set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ **visualization:** $V_2(\overrightarrow{A}) =$ **positive** and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \frac{1}{4}$

9

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ **visualization:** $V_2(\overrightarrow{A}) =$ **positive** and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \frac{1}{2}$

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ **visualization:** $V_2(\overrightarrow{A}) =$ **positive** and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \frac{3}{4}$

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ **visualization:** $V_2(\overrightarrow{A}) =$ origin and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \mathbf{1}$

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = rB_1(0)$ visualization: $V_2(\vec{A}) =$ only mixed-type part 1.5 0.5 -0.5 -1 -1.5 -2L -2 -1 0 Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \frac{5}{4}$

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ **visualization:** $V_2(\overrightarrow{A}) =$ origin and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \sqrt{2}$

9

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: **data:** $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ **visualization:** $V_2(\overrightarrow{A}) =$ negative and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \mathbf{2}$

9

set difference $\overrightarrow{A} := J_2(C) - J_2(D)$: data: $C = [-1, 1]^2$ and $D = \mathbf{r}B_1(0)$ visualization: $V_2(\overrightarrow{A}) =$ negative and mixed-type part

Figure: difference of directed sets $J_2([-1,1]^2) - J_2(\mathbf{r}B_1(0))$, $\mathbf{r} = \frac{5}{2}$

) Q (*