, and ‖ ·‖ is the matrix norm induced by the given vector norm.
In particular, the fixed-point iteration converges for all initial values x(0) ∈ A.

Proof: Using the Mean Value Theorem of Calculus, we have for all x, y ∈ A the inequality

‖g(x)− g(y)‖ ≤ sup
z∈A
‖Dg(z)‖‖x− y‖ ≤ k‖x− y‖.

Thus, g is a contraction with contraction constant k.

It remains to show that g maps the set A to itself. For this, let x ∈ A, so ‖x − x∗‖ ≤ δ.
We need to show that g(x) ∈ A, which means ‖g(x)− x∗‖ ≤ δ holds. This follows because

‖g(x)− x∗‖∞ = ‖g(x)− g(x∗)‖∞ ≤ k‖x− x∗‖∞ ≤ kδ ≤ δ.

For the following corollary, in which another sufficient criterion for the convergence of
the fixed-point iteration is derived, we recall the spectral radius ρ(A) = maxi |λi(A)| of a
matrix A introduced in Lemma 2.29.

5.1. FIXED-POINT ITERATION 109

Corollary 5.3 Let D ⊂ Rn and g ∈ C1(D,Rn) with a fixed point x∗ ∈ intD. Suppose
ρ(Dg(x∗)) < 1 for the spectral radius of the matrix Dg(x∗). Then, there exists a neigh-
borhood A of x∗ such that the fixed-point iteration converges to x∗ for all initial values
x(0) ∈ A.

Proof: As in the proof of Lemma 2.29, the existence of a vector norm ‖ · ‖ and the
corresponding induced matrix norm is established with

kε := ‖Dg(x∗)‖ ≤ ρ(Dg(x∗)) + ε < 1.

For any sufficiently small ball A = Bρ(x
∗) = {x ∈ Rn | ‖x − x∗‖ < ρ} around x∗, the

inequality supx∈A ‖Dg(x)‖ ≤ kA < 1 holds due to the continuity of Dg. Thus, the claim
follows from Theorem 5.2.

With Corollary 5.3, the following corollary can be proven for n = 1 as well. Here, g−1(x)
denotes the inverse function of g(x).

Corollary 5.4 Let g ∈ C1(R,R) with g(x∗) = x∗. Suppose |g′(x∗)| 6= 1. Then, there
exists a neighborhood A of x∗ such that one of the two iterations

i) x(i+1) = g(x(i))

ii) x(i+1) = g−1(x(i))

converges to x∗ for all initial values x(0) ∈ A.

Proof: For one-dimensional functions, we have ρ(g′(x∗)) = |g′(x∗)|. Since from the as-
sumption, either

|g′(x∗)| < 1 or |(g−1)′(x∗)| = 1

|g′(x∗)|
< 1

follows, the claim is established using Corollary 5.3.

We refer to methods that converge only for initial values in a neighborhood of the desired
point as locally convergent methods. Examples in which the fixed-point iteration works
well can be found in the exercise problems.

The following example shows that the transition to the inverse function as described in the
previous theorem is not always practical and introduces another method to address the
issue of non-convergence.

Example 5.5 Consider the square root computation from the introductory example with
f(x) = x2 − 2. The associated fixed-point mapping is given by g(x) = x2 + x− 2, and the
derivative at x∗ =

√
2 is g′(x∗) = 2x∗ + 1 ≈ 3.8284271, making the Banach Fixed-Point

Theorem inapplicable here. While it is theoretically straightforward to compute the inverse
function in this case, i.e., g−1(x) =

√
x+ 9/4 − 1/2, using this mapping as an iteration

rule would require computing a square root in each step. In other words, we would have
replaced the computation of one square root

√
2 with the computation of multiple square

roots, which is certainly not efficient.

110 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

A simple solution in this case is to scale the original function by −1/2: The function
f(x) = −x2/2+1 clearly has the same roots as the original f . For the fixed-point mapping
g(x) = −x2/2 + x + 1, we have |g′(x∗)| = | − x∗ + 1| ≈ 0.41421356, making the method
locally convergent. The following result sequence for the initial value x(0) = 1 demonstrates
convergence:

x(0) = 1.00000000000000

x(1) = 1.50000000000000

x(2) = 1.37500000000000

x(3) = 1.42968750000000

x(4) = 1.40768432617188

x(5) = 1.41689674509689

x(6) = 1.41309855196381

x(7) = 1.41467479318270

x(8) = 1.41402240794944

x(9) = 1.41429272285787

x(10) = 1.41418076989350

Such scaling works “almost” always in one dimension.

It is worth noting that the fixed-point iteration is one of the few methods that can be used
to directly solve general nonlinear equation systems in Rn without requiring additional
information such as derivatives, etc. However, we will see later that the method converges
relatively slowly.

5.2 The Bisection Method

In this chapter, we will consider a method that works only in R1 and cannot be generalized
to higher dimensions. The bisection method, which we are about to discuss, is very simple
and intuitive and converges globally under minimal conditions.

So, we consider a continuous real-valued function f : R → R and seek a root, that is, a
value x∗ ∈ R with f(x∗) = 0. The following algorithm computes such a root.

Algorithm 5.6 (Bisection Method) Given a function f : R→ R and values a < b such
that f(a)f(b) < 0 (i.e., f(a) and f(b) have opposite signs), and a desired accuracy ε > 0.

(0) Set i = 0 (iteration index) and a0 = a, b0 = b.

(1) Set x(i) = ai + (bi − ai)/2.

(2) If f(x(i)) = 0 or (bi − ai)/2 < ε, end the algorithm.

(3) If f(x(i))f(ai) < 0, set ai+1 = ai, bi+1 = x(i)

If f(x(i))f(ai) > 0, set ai+1 = x(i), bi+1 = bi
Set i = i+ 1 and go to step (1).

5.2. THE BISECTION METHOD 111

a0

a1

b0

b1

a2 b2

x

f(x)

Figure 5.1: Bisection Method

Figure 5.1 illustrates this method. The points ai, bi are the interval boundaries of the
intervals [ai, bi], which enclose the root and are successively halved. This is where the
name “bisection” comes from (= division into two parts).

The selection of the new values ai+1 and bi+1 ensures that f(ai+1) and f(bi+1) have opposite
signs. Therefore, since f is continuous, a root must be located between these values. When
the termination condition (x(i)− ai) < ε is reached, it is guaranteed that there is a root x∗

with |x∗ − x(i)| < ε, so x(i) is an approximate root.

The bisection method has some very advantageous properties:

• It works for general continuous functions.

• It always produces a result, provided suitable initial values a and b can be found (it
is said to converge globally).

• The number of steps to reach the desired accuracy depends only on a and b, not on f .

When applied to the square root computation with f(x) = x2 − 2 and an initial interval
of [1, 2], the following values are obtained.

i= 0: [1.000000, 2.000000], x(0)=1.500000

i= 1: [1.000000, 1.500000], x(1)=1.250000

i= 2: [1.250000, 1.500000], x(2)=1.375000

i= 3: [1.375000, 1.500000], x(3)=1.437500

i= 4: [1.375000, 1.437500], x(4)=1.406250

i= 5: [1.406250, 1.437500], x(5)=1.421875

i= 6: [1.406250, 1.421875], x(6)=1.414062

i= 7: [1.414062, 1.421875], x(7)=1.417969

i= 8: [1.414062, 1.417969], x(8)=1.416016

112 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

i= 9: [1.414062, 1.416016], x(9)=1.415039

i=10: [1.414062, 1.415039], x(10)=1.414551

i=11: [1.414062, 1.414551], x(11)=1.414307

i=12: [1.414062, 1.414307], x(12)=1.414185

i=13: [1.414185, 1.414307], x(13)=1.414246

i=14: [1.414185, 1.414246], x(14)=1.414215

i=15: [1.414185, 1.414215], x(15)=1.414200

i=16: [1.414200, 1.414215], x(16)=1.414207

i=17: [1.414207, 1.414215], x(17)=1.414211

i=18: [1.414211, 1.414215], x(18)=1.414213

i=19: [1.414213, 1.414215], x(19)=1.414214

i=20: [1.414213, 1.414214], x(20)=1.414214

i=21: [1.414213, 1.414214], x(21)=1.414213

i=22: [1.414213, 1.414214], x(22)=1.414214

i=23: [1.414214, 1.414214], x(23)=1.414214

The reason why other methods are often used in practice, even in one dimension, is that the
bisection method, like the fixed-point iteration, converges relatively slowly to the desired
value x∗. To understand this, we need to introduce appropriate concepts for measuring
convergence speeds.

5.3 Order of Convergence

The order of convergence provides a concept to analyze iterative procedures in terms of
their speed. Here, we will consider three different orders of convergence: linear convergence,
superlinear convergence, and quadratic convergence.

Iterative procedures generate a sequence of approximate solutions x(i) that converge to the
exact solution x∗. The order of convergence is defined based on the error

‖x(i) − x∗‖,

which indicates how quickly this error converges to zero.

The following definition describes the three types of order of convergence we want to
examine here.

Definition 5.7 Consider an iterative procedure that provides a sequence of approximate
solutions x(i) for the exact solution x∗. Then, we define the following orders of convergence.

(i) The procedure is called linearly convergent if there exists a constant c ∈ (0, 1) such
that the inequality

‖x(i+1) − x∗‖ ≤ c‖x(i) − x∗‖ for all i = 0, 1, 2, . . .

holds.

5.3. ORDER OF CONVERGENCE 113

(ii) The procedure is called superlinearly convergent if there exist constants ci ∈ (0, 1) for
i = 0, 1, 2, . . . such that the conditions

ci+1 ≤ ci, i = 0, 1, 2, . . . , lim
i→∞

ci = 0

and the inequality

‖x(i+1) − x∗‖ ≤ ci‖x(i) − x∗‖ for all i = 0, 1, 2, . . .

hold.

(iii) The procedure is called quadratically convergent if there exists a constant q > 0 such
that the inequality

‖x(i+1) − x∗‖ ≤ q‖x(i) − x∗‖2 for all i = 0, 1, 2, . . .

holds.

Remark 5.8 By iteratively applying these inequalities, we obtain error estimates as fol-
lows.

‖x(i) − x∗‖ ≤ ci‖x(0) − x∗‖

‖x(i) − x∗‖ ≤
i−1∏

k=0

ck‖x(0) − x∗‖

‖x(i) − x∗‖ ≤ 1

q
(q‖x(0) − x∗‖)2i .

Note that the third inequality provides a meaningful error estimate only when q‖x(0)−x∗‖ <
1 or ‖x(0) − x∗‖ < 1/q, indicating that the initial value x(0) is already close enough to the
exact result x∗.

Figure 5.2 illustrates the dependence of errors for c = 0.5, ci = 4
(i+1)2+7

, q = 2, and

‖x(0) − x∗‖ = 1/4.

While it can be observed that quadratic convergence approaches zero faster than superlin-
ear, and superlinear converges faster than linear, this graph does not directly reveal the
order of convergence for a specific curve.

This can be more easily determined when considering the logarithm of the error instead of
the error itself. For logarithms, the following rules apply.

log(ab) = log(a) + log(b), log(1/q) = − log(q), and log(cd) = d log(c).

Thus, for the three types of convergence from Definition 5.7, we obtain the inequalities.

114 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

Figure 5.2: Orders of convergence: linear, superlinear, and quadratic (from top to bottom)

log(‖x(i+1) − x∗‖) ≤ log(‖x(i) − x∗‖) + log(c)

log(‖x(i+1) − x∗‖) ≤ log(‖x(i) − x∗‖) + log(ci) (5.1)

log(‖x(i+1) − x∗‖) ≤ 2 log(‖x(i) − x∗‖) + log(q).

With the abbreviation K = log(‖x(0) − x∗‖) from Remark 5.8, we have the following
estimates.

log(‖x(i) − x∗‖) ≤ i log(c) +K

log(‖x(i) − x∗‖) ≤
i−1∑

k=0

log(ck) +K

log(‖x(i) − x∗‖) ≤ 2i(log(q) +K)− log(q).

Note that the logarithm approaches negative infinity as the error converges to zero.

When graphically representing these last three estimates, in the linear case, you get a
straight line with a negative slope, in the quadratic case, you get a curve of the form
i 7→ −C2i +D for C > 0, D ∈ R, and in the superlinear case, you get a curve in between,
with increasing curvature. Figure 5.3 shows the typical behavior of these curves for the
base 10 logarithm.

Indeed, these curves would look similar for any other logarithm base, but the logarithm
to the base 10 has the special property that you can directly read the accuracy when
measuring it in terms of the number of correct decimal places in the result, at least in the
one-dimensional case, i.e., for x ∈ R:

5.3. ORDER OF CONVERGENCE 115

Figure 5.3: Orders of convergence: linear, superlinear, and quadratic (from top to bottom)

To do this, let d = log10(|x(i)− x∗|). We assume that d is negative, which is the case when
|x(i) − x∗| < 1 (the following considerations apply only when x(i) is already sufficiently
close to x∗). Now, let m > 0 be the largest integer that is strictly smaller than −d. Then,

|x(i) − x∗| = 10d < 10−m = 0. 0 · · · 0︸ ︷︷ ︸
(m−1)-times

1.

Any positive number smaller than 10−m is of the form

0. 0 · · · 0︸ ︷︷ ︸
m-times

∗ ∗ ∗ · · · ,

where the asterisk “∗” symbolizes arbitrary digits. So,

|x(i) − x∗| ≤ 0. 0 · · · 0︸ ︷︷ ︸
m-times

∗ ∗ ∗ · · · ,

which means that x(i) and x∗ must agree in at least the first m decimal places. This way,
the number of correct decimal places in the result can be directly determined from d.

From the inequalities (5.1), we can deduce that in linear convergence, the number of correct
digits increases by about 1 every 1/(− log(c)) steps1, and in quadratic convergence (ne-
glecting the log(q) term), it roughly doubles with each step. Superlinear convergence falls
between these values: as with linear convergence, the number of correct digits increases by
a certain number of steps, but as the iteration progresses, the number of steps required for
the increase decreases.

Table 5.1 summarizes the characteristics of the different considered orders of convergence.

Now, we want to determine the convergence order of the procedures we have considered so
far.

1If 1/(− log(c)) < 1, this should be understood as the number of correct digits increasing by − log(c) on
average per step.

116 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

Convergence Order Linear Superlinear Quadratic

Definition ‖x(i+1) − x∗‖ ‖x(i+1) − x∗‖ ‖x(i+1) − x∗‖
≤ c‖x(i) − x∗‖ ≤ ci‖x(i) − x∗‖ ≤ q‖x(i) − x∗‖2
for c ∈ (0, 1) for ci ∈ (0, 1), ci ↘ 0 for q > 0

Curve in log plot Straight line Curve with ≈ i 7→ −C2i +D
negative curvature

Number of Increases by 1 Similar to linear, Doubles
correct digits every 1/(− log(c)) but with approximately

steps increasing speed every step

Table 5.1: Characteristics of Different Convergence Orders

For the fixed-point iteration, from the assumptions of the Banach Fixed-Point Theorem,
we obtain the error estimate

‖x(i+1) − x∗‖ = ‖g(x(i))− g(x∗)‖ ≤ k‖x(i) − x∗‖,

resulting in linear convergence with c = k. A special case occurs when Dg(x∗) = 0 and g
is twice continuously differentiable. In this case, using the Taylor expansion around x∗ for
the components gj of g, we have the equation

gj(x)− x∗j = gj(x)− gj(x∗) =
1

2

n∑

k,l=1

∂2gj(ξj)

∂xk∂xl
(xk − x∗k)(xl − x∗l),

where x∗j denotes the j-th component of x∗ and ξj is a point on the line segment connecting
x to x∗. Since the second derivatives of each component gj are assumed to be continuous,
they are bounded for x in a neighborhood N of x∗. Thus, with q = r/2, we have

‖x(i+1) − x∗‖∞ = ‖g(x(i))− x∗‖∞
= max

j=1,...,n
|gj(x(i))− x∗j |

≤ max
j=1,...,n

q(x
(i)
j − x

∗
j)

2 ≤ q‖x(i) − x∗‖2∞,

resulting in quadratic convergence.

For the bisection method from Algorithm 5.6, we need to define the error somewhat dif-
ferently. In this method, it is possible that the value x(i) happens to be very close to the
desired root and then moves away in further iteration steps before ultimately converging.
In fact, in this case, the error should not be defined in terms of the distance |x(i) − x∗|
but rather in terms of the interval size (bi − ai), as from the construction, we immediately
obtain the estimate |x(i)−x∗| ≤ (bi−ai)/2. This interval size halves in each step; therefore,
we have linear convergence with c = 1/2.

In the following sections, we will explain procedures that converge quadratically or at least
superlinearly.

5.4. THE NEWTON METHOD 117

Remark 5.9 In the chapter on linear systems of equations, we already learned about
iterative methods, namely the Jacobi and Gauss-Seidel methods and the CG method —
all of which also have a linear order of convergence.

5.4 The Newton Method

In this section, we will explore another method for solving nonlinear systems of equations,
the Newton method, also known as Newton-Raphson method. Compared to the methods
we have examined so far (except for fixed-point iteration with a vanishing derivative), this
method converges much faster; it is quadratically convergent.

Unlike the bisection method or fixed-point iteration, the Newton method requires not only
the function f itself but also its derivative. We will describe the method first in R1 and
then extend it to Rn.

The idea behind the Newton method is as follows: Calculate the tangent g(x) of f at point
x(i), which is the line given by

g(x) = f(x(i)) + f ′(x(i))(x− x(i)).

Then, choose x(i+1) as the root of g, which means

f(x(i)) + f ′(x(i))(x(i+1) − x(i)) = 0⇒ f ′(x(i))x(i+1) = f ′(x(i))x(i) − f(x(i)).

Solving for x(i+1) then yields

x(i+1) = x(i) − f(x(i))

f ′(x(i))

The idea is illustrated in Figure 5.4.

f(x)

xx(i)x(i+1)

Figure 5.4: Newton Method

Formally, the algorithm in R1 is as follows.

118 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

Algorithm 5.10 (Newton’s method) Given a function f : R → R, its derivative f ′ :
R→ R, an initial value x(0) ∈ R, and a desired accuracy ε > 0. Set i = 0.

(1) Calculate x(i+1) = x(i) − f(x(i))

f ′(x(i))

(2) If |x(i+1) − x(i)| < ε, terminate the algorithm;
otherwise, set i = i+ 1 and return to step (1).

The following example demonstrates the progress of the Newton method for the previously
known example in Example 5.5.

Example 5.11 Consider the function f(x) = x2 − 2 with f ′(x) = 2x and the root x∗ =√
2 ≈ 1.4142135623731. The iteration formula for Newton’s method is:

x(i+1) =
1

2
x(i) +

1

x(i)

Let’s start with the initial value x(0) = 2. The iterations yield (correct decimals are
underlined):

x(1) = 1
2 · 2 + 1

2 = 3
2 = 1.5

x(2) = 1
2 ·

3
2 + 1

3
2

= 17
12 = 1.416

x(3) = 1
2 ·

17
12 + 1

17
12

= 577
408 ≈ 1.4142156862745

x(4) = 1
2 ·

577
408 + 1

577
408

= 665857
470832 ≈ 1.4142135623746

In contrast to the bisection method, the Newton method can be extended to systems of
nonlinear equations in Rn. To this end, we have to find a meaningful generalization of the
one-dimensional iteration formula of the Newton method for f : R→ R, i.e. for

x(i+1) = x(i) − f(x(i))

f ′(x(i))
.

Let f : Rn → Rn be a vector-valued function. The derivative at a point x ∈ Rn, denoted
as usual by Df(x), is now not a real number but a matrix.

Certainly, we cannot simply substitute Df(x(i)) into the iteration formula for x(i+1), as we
cannot divide by a matrix. So, instead of dividing by Df(x(i)), we multiply by its inverse,
which means we calculate [Df(x(i))]−1f(x(i)). This leads to the following algorithm.

Algorithm 5.12 (Newton’s method in Rn, Version 1) Given a function f : Rn → Rn,
its derivative Df : Rn → Rn×n, an initial value x(0) ∈ Rn, and a desired accuracy ε > 0.
Set i = 0.

(1) Calculate x(i+1) = x(i) − [Df(x(i))]−1f(x(i))

5.4. THE NEWTON METHOD 119

(2) If ‖x(i+1) − x(i)‖ < ε, terminate the algorithm; otherwise, set i = i+ 1 and return to
step (1).

We illustrate the process of this algorithm with the following example.

Example 5.13 We are looking for a solution to the nonlinear system of equations:

x2
1 + x2

2 = 1

x1 = 0

This is equivalent to finding a root x∗ ∈ R2 of the function f : R2 → R2 given by:

f(x) =

(
x2

1 + x2
2 − 1

x1

)

For the desired solution x∗, we must simultaneously have f1(x∗) = 0 and f2(x∗) = 0. For
the given function f , the solution is easy to see: f1 is equal to zero when x2

1 + x2
2 = 1,

which means ‖x‖ = 1. And f2 is equal to zero when x1 = 0. Therefore, the set of
possible solutions consists of all vectors (x1, x2)T with ‖x‖ = 1 and x1 = 0, which means
x∗ = (0, 1)T or x∗ = (0,−1)T .

The partial derivatives of f1 and f2 are:

∂f1

∂x1
(x) = 2x1,

∂f1

∂x2
(x) = 2x2,

∂f2

∂x1
(x) = 1,

∂f2

∂x2
(x) = 0.

So, the Jacobian matrix Df(x) is

Df(x) =

(
2x1 2x2

1 0

)

For example, for x = (0, 1)T , the Jacobian is

Df(x) =

(
0 2
1 0

)

The inverse of the Jacobian is given by

Df(x)−1 =

(
0 1
1

2x2
−x1
x2

)

With x(i) = (x
(i)
1 , x

(i)
2)T , the iteration formula is then given by

x(i+1) = x(i) −




0 1

1

2x
(i)
2

−x
(i)
1

x
(i)
2



(

(x
(i)
1)2 + (x

(i)
2)2 − 1

x
(i)
1

)
.

120 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

With an initial value of x(0) = (1, 1)T , we obtain the following iterations (correct decimal
places are underlined)

x(1) =

(
1
1

)
−
(

0 1
1
2 −1

)(
1
1

)
=

(
0
3
2

)
=

(
0

1.5

)

x(2) =

(
0
3
2

)
−
(

0 1
1
3 0

)(
5
4
0

)
=

(
0
13
12

)
=

(
0

1.083

)

x(3) =

(
0
13
12

)
−
(

0 1
6
13 0

)(
25
144
0

)
=

(
0

313
312

)
≈

(
0

1.0032051282

)

x(4) =

(
0

313
312

)
−
(

0 1
156
313 0

)(
625

97344
0

)
=

(
0

195313
195312

)
≈

(
0

1.0000051200

)

In practice, you would not calculate [Df(x)]−1 by hand but use a numerical routine. Nu-
merically, however, it is not very efficient to compute the inverse of the matrix Df(x(i)).
Instead, you can solve the linear equation system Df(x(i))∆x(i) = f(x(i)), which provides
a vector ∆x(i) such that ∆x(i) = [Df(x(i))]−1f(x(i)). This leads to the following more
efficient version of the Newton method.

Algorithm 5.14 (Newton’s method in Rn, Version 2)
Given a function f : Rn → Rn, its derivative Df : Rn → Rn×n, an initial value x(0) ∈ Rn,
and a desired accuracy ε > 0. Set i = 0.

(1) Solve the system of linear equations Df(x(i))∆x(i) = f(x(i)) and calculate x(i+1) =
x(i) −∆x(i).

(2) If ‖∆x(i)‖ < ε, terminate the algorithm. Otherwise, set i = i+ 1 and go to step (1).

The following theorem shows the convergence properties of the Newton method.

Theorem 5.15 Let D be an open and convex set in Rn, and let f : D → Rn be contin-
uously differentiable with invertible Jacobian Df(x) for all x ∈ D. Assume there exists
ω > 0 such that the following affine-invariant Lipschitz condition holds:

‖Df(x)−1(Df(x+ sv)−Df(x))v‖ ≤ sω‖v‖2

for all s ∈ [0, 1], all x ∈ D, and all v ∈ Rn with x+ v ∈ D. Let x∗ ∈ D be a root of f .

Then, for all initial values x(0) ∈ Rn with

ρ := ‖x∗ − x(0)‖ < 2

ω
and Bρ(x

∗) = {x ∈ Rn | ‖x− x∗‖ < ρ} ⊆ D,

5.4. THE NEWTON METHOD 121

the iterates x(i) generated by Newton’s method remain in the ball Bρ(x
∗) for all i ∈ N and

converge to x∗, i.e.,

‖x(i) − x∗‖ < ρ for all i > 0 and lim
i→∞

x(i) = x∗.

The convergence rate can be estimated as follows:

‖x(i+1) − x∗‖ ≤ ω

2
‖x(i) − x∗‖2,

meaning that the method converges locally quadratically. Furthermore, from the given
conditions, it follows that x∗ is the unique root in B2/ω(x∗).

Proof: First, we prove the following auxiliary statement for all x, y ∈ D:

‖Df(x)−1(f(y)− f(x)−Df(x)(y − x))‖ ≤ ω

2
‖y − x‖2 (5.2)

To prove (5.2), we use the mean value theorem of calculus in Rn. According to this theorem,
we have:

f(y)− f(x)−Df(x)(y − x) =

∫ 1

0
(Df(x+ s(y − x))−Df(x))(y − x)ds.

Exploiting the affine-invariant Lipschitz condition, we obtain

‖Df(x)−1(f(y)− f(x)−Df(x)(y − x))‖

=

∥∥∥∥Df(x)−1

(∫ 1

0
(Df(x+ s(y − x))−Df(x))(y − x)ds

)∥∥∥∥

≤
∫ 1

0
sω‖y − x‖2ds =

ω

2
‖y − x‖2,

which proves (5.2).

Now, from the iteration formula and f(x∗) = 0, we obtain

x(i+1) − x∗ = x(i) −Df(x(i))−1f(x(i))− x∗

= x(i) − x∗ −Df(x(i))−1(f(x(i))− f(x∗))

= Df(x(i))−1(f(x∗)− f(x(i))−Df(x(i))(x∗ − x(i))).

Using (5.2), this yields:

‖x(i+1) − x∗‖ ≤ ω

2
‖x(i) − x∗‖2,

which proves the claimed estimate. If ‖x(i) − x∗‖ < ρ holds, then

‖x(i+1) − x∗‖ ≤ ω

2
‖x(i) − x∗‖ ‖x(i) − x∗‖ < ρω/2︸ ︷︷ ︸

<1

‖x(i) − x∗| < ρ,

122 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

which means that for ‖x(0)− x∗‖ < ρ the sequence remains in Bρ(x
∗) and converges to x∗.

To prove the uniqueness of x∗ in B2/ω(x∗), let x∗∗ be another root of f in this ball. Then
‖x∗∗ − x∗‖ < 2/ω holds. Substituting this into (5.2), we get

‖x∗∗ − x∗‖ = ‖Df(x∗)−1(0− 0−Df(x∗)(x∗∗ − x∗))‖ ≤ ω

2
‖x∗∗ − x∗‖

︸ ︷︷ ︸
<1

‖x∗∗ − x∗‖,

which is only possible if x∗∗ = x∗.

Remark 5.16 If f is twice continuously differentiable with an invertible Jacobi matrix,
then the affine-invariant Lipschitz condition is always satisfied in a (sufficiently small)
neighborhood of x∗, since in this case, ‖Df(x+ sv)−Df(x)‖ ≤ Cs‖v‖ holds, from which
the given condition follows with ω = ‖Df(x)−1‖C. In this case, local quadratic convergence
(i.e., quadratic convergence for x(0) sufficiently close to x∗) is assured.

In Theorem 5.15, we used the assumption ”‖x∗ − x(0)‖ ≤ 2/ω”. This is not a condition
introduced solely for proof purposes: In fact, there can be situations where the Newton
method does not converge or converges very slowly with an unsuitable initial value x(0).
The following example illustrates this.

Example 5.17 Consider the function f(x) = 5x/4 − x3/4 with derivative f ′(x) = 5/4 −
3x2/4. Clearly, this function has a zero at x∗ = 0 with f ′(0) = 5/4 6= 0, and it is infinitely
continuously differentiable. The iteration formula in this case is given by

x(i+1) = x(i) − 5x(i)/4− (x(i))3/4

5/4− 3(x(i))2
=

2(x(i))3

−5 + 3(x(i))2
.

With the initial value x(0) = 1, we obtain

x(1) = −1,

x(2) = 1,

x(3) = −1,

x(4) = 1,

...

The method oscillates indefinitely between 1 and −1 and does not converge.

Thus, the method is indeed only locally convergent, emphasizing the importance of having
a reasonable initial value x(0) for the iteration. In the book by Deuflhard/Hohmann, a
method is described to identify early on whether convergence is likely or not.

A significant drawback of the Newton method is the requirement for the derivative of
the function f in the iteration formula. In practice, the derivative can be replaced by
a suitable numerical approximation, avoiding the explicit computation of Df(x(i)). For

5.5. THE SECANT METHOD 123

instance, replacing f ′(x) with (f(x + f(x)) − f(x))/f(x) yields the so-called Steffensen
method in R1.

The Newton method can also be used to find extremal points of functions g : Rn → R
by setting f := ∇g : Rn → Rn. In this case, the Jacobi matrix Df equals the Hessian
matrix D2g, and to avoid the exact computation of D2g, the so-called BFGS method can
be employed. Iteratively, approximations B(i) ≈ D2g(x(i)) are generated from an initial
estimate B(0) ≈ D2g(x(0)).

Since the numerical approximation of derivatives is generally sensitive to rounding errors,
the numerical stability of such methods must be carefully examined, preferably with addi-
tional information about f .

In the next section, we will study an alternative derivative-free method that works in R1

in more detail.

5.5 The Secant Method

The secant method is another method that works only in R1. It is similar to but slightly
different from Newton’s method, as the new approximation x(i+1) is calculated not only
from x(i) but also from the two preceding values x(i−1) and x(i).

First, we provide an intuitive description, followed by the formal one.

The idea behind this method is as follows: initially, we consider the secant line g(x) through
f(x(i−1)) and f(x(i)), which means the line:

g(x) = f(x(i)) +
(x(i) − x)

x(i) − x(i−1)

(
f(x(i−1))− f(x(i))

)

We then choose x(i+1) as the root of this line, so:

0 = f(x(i)) +
(x(i) − x(i+1))

x(i) − x(i−1)

(
f(x(i−1))− f(x(i))

)

⇔ x(i) − x(i+1) = −f(x(i))
x(i) − x(i−1)

f(x(i−1))− f(x(i))

⇔ x(i+1) = x(i) − f(x(i))
x(i) − x(i−1)

f(x(i))− f(x(i−1))

The idea is graphically illustrated in Figure 5.5.

Formally, the method can be described as follows.

Algorithm 5.18 (Secant Method) Let f : R → R be a function, and let x(0) ∈ R,
x(1) ∈ R, and a desired accuracy ε > 0 be given. Set i = 1.

(1) Calculate x(i+1) = x(i) − (x(i) − x(i−1))f(x(i))

f(x(i))− f(x(i−1))

124 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

xi x

f(x)

xi+1
xi-1

Figure 5.5: Secant Method

(2) If |x(i+1) − x(i)| < ε, end the algorithm. Otherwise, set i = i+ 1 and go to (1).

The following theorem shows the convergence order of this method.

Theorem 5.19 Let f : R → R be twice continuously differentiable with f(x∗) = 0, and
let x(0) and x(1) be sufficiently close to x∗. Furthermore, assume f ′(x∗) 6= 0. Then, the
secant method converges superlinearly.

Sketch of proof: When x(i) and x(i−1) are sufficiently close to x∗, the Taylor expansion
of f around x∗ yields the estimate:

f(x(i))− f(x(i−1)) ≈ f ′(x∗)(x(i) − x(i−1)) (5.3)

and for j = i− 1 and j = i, we have the approximations:

f(x(j)) ≈ f ′(x∗)(x(j) − x∗) +
1

2
f ′′(x∗)(x(j) − x∗)2. (5.4)

From the iteration formula, we obtain the equation:

x(i+1) − x∗ =
(x(i−1) − x∗)f(x(i))− (x(i) − x∗)f(x(i−1))

f(x(i))− f(x(i−1))
.

Using (5.3), we get the approximation for the denominator:

f(x(i))− f(x(i−1)) ≈ f ′(x∗)(x(i) − x(i−1))

5.5. THE SECANT METHOD 125

and using (5.4), we obtain for the enumerator:

(x(i−1) − x∗)f(x(i))− (x(i) − x∗)f(x(i−1))

≈ (x(i−1) − x∗)
(
f ′(x∗)(x(i) − x∗) +

1

2
f ′′(x∗)(x(i) − x∗)2

)

− (x(i) − x∗)
(
f ′(x∗)(x(i−1) − x∗) +

1

2
f ′′(x∗)(x(i−1) − x∗)2

)

=
1

2
f ′′(x∗)(x(i−1) − x∗)(x(i) − x∗)

(
(x(i) − x∗)− (x(i−1) − x∗)

)

=
1

2
f ′′(x∗)(x(i−1) − x∗)(x(i) − x∗)(x(i) − x(i−1)).

Thus, we have:

|x(i+1) − x∗| ≈ 1

2

∣∣∣∣
f ′′(x∗)
f ′(x∗)

∣∣∣∣ |x(i−1) − x∗|
︸ ︷︷ ︸

≈ ci

|x(i) − x∗|

and this proves the claimed superlinear convergence.

We repeat Example 5.5 and 5.11 for this method.

Example 5.20 Consider once again the function f(x) = x2 − 2 with a root x∗ =
√

2 ≈
1.4142135623731. The iteration formula for the Secant method is given by

x(i+1) = x(i) − (x(i) − x(i−1))((x(i))2 − 2)

(x(i))2 − (x(i−1))2

= x(i) − (x(i) − x(i−1))((x(i))2 − 2)

(x(i) − x(i−1))(x(i) + x(i−1))

= x(i) − (x(i))2 − 2

x(i) + x(i−1)
.

With x(0) = 2 and x(1) = 1, we obtain the following values (correct decimal places are
underlined):

x(2) = 1− 12−2
1+2 = 4

3 = 1.3

x(3) = 4
3 −

(4
3)

2−2
4
3

+1
= 10

7 = 1.4285714

x(4) = 10
7 −

(10
7)

2−2
10
7

+ 4
3

= 41
29 ≈ 1.4137931034483

x(5) = 41
29 −

(41
29)

2−2
41
29

+ 10
7

= 816
577 ≈ 1.4142114384749

x(6) = 816
577 −

(816
577)

2−2
816
577

+ 41
29

= 66922
47321 ≈ 1.4142135626889

The Secant method converges significantly faster than linear but slower than the Newton
method.

126 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

The Secant method is also locally convergent, meaning that the initial values must be
sufficiently close to x∗ to guarantee convergence of the method. In such cases, the Bisection
method can be a useful strategy to find good initial values near x∗. A strategy of this kind
is employed, for instance, in the root-finding routine fzero in MATLAB.

5.6 The Gauss-Newton Method for Nonlinear
Least Squares Problems

To conclude this chapter, we want to revisit the least squares problem introduced in Section
2.1. We initially considered the linear least squares problem, which we will summarize here
with slightly different notation:

Given a matrix A ∈ Rm×n with m > n and a vector z ∈ Rm, find the vector x ∈ Rn that
minimizes the squared norm:

‖Ax− z‖22

In our theoretical analysis, we found that this vector x is the solution to the normal
equations:

ATAx = AT z

These equations represent a “standard” linear system in Rn and can be solved numerically,
for example, using the Cholesky decomposition.

For numerical solutions, we also introduced the QR decomposition in Algorithm 2.21, which
leads to a factorization A = QR with:

R =

(
R
0

)

where R ∈ Rn×n is an upper triangular matrix. We can then compute the vector x through
backward substitution. This approach is often computationally more robust than solving
the normal equations, especially when the matrix ATA is ill-conditioned.

However, the normal equations provide a way to theoretically analyze the solutions of the
linear least squares problem. To this end, we introduce the following definition.

Definition 5.21 Let m ≥ n, and A ∈ Rm×n be a full-rank matrix. We define the pseudo
inverse A+ ∈ Rn×m of A as

A+ = (ATA)−1AT .

It is easy to see that the solution to the linear least squares problem min ‖Ax− z‖22 can be
expressed as

x = A+z.

This equivalence holds because

x = A+z ⇐⇒ x = (ATA)−1AT z ⇐⇒ ATAx = AT z.

In other words, x = A+z solves the normal equations.

5.6. THE GAUSS-NEWTONMETHOD FORNONLINEAR LEAST SQUARES PROBLEMS127

Remark 5.22 One can verify that A+ = (ATA)−1AT ∈ Rn×m satisfies the following
properties, known as the Penrose axioms.

(i) (A+A)T = A+A (ii) (AA+)T = AA+

(iii) A+AA+ = A+ (iv) AA+A = A

In fact, A+ is the unique n × m matrix that satisfies these axioms: For any matrix A+

that satisfies these axioms, the linear mappings P := A+A and P := AA+ are orthogonal

projections, i.e., they satisfy P T = P = P 2 and P
T

= P = P
2
. From (iv) it follows that

PA = A, which means the image of P contains the image of A. However, since imA has
dimension rkA = n, and P as the product of an n×m and an m× n matrix has an image
with dimension ≤ n, the images must coincide. Since for an orthogonal projection, the
image and kernel are orthogonal to each other (because for x ∈ imP , y ∈ kerP , we have

〈x, y〉 = 〈Px, y〉 = 〈x, P T y〉 = 〈x, Py〉 = 〈x, 0〉 = 0), P is uniquely determined by its image
and therefore independent of the choice of A+.

Furthermore, A+ is surjective because from (iv) and the dimension of A+, we have

n = dim imA = dim imAA+A ≤ dim imA+ ≤ n.

From (iii) it follows that PA+ = A+, so dim imP = n, and thus P = Id. Therefore, P is
independent of A+, too. If A+

1 and A+
2 are two matrices that satisfy the four axioms, then

it must hold that A+
1 A = P = A+

2 A and AA+
1 = P = AA+

2 . This implies

A+
1

(iii)
= A+

1 A︸ ︷︷ ︸
=A+

2 A

A+
1 = A+

2 AA+
1︸ ︷︷ ︸

=AA+
2

= A+
2 AA

+
2

(iii)
= A+

2 .

Remark 5.23 The pseudoinverse can be represented using the singular value decompo-
sition of the matrix A. This states that for every matrix A ∈ Rm×n, there exist two
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n (i.e., UTU = Id, V TV = Id) and a matrix
S ∈ Rm×n in which only the diagonal elements sii can take non-zero values, which satisfy

A = USV T .

The diagonal entries of S are unique (up to permutation) and coincide with the square
roots of the eigenvalues of the matrix ATA, called the singular values of A. A proof for the
existence of U , S, and V as described above can be found in many linear algebra textbooks,
e.g., in [6].

Since U and V are invertible as orthogonal matrices, the matrix A has full rank if and only
if matrix S has full rank, which in turn happens if and only if all diagonal elements satisfy
sii 6= 0. Thus, STS is a square diagonal matrix with entries s2

ii, so (STS)−1 is a diagonal
matrix with entries 1/s2

ii, and S+ = (STS)−1S has non-zero entries s+
ii = 1/sii. Therefore,

the pseudoinverse of A is given by

A+ = (ATA)−1AT = ((USV T)TUSV T)−1(USV T)T

= (V STUTUSV T)−1V SUT = V (STS)−1V TV SUT = V S+UT .

128 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

The computation of the pseudoinverse through the singular value decomposition is numer-
ically more stable than using the formula from Definition 5.21. However, as we will see
in the following, we can completely avoid the explicit use of A+ when solving nonlinear
least squares problems. The pseudoinverse A+ primarily simplifies the theoretical repre-
sentation of the solution to the least squares problem. It plays an important role in the
generalization of the problem to the nonlinear least squares problem.

The nonlinear least squares problem, like in the linear case, is given as a minimization
problem. For D ⊆ Rn and m > n, consider a twice continuously differentiable mapping

f : D → Rm

and aim to solve the problem

minimize g(x) := ‖f(x)‖22 over x ∈ D (5.5)

As in the linear least squares problem, the interpretation and application of this problem
are as follows: Let zi be measurements corresponding to parameters ti for i = 1, . . . ,m.
Based on theoretical considerations (e.g., an underlying physical law), it is known that there
exists a function h : R × Rn → R such that the (ideal) measurements for an appropriate
parameter vector x∗ ∈ Rn satisfy the equation h(ti, x

∗) = zi. With

f(x) =



h(t1, x)− z1

...
h(tm, x)− zm




the equation f(x∗) = 0 would hold. However, since we must consider measurement errors,
this equation is typically only approximately satisfied. Therefore, we seek a solution to the
least squares problem (5.5).

An example of such an application is provided by data for population growth. Here,
under ideal conditions and with unbounded resources, an exponential growth of the form
z = h(t, x) = x1e

x2t is expected, which is a nonlinear function of x = (x1, x2)T . In case
resources are limited, the logistic growth given by

h(t, x) =
x3

1 +
(
x3
x1
− 1
)

exp(−x2t)

with x = (x1, x2, x3)T is usually more appropriate. We will show in the lecture how well
these functions match real data of the human population on earth.

We will first derive the algorithm for solving nonlinear least squares problems informally,
then write it down formally, and finally formulate and prove the exact convergence prop-
erties.

In solving the problem (5.5), we consider only local minima within the interior of D,
excluding minimum points on the boundary ∂D. Furthermore, we restrict ourselves to
local minima x∗ ∈ D of g : Rn → R that satisfy the sufficient conditions

Dg(x∗) = 0 and D2g(x∗) is positive definite (5.6)

5.6. THE GAUSS-NEWTONMETHOD FORNONLINEAR LEAST SQUARES PROBLEMS129

The derivative of g(x) = ‖f(x)‖22 = f(x)T f(x) satisfies

Dg(x)T = 2Df(x)T f(x),

so to find candidate minimum points, we need to solve the nonlinear equation system

G(x) := Df(x)T f(x) = 0 (5.7)

If we use the Newton’s method for this purpose, we obtain the iteration x(i+1) = x(i)−∆x(i)

with iteratively solvable equation systems

DG(x(i))∆x(i) = G(x(i)), i = 0, 1, 2, . . . , (5.8)

where
DG(x) = Df(x)TDf(x) +D2f(x)T f(x).

If a local minimum x∗ with (5.6) exists, then DG(x) = 1
2D

2g(x)T is positive definite at
x = x∗, and therefore also for all x in a neighborhood of x∗. This implies that DG(x) is
invertible, and the Newton’s method is applicable.

If the least squares problem is indeed a solvable system of equations (i.e., in the above
interpretation, there are no measurement errors), then f(x∗) = 0, and the problem is
called compatible. In this case, we have

DG(x∗) = Df(x∗)TDf(x∗).

Even though compatibility is an ideal case and rarely occurs in practice, we will assume
for simplicity that f(x∗) is approximately equal to zero for x near x∗, i.e.,

DG(x) ≈ Df(x)TDf(x)

Based on this informal consideration, we replace the derivative DG(x(i)) with the term
Df(x(i))TDf(x(i)) in the iteration scheme (5.8). This allows us to avoid using the second
derivative, resulting in

Df(x(i))TDf(x(i))∆x(i) = G(x(i)) = Df(x(i))T f(x(i)), i = 0, 1, 2, . . . (5.9)

These are precisely the normal equations for the linear least squares problem

minimize ‖Df(x(i))∆x(i) − f(x(i))‖22

with the solution
∆x(i) = Df(x(i))+f(x(i)),

which we use for the iteration. This leads to the following algorithm.

Algorithm 5.24 (Gauss-Newton Method)
Given a function f : Rn → Rm, its derivative Df : Rn → Rm×n, an initial value x(0) ∈ Rn,
and a desired accuracy ε > 0, set i := 0.

(1) Solve the linear least squares problem ‖Df(x(i))∆x(i) − f(x(i))‖22 = min
and compute x(i+1) = x(i) −∆x(i)

130 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

(2) If ‖∆x(i)‖ < ε, terminate the algorithm,
otherwise set i := i+ 1 and go to (1)

Remark 5.25 Similar to how we need to solve a sequence of linear equation systems to
solve the nonlinear equation system in the Newton’s method, here we solve a sequence of
linear least squares problems to solve the nonlinear least squares problem.

The following theorem, which is a generalization of the convergence theorem 5.15 of the
Newton’s method, shows that despite the simplifications made, the algorithm converges.
Quadratic convergence, however, is achieved only in compatible problems.

Theorem 5.26 Let D ⊂ Rn be an open and convex set, and let f : D → Rm with m > n
be a continuously differentiable function whose Jacobian matrix Df(x) has full rank for
all x ∈ D. Let x∗ ∈ D be a solution of the least squares problem ‖f(x)‖22 = min in D that
satisfies (5.6). For ω > 0, assume the following affine-invariant Lipschitz condition

‖Df(x)+(Df(x+ sv)−Df(x))v‖ ≤ sω‖v‖2

holds for all s ∈ [0, 1], all x ∈ D, and all v ∈ Rn such that x + v ∈ D. Furthermore, for
0 ≤ κ∗ < 1, assume the inequality

‖Df(x)+f(x∗)‖ ≤ κ∗‖x− x∗‖ (5.10)

holds for all x ∈ D.

Then, for all initial values x(0) ∈ Rn with

ρ := ‖x∗ − x(0)‖ < 2(1− κ∗)
ω

and Bρ(x
∗) ⊆ D

the iteration sequence x(i) defined by the Gauss-Newton method for i > 0 remains in the
ball Bρ(x

∗) and converges to x∗, i.e.,

‖x(i) − x∗‖ < ρ for all i > 0 and lim
i→∞

x(i) = x∗.

The convergence rate can be estimated as

‖x(i+1) − x∗‖ ≤
(ω

2
‖x(i) − x∗‖+ κ∗

)
‖x(i) − x∗‖ =

ω

2
‖x(i) − x∗‖2 + κ∗‖x(i) − x∗‖,

i.e., the method converges locally linearly. If the problem is compatible, then κ∗ = 0 and
the method converges locally quadratically. Furthermore, under the given assumptions x∗

is the unique solution in B2(1−κ∗)/ω(x∗).

Proof: The proof proceeds similarly to the proof for the Newton’s method (Theorem 5.15).
As in that proof, from the affine-invariant Lipschitz condition we obtain the inequality

‖Df(x)+(f(y)− f(x)−Df(x)(y − x))‖ ≤ ω

2
‖y − x‖2

5.6. THE GAUSS-NEWTONMETHOD FORNONLINEAR LEAST SQUARES PROBLEMS131

for all x, y ∈ D.

Since the Jacobian matrix Df has full rank on D by assumption, the pseudoinverse
Df(x)+ = (Df(x)TDf(x))−1Df(x)T is well-defined, and we have

Df(x)+Df(x) = (Df(x)TDf(x))−1Df(x)TDf(x) = IdRn

for all x ∈ D. Thus, we obtain

x(i+1) − x∗ = x(i) − x∗ −∆x(i) = x(i) − x∗ −Df(x(i))+f(x(i))

= Df(x(i))+
(
f(x∗)− f(x(i))−Df(x(i))(x∗ − x(i))

)
−Df(x(i))+f(x∗).

From the assumptions of the theorem, we have

‖x(i+1) − x∗‖ ≤
(ω

2
‖x(i) − x∗‖+ κ∗

)
‖x(i) − x∗‖.

For ‖x(i) − x∗‖ ≤ ρ, this implies

‖x(i+1) − x∗‖ ≤
(ω

2
ρ+ κ∗

)
‖x(i) − x∗‖

with

k :=
ω

2
ρ+ κ∗ <

ω

2

2(1− κ∗)
ω

+ κ∗ = 1.

Using induction, we deduce

‖x(i) − x∗‖ ≤ ki‖x(0) − x∗‖ < ρ,

so the sequence remains in Bρ(x
∗) for all i ≥ 1, and it converges to x∗ because ki → 0 as

i→∞.

For compatible problems, f(x∗) = 0, and thus κ∗ = 0, leading to quadratic convergence.
The uniqueness follows analogously to the proof of Theorem 5.15.

Remark 5.27 The parameter κ∗ can be seen as a measure of the “non-compatibility”
of the nonlinear least squares problem. Because for x∗ from (5.6), we have the equation
0 = Dg(x∗) = 2Df(x∗)T f(x∗), and therefore

Df(x∗)+f(x∗) = (Df(x∗)TDf(x∗))−1Df(x∗)T f(x∗) = 0

which means that inequality (5.10) is satisfied for x = x∗ for all κ∗ ≥ 0, making it a real
condition only for x 6= x∗. The parameter κ∗ depends on f(x∗) and the Lipschitz constant
of Df(x)+.

From the perspective of the proof, it is easy to see that κ∗ < 1 is necessary for convergence
since this κ∗ accounts for the linear convergence factor. An in-depth analysis of the method
using statistical methods shows that for κ∗ ≥ 1 the solution x̃ = x+ ∆x can in addition be
drastically affected by arbitrarily small disturbances ‖∆z‖ in the measurements z̃ = z+∆z,
indicating that the problem is extremely ill-conditioned for κ∗ ≥ 1. Even if the method
converges in such a case, the obtained solution is likely practically unusable.

132 CHAPTER 5. SYSTEMS OF NONLINEAR EQUATION

Bibliography

[1] Deuflhard, P. ; Hohmann, A.: Numerische Mathematik. I: Eine algorithmisch ori-
entierte Einführung. 3. Auflage. Berlin : de Gruyter, 2002

[2] Hall, C. A. ; Meyer, W. W.: Optimal Error Bounds for Cubic Spline Interpolation.
In: J. Approx. Theory 16 (1976), S. 105–122

[3] Kloeden, P. E.: Einführung in die Numerische Mathematik. Vorlesungsskript, J.W.
Goethe–Universität Frankfurt am Main, 2002

[4] Lempio, F.: Numerische Mathematik I: Methoden der Linearen Algebra. Bayreuther
Mathematische Schriften, Band 51, 1997

[5] Lempio, F.: Numerische Mathematik II: Methoden der Analysis. Bayreuther Mathe-
matische Schriften, Band 56, 1998

[6] Liesen, J. ; Mehrmann, V.: Lineare Algebra. Wiesbaden : Vieweg+Teubner Verlag,
2012

[7] Oevel, W.: Einführung in die Numerische Mathematik. Spektrum Verlag, Heidelberg,
1996

[8] Schwarz, H. R. ; Köckler, N.: Numerische Mathematik. 5. Auflage. Stuttgart : B.
G. Teubner, 2004

[9] Stoer, J.: Numerische Mathematik I. 9. Auflage. Springer Verlag, Heidelberg, 2005

133

Index

a posteriori error estimator, 100
absolute error, 18
adaptive integration, 99
adaptive Romberg quadrature, 99
affine-invariant Lipschitz condition, 130
asymptotic expansion, 94

backward substitution, 8
Banach’s fixed-point theorem, 33, 107
barycentric coordinates, 48
Bernoulli numbers, 94
BFGS method, 123
bisection method, 110

cancellation
subtractive, 21

CG method, 43
Chebyshev nodes, 64
Chebyshev polynomials, 64
Cholesky method, 13
coefficients

Fourier, discrete, 76
polynomial, 46
trigonometric polynomial, 73

column sum norm, 16
computational effort, 29–32, 40–41
condition

nonlinear least squares problem, 131
numerical, 23

conjugate gradient method, 43
convergence

linear, 112
order, 112
quadratic, 113
superlinear, 112

defect, 15
degree of a polynomial, 46
DFT, 76

discrete Fourier coefficients, 76

discrete Fourier transform, 76

inverse, 76

divided differences, 51, 54

elimination method, 9

with pivot search, 21

with pivoting, 9

equation system

linear, 5

error

absolute, 18

relative, 18

error estimator, 100

Euler-McLaurin formula, 94

extrapolation, 95

extrapolation scheme, 96

fast Fourier transform, 77

filtering, 79

fixed point, 107

fixed-point iteration, 108

forward substitution, 10

frequency analysis, 79

Gauss-Legendre rule, 91

Gauss-Newton method, 129

Gauss-Seidel method, 37

Gaussian elimination method, 9

with pivot search, 21

with pivoting, 9

Gaussian quadrature, 90

choice of weights, 91

error, 93

Hermite interpolation, 55

Hermite-Genocchi formula, 58

Horner’s scheme, 55

Householder algorithm, 27

134

INDEX 135

ill-conditioned matrices, 19
induced matrix norm, 15
integration

error, 89
interpolation

error, 45, 57
splines, 72

of data, 45
of functions, 45
trigonometric, 73

iterative methods, 33

Jacobi method, 36

Lagrange polynomials, 47
efficient implementation, 48

Landau symbol, 95
least squares

linear, 28
least squares estimation

linear, 6
least squares problem

nonlinear, 128
linear convergence, 112
low-pass filter, 79
lower triangular matrix, 10
LR factorization, 10

machine-representable numbers, 15
matrix norm, 15

induced, 15
Milne’s rule, 89

Newton scheme, 51
Newton’s method

multidimensional, 120
Newton-Cotes formulas

composite, 88
error, 89

nonlinear least squares problem, 128
norm, 15
normal equations, 7
numerical condition, 23

order
effort, 32

order of Convergence
overview, 115

order of convergence
definition, 112
graphical representation, 114
number of correct digits, 115

orthogonal matrices, 23
orthogonal polynomials, 61

recursive equation, 62

permutation matrix, 11
piecewise polynomial, 67
pivot element, 10
pivot search, 21
pivoting, 9
polynomial interpolation, → interpolation,

46
positive definite matrix, 12
preconditioning, 22
pseudo inverse, 126

QR factorization, 27
for least squares, 28

quadratic convergence, 113

relative error, 18
relaxation method, 41
residual, 15
Romberg quadrature

adaptive, 99
rounding errors, 15
row sum norm, 16
Runge function, 61

scalar product, 13
for polynomials, 61

secant method, 123
Simpson’s rule, 89
single step method, 37
singular value decomposition, 127
singular values, 127
SOR method, 42
sparse matrix, 41
spectral norm, 16
Spline

cubic, 68
spline, 67

boundary conditions, 68
spline interpolation, 67

136 INDEX

square root, 107
Steffensen method, 123
subtractive cancellation, 21
superlinear convergence, 112
support points, 45
symmetric matrix, 12
system of equations

nonlinear, 107
system of linear equations, 5
system of nonlinear equation, 107

total step method, 36
trapezoidal rule, 89
triangular matrix, 7
trigonometric interpolation, 73
trigonometric polynomial, 73

Vandermonde matrix, 75
vector norm, 15

weight function, 61, 91

	Preface
	Introduction
	Correctness
	Efficiency
	Robustness and Condition
	Mathematical Techniques

	Systems of linear equations
	An Application: Least Squares Estimation
	The Gauss Elimination Method
	LR Factorization
	The Cholesky Method
	Error Estimation and Condition Numbers
	QR Factorization
	Computational Effort
	Iterative Methods
	Gauss-Seidel and Jacobi Methods
	Relaxation
	The Conjugate Gradient Method

	Interpolation
	Polynomial Interpolation
	Lagrange Polynomials and Barycentric Coordinates
	Condition
	The Newton Scheme

	Hermite Interpolation
	Error Estimates

	Function Interpolation and Orthogonal Polynomials
	Orthogonal Polynomials

	Spline Interpolation
	Trigonometric Interpolation
	Interpolation with Trigonometric Polynomials
	Fast Fourier Transform
	Applications

	Integration
	Newton-Cotes Formulas
	Composite Newton-Cotes Formulas
	Gaussian Quadrature
	Romberg Extrapolation
	Adaptive Romberg Quadrature
	Higher-Dimensional Integration

	Systems of Nonlinear Equation
	Fixed-Point Iteration
	The Bisection Method
	Order of Convergence
	The Newton Method
	The Secant Method
	The Gauss-Newton Method for Nonlinear Least Squares Problems

	Literaturverzeichnis
	Index

