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Mathematisches Institut

Fakultät für Mathematik und Physik
Universität Bayreuth

95440 Bayreuth
lars.gruene@uni-bayreuth.de

http://num.math.uni-bayreuth.de

Lecture Notes

Winter Semester 2020/2021





Preface

These lecture notes were written for a course with the same name held in the winter
semester 2020/2021 at the University of Bayreuth, Germany. Chapters 1–7 deal with
topics from linear control theory, while Chapters 8–14 provide an introduction into Model
Predictice Control for nonlinear systems. This is the first edition of these lecture notes
written entirely in English.

Parts of the first part of these notes were written on the basis of the lecture notes [3], the
textbooks [20] and [15], as well as the monograph [12], which were extensively used also
when they are not explicitly cited. The chapters on Model Predictive Control are revised
excerpts from the monograph [9]. As usual, I would like to thank all students who reported
errors and inaccuracies in these notes during the lecture.

The most recent version of these lecture notes is always available via my home page (Google:
Lars Gruene). The corresponding exercises (currently only available in German) can be
found in the e-learning-system of the University of Bayreuth. Guest access can be provided
if you send me an email to lars.gruene@uni-bayreuth.de.

Bayreuth, April 2021 Lars Grüne
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Chapter 1

Basics

Control systems are dynamical systems in continuous or discrete time, which depend on
a parameter u ∈ Rm, which may change with time and/or depending on the state of the
system. This parameter has different interpretations. It can be considered as a control
input, i.e., as a value that can be actively controlled from the outside (e.g., acceleration of
a vehicle, investment into a firm) or as a perturbation that acts on a system (e.g., uneven
road surface, time-varying exchange rates). The mathematical area that studies these
systems is called control theory. Here, “control” is not to be understood in the sense of
supervision but rather in the sense of taking influence on a system from the outside. One
also talks about open-loop control if u only depends on time, and about closed-loop control
or regulation if u depends on the current state of the system. In addition to Mathematical
Control Theory one also uses the term Mathematical System Theory.

1.1 Linear Control Systems

In this lecture we will consider control systems in continuous and discrete time. In contin-
uous time, control systems are described by ordinary or partial differential equations. In
this lecture we mostly limit ourselves to ordinary differential equations. In this case, the
control system is given by the equation

ẋ(t) = f(t, x(t), u(t)). (1.1)

The variable t ∈ R in this equation will always be interpreted as time and the notation
ẋ(t) is short for the derivative with respect to time d/dt x(t). The quantity x(t) ∈ Rn is
called the state of the equation at time t and u(t) ∈ Rm is called the control value or the
control input at time t. The map f : R × Rn × Rm → Rn is called vector field. Both f
and the control function u : R → Rm have to fulfil certain regularity properties in order
to guarantee that the solutions of (1.1) exist and are unique. We will not consider this
problen at this stage in full generality, because in the first part of the lecture we will only
look at a special case of control systems, which allow for a simpler treatment than the
general case.

1
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In discrete time the general model is given by the map

x(k + 1) = f(k, x(k), u(k)). (1.2)

In this equation k ∈ N is an abstract time index and f : N × Rn × U → Rn is called the
transition map. The abstract time index k usually stands for a real time tk ∈ R, often
of the form tn = nT for a fixed T > 0. A discrete-time control system can ba obtained
from the behaviour of a continuous-time model at the discrete time instants tk — this
procedure is called sampling and the resulting discrete-time system is called sampled-data
system.1. In this case there are different ways do choose U . For instance, u(k) could be
a constant control value from Rm, which is applied to the continuous-time system during
the time interval [tk, tk+1). In this case U = Rm is a set of (vector valued) control values.
The symbol u(k) could, however, also stand for a time-varying control function, which is
applied to the continuous-time system on the interval[tk, tk+1). In this case U is a set of
functions.

Almost all results presented in this lecture hold for continuous-time and discrete-time
control systems alike. However, we will usually only provide the proof for one of the two
cases. In the first part of the lecture we will usually give the proofs for the continuous-time
case, while in the second part we will usually provide proofs for discrete-time systems.

In the forst part of this lecture we will consider the following particular class of control
systems.

Definition 1.1 A linear time invariant control system in continuous time is given by the
differential equation

ẋ(t) = Ax(t) +Bu(t) (1.3)

with A ∈ Rn×n and B ∈ Rn×m. In discrete time it is given by the equation

x(k + 1) = Ax(k) +Bu(k) (1.4)

with A ∈ Rn×n and a linear map B : U → Rn.

This class of control systems is particularly simple, since the right hand side is linear in
x and u and, moreover, does not explicitly depend on t. Yet, it is already rich enough
to describe a large number of real processes, e.g., in technical applications. Indeed, in
engineering practice very often linear models are used, although not always in the form
(1.3) (we will see an important extension later on in this lecture).

In order to illustrate why the class (1.3) can yield a sufficiently accurate modelling, we
consider a model from mechanics, namely an inverted rigid pendulum fixed on a cart, cf.
Figure 1.1.

The control u here is the acceleration of the cart. By means of physical laws an “exact”2

1A formal definition of the sampled-data system is contained in Section 8.2.
2The model (1.5) is not really exact, since it is already simplified: We have assumed that the pendulum

is so light that it does not influence the motion of the cart. Moreover, a number of constants was chosen
such that they cancel each other.
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Figure 1.1: Schematic illustration of a pendulum on a cart

differential equation model can be derived .

ẋ1(t) = x2(t)

ẋ2(t) = −kx2(t) + g sinx1(t) + u(t) cosx1(t)

ẋ3(t) = x4(t)

ẋ4(t) = u

 =: f(x(t), u(t)) (1.5)

In this model the state vector x ∈ R4 consists of 4 components: x1 represents the angle φ
of the pendulum (cf. Fig. 1.1), which increases in counterclockwise direction, where x1 = 0
corresponds to the upright pendulum. x2 is the angular velocity, x3 the position of the cart
and x4 its velocity. The constant k is a measure for the friction in the model (the larger k
the more friction) and g ≈ 9.81m/s2 is the gravitational constant.

Obviously (1.5) is of the form (1.1). It is not of the form (1.3), though, since the nonlinear
functions sin and cos cannot be written using the matrices A and B (note that A And B
may only contain constant coefficients, i.e. the entries of these matrices may not depend
on x).

Nevertheless, a linear model of the form (1.3) can be used in order to approximate (1.5)
near certain points. This procedure, which is called linearisation, is possible near points
(x∗, u∗) ∈ Rn × Rm in which f(x∗, u∗) = 0 holds. In these points we can obtain a system
of the form (1.3) by defining A and B as

A :=
∂f

∂x
(x∗, u∗) and B :=

∂f

∂u
(x∗, u∗).

If f is continuously differentiable, we have

f(x+ x∗, u+ u∗) = Ax+Bu+ o(‖x‖+ ‖u‖),

i.e., for x ≈ 0 and u ≈ 0 the values of f(x+x∗, u+u∗) and Ax+Bu are very similar. One
can now prove that this similarity of values implies a similarity of the solutions of (1.1)
and (1.3) (appropriately shifted), as long as they stay close to (x∗, u∗).3

3A mathematically exact formulation of the statement can be found as Satz 4.5 in [8].
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For our example we apply linearisation to the equilibrium (x∗, u∗) = (0, 0), which corre-
sponds to the upright or inverted position of the pendulum. For this equilibrium, the above
computation yields a system if the form (1.3) with

A =


0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

 and B =


0
1
0
1

 (1.6)
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Figure 1.2: Comparison of the solutions of (1.5) (solid) with (1.3, 1.6) (dashed)

Figure 1.1 shows a comparison of the solutions of (1.5) (solid) with the solutions of (1.3,
1.6) (dashed), all for u ≡ 0 and with k = 0.1, g = 9.81, in two different neighbourhoods of
0. Depicted are four solution curves of the form{(

x1(t)
x2(t)

) ∣∣∣∣ t ∈ [−10, 10]

}
⊂ R2.

for each of the two equations. While in the small neighbourhood on the left hand side of the
figure there is almost no visible difference between the curves, in the larger neighbourhood
on the right hand side the curves differ significantly.

1.2 Existence and Uniqueness

Whenever differential equations are considered, existence and uniqueness must be clari-
fied. We will first recall basic results for linear control systems (1.3) with u ≡ 0, i.e., for
homogeneous linear differential equations.

To this end we introduce some notation.

For a matrix A ∈ Rn×n with [A]ij ∈ R we denote the entry in the i-th rowm and the j-th
column. For A ∈ Rn×n and t ∈ R with At we denote the componentwise multiplikation,
i.e., [At]i,j = [A]ijt. For k ∈ N0 the power Ak is inductively defined via A0 := Id and
Ak+1 := AAk.
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Moreover, we need the following definition.

Definition 1.2 For a matrix A ∈ Rn×n and a real number t ∈ R the matrix exponential
is defined by

eAt :=
∞∑
k=0

Ak
tk

k!
.

The convergence of this infinite series is to be understood componentwisem, i.e. as

[eAt]ij =
∞∑
k=0

[Ak
tk

k!
]ij , n ∈ N0.

Convergence of the conponents of this series — even absolutely, i.e., in modulus — follows
from the comparison with the row sum norm

α = ‖A‖∞ = max
i=1,...,n

n∑
j=1

|[A]ij |,

since |[Ak]ij | ≤ ‖Ak‖∞ ≤ ‖A‖k∞ = αk, also∣∣∣∣[Ak tkk!
]ij

∣∣∣∣ = |[Ak]ij |
∣∣∣∣ tkk!

∣∣∣∣ ≤ αk ∣∣∣∣ tkk!

∣∣∣∣ =
(α|t|)k
k!

and thus
|[eAt]ij | ≤ eα|t|,

where the expression on the right hand side denotes the usual scalar exponential function.

Note that in general
[eAt]ij 6= e[At]ij ,

where e[At]ij is the scalar exponential.

From its definition, the matrix exponential satisfies

(i) eA0 = Id and (ii) AeAt = eAtA (1.7)

The following lemma yields another important property.
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Lemma 1.3 For arbitrary A ∈ Rn×n the function t 7→ eAt is differentiable with

d

dt
eAt = AeAt

for any t ∈ R.

Proof: Excercise

Theorem 1.4 Consider the linear differential equation

ẋ(t) = Ax(t) (1.8)

with x : R→ Rn and a given matrix A ∈ Rn×n.

Then for any initial condition of the form

x(t0) = x0 (1.9)

with t0 ∈ R and x0 ∈ Rn there exists exactly one solution x : R→ Rn of (1.8) that satisfies
(1.9). We will denote this solution by x(t; t0, x0). It is given by

x(t; t0, x0) = eA(t−t0)x0. (1.10)

Proof: We first show that the function x(t) = eA(t−t0)x0 from (1.10) satisfies both the
differential equation (1.8) and the initial condition (1.9). Lemma 1.3 yields

d

dt
x(t) =

d

dt
eA(t−t0)x0 = AeA(t−t0)x0 = Ax(t),

hence (1.8). Since (1.7)(i) we moreover obtain

x(t0) = eA(t0−t0)x0 = eA0x0 = Idx0 = x0,

i.e., (1.9).

Since this shows that (1.10) is a solution, this in particular proves existence of a solution.

It remains to show its uniqueness. To this end we first show that eAt is invertible with

(eAt)−1 = e−At. (1.11)

For each y0 ∈ Rn the function y(t) = e−Aty0 solves the differential equation ẏ(t) = −Ay(t).
By the product rule we then obtain

d

dt
(e−AteAtx0) =

d

dt
e−At(eAtx0) + e−At

d

dt
eAtx0 = −Ae−AteAtx0 + e−AtAeAtx0 = 0,

where in the last step we used (1.7)(ii). Thus, e−AteAtx0 is constant in t. This implies for
all t ∈ R and all x0 ∈ Rn the identity

e−AteAtx0 = e−A0eA0x0 = Id Idx0 = x0,
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and consequently

e−AteAt = Id ⇒ e−At = (eAt)−1.

Using (1.11) we can now show uniqueness. Let x(t) be an arbitrary solution of (1.8), (1.9).
Then

d

dt
(e−A(t−t0)x(t)) =

d

dt
e−A(t−t0)(x(t)) + e−A(t−t0)ẋ(t)

= −Ae−A(t−t0)x(t) + e−A(t−t0)Ax(t) = 0,

where we again used (1.7)(ii). Hence, e−A(t−t0)x(t) is constant in t, which for all t ∈ R
implies

e−A(t−t0)x(t) = e−A(t0−t0)x(t0) = Idx(t0) = x0.

Multiplying both sides of this identity with eA(t−t0) and using (1.11) we get

x(t) = eA(t−t0)x0.

Since x(t) was an arbitrary solution, this shows uniqueness.

A useful implication of this theorem is the following corollary.

Corollary 1.5 The matrix exponential eAt is the unique solution of the matrix differential
equation

Ẋ(t) = AX(t) (1.12)

with X : R→ Rn×n and initial condition

X(0) = Id. (1.13)

Proof: With ej we denote the j-th unit vector in Rn. A simple computation reveals that
a matrix valued function X(t) is a solution of (1.12), (1.13) if and only iff X(t)ej is a
solution of (1.8), (1.9) with t0 = 0 and x0 = ej . With this observation the assertion follows
immediately from Theorem 1.4.

The following lemma summarises further properties of the matrix exponential.

Lemma 1.6 For A,A1, A2 ∈ Rn×n and s, t ∈ R the following identities hold:

(i) (eAt)−1 = e−At

(ii) eAteAs = eA(t+s)

(iii) eA1teA2t = e(A1+A2)t falls A1A2 = A2A1

(iv) For an invertible matrix T ∈ Rn×n the equation

eT
−1ATt = T−1eAtT

holds.
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Proof: (i) This was shown in the proof of Theorem 1.4.

(ii) With (i) it follows that both eAteAse−As and eA(t+s)e−As solve the matrix valued
initial value problem (1.12), (1.13). Sincce its solution is unique by Corollary 1.5 and e−As

is invertible, the claimed identity follows.

(iii) Using the assumption A1A2 = A2A1 one checks that both expressions solve the matrix
initial value problem (1.12), (1.13) with A = A1 + A2. Hence the two expressions must
coincide because of the uniqueness of the solution provided by Corollary 1.5.

(iv) One computes that both expressions solve the matrix initial value problem (1.12),
(1.13) with T−1AT in place of A. Then again the assertion follows from the uniqueness of
this solution established in Corollary 1.5.

After these preparations we return to the linear control system (1.3). For the formulation
of an existence und uniueness theorem we need to define a suitable function space U for
the control function u(·). Certainly continuous functions would lead to an existence and
uniqueness result, but this choice would be to restrictive, because throughout this lec-
ture we will frequently need concatenations of control functions according to the following
definition.

Definition 1.7 For two functions u1, u2 : R→ Rm and s ∈ R we define the concatenation
at time s as

u1&su2(t) :=

{
u1(t), t < s
u2(t), t ≥ s

Even if u1 and u2 are continuous, u1&su2 will in general not be continuous. We thus need
a function space that is closed with respect to concatenation. There are several options for
this. The most simple one is the following.

Definition 1.8 A function u : R→ Rm is called piecewise continuous, if for any compact
interval [t1, t2] there exists a finite sequence of times t1 = τ1 < τ2 < . . . < τk = t2, such
that u|(τi,τi+1) is bounded and continuous for every i = 1, . . . , k − 1. We define U as the
space of piecewise continuous functions from R to Rm.

Obviously, U is closed with respect to concatenation, but also with respect to addition and
multiplikation (defining (u1 + u2)(t) := u1(t) + u2(t) and (u1 · u2)(t) := u1(t) · u2(t)). In
addition — and this is important for our purpose — the Riemann-Integral∫ t2

t1

u(t)dt

exists for functions u ∈ U , since in every compact interval there are at most finitely many
points of discontinuity.4

With this function space we can now formulate an existence and uniqueness result.

4An alternative to the space of piecewise constant functions is the space of Lebesgue measurable func-
tions, where the integral is then chosen as the Labesgue integral. This space will be used for nonlinear
control systems, cf. Chapter 8. For linear control systems the use of Lebesgue measurable control functions
does not carry any advantage.
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Theorem 1.9 Consider the linear control system (1.3)

ẋ(t) = Ax(t) +Bu(t)

with x : R→ Rn and given matrices A ∈ Rn×n, B ∈ Rn×m.

Then for any initial condition of the form (1.9)

x(t0) = x0

with t0 ∈ R, x0 ∈ Rn and any piecewise continuous control function u ∈ U there exists
a unique continuous function x : R → Rn that satisfies (1.9) and whose derivative exists
and satisfies (1.3) for each t, in which u is continuous. This unique function is called the
solution of (1.3), (1.9) and denoted by x(t; t0, x0, u). It is given by the formula

x(t; t0, x0, u) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds. (1.14)

Proof: We first check that (1.14) is indeed a solution in the sense described in the theorem.
In those t where u is continuous we get

d

dt

[
eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds

]
=

d

dt
eA(t−t0)x0 +

d

dt

∫ t

t0

eA(t−s)Bu(s)ds

= AeA(t−t0)x0 + eA(t−s)Bu(s)|s=t︸ ︷︷ ︸
=Bu(t)

+

∫ t

t0

AeA(t−s)Bu(s)ds

= A

(
eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds

)
+Bu(t),

i.e., (1.3). In addition we obtain

eA(t0−t0)︸ ︷︷ ︸
=Id

x0 +

∫ t0

t0

eA(t0−s)Bu(s)ds︸ ︷︷ ︸
=0

= x0,

i.e., (1.9).

It remains to show the uniqueness. To this end we consider two arbitrary solutions x(t),
y(t) of (1.3), (1.9) in the sense of the theorem. Then

ż(t) = ẋ(t)− ẏ(t) = Ax(t) +Bu(t)−Ay(t)−Bu(t) = A(x(t)− y(t)) = Az(t)

for all t in which u is continuous. Since z is continuous, ż can be extended continuously
in the points of non continuity τi of u by ż(τi) = limt→τi Az(t). We thus obtain a function
that solves the differential equation ż(t) = Az(t) for all t ∈ Rt. Since moreover

z(t0) = x(t0)− y(t0) = x0 − x0 = 0

holds, z satisfies an initial value problem of the form (1.8), (1.9), whose unique solution
according to Theorem 1.4 is given by z(t) = eAt0 = 0. Thus, x(t) = y(t) for all t ∈ R,
proving uniqueness.

A consequence from this theorem is the following corollary.
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Corollary 1.10 The solutions of (1.3), (1.9) satisfy for all t, s ∈ R the equations

x(t; t0, x0, u) = x(t; s, x(s; t0, x0, u), u)

and
x(t; t0, x0, u) = x(t− s; t0 − s, x0, u(s+ ·)).

Herein, u(s+ ·) ∈ U is defined as u(s+ ·)(t) = u(s+ t).

Proof: Follows immediately from (1.14).

Remark 1.11 Another immediate consequence from the solution formula (1.14) is the
identity

x(t; t0, x0, u) = x(t; t0, x0, 0) + x(t; t0, 0, u). (1.15)

This identity says that any solution is the superposition of an uncontrolled solution (i.e.
with control 0) and a solution without unforced dynamics (i.e. with initial value 0). It is
thus known as superposition principle.

Remark 1.12 In the following chapters we often limit ourselves to the case t0 = 0. In
this case we use the shorter notation x(t;x0, u) = x(t; 0, x0, u).

Remark 1.13 One may consider the times tn = nT and a continuous-time control system
with control functions that are constant with values uT (k) on the intervals [tk, tk+1). Then
from the solution formula (1.14) explicit formulas for the matrices AT and BT for the
corresonding sampled-data system

xT (k + 1) = ATxT (k) +BTuT (k)

can be derived. Details will be worked out in an exercise.



Chapter 2

Controllability

2.1 Definitions

An important aspect in the analysis of linear control systems of the form (1.3) is the ques-
tion about its controllability. In its most general formulation, this concerns the question
for which states x0, x1 ∈ Rn and times t1 we can find a control function u ∈ U for which
x(t1;x0, u) = x1 holds. In other words: can we link the two states by a solution trajectory
on a given time interval? Formally we define this property as follows.

Definition 2.1 Consider a linear control system (1.3).

A state x0 ∈ Rn is called controllable to a State x1 ∈ Rn at time t1 > 0, if there exists
u ∈ U with

x1 = x(t1;x0, u).

In this case, the state x1 is called reachable from x0 at time t1.

The following lemma shows that it is sufficient to consider controllability for the case
x0 = 0.

Lemma 2.2 A state x0 ∈ Rn is controllable to a state x1 ∈ Rn at time t1 > 0 if and only
if the state x̃0 = 0 is controllable to the state x̃1 = x1 − x(t1;x0, 0) at time t1.

Proof: Exercise.

This fact allows us to restrict the following definition of controllability and reachability to
the case x0 = 0.

Definition 2.3 Consider a linear control system (1.3).

(i) The reachable set (or attainable set) from a state x0 = 0 at time t ≥ 0 is given by

R(t) = {x(t; 0, u) |u ∈ U}.

11
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(ii) The controllable set to a state x1 = 0 at time t ≥ 0 is given by

C(t) = {x0 ∈ Rn | there exists u ∈ U with x(t;x0, u) = 0}.

The relation between these sets is clarified by the following lemma.

Lemma 2.4 The reachable set R(t) fpr (1.3) equals the controllability set C(t) for the
time-reversed system

ż(t) = −Az(t)−Bu(t). (2.1)

Proof: By verifying that the followiong expressions satisfy the initial value problem, whic
has a unique solution, one sees that the solutions of (1.3) and (2.1) satisfy

x(s, 0, u) = z(t− s, x(t, 0, u), u(t− ·))

for all t, s ∈ R. Hence, if x1 ∈ R(t) for (1.3) and x(s, 0, u) is the corresponding solution,
we obtain

z(0, x(t, 0, u), u(t− ·)) = x(t, 0, u) = x1 and z(t, x(t, 0, u), u(t− ·)) = x(0, 0, u) = 0,

implying x1 ∈ C(t). The converse direction follows with analogous arguments.

2.2 Analysis of controllability properties

We now want to clarify the structure of these sets. In this analysis we derive the technical
auxiliary results for R(t) and only state the main results for both R(t) and C(t).

Lemma 2.5 (i) For all t ≥ 0 the set R(t) is a subspace of Rn.

(ii) R(t) = R(s) for all s, t > 0.

Proof: (i) We have to show that for x1, x2 ∈ R(t) and α ∈ R the relation α(x1+x2) ∈ R(t)
holds. For x1, x2 in R(t) there exist control functions u1, u2 ∈ U with

xi = x(t; 0, ui) =

∫ t

0
eA(t−s)Bui(s)ds.

Hence, for u = α(u1 + u2) we obtain

x(t; 0, u) =

∫ t

0
eA(t−s)Bu(s)ds =

∫ t

0
eA(t−s)Bα(u1(s) + u2(s))ds

= α

(∫ t

0
eA(t−s)Bu1(s)ds+

∫ t

0
eA(t−s)Bu2(s)ds

)
= α(x1 + x2),
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implying α(x1 + x2) ∈ R(t). This proves (i).

(ii) We give a direct proof here. Independently of this proof the statement also follows
from Theorem 2.12.

We first show the auxiliary result

R(t1) ⊆ R(t2) (2.2)

for 0 < t1 < t2: If y ∈ R(t1), then there exists u ∈ U with

x(t1; 0, u) = y.

Then with the new control ũ = 0&t2−t1u(t1 − t2 + ·) Corollary 1.10 yields

x(t2; 0, ũ) = x(t2; t2 − t1, x(t2 − t1; 0, 0)︸ ︷︷ ︸
=0

, ũ) = x(t2; t2 − t1, 0, ũ) = x(t1; 0, u) = y,

which implies y ∈ R(t2).

Next we show that for any 0 < t1 < t2 the identity R(t1) = R(t2) implies the identity
R(t1) = R(t) for all t ≥ t1. In order to prove this, let x ∈ R(2t2 − t1), i.e. we assume that
there is u ∈ U with x = x(2t2 − t1, 0, u).

Since x(t2, 0, u) ∈ R(t2) and R(t2) = R(t1), there exists a v ∈ U with x(t1, 0, v) =
x(t2, 0, u). Defining the control function w = v&t1u(t2 − t1 + ·), Corollary 1.10 yields

x(t2, 0, w) = x(t2, t1, x(t1, 0, v)︸ ︷︷ ︸
=x(t2,0,u)

, w)

= x(t2 + t2 − t1, t1 + t2 − t1, x(t2, 0, u), w(t1 − t2 + ·)︸ ︷︷ ︸
=u(·)

)

= x(2t2 − t1, 0, u) = x.

Hence, we obtain x ∈ R(t2) and consequently R(t1) = R(t2) = R(2t2 − t1) = R(2(t2 −
t1) + t1). Repeating this construction inductively yields R(t1) = R(2k(t2 − t1) + t1) for all
k ∈ N and thus because of (2.2) the claimed assertion R(t1) = R(t) for all t ≥ t1.

Now we show the assertion (ii): For this purpose, let s > 0 be arbitrary and consider an
increasing sequence of times 0 < s0 < . . . < sn+1 = s. Then according to (2.2) the sets
R(s0), . . . ,R(sn+1) form an increasing sequence of n + 2 subspaces of Rn. In particular,
R(sk+1) 6= R(sk) implies dimR(sk+1) ≥ dimR(sk)+1. Hence, if all the R(sk) are pairwise
different, we obtain dimR(sn+1) ≥ n+1. This, however, contradicts R(sn+1) ⊆ Rn, which
means that at least two of the sets R(sk) must coincide. Then the previous considerations
imply R(t) = R(s) for all t ≥ s and since s > 0 was arbitrary, this yields the assertion
(ii).

Remark 2.6 Since we just proved that the sets R(t) do not depend on t for t > 0, in the
sequel we usually write R instead of R(t).
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Remark 2.7 The combination of Lemma 2.2 and Lemma 2.5 thus shows that the set of
states that are reachable from an arbitrary initial state x0 ∈ Rn at time t > 0 is the affine
subspace

x(t;x0, 0) +R,
whose dimension equals the dimension ofR. Note that this set is in general not independent
of t. One exception is the case where R = Rn, since this implies x(t;x0, 0) +R = Rn. In
this case every state x0 can be controlled into every other state x1, which is why in this
case we call the system completely controllable or, short, simply controllable.

As we saw in the exercises, even for relatively simple control systems the direct computation
of R and C by means of their definition can be challenging. As a remedy we will now derive
a simple characterization of these sets. To this end, we need some tools from linear algebra.

Definition 2.8 (i) A subspace U ⊆ Rn is called A-invariant for a matrix A ∈ Rn×n, if
Av ∈ U for all v ∈ U (or, briefly, AU ⊆ U).

(ii) For a subspace V ⊆ Rn and A ∈ Rn×n, by

〈A |V 〉

we denote the smallest (with respect to its dimension) A-invariant subspace of Rn that
contains V .

Note that such a smallest subspace exists and is unique: on the one hand the space Rn itself
is an A-invariant subspace that contains V . Since the dimension is finite, this implies that
there also exists such a space with minimal dimension. On the other hand, assume there
are several different such subspaces with minimal dimension. Then one easily checks that
their intersection is again an A-invariant subspace that contains V . Since this intersection
has a lower dimension than the spaces that were intersected, this contradict the minimality
of their dimension.

Lemma 2.9 For a subspace V ⊆ Rn and A ∈ Rn×n the identity

〈A |V 〉 = V +AV + . . .+An−1V

holds.

Proof: “⊇”: The A-invariance of 〈A |V 〉 and the fact that V ⊆ 〈A |V 〉 imply

AkV ⊆ 〈A |V 〉

for all k ∈ N0 and thus 〈A |V 〉 ⊇ V +AV + . . .+An−1V .

“⊆”: It suffices to show that V + AV + . . . + An−1V is A-invariant, since then V ⊆
V +AV + . . .+An−1V immediately implies 〈A |V 〉 ⊆ V +AV + . . .+An−1V .

In order to prove A-invariance, consider the charakteristic polynomial of A

χA(z) = det(zId−A) = zn + an−1z
n−1 + . . .+ a1z + a0.
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By the theorem of Cayley-Hamilton, χA satisfies

χA(A) = An + an−1A
n−1 + . . .+ a1A+ a0Id = 0,

implying
An = −an−1A

n−1 − . . .− a1A− a0Id.

Thus, any v ∈ V +AV + . . .+An−1V can be written as v = v0 +Av1 + . . .+An−1vn−1 for
v0, . . . , vn−1 ∈ V . This implies

Av = Av0 +A2v1 + . . .+Anvn−1

= Av0 +A2v1 − an−1A
n−1vn−1 − . . .− a1Avn−1 − a0vn−1

= ṽ0 +Aṽ1 + . . .+An−1ṽn−1

for suitable ṽ0, . . . , ṽn−1 ∈ V . From this we obtain Av ∈ V + AV + . . . + An−1V , i.e.,
A-invariance.

We will now consider the special case in which V = imB is the image of the matrix B. In
this case Lemma 2.9 says that

〈A | imB〉 = {Bx0+ABx1+. . .+An−1Bxn−1 |x0, . . . , xn−1 ∈ Rm} = im (BAB . . . An−1B),

where (BAB . . . An−1B) ∈ Rn×(m·n).

Definition 2.10 The matrix (BAB . . . An−1B) ∈ Rn×(m·n) is called controllability matrix
of the system (1.3).

In the sequel for t ∈ R we use the notation

Wt :=

∫ t

0
eAτBBT (eAτ )Tdτ.

Observe that Wt ∈ Rn×n and Wt is thus a linear operator on Rn. The matrix Wt is called
controllability Gramian and is symmetrisch and positive semidefinite, because

xTWtx =

∫ t

0
xT eAτBBT (eAτ )Tx︸ ︷︷ ︸

=‖BT (eAτ )T x‖2≥0

dτ ≥ 0.

The image imWt of this operator is described by the following lemma.

Lemma 2.11 For all t > 0 the identity 〈A | imB〉 = imWt holds.

Proof: We show 〈A | imB〉⊥ = (imWt)
⊥.

“⊆”: Let x ∈ 〈A | imB〉⊥, i.e. xTAkB = 0 for all k ∈ N0. Then

xT eAtB =

∞∑
k=0

tkxTAkB

k!
= 0
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and thus xTWt = 0, hence x ∈ (imWt)
⊥.

“⊇”: Let x ∈ (imWt)
⊥ for some t > 0. Then

0 = xTWtx =

∫ t

0
‖BT (eAτ )Tx‖2dτ,

which because of the continuity of the integrand implies xT eAτB = (BT (eAτ )Tx)T = 0.

Successively computing the derivatives of xTBeAτ with respect to τ yields

xTAkeAτB = 0

for all k ∈ N0. For τ = 0 this implies xTAkB = 0, i.e. x ∈ (imAkB)⊥ for all k ∈ N0 and
hence x ∈ [im (BAB . . . An−1B)]⊥ = 〈A | imB〉⊥.

The following theorem is our main result on the structure of the reachable and controllable
sets.

Theorem 2.12 For the system (1.3) and all t > 0 the identities

R(t) = C(t) = 〈A | imB〉 = im (BAB . . . An−1B)

hold.

Proof: The identity 〈A | imB〉 = im (BAB . . . An−1B) was already shown in the compu-
tation before Definition 2.10. We show R(t) = 〈A | imB〉 for each t > 0 (which provides an
alternative proof for the fact that R(t) is independent of t). The statement for C(t) then
follows by time reversal with Lemma 2.4, since 〈A | imB〉 = 〈−A | im −B〉.
“⊆”: Let x = x(t; 0, u) ∈ R(t). Then the general solution formula states that

x =

∫ t

0
eA(t−τ)Bu(τ)dτ.

Now for all τ ∈ [0, t] the definition of 〈A | imB〉 implies

eA(t−τ)Bu(τ) =
∞∑
k=0

(t− τ)k

k!
AkBu(τ) ∈ 〈A | imB〉

and hence also x ∈ 〈A | imB〉, since integration over elements from a subspace yields again
an element from this subspace.

“⊇”: Let x ∈ 〈A | imB〉 and t > 0 be arbitrary. Then by Lemma 2.11 there exists z ∈ Rn
with x = Wtz. If we define u ∈ U as u(τ) := BT (eA(t−τ))T z for τ ∈ [0, t], then we get

x(t; 0, u) =

∫ t

0
eA(t−τ)BBT (eA(t−τ))T zdτ = Wtz = x,

and thus x ∈ R(t).

Note that this proof is constructive: It provides an explicit formula for the control function
u that steers 0 to x.
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Corollary 2.13 (Kalman criterion) The system (1.3) is completely controllable if and
only if

rg(BAB . . . An−1B) = n.

In this case the matrix pair (A,B) is called controllable.

If (A,B) is not controllable, then after suitable coordinate change of the state space Rn the
pair (A,B) can be decomposed into a controllable and a non-controllable part, according
to the following lemma.

Lemma 2.14 Let (A,B) be not controllable, i.e., r := dim〈A | imB〉 < n. Then there
exists an invertible matrix T ∈ Rn×n, such that Ã = T−1AT and B̃ = T−1B have the form

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

0

)
with A1 ∈ Rr×r, A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×(n−r), B1 ∈ Rr×m and the pair (A1, B1) is
controllable. In particular, after the coordinate change with T the system has the form

ż1(t) = A1z1(t) +A2z2(t) +B1u(t)

ż2(t) = A3z2(t)

with z1(t) ∈ Rr, z2(t) ∈ Rn−r and the z1-subsystem is completely controllable.

Proof: Exercise.

Recall that the characteristic polynomial of a matrix does not change under coordinate
transformations. This implies

χA(z) = det(zId−A) = det(zId− Ã) = det(zId−A1) · det(zId−A3) = χA1(z) · χA3(z).

This motivates the following definition.

Definition 2.15 We call χA1 the controllable and χA3 the non-controllable part of the
charakteristic polynomial χA.

The following theorem yields alternative characterizations of controllability, which do not
require the explicit computation of the controllability matrix. Therein (λId − A |B) ∈
Rn×(n+m) denotes the matrix that results from writing the matrices λId−A and B beside
each other.

Theorem 2.16 (Hautus criterion) The following conditions are equivalent:

(i) (A,B) is controllable

(ii) rg(λId−A |B) = n for all λ ∈ C

(iii) rg(λId−A |B) = n for all eigenvalues λ ∈ C of A



18 CHAPTER 2. CONTROLLABILITY

Proof: We first prove “(ii) ⇔ (iii)” and then “(i) ⇔ (ii)”.

“(ii) ⇒ (iii)”: immediately clear

“(ii) ⇐ (iii)”: Consider a λ ∈ C that is not an eigenvalue of A. Then det(λId − A) 6= 0,
implying rg(λId−A) = n. This proves (ii), since rg(λId−A |B) ≥ rg(λId−A).

“(i)⇔ (ii)”: We show this implication by contraposition, i.e. we prove “not (i)⇔ not (ii)”.

“not (i) ⇐ not (ii)”: If (ii) does not hold, then there is a λ ∈ C with rg(λId− A |B) < n.
Hence there is p ∈ Rn, p 6= 0 with pT (λId−A |B) = 0, i.e.,

pTA = λpT and pTB = 0.

The first identity implies pTAk = λkpT and thus

pTAkB = λkpTB = 0

for k = 0, . . . , n − 1. Hence we obtain pT (BAB . . . An−1B) = 0, from which we can
conclude rg(BAB . . . An−1B) < n. Thus, (A,B) is not controllable.

“not (i) ⇒ not (ii)”: If (A,B) is not controllabe, then by Lemma 2.14 there exists the
transformation

Ã = T−1AT =

(
A1 A2

0 A3

)
, B̃ = T−1B =

(
B1

0

)
with coordinate transformation matrix T .

Now let λ ∈ C by an eigenvalue of AT3 with eigenvector v. Then we get vT (λId−A3) = 0,
which for wT = (0, vT ) implies

wT (λId− Ã) =

(
0T (λId−A1) 0T (−A2)

vT 0 vT (λId−A3)

)
= 0 und wT B̃ =

(
0T (B1)
vT 0

)
= 0.

Using pT = wTT−1 6= 0 we thus obtain

pT (λId−A |B) = wTT−1(λId−A |B) = (wT (λId− Ã)T−1 |wT B̃) = 0,

which shows that (ii) does not hold.

Remark 2.17 For discrete time systems (1.4) with U = Rm the conditions for complete
controllability are completely identical. There is, however, one important difference: While
controllability in continuous time implies controllability in arbitrary short time, in discrete
time in the worst case one needs up to n time steps to reach a given state x1. As an
example consider the system

x(k + 1) =

(
0 1
0 0

)
+

(
0
1

)
u

with x ∈ R2 and u ∈ R. Here we have (BAB) =

(
0 1
1 0

)
, which has full rank, implying

complete controllability. Yet, in order to control the system from (0, 0)T to (1, 1)T we need
at least two time steps. In fact, in discrete time Lemma 2.5 only holds for times s, t ≥ n.



Chapter 3

Stability and stabilisation

In this chapter we will consider the problem of stabilising linear control systems. Before
we address this problem, we have to clarify what we mean by stability.

3.1 Definitions

In this and in the following two sections we recall important results from the stability
theory of linear time-invariant differential equations (1.8)

ẋ(t) = Ax(t).

The exposition is relatively short. A more comprehensive treatment can be found in most
textbooks on ordinary differential equations. We limit ourselves to the stability of equilib-
ria.

Definition 3.1 A state x∗ ∈ Rn is called equilibrium (also steady state or fixed point) of
an ordinary differential equation, if the corresponding solution satisfies

x(t;x∗) = x∗ for all t ∈ R.

We have already used equilibria without formal definition in the introductory chapter. It
is easy to verify that a state x∗ is an equilibrium of a time-invariant differential equation
ẋ(t) = f(x(t)) if and only if f(x∗) = 0. Thus, for the linear differential equation (1.8)
the point x∗ = 0 is always an equilibrium. This equilibrium x∗ = 0 will be studied in the
following analysis.

Definition 3.2 Consider the equilibrium x∗ = 0 of the linear differential equation (1.8).

(i) The equilibrium x∗ = 0 is called stable, if for every ε > 0 there exists a δ > 0 such that
the inequality

‖x(t;x0)‖ ≤ ε for all t ≥ 0

19
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holds for all initial conditions x0 ∈ Rn mit ‖x0‖ ≤ δ.
(ii) The equilibrium x∗ = 0 is called locally asymptotically stable, if it is stable and moreover

lim
t→∞

x(t;x0) = 0

holds for all initial conditions x0 from an open neighbourhood N of x∗ = 0.

(iii) The equilibrium x∗ = 0 is called globally asymptotically stable, if (ii) holds with N =
Rn.

(iv) The equilibrium x∗ = 0 is called locally respectively globally exponentially stable, if
there exist constants c, σ > 0 such that the inequality

‖x(t;x0)‖ ≤ ce−σt‖x0‖ for all t ≥ 0

holds for all x0 from a neighbourhood N of x∗ = 0, with N = Rn in the global case.

Bemerkung 3.3 The stability property from (i) is also called “stability in the sense of
Lyapunov”, since this concept was introduced at the end of the 19th century by the Russian
mathematician Alexander M. Lyapunov. Note that the definitions immmediately lead to
the implications

(locally/globally) exponentially stable ⇒ (locally/globally) asymptotically stable ⇒ stable .

The second implication follows directly from the definitions. The fact that exponential
stability implies asymptotic stability can be seen as follows:
For a given ε > 0 property (i) follows with δ = ε/c, because for ‖x0‖ ≤ δ this implies the
inequality ‖x(t;x0)‖ ≤ ce−σt‖x0‖ ≤ c‖x0‖ ≤ ε. The convergence required in (ii) follows
obviously from (iii).

3.2 Eigenvalue criteria

The following theorem provides criteria for the matrix A which allow to check the stability
properties of the equilibrium x∗ = 0 (1.8) easily.

Theorem 3.4 Consider the linear time-invariant differential equation (1.8) for a matrix
A ∈ Rn×n. Let λ1, . . . , λd ∈ C, λl = al + ibl, be the eigenvalues of A, which are numbered
such that each eigenvalue λl corresponds to a Jordan block Jl in the Jordan canonical form.
Then:

(i) The equilibrium x∗ = 0 is stable if and only if all eigevalues λl have non-positive real
part al ≤ 0 and for all eigenvalues with real part al = 0 the corresponding Jordan block Jl
is one-dimensional.

(ii) The equilibrium x∗ = 0 is locally asymptotically stabl if and only if all Eigenvalues λl
have negative real part al < 0. In this case A is called a Hurwitz matrix or briefly Hurwitz.
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Sketch of the proof: First one verifies that all stability properties are invariant under
linear coordinate transformations T ∈ Rn×n, since the solutions y(t; y0) of the transformed
system are given by

y(t; y0) = T−1x(t;Ty0).

It is thus sufficient to check the stability properties for the Jordan canonical form of A
given by

J =


J1 0 . . . 0

0
. . .

. . . 0

0
. . .

. . . 0
0 . . . 0 Jd


with Jordan blocks of the form

Jl =



λl 1 0 · · · 0

0 λl 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . λl 1

0 · · · · · · 0 λl


, (3.1)

with j = 1, . . . , d. We denote the solutions of ẋ(t) = Jx(t) again with x(t;x0).

From the properties of the matrix exponential it follows that the solution

x(t;x0) = eJtx0

is of the form

x(t;x0) =


eJ1t 0 . . . 0

0
. . .

. . . 0

0
. . .

. . . 0
0 . . . 0 eJdt

x0.

One further checks that

eJlt = eλlt



1 t t2

2! · · · tm−1

(m−1)!

0 1 t
. . .

...
...

. . .
. . .

. . . t2

2!
...

. . .
. . . 1 t

0 · · · · · · 0 1


,

where eλlt denotes the usual scalar exponential function, which satisfies

|eλlt| = ealt


→ 0, al < 0
≡ 1, al = 0
→∞, al > 0

for t→∞.
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The entries of eJlt ar thus bounded if and only if the condition from (i) holds. Since,
moreover, for any k ∈ N and any ε > 0 there is c > 0 with

ealttk ≤ ce(al+ε)t, (3.2)

the entries of eJlt converge to 0 if and only if the condition from (ii) holds.

Via the matrix-vector multiplication eJtx0 this property of the matrix entries carries over
to the solution. Thus, the conditions in (i) and (ii) are equivalent to the respective stability
conditions.

In fact, the proof of (iii) shows global exponential stability, since the entries in (3.2) converge
to 0 exponentially. The consequence of this fact is stated explicitly in the following theorem.

Satz 3.5 Consider the linear time-invariant differential equation (1.8) for a matrix A ∈
Rn×n and let λ1, . . . , λd ∈ C, λl = al + ibl, be the eigenvalues of A. Then the following
four properties are equivalent.

(i) All eigenvalues λl have negative real part al < 0, i.e. the matrix is Hurwitz.

(ii) The equilibrium x∗ = 0 is locally asymptotically stable.

(iii) The equilibrium x∗ = 0 is globally exponentially stable. Here the constant σ > 0 from
Definition 3.2(iv) can be chosen arbitrarily from the interval (0,−maxl=1,...,d al).

(iv) The norm of the matrix exponential satisfies ‖eAt‖ ≤ ce−σt with σ as in (iii) and a
constant c > 0 depending on the choice of σ.

Proof: (iii)⇒ (ii) follows from Remark 3.3, (ii)⇒ (i) follows from Theorem 3.4(iii) and (i)
⇒ (iii) was shwn in the proof of Theorem 3.4(iii). Finally, (iii) ⇔ (iv) follows immediately
from the definition of the induced matrix norm (and holds for all norms in Rn×n because
they are all equivalent).

Example 3.6 We consider the linear pendulum model from Chapter 1 for u ≡ 0 and
neglecting the cart. The linearisation in the lower (= down hanging) equilibrium x∗ = π
yields

A =

(
0 1
−g −k

)
with eigenvalues

λ1/2 = −1

2
k ± 1

2

√
k2 − 4g.

Here
√
k2 − 4g is either complex or < k. In both cases we obtain Reλ1/2 < 0 and thus

exponential stability.

The linearisation in the upper (= upright or inverted) equilibrium x∗ = 0 reads

A =

(
0 1
g −k

)
.

Here one computes the eigen values

λ1/2 = −1

2
k ± 1

2

√
k2 + 4g,
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of which the larger because of
√
k2 + 4g > k is always positive. Thus, we do not obtain

stability.

Remark 3.7 For discrete-time systems Theorem 3.5 remains essentially the same. How-
ever, in (i) the condition “real part al < 0” changes to “modulus |λl| < 1” and in (iv) the
inequality ‖eAt‖ ≤ ce−σt becomes ‖Ak‖ ≤ ce−σk.

3.3 Lyapunov functions

In this section we will introduce an important tool for studying asymptotically stable differ-
ential equations, the so-called Lyapunov functions. Asymptotic and exponential stability
only demand that the norm ‖x(t)‖ of the solution tends to 0 for t → ∞. For many an-
alytical purposes it would, however, be much more convenient if the norm was strictly
decreasing in t. This is, of course, not true in general. However, we can obtain strict
monotonicity if we replace the norm ‖x(t)‖ by a more general function. This is precisely
the purpose of the Lyapunov function.

For linear systems we can restrict our consideration to so-called quadratic Lyapunov func-
tions, as given by the following definition.

Definition 3.8 Let A ∈ Rn×n. A continuously diferentiable function V : Rn → R+
0 is

called a (quadratic) Lyapunov function for A, if there are positive real constants c1, c2, c3 >
0 such that the inequalities

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

and
DV (x)Ax ≤ −c3‖x‖2

hold for all x ∈ Rn.

The following theorem shows that the existence of a quadratic Lyapunov function implies
exponential stability of the corresponding differential equation.

Theorem 3.9 Let A ∈ Rn×n be a matrix and x(t;x0) the solutions of the corresponding
initial value problem (1.8), (1.9). Then, if there exists a quadratic Lyapunov funktion with
constants c1, c2, c3 > 0, then the solutions satisfy the estimate

‖x(t;x0)‖ ≤ ce−σt‖x0‖

for σ = c3/2c2 and c =
√
c2/c1, i.e., the equilibrium x∗ = 0 is exponentially stable and the

Matrix A ist Hurwitz.
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Proof: From the condition on the derivative DV we conclude for x = x(τ, x0) that

d

dt

∣∣∣∣
t=τ

V (x(t;x0)) = DV (x(τ ;x0))ẋ(τ ;x0) = DV (x(τ ;x0))Ax(τ ;x0) ≤ −c3‖x(τ ;x0)‖2

Since −‖x‖2 ≤ −V (x)/c2, for λ = c3/c2 this implies the inequality

d

dt
V (x(t;x0)) ≤ −λV (x(t;x0)).

This differential equation implies the inequality

V (x(t;x0)) ≤ e−λtV (x0),

(cf., e.g., the proof of [8, Satz 8.2]). Using the inequalities for V (x) we thus obtain

‖x(t;x0)‖2 ≤ 1

c1
e−λtV (x0) ≤ c2

c1
e−λt‖x0‖2

and hence by taking the square root on both sides

‖x(t;x0)‖ ≤ ce−σt‖x0‖

for c =
√
c2/c1 and σ = λ/2.

We will now look at the particular class of Lyapuniv functions, in which V is given by a
bilinear form xTPx with P ∈ Rn×n.

We recall that a matrix P ∈ Rn×n is called positive definite, if xTPx > 0 holds for all
x ∈ Rn with x 6= 0. The following lemma summarises two properties of bilinear forms.

Lemma 3.10 For P ∈ Rn×n it holds: (i) There exists a constant c2 > 0 such that

−c2‖x‖2 ≤ xTPx ≤ c2‖x‖2 for all x ∈ Rn.

(ii) P is positive definite if and only if there exists a constant c1 > 0 with

c1‖x‖2 ≤ xTPx for all x ∈ Rn.

Proof: The bilinearity implies for all x ∈ Rn with x 6= 0 and y = x/‖x‖ the identity

xTPx = ‖x‖2yTPy. (3.3)

Since yTPy is continuous in y ∈ Rn, it assumes its minimum cmin and maximum cmax on
the compact set {y ∈ Rn | ‖y‖ = 1}.
(i) Inequality (i) now follows from (3.3) with c2 = max{cmax,−cmin}.
(ii) If P is positive definite, it follows that cmin > 0 and (ii) follows with c1 = cmin.
Conversely, positive definiteness of P follows immediately from (ii), thus we obtain the
claimed equivalence.

This leads us to the following conclusion.
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Lemma 3.11 Let A, P ∈ Rn×n and c3 > 0 be such that the function V (x) = xTPx
satisfies the inequality

DV (x)Ax ≤ −c3‖x‖2

für alle x ∈ Rn. Then P is positive definite if and only if A is Hurwitz. In this case V is a
quadratic Lyapunov function.

Proof: If P is positive definite, Lemma 3.10(ii) immediately implies that V is a quadratic
Lyapunov function, which by Theorem 3.9 yields that A is Hurwitz.

If P is not positive definite, then there exists x0 ∈ Rn with x0 6= 0 and V (x0) ≤ 0. Since
two different solutions of the differential equation cannot intersect, the solution x(t;x0)
with x0 6= 0 can be 0. Thus the assumption on DV implies that V (x(t;x0)) decreases
monotonically for all t ≥ 0. Particularly, there exists c > 0 such that V (x(t;x0)) ≤ −c far
all t ≥ 1. Using the first estimate from Lemma 3.10(i) we then obtain that

‖x(t;x0)‖2 ≥ c/c2 > 0 for all t ≥ 1.

Hence x(t;x0) does not converge to 0, thus x∗ = 0 is not exponentially stable and conse-
quently A is not Hurwitz.

We can rewrite the assumption on DV if we exploit the bilineare Form of the Lyapunov
function.

Lemma 3.12 For a bilinear function V (x) = xTPx the following two statements are
equivalent:

(i) DV (x)Ax ≤ −c3‖x‖2 for all x ∈ Rn and a constant c3 > 0

(ii) The matrix C = −ATP − PA is positive definite.

Proof: Since xTPy = yTP Tx, we get d
dx(xTPy)Ax = d

dx(yTP Tx)Ax = yTP TAx =
xTATPy. This implies by using the product rule

DV (x)Ax = xTATPx+ xTPAx = xT (ATP + PA)x = −xTCx.

Condition (i) is this equivalent to

xTCx ≥ c3‖x‖2 for all x ∈ Rn.

Because of Lemma 3.10 (ii) this condition is satisfied for some c3 > 0 if and only if C is
positive definite.

The equation in Lemma 3.12 (iii) is known as Lyapunov equation. It is a natural idea to
use this equation for the construction of Lyapunov functions. The question thus is whether
for a given matrix A and a given positive definite matrix C we can find a positive definite
matrix P that solves ATP + PA = −C. The following lemma answers this question.

Lemma 3.13 For any matrix A ∈ Rn×n and any positive definite matrix C ∈ Rn×n the
Lyapunov equation

ATP + PA = −C (3.4)

has a positive definite solution P ∈ Rn×n if and only if A is Hurwitz. In this case, the
solution P is unique.
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Proof: If a positive definite solution P of (3.4) exists, then by Lemma 3.12 and 3.11 the
function V (x) = xTPx is a quadratic Lyapunov Funktion. Thus, by Theorem 3.9 A is
Hurwitz.

Assume conversely that A is Hurwitz and C is positive definite. We first show that (3.4)
has a solution. Without loss of generality we can assume that A is in Jordan canonical
form, since it is easily seen that P solves (3.4) if and only if P̃ = (T−1)TPT−1 solves

ÃT P̃ + P̃ Ã = −(T−1)TCT−1

for Ã = TAT−1. We may thus assume that A is of the form

A =



α1 β1 0 · · · 0

0 α2 β2
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . αn−1 βn−1

0 · · · · · · 0 αn


, (3.5)

where the αi are the eigenvalues of A and the βi are either 0 or 1. Writing the columns of
P on top of each other into a large column vector p ∈ Rn2

and does the same for C and a
vector c, equation (3.4) is equivalent to a linear system of equations Gleichungssystem

Ap = −c,

with A ∈ Cn2×n2
. If A is of the form (3.5), by computing the coefficients one sees that A

is a lower triangular matrix of the form

A =



ᾱ1 0 0 · · · 0

∗ ᾱ2 0
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . ᾱn2−1 0

∗ · · · · · · ∗ ᾱn2


.

Here ∗ denotes arbitrary values while the values ᾱi are of the form ᾱi = λj + λk, with λi
being the eigenvalues of A. It is now known from linear algebra that

(i) the elements on the diagonal of a triangular matrix are its eigenvalues

(ii) a matrix is invertible if and only if none of its eigenvalues equals zero.

Since A is Hurwitz all λi have negative real part. Consequently, all the āi have negative
real part, too, and are thus non-zero. i.e. because of (i) and (ii) the matrix A is invertible.
Hence, there is exactly one solution of the equation Ap = c and thus exactly one solution
P of the Lyapunov equation (3.4).

It remains to be shown that this solution P is positive definite ist. Because of Lemma 3.12
this matrix P satisfies all assumptions of Lemma 3.11. Since A is Hurwitz, by Lemma 3.11
P must be positive definite.

The following theorem summarises the main result of this section.
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Theorem 3.14 Consider A ∈ Rn×n. Then a quadratic Lyapunov function for the linear
differential equation (1.8) exists if and only if x∗ = 0 is exponentially stable, i.e. if A is
Hurwitz.

Beweis: Assume a quadratic Lyapunov function V exists. Then by Theorem 3.9 the
matrix A is Hurwitz.

Conversely, let A be Hurwitz. Then by Lemma 3.13 there exists a positive definite Matrix
P that solves the Lyapunov equation (3.4) for a positive definite matrix C. Then, because
of Lemma 3.12 and Lemma 3.11, V (x) = xTPx is a quadratic Lyapunov function.

The existence of a quadratic Lyapunov function is thus a necessary and sufficient condition
for the exponential stability of the equilibrium x∗ = 0. It yields a characterization that is
equivalent to the eigenvalue condition from Theorem 3.5.

Example 3.15 For the linearisation of the pendulum model in the lower equilibrium with

A =

(
0 1
−g −k

)
is the bilinear Lyapunov function for C = Id given by the matrix

P =

(
k2+g2+g

2gk
1
2g

1
2g

g+1
2gk

)
.

Remark 3.16 For discrete time systems the inequality in Definition 3.8 changes to

V (Ax)− V (x) ≤ −c3‖x‖2.

Due to this, the Lyapunov equation (3.4) becomes

ATPA− P = −C. (3.6)

With these changes, all results in this section remain valid.

3.4 The stabilisation problem for linear control systems

We now have all the technical tools to tackle the stabilisation problem for linear control
systems. In the exercises we have seen that a pre-computed control function u(t) on a
large time horizon does in general not work reliably for steering the system into a desired
set point (for instance 0) and holding it there. Even the very small errors that occur in
an accurate numerical simulation were enough to drive the system away from the desired
point.

We therefore pursue a different approach. Instead of using an open-loop control that
depends on t, we use a closed-loop control which computes the control value from the
current state according to the formula u(t) = F (x(t)), for a function F : Rn → Rm that
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needs to be determined. Such a function, which assignes a control value to each state, is
called a feedback law (also state feedback law, (feedback) controller or regulator). Since our
system is linear. it appears natural to choose the feedback law also as a linear map, i.e.,
u = Fx for a matrix F ∈ Rm×n. This has the advantage that the resulting closed-loop
system

ẋ(t) = Ax(t) +BFx(t) = (A+BF )x(t)

is a linear time-incvariant differential eqution, to which the theory from the previous sec-
tions applies.

To control the state of the system 0 and keep it there, we can solve the following stabilisation
problem.

Definition 3.17 Consider a linear control system (1.3)

ẋ(t) = Ax(t) +Bu(t)

with matrices A ∈ Rn×n, B ∈ Rn×m. The (feedback) stabilisation problem for (1.3) consists
in finding a linear map F : Rm → Rn (or, equivalently, the corresponding matrix F ∈
Rm×n), such that the equilibrium x∗ = 0 is asymptotically stable for the resulting closed-
loop system, i.e. for the linear ordinary differential equation

ẋ(t) = (A+BF )x(t).

The following lemma is an easy consequence of our criteria for asymptotic stability.

Lemma 3.18 Consider two matrices A ∈ Rn×n and B ∈ Rn×m. Then the matrix F ∈
Rm×n solves the stabilisation problem, if and only if all eigenvalues of the matrix A+BF ∈
Rn×n have negative real part.

Below we will investigate when — for given matrices A and B — such a matrix F exists
and how it can be computed. Before this, we consider a simple example.

Example 3.19 As a simple and intuitively solvable example for a stabilisation problem
we consider a (very simple) model for the regulation of heating. Assume we want to control
the temperature x1 at a fixed point in a room, where it can be measured. To simplify the
problem we shift the temperature scale such that the desired temperature is x∗1 = 01. The
room contains a heating device with temperature x2, which we can control. More precisely,
we assume that the change of x2 depends on the flow rate of the hot water through the
heating device, which is controlled by u. This leads to the differential equation ẋ2(t) = u(t).
In other words, the control value u causes the temperature to increase (for u > 0) or to
decrease (if (u < 0). For the temperature x1 in the fixed point we assume that it satisfies

1One should thus think of x1 as the deviation from the desired temperature rather than of an absolute
value.
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the differential equation ẋ1(t) = −x1(t) + x2(t). This means that for constant heating
temperature x2 we obtain

x1(t) = e−tx1(0) + (1− e−t)x2(0),

i.e. the room temperature x1 converges exponentially to the temperature x2 of the heating
device.

This modelling leads to the control system

ẋ(t) =

(
−1 1

0 0

)
x(t) +

(
0
1

)
u(t).

A very intuitive regulation strategy is now the following: If x1 > x∗1 = 0, we reduce the
temperature in x2, i.e. we choose u < 0. In the opposite case, i.e. if x1 < x∗1 = 0, we increase
the temperature x2 by choosing u > 0. Since our feedback law should be linear, this can
be achieved by setting F (x) = −λx1 for a λ > 0, or, in matrix notation F = (−λ, 0)
(observe that here we have n = 2 and m = 1, implying that F is a 1 × 2 matrix, i.e., a
two-dimensional row vector). This gives us the closed-loop system

ẋ(t) =

(
−1 1
−λ 0

)
x(t).

Computing the eigenvalues of this matrix for λ > 0 reveals that all real parte are negative.
Hence we have — inadvertently — solved the stabilization problem and consequently for
arbitrary initial values the temperatures x1(t) and x2(t) converge to 0 exponentially fast.
In particular, x1 converges exponentially fast towards the desired temperature x∗1 = 0.
This proves that our intuitively designed feedback controller achieves the desired result.

If we can measure the temperature x2 at the heating device, then we could also choose
F (x) = −λx2, or, in matrix notation, F = (0, −λ) as feedback law. Again by computing
the eigenvalues one sees that the closed-loop system is exponentially stable for all λ > 0.
The bevaviour of the system for the two different feedback laws is wuite different, though.
We will investigate this in the exercises.

Remark 3.20 In practice, the state x(t) of a system can often not be measured completely.
Rather, one only has access to a vector y = Cx of output values, for a matrix C ∈ Rd×n. In
this case the feedback can only depend on the output vector y. The corresponding concept
is called an output feedback.

This is actually similar to what we did in the example above, because we only used infor-
mation from x1(t) or x2(t), in the feedback law, but not both. In the rest of this chapter
we will assume that the entire vector x(t) is accessible and can be used in the feedback
law. The general case will then be addressed in Chapter 4.
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3.5 Solution of the stabilisation problem with one-dimensional
control

In this section we investigate conditions under which we can find a solution for the stabil-
isation problem from Definition 3.17 with one-dimensional control. In particular we will
give a necessary and sufficient condition on the matrices A und B in (1.3), under which the
problem is solvable. The individual steps of this derivation provide a constructive method
for computing the desired stabilising feedback law F .

In this derivation coordinate transformations will again play an important role. A coordi-
nate change with transformation matrix T ∈ Rn×n transforms the original control system

ẋ(t) = Ax(t) +Bu(t) (3.7)

into the form
ẋ(t) = Ãx(t) + B̃u(t) (3.8)

with Ã = T−1AT and B̃ = T−1B. A feedback law F for (3.7) can be transformed into a
feedback law for (3.8) via F̃ = FT ; this follows immediately from the identity T−1(A +
BF )T = Ã+ B̃F̃ that the transformed system needs to satisfy.

We already saw in Lemma 2.14 that a pair (A,B) can be transformed into the form

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

0

)
with controllable pair (A1, B1) and non-controllable rest.

Here we need yet another coordinate change, whch holds for controllable systems with
one-dimensional control u. In this case we have m = 1, i.e., B ∈ Rn×1. This means that
the matrix B ist an n-dimensional column vector.

Lemma 3.21 Consider A ∈ Rn×n and B ∈ Rn×1. Then the pair (A,B) is controllable if
and only if there is a coordinate transformation S with

Ã = S−1AS =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn

 und B̃ = S−1B =


0
...
0
1

 .

Here the values αi ∈ R are the coefficients of the characteristic polynomial of A written in
the form χA(z) = zn − αnzn−1 − · · · − α2z − α1.

Proof: We start by proving that for matrices Ã in the form of the lemma the values αi are
indeed the coeffizients of the characteristic polynomial. We prove this claim by induction
over n: For n = 1 the claim is immediately clear. For the induction step let An ∈ Rn×n by
of the form of the lemma and An+1 ∈ Rn×n be given by

An+1 =


0 1 · · · 0
0
... An
α0

 .
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If we compute det(zIdRn+1 −An+1) according to the first row, we obtain

χAn+1 = zχAn(z)− α0 = zn+1 − αnzn − · · · − α1z − α0,

which yields exactly the desired expression after renumbering the αi.

Let us now assume that S exists. Then by a direct computation one sees that

R̃ = (B̃ ÃB̃ . . . Ãn−1B̃) =


0 · · · 0 1
0 · · · . · ˙ ∗
0 1 ∗ ∗
1 ∗ · · · ∗

 , (3.9)

where ∗ denotes arbitrary values. This matrix has full rank, since by reordering the rows
(which does not change the rank of the matrix) we obtain an upper triangular matrix with
only ones on the diagonal. This is obviously invertible and thus has full rank. This implies
that (Ã, B̃) is controllable and since controllability persists under coordinate changes, the
pair (A,B) is controllable, too.

Conversely, assume that (A,B) is controllable. Then the matrix R = (BAB . . . An−1B) is
invertible and consequently R−1 exists. We now first show that the equation R−1AR = ÃT

holds. To this end, we show the equivalent identity AR = RÃT . Using the theorem of
Cayley-Hamilton, this follows from the computation

AR = A(BAB . . . An−1B) = (ABA2B . . . An−1B AnB)

= (ABA2B . . . An−1B αnA
n−1B + · · ·+ α1B)

= (BAB . . . An−1B)


0 · · · 0 α1

1 · · · 0 α2
...

. . .
...

...
0 · · · 1 αn

 = RÃT

For R̃ from (3.9) the analogous computation yields R̃−1ÃR̃ = ÃT and thus

Ã = R̃ÃT R̃−1 = R̃R−1ARR̃−1.

The definitions of R and R̃ moreover imply R(1, 0, . . . , 0)T = B and R̃(1, 0, . . . , 0)T = B̃,
hence RR̃−1B̃ = B. Thus, S = RR̃−1 is the desired transformation matrix.

The form of the pair (Ã, B̃) achieved in 3.21 is called the controllable canonical form.
Observe that the coordinate transformation S can be computed based on the knowledge
of A, B and the coefficients of the characteristic polynomial of A.
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Using the controllable canonical form we can now proceed to solving the stabilisation
problem for u ∈ R.

To this end, we first reformulate the stabilisation problem by means of characteristic poly-
nomials. This can be done for arbitrary dimensions of the control u.

Definition 3.22 Consider a control system (1.3) with matrices A ∈ Rn×n and B ∈ Rn×m.
A polynomial χ is called assignable for the control system if there exists a linear feedback
law F ∈ Rm×n such that χ = χA+BF holds for the characteristic polynomial χA+BF of the
matrix A+BF .

Sincce we know that the roots of the characteristic polynomial are exactly the eigenvalues
of the corresponding matrix, Lemma 3.18 immediately yields the following characterisation.

Lemma 3.23 Consider a control system (1.3) with matrices A ∈ Rn×n and B ∈ Rn×m.
Then the stabilisation problem is solvable if and only if there exists an assignable polyno-
mial, for which all roots in C have negative real part.

The following theorem shows the relation between controllability of (A,B) and assignability
of polynomials.

Theorem 3.24 Consider a control system (1.3) wih matrices A ∈ Rn×n and B ∈ Rn×1,
i.e. with one-dimensional control. Then the following two properties are equivalent.

(i) The pair (A,B) is controllable.

(ii) Every polynomial of the form χ(z) = zn− βnzn−1− · · · − β2z− β1 with β1, . . . , βn ∈ R
is assignable.

Proof: (i) ⇒ (ii): Let (A,B) be controllable and let S be the coordinate transformation
from Lemma 3.21. We define

F̃ = (β1 − α1 β2 − α2 . . . βn − αn) ∈ R1×n.

Then we obtain

Ã+ B̃F̃ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn

+


0
0
...
1

 (β1 − α1 β2 − α2 . . . βn − αn)

=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn

+


0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

β1 − α1 β2 − α2 · · · βn − αn



=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
β1 β2 · · · βn

 .



3.5. SOLUTION WITH ONE-DIMENSIONAL CONTROL 33

Now the second assertion of Lemma 3.21 yields that χ
Ã+B̃F̃

= χ. Hence, after trans-

formation to original coordinates, F = F̃S−1 is the desired feedback matrix, since the
characteristic polynomial of a matrix is invariant under coordinate transformations.

(ii) ⇒ (i): We show the implication “not (i) ⇒ not (ii)”:

Let (A,B) be not controllable. Let T be the coordinate transformation from Lemma 2.14.
Then for any arbitrary feedback law F̃ = (F1 F2) we obtain

Ã+ B̃F̃ =

(
A1 +B1F1 A2 +B1F2

0 A3

)
=: D̃.

The characteristic polynomial of this matrix satisfies

χ
D̃

= χA1+B1F1χA3 .

Hence (recalling that (A1, B1) is controllable) the assignable polynomials are of the form
χ = χkχu, where χk is an arbitrary normed polynomial of degree d and χu = χA3 . This is
a strictly smaller set of polynomials than specified in (ii). Thus, (ii) cannot hold.

Obviously, for the purpose of stabilization we do not need that every polynomial is assignable.
We only need to find an assignable polynomial, whose roots all have negative real parts.
The proof of Theorem 3.24 already suggests when this is possible.

Theorem 3.25 Consider a control system (1.3) with matrices A ∈ Rn×n and B ∈ Rn×1,
i.e. with one-dimensional control. Let A1 ∈ Rd×d, A2 ∈ Rd×(n−d), A3 ∈ R(n−d)×(n−d), and
B1 ∈ Rd×1 be the matrices from Lemma 2.14 with the convention that A1 = A and B1 = B
in case (A,B) is controllable.

Then the assignable polynomials (1.3) are of the form χ = χkχA3 , where χk is an arbitrary
normed polynomial of degree d and χA3 is the characteristic polynomial of the matrix A3,
i.e. the uncontrollable part of the characteristic polynomial χA, cf. Definition 2.15. Here
we use the convention χA3 = 1 if d = n.

In particular, the stabilisation problem is solvable if and only if all eigenvalues of A3 have
negative real part (the eigenvalues of A3 are also called the ”uncontrollable eigenvalues”).
In this case we call the pair (A,B) stabilisable.

Proof: The first statement follows immediately from the second part of the proof of
Theorem 3.24. The statement about the stabilisation problem then follows from Lemma
3.23.

Remark 3.26 All statements of this section also hold for discrete-time systems if the
condition “the real part of the eigenvalue is less than 0” is replaced by ”the modulus of
the eigenvalue is less than 1”.
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3.6 Solution of the stabilisation problem with multidimen-
sional control

The results for multidimensional control m > 1 are completely analogous to those for one-
dimensional control. A direct proof is, however, very technical, because we cannot use
Lemma 3.21. We will thus reduce the multidimensinoal case to the one-dimensional case
by using the following lemma, which is known as Heymann’s Lemma.

Lemma 3.27 Consider a control system (1.3) with matrices A ∈ Rn×n and B ∈ Rn×m.
Let the pair (A,B) be controllable and let v ∈ Rm be a vector with B = Bv 6= 0. Then
there exists a matrix F ∈ Rm×n such that the control system

ẋ(t) = (A+BF )x(t) +Bū(t)

with one-dimensional control ū(t) is controllable.

Proof: By means of the recursive definition xi+1 := Axi+Bui with appropriate ui we first
construct linearly independent vectors x1, . . . , xn ∈ Rn which for all l ∈ {1, . . . , n} satisfy

Axi ∈ Vl für i = 1, . . . , l − 1 with Vl = 〈x1, . . . , xl〉. (3.10)

In order to construct these vectors, set x1 := B (we can interpret the n × 1 matrix B as
column vector). Observe, that the property (3.10) is trivially satisfied for l = 1 and every
x1 6= 0.

For k ∈ 1, . . . , n− 1 and given linearly independent vectors x1, . . . , xk, which satisfy (3.10)
for l ∈ {1, . . . , k}, we now construct a vector xk+1, such that x1, . . . , xk, xk+1 are linearly
independent and (3.10) holds for l ∈ {1, . . . , k + 1}:
Case 1: Axk 6∈ Vk: set uk := 0 ∈ Rm and xk+1 := Axk.

Case 2: Axk ∈ Vk: Since (3.10) holds, we obtain that Vk is A-invariant. From Chapter 2
we know that 〈A | imB〉 = imR with controllability matrix R = (BAB . . . An−1B) is the
smallest A-invariant subspace that contains the image of B. Since (A,B) is controllable,
we have 〈A | imB〉 = Rn. Since Vk is now an A-invariant subspace with dimVk = k < n, it
cannot contain the image of B. Hence, there is uk ∈ Rm with Axk +Buk 6∈ Vk and we set
xk+1 := Axk +Buk.

We now construct the desired map F from the vectors x1, . . . , xn. Since the xi are linearly
independent, the matrix X = (x1 . . . xn) is invertible and we can define F := UX−1

for U = (u1, . . . , un) ∈ Rm×n. Here the u1, . . . , un−1 denote the control vectors used in
the recursion defining the xi, above, and un := 0 ∈ Rm. This yields Fxi = ui and thus
(A+BF )xi = xi+1 for i = 1, . . . , n− 1. Since B = x1 we obtain

(B (A+BF )B . . . (A+BF )n−1B) = X,

hence (B (A+BF )B . . . (A+BF )n−1B) has rank n, implying that the pair (A+BF,B)
is controllable.

Wit this result, Theorems 3.24 and 3.25 are easily generalised to arbitrary control dimen-
sions.
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Theorem 3.28 Consider a control system (1.3) with matrices A ∈ Rn×n and B ∈ Rn×m.
Then the following two properties are equivalent.

(i) The pair (A,B) is controllable.

(ii) Every polynomial of the form χ(z) = zn − βnzn−1 − · · · − β2z − β1 mit β1, . . . , βn ∈ R
is assignable.

Proof: (i) ⇒ (ii): Let (A,B) be controllable and χ be given. Let F ∈ Rn×m and
B ∈ Rn×1 be the matrices from Lemma 3.27 for some v ∈ Rm with Bv 6= 0 (note that
such a v ∈ Rn exists since (A,B) is controllable, which implies B 6= 0). Then the pair
(A+BF,B) is controllable and Theorem 3.24 immplies the existence of a feedback matrix
F1 ∈ R1×n with

χA+BF+BF1
= χ.

Since
A+BF +BF1 = A+BF +BvF1 = A+B(F + vF1)

we can define the desired feedbacl law as F = F + vF1.

(ii) ⇒ (i): Completely identical to the proof of Theorem 3.24.

Theorem 3.29 Consider a control system (1.3) with matrices A ∈ Rn×n and B ∈ Rn×m.
Let A1 ∈ Rd×d, A2 ∈ Rd×(n−d), A3 ∈ R(n−d)×(n−d) and B1 ∈ Rd×m be the matrices from
Lemma 2.14 with the convention that A1 = A and B1 = B if (A,B) is controllable.

Then the assignable polynomials (1.3) are of the form χ = χkχu, where χk is an arbitrary
normed polynomial of degree d and χu is the characteristic polynomial of the matrix A3.
Here we use the convention χA3 = 1 if d = n.

In particular, the stabilisation problem is solvable if and only if all eigenvalues of A3 have
negative real part. In this case we call the pair (A,B) stabilisable.

Proof: Completely analogous to the proof of Theorem 3.25.

Bemerkung 3.30 Theorem 3.29 is called pole shifting theorem, because the roots of the
characteristic polynomial are often called “poles” in control engineering (the reason will be
explained later in Remark 5.15). This theorem describes how these roots can be shifted by
means of a suitable choice of the feedback.

We can now illustrate the main results for the stabilisation problem in the following
schematic way:
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(A,B) is controllable

m (Theorem 3.28)

Every normed polynomial of degree n is assignable

⇓

There is an assignable
polynomial, whose roots all

have negative real part

⇔
(Lemma 3.23)

(A,B) is
stabilisable

m (Theorem 3.29)

(A,B) is controllable
or

(A,B) is not controllable and A3 from Lemma 2.14 has only
eigenvalues with negative real part

If one replaces “negative real part” everywhere by “modulus less than 1”, then these
statements remain valid for discrete-time systems.

3.7 Local stabilisation of nonlinear systems

In this section we show that a linear stabilizing feedback law can be used for the local
stabilisation of a nonlinear control system. The basis for this fact is the following theorem
from the theory of ordinary differential equations.

Theorem 3.31 Consider the nonlinear differential equation

ẋ = g(x) (3.11)

with equilibrium x∗ ∈ Rn and continuously differentiable vector field g : Rn → Rn. Con-
sider moreover the linearisation

ẏ = Ây with Â =
d

dx
g(x∗). (3.12)

Then the equilibrium x∗ is locally exponentially stable for equation (3.11) if and only if
the equilibrium y∗ = 0 is globally exponentially stable for equation (3.12).
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A proof can be found, e.g., in [8, Satz 8.8].

Consider now the nonlinear control system

ẋ = f(x, u)

with equilibrium (x∗, u∗), i.e., f(x∗, u∗) = 0, and its linearisation

ẏ = Ay +Bv with A =
∂

∂x
f(x∗, u∗), B =

∂

∂u
f(x∗, u∗).

Recall from the introduction that f , A and B are related via f(x, u) ≈ A(x−x∗)+B(u−u∗),
which implies that y and v are related to x and u via y = x− x∗ and v = u− u∗.
Let F be a stabilising feedback law for the linear control system. For the linear system this
generates the control value v = Fy, which implies that using the above relation between
x, y, u and v we obtain u = u∗ + F (x − x∗). Inserting this expression into f we obtain
equation

ẋ = f(x, u∗ + F (x− x∗)) =: g(x). (3.13)

The linearisation of this equation is given by

ẏ = Ây

with

Â =
d

dx
g(x∗) =

d

dx

∣∣∣∣
x=x∗

f(x, u∗ + F (x− x∗)) =
∂

∂x
f(x∗, u∗) +

∂

∂u
f(x∗, u∗)F = A+BF.

Since F stabilises the linear system exponentially, the equlibrium y∗ = 0 is exponentially
stable for (3.12) and Theorem 3.31 implies that x∗ is a locally exponentially stable equi-
librium for the nonlinear system with linear feedback law (3.13). The stabilising linear
feedback law thus stabilises the nonlinear system locally in x∗.

Example 3.32 Consider the nonlinear inverted pendulum (1.5)

ẋ1(t) = x2(t)

ẋ2(t) = −kx2(t) + g sinx1(t) + u(t) cosx1(t)

ẋ3(t) = x4(t)

ẋ4(t) = u(t)

 =: f(x(t), u(t)).

The linearisation in (x∗, u∗) = (0, 0) reads

A =


0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

 and B =


0
1
0
1


cf. (1.6). In the exercises we computed a stabilising linear feedback law F : R4 → R for
this linear system. The corresponding matrix F ∈ R1×4 is

F =
(
− g + k2

g2
− 4k

g
− 6− g, − k

g2
− 4

g
− 4 + k,

1

g
,
k

g2
+

4

g

)
Figure (3.1) shows that this feedback law stabilises the nonlinear pendulum. The figure
shows the components of the trajectory x(t, x0, F ) for x0 = (1/2, 0, 0, 0)T .
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Figure 3.1: Solution of the nonlinear pendulum equation with stabilising linear feedback
law



Chapter 4

Observability and observers

The solution for the stabilisation problem that we derived in the last chapter assumes that
the whole state vector x(t) is accessible for evaluation the control value u(t) = Fx(t). In
practical problems, this is hardly ever the case. Typically one can only access certain values
y(t) = C(x(t)) ∈ Rk, delivered by sensors, from which u(t) must then be computed. Since
in this part of this course we consider linear sytems, we assume that the measurement map
C : Rn → Rk is also linear, i.e. given by a matrix C ∈ Rk×n.

Definition 4.1 A linear control system with output is given by1 the equations

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (4.1)

with A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rk×n.

In this chapter we will derive conditions under which the stabilisation problem is solvable
for (4.1) and show, how a feedback controller must be constructed in this case.

4.1 Observability and Duality

The most important question when analysing (4.1) is, how much “information” is contained
in the output y(t) = Cx(t). This is formalised by the following definitions.

Definition 4.2 (i) Two states x1, x2 ∈ Rn are called distinguishable, if there are u ∈ U
and t ≥ 0 with

Cx(t, x1, u) 6= Cx(t, x2, u).

(ii) The system (4.1) is called observable, if any two states x1, x2 ∈ Rn with x1 6= x2 are
distinguishable.

The following lemma shows that by virtue of the linearity of the system, distinguishability
can be expressed in a simpler way.

1Sometimes the extended variant y(t) = Cx(t) + Du(t) with D ∈ Rk×m is considered. The form we
consider is obtained from this extended form by setting D = 0.

39



40 CHAPTER 4. OBSERVABILITY AND OBSERVERS

Lemma 4.3 Tow states x1, x2 ∈ Rn are distinguishable if and only if there exists t ≥ 0
with

Cx(t, x1 − x2, 0) 6= 0.

Proof: The superposition principle (1.15) implies the identity

x(t, x1, u)− x(t, x2, u) = x(t, x1 − x2, 0),

which immediately implies the assertion since C is a linear map.

This lemma implies that observability of (4.1) does not depend on u, and thus not on B.
If the system (4.1) is observable, then we call the pair (A,C) observable.

Moreover, the lemma motivates the following definition.

Definition 4.4 (i) We call x0 ∈ Rn observable if there is t ≥ 0 with

Cx(t, x0, 0) 6= 0

and non-observable on [0, t] if
Cx(s, x0, 0) = 0

for all s ∈ [0, t].

(ii) We define the sets of non-observable states on [0, t] for t > 0 as

N (t) := {x0 ∈ Rn |Cx(s, x0, 0) = 0 for all s ∈ [0, t]}

and the set of non-observable states as

N :=
⋂
t>0

N (t).

The following lemma clarifies the structure of these sets.

Lemma 4.5 For all t > 0 the identity

N = N (t) =

n−1⋂
i=0

ker(CAi)

holds. In particular, N is a linear subspace, which moreover is A-invariant, i.e. it holds
that AN ⊆ N .

Proof: A state x0 ∈ Rn is contained in N (t) if and only if

0 = Cx(s, x0, 0) = CeAsx0 for all s ∈ [0, t]. (4.2)

Now let x0 ∈
⋂n−1
i=0 ker(CAi). Then by the theorem of Cayley-Hamilton the identity

CAix0 = 0 holds for all i ∈ N0. The series representation of eAs then implies CeAsx0 = 0
for all s ≥ 0 and thus (4.2), i.e., x0 ∈ N (t).
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Conversely, let x0 ∈ N (t). Then by (4.2) we obtain CeAsx0 = 0. The i-th derivative of
this expression in s = 0 then satisfies

CAix0 = 0, i ∈ N0

and thus in particular x0 ∈ kerCAi, i = 0, . . . , n− 1. This implies x0 ∈ N (t).

The A-invariance then follows from the expression for N using the theorem of Cayley-
Hamilton.

Obviously there is a certain similarity here with the controllability analysis, particularly
with the sets R(t) und R. We now show that this is more than just a superficial similarity.
To this end, we need an appropriately defined dual system.

Definition 4.6 For a control system (4.1) defined by the matrices (A,B,C) the dual
system is defined by the matrices (AT , CT , BT ). The dual system to

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rk

thus reads

ẋ(t) = ATx(t) + CTu(t), y(t) = BTx(t), x(t) ∈ Rn, u(t) ∈ Rk, y(t) ∈ Rm.

In words, the dual system is obtained by transposing all matrices and swapping B and C,
i.e., the input and the output matrix.

Theorem 4.7 For a control system (4.1) given by (A,B,C) and its dual system given by
(AT , CT , BT ) we define

R = 〈A | imB〉 N =
⋂n−1
i=0 ker(CAi)

RT = 〈AT | imCT 〉 N T =
⋂n−1
i=0 ker(BT (AT )i).

Then the identities
RT = N⊥ and N T = R⊥

hold. In particular, we obtain the equivalences

(A,B,C) controllable ⇐⇒ (AT , CT , BT ) observable

(A,B,C) observable ⇐⇒ (AT , CT , BT ) controllable.

Proof: Consider the matrix

M =


C
CA

...
CAn−1

 ∈ R(n·k)×n.
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For this matrix Lemma 4.5 implies

N = kerM.

In addition,
MT = (CT ATCT . . . (AT )n−1CT ) ∈ Rn×(n·k)

is the reachability matrix of the dual systems, cf. Definition 2.10, which yieldsRT = imMT .
From linear algebra it is known that

imMT = (kerM)⊥.

This yields the first assertion since

RT = imMT = (kerM)⊥ = N⊥.

By exchanging the two systems, the same derivation yields R = (N T )⊥, which implies the
second assertion, since

R⊥ =
(

(N T )⊥
)⊥

= N T .

Thus, all statements for controllability can be carried over to observability. We do this
explicitly for Corollary 2.13 and Lemma 2.14.

Definition 4.8 The matrix (CT , ATCT . . . (AT )n−1CT ) ∈ Rn×(k·n) is called observability
matrix of the systems (1.3).

Corollary 4.9 System (4.1) is observable if and only if

rg(CT , ATCT . . . (AT )n−1CT ) = n.

Proof: This follows from Corollary 2.13 applied to the dual system.

We now formulate the analogue to the decomposition

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

0

)
from Lemma 2.14.
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Lemma 4.10 Let (A,C) be not observable, i.e., dimN = l > 0. Then there exists an
invertible T ∈ Rn×n such that Ã = T−1AT , B̃ = T−1B and C̃ = CT are of the form

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

B2

)
, C̃ = (0 C2)

with A1 ∈ Rl×l, A2 ∈ Rl×(n−l), A3 ∈ R(n−l)×(n−l), B1 ∈ Rl×m, B2 ∈ R(n−l)×m and
C2 ∈ Rk×(n−l). Therein, the pair (A3, C2) is observable.

Beweis: Lemma 2.14 applied to the dual system (AT , CT ) yields T̂ with

T̂−1AT T̂ =

(
Â1 Â2

0 Â3

)
, T̂−1CT =

(
Ĉ1

0

)
.

For S = (T̂ T )−1 this implies

S−1AS =

(
ÂT1 0

ÂT2 ÂT3

)
, CS =

(
ĈT1 0

)
.

By means of the additional coordinate transformation

Q =

(
0 IdRn−l

IdRl 0

)
the claimed decomposition follows with T = SQ and

A1 = ÂT3 , A2 = ÂT2 , A3 = ÂT1 , C2 = ĈT1 .

We additionally give an alternative proof, which is more direct and does not resort to Lemma 2.14:

Let v1, . . . , vl by a basis of N , i.e., N = 〈v1, . . . , vl〉. We pick w1, . . . , wn−l such that the vi and wj

together form a basis of Rn and define T := (v1, . . . , vl, w1, . . . , wn−l). With ei we denote the i-th
unit vector in Rn. Then Tei = vi, i = 1, . . . , l, Tei = wi−l, i = l+ 1, . . . , n, T−1vi = ei, i = 1, . . . , l
and T−1wi = ei+l, i = 1, . . . , n− l.
We first show that Ã has the desired structure. Suppose an entry in the 0-Block of Ã is not equal
to 0. Then on the one hand

Ãei 6∈ 〈e1, . . . , el〉 = T−1N
for some i ∈ {1, . . . , l}. On the other hand, A-invariance of N

Ãei = T−1ATei = T−1Avi ∈ T−1N ,

which leads to a contradiction.

The structure of C̃ follows from

N =

n−1⋂
i=0

ker(CAi) ⊆ kerC.

This implies vi ∈ kerC and thus C̃ei = CTei = Cvi = 0. Hence, the first l columns of C̃ must
equal 0.
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It remains to show observability of (A3, C2). To this end, note that for every x̃ ∈ Rn−l, x̃ 6= 0 it
holds that

C2A
i
3x̃ = C̃Ãi

(
0
x̃

)
= CAiT

(
0
x̃

)
,

where in the first equation we used the structure of Ã and C̃. Since

w := T

(
0
x̃

)
/∈ N ,

there exists i ∈ {0, . . . , n− 1} with CAiw 6= 0 and thus C2A
i
3x̃ 6= 0. Since x̃ 6= 0 was arbitrary,

n−1⋂
i=0

ker(C2A
i
3) = {0}

follows, implying the observability of (A3, C2).

Bemerkung 4.11 All statements in this section remain valid for discrete-time systems.
The only result that changes is Lemma 4.5, which — analogous to controllability, cf.
Remark 2.17 — only holds for t ≥ n in discrete time.

4.2 Detectability

We have seen that (complete) controllability is sufficient but not necessary for being able
to solve the stabilisation problem. The necessary and sufficient condition is stabilisability
of (A,B), which according to Theorem 3.29 is the case if and only if all eigenvalues of the
uncontrollable part A3 of the matrix A have negative real parts.

This is similar for observability. In order to be able to sove the stabilisation problem for
system (4.1) we do not need observability. It is sufficient to assume a weaker condition,
which is given in the following definition.

Definition 4.12 The system (4.1) is called detectable (or asymptotically observable), if

lim
t→∞

x(t, x0, 0) = 0 for all x0 ∈ N .

This means that solutions for non-observable initial conditions and u ≡ 0 converge to
0. Intuitively spoken, the information about these initial conditions is not needed in the
stabilisation problem, because the corresponding solutions converge to 0 anyway, and are
thus asymptotically (and exponentially) stable.

The following lemma characterises detectability for the decomposition from Lemma 4.10.

Lemma 4.13 System (4.1) is detectable if and only if the matrix A1 from Lemma 4.10 is
Hurwitz, i.e., if it has only eigenvalues with negative real part.
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Proof: First observe that detectability is preserved under coordinate changes. We can
thus perform all computations in the basis given by 4.10.

In this basis, N is given by

N =

{
x0 ∈ Rn

∣∣∣∣x0 =

(
x1

0

0

)
, x1

0 ∈ Rl
}
.

From the form of the matrix Ã it then follows that allsolutions corresponding to initial
values x0 ∈ N can be written as

x(t, x0, 0) = eÃtx0 =

(
eA1tx1

0

0

)
.

From detectability it now follows that x(t, x0, 0)→ 0 for all x ∈ N , i.e. eA1tx1
0 → 0 for all

x1
0 ∈ Rl. This is only possible if A1 is Hurwitz.

Conversely, A1 being Hurwitz implies the convergence eA1tx1
0 → 0 for all x1

0 ∈ Rl, i.e.
x(t, x0, 0)→ 0 for all x ∈ N and thus detectability.

The following theorem shows that detectability is dual to stabilisability.

Theorem 4.14 (A,C) is detectable if and only if (AT , CT ) is stabilisable.

Proof: We denote the components of the decomposition from Lemma 4.10 applied to
(A,C) by A1, A2, A3, C2. Likewise, we denote the components of the decomposition from
Lemma 2.14 applied to (AT , CT ) by Â1, Â2, Â3, Ĉ1. The proof of Lemma 4.10 then implies
A1 = ÂT3 .

By Lemma 4.13 detectability of (A,C) is equivalent to A1 being Hurwitz. Likewise, by
Theorem 3.29 stabilisability of (AT , CT ) is equivalent to Â3 being Hurwitz. Since the
eigenvalues of Â3 and ÂT3 = A1 coincide, this yields the claimed equivalence.

Remark 4.15 In order to adapt these statements to discrete time, it suffices to change
the eigenvalue conditions from “negative” to “modulus lesss than 1”.

4.3 Dynamic observers

A natural approach to solving the stabilisation problem for (4.1) is the choice u(t) =
Fy(t). This may work (cf. Example 3.19, where we considered C = (0 1) and C = (1 0)).
However, this approach may also fail, as the controllable and observable system (4.1) with

A =

(
0 1
0 0

)
, B =

(
0
1

)
, and C = (1 0)

shows, cf. the exercises. In fact, this system is not even stabilisable if we allow F (y(t)) to
be an arbitrary continuous function F : R→ R.

For this reason we will not develop a method for stabilisation that always works if (4.1) is
stabilisable abd detectable. The method works as follows for a system (4.1) with matrices
(A,B,C):
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(1) Design a stabilising linear feedback law for (A,B)

(2) Design an algorithm that computes an estimation z(t) ≈ x(t) from the measured
output values y(s), s ∈ [0, t]

(3) Control the system (4.1) via u(t) = Fz(t).

Step (1) can be solved using the methods from Chapter 3. In this section we will consider
Step (2) and in the following section we will then prove that for the proposed algorithm
the method in Steps (1)–(3) indeed works.

The reason why the example above cannot be stabilized lies in the fact that observability
does not require Cx0 6= 0 for x0 6= 0. Rather, it is only required that Cx(t; t0, x0, 0) 6= 0 for
t > 0. Thus, in order to recognize that the estimate should attain a value z(t) 6= 0 (to which
the feedback law can react), the algorithm in Step (2) must use the output over a certain
time span, not merely its current value. We will achieve this by defining the estimate z(t)
as the solution of a suitably foormulated control system, in which — in addition to the
control function — the output y(t) of (4.1) acts as a second input. The following definition
formalises this idea.

Definition 4.16 A dynamic observer (also called Luenberger-observer) for (4.1) is a linear
control system of the form

ż(t) = Jz(t) + Ly(t) +Ku(t) (4.3)

with J ∈ Rn×n, L ∈ Rn×k, K ∈ Rn×m, such that for all initial values x0, z0 ∈ Rn and
all control functions u ∈ U the solutions x(t, x0, u) and z(t, z0, u, y) of (4.1), (4.3) with
y(t) = Cx(t, x0, u) satisfy the estimate

‖x(t, x0, u)− z(t, z0, u, y)‖ ≤ ce−σt‖x0 − z0‖

for suitable constants c, σ > 0.

In practice, the system (4.3) can, e.g., be solved numerically in order to determine the
vaulues z(t).

The following theorem clarifies when a dynamic observer exists. Its proof provides an
explicit construction of the observer.

Theorem 4.17 A dynamic observer for system (4.1) exists if and only if the system is
detectable.

Proof: “⇐” Since (4.1) is detectable, (AT , CT ) is stabilisable. Wie can thus find a linear
feedback law F̂ ∈ Rk×n such that AT +CT F̂ is Hurwitz. For G = F̂ T the matrix A+GC =
(AT + CT F̂ )T is then Hurwitz, too.

We now specify the matrices in (4.3) as J = A+GC, L = −G and K = B, i.e.,

ż(t) = (A+GC)z(t)−Gy(t) +Bu(t).
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Abbreviating x(t) = x(t, x0, u), z(t) = z(t, z0, u, y) and e(t) = z(t)−x(t), for e(t) we obtain
the differential equation

ė(t) = ż(t)− ẋ(t)

= (A+GC)z(t)−Gy(t) +Bu(t)−Ax(t)−Bu(t)

= (A+GC)z(t)−GCx(t)−Ax(t)

= (A+GC)(z(t)− x(t)) = (A+GC)e(t)

Since A+GC is Hurwitz, we thus obtain

‖e(t)‖ ≤ ce−σt‖e(0)‖

for suitable c, σ > 0 and since e(t) = z(t)−x(t) and e(0) = z0−x0 this implies the desired
estimate.

“⇒” Let x0 ∈ N and y(t) = Cx(t, x0, 0) = 0 for all t ≥ 0. Setting z0 = 0 then yields
z(t, z0, 0, y) = z(t, 0, 0, 0) = 0. Then the estimate from the definition of the dynamic
observer yields

‖x(t, x0, 0)‖ = ‖x(t, x0, 0)− z(t, z0, 0, y)‖ ≤ ce−σt‖x0 − z0‖ = ce−σt‖x0‖ → 0

for t→∞. It follows that x(t, x0, 0)→ 0, implying detectability.

4.4 Solution of the stabilisation problem with output

We will now analyse the method for stabilisation from the last section and prove that it
works successfully if we use the dynamic observer (4.3) in Step (2).

From the Steps (1)–(3) with (4.3) in Step (2) we obtain the feedback equation

u(t) = Fz(t), ż(t) = Jz(t) + Ly(t) +KFz(t). (4.4)

This form of a feedback controller is called a dynamic output feedback law2. This is because
u(t) is computed from the output y(t) = Cx(t) and the feedback controller has an “internal”
dynamic, given by the differential equations for z.

2In contrast to this the feedback law u(t) = Fx(t) constructed in Chapter 3 is called static state feedback
law.
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Definition 4.18 A dynamic output feedback law (4.4) solves the stabilisation problem
with output, if the overall system of differential equations that is obtained by inserting
(4.4) into (4.1), i.e.

ẋ(t) = Ax(t) +BFz(t)

ż(t) = Jz(t) + LCx(t) +KFz(t)

with solutions
(
x(t)
z(t)

)
∈ R2n is exponentially stable.

Theorem 4.19 Consider a control system (4.1) with matrices (A,B,C). Then the stabil-
isation problem with output is solvable in the sense of Definition 4.18 if and only if (A,B)
is stabilisable and (A,C) is detectable.

In this case (4.4) together with the dynamic observer constructed in the proof of Theorem
4.17 and a stabilising feedback law F ∈ Rm×n for (A,B) yields a stabilising dynamic
feedback law.

Proof: “⇐”: Let (A,B) be stabilisable and (A,C) be detectable. Further, let F ∈ Rm×n
be a stabilising feedback law for (A,B) and (4.3) be the dynamic observer constructed in
the proof of Theorem 4.17. Then the system controlled by (4.4) becomes(

ẋ(t)
ż(t)

)
=

(
A BF
LC J +KF

)(
x(t)
z(t)

)

=

(
A BF
−GC A+GC +BF

)(
x(t)
z(t)

)

= T−1

(
A+BF BF

0 A+GC

)
T

(
x(t)
z(t)

)
.

with

T =

(
IdRn 0
−IdRn IdRn

)
, T−1 =

(
IdRn 0
IdRn IdRn

)
.

Since exponential stability persists under coordinate transformations, it suffices to check
that the matrix in the last line of this computation is Hurwitz. This is a block-triangular
matrix, whose eigenvalues ar thus given by the eigenvalues of the blocks on the diagonal,
i.e., of A + BF and A + GC. Since A + BF is Hurwizt by choice of F and A + GC is
Hurwitz by choice of G (in the proof of Theorem 4.17), we obtain only eigenvalues with
negative real part. This yields the assertion.

“⇒”: Using the coordinate transformation T from Lemma 2.14 the system becomes

ẋ1(t) = A1x
1(t) +A2x

2(t) +B1Fz(t)

ẋ2(t) = A3x
2(t)

ż(t) = Jz(t) + LCx(t) +KFz(t)
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with x(t) = T
(
x1(t)
x2(t)

)
. Assume now that (A,B) is not stabilisable. Then A3 has eigenvalues

with positive real parts, the origin is thus not asymptotically stable for the equation ẋ2(t) =
A3x

2(t) and consequently there is an initial value x2
0 with x2(t, x2

0) 6→ 0. Thus, if we choose

x0 = T

 x1
0

x2
0

z0

 ∈ R2n

with arbitrary x1
0, z0, then x(t, x0, Fz) 6→ 0 for any choice of the dynamic feedback law.

This contradics the solvability of the stabilisation problem. Consequently, (A,B) must be
stabilisable.

Detectability of (A,C) follows as in the proof of “⇒” in Theorem 4.17.

Remark 4.20 The constructions and statements in this and in the preceding section hold
analogously with the obvious modifications for discrete-time systems.
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Chapter 5

Analysis in frequency domain

A considerable part of modern control and systems theory developed out of electrical engi-
neering, where the behaviour of electrical circuits with input and output signals is studied.
An example for this may be an amplifier, which receives an input signal (from a microphone,
a mobile phone etc.) and converts it into an output signal that is sent to a loudspeaker.
Another example is an (analog) radio, in which the input signal (electromagnetic waves) are
converted into an acoustic output signal. If we represent these devices by control systems,
we can denote the input signal by u and the output signal by y. The changes the interpre-
tation of these functions compared to the previous chapters: u(t) is now an external signal
(instead of a control function that we can determine) and y(t) is and output signal that is
supposed to satisfy certain properties (instead of the result of a measurement). Yet, this
new intepretation does not change the mathematical description of the relation between u
and y via the system (4.1). In these kind of applications, the initial condition is usually
chosen as x0 = 0. The interpretation of this choice is that until time t = 0 the system is
at rest, and only afterwards it is influenced by the input signal u(t), t ≥ 0.

The two application example already indicate that frequencies play an important role in
this interpretation. For this reason, in these applications u and y are usually not considered
as functions of time but as functions depending on the frequency. To this end, we start by
introducing the Laplace-Transformation.

5.1 Laplace transformation

Let K = R or C and R+
0 = [0,∞). By L1

loc(R
+
0 ,Km) we denote the space of all functions

u : R+
0 → Km that are Lebesgue integrable on any compact interval in R+

0 and with
L1(R+

0 ,Km) we denote the space of functions u : R+
0 → Km, that are Lebesgue integrable

on the whole half line R+
0 . For u ∈ L1

loc(R
+
0 ,Km) and α ∈ R define uα : R+

0 → Km via
uα(t) := u(t)e−αt. Then we define the space of α-exponentially integrable functions as

Eα(Km) := {u ∈ L1
loc(R

+
0 ,K

m) |uα ∈ L1(R+
0 ,K

m)}.

51
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Example 5.1 The function u(t) = et is continuous and is thus contained in L1
loc(R

+
0 ,R).

However, since ∫ t

0
eτdτ = et − 1→∞

for t→∞, it is not contained in L1(R+
0 ,R). For α > 1 we obtain∫ t

0
uα(τ)dτ =

∫ t

0
eτe−ατdτ =

1

1− α(e(1−α)t − 1)→ 1

α− 1

for t → ∞. Thus, the infinite Riemann integral exists and since uα(t) ≥ 0 this implies
that the infinite Lebesgue integral also exists. Consequently, u(t) = et lies in Eα(R) for all
α > 1.

Definition 5.2 The functions in Eα(Km) are called Laplace-transformable. For all s ∈
Cα := {s ∈ C |Re(s) > α} the (one-sided) Laplace transform of u ∈ Eα(Km) is defined as

û(s) := (Lu)(s) :=

∫ ∞
0

u(t)e−stdt.

The Laplace transform û = Lu is thus a function from Cα to Cm.

Example 5.3 Laplace transforms of some functions from R+
0 to R with a ∈ C, ω ∈ R,

m ∈ N0:

(a) u(t) = 1 ⇒ û(s) =
1

s
for Re(s) > 0

(b) u(t) = sin(ωt) ⇒ û(s) =
ω

ω2 + s2
for Re(s) > 0

(c) u(t) = cos(ωt) ⇒ û(s) =
s

ω2 + s2
for Re(s) > 0

(d) u(t) = eat ⇒ û(s) =
1

s− a for Re(s) > Re(a)

(e) u(t) = eat sin(ωt) ⇒ û(s) =
ω

ω2 + (s+ a)2
for Re(s) > Re(a)

(f) u(t) = eat cos(ωt) ⇒ û(s) =
s− a

ω2 + (s+ a)2
for Re(s) > Re(a)

(g) u(t) =
tm

m!
eat ⇒ û(s) =

1

(s− a)m+1
for Re(s) > Re(a)

Remark 5.4 Although the integral in the definition of the Laplace transform is only
defined for the values of Re(s) indicated in this table, the resulting expession for the
transform may be defined for a larger set of values. For instance, in (d) the expression for
û(s) is defined for all s 6= a. In the following we will admit all arguments s ∈ C of û for
which the computed expression is well defined.
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The inverse of the Laplace transf is given by

(L−1û)(t) :=
1

2πi

∫ β+i∞

β−i∞
estû(s)ds =

eβt

2πi

∫ ∞
−∞

eiωtû(β + iω)dω.

More precisely, for all u ∈ Eα(Km) and every β > α the identity L−1Lu(t) = u(t) holds for
almost all t ∈ R+

0 . If u is continuous then it even holds for all t ∈ R+
0 , cf. [12, Theorem

A.3.19].

Below we list some important rules for computing the Laplace transform, for a, a1, a2 ∈ R
und u, u1, u2 ∈ Eα(Km). Further assumptions are indicated below the table.

(i) L(a1u1 + a2u2)(s) = a1û1(s) + a2û2(s)

(ii) L(u(a ·))(s) =
1

a
û
(s
a

)
, for a > 0

(iii) L(u(· − a))(s) = e−saû(s), for a > 0

(iv) L(ea ·u)(s) = û(s− a)

(v) L(u̇)(s) = sû(s)− u(0)

(vi) L
(∫ ·

0
u(τ)dτ

)
(s) =

1

s
û(s)

(vii) L(·ku)(s) = (−1)k
dkû

dsk
(s)

(viii) L(u1 ? u2)(s) = û1(s)û2(s)

(ix) lim
t→0,t>0

u(t) = lim
s→∞

sû(s)

In (iii) we assume that u is defined on [−a,∞) with u(t) = 0 for all t ∈ [−a, 0]. In (v)
we assume that u is defined on (−ε,∞) for some ε > 0 and that u is differentiable. If
u in (v) is discontinuous in 0, then u(0) must be replaced by limt→0,t<0 u(t). In (viii),

u1 ? u2(t) =
∫ t

0 u1(t− τ)u2(τ)dτ denotes the convolution.

5.2 The transfer function

The transfer function allows to express the input-output behaviour of a control system by
means of the Laplace transform. Here the input-output behaviour denoted the map u 7→ y
with y(t) = Cx(t, 0, u), i.e., the function that assigns to the input function u the output of
the solution of the control system with initial value x0 = 0.

We now investigate how this map looks for the Laplace transformed signals. To this end,
we again consider the system (4.1), i.e.,

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t)

with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rk×n.
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Theorem 5.5 Consider the control system (4.1) and let u ∈ U , u ∈ Eα(Rm) and y(t) =
Cx(t, 0, u). Then y is Laplace-transformable with

ŷ(s) = G(s)û(s),

where G(s) = C(sId−A)−1B.

Proof: According to (1.14) it holds that

y(t) = C

∫ t

0
eA(t−τ)Bu(τ)dτ.

Since u ∈ Eα(Rm), u is exponentially bounded. Moreover, ‖eAt‖ is exponentially bounded
by e‖A‖t. Hence, the integrand is exponentially bounded, thus also the integral and since
x and y are continuous as results of an integration, we obtain x ∈ Eα(Rn), y ∈ Eα(Rk) for
suitable (sufficiently large) α > 0.

Applying the Laplace transform to (4.1), using the formulas (i) and (v) as well as x0 = 0
we obtain

sx̂(s) = Ax̂(s) +Bû(s), ŷ(s) = Cx̂(s)

for all s ∈ C with Re(s) > α. The first equation is equivalent to

sx̂(s)−Ax̂(s) = Bû(s) ⇔ (sId−A)x̂(s) = Bû(s).

For all s ∈ C that are not eigenvalues of A (i.e. in particular for all s with sufficiently large
real part), the matrix on the left hand side of this equation is invertible and it follows that

x̂(s) = (sId−A)−1Bû(s) ⇒ ŷ(s) = Cx̂(s) = C(sId−A)−1Bû(s) = G(s)û(x).

Definition 5.6 The function G : C → Ck×m from Theorem 5.5 is called transfer func-
tion.

Remark 5.7 (i) From the representation

(sId−A)−1 =
1

det(sId−A)
adj(sId−A)

with the adjugate matrix adj(sId − A) it follows that G : C → Ck×m is a matrix valued
function with rational entries, i.e. with entries of the form

gij(s) =
pij(s)

qij(s)
(5.1)

with polynomials pij , qij of degree1 deg pij < deg qij ≤ n.

1For outputs of the form y(t) = Cx(t) +Du(t) it holds that G(s) = D + C(sId− A)−1B and deg pij ≤
deg qij ≤ n.
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(ii) The so-called realisation theorie deals with the question whether for a given function
G : C→ Ck×m there exists a control system (4.1) such that G is its transfer function. One
can show that for each proper2 rational matrix function this is indeed the case. However,
in general A, B, C and possibly D are not unique.

(iii) Defining g(t) := CeAtB, the solution formula yields

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ =

∫ t

0
g(t− τ)u(τ)dτ = g ? u(t).

With the computation rule (viii) of the Laplace transform we thus obtain

ŷ(s) = L(g ? u)(s) = ĝ(s)û(s).

Hence, the transfer function satisfies G = ĝ (if we generalise the definition of the Laplace
transform in the obvious way to matrix valued functions).

Example 5.8 Wir consider the down-hanging and the inverted linearised pendulum, both
without the variables of the cart, i.e.

A =

(
0 1
−g −k

)
, B =

(
0
1

)
and, respectively,

A =

(
0 1
g −k

)
, B =

(
0
1

)
.

In both cases we set C = (1 0). This means that the output measures the position of the
Pendulum.

For the down-hanging pendulum we thus obtain

(sId−A)−1 =

(
s −1
g s+ k

)−1

=

(
s+k

ks+s2+g
1

ks+s2+g
−g

ks+s2+g
s

ks+s2+g

)

and hence

G(s) = C(sId−A)−1B =
1

ks+ s2 + g
.

Analogously, for the inverted pendulum we get

G(s) = C(sId−A)−1B =
1

ks+ s2 − g .

2Proper means that deg pij ≤ deg qij for all i, j.
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5.3 Input-output stability

We now introduce a stability notion that fits the input-output perspective of the transfer
function G.

Definition 5.9 A control system is called input-output-stable (briefly i/o-stable) if there
exists a constant K > 0 such that for any function u ∈ U that is bounded on R+

0 the
corresponding output

y(t) = C

∫ t

0
eA(t−τ)Bu(s)dτ

with initial value x0 = 0 satisfies the inequality ‖y‖∞ ≤ K‖u‖∞.

Remark 5.10 (i) One can show that i/o stability is equivalent to the implication “‖u‖∞ <
∞ ⇒ ‖y‖∞ < ∞”. In this form i/o stability is defined in many textbooks. The proof of
this equivalence, however, needs several technical estimates that we avoid here for brevity
of exposition. For our purposes the formulation from Definition 5.9 is better suited.

(ii) In order to distinguish the stability notion used in the previous chapters (A or the
closed-loop system is exponentially stable, i.e. all eigenvalues of A or A+BF , respectively,
have negative real part) from the notion of i/o stability, we also denote the “old” stability
notion as state stability.

A first necessary and sufficient condition for io stability is given by the following lemma.

Lemma 5.11 A system (4.1) is i/o-stable if and only if g(t) = CeAtB satisfies the inequal-
ity

gmax :=

∫ ∞
0
‖g(t)‖dt <∞. (5.2)

Proof: “⇒”: Let the system by i/o-stable. We prove that∫ ∞
0
|γij(t)|dt ≤ K (5.3)

for all component functions γij , i = 1, . . . , k, j = 1, . . . ,m von g = (γij)i=1,...,k,j=1,...,m,
which implies (5.2).

In order to prove (5.3), for given t > 0 let u be given by u(τ) := sgn(γij(t − τ))ej for
τ ∈ [0, t]. Then we obtain [g(t − τ)u(τ)]i = |γij(t − τ)|. Defining u(τ) = 0 für τ > t, we
obtain ‖u‖∞ = 1 and thus for the corresponding output ‖y‖∞ ≤ K, and consequently also
|yi(t)| ≤ K for all t ≥ 0. This implies

K ≥ |yi(t)| =
∣∣∣∣∫ t

0
[g(t− τ)u(τ)]idτ

∣∣∣∣ =

∣∣∣∣∫ t

0
|γij(t− τ)|dτ

∣∣∣∣ =

∫ t

0
|γij(t−τ)|dτ =

∫ t

0
|γij(τ)|dτ.

Since this holds for all t ≥ 0, (5.3) follows.
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“⇐”: Let gmax < ∞ and let u be an input signal with ‖u‖∞ < ∞. Then for all t ≥ 0 the
inequality

‖y(t)‖ =

∥∥∥∥∫ t

0
g(t− τ)u(τ)dτ

∥∥∥∥ ≤ ∫ t

0
‖g(t−τ)‖‖u(τ)‖dτ ≤

∫ t

0
‖g(t−τ)‖dτ‖u‖∞ = gmax‖u‖∞

holds. Thus, the system is i/o-stable with K = gmax.

Corollary 5.12 If (4.1) is state stable, then (4.1) is also i/o-stable.

Proof: If (4.1) is state stable, then A is Hurwitz. Hence, by Theorem 3.5 the inequality
‖eAt‖ ≤ ce−σt holds for constants c, σ > 0 and all t ≥ 0. This yields ‖g(t)‖ ≤ ‖C‖ce−σt‖B‖
and thus ∫ ∞

0
‖g(t)‖dt ≤

∫ ∞
0
‖C‖ce−σt‖B‖dt =

c‖C‖‖B‖
σ

<∞.

The converse of this result is obviously false. A simple counterexample is obtained by
setting C = 0 setzen. Then, because of y(t) ≡ 0 for all u ∈ U , the system is trivially
i/o-stable with K = 0, regardless of whether A is Hurwitz or not.

Verifying the criterion (5.2) is in general difficult, since an infinite integral must be es-
timated. If, however, the transfer function G is known, then the criterion can be easily
checked. To this end we say that s∗ ∈ C is a pole of a rational (matrix) function G if s∗

is a pole for at least one of its component functions. This, in turn, means that there are
j, k ∈ N0 with j < k such that s∗ is a k-fold zero of the denominator polynomial and a
j-fold zero of the enumerator polynomial (here j = 0 means that s∗ is not a zero). Note
that s∗ is a pole of G if and only if ‖G(s)‖ is unbounded in each neighbourhood of s∗.

Theorem 5.13 Consider a control system (4.1) with transfer function G. Then the system
is i/o-stable if and only if all poles s∗ of G lie in the open left complex half plane C− =
{z ∈ C |Re(z) < 0}, i.e. if they satisfy Re(s∗) < 0.

Proof: “⇒”: If the system is i/o-stable, then from Lemma 5.11 we know that gmax =∫∞
0 ‖g(t)‖dt <∞. Then for all s ∈ C with Re(s) ≥ 0 we obtain

‖G(s)‖ =

∥∥∥∥∫ ∞
0

g(t)e−stdt

∥∥∥∥ ≤ ∫ ∞
0
‖g(t)‖ |e−st|︸ ︷︷ ︸

≤1

dt ≤
∫ ∞

0
‖g(t)‖dt = gmax,

which means that G cannot have poles outside C−.

“⇐”: Let γij(t) denote the components of the function g(t) = CeAtB. From Remark 5.7
it follows that the entries of G are given by gij = γ̂ij . Now the series representation of the
matrix exponential implies that the γij(t) are of the form

γij(t) =

q∑
p=1

µpe
λpt t

kp

kp!
,
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where the λj are eigenvalues of A. From Example 5.3(g) we can thus conclude

gij(s) = γ̂ij(s) =

q∑
p=1

µj
1

(s− λp)kp+1
.

This yields that the poles of G are given by λp. The assumption on the poles then implies
that all λp lie in C−. This, in turn, implies that the integral

∫∞
0 γij(t)dt is finite for all i, j,

hence also
∫∞

0 ‖g(t)‖dt <∞. Hence by Lemma 5.11 the system is i/o-stable.

Example 5.14 For the pendulum this criterion allows to check easily that the down-
hanging pendulum is i/o-stable, because the poles (i.e. the zeros of the denominator)
are given by −k/2 ±

√
k2 − 4g/2. These numbers all have real part. Analogously for

the inverted pendulum one sees that the poles are −k/2 ±
√
k2 + 4g/2. As one of these

numbers has a positive real part, the inverted pendulum is not i/o-stable.

Remark 5.15 (i) The proof shows that all poles of G are eigenvalues of A. This explains
the name pole shifting theorem for Theorem 3.29.

(ii) In general not all eigenvalues of A are poles of G. On the one hand, each eigenvalue for
which the corresponding eigenspace lies in N is missing, because the correponding solutions
cannot be observed. On the other hand, the eigenvalues corresponding to eigenspaces that
cannot be reached from x0 = 0 are missing. These are the eigenspaces that are not
contained in the reachable set R.

If the system is controllable and observable, then all eigenvalues of A are poles of G. This
can be confirmed comparing Example 5.14 with Example 3.6. If the system is stabilisable
and detectable, then all unstable eigenvalues (i.e. those with positive real part) are poles
of G. In this case, state stability is equivalent to i/o-stability.

5.4 Feedback laws in frequency domain

In order to formulate a feedback law in frequency domain, we first need to extend this
concept slightly. The this end we observe that both the static feedback law u(t) = Fx(t)
and the dynamic feedback law with u(t) = Fz(t) and the differential equation ż(t) =
(J +KF )z(t) + Ly(t) are easily Laplace-transformered. We obtain the transfer functions

K(s) = F bzw. K(s) = F (sId−M)−1L,

where in the first case we assume C = Id and in the second case we write M = J +KF . A
closed loop can thus always be written as the coupling of two transfer functions G and K.
For being consistent with the i/o concept, it would be desirable that this coupling is again
a transfer function. This, however, requires an additional input for the closed-loop system,
that we did not have so far, because the original input is “occupied” with u = Fx or
u = Fz, respetively. As a remedy we introduce a new, additional input w(t), by replacing
Fx(t) or Ly(t) by F (x(t) + w(t)) or L(y(t) + w(t)), respectively.
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Theorem 5.16 Given two transfer functions G and K with appropriate dimensions, which
are coupled via ŷ(s) = G(s)û(s) and û(s) = K(ŷ(s) + ŵ(s)). Then

ŷ(s) = (Id−G(s)K(s))−1G(s)K(s)ŵ(s)

holds for all s ∈ C for which Id−G(s)K(s) is invertible.

Proof: The two identities from the assumption imply

ŷ(s) = G(s)û(s) = G(s)K(ŷ(s) + ŵ(s)).

Rearranging the terms in this equation yields, that it is equivalent to

(Id−G(s)K(s))ŷ(s) = G(s)K(s)ŵ(s)

This immediately yields the assertion.

The fedback stabilisation problem in frequency domain can now be defined as the problem
to find a transfer function K, such that (Id − G(s)K(s))−1G(s)K(s) is i/o-stable, i.e.,
that is only exhibits poles in C−. In the special case that u and y are one-dimensional,
a number of efficient computational techniques exists for this task. We will, however, not
discuss them in detail here.

We will rather briefly discuss the role of the new additional input signal in the system.
For this purpose we consider the simples tcase of a stabilising static state feedback, i.e.,
u = Fx and C = Id. Then the solutions of closed-loop system with the additional input
are given by

x(t) = e(A+BF )tx0 +

∫ t

0
e(A+BF )(t−τ)BFw(τ)dτ︸ ︷︷ ︸

=:v(t)

.

Exponential stability is now equivalent to the fact that e(A+BF )t converges to 0 as t→∞.
This implies

‖x(t)− v(t)‖ ≤ ce−σt‖x0‖,
i.e. the solution converges to v(t). Stability thus ensures that the solution converges to a
well defined limit function v(t) that is independent of the initial value x0 and only depends
on the new input w(t). This is a new interpretation of stability, which is equivalent to i/o
stability and is thus also implied by the stability notions in the sense of Chapters 3 and 4.
In the case w ≡ 0 the limit function satisfies v ≡ 0 and we are thus back in the situation
of these chapters.

5.5 Graphical analysis

In this section we present two graphical representations of control systems that are very
common in control engineering. These apply to systems with one-dimensionalem input and
output, i.e., for m = k = 1. Obeerve that in this case the tranfer function G is a scalar
function. Systems of this kind are called SISO systems (Single Input Single Output).
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The Bode diagram

The Bode diagram3 provides a graphical illustration of the relation between u and y. In
particular, this representation explains why the consideration of the Laplace transform is
called “analysis in frequency domain”. As a preparation we need the following theorem.

Theorem 5.17 Consider the transfer function G : C→ C for an i/o-stable SISO system of
the form (4.1). Then the output signal y(t) corresponding to the input signal u(t) = sin(ωt)
converges for t→∞ to the function

y∞(t) = |G(iω)| sin(ωt+ ϕ(ω)),

where ϕ is an argument function4 of ω 7→ G(ωi).

Proof: See [12, Proposition 2.3.22].

The values of the transfer function G on the imaginary axis iR — the so-called frequency
response of G — thus has a very concrete meaning for the bevavious of the output y(t)
for sinusoidal inputs u(t): The output signal is obtained by amplifying the input signal by
|G(iω)| and shifting its phase by ϕ(ω).

Figure 5.5 illustrates this for the model of the (down-hanging) pendulum with k = 0.1 and
g = 9.81. Here we plot the numerically simulated output (red solid) for input u(t) = sin(ωt)
(black dashed) for ω = 4. One sees that the output singal has an amplitude of about 0.16
and its phase is shifted by about π compared to the input signal; the pendulum thus
oscillates oppositely compared to the cart and with lower amplitude. The corresponding
transfer function satisfies |G(i4)| = 0.1612 and arg(G(i4)) = −3.077, which confirmd this
observation.
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Figure 5.1: Input (black dashed) with frequency ω = 4 and corresponding output (rot) for
the down-hanging pendulum

3Hendrik Wade Bode (1905–1982), US-American electrical engineer
4Let I be an interval. A continuous function ϕ : I → R is called argument function of a function

γ : I → C \ {0}, if γ(t) = |γ(t)|eiϕ(t) holds for all t ∈ I. We then write briefly ϕ = arg γ.
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This direct relation between the transfer function and the output signal means that, con-
versely, by measuring the amplitude and the phase shift of the output for sinusoidal input,
we can reconstruct the values G(iω) = |G(iω)|eϕ(ω). The transfer function on the imaginary
axis iR can thus be obtained experimentally from measurements.

This fact is particularly important because of a theorem from complex analysos: One can
prove that the function G is uniquely determined by its values G(iω) on iR. More precisely,
for i/o-stable systems (4.1) Cauchy’s integral formula yields the expression

G(s) =
1

2πi

∫ ∞
−∞

G(iω)

iω − sdω

for all s ∈ C with Re(s) > 0 (note that the absense of “Du(t)” in the expression for y(t)
in (4.1) is important here; otherwise the formula has to be modified). Since, moreover,
G(iω) → 0 holds for all ω → ±∞, the above integral can be approximated by an integral
with compact integration interval. Consequently, fo an i/o-stabe system the tranfer func-
tion can be entirely reconstructed from measurement values for sinusoidal input signals,
cf, [15, Abschnitt 6.5.3].

Graphically, these measurement values are depicted in the so-called Bode diagram, where
logarithmic scales are used for the frequency and for the modulus |G(iω)|. Figure 5.2 shows
this diagra for the down-hanging pendulum, again with k = 0.1 and g = 9.81.

Figure 5.2: Bode diagram for the down-hanging pendulum

The left diagram says that the input signal is first weakly amplified and then, with increas-
ing frequency up to about ω = 3, the amplification increases and then decresase again for
larger value of ω. Die phase remains almost unchanged for small values of ω, while after
approximately ω = 3 it is abruptly shifted by about −π. This behaviour is confirmed by
the numerical simulations of the pendulum in Figure 5.3.
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Figure 5.3: Input (black dashed) and output (red) for the down-hanging pendulum with
ω = 2, 3, 4 from left to right

The Nyquist diagram

The Nyquist diagram5 serves for checking whether a closed-loop system is i/o-stable. Just
like the Bode diagram the graph can be obtained entirely from measurement values and
thus stability can be verified experimentally.

By Theorem 5.16, in the SISO case the transfer function is given by

Gcl :=
G(s)K(s)

1−G(s)K(s)
.

by Theorem 5.13 is is i/o-stable if and only if there are no poles in the closed right half
plane of C. A sufficient condition for this is that F (s) := 1 − G(s)K(s) has no zeros in
the closed right half plane, which is the case if and only if G0(s) := −G(s)K(s) does not
attain the value −1 in the right half plane.

The Nyquist diagram6 now depicts the values of G0(ωi) graphically for ω ∈ (−∞,∞). In
practice, this is realised approximately by plotting the values from −R to R for a large
R ∈ R in place of ±∞. Since G(s)K(s) is the transfer function of the coupling of the
feedback law and the system, the values of this product can be determined experimentally.

Figure 5.4 shows these figures for the inverted pendulum with G(s) = 1/(ks + s2 − g) for
k = 0.1 and g = 9.81, and the static feedback law K = −1 (left) and K = −10 (right).

The consideration of the polynomials in the enumerator and the denominator of G0 now
yields the following stability criterion.

Nyquist criterion: Let n+ ∈ N denote the number of poles of G0 with positive real part.
Moreover, we assume that G0 does not have poles with real part equal to 0. Then the
closed-loop system with transfer function Gcl is i/o-stable if and only if the curve in the
Nyquist diagram (called the frequency response locus) G(ωi) for ω = −∞ . . . ,∞ winds
around the point −1 = −1 + 0i ∈ C exactly n+ times in counterclockwise direction. In
case n+ = 0 stability holds if and only if the the frequency response locus does not wind
around the point −1 in clockwise direction.

In our example from Figure 5.4, sinceK = const the transfer functionG0 has the same poles
as G; hence there is a pole with positive real part and none with real part 0. Consequently,

5Harry Nyquist (1889–1976), US-American electrical engineer
6Here we only present the variant for D = 0. See, e.g., [15, Section 8.5] for the general case.
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Figure 5.4: Nyquist diagram for the inverted pendulum with K = −1 (left) and K = −10
(right)

the frequency response locus must wind around −1 exactly once in counterclockwise di-
rection. This is obviously not the case in the left figure for K = −1. Yet, ths condition is
satisfied in the right figure for K = −10 (of course, the winding direction cannot be seen in
this graph, but one can verify that it rund in counterclockwise direction, as required). The
analysis in time domain yields that the corresponding closed-loop matrices for K = −1
and K = −10 are given by

A =

(
0 1

g −K −k

)
=

(
0 1

8.81 −0.1

)
bzw. A =

(
0 1

−0.19 −0.1

)
.

The computation of the eigenvalues of this matrix confirms instability for K = −1 and
stability K = −10. In fact, the treshold between instability and stability lies at K = −9.81.

Remark 5.18 For discrete time-systems a consideration in frequency domain is also pos-
sible. Instead of the Laplace transform in discrete time one uses the so-called z-transform,
which we will not discuss here in detail.
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Chapter 6

Optimal stabilisation

The method for the computation of stabilising feedback laws proposed in Chapter 3 has the
disadvantage that — except for the eigenvalues — the dynamics of the closed-loop system
cannot be influenced. For instance, it is often the case that large control values u require to
spend a lot of energy (as in the pendulum model where u represents the acceleration of the
cart), which one would like to avoid. The heating model, is another example. Here large
overshoots, i.e., oscillations until the desired temperature is reached, should be avoided.

In this chapter we will therefore present an approach that allows to exert more influence
on the behavior of the closed-loop system. This will be achieved by using optimisation
techniques, in which the desired behaviour can be determined via the choice of the cost
function. As in Chapter 3 we will assume that the whole state vector x is accessible for
evaluating Fx. If this is not the case, a dynamic observer as described in Chapter 4 can
be used. We restrict ourselves to optimal control problems that are linked to stabilisation
problems. More general problems will be addressed in the context of model predictive
control later in this course.

6.1 Foundations of optimal control

In this section we will derive basic results in optimal control that we will need for solving
the optimal feedback stabilisation problem. Since the derivation of these results is the same
for linear and nonlinear systems, we will present it in the more general nonlinear setting.
This means, we consider nonlinear control systems of the form

ẋ(t) = f(x(t), u(t)). (6.1)

We assume that f : Rn × Rm → Rn is continuous and that for each R > 0 there exists
LR > 0 such that the Lipschitz condition

‖f(x1, u)− f(x2, u)‖ ≤ LR‖x1 − x2‖ (6.2)

holds for all x1, x2 ∈ Rn and all u ∈ Rm with ‖x1‖, ‖x2‖, ‖u‖ ≤ R. Under this assumption
the well-known existence and uniqueness theorem for ordinary differential equations can be
modified in such a way that for each piecewise continuous control function u ∈ U and each

65
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initial value x0 it yields the existence of a unique solution x(t, x0, u) with x(0, x0, u) = x0

(see also Theorem 8.1, below).

We now define the optimal control problem we want to consider in the following.

Definition 6.1 For a continuous and non-negative cost function g : Rn × Rm → R+
0 we

define the cost functional

J(x0, u) :=

∫ ∞
0

g(x(t, x0, u), u(t))dt.

The optimal control problem is then given by the optimisation problem

minimise J(x0, u) with respect to u ∈ U for each x0 ∈ Rn.

The function
V (x0) := inf

u∈U
J(x0, u)

is called the optimal value function of this optimal control problem. A pair (x∗, u∗) ∈ Rn×U
with J(x∗, u∗) = V (x∗) is called optimal pair.

As function space U as before we use the space of piecewise continuous functions. In
addition, we assume that u is bounded on each compact intervall and that the functions u
are continuous on the right, i.e. that for all t0 ∈ R the condition limt↘t0 u(t) = u(t0) holds.
Observe that the second assumption can be made without loss of generality, because the
solution does not depend on the value of u in the points of discontinuity.

Bemerkung 6.2 In discrete time with dynamics

x(k + 1) = f(x(k), u(k))

and initial condition x(0) = x0 the cost functional reads

J(x0, u) :=

∞∑
k=0

g(x(k, x0, u), u(k)).

Note that the functional J(x0, u) need not be finite. Moreover, the infimum in the definition
of V need not be a minimum.

The first theorem in this chapter now gives a characterisation of the optimal value function
V .
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Theorem 6.3 (Dynamic Programming Principle or Bellman’s principle of opti-
mality)
(i) For each τ > 0 the optimal value function satisfies

V (x0) = inf
u∈U

{∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

}
.

(ii) For each τ > 0 and an optimal pair (x∗, u∗) it holds that

V (x∗) =

∫ τ

0
g(x(t, x∗, u), u∗(t))dt+ V (x(τ, x∗, u∗)).

Proof: (i) We first show

V (x0) ≤
∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

for all u ∈ U and all τ > 0. To this end, let xτ = x(τ, x0, u), ε > 0 be arbitrary and uτ ∈ U
be such that

J(xτ , uτ ) ≤ V (xτ ) + ε

holds. Let ũ = u&τuτ (· − τ) (cf. Definition 1.7). Then

V (x0) ≤
∫ ∞

0
g(x(t, x0, ũ), ũ(t))dt

=

∫ τ

0
g(x(t, x0, ũ), ũ(t))dt+

∫ ∞
τ

g(x(t, x0, ũ), ũ(t))dt

=

∫ τ

0
g(x(t, x0, u), u(t))dt+

∫ ∞
τ

g( x(t, x0, ũ)︸ ︷︷ ︸
=x(t−τ,xτ ,uτ )

, uτ (t− τ))dt

=

∫ τ

0
g(x(t, x0, u), u(t))dt+

∫ ∞
0

g(x(t, xτ , uτ ), uτ (t))dt

=

∫ τ

0
g(x(t, x0, u), u(t))dt+ J(xτ , uτ ) ≤

∫ τ

0
g(x(t, x0, u), u(t))dt+ V (xτ ) + ε.

Since ε > 0 was arbitrary, the claimed inequality follows.

As the second step we show

V (x0) ≥ inf
u∈U

{∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

}
.

To this end, consider again an arbitrary ε > 0. We choose u0 such that V (x0) ≥ J(x0, u0)−ε
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holds and abbreviate xτ = x(τ, x0, u0). Then

V (x0) ≥
∫ ∞

0
g(x(t, x0, u0), u0(t))dt− ε

=

∫ τ

0
g(x(t, x0, u0), u0(t))dt+

∫ ∞
τ

g(x(t, x0, u0), u0(t))dt− ε

=

∫ τ

0
g(x(t, x0, u0), u0(t))dt+

∫ ∞
0

g(x(t, x(τ, x0, u0), u0(·+ τ)), u0(t+ τ))dt− ε

=

∫ τ

0
g(x(t, x0, u0), u0(t))dt+ J(x(τ, x0, u0), u0(·+ τ))− ε

≥
∫ τ

0
g(x(t, x0, u0), u0(t))dt+ V (x(τ, x0, u0))− ε

≥ inf
u∈U

{∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

}
− ε

which shows the claim, since ε > 0 was arbitrary.

(ii) From (i) we immediately get the inequality

V (x∗) ≤
∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

The converse inequality follows from

V (x∗) =

∫ ∞
0

g(x(t, x∗, u∗), u∗(t))dt

=

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+

∫ ∞
τ

g(x(t, x∗, u∗), u∗(t))dt

=

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+

∫ ∞
0

g(x(t, x(τ, x∗, u∗), u∗(·+ τ)), u∗(t+ τ))dt

=

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ J(x(τ, x∗, u∗), u∗(·+ τ))

≥
∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

A consequence of this principle is the following corollary.

Corollary 6.4 Let (x∗, u∗) be an optimal pair. Then (x(τ, x∗, u∗), u∗(· + τ)) is also an
optimal pair for each τ > 0.

Proof: Exercise.

In words, Corollary 6.4 states that final pieces of optimal trajectories are optimal trajec-
tories themselves.

All statements made so far also hold in discrete time (with analogous proofs). In discrete
time the dynamic programming principle reads for all K ∈ N

V (x0) = inf
u∈U

{
K−1∑
k=0

g(x(k, x0, u), u(k)) + V (x(K,x0, u))

}
(6.3)
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and the optimal pairs (x∗, u∗) satisfy

V (x∗) =
K−1∑
k=0

g(x(k, x∗, u), u∗(k)) + V (x(K,x∗, u∗)).

The next statement derives a partial differential equation for V from Theorem 6.3, by
means of a clever limit process for τ → 0. This statement does not have a discrete-time
counterpart.

Theorem 6.5 (Hamilton-Jacobi-Bellman differential equation)
Let g be continuous in x and u. Moreover, let O ⊆ Rn be open and such that V |O is finite.

(i) If V is continuously differentiable in x0 ∈ O, then

DV (x0) · f(x0, u0) + g(x0, u0) ≥ 0

holds for all u0 ∈ Rm.

(ii) If (x∗, u∗) is an optimal pair and V is continuously differentiable in x0 ∈ O, then

min
u∈Rm

{DV (x∗) · f(x∗, u) + g(x∗, u)} = 0 (6.4)

and the minimum is attained in u∗(0). Equation (6.4) is called Hamilton-Jacobi-Bellman
equation.

Proof: We first show the auxiliary identity

lim
τ↘0

1

τ

∫ τ

0
g(x(t, x0, u), u(t))dt = g(x0, u(0))

for each u ∈ U . Because of continuity of x and u (on the right) in t and since g is continuous,
for any ε > 0 there is t1 > 0 with

|g(x(t, x0, u), u(t))− g(x0, u(0))| ≤ ε

for all t ∈ [0, t1). For τ ∈ (0, t1] this yields∣∣∣∣1τ
∫ τ

0
g(x(t, x0, u), u(t))dt− g(x0, u(0))

∣∣∣∣ ≤ 1

τ

∫ τ

0
|g(x(t, x0, u), u(t))− g(x0, u(0))|dt

≤ 1

τ

∫ τ

0
ε = ε

and thus the statement for the limit, since ε > 0 was arbitrary.

Now both assertions follow:

(i) For u(t) ≡ u0 ∈ Rm Theorem 6.3(i) implies

V (x0) ≤
∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))
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and thus

DV (x0)f(x0, u(0)) = lim
τ↘0

V (x(τ, x0, u))− V (x0)

τ

≥ lim
τ↘0
−1

τ

∫ τ

0
g(x(t, x0, u), u(t))dt = −g(x0, u(0)),

i.e., the first assertion.

(ii) From (i) we get
inf
u∈Rm

{DV (x∗) · f(x∗, u) + g(x∗, u)} ≥ 0.

Theorem 6.3(ii) moreover implies

V (x∗) =

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

This yields

DV (x∗)f(x∗, u∗(0)) = lim
τ↘0

V (x(τ, x∗, u∗))− V (x∗)

τ

= lim
τ↘0
−1

τ

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt = −g(x∗, u∗(0)),

which implies the existence of the minimum in u = u∗(0) and the claimed identity.

Theorem 6.5 provides necessary optimality conditions, i.e., conditions that must be satisfied
for the optimal value function or for an optimal pair, respectively — provided the optimal
value function is continuously differentiable. In general, however, the necessary condition
does not imply that a function is indeed an optimal value function or that a pair is an
optimal pair. To this end, sufficient optimality conditions are needed. We will derive them
in the following.

For this derivation we need additional assumptions, which can be formulated in different
ways. Since we want to apply the theory to stabilisation problems, the following assumption
is suitable for our purposes.

Definition 6.6 Assume that f satisfies f(0, 0) = 0, i.e. the origin is an equilibrium of the
control system for u = 0. Then we call the optimal control problem null controlling, if the
implication

J(x0, u) <∞ ⇒ x(t, x0, u)→ 0 for t→∞
holds.

Now we can formulate the sufficient condition.

Theorem 6.7 (sufficient optimality condition)
Consider a null controlling optimal control problem. Let W : Rn → R+

0 be a differentiable
function with W (0) = 0, which satisfies the Hamilton-Jacobi-Bellman equation

min
u∈Rm

{DW (x)f(x, u) + g(x, u)} = 0.
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For given x∗ ∈ Rn let u∗ ∈ U a control function, such that for the corresponding solution
x(t, x∗, u∗) and all t ≥ 0 the minimum in this equation for x = x(t, x∗, u∗) is attained in
u = u∗(t).

Then (x∗, u∗) is an optimal pair and

V (x(t, x∗, u∗)) = W (x(t, x∗, u∗))

holds for all t ≥ 0.

Proof: We prove the assertion for t = 0. Für t > 0 it follows by applying the proof to
(x(t, x∗, u∗), u∗(t + ·)). Consider u ∈ U and let x(t) = x(t, x∗, u) be the corresponding
solution. We start by showing the inequality

J(x∗, u) ≥W (x∗).

In case J(x∗, u) = ∞ there is nothing to show. It thus suffices to consider the case
J(x∗, u) <∞. From the Hamilton-Jacobi-Bellman equation we can conclude

d

dt
W (x(t)) = DW (x(t))f(x(t), u(t)) ≥ −g(x(t), u(t)),

and hence the fundamental theorem of calculus yields

W (x(T ))−W (x∗) =

∫ T

0

d

dt
W (x(t))dt ≥ −

∫ T

0
g(x(t), u(t))dt.

This implies

J(x∗, u) = lim
T→∞

∫ T

0
g(x(t), u(t))dt ≥ lim

T→∞

(
W (x∗)−W (x(T ))

)
= W (x∗).

for all T > 0. Here the last identity follows since the problem is null controlling and
J(x∗, u) < ∞. This implies x(T ) → 0 for T → ∞ and thus by continuity of W and
W (0) = 0 we obtain W (x(T ))→ 0.

Observe that this inequality in particular implies V (x∗) = infu∈U J(x∗, u) ≥ W (x∗). To
conclude the proof it is thus sufficient to show

J(x∗, u∗) = W (x∗).

For the control u∗ and the corresponding solution x∗ = x(t, x∗, u∗) the Hamilton-Jacobi-
Bellman equation implies

d

dt
W (x∗(t)) = DW (x∗(t))f(x∗(t), u∗(t)) = −g(x∗(t), u∗(t)),

and analogously to above we get

J(x∗, u∗) = lim
T→∞

∫ T

0
g(x∗(t), u∗(t))dt = lim

T→∞

(
W (x∗)−W (x(T ))

)
= W (x∗).
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Observe that both theorems in this section apply only if V or W , respectively, are differen-
tiable. In the general nonlinear case, this assumption is relatively restrictive1. Moreover, it
is in general quite difficult to compute V by solving this equation, even if V is differentiable.

In the linear case, however, the problem and the Hamilton-Jacobi-Bellman equation sim-
plify considerably, such that an explicit solution as possible, as we will see in the following
section.

6.2 The linear-quadratic problem

Now we return to the linear control system (1.3)

ẋ(t) = Ax(t) +Bu(t) =: f(x(t), u(t)).

In order to obtain an applicable solution theory, we also need to impose a suitable structure
for the cost function g(x, u).

Definition 6.8 A quadratic cost function g : Rn × Rn → R+
0 is given by

g(x, u) = (xT uT )

(
Q N
NT R

)(
x
u

)

with Q ∈ Rn×n, N ∈ Rn×m and R ∈ Rm×m, such that G :=

(
Q N
NT R

)
is symmetric

and positive definite (briefly: spd).

This is the reason for the name “linear-quadratic” optimal control problem: the dynamics
is linear and the cost function is quadratic.

We first show that this problem is null-controlling.

Lemma 6.9 The linear-quadratic problem is null-controlling in the sense of Definition 6.6.

Proof: We first show the inequalities

g(x, u) ≥ c1‖x‖2 and g(x, u) ≥ c2‖f(x, u)‖2 (6.5)

for suitable constants c1, c2 > 0.

Since the matrix G is spd, Lemma 3.10 implies the inequality

g(x, u) ≥ c1

∥∥∥∥( x
u

)∥∥∥∥2

≥ c1‖x‖2, (6.6)

1The nonlinear theory of these equations uses the notion of “viscosity solutions”, a generalised solution
concept that is also meaningfull if V is not differentiable.
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i.e., the first estimate in (6.5). Since

‖f(x, u)‖2 = (xT , uT )

(
A ATB

BTA B

)(
x
u

)
Lemma 3.10 moreover yields

‖f(x, u)‖2 ≤ c3

∥∥∥∥( x
u

)∥∥∥∥2

,

which together with (6.6) and c2 = c1/c3 yields the second estimate in (6.5).

Consider now x0 ∈ Rn and u ∈ U with

J(x0, u) <∞

and denote by x(t) = x(t, x0, u) the corresponding solution. We have to show that

lim
t→∞

x(t) = 0.

To this end, assume that x(t) 6→ 0. This means that there exists ε > 0 and a sequence
tk →∞ such that ‖x(tk)‖ ≥ ε. Without loss of generality we can assume tk+1 − tk ≥ ε/2.
Now we set δ = ε/4 and distinguish two cases for k ∈ N:

Case 1: ‖x(t)‖ ≥ ε/2 for all t ∈ [tk, tk + δ]. In this case for these t from (6.5) we get the
inequality g(x(t), u(t)) ≥ c1ε

2/4 and consequently∫ tk+δ

tk

g(x(t), u(t))dt ≥ c1δε
2/4 = c1ε

3/16.

Case 2: ‖x(t)‖ < ε/2 for a t ∈ [tk, tk + δ]. In this case we get∥∥∥∥∫ t

tk

f(x(τ), u(τ))dτ

∥∥∥∥ = ‖x(tk)− x(t)‖ ≥ ‖x(tk)‖ − ‖x(t)‖ ≥ ε/2.

From the second estimate in (6.5) we obtain

g(x, u) ≥ c2‖f(x, u)‖2 ≥
{

0, ‖f(x, u)‖ ≤ 1
c2‖f(x, u)‖, ‖f(x, u)‖ > 1

}
≥ c2(‖f(x, u)‖ − 1)

and hence∫ tk+δ

tk

g(x(τ), u(τ))dτ ≥ c2

∫ tk+δ

tk

‖f(x(τ), u(τ))‖ − 1dτ ≥ c2(ε/2− δ) ≥ c2ε/4.

Setting γ = min{c1ε
3/16, c2ε/4} > 0 we obtain

J(x0, u) =

∫ ∞
0

g(x(t), u(t))dt ≥
∞∑
k=1

∫ tk+δ

tk

g(x(t), u(t))dt ≥
∞∑
k=1

γ =∞,

and thus a contradiction.
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We can thus use Theorem 6.7 for vberifying the optimality of a solution of the linear-qua-
dratic problem.

In order to find a candidate for the optimal value function, we make the ansatz

W (x) = xTPx (6.7)

for an spd matrix P ∈ Rn×n.

A priori we do not know whether this ansatz is justified — for now we simply assume is
and investigate the consequences.

Lemma 6.10 If the linear-quadratic optimal control problem has an optimal value func-
tion of the form (6.7), then all optimal pairs (x∗, u∗) are of the form

u∗(t) = Fx(t, x∗, F )

where F ∈ Rm×n is given by

F = −R−1(BTP +NT ),

and x(t, x∗, F ) is the solution of the closed-loop system with feedback law F , i.e.,

ẋ(t) = (A+BF )x(t) = Ax(t) +Bu∗(t)

with initial condition x(0, x∗, F ) = x∗.

Moreover, the origin is exponentially stable for the closed-loop system with feedback law
F .

Proof: The optimal value function of the form (6.7) is continuously differentiable and
satsfies W (0) = 0. This implies that both Theorem 6.5 and Theorem 6.7 are applicable.

If W is the optimal value function, then Theorem 6.5(ii) implies that the optimal control
u = u∗(t) for x = x(t, x∗, u∗) minimises the expression

DW (x) · f(x, u) + g(x, u). (6.8)

Conversely, Theorem 6.7 yields that any control function, which minimises (6.8) along the
corresponding solution trajectory generates an optimal pair. We thus have to show that
the feedback law F generates such solutions and control functions and that the u∗ specified
in the theorem is the only control function that minimises (6.8).

For the linear-quadratic problem under consideration, the expression (6.8) to be minimised
equals

DW (x) · f(x, u) + g(x, u)

= xTP (Ax+Bu) + (Ax+Bu)TPx+ xTQx+ xTNu+ uTNTx+ uTRu

= 2xTP (Ax+Bu) + xTQx+ 2xTNu+ uTRu =: h(u),

since P is symmetric. Since G is spd, R must by spd, too, and thus the second derivative
of h with respect to u is spd. Thus, the function h is strictly convex in u. Thus, any zero
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of the derivative of h with respect to u is a global minimum. These derivatives are given
by

0 = Dh(u) = 2xTPB + 2xTN + 2uTR
⇔ −2uTR = 2xTPB + 2xTN
⇔ −Ru = BTPx+NTx
⇔ u = −R−1(BTPx+NTx) = Fx,

which shows the claim.

Exponential stability of the closed-loop system follows from the Hamilton-Jacobi-Bellman
Gleichung. Because G is spd, by Lemma 3.10 we obtain

DW (x) · f(x, Fx) = −g(x, Fx) ≤ −c‖(xT , (Fx)T )T ‖2 ≤ −c‖x‖2

for a suitable c > 0. Since, moreover, P is positive definite, W (x) is a Lyapunov function
and according to Lemma 3.11 exponential stabilily of the origin follows.

If the optimal value function is of the form (6.7), then we obtain a particularly nice solution:
We can not only compute the optimal control functions u∗ explicitly, they are, moreover,
given in feedback form and, as an (obviously intended) side effect the optimal feedback law
stabilises the system.

We thus have to investigate when V can assume the form (6.7). The next lemma gives a
sufficient condition for this fact, as well as a possibility for computing P .

Lemma 6.11 If the matrix P ∈ Rn×n is an spd solution of the algebraic Riccati equation2

PA+ATP +Q− (PB +N)R−1(BTP +NT ) = 0, (6.9)

then the optimal value function of the problem is given by V (x) = xTPx.

In particular, there exists at most one spd solution P of (6.9).

Proof: We start by showing that W (x) = xTPx solves the Hamilton-Jacobi-Bellman
equation (6.4).

In the proof of Lemma 6.10 we already established the identity

min
u∈U
{DW (x) · f(x, u) + g(x, u)} = DW (x) · f(x, Fx) + g(x, Fx)

for the matrix F = −R−1(BTP +NT ). Using

F TBTP + F TRF + F TNT

= −(N + PB)R−1BTP + (N + PB)R−1RR−1(BTP +NT )− (N + PB)R−1NT = 0

we obtain

DW (x) · f(x, Fx) + g(x, Fx)

= xT (P (A+BF ) + (A+BF )TP +Q+NF + F TNT + F TRF )x

= xT (PA+ATP +Q+ (PB +N)F + F TBTP + F TRF + F TNT︸ ︷︷ ︸
=0

)x

= xT (PA+ATP +Q+ (PB +N)F )x

= xT (PA+ATP +Q− (PB +N)R−1(BTP +NT ))x.

2named after Jacopo Francesco Riccati, Italian mathematician, 1676–1754
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If the algebraic Riccati equation (6.9) is satisfied, then this expression equals zero and the
Hamilton-Jacobi-Bellman equation is satisfied.

In order to prove V (x) = W (x), we nosw show that the assumptions of Theorem 6.7
are satisfied. Positive definiteness of P implies W (x) ≥ 0 and W (0) = 0. As shown
above, W (x) = xTPx solves the Hamilton-Jacobi-Bellman equation. Moreover, from the
construction of u∗ via the feedback law F in Lemma 6.10 it follows that it satisfies the
assumptions on u∗ in Theorem 6.7. Thus, V (x) = W (x) follows from Theorem 6.7.

The uniqueness of the spd solution P follows from the fact that the proof of V (x) = W (x)
applies to any such solution. This implies V (x) = xTPx for all x ∈ Rn, by which P is
uniquely determined.

Remark 6.12 Note that the uniqueness statement of this lemma only holds for spd, i.e.,
symmetric and positive definite solution matrices P . In general, the algebraic Riccati
equation has more than one solution. However, at most one of these can be spd.

Lemma 6.10 and 6.11 suggest the following strategy for solving the linear-quadratic prob-
lem:

Find an spd solution P of the algebraic Riccati equation (6.9) and compute
from this the optimal linear feedback law F according to Lemma 6.10.

This yields an optimal linear feedback law, which according Lemma 6.10 also solves the
stabilisation problem.

The important question thus is: Under which assumptions can we prove the existence of
a spd solution of the algebraic Riccati equation? The following theorem shows that this
approach works under the weakest possible assumption on A and B.

Theorem 6.13 For the linear-quadratic optimal control problem the following statements
are equivalent:

(i) The pair (A,B) is stabilisable.

(ii) The algebraic Riccati equation (6.9) has a unique spd solution P .

(iii) The optimal value function is of the form (6.7).

(iv) There exists an optimal linear feedback law, which stabilises the control system.
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Proof: “(i) ⇒ (ii)”: Consider the Riccati differential equation

Ṗ (t) = P (t)A+ATP (t) +Q− (P (t)B +N)R−1(BTP (t) +NT )

with matrix-valued solution P (t) that satisfies the initial condition P (0) = 0. From the
theory of ordinary differential equations we know that this solution P (t) exists for all t
from a maximal existence interval [0, t∗), i.e., t∗ is chosen maximally. A direct computation
shows that P (t)T is also a solution of this equation that satisfies P (0)T = 0. Because of
the uniqueness of the solution we obtain P (t) = P (t)T , i.e. the solution is symmetric.

As the first step of the proof we show that this solution exists for all t ≥ 0, i.e. that t∗ =∞.
To this end we assume that t∗ <∞.

With analogous computations as in the proof of Lemma 6.10 one sees, that for all t1 − t ∈
[0, t∗) and all u ∈ U the function W (t, t1, x) := xTP (t1 − t)x satisfies the inequality

∂

∂t
W (t, t1, x) +

∂

∂x
W (t, t1, x) · f(x, u) + g(x, u) ≥ 0. (6.10)

For any solution x(t) = x(t, x0, u) of the control system with arbitrary u ∈ U this implies

d

dt
W (t, t1, x(t)) =

∂

∂t
W (t, t1, x(t)) +

∂

∂x
W (t, t1, x(t)) · f(x, u(t)) ≥ −g(x(t), u(t)).

The fundamental theorem of calculus together with W (t1, t1, x) = 0 then yields

W (0, t1, x0) = −
∫ t1

0

d

dt
W (t, t1, x)dt ≤

∫ t1

0
g(x(t, x0, u), u(t))dt (6.11)

for all t1 ∈ [0, t∗). Again analogously to the proof of Lemma 6.10 one checks that for
the control value defined by u = u∗ = −R−1(BTP (t) + NT )x one obtains equality in
(6.10). With a similar derivation as above one sees that with the control function u∗(t) =
−R−1(BTP (t) +NT )x(t, x0, u

∗) we get

W (0, t1, x0) =

∫ t1

0
g(x(t, x0, u

∗), u∗(t))dt. (6.12)

Since G is spd and the solutions x(t, x0, u
∗) are continuous, we get W (0, t1, x0) > 0 for

x0 6= 0, implying that P (t1) is spd. With the particular choice u ≡ 0 inequality (6.11)
implies that W (0, t1, x0) = xTP (t1)x is uniformly bounded for all t1 ∈ [0, t∗). Now the
symmetry of P (t) implies that its entries satisfy

[P (t)]ij = eTi P (t)ej =
1

2
((ei + ej)

TP (t)(ei + ej)− eTi P (t)ei − eTj P (t)ej). (6.13)

Hence, the entries of P (t) are also uniformly bounded for t ∈ [0, t∗). From the theory of
ordinary differential equations it is known that if the right hand side of the equation is
globally defined (which is the case for our equation, since the right hand side is defined for
all P ∈ Rn×n) and t∗ <∞, then the norm of the solution must tend to infinity as t↗ t∗.
This, however, is only possible if at least one entry of P (t) grows unboundedly. Since here,
however, all entries are bounded, t∗ <∞ is not possible.
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The solution P (t) is thus an spd matrix valued function for all t ≥ 0. Moreover, (6.12)
implies for all s ≥ t and all x ∈ Rn the inequality

xTP (s)x ≥ xTP (t)x.

We now show that P∞ := limt→∞ P (t) exists. To this end we pick a stabilising feedback
law F for the pair (A,B) and set uF (t) = Fx(t, x0, F ). Then from (6.11) and the estimate

g(x, Fx) ≤ K‖x‖2

we obtain the inequality

W (0, t1, x0) ≤
∫ t1

0
g(x(τ, x0, F ), uF (τ))dτ

≤
∫ t1

0
K(Ce−σt‖x0‖)2dt

≤
∫ ∞

0
KC2e−2σtdt︸ ︷︷ ︸

=KC2

2σ
=:D<∞

‖x0‖2 ≤ D‖x0‖2.

This implies xTP (t)x ≤ D‖x‖2 for all t ≥ 0, thus for any fixed x ∈ Rn the expression
xTP (t)x is bounded and monotone increasing. This implies that it converges for t → ∞.
Denoting the j-th basis vector as ej and defining

lij = lim
t→∞

(ei + ej)
TP (t)(ei + ej) and lj = lim

t→∞
eTj P (t)ej ,

from (6.13) we can conclude

lim
t→∞

[P (t)]ij =
1

2
(lij − li − lj).

This implies that the limit P∞ := limt→∞ P (t) exists. This matrix is symmetric and since

xTP∞x ≥ xTP (t)x > 0 for all x 6= 0 and all t > 0

it is also positive definite.

We finally show that this P∞ solves the algebraic Riccati equation. From the qualitative
theory of ordinary differential equations it is known that P (t)→ P∞ implies that P∞ is an
equilibrium of the Riccati ODE.3 This immediately implies that P∞ solves the algebraic
Riccati equation, from which the existence of an spd solution follows. Uniqueness then
follows from Lemma 6.11.

“(ii) ⇒ (iii)”: Follows from Lemma 6.11

“(iii) ⇒ (iv)”: Follows from Lemma 6.10.

“(iv) ⇒ (i)”: Since a stabilising feedback law exists, the pair (A,B) is stabilisable.

3see, e.g., Lemma 7.2 in [8]
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Remark 6.14 The auxiliary function W (t0, t1) used in the proof of “(i)⇒(ii)” is actually
the optimal value function of the optimal control problem

minimise J(t0, t1, x0, u) :=

∫ t1

t0

g(x(t, t0, x0, u), u(t))dt

on the finite time horizon [t0, t1]. Here x(t, t0, x0, u) denotes the solution of the control
problem with initial time t0 and initial value x0, i.e., x(t0, t0, x0, u) = x0.

This observation can even be further generalised, as we briefly sketch (without proofs):

For the linear-quadratic problem on finite time horizon with terminal cost l(x) = xTLx for
an spdmatrix L ∈ Rn × n, i.e.

minimise J(t0, t1, x0, u) :=

∫ t1

t0

g(x(t, t0, x0, u), u(t))dt+ l(x(t1, t0, x0, u))

the optimal value function is given by

W (t0, t1) = xTP (t1 − t0)x,

where P (·) solves the Riccati differential equation (as in the proof above), but now with
initial condition P (0) = L.

Analogously to the infinite horizon problem, the optimal feedback law is given by

F (t) = −R−1(BTP (t1 − t) +NT ),

but now it depends on the time t. The optimally controlled system on [t0, t1] thus reads

ẋ(t) = (A+BF (t))x(t).

Observe that for t1 → ∞ and t fixed, the time varying feedback law F (t) converges to F
from Lemma 6.10.

Remark 6.15 For discrete-time systems analogous results to the results in this chapter
can be obtained. These result do not build upon the Hamilton-Jacobi-Bellman equation
but rather on the optimality principle (6.3) for K = 1. This leads to the discrete-time
algebraic Riccati equation

ATPA− P − (ATPB +N)(BTPB +R)−1(BTPA+NT ) +Q = 0.

The formula for the optimal feedback law changes to F = (BTPB + R)−1(BTPA +
NT ).
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6.3 Linear-quadratic output regulation

In the previous section we always assumed that the matrix G in the definition of the cost
function g(x, u) is positive definite. In the exercises we have seen that in general the
LQ problem is not null-controlling and that the proposed solution may not work if this
condition is violated.

Nwvertheless, there are reasons to relax this condition. If we consider a control system
with output (4.1) (cf. Chapter 4), i.e.

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

then it makes sense that the optimisation objective depends only on y and not on x.
This means that we consider a cost function of the form g̃(y, u). This can be achieved by
choosing the submatrices Q and N of G of the form

Q = CT Q̃C, N = CT Ñ

for matrices Q̃ and Ñ of appropriate dimension. Then we get

g(x, u) = (xT uT )

(
Q N
NT R

)
︸ ︷︷ ︸

=:G

(
x
u

)
= (xT uT )

(
CT Q̃C CT Ñ

ÑTC R

)(
x
u

)

= (yT uT )

(
Q̃ Ñ

ÑT R

)
︸ ︷︷ ︸

=:G̃

(
y
u

)
=: g̃(y, u). (6.14)

Here we choose Q̃ and Ñ such that G̃ is spd. The matrix G is now no longer positive
definite. Nevertheless the results from the previous sections can be carried over to this new
G. To this end we must check where positive definiteness entered in the proofs:

(i) In Lemma 6.9 positive definiteness of G is used in order to show that the problem is
null-controlling.

(ii) In Lemma 6.10 positive definiteness of the submatrixR is exploited implicitly, because
the R−1 is used.

(iii) In the proof of the implication “(i)⇒(ii)” in Theorem 6.13 positive definiteness of G
is exploited to prove that P (t) is positiv definite.

Item (ii) is not an issue here, because R is still assumed to be positive definite. Items (i)
and (iii) will be clarified in the sequel. The following lemma is essential for this.

Lemma 6.16 Let the pair (A,C) be observable. Then for any t1 > 0 there is c > 0, such
that for g from (6.14) the estimate

J(0, t1, x0, u) =

∫ t1

0
g(x(t;x0, u), u(t))dt ≥ c‖x0‖2

holds for all x0 ∈ Rn and all u ∈ U .
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Proof: From the general solution formula

x(t;x0, u) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds = x(t;x0, 0) + x(t; 0, u)

we can conslude that for all α > 0

x(t;αx0, αu) = αx(t;x0, u)

holds. This imlies for x0 6= 0 and α = ‖x0‖ the identity

J(0, t1, x0, u) = α2J(0, t1, x0/α, u/α) = ‖x0‖2J(0, t1, x0/‖x0‖, u/‖x0‖).

In order to show the assertion it thus suffices to prove the existence of c > 0 with

J(0, t1, x0, u) ≥ c for all x0 ∈ Rn with ‖x0‖ = 1 and all u ∈ U . (6.15)

In order to prove (6.15) we first consider

J(0, t1, x0, 0) =

∫ t1

0
x(t;x0, 0)TQx(t;x0, 0)dt =

∫ t1

0
y(t)T Q̃y(t)dt.

Since (A,C) is observable, Lemma 4.5 implies that for all x0 6= 0 there is τ ∈ [0, t1] with
y(τ) 6= 0. Since y(t) is continuous, we can conclude y(t) 6= 0 on an intervall around τ ,
which by means of the positive definiteness of Q̃ implies the inequality J(0, t1, x0, 0) > 0.
Since J(0, t1, x0, 0) is continuous in x0, it attains a minimum c0 > 0 on the compact set
{x0 ∈ Rn | ‖x0‖ = 1}, implying

J(0, t1, x0, 0) ≥ c0 (6.16)

for all x0 ∈ Rn with ‖x0‖ = 1.

For estimating J(0, t1, x0, u) we now choose an arbitrary x0 ∈ Rn with ‖x0‖ = 1 and an
ε > 0. For control functions u with∫ t1

0
u(t)TRu(t)dt > ε (6.17)

we then obtain
∫ t1

0 u(t)Tu(t)dt ≥ k1ε, where k1 = 1/‖R‖. Consequently, positive definite-

ness of G̃ implies

J(0, t1, x0, u) =

∫ t1

0
(y(t)Tu(t)T )G̃

(
y(t)

u(t)

)
︸ ︷︷ ︸
≥k2

∥∥∥(y(t)u(t))
∥∥∥2≥k2‖u(t)‖2

dt ≥ k1k2ε > 0 (6.18)

with k2 = 1/‖G̃−1‖. It thus remains to show the inequality for control functions u ∈ U
with ∫ t1

0
u(t)TRu(t)dt ≤ ε. (6.19)

Since R is positive definite, we get

‖u(t)‖2 ≤ c1u(t)TRu(t)
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for some c1 > 0 and thus ∫ t1

0
‖u(t)‖2dt ≤ c1ε.

In addition we get

‖u(t)‖ ≤


√
ε, ‖u(t)‖2 ≤ ε

‖u(t)‖2/√ε, ‖u(t)‖2 > ε.

This implies∫ t1

0
‖u(t)‖dt ≤

∫ t1

0
max{√ε, ‖u(t)‖2/√ε}dt ≤

∫ t1

0

√
ε+ ‖u(t)‖2/√εdt = (c1 + t1)

√
ε.

From the general solution formula we thus obtain the existence of a constant c2 > 0 with

‖x(t; 0, u)‖ ≤ c2

√
ε (6.20)

for all t ∈ [0, t1]. Similarly, the solution formula implies

‖x(t;x0, 0)‖ ≤ c3‖x0‖ = c3 (6.21)

for a suitable constant c3 > 0 and all t ∈ [0, t1]. In particular, this implies

‖x(t;x0, u)‖ ≤ c4 (6.22)

for c4 = c2
√
ε+ c3.

For the functional we thus obtain

J(0, t1, x0, u) ≥
∫ t1

0
x(t;x0, u)TQx(t;x0, u)dt+ 2

∫ t1

0
x(t;x0, u)TNu(t)dt.

Because of (6.22), the second term satisfies the inequality

2

∫ t1

0
x(t;x0, u)TNu(t)dt ≥ −2c4‖N‖

∫ t1

0
‖u(t)‖dt ≥ −2c4‖N‖(c1 + t1)

√
ε =: −c5

√
ε.

From the estimate

(x1 + x2)TQ(x1 + x2) = xT1 Qx1 + xT2 Qx2 + 2xT1 Qx2 ≥ xT1 Qx1 + 2xT1 Qx2

for the first term, using x1(t) = x(t;x0, 0), x2(t) = x(t; 0, u) and the Cauchy-Schwarz
inequality we can conclude∫ t1

0
x(t;x0, u)TQx(t;x0, u)dt ≥

∫ t1

0
x1(t)TQx1(t) +

∫ t1

0
2x1(t)TQx2(t)dt

≥ c0 − 2‖N‖
√∫ t1

0
‖x1(t)‖2dt

√∫ t1

0
‖x2(t)‖2dt

≥ c0 − 2‖N‖c3

√
t1c2

2ε =: c0 − c6

√
ε.
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Together this yields
J(0, t1, x0, u) ≥ c0 − c7

√
ε

with c7 := c5 + c6. Setting ε = c2
0/(2c7)2 (implying c7

√
ε = c0/2), in the case (6.19) we

finally arrive at
J(0, t1, x0, u) ≥ c0/2.

Together with the inequality (6.18) for the case (6.17) we thus obtain

J(0, t1, x0, u) ≥ max{c0/2, k1k2c
2
0/(4c7)2} =: c

and consequently (6.15).

Now we can clarify the items (i) and (iii) in der list above. We first look at item (i),i.e. we
generalise Lemma 6.9 to the new cost function (6.14).

Lemma 6.17 Let the pair (A,C) be observable. Then the linear-quadratic problem with
g from (6.14) is null-controlling.

Proof: We prove
x(t;x0, u) 6→ 0 ⇒ J(x0, u) =∞.

Thus, consider a solution with x(t;x0, u) 6→ 0. Then there exists a sequence of times
tk → ∞ and an ε > 0 with ‖x(tk;x0, u)‖ ≥ ε. Without loss of generality we may assume
tk+1 − tk ≥ 1. Using Lemma 6.16, xk = x(tk;x0, u) and uk(·) = u(tk + ·) it then follows
that ∫ tk+1

tk

g(x(t;x0, u), u(t))dt =

∫ 1

0
g(x(t;xk, uk), uk(t))dt = J(0, 1, xk, uk) ≥ cε2.

This implies

J(x0, u) =

∫ ∞
0

g(x(t;x0, u), u(t))dt

≥
∞∑
k=1

∫ tk+1

tk

g(x(t;x0, u), u(t))dt ≥
∞∑
k=1

ε2 = ∞.

It remains to address item (iii), i.e. to show that the proof of “(i)⇒(ii)” in Theorem 6.13
also works for g from (6.14). This is shown by the following theorem

Theorem 6.18 Let the pair (A,C) be observable. Then Theorem 6.13 also holds for the
linear-quadratic problem with g from (6.14).

Proof: Using Lemma 6.17 in place of Lemma 6.9 we obtain all parts of the proof analo-
gously to Theorem 6.13, except for “(i)⇒(ii)”.

For proving “(i)⇒(ii)” the positive definiteness of G is used only in one place, i.e. for
proving that

W (0, t1, x0) =

∫ t1

0
g(x(t, x0, u

∗), u∗(t))dt
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in equation (6.12) is positive for all x0 6= 0. This, however, follows from Lemma 6.16 also
for g from (6.14) provided (A,C) is observable. Thus, the proof remains valid and the
assertion follows.

Remark 6.19 The corresponding Riccati equation reads

PA+ATP + CT Q̃C − (PB + CT Ñ)R−1(BTP + ÑTC)

and the optimal feedback law is given by

F = −R−1(BTP + ÑTC).

Observe that both V (x) = xTPx and Fx are in general not of the form yT P̃ y or F̃ y. In
order to implement F for a control system of the form (4.1) in dependence of y, we still
need an observer.



Chapter 7

The Kalman Filter

Already in Chapter 4 we saw a possibility to compute the state x(t) of a control system
from the measured output y(t) = Cx(t) den Zustand via the dynamic observee z(t). The
focus of this considerations in this chapter was mainly asymptotic stability of the closed
loop system, rather than the quality of the approximation z(t) ≈ x(t).

By means of the linear-quadratic optimal control from the last section we now want to
develop a method that yields an — in an appropriate sense — optimal state estimation
z(t) ≈ x(t).

The solution of this linear-quadratic state estimation problem is given by the so-called
Kalman Filter (also called LQ estimator). This filter is nowadays contained in numerous
technical devices, from the radar device via satellites to the smartphone. Here we consider
the deterministic, continuous-time version of the Kalman filter on infinite time horizons,
which builds on the results from the last chapter.

7.1 State estimation on infinite time horizon

We first consider the following, slightly differently formulated problem: Assume we are
given a control system (4.1) with the modified notation B = D and u = v, i.e.,

ẋ(t) = Ax(t) +Dv(t), y(t) = Cx(t), (7.1)

where (A,C) is observable.

Let, moreover, ym : R → Rl be a given function. The goal now is to use the solutions of
(7.1) in order to find a constructively computable function x∗(t), such that y(t) = Cx∗(t)
approximates the function ym(t). The interpretation of this problem setting is that ym(t) =
Cxm(t) represents measured output values generated by the solution xm of a differential
equation ẋm = Axm with identical system matrix A as in (7.1). From these values the
solution the state xm(t) shall be estimated as good as possible. We will explain in the next
section, how this setting can be extended if ẋm is generated by a control system that also
includes a control function u.

The Kalman Filter, which we derive in the following, solves this problem optimally in the
sense of an “indirect” least-squares approximation that proceeds in two steps.
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In the first step we choose spd matrices Q̃ and R of suitable dimension and compute
for every τ ≥ 0 and every initial value x0 with initial time t0 = τ a control function
v : (−∞, τ ]→ Rn, such that the solution xτ (t) = x(t; τ, x0, v) minimises the functional

Jτ (x0, v) :=

∫ τ

−∞
(Cxτ (t)− ym(t))T Q̃(Cxτ (t)− ym(t)) + v(t)TRv(t)dt. (7.2)

We assume that the corresponding optimal value function

Wτ (x0) := inf
v∈U

Jτ (x0, v)

is finite. In the second step we then choose x∗(τ) such that Wτ (x∗(τ)) becomes minimal,
i.e. such that

Wτ (x∗(τ)) = min
x0∈Rn

Wτ (x0)

holds.

This approach may at the first glance appear a little cumbersome. It leads, however, to a
solution that is very easy to implement and that we will derive now.

First of all we transform the time in such a way, that the integration (7.2) is carried out
from 0 to ∞, as in the linear quadratich problem from the last section.

To this end we set xτ (t;x0, v) := x(τ − t;x0, v) and yτm(t) = ym(τ − t). Then, using the
abbreviation xτ (t) = xτ (t;x0, v), for

J−τ (x0, v) :=

∫ ∞
0

(Cxτ (t)− yτm(t))T Q̃(Cxτ (t)− yτm(t)) + v(t)TRv(t)dt (7.3)

we obtain the identity J−τ (x0, v) = Jτ (x0, v(τ − ·)). This implies in particular

W−τ (x0) := inf
v∈U

J−τ (x0, v) = Wτ (x0).

Observe that xτ (t;x0, v) solves the control system

ẋτ (t) = −Axτ (t)−Dv(τ − t).

Using a second transformation we can then bring (7.3) (almost) into the form of the known
linear-quadratic output-regulation problem from definition 6.1 with g from (6.14):

For this purpose we extend the state x ∈ Rn of the system by a component xn+1(t) ≡ const,
i.e., ẋn+1(t) ≡ 0. This is achieved by setting

x̄ :=

(
x
xn+1

)
, A :=

(
−A 0
0 0

)
und D :=

(
−D

0

)
.
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If we define

Qτ (t) :=

(
CT Q̃C −CT Q̃yτm(t)

−yτm(t)T Q̃C yτm(t)T Q̃yτm(t)

)

and g(t, x̄, v) := x̄TQτ (t)x̄+ vTRv, then for x̄ =

(
x
1

)
it follows that

g(t, x̄, v) = (Cx− yτm(t))T Q̃(Cx− yτm(t)) + v(t)TRv(t)dt.

Consequently for x̄0 =

(
x0

1

)
and x̄τ (t, x̄0, v) =

(
xτ (t, x0, v)

1

)
we obtain

J−τ (x0, v) =

∫ ∞
0

g(t, x̄τ (t; x̄0, v), v(t))dt =: Jτ (x̄0, v).

As usual, with W τ we denote the optimal value function. The problem is now of the
usual linear-quadratic form with the exception that g depends explicitly on time. Yet, the
equations that were used in the proof of Theorem 6.13 are still valid, if the time dependence
is M(t) is taken care of appropriately. More precisely (for sake of brevity we state this
without a proof), the following holds.

Consider for t ∈ [0, σ] the solution of the Riccati differential equation

Ṗ τ,σ(t) = P τ,σ(t)A+A
T
P τ (t) +Qτ (σ − t)− P τ,σ(t)DR−1D

T
P τ,σ(t) (7.4)

with initial condition P τ,σ(0) = 0. Then the convergence

W τ (x̄) := lim
σ→∞

x̄TP τ,σ(σ)x̄

holds. Now we decompose W τ,σ(t) according to the definition of A: Writing

P τ,σ(t) =

(
Pτ,σ(t) pτ,σ(t)
pτ,σ(t)T ατ,σ(t)

)
,

the shape of the matrices A and D implies that Pτ,σ(t) solves the equation

Ṗτ,σ(t) = −Pτ,σ(t)A−ATPτ,σ(t) + CT Q̃C − Pτ,σ(t)DR−1DTPτ,σ(t).

This, however, is exactly the Riccati differential equation from the proof of Theorem 6.13.
Moreover all the data and thus also Pτ,σ(t) = Q(t) are independent of τ and σ. We can
thus conclude

lim
σ→∞

P (σ) = P,

where Q solves the algebraic Riccati equation

−QA−ATQ+ CT M̃C −QDN−1DTQ = 0. (7.5)

Thus, with x̄T0 = (xT0 , 1) and pτ = limσ→∞ pτ,σ(σ), ατ = limσ→∞ ατ,σ(σ) we get

Wτ (x0) = W τ (x̄0) = lim
σ→∞

x̄T0 P τ,σ(σ)x̄0 = xT0 Px0 + 2xT0 pτ + ατ .
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The value x∗(τ) that we looked for in the second step of the method is thus (by derivating
this expression and solving for x0) given by

x∗(τ) = −P−1pτ = −Spτ

for S := P−1. By multiplication of (7.5) with S from the left and the right and with −1 it
follows that S solves the so-called dual Riccati equation

AS + SAT − SCT Q̃CS +DR−1DT = 0. (7.6)

It remains to compute pτ . From the Riccati differential equation (7.4) for pτ,σ(t) we can
deduce the differential equation

ṗτ,σ(t) = −AT pτ,σ(t)−Q(t)DN−1DT pτ,σ(t)− CT M̃ym(τ − σ + t)

with initial condition qτ,σ(0) = 0. This implies

ṗτ+s,σ+s(t) = ṗτ,σ(t)

and since these two solutions coincide in t = 0, they must coincide

qτ+s,σ+s(t) = qτ,σ(t).

hence we get

d

ds

∣∣∣∣
s=0

pτ+s,σ+s(σ + s) = ṗτ,σ(σ)

= −AT pτ,σ(σ)− P (σ)DR−1DT pτ,σ(σ)− CT Q̃ym(τ)

and consequently with σ →∞

d

dτ
pτ = −AT pτ − PDR−1DT pτ − CT Q̃ym(τ).

Finally, with (7.6) we obtain

ẋ∗(τ) = −S d

dτ
pτ

= SAT pτ +DN−1DT pτ + SCT Q̃ym(τ)

= −SATS−1x∗(τ)−DR−1DTS−1x∗(τ) + SCT Q̃ym(τ)

= (−SAT −DR−1DT )S−1x∗(τ) + SCT Q̃ym(τ)

= (AS − SCT Q̃CS)S−1x∗(τ) + SCT Q̃ym(τ)

= Ax∗(τ)− SCT Q̃(Cx∗(τ)− ym(τ))

= Ax∗(τ) + L(Cx∗(τ)− ym(τ))

with L = −SCT Q̃.
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This differential equation is the so-called Kalman filter. Its application works as follows:
When x∗(t) is known, then x∗(s) for s > t can be computed by solving the differential
equation on the interval [t, s] (analytically or numerically) from the data ym|[t,s]. The
Kalman filter can thus be evaluated online in a recursive fashion.

Two properties of the Kalman filter are worth to be noted explicitly:

(i) The matrix L does not depend on ym. For computing L one only needs to solve one
of the two Riccati equations (7.5) or (7.6).

(ii) The matrix A+ LC is Hurwitz. This is because LT is the LQ-optimal feedback law
of the optimal control problem that corresponds to the dual Riccati equation (7.6).
Thus, AT + CTLT is Hurwitz and consequently also A + LC = (AT + CTLT )T , as
these matrices have identical eigenvalues.

7.2 The Kalman filter as observer

We now show how the Kalman filter can be used as an observer for the state of a general
control system (4.1), i.e.,

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

with (A,C) being controllable. We assume that the initial value x0 is unknown while the
control function u(t), t ≥ 0, the output values y(t) = Cx(t;x0, u), t ≥ 0, and an estimation
z0 of the initial value x0areknown. We now look for the curve z(t), t ≥ 0, with z(0) = z0

in Rn, such that the estimation error Cz(t) ≈ y(t) becomes as small as possible in an
appropriate sense and such that z(t) only depends on y|[0,t] (i.e. it can be computed from
the data that is known at time t). The output y(t) thus plays the role of the measurement
ym(t) in the Kalman filter.

For solving the problem we make the ansatz

ż(t) = Az(t) +Bu(t) + v(t), (7.7)

where now v : R → Rn shal be determined in such a way that z(t) becomes a good
estimate. In order to eliminate the term Bu(t) from the equation, we define the estimation
error e(t) := z(t)− x(t). This satisfies the equation

ė(t) = Ae(t) + v(t), (7.8)

i.e. it is determined by a control system (7.1) with D = Id and x = e. The error e hence
plays the role of x in (7.1).

We now need to compute the counterpart of the measurement ym for the e-system. We
denote this quantity by em. For the problems for z and e to be equivalent, em must satisfy
the equation

Ce(t)− em(t) = Cz(t)− ym(t) = Cz(t)− y(t) ⇔ em(t) = y(t) + Ce(t)− Cz(t). (7.9)
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Because of y(t) = Cx(t) and the definition of e this implies em(t) = Cx(t)+Ce(t)−Cz(t) =
0. The measurement values for the e-equation are thus constantly equal to zero. This is
indeed reasonable, since the measured quantity ym(t) = y(t) = Cx(t) has already been
incorporated into the equation for e via the definition of e.

If we now compute the feedback law L for the Kalman filter for (7.8) according to the
previous section, because of em ≡ 0 the filter equation becomes

ė∗(t) = (A+ LC)e∗(t).

This is equivalent to

ż(t) = Az(t) +Bu(t) + L(Cz(t)− y(t)) (7.10)

and thus yields an online implementable observer equation (note the structural similarity
with the dynamic observer from Chapter 4) for computing z(t), which can be solved an-
alytically or numerically. Observe that the optimal estimate e∗ for e and the estimator z
for x, respectively, are connected via e∗(t) = z(t)− x(t). Thus, while we have derived the
Kalman observer by applying the Kalman filter to the equation for e (7.8), for comput-
ing the estimate z(t) we use the z-equation (7.10), because otherwise we would need the
unknown state x(t) in order to compute z(t) from e∗(t).

Since we do not have measurement values y(t) for t < 0, we cannot compute the optimal
initial value e∗(0) as in the previous section. Moreover, even if we could compute it, it would
not be of much use, since for (7.10) we would have to use the initial value z(0) = e∗(0)+x0 —
but x0 is unknown. We thus use the estimate z0 ≈ x0 as initial value in (7.10). Since A−LC
is Hurwitz, the estimation error e∗(t) converges to 0 for t → ∞, i.e. the approximation
z(t) ≈ x(t) becomes better and better with increasing t. Since our approach is based on
an LQ optimal control problem, we would, however, expect not only convergence but also
that the estimate z(t) starting in z(0) = z0 is optimal in a suitable sense.

In order to see in which sense optimality holds, we extend y(t) for t < 0 in such a way that
e∗(0) = z0 − x0 and thus z(0) = z0 becomes the solution of the Kalman filter. In other
words, we generate “artificial” measurements for which the Kalman filter yields exactly
the estimate z0 at time t = 0. This is precisely the case if we synthese y(t) via

y(t) =

{
Cx(t; z0, 0), t < 0
Cx(t;x0, u), t ≥ 0

(7.11)

from the forward solution of (4.1) for x0 and u and the backward solution for z0 and u ≡ 0.
For v ≡ 0 and e(0) = 0, from em ≡ 0 we then obtain

Ce(t)− em = 0

for all t < 0. This yields J0(0, 0) = 0 for the objective (7.2), hence also W0(0) = 0 and
thus e∗(0) = 0. Consequently, it follows that z(0) = z0 − e∗(0) = z0.

The estimated value z(t) computed using the initial estimation z0 is thus exactly the
terminal value of the solution of (7.7) that approximates the curve (7.11) in the best
possible way in the sense of (7.2).
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An important property of the Kalman filter is that is also yields good estimates in case of
imprecise data ỹ(t) ≈ y(t). This can be proved rigorously with stochastic methods.

The Kalman filter also exists in discrete time. In this case the differential equation (7.10)
becomes a difference equation

z(k + 1) = Az(k) +Bu(k) + L(Cz(k)− y(k)).

Since this is easier to implement than the differential equation (7.10) (which has to be
solved numerically or analytically before the solution can be evaluated) and moreover
requires only discrete-time measurements y(k) (which are easier to acquire in practice than
continuous-time measurements y(t)), in practical applications the discrete-time Kalman
filter is often preferred.
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Chapter 8

Nonlinear control systems

In this and in the subsequent chapters we will consider nonlinear control systems in con-
tinuous time

ẋ(t) = f(x(t), u(t)) (8.1)

and, respectively, in discrete time

x(k + 1) = f(x(k), u(k)), (8.2)

written briefly as x+ = f(x, u). An example for a nonlinear control system in continuous
time is the nonlinear pendulum that we already introduced in (1.5). While for continuous-
time systems we chose the state and control space as Rn and Rm, respectively, for discrete-
time systems it does not significantly complicate the setting to allow for arbitrary metric
spaces X and U for state and control.

In the following sections we briefly summarise some foundations about the solutions of such
systems.

8.1 Continuous-time systems

In continuous time we consider control functions with values in U ⊂ Rm. The function
f : Rn × U → Rn then is a parameter dependent continuous vector field. The space of
control functions is again denoted as U , but we will allow for a larger space than in the
previous sections. More precisely, we use control functions from L∞(R, U). Existence and
uniqueness is then delivered by the following Theorem of Carathéodory.

Theorem 8.1 (Theorem of Carathéodory) Consider a control system with the follow-
ing properties:

i) The space of control functions is given by

U = L∞(R, U) := {u : R→ U |u is measurable and essentially bounded1}.
1i.e., bounded outside a set of Lebesgue measure 0
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ii) The vector field f : Rn × U → Rn is continuous.

iii) For any R > 0 there exists a constant LR > 0, such that the estimate

‖f(x1, u)− f(x2, u)‖ ≤ LR‖x1 − x2‖
holds for all x1, x2 ∈ Rn and all u ∈ U with ‖x1‖, ‖x2‖, ‖u‖ ≤ R.

Then for any initial value x0 ∈ Rn, any initial time t0 ∈ R and any control function u ∈ U
there exists a (maximal) open interval I with t0 ∈ I and a unique absolutely continuous2

function x(t), which solves the integral equation

x(t) = x0 +

∫ t

t0

f(x(τ), u(τ)) dτ

for all t ∈ I.

Definition 8.2 We denote the unique function x(t) from Theorem 8.1 with xu(t; t0, x0)
and call it the solution of (8.1) with initial value x0 ∈ Rn and Kontrollfunktion u ∈ U . In
case t0 = 0 we briefly write xu(t, x0) = xu(t; 0, x0).

The following observation justifies this definition: Since xu(t, x0) is absolutely continuous,
it is differentiable with respect to t for almost all t ∈ I. In particular, Theorem 8.1 and
the fundamental theorem of calculus imply that xu(t, x0) satisfies the differential equation
(8.1) for almost all t ∈ I, i.e.

ẋ(t, x0, u) = f(x(t, x0, u), u(t))

holds for almost all t ∈ I.

Remark 8.3 In the following we always suppose that the assumptions (i)–(iii) of Theorem
8.1 are satisfied, but we will only mention this explicitly in important theorems.

The proof of Theorem 8.1 (which we omit for sake of brevity) is similar to the proof of the
respective theorem for continuous ordinary differential equations. It uses Banach’s Fixed
Point Theorem applied on a suitable function space. Together with an introduction into
the necessary foundations of Lebesgue measure theory it can be found, e.g., in the book
Mathematical Control Theory by E.D. Sontag [20, Appendix C].

Just as for continuous differential equations, uniqueness of solutions implies for all t, s ∈ R
the relations

xu(t; t0, x0) = xu(t; s, xu(s; t0, x0)) (8.3)

(the so-called cocycle property) and

xu(t; t0, x0) = xu(s+·)(t− s; t0 − s, x0),

which we already formulated for linear systems in Corollary 1.10. Setting s = t0, the
second equation in particular implies

xu(t; t0, x0) = xu(t0+·)(t− t0, x0). (8.4)
2A function is called absolutely continuous if it can be written as an integral of an L∞ function.
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8.2 Sampled-data systems

As already mentioned in the first chapter, to every continuous time control system that sat-
isfies the assumptions of Carathéodory’s Theorem we can assign a corresponding discrete-
time system, the so-called sampled-data system. This is obtained simply by looking at the
state of the continuous-time system only at times kT , for k ∈ N and a fixed sampling time3

T > 0. If we denote the continuous-time solution by x̂û(t, x0), then the states x(k) of the
sampled-data system are given by

x(k) = x̂û(kT, x0).

Using (8.3) and (8.4) it follows that

x(k + 1) = x̂û((k + 1)T ; kT, x̂û(kT, x0)) = x̂û((k + 1)T ; kT, x(k)) = x̂û(kT+·)(T, x(k)).

If for the control function û(·) we define the functions u(k) : [0, T ]→ R via

u(k)(t) := û(kT + t), t ∈ [0, T ]

then we obtain
x(k + 1) = x̂u(k)(T, x(k)) =: f(x(k), u(k)), (8.5)

which defines the discrete-time sampled-data system. In general, here the functions u(k)
satisfy u(k) ∈ L∞([0, T ], U). Yet, as already mentioned in Chapter 1, it is possible (and
common engineering practice) to choose u(k) from a smaller set of functions. A very
common choice is to define u(k) as a constant function. The corresponding continuous-
time control function û is then piecewise constant. Sometimes the functions u(k) are
chosen as polynomials. In this case û is a piecewise polynomial function (but in general
discontinuous at the boundary points kT of the sampling intervale).

In the remainder of this course we will work with discrete-time control systems, since for
this class of systems model predictive control, which is the method on which we focus
in the sequel, is easier to formulate and to analyse. Nevertheless, we will mention the
particularities of sampled-data systems whenever appropriate.

3German: sampling = Abtastung, sampling time = Abtastzeit, sampled-data system = Abtastsystem
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Chapter 9

Introduction to Model Predictive
Control

In this introduction, we present the basics of Model Predictive Control (henceforth abbre-
viated as MPC) in an informal way. In particular, we introduce the central idea of iterative
optimal control on a moving finite horizon.

MPC is a method for obtaining an approximately optimal feedback control for an optimal
control problem on an infinite or indefinite time horizon. Feedback here means that the
control at time k is of the form u(k) = µ(x(k)) for a map µ : X → U . We have already seen
how linear quadratic optimal control leads to an optimal feedback control. The decisive
property that makes the approach via the Riccati equation computationally feasible is that
the optimal value function V is of quadratic form V (x) = xTPx. This means that we only
have to determine the coefficients of the matrix P , whose number is of the order O(n2).
However, as soon as the cost is nonquadratic, the dynamics is nonlinear or state and/or
control constraints are introduced into the problem, the function V is no longer quadratic.
This means that an exact representation by finitely many coefficients is in general no
longer possible. The same holds for the optimal feedback law, which is in general a rather
complicated function in x for which already the storage poses challenging problems, known
as the “curse of dimensionality”. This implies that the direct computation and storage of
an approximately optimal feedback law is computationally intractable even for problems
in moderate space dimensions, say 5–10.

In contrast to this, nowadays there exist powerful optimization algorithms which can com-
pute single optimal trajectories in very short time, even for high dimensional systems like
accurately discretized PDEs. The key idea of MPC is now to use this computational
approach for obtaining a feedback law which is near optimal for infinite horizon problems.

In order to describe the idea of MPC, consider the discrete time model

x+ = f(x, u) (9.1)

where f : X × U → X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x+ at the next time instant and X and
U are metric spaces. Starting from the current state x(j), for any given control sequence
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u(0), . . . , u(N−1) with horizon length N ≥ 2, we can now iterate (9.1) in order to construct
a prediction trajectory xu defined by

xu(0) = x(n), xu(k + 1) = f(xu(k), u(k)), k = 0, . . . , N − 1. (9.2)

Proceeding this way, we obtain predictions xu(k) for the state of the system x(j + k) for k
time steps into the future, depending on the chosen control sequence u(0), . . . , u(N − 1).

Now we use optimal control in order to determine u(0), . . . , u(N − 1). To this end, we fix
a cost function `(x, u). This function may be very general. In the simplest case, X and U
are vector spaces with norms and ` penalizes the distance of x to some “reference state”
x∗; for simplicity we assume x∗ = 0. Typically, one does not penalize the deviation of the
state from the reference but also—if desired—the distance of the control values u(k) to a
reference control u∗, which here we also choose as u∗ = 0. A common and popular choice
for such a function is the quadratic function

`(xu(k), u(k)) = ‖xu(k)‖2 + λ‖u(k)‖2,

where ‖ · ‖ denotes the norms1 of the spaces X and U and λ ≥ 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired. The
purpose of MPC with a stage cost penalizing the distance to an equilibrium is that the
optimal control should drive the system towards the reference state x∗ = 0, in order to
stabilize the system at this state, just as in the linear quadratic case. MPC with such
stage costs is thus called stabilizing MPC. In contrast to this, MPC with more general cost
function is often called economic MPC.

Regardless which cost function is used, the optimal control problem now reads

minimize JN (x(j), u(·)) :=
N−1∑
k=0

`(xu(k), u(k))

with respect to all admissible2 control sequences u(0), . . . , u(N − 1) with xu generated by
(9.2).

Let us assume that this optimal control problem has a solution which is given by the
minimizing control sequence u?(0), . . . , u?(N − 1), i.e.,

min
u(0),...,u(N−1)

JN (x(j), u(·)) =

N−1∑
k=0

`(xu?(k), u?(k)).

In order to get the desired feedback value µ(x(j)), we now set µ(x(j)) := u?(0), i.e., we
apply the first element of the optimal control sequence. This procedure is sketched in
Fig. 9.1.

We now apply this feedback law, i.e., the first element of u?, on the time interval from j
to j + 1. Thus we obtain

x(j + 1) = f(x(j), µ(x(j))) (9.3)

1For simplicity of notation we use the same symbol for the in gereral different norms on X and U .
2The meaning of “admissible” will be defined in Sect. 11.2.
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time j

Figure 9.1: Illustration of the MPC step at time j

System (9.3) is called the MPC closed-loop system.

At the following time instants j + 1, j + 2, . . . we repeat the procedure with the new
measurements x(j+1), x(j+2), . . . in order to derive the feedback values µ(x(j+1)), µ(x(j+
2)), . . . . In other words, we obtain the feedback law µ by an iterative online optimization
over the predictions generated by our model (9.1). This is the first key feature of model
predictive control.

From the prediction horizon point of view, proceeding this iterative way the trajectories
xu(k), k = 0, . . . , N provide a prediction on the discrete interval j, . . . , j +N at time j, on
the interval j + 1, . . . , j +N + 1 at time j + 1, on the interval j + 2, . . . , j +N + 2 at time
j + 2, and so on. Hence, the prediction horizon is moving and this moving horizon is the
second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model predictive
control is receding horizon control. While the former expression stresses the use of model
based predictions, the latter emphasizes the moving horizon idea. Despite these slightly
different literal meanings, we prefer and follow the common practice to use these names
synonymously. In addition, one often uses the term Nonlinear Model Predictive Control
(NMPC) if one wants to indicate that our model (9.1) need not be a linear map.

9.1 Motivating examples

In this section we present three motivating examples (the corresponding numerical sim-
ulations and experiments will only be presented in the lectures), which show different
phenomema which can be observed when using MPC.

The first example is the classical inverted pendulum, which is available as a real experiment
at the Chair of Applied Mathematics. The cost function ` here penalizes the distance to the
upright equilibrium. The ordinary differential equation system (which is similar to (1.5)
but a little more complex in order to take into acount the motor dynamics) is sampled with
sampling time T = 50ms. The video shows that this time is enough to solve the optimal
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control problem numerically in each sampling interval3.

The second example is a very simple economic problem of optimal investment. Let x ≥ 0
be the amount of capital invested in a company. The invested capital x yields a return
of Axα − x in one time unit (e.g., a year), i.e., after one time step the amount of capital
is Axα. The control u describes the amount of capital which is invested again in the
next time step. Hence, the amount of money to be consumed is Axα − u. The utility
of consumption is measured by a classical logarithmic utility function ln(Axα − u). We
want to maximize this utility over several time steps, hence we want to minimize the cost
function `(x, u) = − ln(Axα − u). We note that this cost function is not of the form of
a function which penalizes the distance from a reference point x∗. Numerical simultions
for A = 5 and α = 0.34 and state constraint set X = [0, 10] show that the finite horizon
optimal solutions always end up at x = 0, i.e., at the end of the optimization horizon all
money is spent (which is natural). However, for longer horizons the solutions spend quite
some time in the vicinity of the point xe ≈ 2.2344 and the MPC closed-loop (9.3) converges
to an equilibrium near this point. Further tests reveal that the limit point of the MPC
closed-loop itself converges as N →∞.

There are many questions which arise from this behaviour: Why does the MPC closed-loop
converge to a point far away from the endpoint of the finite horizon optimal trajectories?
How do we characterize this point and its limit for N → ∞? Is the MPC closed-loop
trajectory approximately optimal in some sense? And how can we check whether an optimal
control problem has such a behavior?

The third example is a simple partial differential equation control system governed by the
1d heat equation on Ω = (0, L). We consider the equation either with distributed control

yt(x, t) = yxx(x, t) + µy(x, t) + û(x, t) on Ω× (0,∞)

y(0, t) = y(L, t) = 0 on (0,∞)

y(x, 0) = y0(x) on Ω

or with boundary control.

yt(x, t) = yxx(x, t) + µy(x, t) on Ω× (0,∞)

y(0, t) = 0, y(L, t) = û(t) on (0,∞)

y(x, 0) = y0(x) on Ω

We set µ = 15, which implies that y ≡ 0 is an unstable equilibrium for u ≡ 0. In order to
stabilize this equilibrium, we consider the cost functions `(y, u) = ‖y‖2L2+λ‖u‖2 (“L2-cost”)
and `(y, u) = ‖yx‖2L2 + λ‖u‖2 (“∇-cost”). As usual in MPC, it depends on the length of
the horizon N whether the equilibrium y ≡ 0 is indeed stable. The simulations — all with
sampling time T = 0.01 — show that depending on the parameters L and λ as well as on
the type of the cost the minimal horizon length needed for stabilization differs significantly.
This immediately leads to the question how we can estimate this minimal horizon length
and whether we can tune, e.g., the stage cost ` such that this horizon becomes small.

3In practice, the state x(j) must be computed from sensor data using a suitable observed, as, e.g., the
Kalman filter or variants thereof. Also, in practice the MPC problem is initialized with the state x(j − 1)
such that the time span until time j can be fully used in order to solve the optimal control problem. Both
aspects will be neglected in the analysis of MPC schemes we will present in this lecture.
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As we will see later, in all these examples we can prove that MPC yields approximately
optimal infinite horizon trajectories. Hence, the problem on (rather short) finite horizons
already contains enough information to compute near optimal solutions on an infinite hori-
zon, a property that can be seen as a complexity reduction technique in time. In the
subsequent analysis, we will in particular investigate the mechanisms behind this complex-
ity reduction.
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Chapter 10

Stability of discrete time nonlinear
systems

10.1 Stability definitions

In the introduction, we already specified one of the goals of model predictive control,
namely to control the state x(n) of the system toward a reference point x∗ and then keep it
close to this point. In this section we formalize what we mean by “toward” and “close to”
using concepts from stability theory of nonlinear systems. These concepts will also turn
out to be useful for the analysis of MPC schemes in which ` does not penalize the distance
to an equilibrium x∗.

We assume that the states x(k) are generated by a difference equation of the form

x+ = g(x) (10.1)

for a not necessarily continuous map g : X → X via the usual iteration x(k+ 1) = g(x(k)).
Similar to before, we write x(k, x0) for the trajectory satisfying the initial condition
x(0, x0) = x0 ∈ X. Allowing g to be discontinuous is important for our MPC application,
because g will later represent the MPC closed-loop system (9.3), i.e., g(x) = f(x, µ(x)).
Since µ is obtained as an outcome of an optimization algorithm, in general we cannot
expect µ to be continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called comparison func-
tions which were first introduced by Hahn in 1967 [11] and popularized in nonlinear control
theory during the 1990s by Sontag, particularly in the context of input-to-state stability
[18]. Although we mainly deal with discrete time systems, we stick to the usual continuous
time definition of these functions using the notation R+

0 = [0,∞).

Definition 10.1 [Comparison functions] We define the following classes of comparison
functions.

K := {α : R+
0 → R+

0 |α is continuous & strictly increasing with α(0) = 0}

K∞ := {α : R+
0 → R+

0 |α ∈ K, α is unbounded}
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L := {δ : R+
0 → R+

0 | δ is continuous & strictly decreasing with lim
t→∞

δ(t) = 0}

KL := {β : R+
0 × R+

0 → R+
0 |β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L}.

Using this function, we can now introduce the concept of asymptotic stability. Here, for
arbitrary x1, x2 ∈ X we denote the distance from x1 to x2 by

|x1|x2 := dX(x1, x2).

Furthermore, we use the ball

Bη(x∗) := {x ∈ X | |x|x∗ < η}

and we say that a set Y ⊆ X is forward invariant for (10.1) if g(x) ∈ Y holds for all x ∈ Y .

Definition 10.2 [Asymptotic stability] Let x∗ ∈ X be an equilibrium for (10.1), i.e.,
g(x∗) = x∗. Then we say that x∗ is locally asymptotically stable if there exist η > 0 and a
function β ∈ KL such that the inequality

|x(n, x0)|x∗ ≤ β(|x0|x∗ , n) (10.2)

holds for all x0 ∈ Bη(x∗) and all n ∈ N0.

We say that x∗ is asymptotically stable on a forward invariant set Y with x∗ ∈ Y if there
exists β ∈ KL such that (10.2) holds for all x0 ∈ Y and all n ∈ N0 and we say that x∗ is
globally asymptotically stable if x∗ is asymptotically stable on Y = X.

If one of these properties holds then β is called attraction rate.

Note that asymptotic stability on a forward invariant set Y implies local asymptotic sta-
bility if Y contains a ball Bη(x∗). However, we do not necessarily require this property.

Asymptotic stability thus defined consists of two main ingredients:

(i) The smaller the initial distance from x0 to x∗ is, the smaller the distance from x(n)
to x∗ becomes for all future n, or formally: for each ε > 0 there exists δ > 0 such that
|x(n, x0)|x∗ ≤ ε holds for all n ∈ N0 and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with |x0|x∗ ≤ δ.
This fact is easily seen by choosing δ so small that β(δ, 0) ≤ ε holds, which is possible
since β(·, 0) ∈ K. Since β is decreasing in its second argument, for |x0|x∗ ≤ δ from
(10.2) we obtain

|x(n, x0)|x∗ ≤ β(|x0|x∗ , n) ≤ β(|x0|x∗ , 0) ≤ β(δ, 0) ≤ ε.

(ii) As the system evolves, the distance from x(n, x0) to x∗ becomes arbitrarily small, or
formally: for each ε > 0 and each R > 0 there exists N > 0 such that |x(n, x0)|x∗ ≤ ε
holds for all n ≥ N and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with |x0|x∗ ≤ R. This property
easily follows from (10.2) by choosing N > 0 with β(R,N) ≤ ε and exploiting the
monotonicity properties of β.
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These two properties are known as (i) stability (in the sense of Lyapunov) and (ii) attrac-
tion. In the literature, asymptotic stability is often defined via these two properties. In
fact, for continuous time (and continuous) systems (i) and (ii) are known to be equivalent
to the continuous time counterpart of Definition 10.2, cf. [14, Sect. 3]. We conjecture that
the arguments in this reference can be modified in order to prove that equivalence also
holds for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the MPC closed loop described
earlier: whenever we are already close to the reference equilibrium we want to stay close;
otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed loop solution
to the equilibrium x∗ becomes arbitrarily small. Occasionally, this may be too demanding.
For instance, we will see that in general we cannot expect this behavior for stage costs
` which do not penalize the distance to x∗. In this case, one can relax the asymptotic
stability definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y .

Definition 10.3 [P -practically asymptotic stability] Let Y be a forward invariant set and
let P ⊂ Y be a subset of Y . Then we say that a point x∗ ∈ Y is P -practically asymptotically
stable on Y if there exists β ∈ KL such that (10.2) holds for all x0 ∈ Y and all n ∈ N0

with x(n, x0) 6∈ P .

Fig. 10.1 illustrates practical asymptotic stability (on the right) as opposed to “usual”
asymptotic stability (on the left).

x0 x0

x∗x∗
P

x(n,x0) x(n,x0)

Figure 10.1: Sketch of asymptotic stability (left) as opposed to practical asymptotic sta-
bility (right)

This definition is typically used with P contained in a small ball around the equilibrium,
i.e., P ⊆ Bδ(x∗) for some small δ > 0. In this case one obtains the estimate

|x(n, x0)|x∗ ≤ max{β(|x0|x∗ , n), δ} (10.3)

for all x0 ∈ Y and all n ∈ N0, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bδ(x∗). Note that x∗ does not need to be an equilibrium
in Definition 10.3.
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10.2 Lyapunov functions

In order to verify that our MPC controller achieves asymptotic stability we will utilize the
concept of Lyapunov functions.

Definition 10.4 [Lyapunov function] Consider a system (10.1), a point x∗ ∈ X and let
S ⊆ X be a subset of the state space. A function V : S → R+

0 is called a Lyapunov
function on S if the following conditions are satisfied:

(i) There exist functions α1, α2 ∈ K∞ such that

α1(|x|x∗) ≤ V (x) ≤ α2(|x|x∗) (10.4)

holds for all x ∈ S.

(ii) There exists a function αV ∈ K such that

V (g(x)) ≤ V (x)− αV (|x|x∗) (10.5)

holds for all x ∈ S with g(x) ∈ S.

The following theorem shows that the existence of a Lyapunov function ensures asymptotic
stability.

Theorem 10.5 [Asymptotic stability using Lyapunov functions] Let x∗ be an equilibrium
of (10.1) and assume there exists a Lyapunov function V on S. If S contains a ball
Bν(x∗) with g(x) ∈ S for all x ∈ Bν(x∗) then x∗ is locally asymptotically stable with
η = α−1

2 ◦ α1(ν). If S = Y holds for some forward invariant set Y ⊆ X containing x∗ then
x∗ is asymptotically stable on Y . If S = X holds then x∗ is globally asymptotically stable.

Proof: The idea of the proof lies in showing that by (10.5) the function V (x(n, x0)) is
strictly decreasing in n and converges to 0. Then by (10.4) we can conclude that x(n, x0)
converges to x∗. The function β from Definition 10.2 will be constructed from α1, α2 and
αV . In order to simplify the notation, throughout the proof we write |x| instead of |x|x∗ .
First, if S is not forward invariant, define the value γ := α1(ν) and the set S̃ := {x ∈
S |V (x) < γ}. Then from (10.4) we get

x ∈ S̃ ⇒ α1(|x|) ≤ V (x) < γ ⇒ |x| < α−1
1 (γ) = ν ⇒ x ∈ Bν(x∗),

observing that each α ∈ K∞ is invertible with α−1 ∈ K∞.

Hence, for each x ∈ S̃ inequality (10.5) applies and consequently V (g(x)) ≤ V (x) < γ
implying g(x) ∈ S̃. If S = Y for some forward invariant set Y ⊆ X we define S̃ := S.
With these definitions, in both cases the set S̃ becomes forward invariant.
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Now we define α′V := αV ◦ α−1
2 . Note that concatenations of K-functions are again in K,

hence α′V ∈ K. Since |x| ≥ α−1
2 (V (x)), using monotonicity of αV this definition implies

αV (|x|) ≥ αV ◦ α−1
2 (V (x)) = α′V (V (x)).

Hence, along a trajectory x(n, x0) with x0 ∈ S̃, from (10.5) we get the inequality

V (x(n+ 1, x0)) ≤ V (x(n, x0))− αV (|x(n, x0)|) ≤ V (x(n, x0))− α′V (V (x(n, x0))). (10.6)

For the construction of β we need the last expression in (10.6) to be strictly increasing in
V (x(n, x0)). To this end we define

α̃V (r) := min
s∈[0,r]

{α′V (s) + (r − s)/2}.

Straightforward computations show that this function satisfies r2− α̃V (r2) > r1− α̃V (r1) ≥
0 for all r2 > r1 ≥ 0 and min{α′V (r/2), r/4} ≤ α̃V (r) ≤ α′V (r) for all r ≥ 0. In particular,
(10.6) remains valid and we get the desired monotonicity when α′V is replaced by α̃V .

We inductively define a function β1 : R+
0 × N0 → R+

0 via

β1(r, 0) := r, β1(r, n+ 1) = β1(r, n)− α̃V (β1(r, n)). (10.7)

By induction over n using the properties of α̃V (r) and Inequality (10.6) one easily verifies
the following inequalities:

β1(r2, n) > β1(r1, n) ≥ 0 for all r2 > r1 ≥ 0 and all n ∈ N0 (10.8)

β1(r, n1) > β1(r, n2) > 0 for all n2 > n1 ≥ 0 and all r > 0 (10.9)

V (x(n, x0)) ≤ β1(V (x0), n) for all n ∈ N0 and all x0 ∈ S̃ (10.10)

From (10.9) it follows that β1(r, n) is monotone decreasing in n and by (10.8) it is bounded
from below by 0. Hence, for each r ≥ 0 the limit β∞1 (r) = limn→∞ β1(r, n) exists. We claim
that β∞1 (r) = 0 holds for all r. Indeed, convergence implies β1(r, n)− β1(r, n + 1) → 0 as
n → ∞ which together with (10.7) yields α̃V (β1(r, n)) → 0. On the other hand, since α̃V
is continuous, we get α̃V (β1(r, n))→ α̃V (β∞1 (r)). This implies

α̃V (β∞1 (r)) = 0

which because of α̃V (r) ≥ min{αV (r/2), r/4} and αV ∈ K is only possible if β∞1 (r) = 0.

Consequently, β1(r, n) has all properties of a KL function except that it is only defined for
n ∈ N0. Defining the linear interpolation

β2(r, t) := (n+ 1− t)β1(r, n) + (t− n)β1(r, n+ 1)

for t ∈ [n, n + 1) and n ∈ N0, we obtain a function β2 ∈ KL which coincides with β1 for
t = n ∈ N0. Finally, setting

β(r, t) := α−1
1 ◦ β2(α2(r), t)
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we can use (10.10) in order to obtain

|x(n, x0)| ≤ α−1
1 (V (x(n, x0)) ≤ α−1

1 ◦ β1(V (x0), n)

= α−1
1 ◦ β2(V (x0), n) ≤ α−1

1 ◦ β2(α2(|x0|, n) = β(|x0|, n),

for all x0 ∈ S̃ and all n ∈ N0. This is the desired inequality (10.2). If S̃ = S = Y this
shows the claimed asymptotic stability on Y and global asymptotic stability if Y = X. If
S̃ 6= S, then in order to satisfy the local version of Definition 10.2 it remains to show that
x ∈ Bη(x∗) implies x ∈ S̃. Since by definition of η and γ we have η = α−1

2 (γ), we get

x ∈ Bη(x∗)⇒ |x| < η = α−1
2 (γ)⇒ V (x) ≤ α2(|x|) < γ ⇒ x ∈ S̃.

This finishes the proof.

Likewise, P -practical asymptotic stability can be ensured by a suitable Lyapunov function
condition provided the set P is forward invariant.

Theorem 10.6 [P -practical asymptotic stability]
Consider forward invariant sets Y and P ⊂ Y and a point x∗ ∈ P . If there exists a
Lyapunov function V on S = Y \ P then x∗ is P -practically asymptotically stable on Y .

Proof: The same construction of β as in the proof of Theorem 10.5 yields

|x(n, x0)|x∗ ≤ β(|x|x∗ , n) (10.2)

for all n = 0, . . . , n∗ − 1, where n∗ ∈ N0 is minimal with x(n∗, x0) ∈ P . This follows with
the same arguments as in the proof of Theorem 10.5 by restricting the times considered in
(10.6) and (10.10) to n = 0, . . . , n∗ − 2 and n = 0, . . . , n∗ − 1, respectively.

Since forward invariance of P ensures x(n, x0) ∈ P for all n ≥ n∗, the times n for which
x(n, x0) 6∈ P holds are exactly n = 0, . . . , n∗−1. Since these are exactly the times at which
(10.2) is required, this yields the desired P -practical asymptotic stability.

For continuous time systems ẋ = g(x) all the concepts introduced in this section can be
carried over directly. Particularly, the definitions of asymptotic and P -practical asymptotic
stability are identical. In the definition of Lyapunov functions, condition (10.4) stays the
same while condition (10.5) becomes

V (x(t, x0)) ≤ V (x0)−
∫ t

0
αV (|x(t, x0)|x∗).

This is equivalent to

V (x(t, x0))− V (x0)

t
≤ −1

t

∫ t

0
αV (|x(t, x0)|x∗)

and if V is continuously differentiable, then by letting t → 0 one obtains the equivalent
characterization

DV (x0)g(x0) ≤ −αV (|x0|x∗). (10.11)

Now it is obvious that this concept generalizes Definition 3.8, which we used in the linear
case. With this definition of a Lyapunov function, all results in this section remain valid
in the continuous time case.



Chapter 11

Model predictive control schemes

11.1 The MPC algorithm without terminal conditions

We start this chapter by formulating the basic MPC algorithm already sketched in Chap-
ter 9 in a more rigorous way. Here, the stage cost ` : X × U → R is a general function. In
the case of sampled data systems we can take the continuous time nature of the underly-
ing model into account by defining the stage cost ` as an integral over a continuous time
running cost function L : X × U → R+

0 on a sampling interval. Using the continuous time
solution x̂ from (8.5), we can define

`(x, u) :=

∫ T

0
L(x̂(t, x, u), u(t))dt. (11.1)

Defining ` this way, we can incorporate the intersampling behavior of the sampled data
system, i.e., the behavior of the continuous time solution between two sampling times tk
and tk+1, explicitly into our optimal control problem.

Given such a cost function ` and a prediction horizon length N ≥ 2, we can now formulate
the basic MPC scheme as an algorithm. In the optimal control problem (OCPN) within this
algorithm we introduce a set of control sequences UN (x0) ⊆ UN over which we optimize.
This set may include constraints depending on the initial value x0. Details about how
this set should be chosen will be discussed in Sect. 11.2. For the moment we simply set
UN (x0) := UN for all x0 ∈ X.

Algorithm 11.1 (Basic MPC algorithm)

At each time instant j = 0, 1, 2 . . .:

(1) Measure the state x(j) ∈ X of the system

(2) Set x0 := x(j), solve the optimal control problem

109
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minimize JN (x0, u(·)) :=

N−1∑
k=0

`(xu(k, x0), u(k))

with respect to u(·) ∈ UN (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCPN)

and denote the obtained optimal control sequence by u?(·) ∈ UN (x0).

(3) Define the MPC-feedback value µN (x(j)) := u?(0) ∈ U and use this control value in
the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence u?(·)
exists. Sufficient conditions for this existence are briefly discussed after Definition 12.1,
below.

The MPC closed loop system resulting from Algorithm 11.1 is given by (9.3) with state
feedback law µ = µN , i.e.,

x+ = f(x, µN (x)). (11.2)

The trajectories of this system will be denoted by xµN (n) or, if we want to emphasize the
initial value x0 = xµN (0), by xµN (n, x0).

During our theoretical investigations we will neglect the fact that computing the solution
of (OCPN) in Step (2) of the algorithm usually needs some computation time τc which —
in the case when τc is relatively large compared to the sampling period T — may not be
negligible in a real time implementation.

In our abstract formulations of the MPC Algorithm 11.1 only the first element u?(0) of
the respective minimizing control sequence is used in each step, the remaining entries
u?(1), . . . , u?(N −1) are discarded. In the practical implementation, however, these entries
play an important role because numerical optimization algorithms for solving (OCPN) (or
its variants) usually work iteratively: starting from an initial guess u0(·) an optimization
algorithm computes iterates ui(·), i = 1, 2, . . . converging to the minimizer u?(·) and a good
choice of u0(·) is crucial in order to obtain fast convergence of this iteration, or even to
ensure convergence, at all. Here, the minimizing sequence from the previous time step can
be efficiently used in order to construct such a good initial guess. Ways to implement this
idea will be discussed in the excercises.

11.2 Constraints

One of the main reasons for the success of MPC (and MPC in general) is its ability to
explicitly take constraints into account. Here, we consider constraints both on the control
as well as on the state. To this end, we introduce a nonempty state constraint set X ⊆ X
and for each x ∈ X we introduce a nonempty control constraint set U(x) ⊆ U . Of course,
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U may also be chosen independent of x. The idea behind introducing these sets is that we
want the trajectories to lie in X and the corresponding control values to lie in U(x). This
is made precise in the following definition.

Definition 11.2 [Admissibility] Consider a control system (8.2) and the state and control
constraint sets X ⊆ X and U(x) ⊆ U .

(i) The states x ∈ X are called admissible states and the control values u ∈ U(x) are called
admissible control values for x. The elements of the set Y := {(x, u) ∈ X × U |x ∈ X, u ∈
U(x)} are called admissible pairs.

(ii) For N ∈ N and an initial value x0 ∈ X we call a control sequence u ∈ UN and the
corresponding trajectory xu(k, x0) admissible for x0 up to time N , if

(xu(k, x0), u(k)) ∈ Y for all k = 0, . . . , N − 1 and xu(N, x0) ∈ X

holds. We denote the set of admissible control sequences for x0 up to time N by UN (x0).

(iii) A control sequence u ∈ U∞ and the corresponding trajectory xu(k, x0) are called
admissible for x0 if they are admissible for x0 up to every time N ∈ N. We denote the set
of admissible control sequences for x0 by U∞(x0).

(iv) A feedback law µ : X → U is called admissible if µ(x) ∈ U1(x) holds for all x ∈ X.

Whenever the reference to x or x0 is clear from the context we will omit the additional
“for x” or “for x0”.

Since we can (and will) identify control sequences with only one element with the respective
control value, we can consider U1(x0) as a subset of U , which we already implicitly did in
the definition of admissibility for the feedback law µ, above. However, in general U1(x0)
does not coincide with U(x0) ⊆ U because using xu(1, x) = f(x, u) and the definition
of UN (x0) we get U1(x) := {u ∈ U(x) | f(x, u) ∈ X}. With this subtle difference in
mind, one sees that our admissibility condition (iv) on µ ensures both µ(n, x) ∈ U(x) and
f(x, µ(n, x)) ∈ X whenever x ∈ X.

Furthermore, our definition of UN (x) implies that even if U(x) = U is independent of x
the set UN (x) may depend on x for some or all N ∈ N∞.

Often, in order to be suitable for optimization purposes these sets are assumed to be
compact and convex. For our theoretical investigations, however, we do not need any
regularity requirements of this type except that these sets are nonempty.

MPC is well suited to handle constraints because these can directly be inserted into Algo-
rithm 11.1. In fact, since we already formulated the corresponding optimization problem
(OCPN) with state dependent control value sets, the constraints are readily included if we
use UN (x0) from Definition 11.2(ii) in (OCPN). However, when doing so we have to make
sure that the constraints in (OCPN) can be satisfied for all j, i.e., that we do not optimize
over an empty set because UN (x0) = ∅. This is formalizes in the following definition.

Definition 11.3 (i) An initial condition x0 ∈ X is called feasible for (OCPN) if the con-
straints imposed in (OCPN) can be satisfied, i.e, if UN (x0) 6= ∅.
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(ii) A MPC algorithm 11.1 is called recursively feasible on a set A ⊆ X if each x ∈ A is
feasible for (OCPN) and x ∈ A implies f(x, µN (x)) ∈ A (implying that f(x, µN (x)) is again
feasible).

One easily sees that recursive feasibility implies that xµN (j) is feasible for all j ∈ N if
xµN (0) ∈ A. In order to ensure recursive feasibility of A = X for Algorithm 11.1, we need
the following assumption.

Assumption 11.4 [Viability] For each x ∈ X there exists u ∈ U(x) such that f(x, u) ∈ X
holds.

The property defined in this assumption is called viability or weak (or controlled) forward
invariance of X. It excludes the situation that there are states x ∈ X from which the
trajectory leaves the set X for all admissible control values. Hence, it ensures UN (x0) 6= ∅
for all x0 ∈ X and all N ∈ N∞. Thus, it ensures that any x0 ∈ X is feasible for (OCPN)
and hence ensures that µN (x) is well defined for each x ∈ X. We will see after the next
example that Viability of X also implies recursive feasibility and admissibility of the closed
loop. Furthermore, a straightforward induction shows that under Assumption 11.4 any
finite admissible control sequence u(·) ∈ UN (x0) can be extended to an infinite admissible
control sequence ũ(·) ∈ U∞(x0) with u(k) = ũ(k) for all k = 0, . . . , N − 1.

In order to see that the construction of a constraint set X meeting Assumption 11.4 is
usually a nontrivial task, we consider the following Example.

Example 11.5 Consider

x+ = f(x, u) =

(
x1 + x2 + u/2
x2 + u

)
,

which can be seen as a sampled-data model for a car on a one-dimensional road with
position x1, speed x2 and piecewise constant acceleration u. Assume we want to constrain
all variables, i.e., the position x1, the velocity x2 and the acceleration u to the interval
[−1, 1]. For this purpose one could define X = [−1, 1]2 and U(x) = U = [−1, 1]. Then,
however, for x = (1, 1)>, one immediately obtains

x+
1 = x1 + x2 + u/2 = 2 + u/2 ≥ 3/2

for all u, hence x+ /∈ X for all u ∈ U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint on
u to U = [−2, 2] the viability of X = [−1, 1]2 is guaranteed, because then by elementary
computations one sees that for each x ∈ X the control value

u =


0, x1 + x2 ∈ [−1, 1]
2− 2x1 − 2x2, x1 + x2 > 1
−2− 2x1 − 2x2, x1 + x2 < −1

is in U and satisfies f(x, u) ∈ X. A way to achieve viability without changing U is by
tightening the constraint on x2 by defining

X = {(x1, x2)T ∈ R2 | x1 ∈ [−1, 1], x2 ∈ [−1, 1] ∩ [−3/2− x1, 3/2− x1]}, (11.3)
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Figure 11.1: Illustration of the set X from (11.3)

see Fig. 11.5. Again, elementary computations show that for each x ∈ X and

u =


1, x2 < −1/2
−2x2, x2 ∈ [−1/2, 1/2]
−1, x2 > 1/2

the desired properties u ∈ U and f(x, u) ∈ X hold.

This example shows that finding viable constraint sets X (and the corresponding U or
U(x)) is a tricky task already for very simple systems. Still, Assumption 11.4 significantly
simplifies the subsequent analysis, cf. Theorem 11.6, below. For this reason we will impose
this condition in our theoretical investigations for schemes without stabilizing terminal
conditions. The assumption can be avoided if suitable terminal constraints are employed.
We will discuss this extension of the scheme in Section 11.3.

The following theorem shows that the viability assumption ensures recursive feasibility of
Algorithm 11.1 and that the resulting MPC closed loop satisfies the desired constraints.

Theorem 11.6 [Recursive Feasibility and Admissibility] Consider Algorithm 11.1 using
UN (x0) from Def. 11.2(ii) in the optimal control problem (OCPN) for constraint sets X ⊂ X,
U(x) ⊂ U , x ∈ X, satisfying Assumption 11.4. Consider the MPC closed loop system
(11.2). Then the MPC algorithm is recursively feasible on A = X and for any xµN (0) ∈ X
the constraints are satisfied along the solution of (11.2), i.e.,

(xµN (n), µN (xµN (n))) ∈ Y (11.4)

for all n ∈ N. Thus, the MPC-feedback µN is admissible in the sense of Definition 11.2(iv).

Proof: First, recall from the discussion after Assumption 11.4 that under this assumption
the optimal control problem (OCPN) is feasible for each x ∈ X, hence µN (x) is well defined
for each x ∈ X.

We now show that xµN (n) ∈ X implies µN (xµN (n)) ∈ U(xµN (n)) and xµN (n + 1) ∈ X.
This implies recursive feasibility of A = X, and admissibility follows by induction from
xµn(0) ∈ X.



114 CHAPTER 11. MODEL PREDICTIVE CONTROL SCHEMES

The viability of X from Assumption 11.4 ensures that whenever xµN (n) ∈ X holds in
Algorithm 11.1 then x0 ∈ X holds for the respective optimal control problem (OCPN). Since
the optimization is performed with respect to admissible control sequences only, also the
optimal control sequence u?(·) is admissible for x0 = xµN (n). This implies µN (xµN (n)) =
u?(0) ∈ U1(xµN (n)) ⊆ U(xµN (n)) and thus also

xµN (n+ 1) = f(xµN (n), µN (xµN (n))) = f(x(n), u?(0)) ∈ X,

i.e., xµN (n+ 1) ∈ X.

In the underlying optimization algorithms for solving (OCPN), usually the constraints
cannot be specified via sets X and U(x). Rather, one uses so-called equality and inequality
constraints in order to specify X and U(x) according to the following definition.

Definition 11.7 Given functions GSi : X × U → R, i ∈ ES = {1, . . . , pg} and HS
i :

X × U → R, i ∈ IS = {pg + 1, . . . , pg + ph} with pg, ph ∈ N0, we define the constraint sets
X and U(x) via

X :=

{
x ∈ X

∣∣∣∣ there exists u ∈ U with GSi (x, u) = 0 for all i ∈ ES
and HS

i (x, u) ≥ 0 for all i ∈ IS
}

and, for x ∈ X

U(x) :=

{
u ∈ U

∣∣∣∣ GSi (x, u) = 0 for all i ∈ ES and
HS
i (x, u) ≥ 0 for all i ∈ IS

}
Here, the functions GSi and HS

i do not need to depend on both arguments. The functions
GSi , HS

i not depending on u are called pure state constraints, the functions GSi , HS
i not

depending on x are called pure control constraints and the functions GSi , HS
i depending

on both x and u are called mixed constraints.

Observe that if we do not have mixed constraints then U(x) is independent of x.

The reason for defining X and U(x) via these (in)equality constraints is purely algorithmic:
the plain information “xu(k, x0) /∈ X” does not yield any information for the optimiza-
tion algorithm in order to figure out how to find an admissible u(·), i.e., a u(·) for which
“xu(k, x0) ∈ X” holds. In contrast to that, an information of the form “HS

i (xu(k, x0), u(k)) <
0” together with additional knowledge about HS

i (provided, e.g., by the derivative of HS
i )

enables the algorithm to compute a “direction” in which u(·) needs to be modified in order
to reach an admissible u(·).
In our theoretical investigations we will use the notationally more convenient set charac-
terization of the constraints via X and U(x) or UN (x). In the practical implementation of
our MPC method, however, we will use their characterization via the inequality constraints
from Definition 11.7.

11.3 The MPC algorithm with terminal conditions

In this section we discuss an important variant of the basic MPC Algorithm 11.1. This
algorithm adds a constraint on the terminal state xu(N, x0) of the trajectory over which
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we optimize in (OCPN), as well as a weight on this term. This combination of constraint
and weight on the terminal state is called terminal conditions. As we will see, under
suitable assumptions on the terminal conditions, the behavior of the MPC closed-loop
can significantly improve. The main disadvantage of terminal condition is that a rigorous
derivation of a constraint and a weight meeting these assumptions can be very dificult for
complex control systems.

The terminal constraint is of the form

xu(N, x0) ∈ X0 for a terminal constraint set X0 ⊆ X. (11.5)

Of course, in the practical implementation the constraint set X0 is again expressed via
(in)equalities of the form given in Definition 11.7.

When using terminal constraints, the MPC-feedback law is only defined for those states
x0 for which the optimization problem within the MPC algorithm is feasible also for these
additional constraints, i.e., for which there exists an admissible control sequence with
corresponding trajectory starting in x0 and ending in the terminal constraint set. Such
initial values are again called feasible and the set of all feasible initial values form the
feasible set. This set along with the corresponding admissible control sequences is formally
defined as follows.

Definition 11.8 [Feasible set and admissible control sequences]
For X0 from (11.5) we define the feasible set for horizon N ∈ N by

XN := {x0 ∈ X | there exists u(·) ∈ UN (x0) with xu(N, x0) ∈ X0}

and for each x0 ∈ XN we define the set of admissible control sequences by

UNX0
(x0) := {u(·) ∈ UN (x0) | xu(N, x0) ∈ X0}.

Note that in XN = X and UNX0
(x) = UN (x) holds if X0 = X, i.e., if no additional terminal

constraints are imposed.

The additional weight on the terminal state xu(N) is formalized by means of a terminal
cost of the form F (xu(N, x0)) with F : X0 → R in the optimization objective.

Together this leads to the following MPC algorithms extending the basic Algorithms 11.1.
Note that compared to these basic algorithms only the optimal control problems are dif-
ferent, i.e., the part in the boxes in Step (2).

Algorithm 11.9 (MPC algorithm with terminal conditions)

At each time instant j = 0, 1, 2 . . .:

(1) Measure the state x(j) ∈ X of the system.
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(2) Set x0 := x(j), solve the optimal control problem

minimize JN (x0, u(·)) :=
N−1∑
k=0

`(xu(k, x0), u(k)) + F (xu(N, x0))

with respect to u(·) ∈ UNX0
(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCPN,e)

and denote the obtained optimal control sequence by u?(·) ∈ UNX0
(x0).

(3) Define the MPC-feedback value µN (x(j)) := u?(0) ∈ U and use this control value in
the next sampling period.

We end this section with three useful results on the sets of admissible control sequences
from Definition 11.8.

Lemma 11.10 Let x0 ∈ XN , N ∈ N and K ∈ {0, . . . , N} be given.

(i) For each u(·) ∈ UNX0
(x0) we have xu(K,x0) ∈ XN−K .

(ii) For each u(·) ∈ UNX0
(x0) the control sequences u1 ∈ UK and u2 ∈ UN−K uniquely

defined by the relation

u(k) =

{
u1(k), k = 0, . . . ,K − 1

u2(k −K), k = K, . . . , N − 1
(11.6)

satisfy u1 ∈ UKXN−K (x0) and u2 ∈ UN−KX0
(xu1(K,x0)).

(iii) For each u1(·) ∈ UKXN−K (x0) there exists u2(·) ∈ UN−KX0
(xu1(K,x0)) such that u(·) from

(11.6) satisfies u ∈ UNX0
(x0).

Proof: (i) Using (8.4) we obtain the identity

xu(K+·)(N −K,xu(K,x0))) = xu(N, x0) ∈ X0,

which together with the definition of XN−K implies the assertion.

(ii) The relation (11.6) together with (8.4) implies

xu(k, x0) =

{
xu1(k, x0), k = 0, . . . ,K

xu2(k −K,xu1(K,x0)), k = K, . . . , N
(11.7)

For k = 0, . . . ,K − 1 this identity and (11.6) yield

u1(k) = u(k) ∈ U(xu(k, x0)) = U(xu1(k, x0))
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and for k = 0, . . . , N −K − 1 we obtain

u2(k) = u(k +K) ∈ U(xu(k +K,x0)) = U(xu2(k, xu1(K,x0))),

implying u1 ∈ UK(x0) and u2 ∈ UN−K(xu1(K,x0)). Furthermore, (11.7) implies the
equation xu2(N −K,xu1(K,x0)) = xu(N, x0) ∈ X0(n + N) which proves u2 ∈ UN−KX0

(n +

K,xu1(K,x0)). This, in turn, implies that UN−KX0
(n + K,xu1(K,x0)) is nonempty, hence

xu1(K,x0) ∈ XN−K(n+K) and consequently u1 ∈ UKXN−K (n, x0) follows.

(iii) By definition, for each x ∈ XN−K(n+K) there exists u2 ∈ UN−KX0
(n+K,x). Choosing

such a u2 for x = xu1(K,x0) ∈ XN−K(n+K) and defining u via (11.6), similar arguments
as in Part (ii), above, show the claim u ∈ UNX0

(n, x0).

A straightforward corollary of this lemma is the following.

Corollary 11.11 For each x ∈ XN the MPC-feedback law µN obtained from Algorithm
11.9 satisfies

f(x, µN (x)) ∈ XN−1.

Proof: Since µN (x) is the first element u?(0) of the optimal control sequence u? ∈ UNX0
(x)

we get f(x, µN (x)) = xu?(1, x). Now Lemma 11.10(i) yields the assertion.

The final result shows that with terminal conditions we can obtain Theorem 11.6 without
having to assume viability of X — if in exchange we assume viability of the terminal
constraint set X0.

Theorem 11.12 [Recursive Feasibility and Admissibility] Consider Algorithm 11.9 for
constraint sets X ⊂ X, U(x) ⊂ U , x ∈ X, and a terminal constraint set X0 which satisfies
Assumption 11.4. Consider the MPC closed loop system (11.2). Then the MPC algorithm
is recursively feasible on A = XN and for xµN (0) ∈ XN the constraints are satisfied along
the solution of (11.2), i.e.,

(xµN (n), µN (xµN (n))) ∈ Y (11.8)

for all n ∈ N. Thus, the MPC-feedback µN is admissible in the sense of Definition 11.2(iv).

Proof: We show that under the viability assumption on X0 the inclusion XN−1 ⊆ XN
holds. Then recirsive feasibility follows from Corollary 11.11 and admissibility follows as
in the proof of Theorem 11.6.

In order to show the inclusion XN−1 ⊆ XN , consider x ∈ XN−1. Then there is an admissible
control u ∈ UN−1

X0
(x), implying xu(N − 1, x) ∈ X0. Viability of X0 implies the existence of

a control value ũ ∈ U(xu(N − 1, x)) with f(xu(N − 1, x), ũ) ∈ X0. This implies that the
control sequence

û = (u(0), . . . , u(N − 1), ũ)

is admissible and satisfies xû(N, x0) = f(xu(N − 1, x0), ũ) ∈ XN . This implies x ∈ XN and
thus the desired inclusion.
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Chapter 12

Dynamic programming

This chapter repeats and extends some of the results from Section 6.1. As we will see,
dynamic programming is not only important for deriving the Riccati equation but also as
a basis for analyzing MPC schemes in the next chapters. We first consider finite horizon
problems and then discuss infinite horizon problems.

12.1 Finite horizon problems

In this section we provide one of the classical tools in optimal control, the dynamic
programming principle. We will formulate and prove the results in this section for (OCPN,e),
since all other optimal control problems introduced above can be obtained as special cases
of this problem. We will first formulate the principle for the open loop control sequences
in (OCPN,e) and then derive consequences for the MPC-feedback law µN . The dynamic
programming principle is often used as a basis for numerical algorithms. In contrast to this,
here we will exclusively use the principle for analyzing the behavior of MPC closed loop
systems. The reason for this is that the numerical effort of solving (OCPN,e) via dynamic
programming usually grows exponentially with the dimension of the state of the system.
In contrast to this, the computational effort of solving a single problem of type (OCPN) or
(OCPN,e) scales much more moderately with the space dimension.

We start by defining some objects we need in the sequel.

Definition 12.1 Consider the optimal control problem (OCPN,e) with initial value x0 ∈ X,
time instant n ∈ N0 and optimization horizon N ∈ N0.

(i) The function

VN (x0) := inf
u(·)∈UNX0 (x0)

JN (x0, u(·))

is called optimal value function.

(ii) A control sequence u?(·) ∈ UNX0
(x0) is called optimal control sequence for x0, if

VN (x0) = JN (x0, u
?(·))

119
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holds. The corresponding trajectory xu?(·, x0) is called optimal trajectory .

In our MPC Algorithms 11.1 and 11.9 we have assumed that an optimal control sequence
u?(·) exists, cf. the comment after Algorithms 11.1. In general, this is not necessarily the
case but under reasonable continuity and compactness conditions the existence of u?(·)
can be rigorously shown. Examples of such theorems for a general infinite-dimensional
state space can be found in Keerthi and Gilbert [13] or Doležal [4]. While for formulating
and proving the dynamic programming principle we will not need the existence of u?(·),
for all subsequent results we will assume that u?(·) exists, in particular when we derive
properties of the MPC-feedback law µN . While we conjecture that most of the subsequent
results in this lecture notes can be generalized to the case when µN is defined via an
approximately minimizing control sequence, we decided to use the existence assumption
because it considerably simplifies the presentation of the results in this book.

The following theorem introduces the dynamic programming principle. It gives an equation
which relates the optimal value functions for different optimization horizons N and for
different points in space.

Theorem 12.2 [Dynamic programming principle] Consider the optimal control problem
(OCPN,e) with x0 ∈ XN (n) and N ∈ N0. Then for all N ∈ N and all K = 1, . . . , N the
equation

VN (x0) = inf
u(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ VN−K(xu(K,x0))

} (12.1)

holds. If, in addition, an optimal control sequence u?(·) ∈ UNX0
(x0) exists for x0, then we

get the equation

VN (x0) =

K−1∑
k=0

`(xu?(k, x0), u?(k)) + VN−K(xu?(K,x0)). (12.2)

In particular, in this case the “inf” in (12.1) is a “min”.

Proof: First observe that from the definition of JN for u(·) ∈ UNX0
(x0) we immediately

obtain

JN (x0, u(·)) =

K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K)).

(12.3)

Since u(·+K) equals u2(·) from Lemma 11.10(ii) we obtain u(·+K) ∈ UN−KX0
(xu(K,x0)).
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We now prove (12.1) by proving “≥” and “≤” separately. From (12.3) we obtain

JN (x0, u(·)) =
K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K))

≥
K−1∑
k=0

`(xu(k, x0), u(k)) + VN−K(xu(K,x0)).

Since this inequality holds for all u(·) ∈ UNX0
(x0), it also holds when taking the infimum on

both sides. Hence we get

VN (x0) = inf
u(·)∈UNX0 (x0)

JN (x0, u(·))

≥ inf
u(·)∈UNX0 (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ VN−K(xu(K,x0))

}

= inf
u1(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu1(k, x0), u(k))

+ VN−K(xu1(K,x0))

}
,

i.e., (12.1) with “≥”. Here in the last step we used the fact that by Lemma 11.10(ii) the
control sequence u1 consisting of the first K elements of u(·) ∈ UNX0

(x0) lies in UKXN−K (x0)

and, conversely, by Lemma 11.10(iii) each control sequence in u1(·) ∈ UKXN−K (x0) can be

extended to a sequence in u(·) ∈ UNX0
(x0). Thus, since the expression in braces does not

depend on u(K), . . . , u(N − 1), the infima coincide.

In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control sequence
for the right hand side of (12.3), i.e.,

K−1∑
k=0

`(xuε(k, x0), uε(k)) + JN−K(xuε(K,x0), uε(·+K))

≤ inf
u(·)∈UNX0 (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K))

}
+ ε.

Now we use the decomposition (11.6) of u(·) into u1 ∈ UKXN−K (x0) and u2 ∈ UN−KX0
(xu1(K,x0))
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from Lemma 11.10(ii). This way we can proceed

inf
u(·)∈UNX0 (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K))

}

= inf
u1(·)∈UKXN−K

(x0)

u2(·)∈U
N−K
X0

(xu1 (K,x0))

{
K−1∑
k=0

`(xu1(k, x0), u1(k))

+ JN−K(xu1(K,x0), u2(·))
}

= inf
u1(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu1(k, x0), u1(k))

+ VN−K(xu1(K,x0))

}
Now (12.3) yields

VN (x0) ≤ J(x0, u
ε(·))

=
K−1∑
k=0

`(xuε(k, x0), uε(k)) + JN−K(xuε(K,x0), uε(·+K))

≤ inf
u(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ VN−K(xu(K,x0))

}
+ ε.

Since the first and the last term in this inequality chain are independent of ε and since
ε > 0 was arbitrary, this shows (12.1) with “≤” and thus (12.1).

In order to prove (12.2) we use (12.3) with u(·) = u?(·). This yields

VN (x0) = J(x0, u
?(·))

=

K−1∑
k=0

`(xu?(k, x0), u?(k)) + JN−K(xu?(K,x0), u?(·+K))

≥
K−1∑
k=0

`(xu?(k, x0), u?(k)) + VN−K(xu?(K,x0))

≥ inf
u(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + VN−K(xu(K,x0))

}
= VN (x0),
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where we used the (already proven) equality (12.1) in the last step. Hence, the two “≥”
in this chain are actually “=” which implies (12.2).

The following corollary states an immediate consequence of the dynamic programming prin-
ciple. It shows that tails of optimal control sequences are again optimal control sequences
for suitably adjusted optimization horizon, time instant and initial value.

Corollary 12.3 If u?(·) is an optimal control sequence for initial value x0 ∈ XN and
optimization horizon N ≥ 2, then for each K = 1, . . . , N−1 the sequence u?K(·) = u?(·+K),
i.e.,

u?K(k) = u?(K + k), k = 0, . . . , N −K − 1

is an optimal control sequence for initial value xu?(K,x0), time instant K and optimization
horizon N −K.

Proof: Inserting VN (x0) = JN (x0, u
?(·)) and the definition of u?k(·) into (12.3) we obtain

VN (x0) =
K−1∑
k=0

`(xu?(k, x0), u?(k)) + JN−K(xu?(K,x0), u?K(·))

Subtracting (12.2) from this equation yields

0 = JN−K(xu?(K,x0), u?K(·))− VN−K(xu?(K,x0))

which shows the assertion.

The next theorem relates the MPC-feedback law µN defined in the MPC Algorithms 11.1
and 11.9 to the dynamic programming principle. Here we use the argmin operator in the
following sense: for a map a : U → R, a nonempty subset Ũ ⊆ U and a value u? ∈ Ũ we
write

u? = argmin
u∈Ũ

a(u) (12.4)

if and only if a(u?) = inf
u∈Ũ a(u) holds. Whenever (12.4) holds the existence of the

minimum min
u∈Ũ a(u) follows. However, we do not require uniqueness of the minimizer

u?. In case of uniqueness equation (12.4) can be understood as an assignment, otherwise
it is just a convenient way of writing “u? minimizes a(u)”.

Theorem 12.4 [Dynamic programming and MPC] Consider the optimal control problem
(OCPN,e) with x0 ∈ XN and N ∈ N0 and assume that an optimal control sequence u?

exists. Then the MPC-feedback law µN (x0) = u∗(0) satisfies

µN (x0) = argmin
u∈U1

XN−1
(x0)

{`(x0, u) + VN−1(f(x0, u))} (12.5)

and
VN (x0) = `(x0, µN (x0)) + VN−1(f(x0, µN (x0))) (12.6)

where in (12.5) we interpret U1
XN−1

(x0) as a subset of U , i.e., we identify the one element

sequence u = u(·) with its only element u = u(0).
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Proof: Equation (12.6) follows by inserting u?(0) = µN (x0) and xu?(1, x0) = f(x0, µN (x0))
into (12.2) for K = 1.

Inserting xu(1, x0) = f(x0, u) into the dynamic programming principle (12.1) for K = 1
we further obtain

VN (x0) = inf
u∈U1

XN−1
(x0)
{`(x0, u) + VN−1(1, f(x0, u))} . (12.7)

This implies that the right hand sides of (12.6) and (12.7) coincide. Thus, the definition of
argmin in (12.4) with a(u) = `(x0, u) +VN−1(1, f(x0, u)) and Ũ = U1

XN−1
(x0) yields (12.5).

Our final corollary in this section shows that we can reconstruct the whole optimal control
sequence u?(·) using the feedback from (12.5).

Corollary 12.5 Consider the optimal control problem (OCPN,e) with x0 ∈ X and N ∈ N0

and consider admissible feedback laws µN−k : X → U , k = 0, . . . , N − 1, in the sense of
Definition 11.2(iv). Denote the solution of the closed loop system

x(0) = x0, x(k + 1) = f(x(k), µN−k(x(k))), k = 0, . . . , N − 1 (12.8)

by xµ(·) and assume that the µN−k satisfy (12.5) with horizon N − k instead of N and
initial value x0 = xµ(k) for k = 0, . . . , N − 1. Then

u?(k) = µN−k(xµ(k)), k = 0, . . . , N − 1 (12.9)

is an optimal control sequence for initial value x0 and the solution of the closed loop system
(12.8) is a corresponding optimal trajectory.

Proof: Applying the control (12.9) to the dynamics (12.8) we immediately obtain

xu?(k) = xµ(k), k = 0, . . . , N − 1.

Hence, we need to show that

VN (x0) = JN (x0, u
?) =

N−1∑
k=0

`(xµ(k), u?(k)) + F (N, x(N)).

Using (12.9) and (12.6) for N − k instead of N and x0 = xµ(k) we get

VN−k(xµ(k)) = `(xµ(k), u?(k)) + VN−k−1(xµ(k + 1))

for k = 0, . . . , N − 1. Summing these equalities for k = 0, . . . , N − 1 and eliminating the
identical terms VN−k(xµ(k)), k = 1, . . . , N − 1 on both sides we obtain

VN (x0) =

N−1∑
k=0

`(xµ(k), u?(k)) + V0(x(N))

Since by definition of J0 we have V0(x) = F (x), this shows the assertion.
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12.2 Infinite horizon problems

In this section we present the counterparts of the result from the previous section for infi-
nite horizon problems. These are defined by as follows.

minimize J∞(x0, u(·)) :=

∞∑
k=0

`(xu(k, x0), u(k))

with respect to u(·) ∈ U∞(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCP∞)

Here, we only minimize over those admissible controls for which the infinite sum in the
definition of JN converges. Moreover, we assume that the optimal value function, as defined
in the following definition, assumes finite values for all x ∈ X, i.e., we assume V∞(x) 6=∞
and V∞(x) 6= −∞ and that there is no admissible control sequence û(·) for which

lim inf
K→∞

K−1∑
k=0

`(xu(k, x0), u(k)) < V∞(x0)

holds for some x0 ∈ X.

Definition 12.6 Consider the optimal control problem (OCP∞) with initial value x0 ∈ X.

(i) The function

V∞(x0) := inf
u(·)∈U∞(x0)

J∞(x0, u(·))

is called optimal value function.

(ii) A control sequence u?(·) ∈ U∞(x0) is called optimal control sequence for x0 if

V∞(x0) = J∞(x0, u
?(·))

holds. The corresponding trajectory xu?(·, x0) is called optimal trajectory.

The first result we state is the dynamic programming principle.

Theorem 12.7 [Dynamic programming principle] Consider the optimal control problem
(OCP∞) with x0 ∈ X. Then for all K ∈ N the equation

V∞(x0) = inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0))

}
(12.10)
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holds. If, in addition, an optimal control sequence u?(·) exists for x0, then we get the
equation

V∞(x0) =
K−1∑
k=0

`(xu?(k, x0), u?(k)) + V∞(xu?(K,x0)). (12.11)

In particular, in this case the “inf” in (12.10) is a “min”.

Proof: From the definition of J∞ for u(·) ∈ U∞(x0) we immediately obtain

J∞(x0, u(·)) =

K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(xu(K,x0), u(·+K)), (12.12)

where u(· + K) denotes the shifted control sequence defined by u(· + K)(k) = u(k + K),
which is admissible for xu(K,x0).

We now prove (12.10) by showing “≥” and “≤” separately: From (12.12) we obtain

J∞(x0, u(·)) =
K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(xu(K,x0), u(·+K))

≥
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0)).

Since this inequality holds for all u(·) ∈ U∞, it also holds when taking the infimum on both
sides. Hence we get

V∞(x0) = inf
u(·)∈U∞(x0)

J∞(x0, u(·))

≥ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(K,xu(K,x0))

}
,

i.e., (12.10) with “≥”.

In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control sequence
for the right hand side of (12.12), i.e.,

K−1∑
k=0

`(xuε(k, x0), uε(k)) + J∞(K,xuε(K,x0), uε(·+K))

≤ inf
u(·)∈U∞(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(K,xu(K,x0), u(·+K))

}
+ ε.

Now we decompose u(·) ∈ U∞(x0) analogously to Lemma 11.10(ii) and (iii) into u1 ∈
UK(x0) and u2 ∈ U∞(xu1(K,x0)) via

u(k) =

{
u1(k), k = 0, . . . ,K − 1
u2(k −K), k ≥ K
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This implies

inf
u(·)∈U∞(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(K,xu(K,x0), u(·+K))

}

= inf
u1(·)∈UK (x0)

u2(·)∈U∞(xu1 (K,x0))

{
K−1∑
k=0

`(xu1(k, x0), u1(k)) + J∞(K,xu1(K,x0), u2(·))
}

= inf
u1(·)∈UK(x0)

{
K−1∑
k=0

`(xu1(k, x0), u1(k)) + V∞(K,xu1(K,x0))

}

Now (12.12) yields

V∞(x0) ≤ J∞(x0, u
ε(·))

=

K−1∑
k=0

`(xuε(k, x0), uε(k)) + J∞(K,xuε(K,x0), uε(·+K))

≤ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(K,xu(K,x0))

}
+ ε,

i.e.,

V∞(x0)

≤ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(K,xu(K,x0))

}
+ ε.

Since ε > 0 was arbitrary and the expressions in this inequality are independent of ε, this
inequality also holds for ε = 0, which shows (12.10) with “≤” and thus (12.10).

In order to prove (12.11) we use (12.12) with u(·) = u?(·). This yields

V∞(x0) = J∞(x0, u
?(·))

=

K−1∑
k=0

`(xu?(k, x0), u?(k)) + J∞(K,xu?(K,x0), u?(·+K))

≥
K−1∑
k=0

`(xu?(k, x0), u?(k)) + V∞(K,xu?(K,x0))

≥ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(K,xu(K,x0))

}
= V∞(x0),

where we used the (already proved) equality (12.10) in the last step. Hence, the two “≥”
in this chain are actually “=” which implies (12.11).

The following corollary states an immediate consequence from the dynamic programming
principle. It shows that tails of optimal control sequences are again optimal control se-
quences for suitably adjusted initial value and time.
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Corollary 12.8 If u?(·) is an optimal control sequence for (OCP∞) with initial value x0,
then for each K ∈ N the sequence u?K(·) = u?(·+K), i.e.,

u?K(k) = u?(K + k), k = 0, 1, . . .

is an optimal control sequence for initial value xu?(K,x0) and initial time K.

Proof: Inserting V∞(x0) = J∞(x0, u
?(·)) and the definition of u?K(·) into (12.12) we obtain

V∞(x0) =
K−1∑
k=0

`(xu?(k, x0), u?(k)) + J∞(K,xu?(x0), u?K(·))

Subtracting (12.11) from this equation yields

0 = J∞(xu?(K,x0), u?K(·))− V∞(xu?(K,x0))

which shows the assertion.

The next two results are the analogues of Theorem 12.4 and Corollary 12.5 in the infinite
horizon setting.

Theorem 12.9 Consider the optimal control problem (OCP∞) with x0 ∈ X and assume
that an optimal control sequence u?(·) exists. Then the feedback law µ∞(x0) = u∗(0)
satisfies

µ∞(x0) = argmin
u∈U1(x0)

{`(x0, u) + V∞(f(x0, u))} . (12.13)

and
V∞(x0) = `(x0, µ∞(x0)) + V∞(f(x0, µ∞(x0))) (12.14)

where in (12.13) — as usual — we interpret U1(x0) as a subset of U , i.e., we identify the
one element sequence u = u(·) with its only element u = u(0).

Proof: The proof is identical to the finite horizon counterpart Theorem 12.4.

As in the finite horizon case, the following corollary shows that the feedback law (12.13)
can be used in order to construct the optimal control sequence.

Corollary 12.10 Consider the optimal control problem (OCP∞). Let x0 ∈ X and consider
an admissible feedback law µ : X → U in the sense of Definition 11.2(iv). Denote the
solution of the closed loop system

x(0) = x0, x(k + 1) = f(x(k), µ∞(x(k)), k = 0, 1, . . . (12.15)

by xµ, assume that µ∞ satisfies (12.13) for initial values x0 = xµ(k) for all k = 0, 1, . . . and
that

lim
k→∞

V (xµ(k)) ≥ 0.

Then
u?(k) = µ∞(xu?(k, x0)), k = 0, 1, . . . (12.16)

is an optimal control sequence for initial time n and initial value x0 and the solution of the
closed loop system (12.15) is a corresponding optimal trajectory.
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Proof: From (12.16) for x(n) from (12.15) we immediately obtain

xu?(k) = x(k), k = 0, 1, . . . .

Hence we need to show that

V∞(x0) = J∞(x0, u
?),

where it is enough to show “≥” because the opposite inequality follows by definition of
V∞. Using (12.16) and (12.14) we get

V∞(x(k)) = `(x(k), u?(k)) + V∞(k + 1, x(k + 1))

for k = 0, 1, . . .. Summing these equalities for k = 0, . . . ,K − 1 for arbitrary K ∈ N and
eliminating the identical terms V∞(k, x0), k = 1, . . . ,K − 1 on the left and on the right we
obtain

V∞(x0) =
K−1∑
k=0

`(x(k), u?(k)) + V∞(K,x(K)) ≥
K−1∑
k=0

`(x(k), u?(k)).

Taking the upper limit for K →∞ and using limk→∞ V (xµ(k)) ≥ 0 as well as the assump-
tion on the lower limit after (OCP∞) implies that

lim sup
K→∞

K−1∑
k=0

`(x(k), u?(k)) ≤ V∞(x0) ≤ lim inf
K→∞

K−1∑
k=0

`(x(k), u?(k)),

which implies that the limit

∞∑
k=0

`(x(k), u?(k)) = lim
K→∞

K−1∑
k=0

`(x(k), u?(k))

exists and equals V∞(x0).

We note that the condition limk→∞ V (xµ(k)) ≥ 0 is always satisfied when `(x, u) ≥ 0 for
all x ∈ X, u ∈ U(x)

Corollary 12.10 implies that infinite horizon optimal control is nothing but MPC with N =
∞: Formula (12.16) for k = 0 yields that if we replace the optimization problem (OCPN)
in Algorithm 11.1 by (OCP∞), then the feedback law resulting from this algorithm equals
µ∞. In fact, the infinite horizon problem can be seen as a discrete time nonlinear version
of linear quadratic optimal control. Our last theorem (the only one that does not have a
finite horizon counterpart in Section 12.1) shows that just like for linear quadratic optimal
control, the optimal feedback law stabilizes an equilibrium, provided suitable inequalities
are satisfied.

Theorem 12.11 [Asymptotic stability] Consider the optimal control problem (OCP∞) for
the control system (8.2) and an equilibrium x∗ ∈ X. Assume that there exist α1, α2, α3 ∈
K∞ such that the inequalities

α1(|x|x∗) ≤ V∞(x) ≤ α2(|x|x∗) and `(x, u) ≥ α3(|x|xref(n)) (12.17)
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hold for all x ∈ X and u ∈ U . Assume furthermore that an optimal feedback µ∞ exists,
i.e., an admissible feedback law µ∞ : X → U satisfying (12.13) for all x ∈ X. Then this
optimal feedback asymptotically stabilizes the closed loop system

x+ = g(x) = f(x, µ∞(x))

on X in the sense of Definition 10.2.

Proof: For the closed loop system, (12.14) and the last inequality in (12.17) yield

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

≥ α3(|x|xref(n)) + V∞(f(x, µ∞(x))).

Together with the first two inequalities in (12.17) this shows that V∞ is a Lyapunov function
on X in the sense of Definition 10.4 with αV = α3. Thus, Theorem 10.5 yields asymptotic
stability on X.



Chapter 13

Analysis of general MPC schemes

13.1 Preliminaries

In this section we analyze the properties of the MPC closed-loop (11.2) for “general” stage
costs `. Of course, it is easy to see that ` cannot be completely general. Some properties
must be met in order to obtain good closed-loop behavior and one of the main tasks in
this chapter will be to figure out what these properties are. In the literature, this class of
MPC schemes is often called “economic” MPC, because in practice the stage cost often
models some economic goal, like maximal yield or minimum energy consumption. The
next example is a very simply optimal control problem which falls into the last class.

Example 13.1 An example, which will serve as an illustration for all results in this section,
is the 1d discrete-time system with dynamics and stage cost

x+ = 2x+ u and `(x, u) = u2

and state and control constraint sets X = [−2, 2] and U(x) = U = [−3, 3], i.e., Y =
[−2, 2]× [−3, 3].

The uncontrolled system is unstable, hence for initial values x0 6= 0 the solution will leave
the admissible set X if no control is used. Hence, control action is needed in order to keep
the system inside X. Interpreting the stage cost `(x, u) = u2 as the energy of the current
control action, the control objective can be formulated as “keep the state inside X with
minimal control effort”.

In what follows, two aspects will be investigated: the qualitative property of the MPC
closed-loop trajectory (as, e.g., stability) and its quantitative properties measured in terms
of the stage cost function. For the second purpose, three different quantities can be con-
sidered:

The first is the infinite horizon closed-loop performance

Jcl∞(x0, µ) :=

∞∑
k=0

`(xµ(k), µ(xµ(k))).

131
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This would be the “natural” measure if we consider MPC as an approximation to an infinite
horizon problem. However, as the infinite sum may not converge, we also look at other
measures. We also consider the finite horizon closed-loop performance

JclK(x0, µ) :=
K−1∑
k=0

`(xµ(k), µ(xµ(k))) (13.1)

and the averaged infinite horizon performance

J
cl
∞(x0, µ) := lim sup

K→∞

1

K
JclK(x0, µ).

Throughout this chapter by (xe, ue) ∈ Y we denote an equilibrium of the system, i.e.,
f(xe, ue) = xe. Of particular interest are optimal equilibria according to the following
definition.

Definition 13.2 An equilibrium (xe, ue) ∈ Y is called an optimal equilibrium if it yields
the lowest value of the cost function among all admissible equilibria, i.e.,

`(xe, ue) ≤ `(x, u) for all (x, u) ∈ Y with f(x, u) = x.

MPC

Example 13.3 In Example 13.1, the equilibria are of the form (x,−x) with cost `(x,−x) =
x2. Thus, the (unique) optimal equilibrium is given by (xe, ue) = (0, 0).

The following lemma shows that an optimal equilibrium always exists when f and ` are
continuous and Y is compact.

Lemma 13.4 If the constraint set Y ⊂ X × U is compact and the maps ` : X × U → R
and f : X × U → X are continuous, then there exists an optimal equilibrium, i.e., a pair
xe ∈ X, ue ∈ U with f(xe, ue) = xe such that

`(xe, ue) = inf{`(x, u) | (x, u) ∈ Y, f(x, u) = x}.

Proof: Since pre-images of closed sets under continuous mappings are closed, the set
{(x, u) ∈ Y | f(x, u) = x} is closed, hence compact and thus the continuous function `
attains a minimum.

Hence, assuming the existence of an optimal equilibrium is not an overly restrictive as-
sumption.
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13.2 Averaged performance with terminal conditions

In this and in the following two sections we consider the MPC Algorithm 11.9 with optimal
control problem (OCPN,e). We note that the terminal condition is only added to the open-
loop functional JN (x0, u) used in the MPC Algorithm 11.9 but not to the closed-loop
performance index JclK(x, µ) from (13.1), which is still defined without terminal cost or
constraints according to (13.1). As before, the optimal value function is defined by

VN (x) := inf
u(·)∈UNX0 (x)

JN (x, u(·))

and we assume the existence of an optimal control sequence for each feasible initial condition
x in order to synthesize the MPC feedback law µN according to Algorithm 11.9.

The following assumption links an equilibrium—which will later be chosen as an optimal
equilibrium—to the terminal conditions. For its formulation, recall the definition of the
feasible sets XN from Definition 11.8(i).

Assumption 13.5 [Terminal conditions] (a) The set X0 is bounded and there is an equi-
librium (xe, ue) ∈ Y with xe ∈ X0 and F (xe) = 0 such that for each x ∈ X0 there exists
u ∈ U with f(x, u) ∈ X0 and

F (f(x, u)) ≤ F (x)− `(x, u) + `(xe, ue)

(b) There exists N0 ∈ N and η > 0 such that XN0 contains the ball Bη(xe).

Condition (a) is a compatibility condition between the stage cost ` and the terminal cost
F . The simplest way to satisfy condition (a) is by setting X0 = {xe} and F ≡ 0. However,
using a terminal constraint set with only one point may cause convergence problems in
the numerical optimization routine for solving (OCPN,e). For ` with `(xe, ue) = 0 and
`(x, u) > 0 otherwise, a systematic way to construct F with this property is via a linear
quadratic approximation of the problem near xe. Time permitting, we will discuss this
approach in the excercises.

Observe that the requirement F (xe) = 0 in Assumption 13.5(a) can be made without loss
of generality because the inequality is invariant with respect to adding a constant to F .
Assumption 13.5(b) is a nondegeneracy condition which prevents that the feasible sets XN
have empty interior for any N ∈ N.

Under these assumptions we can formulate the first result.

Theorem 13.6 Consider the MPC Algorithm 11.9. Let Assumption 13.5(a) be satisfied,
let N ≥ 2 and assume VN is bounded from below on XN . Then, for any N ≥ 2 and any
x ∈ XN the averaged closed-loop performance satisfies the inequality

J
cl
∞(x, µN ) ≤ `(xe, ue). (13.2)
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Proof: Let x̂ ∈ XN−1 and let û? be the optimal control sequence for this initial value with
horizon N − 1, i.e., VN−1(x̂) = JN−1(x̂, û?). Let ũ be the control value from Assumption
13.5(a) for x̃ = xû?(N − 1, x̂). Then, for the control sequence u = (û?(0), . . . , û?(N − 1), ũ)
we obtain xu(N, x̂) = f(x̃, ũ) and thus Assumption 13.5(a) implies

VN (x̂) ≤ JN (x̂, u)

= JN−1(x̂, û?)− F (x̃) + `(x̃, ũ) + F (f(x̃, ũ))

≤ VN−1(x̂) + `(xe, ue)

Using the dynamic programming principle this inequality applied with x̂ = f(x, µN (x))
implies

`(x, µN (x)) = VN (x)− VN−1(f(x, µN (x))) ≤ VN (x)− VN (f(x, µN (x))) + `(xe, ue)

and we can conclude

JclK(x0, µN ) =
K−1∑
k=0

`(xµN (k), µN (xµN (k)))

≤
K−1∑
k=0

[
VN (xµN (k))− VN (xµN (k + 1)) + `(xe, ue)

]
= VN (x0)− VN (xµN (K)) +K`(xe, ue)

≤ VN (x0)−M +K`(xe, ue),

where M ∈ R is a lower bound on VN . This yields

J
cl
∞(x0, µN ) ≤ lim sup

K→∞

(
VN (x0)

K
− M

K
+ `(xe, ue)

)
= `(xe, ue).

We note that the boundedness assumption on VN is satisfied if ` is continuous, Y is compact
and F is bounded from below, because in this case both ` and F , and thus also VN , are
bounded from below.

Clearly, the estimate from Theorem 13.6 is particularly powerful if `(xe, ue) is the best,

i.e., the smallest possible value that J
cl
∞(x0, µN ) can attain. The next definition provides

a property which is sufficient for this fact, as the subsequent Proposition 13.9 shows.

Definition 13.7 [Dissipativity and strict dissipativity] We say that an optimal control
problem with stage cost ` is strictly dissipative at an equilibrium (xe, ue) ∈ Y if there exists
a storage function λ : X→ R bounded from below and satisfying λ(xe) = 0, and a function
ρ ∈ K∞ such that for all (x, u) ∈ Y the inequality

`(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) ≥ ρ(|x|xe) (13.3)

holds.

We say that an optimal control problem with stage cost ` is dissipative at (xe, ue) if the
same conditions hold with ρ ≡ 0.
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We note that the assumption λ(xe) = 0 can be made without loss of generality because
adding a constant to λ does not invalidate (13.3).

The classical physical interpretation of the storage function is that λ(x) quantifies the
amount of energy stored in the system at state x. The function s(x, u) := `(x, u)−`(xe, ue)
is called the supply rate and measures the (possibly negative) amount of energy supplied
to the system via the input u at state x. With this interpretation, strict dissipativity
then means that a certain amount of energy, quantified by ρ(|x|xe), is dissipated to the
environment in each time step. Of course, in the context of general optimal control problems
considered in this chapter the storage function and the supply rate need not have an energy
interpretation.

Example 13.8 (i) Any optimal control problem with stage cost satisfying `(xe, ue) = 0
and `(x, u) ≥ ρ(|x − xe|) is strictly dissipative with λ ≡ 0. Hence, MPC problems with
stage cost penalizing the distance to a desired equilibrium x∗ = xe, as they typically appear
in stabilization problems, are always strictly dissipative.

(ii) It is straightforward to check that Example 13.1 is dissipative with λ ≡ 0 and strictly
dissipative with λ(x) = −x2/2, both at (xe, ue) = (0, 0). Note that the storage function
λ = −x2/2 is bounded from below since X is bounded. Indeed, for an unbounded state
constraint set X the system would not be strictly dissipative. In this example, the supply
rate s(x, u) = `(x, u) = u2 does have an energy interpretation and the storage function λ(x)
shows that the equilibrium (xe, ue) is the state in which the stored energy λ(x) becomes
maximal.

(iii) A somewhat more involved computation shows that the second example from Section
9.1 is strictly dissipative at xe = 1/ α−1

√
αA with storage function λ(x) = α(x − xe)/xe.

Proposition 13.9 For an optimal control problem (OCPN) that is dissipative at (xe, ue),
the point (xe, ue) is an optimal equilibrium and the inequality

lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k)) ≥ `(xe, ue) (13.4)

holds for all x ∈ X and all admissible control sequences u ∈ U∞(x).

Proof: Consider an arbitrary equilibrium (x, u) ∈ Y. Then the identity x = f(x, u) and
(13.3) imply

`(x, u)− `(xe, ue) = `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) ≥ 0

which yields `(xe, ue) ≤ `(x, u) and thus (xe, ue) is an optimal equilibrium.

Moreover, using again (13.3) and denoting by M a lower bound on λ we have

K−1∑
k=0

`(xu(k, x), u(k)) ≥
K−1∑
k=0

`(xe, ue)− λ(xu(k, x)) + λ(xu(k + 1, x))

= K`(xe, ue)− λ(x) + λ(xu(K,x))

≥ K`(xe, ue)− λ(x) +M.
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for any u ∈ U∞(x). This yields

lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k)) ≥ lim sup
K→∞

(
`(xe, ue)− λ(x)−M

K

)
= `(xe, ue).

The property expressed by inequality (13.4) is known as optimal operation at steady state.
It has been shown in [16] that under a controllability condition on the system the converse
of Proposition 13.9 is also true, i.e., that optimal operation at a steady state implies
dissipativity.

An immediate consequence of Proposition 13.9 is the following corollary.

Corollary 13.10 Consider the MPC Algorithm 11.9 with dissipative optimal control prob-
lem (OCPN,e). Then for all x ∈ XN

J
cl
∞(x, µN ) = inf

u∈U∞(x)
lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k)).

Hence, if dissipativity holds, then Theorem 13.6 ensures infinite horizon averaged optimality
of the MPC closed loop.

Example 13.11 Since Example 13.1 is dissipative (see Example 13.8(ii)), the MPC closed
loop must be infinite horizon averaged optimal. Indeed, as Fig. 13.11 shows, the closed-loop
solution converges to the optimal equilibrium. Since the control (not shown in the figure)

does the same, `(xµN (k), µN (xµN (k)))→ 0 as k →∞ follows which implies J
cl
∞(x, µN ) = 0,

which is clearly optimal since ` ≥ 0.
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Figure 13.1: MPC closed-loop solution (solid) and open-loop predictions (dashed) for Ex-
ample 13.1 with terminal constraint X0 = {0} and horizon N = 3. The solid line at x = 2
indicates the upper bound of the admissible set X
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13.3 Asymptotic stability with terminal conditions

One might conjecture that optimal operation at the steady state (xe, ue) implies that closed-
loop solutions satisfying (13.2) must also converge to xe. However, under the assumptions
imposed in Theorem 13.6 and Proposition 13.9 this is not necessarily the case. To see this, it
suffices to consider an optimal control problem with ` ≡ 0. Such a problem clearly satisfies
all assumptions (with terminal cost F ≡ 0 and storage function ` ≡ 0), yet every trajectory
is an optimal trajectory and thus optimal trajectories obviously need not converge to xe. In
order to achieve this — and, in fact, even asymptotic stability of xe — we need to assume
strict dissipativity.

Under this assumption, we establish asymptotic stability by proving the existence of a
Lyapunov function. This Lyapunov function will be built from the optimal value function
of an auxiliary optimal control problem with stage cost

˜̀(x, u) := `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) (13.5)

and terminal cost
F̃ (x) := F (x) + λ(x).

These costs are usually called rotated or modified costs. The name “rotated cost” stems
from the fact that for linear f and strictly convex ` the graph of ˜̀ is obtained by rotating
the graph of `. The corresponding functional is given by

J̃N (x0, u(·)) =

N−1∑
k=0

˜̀(xu(k, x0), u(k)) + F̃ (xu(N, x0))

and the optimal value function by

ṼN (x0) := inf
u(·)∈UNX0 (x0)

J̃N (x0, u(·)).

It is an easy exercise to check that the equalities ˜̀(xe, ue) = 0 and F̃ (xe) = 0 and — under
Assumption 13.5(a) — that the inequality

F̃ (f(x, u)) ≤ F̃ (x)− ˜̀(x, u) (13.6)

holds for each x ∈ X0 and the control u from Assumption 13.5(a). Moreover, for any
x ∈ XN and u ∈ UNX0

(x) one easily verifies the identity

J̃N (x, u) = JN (x, u) + λ(x)−N`(xe, ue). (13.7)

Since the last two terms in (13.7) are independent of u, this implies that the optimal
trajectories for JN and J̃N coincide and that the optimal value functions satisfy

ṼN (x) = VN (x) + λ(x)−N`(xe, ue). (13.8)

If the optimal control problem is strictly dissipative, ˜̀ satisfies ˜̀(x, u) ≥ ρ(|x|xe) for all
(x, u) ∈ Y and ˜̀(xe, ue) = 0. This immediately implies

ṼN (xe) = 0 and thus VN (xe) = N`(xe, ue) (13.9)
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using (13.8) and λ(xe) = 0.

We now turn to show that ṼN is a Lyapunov function for the MPC closed-loop system.
For the rigorous proof of this property, we need the following continuity assumption on F ,
λ and VN in xe.

Assumption 13.12 [Continuity of F , λ and VN at xe] There exists γF , γλ and γV ∈ K∞
such that the following properties hold.
(a) For all x ∈ X0 it holds that

|F (x)− F (xe)| ≤ γF (|x|xe).

(b) For all x ∈ X it holds that

|λ(x)− λ(xe)| ≤ γλ(|x|xe).

(c) For each N ∈ N and each x ∈ XN it holds that

|VN (x)− VN (xe)| ≤ γV (|x|xe).

Note that γV in (c) is independent of N . We will comment at the end of this section on
conditions under which (c) can be ensured.

Theorem 13.13 Consider the MPC Algorithm 11.9 with strictly dissipative optimal con-
trol problem (OCPN,e). Let Assumptions 13.5(a) and 13.12 be satisfied. Then the optimal
equilibrium xe is asymptotically stable for the MPC closed loop on XN .

Proof: We show that the modified optimal value function ṼN is a Lyapunov function for
the closed-loop system in the sense of Definition 10.4 for x∗ = xe. Then the assertion
follows from Theorem 10.5. To this end we first check an auxiliary inequality. As in
the proof of Theorem 13.6, from Assumption 13.5(a) we obtain `(x, µN (x)) ≤ VN (x) −
VN (f(x, µN (x))) + `(xe, ue) which we can rewrite as

VN (x) ≥ `(x, µN (x)) + VN (f(x, µN (x)))− `(xe, ue). (13.10)

Using (13.8) this implies

ṼN (x) = VN (x) + λ(x)−N`(xe, ue)
≥ `(x, µN (x)) + VN (f(x, µN (x)))− `(xe, ue) + λ(x)−N`(xe, ue)
= `(x, µN (x)) + ṼN (f(x, µN (x)))− λ(f(x, µN (x)))− `(xe, ue) + λ(x)

= ˜̀(x, µN (x)) + ṼN (f(x, µN (x))).

In order to check that ṼN satisfies Definition 10.4, we now have to check the inequalities

α1(|x|xe) ≤ ṼN (x) ≤ α2(|x|xe) and ˜̀(x, u) ≥ α3(|x|xe) (13.11)
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for α1, α2, α3 ∈ K∞. The third inequality follows immediately from the definition of ˜̀ and
strict dissipativity for α3 = ρ from Definition 13.7. For the inequalities involving α1 and
α2 we first need to establish a lower bound for F̃ .

To this end, for each x ∈ X0 we denote the control u from (13.6) by µ0(x). Then (13.6)
and strict dissipativity implies

F̃ (f(x, µ0(x))) ≤ F̃ (x)− ˜̀(x, µ0(x)) ≤ F̃ (x)− ρ(|x|xe).

By induction along the closed-loop solution for the feedback law µ0 we then obtain

F̃ (xµ0(K,x)) ≤ F̃ (x)−
K−1∑
k=0

ρ(|xµ0(k, x)|xe).

This implies that xµ0(K,x) → xe as K → ∞, because otherwise the sum on the right

hand side of this inequality grows unboundedly which implies F̃ (xµ0(K,x)) → −∞ and
contradicts Assumption 13.12(a) and (b) since xµ0(K,x) is contained in the bounded set

X0. Again by Assumption 13.12(a) and (b) this implies F̃ (xµ0(K,x)) → F̃ (xe) = 0 as
K →∞ from which we can finally conclude

F̃ (x) ≥ lim
K→∞

K−1∑
k=0

ρ(|xµ0(k, x)|xe) ≥ ρ(|x|xe) ≥ 0.

From this, the definitions of J̃N and ṼN immediately imply ṼN (x) ≥ ˜̀(x, µN (x)) ≥ ρ(|x|xe)
and thus the inequality for α1 in (13.11) with α1 = ρ.

Finally, since J̃N (xe, ue) = 0 we obtain ṼN (xe) = 0 and the second inequality in (13.11)
follows from (13.8) and Assumption 13.12(b) and (c) with α2 = γλ + γV .

Observe that in the case of stabilizing stage costs according to Example 13.8(i), we obtain
λ ≡ 0 and `(xe, ue) = 0, and thus ṼN = VN . This implies that the optimal value function
itself is a Lyapunov function.

We end this section by discussing sufficient conditions for the bound on VN required in
Assumption 13.12(c). In the case of equilibrium terminal conditions, i.e., X0 = {xe} and
F ≡ 0, this property can be ensured by the condition that xe is reachable from every
x ∈ XN with suitable bounded costs. In case ` and f are continuous, it is sufficient to
assume that the control sequence steering x to xe is sufficiently close to the constant control
with value ue. For details we refer to [1], particularly to part 2 of Assumption 2 in [1].

In case X0 contains a neighborhood of xe, using Assumption 13.5(a) inductively yields the
inequality

VN (x) ≤ F (x) +N`(xe, ue)

while from (13.8) and ṼN ≥ 0 we obtain

VN (x) ≥ −λ(x) +N`(xe, ue).

Since from (13.9) we moreover know VN (xe) = N`(xe, ue), this implies Assumption 13.12(c)
for x ∈ X0 provided Assumption 13.12(a) and (b) hold. For x ∈ XN \ X0 the inequality
follows from boundedness of VN which in turn follows from boundedness of ` along the
optimal trajectories.
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Example 13.14 According to Example 13.8, the optimal control problem from Example
13.1 is strictly dissipative. Moreover, one easily verifies that xe is reachable in two steps
from each x ∈ X with cost 4x2, which implies the upper bound on VN for the terminal
constraint set X0 = {0}. Hence, we expect the MPC closed loop to be asymptotically
stable, which was already illustrated in Fig. 13.11.

13.4 Non-averaged performance with terminal conditions

The averaged performance result from Theorem 13.6 provides a useful estimate for large
times k. However, it also has two significant weaknesses. First, it does not provide an
advantage over a stabilizing MPC algorithm. Indeed, for any combination of a continuous
stage cost and a terminal condition for which the MPC closed-loop solution converges to xe

and the corresponding control sequence converges to ue, the value `(xµN (k), µN (xµN (k)))

converges to `(xe, ue) from which J
cl
∞(x, µN ) = `(xe, ue) follows. Hence, Theorem 13.6

only states that the economic MPC scheme does not perform worse than a stabilizing one.
Second, the averaged estimate does not allow any statement about the finite time behavior
of the closed-loop trajectory. Indeed, on any finite time interval of arbitrary length the
closed-loop trajectory could behave arbitrarily bad as long as eventually it converges to
the equilibrium. Clearly, this is not what we would expect an MPC closed-loop trajectory
to do and it is also not consistent with what we see in numerical simulations, e.g., in
Fig. 13.11. Hence, in this section we derive estimates for the non-averaged infinite and
finite horizon performance Jcl∞(x, µN ) and JclK(x, µN ), respectively. For the infinite horizon
estimate the additional condition `(xe, ue) = 0 will be imposed, in order to make sure
that the infinite sum in Jcl∞(x, µN ) converges. For the finite horizon performance, such a
condition is not needed. As we already know that — under the conditions of Theorem
13.13 — the equilibrium xe is asymptotically stable, the finite horizon value JclK(x, µN )
measures the performance of the solution during the transient phase, i.e., until it reaches
a small neighborhood of xe. This is why we also call this value transient performance.

Since JclK(x, µN ) and Jcl∞(x, µN ) do not involve any terminal constraints or costs, in our
analysis we will also need to consider the optimal control problems (OCPN) and (OCP∞)
without terminal constraints and terminal costs. In order not to confuse these problems
with those using terminal conditions, in this section we denote the functionals and the
optimal value functions of the unconstrained problems (OCPN) and (OCP∞) by JucN , V uc

N ,
Juc∞ and V uc

∞ ,respectively. We emphasize that we use the same stage cost ` in all problems.
This implies that if one of the problems is strictly dissipative then all problems are. If this
is the case, we also consider (OCPN) for the rotated cost ˜̀ and denote the corresponding
functional by J̃ucN . A straightforward computation reveals that JucN and J̃ucN are related by
the identity

J̃ucN (x, u) = JucN (x, u) + λ(x)− λ(xu(N, x))−N`(xe, ue). (13.12)

Observe that compared to (13.7) the additional term λ(xu(N, x)) appears here due to the
absence of the terminal conditions.

In order to establish our theorems on transient performance, we will need a few preparatory
results. The first statement shows that the finite horizon optimal trajectories most of the
time stay close to the optimal equilibrium xe.
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Proposition 13.15 Assume that the optimal control problem (OCPN) is strictly dissipa-
tive with bounded storage function λ and ρ ∈ K∞. Then for each δ > 0 there exists σδ ∈ L
such that for all N,P ∈ N, x ∈ X and u ∈ UN (x) with JucN (x, u) ≤ N`(xe, ue) + δ, the
set Q(x, u, P,N) := {k ∈ {0, . . . , N − 1} | |xu(k, x)|xe ≥ σδ(P )} has at most P elements.

Proof: We fix δ > 0 and claim that the assertion holds with σδ(P ) := ρ−1((2M + δ)/P )
where M is a bound on |λ|. To prove this claim, assume that there are N , P , x and u such
that JucN (x, u) ≤ N`(xe, ue) + δ but Q(x, u, P,N) contains at least P + 1 elements. Then
from (13.12) we can estimate

J̃ucN (x, u) ≤ JucN (x, u) + 2M −N`(xe, ue) ≤ 2M + δ.

On the other hand, (13.3), (13.5) and the fact that Q(x, u, P,N) contains at least P + 1
elements imply

J̃ucN (x, u) ≥
N−1∑
k=0

˜̀(xu(k, x), u(k)) ≥
N−1∑
k=0

ρ(|xu(k, x)|xe) ≥
∑

k∈{0,...,N−1}
|xu(k,x)|xe>σδ(P )

ρ(σδ(P ))

≥ (P + 1)ρ(σδ(P )) ≥ (P + 1)
2M + δ

P
> 2M + δ

which is a contradiction.

Elements of Q(x, u, P,N)

Nk

σδ(P )

σδ(P )

xu(k, x)

xe

Figure 13.2: Illustration of the set Q(x, u, P,N) defined in Proposition 13.15

We refer to the property described by Proposition 13.15 as the turnpike property. For
an illustration we refer to Fig. 13.4. In fact, there are various variants of the turnpike
property known in optimal control, of which the one described by Proposition 13.15 is just
a particular version.

We remark that the boundedness assumption on λ can be restrictive in case X is un-
bounded. However, for bounded subsets of the state constraint set X it is not a very strong
assumption. Hence, it can be assumed to hold if either X itself is bounded or if near optimal
trajectories are guaranteed to stay in a bounded subset of X.

Example 13.16 Since Example 13.1 is strictly dissipative with bounded storage function
(cf. Example 13.8), we expect the system to have the turnpike property. The numerical
optimal trajectories depicted in Fig. 13.16 support this claim.
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Open loop optimal trajectories for N = 2, . . . , 30

Figure 13.3: Open loop optimal trajectories (without terminal conditions) for Example
13.1 with different optimization horizons N . The turnpike property is clearly visible

Next we derive upper and lower bounds for V uc
∞ .

Lemma 13.17 Assume that the optimal control problem (OCPN) is strictly dissipative
with bounded storage function λ, that `(xe, ue) = 0 and that Assumptions 13.5(a) and
13.12 hold. Then there is C > 0 such that the inequalities

−C ≤ V uc
∞ (x) ≤ γV (|x|xe) (13.13)

hold for all x ∈ ⋃N∈NXN with γV from Assumption 13.12(c).

Proof: For x ∈ XN , using the control sequence u(k) = µN (xµN (k, x)) induced by the
closed loop, from (13.10) with `(xe, ue) = 0 for any K > 0 we obtain

JucK (x, u) =
K−1∑
k=0

`(xu(k, x), uk(x)) ≤ VN (x)− VN (xu(K,x)).

By asymptotic stability of xe for this solution we obtain xu(K,x) → xe and thus, since
VN (xe) = N`(xe, ue) = 0 by (13.9), Assumption 13.12(c) yields VN (xu(K,x)) → 0 as
K →∞. Using Assumption 13.12(c) and VN (xe) = 0, this implies

V uc
∞ (x) ≤ lim sup

K→∞
JucK (x, u) ≤ VN (x) ≤ γV (|x|xe).

On the other hand, the fact that J̃ucN (x, u) ≥ 0, (13.12) and the boundedness of λ imply
JucN (x, u) ≥ −C for some C ≥ 0 and all x, u and N . This implies V uc

∞ (x) ≥ −C.

Using the inequality ensured by this lemma we can prove an infinite horizon version of the
turnpike property from Proposition 13.15.

Proposition 13.18 Assume that the optimal control problem (OCPN) is strictly dissipa-
tive, that X is bounded, that `(xe, ue) = 0 and that the inequalities (13.13) hold for all
x ∈ ⋃N∈N0

XN . Then there exists σ∞ ∈ L such that for all P ∈ N, x ∈ X and u ∈ U∞(x)
with Juc∞ (x, u) ≤ V uc

∞ (x) + 1, the set Q(x, u, P,∞) := {k ∈ N0 | |xu(k, x)|xe ≥ σ∞(P )} has
at most P elements.



13.4. NON-AVERAGED PERFORMANCE WITH TERMINAL CONDITIONS 143

Proof: First note that by Lemma 13.17 and the assumption we get

Juc∞ (x, u) ≤ sup
x∈
⋃
N∈N XN

V uc
∞ (x) + 1 ≤ sup

x∈X
γV (|x|xe) + 1 =: δ.

Now we can proceed as in the proof of Proposition 13.15: denoting by M a bound on |λ|,
from (13.12) and `(xe, ue) = 0 we obtain

J̃uc∞ (x, u) = lim sup
K→∞

J̃ucK (x, u) ≤ lim sup
K→∞

JucK (x, u) + 2M ≤ δ + 2M.

Setting σ∞(K) := ρ−1((2M + δ)/K), the assumption that Q(x, u, P,∞) contains more
than P elements then again yields a contradiction to this inequality.

We note that this theorem implies xu(k, x)→ xe as k →∞, because otherwiseQ(x, u, P,∞)
would contain infinitely many elements for sufficiently large P ∈ N. Using this fact we can
improve the lower bound on V uc

∞ from Lemma 13.17.

Lemma 13.19 Under the assumptions of Proposition 13.18, the inequality V uc
∞ (x) ≥

−λ(x) holds for all x ∈ ⋃N∈N0
XN .

Proof: Let u ∈ U∞(x) be such that Juc∞ (x, u) ≤ V uc
∞ (x) + ε for an ε ∈ (0, 1). As explained

above, Proposition 13.18 implies that xu(k, x)→ xe as k →∞. The definition of V uc
∞ and

(13.12) then imply that

V uc
∞ (x) + ε ≥ lim sup

K→∞
JucK (x, u)

= lim sup
K→∞

(
− λ(x) + J̃ucK (x, u)︸ ︷︷ ︸

≥0

+λ(xu(K,x)︸ ︷︷ ︸
→λ(xe)=0

)
≥ −λ(x).

This implies the assertion since ε ∈ (0, 1) was arbitrary.

Our final preparatory result is needed for estimating the finite horizon transient perfor-
mance. It thus concerns the optimal value of the problem with control functions u that
steer a given initial value x ∈ X to the closed ball Bκ(xe) with radius κ > 0 around xe. In
order to simplify the notation, we briefly write

UKκ (x) := UKBκ(xe)
(x) (13.14)

using the notation from Definition 11.8 with Bκ(xe) in place of X0. We remark that
Theorem 13.13 yields the existence of a β ∈ KL such that for all x ∈ XN and all K
with β(|x|xe ,K) ≤ κ the control u obtained from the MPC feedback law via u(k) =
µN (xµN (k, x)) is contained in UKκ (x). This, in particular, shows that this set is nonempty
for sufficiently large K.

The next lemma shows that the infimum of JucK (x, u) over u ∈ UKκ (x) and the corresponding
approximately optimal trajectories behave similar to those of the infinite horizon problem.
More precisely, part (a) of the following lemma is similar to Lemma 13.17, part (b) to
Lemma 13.19 and part (c) to Proposition 13.18. Note that since we only consider finite
horizon problems here, we do not need to assume `(xe, ue) = 0.
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Lemma 13.20 Assume that the optimal control problem (OCPN) is strictly dissipative
with bounded storage function λ and that Assumptions 13.5(a) and 13.12 hold. Fix κ0 > 0
and let β be a KL-function characterizing the asymptotic stability of the closed loop, whose
existence is guaranteed by Theorem 13.13. Then for any κ ∈ (0, κ0], any x ∈ ⋃N∈N0

XN
and K0 ∈ N minimal with β(|x|xe ,K0) ≤ κ, the following holds.

(a) For all K ≥ K0 the inequality

inf
u∈UKκ (x)

JucK (x, u)−K`(xe, ue) ≤ γV (|x|xe) + γV (κ)

holds with γV ∈ K∞ from Assumption 13.12(c).

(b) For all K ∈ N with UKκ (x) 6= ∅ the inequality

−γλ(|x|xe)− γλ(κ) ≤ inf
u∈UKκ (x)

JucK (x, u)−K`(xe, ue)

holds with γλ from Assumption 13.12(b).

(c) If in addition X is bounded then there exists σ ∈ L such that for all K ≥ K0, all P ∈ N
and any u ∈ UKκ (x) with JucK (x, u) ≤ infu∈UKκ (x) J

uc
K (x, u) + 1 there is k ≤ min{P,K − 1}

such that |xu(k, x)|xe < σ(min{P,K − 1}).

Proof: (a) The proof of this inequality works similarly to the first part of the proof of
Lemma 13.17. For x ∈ XN , we choose the control u obtained from the MPC feedback law
via u(k) = µN (xµN (k, x)). By Theorem 13.13 and the choice of K0, this control lies in
UKκ (x). As in the proof of Lemma 13.17, from (13.10) — now with `(xe, ue) 6= 0 — for this
u we get

JucK (x, u) ≤ VN (x)− VN (xu(K,x)) +K`(xe, ue)

and from Assumption 13.12(c) and |xu(K,x)|xe < κ we obtain the assertion.

(b) Let ε > 0 and take a control uε ∈ UKκ (x) with infu∈UKκ (x) J
uc
K (x, u) + ε ≥ JucK (x, uε).

Then by (13.12), Assumption 13.12(b) and λ(xe) = 0, and recalling that strict dissipativity
implies J̃ucK (x, uε) ≥ 0 we get

inf
u∈UKκ (x)

JucK (x, u) + ε ≥ JucK (x, uε)

= −λ(x)︸ ︷︷ ︸
≥−γλ(|x|xe )

+ J̃ucK (x, uε)︸ ︷︷ ︸
≥0

+λ(xuε(K,x))︸ ︷︷ ︸
≥−γλ(κ)

+K`(xe, ue)

≥ −γλ(|x|xe)− γλ(κ) +K`(xe, ue).

This implies (b) since ε > 0 was arbitrary.

(c) The assumptions and (a) imply that Proposition 13.15 can be applied with δ =
supx∈X γ(|x|xe) + γ(κ0) + 1 for all x ∈ X and all κ ∈ (0, κ0]. We set σ = σδ from this
proposition. Since the set Q(x, u,min{P,K − 1},K) has at most min{P,K − 1} elements,
there exists at least one k ∈ {0, . . . ,min{P,K − 1}} with k 6∈ Q(x, u,min{P,K − 1},K),
which thus satisfies |xu(k, x)|xe ≤ σ(min{P,K − 1}).
We now have all the tools to prove the two main theorems of this section. The first theorem
gives an upper bound for the non-averaged infinite horizon performance of the MPC closed-
loop trajectory. We recall that when considering the infinite horizon problem we demand
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`(xe, ue) = 0. Taking into account the inequality V uc
∞ (x) ≤ Jcl∞(x, µN ) which follows

immediately from the definition of these functions, the theorem shows that economic MPC
delivers an approximately (non-averaged) infinite horizon optimal closed-loop solution for
which the approximation error tends to 0 as the horizon N tends to infinity.

Theorem 13.21 Consider the MPC Algorithm 11.9 with strictly dissipative optimal con-
trol problem (OCPN,e). Assume that X is bounded, that `(xe, ue) = 0 and that Assump-
tions 13.5 and 13.12 hold. Then there exists δ1 ∈ L such that the inequalities

Jcl∞(x, µN ) ≤ VN (x) ≤ V uc
∞ (x) + δ1(N)

hold for all x ∈ XN .

Proof: In order to prove the first inequality, from (13.10) we obtain `(x, µN (x)) ≤ VN (x)−
VN (f(x, µN (x))). This implies for any K ∈ N

JclK(x, µN ) =
K−1∑
k=0

`(xµN (k, x), µN (xµN (k, x))) ≤ VN (x)− VN (xµN (K,x)). (13.15)

Now from Theorem 13.13 we know that |xµN (k, x)|xe ≤ β(|x|xe , k) ≤ β(M,k) =: ν(k),
where M := maxx,y∈X d(x, y). Note that ν ∈ L. Moreover, by (13.9) we have VN (xe) =
N`(xe, ue) = 0 and from Assumption 13.12(c) we know the existence of γV ∈ K with
|VN (x)| = |VN (x)− VN (xe)| ≤ γV (|x|xe) for all x ∈ X. Together this yields

|VN (xµN (K,x))| ≤ γV (ν(K)).

Since γV (ν(K)) → 0 for K → ∞, this inequality together with (13.15) yields the first
inequality by letting K →∞.

For the second inequality, we note that it is sufficient to prove the inequality for all suf-
ficiently large N , because by boundedness of VN and V uc

∞ , for small N the inequality
can always be satisfied by choosing δ1(N) sufficiently large without violating the require-
ment δ1 ∈ L. Consider σ∞ from Proposition 13.18, pick N0 and η from Assumption
13.5(b), choose N1 such that σ∞(N1) < η, fix 0 < ε < 1 and choose an admissible
control uε satisfying Juc∞ (x, uε) ≤ V uc

∞ (x) + ε. Then for N ≥ 2N1 we use Proposi-
tion 13.18 with P = bN/2c. We thus obtain the existence of k ∈ {0, . . . , P − 1} such
that |xuε(k, x)|xe < σ∞(P ) ≤ σ∞(N1) < η, implying xu(k, x) ∈ XN1 ⊆ XN2 and thus
uε ∈ UkXN2

(x) for all N2 ≥ N1. Particularly, this holds for N2 = N − k, implying

uε ∈ UkXN−k(x). Now, from Assumption 13.12(c) applied to VN−k we can conclude (again

using VN (xe) = 0)

|VN−k(xuε(k, x))| ≤ γV (σ∞(P )).

Moreover, Lemma 13.19 and the bound on λ yield

V uc
∞ (x) + ε ≥ Juc∞ (x, uε) ≥ Juck (x, uε) + V∞(xuε(k, x)))

≥ Juck (x, uε)− λ(xuε(k, x)) ≥ Juck (x, uε)− γλ(σ∞(P )).
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Together with the dynamic programming principle (12.1) these inequalities imply

VN (x) = inf
u∈UkXN−k (x)

{Juck (x, u) + VN−k(xu(k, x))} ≤ Juck (x, uε) + VN−k(xuε(k, x))

≤ V uc
∞ (x) + γV (σ∞(P )) + γλ(σ∞(P )) + ε.

Since ε > 0 was arbitrary, this proves the assertion for δ1(N) = γV (σ∞(bN/2c)) +
γλ(σ∞(bN/2c)).
Since xe is asymptotically stable for the MPC closed-loop trajectories, the closed-loop
solutions converge towards xe as k →∞. More precisely, given a time K, by Theorem 13.13
the solutions are guaranteed to satisfy xµN (k, x) ∈ Bκ(xe) for all k ≥ K and κ = β(|x|xe ,K)
for β from Theorem 13.13. We denote the time span {0, . . . ,K−1} during which the system
is (possibly) outside Bκ(xe) as transient time and the related finite horizon functional
JucK (x, u) as transient performance. The next theorem then shows that among all possible
trajectories from x to Bκ(xe), the MPC closed loop has the best transient performance up
to error terms vanishing as K →∞ and N →∞. Again, in order to simplify the notation,
we use UKκ (x) from (13.14). We remark that unlike the previous theorem here we do not
need to assume `(xe, ue) = 0.

Theorem 13.22 Consider the MPC Algorithm 11.9 with strictly dissipative optimal con-
trol problem (OCPN,e). Assume that X is bounded and that Assumptions 13.5 and 13.12
hold. Then there exist δ1, δ2 ∈ L such that for all x ∈ XN the inequality

JclK(x, µN ) ≤ inf
u∈UKκ (x)

JucK (x, u) + δ1(N) + δ2(K)

holds with κ = β(|x|xe ,K) and β ∈ KL characterizing the asymptotic stability of the closed
loop guaranteed by Theorem 13.13.

Proof: We can without loss of generality assume `(xe, ue) = 0 because the claimed inequal-
ity is invariant under adding constants to `. Moreover, similar to the proof of Theorem
13.21 it is sufficient to prove the inequality for all sufficiently large K and N , because
by boundedness of all functions involved for small N and K the inequality can always be
achieved by choosing δ1(N) and δ2(K) sufficiently large. As in the first step of the previous
proof we obtain |VN (xµN (K,x))| ≤ γV (ν(K)). It is thus sufficient to show the existence of
δ1, δ̃2 ∈ L with

VN (x) ≤ inf
u∈UKκ (x)

JucK (x) + δ1(N) + δ̃2(K) (13.16)

for all x ∈ XN because then the assertion follows from (13.15) with δ2 = γV ◦ ν + δ̃2.

In order to prove (13.16), consider σ from Lemma 13.20(c), which we apply with P =
bN/2c and pick uε ∈ UKκ (x) with JucK (x, uε) ≤ infu∈UKκ (x) J

uc
K (x, u) + ε with an arbitrary

but fixed ε ∈ (0, 1). This yields the existence of k ∈ {0, . . . , bN/2c}, k ≤ K − 1 with
|xuε(k, x)|xe ≤ σ(min{P,K−1}). Since uε steers x to Bκ(xe), the shifted sequence uε(k+ ·)
lies in UK−kκ (xuε(k, x)), implying that this set is non empty. Hence, we can apply Lemma
13.20(b) in order to conclude JucK−k(xuε(k, x), uε(k+ ·)) ≥ −γλ(σ(min{N,K−1}))−γλ(κ).
This implies

inf
u∈UKκ (x)

JucK (x, u) + ε ≥ JucK (x, uε) = Juck (x, uε) + JucK−k(xuε(k, x), uε(k + ·))

≥ Juck (x, uε)− γλ(σ(min{N,K − 1}))− γλ(κ)
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Figure 13.4: Value of JclK(x, µN ) for K = 30, x = 1.9 and varying N with terminal
constraint X = {0}

Moreover, by choosing N and K sufficiently large we can ensure σ(min{P,K − 1}) < η for
η from Assumption 13.5(b), implying uε ∈ UkXQ(x) for all Q ≥ N0 and N0 from Assumption

13.5(b). Particularly, choosing N ≥ 2N0 implies N − k ≥ N0 and thus uε ∈ UkXN−k(x).

Using this relation, the inequality derived above, the dynamic programming principle (12.1)
and Assumption 13.12(c) for VN−k we obtain

VN (x) = inf
u∈UkXN−k (x)

{Juck (x, u) + VN−k(xu(k, x))} ≤ Juck (x, uε) + VN−k(xuε(k, x))

≤ inf
u∈UKκ (x)

JucK (x, u) + γλ(σ(min{P,K − 1})) + γλ(κ) + ε

+ γV (σ(min{P,K − 1})).

This shows the desired inequality (13.16) for

δ1(N) = γV (σ(bN/2c)) + γλ(σ(bN/2c))

and, using the choice of κ,

δ̃2(K) = γV (σ(K − 1)) + γλ(σ(K − 1)) + γλ(β(M,K))

with M = maxx,y∈X d(x, y) and β ∈ KL characterizing the asymptotic stability of the
closed loop.

Example 13.23 Fig. 13.23 illustrates how JclK(x, µN ) depends on N for Example 13.1.
The value K = 30 is so large that the effect of the term δ2(K) is negligible and not visible
in the figure, hence JclK(x, µN ) converges to infu∈UKκ (x) J

uc
K (x, u) for increasing N .

13.5 Averaged optimality without terminal conditions

In this and in the subsequent sections we discuss the case in which we do not impose
terminal conditions on the problem, i.e., we consider the MPC Algorithm 11.1 with optimal
control problem (OCPN). The corresponding functionals and optimal value functions will,
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as usual, be denoted by JN and VN and their infinite horizon counterparts by J∞ and V∞,
i.e., we do not use the superscript notation JucN etc. anymore in the sequel. The results are
presented in parallel to Sects. 13.2–13.4.

Since we do not impose any terminal conditions, we do not need Assumptions 13.5 and
13.12(a) anymore. However, we still need Part (b) and (a relaxed version of) Part (c)
of Assumption 13.12, where the latter now refers to the optimal value function of the
unconstrained problem (OCPN).

Assumption 13.24 [Continuity of λ and VN at xe] There exist γλ and γV ∈ K∞ and
ω ∈ L such that the following properties hold.
(a) For all x ∈ X it holds that

|λ(x)− λ(xe)| ≤ γλ(|x|xe).

(b) For each N ∈ N and each x ∈ X it holds that

|VN (x)− VN (xe)| ≤ γV (|x|xe) + ω(N).

Note that (b) implies viability of X which we assume for simplicity in this section. If
desired, this condition could be relaxed (see [5] for details in a continuous time setting).
One method of ensuring the continuity from (b) without requiring explicit knowledge of
VN is by assuming strict dissipativity and local controllability around xe, see [17] or [7,
Sect. 6].

We observe that Propositions 13.15 and 13.18 remain valid, as the assumptions, statements
and proofs do not involve any terminal constraints or costs. Based on these two proposi-
tions, we can prove the following two auxiliary results, which lead to the main result of
this section. In what follows, we denote by u?∞ and u?N the optimal control sequences for
(OCP∞) and (OCPN), respectively, for initial value x ∈ X.

Lemma 13.25 If Assumption 13.24 and the assumptions of Proposition 13.15 hold, then
the equation

VN (x) = JM (x, u?N ) + VN−M (xe) +R1(x,M,N) (13.17)

holds with |R1(x,M,N)| ≤ γV (σδ(P )) +ω(N −M) for all x ∈ X, all N ∈ N, all P ∈ N and
all M 6∈ Q(x, u?N , P,N), with σδ from Proposition 13.15 with δ = γV (|x|xe) + ω(N).

Proof: Observe that using the constant control u ≡ ue we can estimate VN (xe) ≤
JN (xe, u) = N`(xe, ue). Thus, using Assumption 13.24 we get JN (x, u?N ) ≤ N`(xe, ue) +
γV (|x|xe) + ω(N), hence Proposition 13.15 applies to the optimal trajectory with δ =
γV (|x|xe)+ω(N). This in particular ensures |xu?N (M,x)|xe ≤ σδ(P ) for allM 6∈ Q(x, u?N , P,N).

Now the dynamic programming principle (12.2) yields

VN (x) = JM (x, u?N ) + VN−M (xu?N (M,x)).

Hence, (13.17) holds with R1(x,M,N) = VN−M (xu?N (M,x)) − VN−M (xe). Then for any
P ∈ N and any M 6∈ Q(x, u?N , P,N) this implies |R1(x,M,N)| ≤ γV (|xu?N (M,x)|xe) +
ω(N −M) ≤ γV (σδ(P )) + ω(N −M) and thus the assertion.
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Lemma 13.26 If Assumption 13.24 and the assumptions of Proposition 13.15 hold, then
the equation

VN (x) ≤ VN−1(x) + `(xe, ue) +R2(x,N)

holds with |R2(x,N)| ≤ ν2(|x|xe , N) = 2γV (σδ(bN/2c)) + 2ω(bN/2c − 1) for all x ∈ X, all
N ∈ N and σδ from Proposition 13.15 with δ = γV (|x|xe) + ω(N − 1).

Proof: Given x ∈ X, consider the optimal control u?N−1 for horizon length N − 1 and σδ
from Proposition 13.15 with δ = γV (|x|xe). Then Lemma 13.25 applied with N−1 in place
of N and P = bN/2c implies the existence of M ∈ {0, . . . , bN/2c − 1} with

VN−1(x) = JM (x, u?N−1) + VN−M−1(xe) +R1(x,M,N − 1)

with |R1(x,M,N − 1)| ≤ γV (σδ(bN/2c)) + ω(bN/2c − 1). The construction in the proof
of Lemma 13.25 moreover yields |xu?N−1

(M,x)|xe ≤ σδ(bN/2c). Using u(k) = u?N−1(k) for

k = 0, . . . ,M − 1 and u(M + k) = u?N−M (k) with the optimal control u?N−M for initial
value xu?N (M,x) and horizon N −M for k = M, . . . , N − 1 yields

JN (x, u) = JM (x, u?N−1) + VN−M (xu?N (M,x)) = JM (x, u?N−1) + VN−M (xe) + R̂1(x,M,N)

with |R̂1(x,M,N)| ≤ γV (σδ(bN/2c)) + ω(bN/2c). Since for initial value xe we can always
stay at the equilibrium for one step and use the optimal control for initial value xe for the
remaining horizon, we obtain the inequality VN−M (xe) ≤ `(xe, ue)+VN−M−1(xe). Together
this yields

VN (x) ≤ JN (x, u) = JM (x, u?N−1) + VN−M (xe) + R̂1(x,M,N)

≤ JM (x, u?N−1) + `(xe, ue) + VN−M−1(xe) + R̂1(x,M,N)

= VN−1(x) + `(xe, ue)−R1(x,M,N − 1) + R̂1(x,M,N)

and thus the claim with R2(x,N) = R̂1(x,M,N)−R1(x,M,N − 1).

Now we can state the theorem on the infinite horizon average performance.

Theorem 13.27 Consider the MPC Algorithm 11.1 with strictly dissipative optimal con-
trol problem (OCPN) with bounded storage function λ. Let Assumption 13.24 hold and
assume VN is bounded from below on X. Then, for any N ≥ 2 and any x ∈ X the averaged
closed-loop performance satisfies the inequality

J
cl
∞(x, µN ) ≤ `(xe, ue) + δ1(N) (13.18)

with δ1(N) ≤ 2γV (σδ(bN/2c)) + 2ω(bN/2c − 1) for σδ from Proposition 13.15 with δ =
supk∈N γV (|xµN (k)|xe) + ω(N − 1) and γV and ω from Assumption 13.24.

Proof: Abbreviate xµN (k) = xµN (k, x). From the dynamic programming principle (12.2)
and Lemma 13.26 applied with x = xµN (k + 1) we obtain

`(xµN (k), µN (xµN (k))) = VN (xµN (k))− VN−1(xµN (k + 1))

≤ VN (xµN (k))− VN (xµN (k + 1)) + `(xe, ue) + ν2(|xµN (k + 1)|xe , N)︸ ︷︷ ︸
=:ν̃2(k,N)

.



150 CHAPTER 13. ANALYSIS OF GENERAL MPC SCHEMES

N
2 4 6 8 10 12 14

J
cl ∞
(1
.9
,
µ
N
)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 13.5: Value of J
cl
∞(x, µN ) for x = 1.9 without terminal conditions depending on N

Thus we obtain

J
cl
∞(x, µN ) = lim sup

K→∞

1

K

K−1∑
k=0

`(xµN (k), µN (xµN (k)))

= lim sup
K→∞

1

K

K−1∑
k=0

(
VN (xµN (k))− VN (xµN (k + 1)) + `(xe, ue) + ν̃2(k,N)

)
= `(xe, ue) + sup

k∈N
ν̃2(k,N) + lim sup

K→∞

VN (x0)− VN (xµN (K))

K

≤ `(xe, ue) + sup
k∈N

ν̃2(k,N) + lim sup
K→∞

VN (x0) +M

K
= `(xe, ue) + ν̃2(k,N)

where−M is a lower bound on VN on X. This shows the claim with δ1(N) = supk∈N ν̃2(k,N)
which satisfies the stated bounds because σδ is increasing in δ.

The difference between this and the corresponding result with terminal conditions is that
we get the error term δ1(N) on the right hand side of the estimate, which does, however,
tend to 0 as N →∞ provided δ <∞. This is always the case for bounded state constraints
X. In case of unbounded X, Theorem 13.34 from the next section can be used to obtain a
bound for |xµN (k)|xe which is independent of k.

Example 13.28 Fig. 13.28 shows J
cl
∞(x, µN ) for Example 13.1 depending on N . The plot

in the logarithmic scale shows that the value converges to the optimal value `(0, 0) = 0
exponentially fast, hence the error δ1(N) also vanishes exponentially fast. This is actually
not a coincidence. However, an analysis of the rate of convergence is beyond the scope of
this lecture. We refer to [10] for details.

13.6 Asymptotic stability without terminal conditions

Now we turn to analyzing the stability properties of the MPC closed-loop solutions without
terminal conditions. As in the case with terminal conditions, our goal is to assume strict
dissipativity and to use the optimal value function for the modified stage cost ˜̀ from
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(13.5) as a Lyapunov function, but now without imposing terminal conditions. The crucial
difference is that without terminal conditions the optimal trajectories of the original and
the modified problem no longer coincide.

In order to see why, we refer to the optimal control problem (OCPN) with stage cost ˜̀ as

(ÕCPN) and, as before, denote the corresponding functional and the optimal value function
by J̃N and ṼN . Due to the fact that we no longer impose terminal conditions, the relations
between VN and ṼN are not the same as in Sect. 13.3. For JN and J̃N , instead of (13.7)
we now have (13.12), which in the notation of this section reads

J̃N (x, u) = JN (x, u) + λ(x)− λ(xu(N, x))−N`(xe, ue). (13.19)

Unfortunately, in contrast to (13.7), this equation does not allow for an easy derivation of
a relation between the optimal value functions of the form (13.8), because of the additional
u-dependent term λ(xu(N, x)) on the right hand side of (13.19). A first consequence of
this fact is that the continuity Assumption 13.24(b) does not immediately carry over to
ṼN . Hence, we need to introduce this as an independent assumption.

Assumption 13.29 [Continuity of ṼN at xe] There exists γ
Ṽ
∈ K∞ such that for each

N ∈ N and each x ∈ X it holds that

|ṼN (x)− ṼN (xe)| ≤ γ
Ṽ

(|x|xe).

In case strict dissipativity holds, ˜̀ is positive definite w.r.t. the equilibrium xe, hence we
obtain ṼN (xe) = 0 and ṼN (x) ≥ 0 for all x ∈ X. Thus, the inequality in Assumption
13.29 is equivalent to ṼN (x) ≤ γ

Ṽ
(|x|xe) which can be guaranteed under conditions which

guarantee that the system can be controlled to xe with sufficiently low cost.

Unlike continuity, a straightforward check of Definition 13.7 (with storage function λ ≡ 0)

shows that strict dissipativity carries over from (OCPN) to (ÕCPN), even with the same
ρ. Thus, in particular, all the previous lemmas that apply to (OCPN) in case of strict

dissipativity also apply to (ÕCPN). As a general rule, we denote all parameters, sets etc.

referring to (ÕCPN) with a tilde, e.g., the set Q(x, u,N, P ) from Proposition 13.15 will be

denoted by Q̃(x, u,N, P ) when this proposition is applied to (ÕCPN).

As already mentioned above, from the definition we cannot directly deduce a simple relation
like (13.8) between VN and ṼN . The reason why we can still use ṼN as an — at least
practical — Lyapunov function lies in the fact that we can still establish an approximate
version of (13.8). To this end, we first need the following preparatory lemma.

Lemma 13.30 If Assumption 13.24 and the assumptions of Proposition 13.15 hold, then
the equation

VN (xe) = M`(xe, ue) + VN−M (xe)−R3(x, P,N)

holds with 0 ≤ R3(x, P,N) ≤ γV (σδ(P )) +ω(N −M) + γλ(σδ(P )) for all N,P ∈ N and for
all M 6∈ Q(x, u?N , N, P ), where u?N ∈ UN (xe) is the optimal control of (OCPN) for initial
value xe and σδ is from Proposition 13.15 with δ = ω(N −M).
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Proof: The inequality VN (xe) ≤ M`(xe, ue) + VN−M (xe) follows from the dynamic pro-
gramming principle (12.1) using the control u ≡ ue. For the opposite inequality consider
the optimal control u?N ∈ UN (xe) for initial value xe. As in the proof of Lemma 13.25 we
can apply Proposition 13.15 with δ = γV (|x|xe) + ω(N) in order to conclude that for each
M 6∈ Q(x, u?N , N, P ) we have

VN (xe) =
M−1∑
k=0

`(xu?N (k), u?N (k)) + VN−M (xu?N (M))

= −λ(xe) + λ(xu?N (M)) +M`(xe, ue) +

M−1∑
k=0

˜̀(xu?N (k), u?N (k))︸ ︷︷ ︸
≥0

+VN−M (xu?N (M))

≥ M`(xe, ue) + VN−M (xe) +
[
VN−M (xu?N (M))− VN−M (xe)

]
+
[
λ(xu?N (M))− λ(xe)

]
≥ M`(xe, ue) + VN−M (xe)− γV (σδ(P ))− ω(N −M)− γλ(σδ(P ))

which shows the claim.

Now we can prove the approximate relation of the form (13.8) between ṼN and VN .

Lemma 13.31 If Assumptions 13.24 and 13.29 as well as the assumptions of Proposition
13.15 hold, then the equation

ṼN (x) = VN (x) + λ(x)− VN (xe) +R4(x,N)

holds with |R4(x,N)| ≤ ν4(|x|xe , N) with

ν4(|x|xe , N) = max{γV (σ̃δ̃(bN/3c)) + γV (σδ(bN/3c)) + γ
Ṽ

(σ̃δ̃(bN/3c))
+ γλ(σδ(bN/3c)) + γλ(σ̃δ̃(bN/3c)) + 3ω(bN/3c) ,

γ
Ṽ

(σδ(bN/3c)) + γV (σδ(bN/3c)) + γλ(σδ(bN/3c))
+2ω(bN/3c)}

with σδ and σ̃δ̃ from Proposition 13.15 applied to (OCPN) and (ÕCPN), respectively, with

δ = γV (|x|xe) + ω(N) and δ̃ = γ
Ṽ

(|x|xe).

Proof: Fix x ∈ X and let u?N and ũ?N ∈ UN (x) denote the optimal control minimizing

JN (x, u) and J̃N (x, u), respectively. We note that if (OCPN) is strictly dissipative then

(ÕCPN) is strictly dissipative, too, with bounded storage function λ ≡ 0 and same ρ ∈ K∞.
Moreover, VN (x) ≤ N`(xe, ue) + γV (|x|xe) + ω(N) and ṼN (x) ≤ N ˜̀(xe, ue) + γ

Ṽ
(|x|xe),

since VN (xe) ≤ N`(xe, ue) and ṼN (xe) = 0. Hence, Proposition 13.15 applies to the optimal
trajectories for both problems, yielding σδ ∈ L and Q(x, u?N , P,N) for (OCPN) and σ̃δ̃ and

Q̃(x, ũ?N , P,N) for (ÕCPN). For all M 6∈ Q̃(x, ũ?N , P,N) we can estimate

VN (x) ≤ JM (x, ũ?N ) + VN−M (xũ?N (M))

≤ JM (x, ũ?N ) + VN−M (xe) + γV (σ̃δ̃(P )) + ω(N −M)

≤ J̃M (x, ũ?N )− λ(x) + λ(xe) +M`(xe, ue) + VN−M (xe) + γV (σ̃δ̃(P ))

+ γλ(σ̃δ̃(P )) + ω(N −M)

≤ ṼN (x)− R̃1(x, P,N)− λ(x)

+ VN (xe) +R3(x, P,N) + γV (σ̃δ̃(P )) + γλ(σ̃δ̃(P )) + ω(N −M),



13.6. ASYMPTOTIC STABILITY WITHOUT TERMINAL CONDITIONS 153

where we have applied the dynamic programming principle (12.1) in the first inequality,

Proposition 13.15 for (ÕCPN) and Assumption 13.24(b) respectively Assumption 13.24(a)

and (13.19) in the second and third inequality and Lemma 13.25 (applied to (ÕCPN), hence
with remainder term denoted by R̃1) and Lemma 13.30 (applied to (OCPN)) in the last
step. Moreover, λ(xe) = 0 and ṼN (xe) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities as above,
we get

ṼN (x) ≤ VN (x)−R1(x, P,N) + λ(x)− VN (xe) + γṼ (σδ(P )) + γλ(σδ(P ))

+ ω(N −M)

for all M 6∈ Q(x, u?N , P,N). Here we can omit the negative −R3-term. Now, choosing
P = bN/3c, the union Q(x, ũ?N , P,N) ∪ Q(x, u?N , P,N) has at most 2N/3 elements, hence
there exists M ≤ 2N/3 for which both inequalities hold. This yields N −M ≥ bN/3c and
thus

|R1(x, P,N)| ≤ γV (σδ(bN/3c)) + ω(bN/3c),
|R̃1(x, P,N)| ≤ γ

Ṽ
(σ̃δ̃(bN/3c)) + ω(bN/3c) and

R3(x, P,N) ≤ γV (σδ(bN/3c)) + ω(bN/3c) + γλ(σδ(bN/3c))
which shows the claim.

The following proposition shows in which sense ṼN is a Lyapunov function for the sys-
tem. This will be used in the subsequent theorem in order to prove semiglobal practical
asymptotic stability of the closed loop.

Proposition 13.32 Consider the MPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPN) with bounded storage function λ and ρ ∈ K∞ and let Assumptions
13.24 and 13.29 hold. Then for each Θ > 0 there exists δ1 ∈ L such that for all N ≥ 2 with
δ1(N) ≤ Θ the optimal value function ṼN of (ÕCPN) is a Lyapunov function for the closed
loop on S = Y \P for the forward invariant sets Y = Ṽ −1

N ([0,Θ]) and P = Ṽ −1
N ([0, δ1(N)]).

Proof: We have to check that Definition 10.4 is satisfied and that Y and P are forward
invariant. The lower bound in (10.4) follows with α1 = ρ because strict dissipativity implies
˜̀(x, u) ≥ ρ(|x|xe) and thus

ṼN (x) = inf
u∈UN (x)

N−1∑
k=0

˜̀(xu(k, x), u(k)) ≥ inf
u∈UN (x)

N−1∑
k=0

ρ(|xu(k, x)|xe) ≥ ρ(|x|xe).

The upper bound in (10.4) follows from Assumption 13.29 and ṼN (xe) = 0 with α2 = γ
Ṽ

.

In order to obtain inequality (10.5) we abbreviate x+ = f(x, µN (x)). Now, for all x ∈ Y
we obtain ṼN (x) ≤ Θ, which implies |x|xe ≤ ρ−1(Θ). In order to obtain a similar estimate
for |x+|xe , we observe that ṼN (x) ≤ Θ implies VN (x) ≤ Θ− λ(x) +M +N`(xe, ue), where
M > 0 denotes a bound on λ. Thus, Theorem 12.4 and strict dissipativity yield

VN−1(x+) = VN (x)− `(x, µN (x)) ≤ VN (x) + λ(x)− λ(x+)− `(xe, ue)
≤ Θ− λ(x+) +M + (N − 1)`(xe, ue).
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This implies

ṼN−1(x+) ≤ VN−1(x+) + λ(x+) +M − (N − 1)`(xe, ue) ≤ Θ + 2M

and we can conclude that |x+|xe ≤ ρ−1(Θ + 2M). Hence, we can compute

ṼN (x+) = VN (x+) + λ(x+)− VN (xe) +R4(x+, N)

= VN−1(x+) + `(xe, ue) + λ(x+)− VN (xe) +R2(x+, N) +R4(x+, N)

= VN (x)− `(x, µN (x)) + `(xe, ue) + λ(x+)− VN (xe)

+ R2(x+, N) +R4(x+, N)

= ṼN (x)−`(x, µN (x)) + `(xe, ue) + λ(x+)− λ(x)︸ ︷︷ ︸
=−˜̀(x,µN (x))

+ R2(x+, N) +R4(x+, N)−R4(x,N).

where we used Lemma 13.31 for x = x+ for the first equality, Lemma 13.26 for the second,
equation (12.6) for the third and Lemma 13.31 in the last step. Defining ν(N) = ν2(ρ−1(Θ+
2M), N) + 2ν4(ρ−1(Θ + 2M), N) with ν2 and ν4 from Lemma 13.26 and Lemma 13.31,
respectively, we thus obtain

ṼN (x+) ≤ ṼN (x)− ρ(|x|xe) + ν(N) ≤ ṼN (x)− χ(ṼN (x)) + ν(N) (13.20)

for χ := ρ ◦ α−1
2 (r). Now we set δ1(N) = max{χ−1(2ν(N)), χ−1(ν(N)) + ν(N)}. Then for

all x ∈ S = Y \ P we obtain ṼN (x) ≥ δ1(N) and thus χ(ṼN (x)) ≥ 2ν(N) which implies

ṼN (x+) ≤ ṼN (x)− χ(ṼN (x))/2 ≤ ṼN (x)− χ(α1(|x|xe))/2

and thus (10.5) with αV (r) = χ(α1(r))/2. This inequality also shows that all x ∈ Y \ P
are mapped to Y , since x ∈ Y \ P = S implies ṼN (x) ≤ Θ, hence ṼN (x+) < ṼN (x) ≤ Θ
and thus x+ ∈ Y .

Finally, to prove forward invariance of P (which then also implies forward invariance of Y )
we recall that x ∈ P if and only if ṼN (x) ≤ δ1(N). Now we pick x ∈ P and distinguish two
cases.

Case 1: χ(ṼN (x)) ≥ ν(N). In this case from (13.20) we obtain

ṼN (x+) ≤ ṼN (x)− χ(ṼN (x)) + ν(N) ≤ ṼN (x) ≤ δ1(N).

Case 2: χ(ṼN (x)) < ν(N). In this case from (13.20) we obtain

ṼN (x+) ≤ ṼN (x)− χ(ṼN (x)) + ν(N) ≤ ṼN (x) + ν(N)

< χ−1(ν(N)) + ν(N) ≤ δ1(N).

Hence, in both cases we get ṼN (x+) ≤ δ1(N) and thus x+ ∈ P, which proves the forward
invariance of P.

We note that for small values of N the inequality δ1(N) ≥ Θ may hold, in which case the
set S on which ṼN is a Lyapunov function is empty.

The final theorem on practical asymptotic stability is now an easy consequence of Propo-
sition 13.32. To this end, we use the following notion of semiglobal practical stability.
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Figure 13.6: MPC closed-loop solution (solid) and open-loop predictions (dashed) for Ex-
ample 13.1 without terminal conditions and horizon N = 5 (left) and N = 10 (right). The
solid line at x = 2 indicates the upper bound of the admissible set X

Definition 13.33 We call the MPC closed loop system (11.2) semiglobally practically
asymptotically stable with respect to the optimization horizon N if there exists β ∈ KL
such that the following property holds: for each δ > 0 and ∆ > δ there exists Nδ,∆ ∈ N
such that for all N ≥ Nδ,∆ and all x ∈ X with |x|x∗ ≤ ∆ the inequality

|xµN (k, x)|x∗ ≤ max{β(|x|x∗ , k), δ}

holds for all k ∈ N0.

Theorem 13.34 Consider the MPC Algorithm 11.1 with strictly dissipative optimal con-
trol problem (OCPN) with bounded storage function λ and ρ ∈ K∞ and let Assumptions
13.24 and 13.29 hold. Then the equilibrium xe is semiglobally practically asymptotically
stable on X with respect to the optimization horizon N .

Proof: Fixing ∆ > δ > 0, the assertion follows immediately from Proposition 13.32 and
Theorem 10.6 when choosing Θ = α2(∆) (implying B∆(xe) ⊂ Y ) and Nδ,∆ > 0 so large
that ρ(δ1(Nδ,∆)) ≤ δ holds for δ from Definition 13.33(ii) and δ1(N) from Proposition 13.32
(implying P ⊂ Bδ(xe)).
We will see in the next chapter that this result can be strengthened to “real” asymptotic
stability for stabilizing stage cost under suitable additional assumptions.

Example 13.35 Fig. 13.35 shows the trajectories (open loop dashed, MPC closed loop
solid) of Example 13.1 without terminal conditions for N = 5 and N = 10. One clearly
sees the practical asymptotic stability of the closed loop and the turnpike phenomenon for
the open-loop trajectories.
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13.7 Non-averaged performance without terminal conditions

Our final results in this chapter concern the adaptation of the results from Sect. 13.4 to
the case without terminal conditions. In order to generalize Theorem 13.21, we need the
following continuity assumption on the infinite horizon optimal value function and the two
subsequent auxiliary results.

Assumption 13.36 [Continuity of V∞ at xe] There exists γV∞ ∈ K∞ such that for each
x ∈ X it holds that

|V∞(x)− V∞(xe)| ≤ γV∞(|x|xe).

Lemma 13.37 If Assumption 13.36 and the assumptions of Proposition 13.18 hold, then
the equation

V∞(x) = JM (x, u?∞) + V∞(xe) +R5(x,M) (13.21)

holds with |R5(x,M)| ≤ γV∞(σ∞(P )) for all x ∈ X, all P ∈ N and all M 6∈ Q(x, u?∞, P,∞),
where u?∞ ∈ U∞(x) denotes the infinite horizon optimal control for initial value x and σ∞
is from Proposition 13.18.

Proof: The dynamic programming principle (12.11) yields

V∞(x) = JM (x, u?∞) + V∞(xu?∞(M,x)).

Hence, (13.21) holds with R5(x,M) = V∞(xu?∞(M,x))− V∞(xe). Then for any P ∈ N and
M 6∈ Q(x, u?∞, P,∞) we obtain |R5(x,M)| ≤ γV∞(‖xu?∞(M,x) − xe‖) ≤ γV∞(σ∞(P )) and
thus the assertion.

Lemma 13.38 If Assumptions 13.24 and 13.36 and the assumptions of Propositions 13.15
and 13.18 hold, then the equation

JM (x, u?∞) = JM (x, u?N ) +R6(x,M,N) (13.22)

holds with |R6(x,M,N)| ≤ max{γV (σδ(P )) + γV (σ∞(P )) + 2ω(N −M), γV∞(σ∞(P )) +
γV∞(σδ(P ))} for all P ∈ N, all x ∈ X and all M ∈ {0, . . . , N} \ (Q(x, u?N , P,N) ∪
Q(x, u?∞, P,∞)), with σ∞ from Proposition 13.18 and σδ from Proposition 13.15 with
δ = |x|xe .

Proof: The finite horizon dynamic programming principle (12.1), (12.2) implies that u =
u?N minimizes the expression JM (x, u) + VN−M (xu(M,x)). Together with the error term

R1 from Lemma 13.25 and R̂1(x,M,N) = VN−M (xu?∞(M,x))− VN−M (xe) this yields

JM (x, u?N ) + VN−M (xe) = JM (x, u?N ) + VN−M (xu?N (M,x))−R1(x,M,N)

≤ JM (x, u?∞) + VN−M (xu?∞(M,x))−R1(x,M,N)

= JM (x, u?∞) + VN−M (xe)−R1(x,M,N) + R̂1(x,M,N).
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Similar to the proof of Lemma 13.25 one sees that |R̂1(x,M,N)| ≤ γV (σ∞(P ))+ω(N−M)
for all M 6∈ Q(x, u?∞, P,∞).

Conversely, the infinite horizon dynamic programming principle (12.11) implies that u?∞
minimizes the expression JM (x, u?∞) + V∞(xu?∞(M,x)). Using the error terms R5 from

Lemma 13.37 and R̂5(x,M,N) = V∞(xu?N (M,x))− V∞(xe) we obtain

JM (x, u?∞) + V∞(xe) = JM (x, u?∞) + V∞(xu?∞(M,x))−R5(x,M)

≤ JM (x, u?N ) + V∞(xu?N (M,x))−R5(x,M)

= JM (x, u?N ) + V∞(xe)−R5(x,M) + R̂5(x,M,N).

As in the proof of Lemma 13.25 one sees that Proposition 13.15 applies to xu?(·, x) with
δ = γV (|x|xe). Hence, similar to the proof of Lemma 13.37 one obtains |R̂5(x,M,N)| ≤
γV∞(σδ(P )) for all M 6∈ Q(x, u?N , P,N). Together with the estimates for R1 and R5 from
Lemma 13.25 and 13.37 this yields

|R6(x,M,N)| = |JM (x, u?∞)− JM (x, u?N )|
≤ max{|R1(x,M,N)|+ |R̂1(x,M,N)|, |R5(x,M)|+ |R̂5(x,M,N)|}
≤ max{γV (σδ(P )) + γV (σ∞(P )) + 2ω(N −M), γV∞(σ∞(P )) + γV∞(σδ(P ))}

and thus the claim.

Now we can establish a version of Theorem 13.21 for economic MPC without terminal
conditions. We will discuss after the proof how Theorem 13.39 relates to Theorem 13.21.

Theorem 13.39 Consider the MPC Algorithm 11.1 with strictly dissipative optimal con-
trol problem (OCPN) with bounded storage function λ, assume that `(xe, ue) = 0 and X
is bounded and let Assumptions 13.24 and 13.36 hold. Then the inequality

JclK(x, µN ) + V∞(xµN (K)) ≤ V∞(x) +Kδ1(N) (13.23)

holds for all K ∈ N and all sufficiently large N ∈ N with

δ1(N) := 2γV (σδ(b(N − 1)/8c)) + 2γV (σ∞(b(N − 1)/8c))
+ 2γV∞(σδ(b(N − 1)/8c)) + 4γV∞(σ∞(b(N − 1)/8c)) + 4ω(bN/2c)

with σ∞ from Proposition 13.18 and σδ from Proposition 13.15 with δ = supx∈X |x|xe .

Proof: We pick x ∈ X and abbreviate x+ := f(x, µN (x)). For the corresponding optimal
control u?N Corollary 12.3 yields that u?N (· + 1) is an optimal control for initial value x+

and horizon N − 1. Hence, for each M ∈ {1, . . . , N} we obtain

`(x, µN (x)) = VN (x)− VN−1(x+) = JN (x, u?N )− JN−1(x+, u?N (·+ 1))

= JM (x, u?N )− JM−1(x+, u?N (·+ 1)),

where the last equality follows from the fact that the omitted terms in the sums defining
JM (x, u?N ) and JM−1(x+, u?N (·+ 1)) coincide. Using Lemma 13.37 for N , x and M and for
N − 1, x+ and M − 1, respectively, yields

V∞(x)− V∞(x+) = JM (x, u?∞) + V∞(xe) +R6(x,M)

− JM−1(x+, u?∞)− V∞(xe)−R5(x+,M − 1)

= JM (x, u?∞)− JM−1(x+, u?∞) +R5(x,M)−R5(x+,M − 1).
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Putting the two equations together and using Lemma 13.38 yields

`(x, µN (x)) = V∞(x)− V∞(x+) +R7(x,M,N). (13.24)

with

R7(x,M,N) = −R6(x,M,N) +R6(x+,M − 1, N − 1)−R5(x,M) +R5(x+,M − 1).

From Lemma 13.37 and 13.38 we obtain the bound

|R7(x,M,N)| ≤ 2γV (σδ(P )) + 2γV (σ∞(P )) + 2γV∞(σδ(P )) + 4γV∞(σ∞(P ))

+4ω(N −M)

provided we choose M ∈ {1, . . . , N} with M 6∈ Q(x, u?N , P,N)∪Q(x, u?∞, P,∞) and M−1 6∈
Q(x+, u?N (·+ 1), P,N − 1)∪Q(x+, u?∞(·+ 1), P,∞). Since each of the four Q sets contains
at most P elements, their union contains at most 4P elements and hence if N > 8P then
there is at least one such M with M ≤ N/2.

Thus, choosing P = b(N − 1)/8c yields the existence of M ≤ N/2 such that

|R7(x,M,N)| ≤ δ1(N). (13.25)

Applying (13.24), (13.25) for x = xµN (k, x), k = 0, . . . ,K − 1, we can conclude

JclK(x, µN ) =

K−1∑
k=0

`(xµN (k, x), µN (xµN (k, x)))

≤
K−1∑
k=0

(
V∞(xµN (k, x))− V∞(xµN (k + 1, x)) + δ1(N)

)
≤ V∞(x)− V∞(xµN (K,x)) +Kδ1(N).

This proves the claim.

The interpretation of (13.23) is as follows. If we follow the MPC closed-loop trajectory
up to some time K and then continue by using the infinite horizon optimal trajectory
starting at xµN (K,x), then the value of the overall trajectory exceeds the infinite horizon
optimal value by at most Kδ(N). Although seemingly different, it is indeed closely related
to Theorem 13.21 because of the following fact: the inequality from Theorem 13.21 holds
for all x ∈ X if and only if

JclK(x, µN ) + V∞(xµN (K,x)) ≤ V∞(x) + δ1(N) (13.26)

holds for all x ∈ X and all K ≥ 1. This is because JclK(x, µN )+V∞(xµN (K,x)) ≤ Jcl∞(x, µN )
for all K ≥ 1, hence Theorem 13.21 implies (13.26). Conversely, since the assumptions of
Theorem 13.21 imply V∞(xµN (K,x)) → V∞(xe) = 0 for K → ∞, the validity of (13.26)
for all K ≥ 1 implies the inequality from Theorem 13.21 by letting K → ∞. Comparing
(13.23) with (13.26) one immediately sees the difference between the case with and without
terminal conditions: without terminal conditions we get the additional factor K in front of
the error term, which implies that for large K the error may increase and that for K →∞
and fixed N the solution may be far from optimal. A numerical illustration of this effect
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can be found in Example 13.41(iii), below. However, note that the estimate from Theorem
13.27 shows that the averaged value still behaves well for K → ∞, hence the behavior of
the trajectories cannot completely deteriorate.

Finally, we formulate and prove the counterpart of Theorem 13.22 for the case without
terminal conditions. To this end, recall the definition of UKκ (x) from (13.14).

Theorem 13.40 Consider the MPC Algorithm 11.1 with strictly dissipative optimal con-
trol problem (OCPN) with bounded storage function λ and ρ ∈ K∞, let X be bounded
and let Assumptions 13.24 and 13.29 hold. Then there exist δ1, δ2, δ3 ∈ L such that for all
x ∈ X the inequality

JclK(x, µN ) ≤ inf
u∈UKκ (x)

JK(x, u) + δ1(N) +Kδ2(N) + δ3(K)

holds with κ = max{β(|x|xe ,K), ρ−1(δ1(N))}, with δ1 from Proposition 13.32 and β char-
acterizing the semiglobal practical asymptotic stability in Theorem 13.34.

Proof: First observe that the assumptions of this theorem include those of Theorem 13.34.
Hence, from the proof of Theorem 13.34 we obtain the identity

˜̀(x, µN (x)) = ṼN (x)− ṼN (f(x, µN (x))) +R2(x,N) +R4(f(x, µN (x), N) +R4(x(N))

with |R2(x,N) + R4(f(x, µN (x), N) + R4(x(N))| ≤ ν2(a,N) + 2ν4(a,N) =: δ2(N), with
ν2 and ν4 from Lemma 13.26 and 13.31, respectively, and a = supx∈X |x|xe . Summing this
cost along the closed-loop trajectory yields

K−1∑
k=0

˜̀(xµN (k, x), µN (xµN (k, x))) ≤ ṼN (x)− ṼN (xµN (K)) +Kδ2(N). (13.27)

Now the dynamic programming principle (12.1) and Assumption 13.29 yield for all K ∈
{1, . . . , N} and all u ∈ UKκ (x)

J̃K(x, u) = J̃K(x, u) + ṼN−K(xu(K,x))︸ ︷︷ ︸
≥ṼN (x)

− ṼN−K(xu(K,x))︸ ︷︷ ︸
≤γ

Ṽ
(κ)

≥ ṼN (x)− γ
Ṽ

(κ). (13.28)

Due to the non-negativity of ˜̀, for K ≥ N we get J̃K(x, u) ≥ ṼN (x) for all u ∈ UK(x).
Hence (13.28) holds for all K ∈ N. Moreover, we have ṼN (x) ≥ 0. Using (13.27), (13.28)
and (13.12) and the definition of δ2, for all u ∈ UKκ (x) we obtain

JclK(x, µN (x)) =

K−1∑
k=0

˜̀(xµN (k, x), µN (xµN (k, x)))− λ(x) + λ(xµN (K,x))

≤ ṼN (x)− ṼN (xµN (K,x)) +Kδ2(N)− λ(x) + λ(xµN (K,x))

≤ J̃K(x, u) + γ
Ṽ

(κ)− ṼN (xµN (K,x)) +Kδ2(N)− λ(x) + λ(xµN (K,x))

= JK(x, u) + γ
Ṽ

(κ)− ṼN (xµN (K,x)) +Kδ2(N)− λ(xu(K,x)) + λ(xµN (K,x))

≤ JK(x, u) + γ
Ṽ

(κ) +Kδ2(N) + 2γλ(κ).



160 CHAPTER 13. ANALYSIS OF GENERAL MPC SCHEMES

N
2 3 4 5 6 7 8 9 10

J
cl 30
(1
.9
,
µ
N
)

0

10

20

30

40

50

60

70

Figure 13.7: Value of JclK(x, µN ) for K = 30, x = 1.9 and varying N without terminal
conditions

Using the definition of κ we can estimate and define

γ
Ṽ

(κ) + 2γλ(κ) ≤ sup
x∈X

γ
Ṽ

(β(|x|xe ,K)) + 2γλ(β(|x|xe ,K))︸ ︷︷ ︸
=:δ3(K)

+ γ
Ṽ

(ρ−1(δ(N))) + 2γλ(ρ−1(δ(N)))︸ ︷︷ ︸
=:δ1(N)

which finishes the proof.

Example 13.41 (i) Fig. 13.41 illustrates how JclK(x, µN ) depends on N in Example 13.1.
As in Fig. 13.23, the value K = 30 is so large that the effect of the term δ2(K) is neg-
ligible and not visible in the figure, hence JclK(x, µN ) converges to infu∈UKκ (x) J

uc
K (x, u) for

increasing N .

(ii) We note that the error estimate depends on the bound on the storage function λ
which enters in several of the previous estimates. This dependence is actually visible when
computing JclK(x, µN ) via numerical simulations. In Example 13.1 the bound on λ increases
with increasing X (cf. Example 13.8). Fig. 13.41 shows that increasing the state constraint
set from X = [−2, 2] to X = [−3, 3] indeed considerably increases the error, although the
optimal trajectories and thus the limiting values for JclK(x, µN ) for N →∞ are independent
of the choice of X.

(iii) Finally we observe that the main structural difference between Theorem 13.22 and
13.40 lies in the factor K in the error estimate in Theorem 13.40 without terminal con-
ditions. This predicts a deterioration of the value JclK(x, µN ) for fixed N and growing K
in the case without terminal conditions, which should not appear if terminal conditions
are used. This effect can again be seen in numerical simulations for Example 13.1, see
Fig. 13.41. Here the increase of JclK(x, µN ) for increasing K is clearly visible in the left
figure, i.e., for N = 5. In the right figure, N has been increased to N = 10, due to which
the δ2(N)-term in Theorem 13.40 becomes so small that its effect is not visible anymore
for the range of K depicted in the figure.
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Figure 13.8: Value of JclK(x, µN ) for K = 30, x = 1.9 and varying N without terminal
conditions for X = [−2, 2] on the left and X = [−3, 3] on the right
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Figure 13.9: Value of JclK(x, µN ) for varying K, x = 1.9 and N = 5 on the left and N = 10
on the right, both with and without terminal conditions X0 = {0} and F ≡ 0
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Chapter 14

Analysis of stabilizing MPC
schemes

In this chapter we look at the particular — but practically very relevant — special case in
which the stage cost ` penalizes the distance from a desired equilibrium. More precisely,
we consider stage costs satisfying the conditions

`(x∗, u∗) = 0 and `(x, u) ≥ α3(|x|x∗) (14.1)

for all x ∈ X and a K∞-function α3. In normed spaces X and U , the simplest choice for
such a function is

`(x, u) = ‖x− x∗‖+ λ‖u− u∗‖
for a control penalization parameter λ ≥ 0.

As we have already observed in Example 13.8(i), problems of this kind are always strictly
dissipative (with storage function λ ≡ 0). Hence, all results of the previous chapter apply
and — under the stated conditions — we can conclude asymptotic stability for the scheme
with terminal conditions and semiglobal practical asymptotic stability without terminal
conditions. In practice, however, one often observes “real” asymptotic stability also in the
case without terminal conditions. Also, schemes without terminal conditions are often pre-
ferred in practice, because for complex systems the design of terminal conditions satisfying
Assumption 13.5 is very difficult if not impossible. Hence, in this chapter we will analyze
stabilizing MPC schemes without terminal conditions.

14.1 A relaxed dynamic programming theorem

The basis for the considerations in this chapter is the following fundamental, yet simple to
prove theorem.

Theorem 14.1 [Asymptotic stability and suboptimality estimate] Consider a stage cost
` : X × U → R+

0 and a function V : X → R+
0 . Let µ : X → U be an admissible feedback

law and let S ⊆ X be a forward invariant set for the closed loop system

x+ = g(x) = f(x, µ(x)). (14.2)

163
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Assume there exists α ∈ (0, 1] such that the relaxed dynamic programming inequality

V (x) ≥ α`(x, µ(n, x)) + V (f(x, µ(n, x))) (14.3)

holds for all x ∈ S. Then the suboptimality estimate

Jcl∞(x, µ) ≤ V (x)/α (14.4)

holds for all x ∈ S.

If, in addition, ` satisfies (14.1) and there exist α1, α2 ∈ K∞ such that the inequalities

α1(|x|x∗) ≤ V (x) ≤ α2(|x|x∗) (14.5)

hold for all x ∈ X, u ∈ U and an equilibrium x∗ ∈ X, then the closed loop system (14.2) is
asymptotically stable on S in the sense of Definition 10.2.

Proof: In order to prove (14.4) consider x ∈ S and the trajectory xµ(·) of (14.2) with
xµ(0) = x. By forward invariance of the sets S this trajectory satisfies xµ(k) ∈ S. Hence
from (14.3) for all k ∈ N0 we obtain

α`(xµ(k), µ(xµ(k))) ≤ V (xµ(0))− V (xµ(k + 1)).

Summing over k yields for all K ∈ N

α

K−1∑
k=0

`(xµ(k), µ(xµ(k))) ≤ V (xµ(n))− V (K,xµ(K)) ≤ V (x)

since V (K,xµ(K)) ≥ 0 and xµ(0) = x. Since the stage cost ` is nonnegative, the term on
the left is monotone increasing and bounded, hence for K →∞ it converges to αJcl∞(x, µ).
Since the right hand side is independent of K, this yields (14.4).

The stability assertion now immediately follows by observing that V satisfies all assump-
tions of Theorem 10.5 with αV = αα3.

14.2 Bounds on VN

The central assumption we will use in order to ensure asymptotic stability and performance
bounds imposes upper bounds on the optimal value functions VN . These bounds are
formulated relative to the stage cost `. To this end, we define

`∗(x) := inf
u∈U

`(x, u). (14.6)

With this notation, we can formulate our central assumption.

Assumption 14.2 [Bound on VN ] Consider the optimal control problem (OCPN). We
assume that there exist functions BK ∈ K∞, K ∈ N such that for each x ∈ X the inequality

VK(x) ≤ BK(`∗(x)) (14.7)

holds for all K ∈ N.
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We observe that VK(x) ≥ `(x, u?(0)) ≥ `∗(0) implies BK(r) ≥ r.
Before we state consequences from this assumption in the next section, we discuss a suffi-
cient controllability condition which ensures Assumption 14.2. To this end, we first slightly
enlarge the class of KL-functions introduced in Definition 10.1.

Definition 14.3 We say that a continuous function β : R≥0×R≥0 → R≥0 is of class KL0

if for each r > 0 we have limt→∞ β(r, t) = 0 and for each t ≥ 0 we either have β(·, t) ∈ K∞
or β(·, t) ≡ 0.

Compared to the class KL, here we do not assume monotonicity in the second argument
and we allow for β(·, t) being identically zero for some t. This allows for tighter bounds
for the actual controllability behavior of the system. It is, however, easy to see that each
β ∈ KL0 can be overbounded by a β̃ ∈ KL, e.g., by setting β̃(r, t) = maxτ≥t β(r, τ) + e−tr.
Using the KL0 functions we now formulate our controllability assumption.

Assumption 14.4 [Asymptotic controllability wrt. `] Consider the optimal control prob-
lem (OCPN). We assume that the system is asymptotically controllable with respect to `
with rate β ∈ KL0, i.e., for each x ∈ X and each N ∈ N there exists an admissible control
sequence ux ∈ UN (x) satisfying

`(xux(n, x), ux(n)) ≤ β(`∗(x), n)

for all n ∈ {0, . . . , N − 1}.

An important special case for β ∈ KL0 is

β(r, n) = Cσnr (14.8)

for real constants C ≥ 1 and σ ∈ (0, 1), i.e., exponential controllability .

The following lemma links Assumptions 14.4 and 14.2.

Lemma 14.5 If Assumption 14.4 holds then Assumption 14.2 holds. More precisely, for
each K ∈ N and each x ∈ X the inequality

VK(x) ≤ JK(x, ux) ≤ BK(`∗(x)) (14.9)

holds for ux from Assumption 14.4 and

BK(r) :=
K−1∑
n=0

β(r, n). (14.10)

Proof: The inequality follows immediately from

VK(x) ≤ JK(x, ux) =
K−1∑
n=0

`(x(n, ux), ux(n))
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≤
K−1∑
n=0

β(`∗(x), n) = BK(`∗(x)).

In the special case (14.8) the values BK , K ∈ N, evaluate to

BK(r) = C
1− σK
1− σ r.

It is easily seen that if the state trajectories itself are exponentially controllable to some
equilibrium x∗ then exponential controllability, i.e., Assumption 14.4 with β from (14.8),
holds if ` has polynomial growth. In particular, this covers the usual linear-quadratic
setting for stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential controlla-
bility in the sense of Assumption 14.4 can be achieved by proper choice of `, as the following
example shows.

Example 14.6 Consider the control system

x+ = x+ ux3

with X = [−1, 1] and U = [−1, 1]. The system is controllable to x∗ = 0, which can be seen
by choosing u = −1. This results in the system x+ = x − x3 whose solutions approach
x∗ = 0 monotonically for x0 ∈ X.

However, the system it is not exponentially controllable to 0: exponential controllability
would mean that there exist constants C > 0, σ ∈ (0, 1) such that for each x ∈ X there is
ux ∈ U∞(x) with

|xux(n, x)| ≤ Cσn|x|.
This implies that by choosing n∗ > 0 so large such that Cσn

∗ ≤ 1/2 holds the inequality

|xux(n∗, x)| ≤ |x|/2 (14.11)

must hold for each x ∈ X. However, for each x ≥ 0 the restriction u ∈ [−1, 1] implies
x+ ≥ x− x3 = (1− x2)x which by induction yields

xu(n∗, x) ≥ (1− x2)n
∗
x

for all u ∈ U∞(x) which contradicts (14.11) for x < 1− 2−1/n∗ .

On the other hand, since |x| ≤ 1 we obtain (1− x2)2(2x2 + 1) = 1 + 2x6 − 3x4 ≤ 1 which
implies

1

(1− x2)2
≥ 2x2 + 1 ⇒ − 1

2x2(1− x2)2
≤ −2x2 + 1

2x2
= −1− 1

2x2
.

Hence, choosing

`(x, u) = `(x) = e−
1

2x2 ,
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for u ≡ −1 we obtain

`(x+) = `(x− x3) = e
− 1

2x2(1−x2)2 = e
− 1

2x2(1−x2)2 ≤ e−1e−
1

2x2 = e−1`(x).

By induction this implies Assumption 14.4 with β from (14.8) with C = 1 and σ = e−1.

For certain results it will be useful that β in Assumption 14.4 has the property

β(r, n+m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0. (14.12)

Inequality (14.12), often referred to as submultiplicativity, ensures that any sequence of
the form bn = β(r, n), r > 0, also fulfills bn+m ≤ β(bn,m). It is, for instance, always
satisfied in the exponential case (14.8). If needed, this property can be assumed without
loss of generality, because by Sontag’s KL-Lemma [19, Proposition 7] the function β in
Assumption 14.4 can be replaced by a β of the form β(r, t) = α1(α2(r)e−t) for α1, α2 ∈ K∞.
Then, (14.12) is easily verified if α2 ◦ α1(r) ≥ r, which is equivalent to α1 ◦ α2(r) ≥ r,
which in turn is a necessary condition for Assumption 14.4 to hold for n = 0 and β(r, t) =
α1(α2(r)e−t).

14.3 Implications of the bounds on VN

In this section we will use the bound on the VN from Assumption 14.2 in order to establish
two lemmas which yield bounds for optimal value functions and functionals along pieces
of optimal trajectories. In the subsequent section, these bounds will then be used for the
calculation of α in (14.3).

In order to be able to calculate α in (14.3), we will need an upper bound for VN (f(x, µN (x))).
To this end, recall from Step (3) of Algorithm 11.1 that µN (x0) is the first element of
the optimal control sequence u?(·) for (OCPN) with initial value x0. In particular, this
implies f(x0, µN (x0)) = xu?(1, x0). Hence, if we want to derive an upper bound for
VN (f(x0, µN (x0))) then we can alternatively derive an upper bound for VN (xu?(1, x0)).
This will be done in the following lemma.

Lemma 14.7 Suppose Assumption 14.2 holds and consider x0 ∈ X and an optimal control
u? ∈ UN (x0) for (OCPN). Then for each j = 0, . . . , N − 2 the inequality

VN (xu?(1, x0)) ≤ Jj(xu?(1, x0)), u?(1 + ·)) +BN−j(`
∗(xu?(1 + j, x0)))

holds for BK from (14.7).

Proof: We define the control sequence

ũ(n) =

{
u?(1 + n), n ∈ {0, . . . , j − 1}
ux(n− j), n ∈ {j, . . . , N − 1},
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where ux is an optimal control for initial value x = xu?(1 + j, x0) and N = N − j. By
construction, this control sequence is admissible for xu?(1, x0) and we obtain

VN (xu?(1, x0)) ≤ J(xu?(1, x0), ũ)

= Jj(xu?(1, x0), u?(1 + ·)) + JN−j(xu?(1 + j, x0), ux)

≤ Jj(xu?(1, x0), u?(1 + ·)) +BN−j(`
∗(xu?(1 + j, x0)))

where we used JN−j(xu?(1 + j, x0), ux) = VN−j(xu?(1 + j, x0)) and Assumption 14.2 in the
last step. This is the desired inequality.

In words, the idea of this proof is as follows. The upper bound for each j ∈ {0, . . . , N − 2}
is obtained from a specific trajectory. We follow the optimal trajectory for initial value x0

and horizon N for j steps and for the point x reached this way we use the optimal control
sequence for initial value x and horizon N − j for another N − j steps.

In the next lemma we derive upper bounds for the Jk-terms along tails of the optimal
trajectory xu? , which will later be used on order to bound the right hand side of the
inequality from Lemma 14.7. To this end we use that these tails are optimal trajectories
themselves.

Lemma 14.8 Suppose Assumption 14.2 holds and consider x0 ∈ X and an optimal control
u? ∈ UN (x) for (OCPN). Then for each k = 0, . . . , N − 1 the inequality

JN−k(xu?(k, x0), u?(k + ·)) ≤ BN−k(`∗(xu?(k, x0)))

holds for BK from (14.7).

Proof: Corollary 12.3 implies JN−k(xu?(k, x0), u?(k + ·)) = VN−k(xu?(k, x0)). Hence the
assertion follows immediately from Assumption 14.2.

Remark 14.9 Since u? ∈ UN (x0) we obtain xu?(k, x0) ∈ X for k = 0, . . . , N . For k =
0, . . . , N − 1 this property is crucial for the proof of Lemma 14.7 because it ensures that
an optimal control for initial value x = xu?(1 + j, x0) exists. Note, however, that we do
not need xu?(N, x0) ∈ X. In fact, all results in this and the ensuing sections remain true if
we remove the state constraint on xu?(N, x0) ∈ X from the definition of UN (x0) or replace
it by some weaker constraint.

14.4 Computation of α

We will now use the inequalities derived in the previous section in order to compute α for
which (14.3) holds for all x ∈ X. When trying to put together these inequalities in order
to bound VN (xu?(1, x0)) from above, one notices that the functionals in Lemma 14.7 and
14.8 are not exactly the same. Hence, in order to combine these results into a closed form
which is suitable for computing α we need to look at the single terms of the stage cost `
contained in these functionals.
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To this end, let u? be an optimal control for (OCPN) with initial value x0 = x. Then from
the definition of VN and µN it follows that (14.3) is equivalent to

N−1∑
k=0

`(xu?(k, x), u?(k)) ≥ α`(x, u?(0)) + VN (xu?(1, x)). (14.13)

Thus, in order to compute α for which (14.3) holds for all x ∈ X we can equivalently
compute α for which (14.13) holds for all optimal trajectories xu?(·, x) with initial values
x ∈ X.

For this purpose we now consider arbitrary real values λ0, . . . , λN−1, ν ≥ 0 and start by
deriving necessary conditions which hold if these values coincide with the cost along an
optimal trajectory `(xu?(k, x), u?(k)) and an optimal value VN (xu?(1, x)), respectively.

Proposition 14.10 Suppose Assumption 14.2 holds and consider N ≥ 1, values λn ≥ 0,
n = 0, . . . , N − 1, and a value ν ≥ 0. Consider x ∈ X and assume that there exists an
optimal control sequence u? ∈ UN (x) for (OCPN) such that

λk = `(xu?(k, x), u?(k)), k = 0, . . . , N − 1

holds. Then
N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (14.14)

holds. If, furthermore,

ν = VN (xu?(1, x))

holds then

ν ≤
j−1∑
n=0

λn+1 +BN−j(λj+1), j = 0, . . . , N − 2 (14.15)

holds.

Proof: If the stated conditions hold, then λn and ν must meet the inequalities given in
Lemmas 14.7 and 14.8, which is exactly (14.15) and (14.14).

Using this proposition we can give a sufficient condition for (14.13) and thus for (14.3).
The idea behind the following proposition is to express the terms in inequality (14.13)
using the values λ0, . . . , λN−1 and ν introduced above.

Proposition 14.11 Consider N ≥ 1 and BK ∈ K∞, K = 2, . . . , N and assume that all
values λn ≥ 0, n = 0, . . . , N−1 and ν ≥ 0 fulfilling (14.14) and (14.15) satisfy the inequality

N−1∑
n=0

λn − ν ≥ αλ0 (14.16)

for some α ∈ (0, 1]. Then for this α and each optimal control problem (OCPN) satisfying
Assumption 14.2 inequality (14.3) holds for µN from Algorithm 11.1 and all x ∈ X.
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Proof: Consider a control system satisfying Assumption 14.2 and an optimal control
sequence u? ∈ UN (x) for initial value x ∈ X. Then by Proposition 14.10 the values λk =
`(xu?(k, x), u?(k)) and ν = VN (xu?(1, x)) satisfy (14.14) and (14.15), hence by assumption
also (14.16). Thus, using `(x, u?(0)) = `(xu?(0, x), u?(0)) = λ0 we obtain

VN (xu?(1, x)) + α`(x, u?(0)) = ν + αλ0 ≤
N−1∑
k=0

λk =
N−1∑
k=0

`(xu?(k, x), u?(k)).

This proves (14.13) and thus also (14.3).

Proposition 14.11 is the basis for computing α as specified in the following theorem.

Theorem 14.12 [Abstract optimization problem] Consider N ≥ 1 and BK ∈ K∞, K =
2, . . . , N and assume that the optimization problem

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν

λ0

subject to the constraints (14.14), (14.15), and

λ0 > 0, λ1, . . . , λN−1, ν ≥ 0

(14.17)

has an optimal value α ∈ (0, 1]. Then for this α and each optimal control problem (OCPN)
satisfying Assumption 14.2 inequality (14.3) holds for µN from Algorithm 11.1 and all
x ∈ X.

Proof: Consider arbitrary values λ0, . . . , λN−1, ν ≥ 0 satisfying (14.14) and (14.15).

If λ0 > 0 then the definition of Problem (14.17) immediately implies (14.16).

If λ0 = 0, then inequality (14.14) for k = 0 together with BK(0) = 0 implies λ1, . . . , λN−1 =
0. Thus, (14.15) for j = 1 yields ν = 0 and again (14.16) holds.

Hence, (14.16) holds in both cases and Proposition 14.11 yields the assertion.

Remark 14.13 (i) Theorem 14.12 shows Inequality (14.3) for all x ∈ X if Assumption
14.2 or, alternatively, Assumption 14.4 holds for all x ∈ X and K = 2, . . . , N .

If we want to establish Inequality (14.3) only for states x0 ∈ Y for a subset Y ⊂ X, then
from the proofs of the Lemmas 14.7 and 14.8 it follows that Proposition 14.10 holds for all
x0 ∈ Y (instead of for all x ∈ X) under the following condition:

(14.7) holds for x = xu?(k, x0) for all k = 0, . . . , N − 1, all x0 ∈ Y
and all K = 2, . . . , N , where u? is the optimal control for JN (x0, u).

(14.18)

This implies that under condition (14.18) Theorem 14.12 holds for all x0 ∈ Y and conse-
quently (14.3) holds for all x0 ∈ Y .

(ii) A further relaxation of the assumptions of Theorem 14.12 can be obtained by observing
that if we are interested in establishing Inequality (14.3) only for states x0 ∈ Y , then in
(14.17) we only need to optimize over those λi which correspond to optimal trajectories
starting in Y . In particular, if we know that infx0∈Y `

∗(x0) ≥ ζ for some ζ > 0, then the
constraint λ0 > 0 can be tightened to λ0 ≥ ζ.
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The following lemma shows that the optimization problem (14.17) specializes to a linear
program if the functions BK(r) are linear in r.

Lemma 14.14 If the functions BK(r) from (14.7) in the constraints (14.14), (14.15) are
linear in r, then α from Problem (14.17) coincides with

α := min
λ0,...,λN−1,ν

N−1∑
n=0

λn − ν

subject to the (now linear) constraints (14.14), (14.15), and

λ0 = 1, λ1, . . . , λN−1, ν ≥ 0.

(14.19)

In particular, this holds if Assumption 14.4 holds with functions β(r, t) being linear in r.

Proof: Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄ satisfying the constraints in
(14.17) can be written as γλ0, . . . , γλN−1, γν for some λ0, . . . , λN−1, ν satisfying the con-
straints in (14.19), where γ = λ̄0. Since∑N−1

n=0 λ̄n − ν̄
λ̄0

=

∑N−1
n=0 γλn − γν

γλ0
=

∑N−1
n=0 λn − ν

λ0
=

N−1∑
n=0

λn − ν,

the values α in Problems (14.17) and (14.19) coincide.

The next result gives an explicit bound for Problem (14.19) and thus also (14.17) if the
functions BK are linear.

Proposition 14.15 If the functions BK(r) from (14.7) in the constraints (14.14), (14.15)
are linear in r, then the solution of Problems (14.17) and (14.19) satisfies the inequality

α ≥ α̃N (14.20)

for

α̃N := 1− (γ2 − 1)(γN − 1)

N−1∏
k=2

(
γk − 1

γk

)
with γk = Bk(r)/r. (14.21)

Proof: We prove the theorem by showing the inequality

λN−1 ≤ (γN − 1)
N−1∏
k=2

(
γk − 1

γk

)
λ0 (14.22)

for all feasible λ0, . . . , λN−1. From this (14.20) follows since (14.15) with j = N −2 implies

ν ≤
N−2∑
n=1

λn + γ2λN−1
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and thus (14.22), γ2 ≥ 1 and λ0 = 1 yield

N−1∑
n=0

λn − ν ≥ λ0 + (1− γ2)λN−1 ≥ λ0 − (γ2 − 1)(γN − 1)
N−1∏
k=2

(
γk − 1

γk

)
λ0 = α̃N

for all feasible λ1, . . . , λN−1 and ν, which yields α ≥ α̃N .

In order to prove (14.22), we start by observing that (14.14) with j = p implies

N−1∑
k=p+1

λk ≤ (γN−p − 1)λp (14.23)

for p = 0, . . . , N − 2. From this we can conclude

λp +

N−1∑
k=p+1

λk ≥
∑N−1

k=p+1 λk

γN−p − 1
+

N−1∑
k=p+1

λk =
γN−p

γN−p − 1

N−1∑
k=p+1

λk.

Using this inequality inductively for p = 1, . . . , N − 2 yields

N−1∑
k=1

λk ≥
N−2∏
k=1

(
γN−k

γN−k − 1

)
λN−1 =

N−1∏
k=2

(
γk

γk − 1

)
λN−1.

Using (14.23) for p = 0 we then obtain

(γN − 1)λ0 ≥
N−1∑
k=1

λk ≥
N−1∏
k=2

(
γk

γk − 1

)
λN−1

which implies (14.22).

A much more complicated proof (see [9, Proposition 6.18]) shows that the optimal αN is
given by

αN := 1−
(γN − 1)

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏
k=2

(γk − 1)

with γk = Bk(r)/r, (14.24)

A comparison of the two formulas (14.24) and (14.20) can be found in Remark 14.17, below.

14.5 Main Stability and Performance Results

We are now ready to state our main result on stability and performance of stabilizing MPC
without terminal conditions.

Theorem 14.16 [Stability without terminal conditions] Consider the MPC Algorithm
11.1 with optimization horizon N ∈ N and stage cost ` satisfying α3(|x|x∗) ≤ `∗(x) ≤
α4(|x|x∗) for suitable α3, α4 ∈ K∞. Suppose that Assumption 14.2 holds and that α = αN
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from Formula (14.24) or α = α̃N from Formula (14.20) satisfies α ∈ (0, 1]. Then the MPC
closed loop system (11.2) with MPC-feedback law µN is asymptotically stable on X.

In addition, the inequality

Jcl∞(x, µN ) ≤ VN (x)/α ≤ V∞(x)/α

holds for each x ∈ X.

Proof: First note that VN ≤ V∞ follows immediately from ` ≥ 0. Hence, the assertion
follows readily from Theorem 14.1 if we prove the inequalities (14.3) and (14.5). Inequality
(14.3) follows directly from Theorem 14.12 and Proposition 14.15 or [9, Proposition 6.18].

Regarding (14.5), observe that the inequality for ` follows immediately from our assump-
tions. From the definition of VN we get

VN (x) = inf
u∈UN (x)

JN (x, u) ≥ inf
u∈UN (x)

`(x, u(0)) = `∗(x) ≥ α3(|x|x∗),

thus the lower inequality for VN follows with α1 = α3. The upper inequality in (14.5)
follows from Assumption 14.2 and the upper bound on `∗ via

VN (x) ≤ BN (`∗(x)) ≤ BN (α4(|x|x∗)),

i.e., for α2 = BN ◦ α4.

Remark 14.17 Let us compare the two different bounds on α given by α̃N from (14.20)
and αN from (14.24). In order to illustrate that the criterion α̃N > 0 is more conservative
than the criterion αN > 0, we consider the case where γk = γ for all k, i.e., the γk are
independent of k, and compute the minimal N for which α̃N > 0 and αN > 0, respectively,
hold. For γk = γ the expressions simplify to

α̃N = 1− (γ − 1)N

γN−2
and αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
.

Thus, an optimization horizon N for which α̃N > 0 must satisfy

N > 2 + 2
ln γ

ln γ − ln(γ − 1)

while the same condition for α̃N > 0 is given by

N > 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
.

This means that the estimate for the minimal stabilizing horizon based on α̃N is about
twice as large as the estimate based on αN .

In this context, it is interesting to look at the asymptotic behavior of the bounds on
N for γ → ∞. For large γ the denominator is approximately 1/γ. This implies that
asymptotically for γ → ∞ the first estimate for N behaves like 2γ ln γ while the second
behaves like γ ln γ.
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The class of systems which is covered by Theorem 14.16 is quite large, since, e.g., expo-
nential controllability holds on compact sets X whenever the linearization of f in x∗ is
stabilizable and ` is quadratic.

The following simple example illustrates the use of Theorem 14.16 for the case of a nonex-
ponentially controllable system.

Example 14.18 We reconsider Example 14.6, i.e.,

x+ = x+ ux3 with `(x, u) = e−
1

2x2 .

As shown in Example 14.6, Assumption 14.4 holds with β(r, k) = Cσkr with C = 1 and
σ = e−1. The bounds in Assumption 14.2 resulting from this β according to (14.10) are

BK(r) = C
1− σK
1− σ r = C

1− e−K
1− e−1

r,

thus Theorem 14.16 is applicable and we obtain α ≥ αN with αN from Formula (14.24).
The γk in Formula (14.24) are given by

γk = C
1− e−k
1− e−1

.

A straightforward computation reveals that for these values Formula (14.24) simplifies to

1−
(γN − 1)

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏
k=2

(γk − 1)

= 1− e−N .

Hence, for N = 2 we obtain α = 1− e−2 ≈ 0.865 and for N = 3 we get α ≥ 1− e−3 ≈ 0.95.
Hence, Theorem 14.16 ensures asymptotic stability for all N ≥ 2 and — since 1/0.95 ≈
1.053 — for N = 3 the performance of the MPC controller is at most about 5.3% worse
than the infinite horizon controller.

While in this simple example the computation of α via Formula (14.24) is possible, in many
practical examples this will not be the case. However, Formula (14.24) can still be used to
obtain valuable information for the design of MPC schemes. This aspect will be discussed
at the end of this section.

Although the main benefit of the approach developed in this chapter compared to other
approaches is that we can get rather precise quantitative estimates, it is nevertheless good
to know that our approach also guarantees asymptotic stability for sufficiently large opti-
mization horizons N under suitable assumptions. This is the statement of our final stability
result.

Theorem 14.19 [Stability for sufficiently large N ] Consider the MPC Algorithm 11.1
with optimization horizon N ∈ N and stage cost ` satisfying α3(|x|x∗) ≤ `∗(x) ≤ α4(|x|x∗)
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for suitable α3, α4 ∈ K∞. Suppose that Assumption 14.2 holds for linear BK ∈ K∞ of the
form BK(r) = γKr with γ∞ := supk∈N γk <∞.

Then the MPC closed loop system (11.2) with MPC-feedback law µN is asymptotically
stable on X provided N is sufficiently large.

Furthermore, for each C > 1 there exists NC > 0 such that

Jcl∞(x, µN ) ≤ CVN (x) ≤ CV∞(x)

holds for each x ∈ X and each N ≥ NC .

Proof: The assertion follows immediately from Theorem 14.16 if we show that α̃N → 1
holds in (14.20) as N →∞. Since all factors in (14.20) are monotone increasing in γk and
the product has a negative sign, we obtain

α̃N ≥ 1− (γ∞ − 1)2

(
γ∞ − 1

γ∞

)N−2

.

Since (γ∞ − 1)/γ∞ < 1 we obtain that(
γ∞ − 1

γ∞

)N−2

→ 0

as N →∞ and thus α̃N → 1.

Remark 14.20 For BK of the form (14.10), a sufficient condition for the γk being bounded
by γ∞ is that Assumption 14.4 holds for a β ∈ KL0 which is linear in its first argument
and is summable, i.e.,

∞∑
k=0

β(r, k) <∞ for all r > 0.

Theorem 14.19 justifies what is often done in practice: we set up an MPC scheme using a
reasonable stage cost ` and increase N until the closed loop system becomes stable.

Of course, Theorem 14.19 immediately leads to the question how large the optimization
horizon N needs to be for acheiving stability or a certain performance. As the compu-
tational cost grows with the length of a horizon, this is also important for the practical
implementability of the MPC scheme. We investigate this question for the case thatthe
asymptotic controllability condition from Assumption 14.4 holds with the exponential func-
tions β(r, n) = CσNr from (14.8). To this end, we look at the minimal horizon N for which
αN is larger that a certain threshold depending on the parameters C and σ. This depen-
dence is illustrated in Figure 14.5 for thresholds 0 and 0.5.

As we see, the two parameters C and σ play a very different role. While for fixed σ > 0 it
is always possible to reduce the necessary horizon to N = 2, i.e., to the shortest possible
horizon, by making C smaller, this is not possible for fixed C by reducing σ. Hence, the
constant C plays a more important role for obtaining stability and performance with small
optimization horizon N . Particularly, any tuning of the stage cost ` which leads to a
reduction of C is likely also to reduce the necessary optimization horizon. In the lecture, it
will be shown how this observation can explain the parameter dependence of the stability
behavior of the third example in Section 9.1.
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Figure 14.1: Suboptimality regions for different optimization horizons N depending on C
and σ in (14.8) for αN > 0 (left) and αN > 0.5 (right)
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