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Vorwort

Dieses Skript ist im Rahmen einer gleichnamigen Vorlesung entstanden, die ich im Win-
tersemester 2025/2026 an der Universitéit Bayreuth gehalten habe. Kapitel 1-7 behandeln
dabei Themen aus der linearen Kontrolltheorie, wihrend Kapitel 814 eine Einfithrung
in die Modellpradiktive Regelung fiir nichtlineare Systeme geben. Gegeniiber der vorheri-
gen Auflage aus dem Sommersemester 2023 wurden einige Korrekturen und Ergénzungen
gemacht. Insbesondere wird der Begriff der striktien Dissipativitit nun stérker betont.
Kapitel 14 wurde etwas gekiirzt, weil es sich als zu lang fiir die Vorlesung herausgestellt
hat.

Teile des ersten Teils des Skriptes wurden auf Basis des Skripts [2], der Lehrbiicher [15]
und [1 1] sowie der Monographie [%] erstellt, die auch ohne explizite Erwidhnung intensiv ge-
nutzt wurden. Die Kapitel tiber die Modellpradiktive Regelung sind iiberarbeitete Ausziige
aus der demnéchst erscheinenden dritten Auflage der Monographie [5]. Herzlich bedanken
mochte ich mich bei Jonas Koziorek und Leander Boll sowie bei allen anderen aufmerksa-

men Studentinnen und Studenten, die mich auf Fehler und Ungenauigkeiten hingewiesen
haben.

Die jeweils aktuelle Version dieses Skripts erhalten Sie im Internet iiber meine Homepage
(Google: Lars Griine).

Bayreuth, Februar 2026 LARrRS GRUNE
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Kapitel 1

Grundbegrifte

Kontrollsysteme sind dynamische Systeme in kontinuierlicher oder diskreter Zeit, die von
einem Parameter v € R™ abhingen, der sich — abhingig von der Zeit und/oder vom
Zustand des Systems — verdndern kann. Dieser Parameter kann verschieden interpretiert
werden. Er kann entweder als Steuergrofle verstanden werden, also als Grofle, die von
aulen aktiv beeinflusst werden kann (z.B. die Beschleunigung bei einem Fahrzeug, die In-
vestitionen in einem Unternehmen) oder auch als Stérung, die auf das System wirkt (z.B.
Strafenunebenheiten bei einem Auto, Kursschwankungen bei Wechselkursen). Fiir das ma-
thematische Fachgebiet, das sich mit der Analyse dieser Systeme beschéftigt, hat sich im
deutschen Sprachgebrauch der Begriff ,, Kontrolltheorie“ etabliert, wenngleich er eine etwas
missverstindliche Ubersetzung des englischen Ausdrucks ,,control theory® darstellt, da es
hier nicht um Kontrolle im Sinne von Uberwachung sondern im Sinne von Einflussnahme
von auflen geht. Statt von Kontrolle spricht man auch von Steuerung, wenn die Parameter
u lediglich von der Zeit abhédngen und von Regelung, wenn die Parameter u vom aktuellen
Zustand abhingen. Neben Mathematischer Kontrolltheorie ist auch der Ausdruck Mathe-
matische Systemtheorie gebrauchlich.

1.1 Lineare Kontrollsysteme

Wir werden uns in dieser Vorlesung mit Kontrollsystemen beschéftigen, die in kontinu-
ierlicher oder in diskreter Zeit definiert sind. In kontinuierlicher Zeit sind Kontrollsysteme
durch gewohnliche oder partielle Differentialgleichungen beschrieben. Wir beschrénken uns
in dieser Vorlesung in den meisten Fallen auf gewohnliche Differentialgeichungen. Dann ist
das Kontrollsystem durch die Gleichung

&(t) = f(t, (1), u(t)) (1.1)

beschrieben. Die Variable ¢ € R werden wir hierbei stets als Zeit interpretieren und die
Notation (t) steht kurz fiir die zeitliche Ableitung d/dt z(t). Die Groe x(t) € R™ heifit
der Zustand und u(t) € R™ heifit der Kontrollwert oder die Eingangsgrifie, jeweils zur Zeit
t. Die Abbildung f : R x R™ x R™ — R"™ heifit Vektorfeld. Sowohl f als auch die Funk-
tion u : R — R™ miissen gewisse Regularititseigenschaften erfiillen, damit die Losungen
von (1.1) existieren und eindeutig sind. Wir wollen uns mit diesem allgemeinen Problem

1



2 KAPITEL 1. GRUNDBEGRIFFE

aber zunéichst nicht weiter beschéftigen, da wir uns im ersten Teil der Vorlesung nur mit
Spezialfall von Kontrollsystemen befassen werden.

In diskreter Zeit ist das allgemeine Modell gegeben durch die Abbildung
2k +1) = f(k, 2(k), u(k)). (1.2)

Hierbei ist £ € N ein abstrakter Zeitindex und f : N x R” x U — R” die Ubergangsab-
bildung. Der abstrakte Zeitindex k steht dabei iiblicherweise fiir eine reale Zeit t; € R,
oft von der Form ¢, = nT fiir ein festes T' > 0. Ein zeitdiskretes Kontrollsystem kann
das Verhalten eines kontinuierlichen Modells zu den diskreten Zeitpunkten ¢, wiedergeben
— dieses Vorgehen nennt man Abtastung oder Sampling und das entstehende zeitdiskre-
te System heiflt Abtastsystem!. In diesem Fall gibt es unterschiedliche Moglichkeiten zur
Wahl von U. Z.B. kénnte u(k) ein konstanter Kontrollwert aus dem R™ sein, der im Inter-
vall [tg,tr+1) verwendet wird. In diesem Fall wire U = R™. Die Grofle u(k) konnte aber
auch eine zeitverdnderliche Kontrollfunktion sein, die im kontinuierlichen System auf dem
Intervall [tg, tx+1) verwendet wird. In diesem Fall wére U eine Menge von Funktionen.

Fast alle Ergebnisse in dieser Vorlesung gelten sowohl fiir zeitkontinuierliche als auch fiir
zeitdiskrete Kontrollsysteme, allerdings werden wir meistens nur einen der beiden Félle
beweisen. Im ersten Teil der Vorlesung werden wir die Beweise i.d.R. fiir zeitkontinuierliche
Systeme angeben und im zweiten Teil i.d.R. fiir zeitdiskrete Systeme.

Im ersten Teil der Vorlesung werden wir uns mit den folgenden speziellen Kontrollsystemen
befassen.

Definition 1.1 Ein lineares zeitinvariantes Kontrollsystem ist in kontinuierlicher Zeit ge-
geben durch die Differentialgleichung

z(t) = Ax(t) + Bu(t) (1.3)
mit A € R™™ und B € R™ ™. In diskreter Zeit ist es gegeben durch die Gleichung
x(k+1) = Az(k) + Bu(k) (1.4)

mit A € R™" und einer linearen Abbildung B : U — R". o

Diese Klasse von Kontrollsystemen ist besonders einfach, da die rechte Seite linear in
x und u ist und zudem nicht explizit von der Zeit ¢t abhingt. Trotzdem ist sie bereits
so reichhaltig, dass man mit ihr eine grofle Anzahl realer Prozesse z.B. fiir technische
Anwendungen brauchbar beschreiben kann. Tatséchlich werden in der technischen Praxis
auch heute noch viele lineare Modelle eingesetzt, wenn auch nicht immer in der einfachen
Form (1.3) (wir werden spéter in der Vorlesung noch eine wichtige Erweiterung kennen
lernen).

Um zu veranschaulichen, warum die Klasse (1.3) oft eine brauchbare Modellierung ermog-
licht, betrachten wir ein Modell aus der Mechanik, und zwar ein auf einem Wagen befe-
stigtes umgedrehtes starres Pendel, vgl. Abb. 1.1.

'Eine formale Definition des Abtastsystems findet sich in Abschnitt 8.2.
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Abbildung 1.1: Schematische Darstellung des Pendels auf einem Wagen

Die Kontrolle u ist hierbei die Beschleunigung des Wagens. Mittels physikalischer Gesetze
kann ein “exaktes”? Differentialgleichungsmodell hergeleitet werden.

il(t) = xg(t)

To(t) = —kxo(t) + gsinzy(t) + u(t) cosx(t) ()

is(t) = z4(t) =: f(x(t), u(t)) (1.5)
T4(t) = w

Hierbei besteht der Zustandsvektor € R* aus 4 Komponenten: x; entspricht dem Winkel
¢ des Pendels (vgl. Abb. 1.1), der entgegen dem Uhrzeigersinn zunimmt, wobei 1 = 0
dem aufgerichteten Pendel entspricht. zo ist die Winkelgeschwindigkeit, x5 die Position
des Wagens und z4 dessen Geschwindigkeit. Die Konstante k beschreibt die Reibung des
Pendels (je grofier k desto mehr Reibung) und die Konstante g ~ 9.81m/s? ist die Erdbe-
schleunigung.

Sicherlich ist (1.5) von der Form (1.1). Es ist aber nicht von der Form (1.3), da sich die
nichtlinearen Funktionen sin und cos nicht mittels der Matrizen A und B darstellen lassen
(beachte, dass in A und B nur konstante Koeffizienten stehen diirfen, die Matrizen diirfen
also nicht von x abhéngen).

Trotzdem kann ein lineares Modell der Form (1.3) verwendet werden, um (1.5) in der

Nihe gewisser Punkte zu approximieren. Diese Prozedur, die man Linearisierung nennt,

ist moglich in der N&he von Punkten (z*,u*) € R™ x R™, in denen f(z*, u*) = 0 gilt. In

solchen Punkten erhalten wir ein System der Form (1.3), indem wir A und B definieren als
of of

A: %(:U,u) und B::%(az,u).

Wenn f stetig differenzierbar ist gilt

fx+ 2% utu”) = Az + Bu+ o[zl + [ul]),

2Das Modell (1.5) ist nicht ganz exakt, da es bereits etwas vereinfacht ist: es wurde angenommen, dass
das Pendel so leicht ist, dass es keinen Einfluss auf die Bewegung des Wagens hat. Zudem wurde eine Reihe
von Konstanten so gewiihlt, dass sie sich gegeneinander aufheben.
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d.h., fiir x ~ 0 und u ~ 0 stimmen f(x + z*,u + v*) und Az + Bu gut iiberein. Man kann
nun beweisen, dass sich diese Niherung auf die Losungen der Differentialgleichungen (1.1)
und (1.3) iibertriigt.

Fiir unser Beispiel wenden wir die Linearisierung in (z*,u*) = (0,0) an. Dieses Gleichge-
wicht entspricht dem aufgerichteten oder invertierten Pendel. Aus der obigen Rechnung
ergibt sich ein System der Form (1.3) mit

0 1 00 0

1l g =k 00 11
A= 00 0 1 und B = 0 (1.6)

0 0 00 1

Abbildung 1.2: Vergleich der Losungen von (1.5) (durchgezogen) mit (1.3, 1.6) (gestrichelt)

Abbildung 1.1 zeigt einen Vergleich der Lésungen von (1.5) (durchgezogen) mit den Losun-
gen von (1.3, 1.6) (gestrichelt), jeweils fiir v = 0 und mit £ = 0.1, ¢ = 9.81, in zwei
verschiedenen Umgebungen um die 0. Dargestellt sind hier fiir jede der zwei Gleichungen
jeweils 4 Losungskurven der Form

{ ( 28 > ‘ te =10, 10]} CR%

Wihrend in der kleinen Umgebung im linken Bildausschnitt mit bloem Auge kein Un-
terschied zu erkennen ist, weichen die Losungen in der grofieren Umgebung im rechten
Ausschnitt deutlich voneinander ab.

1.2 Existenz und Eindeutigkeit

Wann immer man sich mit Differentialgleichungen beschéftigt, muss man zunéchst die
Existenz und die Eindeutigkeit der Losungen klaren. Wir wollen dies zunéchst fiir das
lineare Kontrollsystem (1.3) mit u = 0 machen.

3Eine mathematisch exakte Formulierung dieser Eigenschaft fiir unkontrollierte Differentialgleichungen
findet sich z.B. als Satz 4.5 in [4].
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Hierzu benotigen wir zunéchst etwas Notation.

Fiir eine Matrix A € R"*" bezeichnen wir im Folgenden mit [A];; € R den Eintrag in
der i-ten Zeile und j-ten Spalte. Fiir A € R™™ und ¢t € R bezeichnen wir mit At die
komponentenweise Multiplikation, also [At]; ; = [A];;t. Fiir k € Ny ist die Matrix-Potenz
A¥ induktiv mittels A? = Id und A¥*! = AA* definiert.

Zudem benotigen wir die folgende Definition.

Definition 1.2 Fiir eine Matrix A € R™ "™ und eine reelle Zahl ¢ € R ist die Matrix-
Exponentialfunktion gegeben durch

o ik
At . k
et = E A =k
k=0

Die Konvergenz der unendlichen Reihe in dieser Definition ist dabei als komponentenweise
Konvergenz, also als

zu verstehen. Dass die Komponenten dieser Reihe tatséchlich konvergieren, und zwar sogar
absolut (also im Betrag), folgt aus dem Majorantenkriterium, denn mit der Zeilensummen-
norm

n
a= Al = ifllaxnz (Al
30ty jzl

gilt [[A*];] < [|4%]loo < [|A]IE, = o, also

tk

k!

tk

L (alt)*
k™

k!

= |[A";5 < of

t
k
\V‘ 7l

und damit
[e*]i5] < eI,

wobei hier auf die rechten Seite die (iibliche) skalare Exponentialfunktion steht.

Beachte, dass im Allgemeinen
[e]ij # el

gilt, wobei elAtii die (komponentenweise angewandte) skalare Exponentialfunktion ist.

Aus der Definition der Matrix-Exponentialfunktion folgen sofort die Eigenschaften

(i) e =1d und (i) et =eAA (1.7)

Das folgende Lemma liefert eine weitere wichtige Eigenschaft der Matrix-Exponential-
funktion.
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Lemma 1.3 Fiir beliebiges A € R"*" ist die Funktion ¢ — e“* differenzierbar und es gilt

d
£€At _ AeAt

fiir jedes t € R.
Beweis: Ubungsaufgabe.

Satz 1.4 Betrachte die lineare Differentialgleichung
z(t) = Ax(t) (1.8)

mit  : R — R"” und einer gegebenen Matrix A € R"*".

Dann gilt: Fiir jede Anfangsbedingung der Form
.’E(to) = X0 (19)

mit tp € R und zp € R™ existiert genau eine Losung z : R — R” von (1.8), die (1.9) erfiillt
und die wir mit x(¢; to, xo) bezeichnen. Fiir diese Losung gilt

x(t;to, o) = eAlt=to) g (1.10)

Beweis: Wir zeigen zunichst, dass die in (1.10) angegebene Funktion x(t) = eA(t—t0)z,
sowohl die Differentialgleichung (1.8) als auch die Anfangsbedingung (1.9) erfiillt. Aus
Lemma 1.3 folgt

d d A(t—to) A(t—

—_ = — e A (t t()) — A

dtw(t) e xo e xo x(t),
also (1.8). Wegen (1.7)(i) gilt zudem

x(tg) = eAlto=t0) g — 4020 = Tdzg = w0,

also (1.9).

Da wir damit (1.10) als Losung verifiziert haben, folgt insbesondere die Existenz.

Es bleibt die Eindeutigkeit zu zeigen. Hierzu zeigen wir zunichst, dass die Matrix e??

invertierbar ist mit
(eA) ™l = AL, (1.11)

Fiir jedes 39 € R™ 16st y(t) = e~y die Differentialgleichung (t) = —Ay(t). Nach Pro-
duktregel gilt dann
d

d d
ﬁ(efAteAtxO) _ %efAt(eAtmo) I efAt$eAtx0 = Ao MMy 4 e Ay = 0,

AteAt

wobei wir im letzten Schritt (1.7)(ii) ausgenutzt haben. Also ist e~ xo konstant in t.

Damit gilt fiir alle £ € R und alle o € R”

e_AteAtxo = e_AoeAO:L"O =IdId zg = zg,
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und folglich

efAteAt

=1d = e A= (ML

Mit (1.11) konnen wir nun die Eindeutigkeit zeigen. Es sei x(t) eine beliebige Losung von
(1.8), (1.9). Dann gilt

4
dt

(e_A(t_tO)x(t)) _ %e_A(t_tU)(x(t))—1—6_‘4('5_“))3'6(15)

= —Ae_A(t_tO)x(t)+6_A(t_t°)AJ:(t) = 0,

wobei wir wiederum (1.7)(ii) ausgenutzt haben. Also ist e~4(=%0)z(t) konstant in ¢, woraus
fiir alle t € R

6_A(t_t0)x(t) _ e_A(tO_tO).’E(tO) — Idgg(to) =z

A(t—to)

folgt. Multiplizieren wir nun beide Seiten dieser Gleichung mit e und verwenden

(1.11), so ergibt sich
z(t) = A1) g,

Da z(t) eine beliebige Losung war, folgt daraus die Eindeutigkeit. 1l

Eine niitzliche Folgerung aus diesem Satz ist das folgende Korollar.

Korollar 1.5 Die Matrix-Exponentialfunktion e ist die eindeutige Losung der Matrix-
Differentialgleichung

X(t) = AX(t) (1.12)

mit X : R — R™ "™ und Anfangsbedingung

X(0) = Id. (1.13)

Beweis: Es bezeichne e; den j-ten Einheitsvektor im R". Eine einfache Rechnung zeigt,
dass eine matrixwertige Funktion X (¢) genau dann eine Losung von (1.12), (1.13) ist, wenn
X (t)e; eine Losung von (1.8), (1.9) mit tp = 0 und x¢ = e; ist. Mit dieser Beobachtung
folgt die Behauptung sofort aus Satz 1.4. U

Das folgende Lemma fasst weitere Eigenschaften der Matrix-Exponentialfunktion zusam-
men.

Lemma 1.6 Fiir A, A1, As € R™"™ und s,t € R gilt:
(i) (eAt)—l — At

11) eAtpAs — LA(t+s)

(i
(iil) eArtedst = (AitA2)t falls Ay Ay = Ax Ay
(iv) Fiir eine invertierbare Matrix 7' € R™*"™ gilt

1 _
€T ATt —-T 16AtT.
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Beweis: (i) Wurde im Beweis von Satz 1.4 gezeigt.

(ii) Mit Hilfe von (i) ergibt sich, dass sowohl e4*e%¢=4% als auch eA(+9)e=45 das Matrix-
Anfangswertproblem (1.12), (1.13) erfiillen. Da dessen Losung nach Korollar 1.5 eindeutig
ist und e~ invertierbar ist, folgt die behauptete Gleichheit.

(iii) Unter der angegebenen Bedingung A; A2 = Az A; rechnet man nach, dass beide Aus-
driicke das Matrix-Anfangswertproblem (1.12), (1.13) mit A = A; + Ay erfiillen. Also
miissen die Ausdriicke wegen der Eindeutigkeit nach Korollar 1.5 {ibereinstimmen.

(iv) Man rechnet nach, dass beide Ausdriicke das Matrix-Anfangswertproblem (1.12), (1.13)
mit 7-'AT an Stelle von A erfiillen. Wiederum folgt daraus die Gleichheit wegen der
FEindeutigkeit der Losungen nach Korollar 1.5. U

Nach diesen Vorbereitungen kehren wir nun zum linearen Kontrollsystem (1.3) zuriick. Zur
Formulierung eines Existenz- und Eindeutigkeitssatzes miissen wir einen geeigneten Funk-
tionenraum U fiir die Kontrollfunktion u(-) definieren. Sicherlich wéren stetige Funktionen
geeignet, diese Wahl ist aber zu einschréinkend, da wir im Verlauf dieser Vorlesung ¢fter
einmal Kokatenationen von Kontrollfunktionen geméfl der folgenden Definition benttigen
werden.

Definition 1.7 Fiir zwei Funktionen ui, us : R — R™ und s € R definieren wir die
Konkatenation zur Zeit s als
U1 (t), t<s
t) :=
Ul&su2( ) { 'LLQ(t), t>s

O

Selbst wenn uy und wue stetig sind, wird ui&sus im Allgemeinen nicht stetig sein. Wir
bendétigen also einen Funktionenraum, der abgeschlossen beziiglich der Konkatenation ist.
Hier gibt es verschiedene Moglichkeiten, die einfachste ist die folgende.

Definition 1.8 Eine Funktion u : R — R™ heif$t stickweise stetig, falls fiir jedes kompakte

Intervall [t1,t2] eine endliche Folge von Zeiten t; = 71 < 19 < ... < 7 = ty existiert, so
dass u|(n,n~ 1) beschrinkt und stetig ist fiir alle t = 1,...,k — 1. Wir definieren U/ als den
Raum der stiickweise stetigen Funktionen von R nach R™. o

Sicherlich ist U abgeschlossen unter Konkatenation, aber auch unter Addition und Multi-
plikation (wobei wir (u1 +u2)(t) := ui(t) +ua(t) und (w1 -u2)(t) := ui(t) - ua(t) definieren).
Zudem — und dies ist fiir unsere Zwecke wichtig — existiert das Riemann-Integral

/t e

iiber Funktionen u € U, da es in jedem kompakten Integrationsintervall nur endlich viele
Unstetigkeitsstellen gibt.*

Mit diesem Funktionenraum kénnen wir nun das entsprechende Resultat formulieren.

“Eine Alternative zu den stiickweise stetigen Funktionen bietet der Raum der Lebesgue-messbaren Funk-
tionen, wobei das Integral dann als das Lebesgue-Integral gewéhlt wird. Diesen Raum werden wir bei den
nichtlinearen Systemen verwenden, vgl. Kapitel 8. Fiir lineare Kontrollsysteme bringt die Verwendung
Lebesgue-messbarer Kontrollfunktionen keinen Vorteil.
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Satz 1.9 Betrachte das lineare Kontrollsystem (1.3)
x(t) = Ax(t) + Bu(t)

mit z : R — R" und gegebenen Matrizen A € R"*", B € R"*™,

Dann gilt: Fiir jede Anfangsbedingung der Form (1.9)
m(t()) = X0

mit tg € R, zg € R™ und jede stiickweise stetige Kontrollfunktion u € U existiert genau
eine stetige Funktion = : R — R", die (1.9) erfiillt und deren Ableitung fiir jedes ¢, in dem
u stetig ist, existiert und (1.3) erfiillt. Diese eindeutige Funktion nennen wir die Losung
von (1.3), (1.9) und bezeichnen sie mit x(¢; g, xo, u). Fiir diese Losung gilt

t
(t; to, 2, u) = 2710z —i—/ e Bu(s)ds. (1.14)

to

Beweis: Wir rechnen zunichst nach, dass (1.14) tatséchlich eine Losung im angegeben
Sinne ist. Die Abbildung t — fti] g(s)ds ist stetig fiir jede Riemann-integrierbare Funktion,
also ist x(t;tg, zo, u) stetig in ¢. In den Stetigkeitsetellen von u gilt

t
4 [eA(t_tO)m) +/ eA(t_S)Bu(s)ds]
dt to

t
= deA(ttO)a:o—i—d/ eA(t*S)Bu(s)ds
dt it J,,

t
= AeAtT0) g0 4+ A Bu(s) sy + | AeA9) Bu(s)ds
—Bu(t) o

¢
= A (eA(t_tO):co +/ eA(t_s)Bu(s)ds> + Bu(t),

to

also (1.3). Zudem gilt

to
cAlto=to) 4o 4 / eA0=5) Buy(s)ds = o,

=Id to _

n'g

=0

also (1.9).

Es bleibt die Eindeutigkeit zu zeigen. Dazu betrachten wir zwei beliebige Losungen z(t),
y(t) von (1.3), (1.9) im Sinne des Satzes. Dann gilt zunéchst

5(t) = @(t) — () = Au(t) + Bu(t) — Ay(t) — Bu(t) = A(w(t) — y(t)) = A=(t)

fiir alle Punkte in denen u stetig ist. Da z selbst stetig ist, kann Z in den Unstetigkeitsstellen
7; von u durch 2(7;) = limy_,,, Az(t) wohldefiniert stetig fortgesetzt werden. Wir erhalten
damit eine Funktion, die die Differentialgleichung 2(t) = Az(¢) fir alle ¢ € R 16st. Da
zudem

z(to) = x(to) — y(to) = w0 — 20 =0
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gilt, erfiillt z ein Anfangswertproblem der Form (1.8), (1.9), dessen nach Satz 1.4 eindeutige
Losung durch z(t) = eA'0 = 0 gegeben ist. Also ist 2(t) = y(t) fiir alle t € R, womit die
Eindeutigkeit folgt. O

Eine Folgerung aus diesem Satz ist das folgende Korollar.

Korollar 1.10 Fiir die Losungen von (1.3), (1.9) gelten fiir alle ¢, s € R die Gleichungen
x(t; to, o, u) = x(t; s, 2(s; o, o, u), u)

und
x(t; to, xo, u) = z(t — s;to — s, o, u(s + -)),

wobei die Funktion u(s + ) € U mittels u(s + -)(t) = u(s + t) definiert ist. Aus der
Kombination der beiden Formeln folgt fiir {5 = 0 dann auch

x(t; o, u) = x(t — s;x(s;xo,u), u(s + -)).

Beweis: Folgt sofort aus der Darstellung (1.14). U

Bemerkung 1.11 Eine weitere unmittelbare Folgerung aus der Losungsformel (1.14) ist
die Identitéat
x(t; to, o, u) = x(t; o, 0, 0) + z(t; to, 0, u). (1.15)

Diese Identitiit besagt, dass jede Losung als Uberlagerung (oder Superposition) einer un-
kontrollierten Losung (also mit Kontrolle 0) und einer Losung ohne Eigendynamik (also
mit Anfangswert 0) zusammengesetzt ist. Sie ist daher als Superpositionsprinzip bekannt.

O

Bemerkung 1.12 Da wir uns in den folgenden Kapiteln in vielen Féllen auf die Betrach-
tung von Losungen mit der speziellen Anfangszeit tg = 0 beschréanken, schreiben wir fiir
to = 0 oft kurz x(t; g, u) = x(t; 0, xg, u). O

Bemerkung 1.13 Wenn man die Zeiten ¢, = nT betrachtet und ein kontinuierliches
Kontrollsystem mit Kontrollfunktionen, die auf den Intervallen [t,t;11) konstant gleich
ur (k) sind, so kann man aus der Losungsformel (1.14) explizite Formeln fiir die Matrizen
A7 und Br in dem zugehorigen Abtastsystem

zp(k+1) = Apzp(k) + Brup(k)

herleiten. Details werden in einer Ubungsaufgabe ausgearbeitet. o



Kapitel 2

Kontrollierbarkeit

2.1 Definitionen

Ein wichtiger Aspekt in der Analyse lineare Kontrollsysteme der Form (1.3) ist die Frage
der Kontrollierbarkeit. In der allgemeinsten Formulierung ist dies die Frage, fiir welche
Punkte xg, 1 € R™ und Zeiten t; eine Kontrollfunktion v € U gefunden werden kann,
so dass z(t1;xo,u) = x1 gilt, d.h., so dass die zwei Punkte durch eine Losungstrajektorie
verbunden werden. Formal definieren wir dies wie folgt.

Definition 2.1 Betrachte ein lineares Kontrollsystem (1.3).

Ein Zustand zg € R™ hei8t kontrollierbar (oder auch steuerbar) zu einem Zustand z; € R"
zur Zeit t1 > 0, falls ein u € U existiert mit

x1 = x(t1; 0, u).

Der Punkt z7 heifit dann erreichbar von xg zur Zeit ty. O

Das folgende Lemma zeigt, dass man den Fall beliebiger zg € R™ auf xg = 0 zuriickfithren
kann.

Lemma 2.2 Ein Zustand zg € R" ist genau dann kontrollierbar zu einem Zustand x; € R”
zur Zeit t; > 0, falls der Zustand &y = 0 kontrollierbar zu dem Zustand Z; = x1 —z(¢1; 20, 0)
zur Zeit t; ist.

Beweis: Ubungsaufgabe.

Diese Tatsache motiviert, im Weiteren die Kontrollierbarkeit bzw. Erreichbarkeit der 0
speziell zu betrachten.

Definition 2.3 Betrachte ein lineares Kontrollsystem (1.3).

(i) Die Erreichbarkeitsmenge (reachable set) von xg = 0 zur Zeit ¢ > 0 ist gegeben durch
R(t) ={z(t;0,u) |u € U}.

11
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(ii) Die Kontrollierbarkeitsmenge (controllable set) nach x1 = 0 zur Zeit ¢t > 0 ist gegeben
durch
C(t) = {xp € R" | es existiert u € Y mit x(t; xg,u) = 0}.

Die Beziehung zwischen diesen beiden Mengen klért das folgende Lemma.

Lemma 2.4 Die Erreichbarkeitsmenge R(t) fiir (1.3) ist gerade gleich der Kontrollierbar-
keitsmenge C(t) fiir das zeitumgekehrte System

A(t) = —Az(t) — Bu(t). (2.1)

Beweis: Durch Uberpriifen des Anfangswertproblems sieht man, dass zwischen den Losun-
gen von (1.3) und (2.1) fiir alle ¢, s € R die Bezichung

x(s,0,u) = z(t — s, z(t,0,u), u(t — -)).
Wenn also z; € R(¢) fiir (1.3) ist und z(s,0,u) die zugehorige Losung, so folgt
2(0,z(t,0,u),u(t — ) = x(t,0,u) = x1 und 2(¢, z(¢,0,u),u(t —-)) = x(0,0,u) =0,

womit 1 € C(t) folgt. Umgekehrt argumentiert man genauso. U

2.2 Analyse von Kontrollierbarkeitseigenschaften

Wir wollen nun die Struktur dieser Mengen klidren. Wir leiten die technischen Zwischenre-
sultate dabei fiir R(¢) her und formulieren nur die Hauptresultate auch fir C(t).

Lemma 2.5 (i) R(t) ist fiir alle ¢ > 0 ein Untervektorraum des R".
(ii) R(t) = R(s) fiir alle s,¢ > 0.

Beweis: (i) Zu zeigen ist, dass fiir x1, z2 € R(t) und a € R auch a(z; + z2) € R(t) ist.
Fiir x1, x2 in R(t) existieren Kontrollfunktionen uy, ug € U mit

t
x; = x(t;0,u;) = / eA(t_S)Bui(s)ds.
0
Also gilt fir u = a(u; + ug) die Gleichung

¢ t
z(t;0,u) = / A=) Bu(s)ds = / A=) Ba(uy (s) + ua(s))ds
0 0

t t
= a(/ eA(ts)Bul(s)ds—i-/ eA(tS)BuQ(s)ds> = oz + x2),

0 0
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woraus oz + x2) € R(t) folgt. Dies beweist (i).

(ii) Wir geben hier einen direkten Beweis, die Aussage folgt aber unabhingig davon auch
aus Satz 2.12.

Wir zeigen zuerst die Hilfsaussage

R(t1) € R(t2) (2.2)
fiir 0 < t; < to: Falls y € R(t1) existiert ein u € U mit

x(t1;0,u) = y.
Mit der neuen Kontrolle @ = 0&;,_¢, u(t; — t2 + -) und Korollar 1.10 ergibt sich so

x(t2;0,%) = x(to;ta — t1, x(t2 — 11;0,0), %) = x(ta;ta — t1,0,4) = x(t1;0,u) =y,
—_—

=0

weswegen y € R(ta) gilt.

Als néchstes zeigen wir, dass fiir beliebige 0 < t; < t2 aus der Gleichheit R(t1) = R(t2)
bereits die Gleichheit R(t1) = R(t) fir alle ¢ > t; folgt. Um dies zu zeigen sei =z €
R(2te — t1), es existiere also ein v € U mit x = x(2ty — t1,0,u).

Da x(t2,0,u) € R(t2) und R(t2) = R(t1), existiert ein v € U mit x(t1,0,v) = x(t2,0,u).
Definieren wir nun eine Kontrollfunktion w = v&, u(ta — t1 + -), so gilt mit Korollar 1.10

x(t2,0,w) = x(ta,t1,2(t1,0,v),w)
—_——

:x(t2707u)

= x(ta+ta —t1,t1 +ta —t1,2(t2,0,u), w(ts —ta + -))
—————

=u(")
= x(2ty —t1,0,u) = =

Damit gilt also x € R(t2) und folglich R(t1) = R(t2) = R(2t2 — t1) = R(2(t2 — t1) + t1).
Induktive Wiederholung dieser Konstruktion liefert R(t;) = R(2F(ty — t1) + t1) fiir alle
k € N und damit wegen (2.2) die Behauptung R(t1) = R(¢) fiir alle ¢ > ¢;.

Nun zeigen wir die Behauptung (ii): Sei dazu s > 0 beliebig und sei 0 < sp < ... < Sp41 = $
eine aufsteigende Folge von Zeiten. Dann ist R(sp), . .., R(Sp+1) nach (2.2) eine aufsteigen-
de Folge von n + 2 Unterrdumen des R™. Aus R(sg+1) 7# R(sk) folgt daher dim R(sg+1) >
dim R(sk)+ 1. Wiren also die R(sy) paarweise verschieden, so miisste dim R(sy,+1) > n+1
gelten, was ein Widerspruch zu R(s,+1) C R™ ist, weswegen mindestens zwei der R(sy)
{ibereinstimmen miissen. Nach der vorhergehenden Uberlegung folgt daraus R(t) = R(s)
fiir alle t > s und da s > 0 beliebig war, folgt die Behauptung. 1l

Bemerkung 2.6 Da die Menge R(t) also nicht von ¢ abhéngt, schreiben wir im Folgenden
oft einfach R. a
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Bemerkung 2.7 Die Verbindung von Lemma 2.2 und Lemma 2.5 zeigt also, dass die
Menge der von einem Punkt zg € R™ in einer Zeit ¢ > 0 erreichbaren Zusténde der affine
Unterraum

x(t;20,0) + R

ist, dessen Dimension gerade gleich der von R ist. Beachte, dass diese Menge i.A. nicht
unabhéingig von ¢ ist. Eine Ausnahme ist der Fall R = R", da dann auch z(¢; 2, 0)+R = R”
gilt. In diesem Fall ist jeder Zustand zg zu jedem anderen Zustand z; kontrollierbar,
weswegen wir das System fiir R = R" wvollstindig kontrollierbar oder kurz kontrollierbar
nennen. O

Wie in den Ubungen zu sehen war, kann es bereits fiir recht einfache Kontrollsysteme
ziemlich schwierig sein, die Mengen R und C direkt auszurechnen. Wir wollen daher jetzt
eine einfache Charakterisierung dieser Mengen herleiten. Hierzu ben6tigen wir etwas lineare
Algebra.

Definition 2.8 (i) Ein Unterraum U C R™ heifit A-invariant fiir eine Matrix A € R™*",
falls Av € U fiir alle v € U (oder kurz AU C U) gilt.

(ii) Fiir einen Unterraum V' C R™ und A € R™*" bezeichne
(AlV)

den kleinsten (beziiglich der Dimension) A-invarianten Unterraum von R"™, der V' enthélt.
Beachte, dass ein kleinster solcher Raum existiert und eindeutig ist: Einerseits existiert
mit dem R" selbst ein A-invarianter Unterraum, der V enthilt. Da die Dimension endlich
ist, existiert also auch ein solcher Raum kleinster Dimension. Zudem ist der Schnitt zweier
A-invarianter Unterrdume, die V' enthalten, wieder ein A-invarianter Unterraum, der V'
enthélt. Existieren also mehrere A-invariante Unterrdume kleinster Dimension, die alle V'

enthalten, so miissen diese alle {ibereinstimmen, da ihr Schnitt ansonsten einen solchen
Raum kleinerer Dimension bilden wiirde.

Lemma 2.9 Fiir einen Unterraum V' C R™ und A € R™*"™ gilt

(A|V) =V 4+ AV +... + A" V.

Beweis: “O”: Wegen der A-Invarianz von (A|V) und V C (A|V) gilt
ARV (A V)

fiir alle k € Ny und damit (A|V) DV + AV + ...+ A" V.

“C”: Es geniigt zu zeigen, dass V + AV + ... + A" 'V A-invariant ist, da dann wegen
VCV4HAV + ...+ AW sofort (A|V)CV + AV +...+ A"V folgt.

Zum Beweis der A-Invarianz betrachte das charakteristische Polynom von A

xA(z) =det(zld — A) = 2" + 12"+ ...+ a1z + ao.
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Fiir dieses gilt nach dem Satz von Cayley-Hamilton
XA(A) = A" + an_lAn_l +...+a1A+ apld =0,

woraus
A" = —an_lAnil —...—a A —qpld
folgt. Sei also v € V 4+ AV + ...+ A" V. Dann lisst sich v darstellen als v = vy + Avy +
oo+ AV Ny, fiir vy, ..., vp—1 € V. Damit folgt
Av = Avg+ A%v1 + ...+ A,

= Avyg+ szl - an_lAnflvn_l — .. —a1Avy_1 — agUp—1

= G+ A+...+ A" 5,
fiir geeignete ¥, ...,0,—1 € V. Damit folgt Av € V + AV + ... + A1V, also die A-
Invarianz. U
Wir werden nun den Spezialfall betrachten, dass V = im B das Bild der Matrix B ist. In
diesem Fall sagt Lemma 2.9, dass

(A|im B) = {Bxo+ABx1+.. +A" 'Bx, 1 |x0,..., 2,1 ER™} =im(BAB ... A" 'B),

wobei (BAB ... A" 1B) € R™ (™) jst,

Definition 2.10 Die Matrix (B AB ... A" 'B) € R™*(™™) heiBt Kontrollierbarkeitssma-
triz des Systems (1.3). o

Im Folgenden verwenden wir fiir t € R die Notation
t
Wy = / eA"BBT (eA™) T dr.
0

Beachte, dass W, € R™*" gilt und W; damit ein linearer Operator auf dem R"™ ist. Die
Matrix Wy wird Kontrollierbarkeitsgramsche genannt und ist symmetrisch und positiv se-
midefinit, denn es gilt

t
T Wy = / 2TeA"BBT (A 2z dr > 0.
0

=[BT (eA7)Tx||2>0
Fiir das Bild im W; dieses Operators gilt das folgende Lemma.
Lemma 2.11 Fiir alle ¢ > 0 gilt (A |im B) = im W;.

Beweis: Wir zeigen (A |im B)* = (im W;)*.
“C”: Sei x € (A|im B)*, also 27 A¥B = 0 fiir alle k € Ng. Dann gilt
— thzT A*B
zTeMB = Z P22

k!
k=0
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und damit 27 W, = 0, also € (im W;)*.

“D7: Sei x € (im W;)* fiir ein ¢ > 0. Dann gilt
t
0=al Wi = / | BT (eA) T z||2dr,
0

woraus wegen der Stetigkeit des Integranden 27e4™B = (BT (e4A7)T2)T = 0 folgt.

eAT

Sukzessives Differenzieren von 1 B nach 7 liefert

2T AReA™"B =0

fiir alle k € No. Fiir 7 = 0 folgt 27 A¥B = 0, also = € (im A*B)* fiir alle k € Ng und damit
auch z € [im (BAB ... A" 'B)]* = (A|im B)*. 0
Der folgende Satz ist das Hauptresultat iiber die Struktur der Erreichbarkeits- und Kon-
trollierbarkeitsmengen.

Satz 2.12 Fiir das System (1.3) gilt fiir alle t > 0

R(t)=C(t) = (A|im B) =im (B AB ... A" 'B).

Beweis: Die Gleichheit (A |im B) = im (B AB ... A"~!B) wurde bereits in der Rechnung
vor Definition 2.10 gezeigt. Wir zeigen R(t) = (A|im B) (woraus insbesondere wiederum
die Unabhéngigkeit von R(t) von ¢ folgt). Die Aussage fiir C(t) folgt dann mit Lemma 2.4,
denn es gilt (A|im B) = (—A|im — B).

“C”: Sei x = x(t;0,u) € R(t). Nach der allgemeinen Losungsformel ist

t
x:/ A7) Bu(r)dr.
0

Nun gilt fiir all 7 € [0, ¢] nach Definition von (A |im B)

Alt—1) =)k -
e Bu(r) Z x A¥Bu(r) € (A|im B)

und damit auch z € (A|im B), da die Integration iiber Elemente eines Unterraums wieder

ein Element dieses Unterraums ergibt.

“D7: Sei x € (A]im B) und ¢ > 0 beliebig. Dann existiert nach Lemma 2.11 ein ein z € R"
mit z = W;z. Definieren wir nun u € U durch u(r) := BT (eAt="NT2 fiir 7 € [0,1], so gilt

t
x(t;0,u) = / AT BB (AN 2dr = Wiz =
0

und damit z € R(t). U

Beachte, dass der Beweis konstruktiv ist: er liefert eine Formel fiir die Kontrollfunktion w,
mit der man von 0 nach x steuern kann.
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Korollar 2.13 (Kalman-Kriterium)
Das System (1.3) ist genau dann vollstindig kontrollierbar, wenn

rg(BAB ... A" 'B) =n
ist. In diesem Fall nennen wir das Matrizenpaar (A, B) kontrollierbar.

Wenn (A, B) nicht kontrollierbar ist, kann man den Zustandsraum R™ wie folgt aufteilen,
um das Paar (A, B) in seinen kontrollierbaren und unkontrollierbaren Anteil zu zerlegen.

Lemma 2.14 Sei (A, B) nicht kontrollierbar, d.h., r := dim(A |im B) < n. Dann existiert
ein invertierbares T' € R™*", so dass A = T~ 'AT und B = T~ 'B die Form

o A1 A2 o Bl
(0 a) =)
mit A; € R™", Ay € R Ag ¢ R(—7)*(=7) " B € R™™ hesitzen, wobei das Paar

(A1, By) kontrollierbar ist. Insbesondere hat das System nach Koordinatentransformation

mit T also die Form
21 (t) = Alzl(t) —i—AQZQ(t) + Blu(t)

Zo(t) = Aszo(t)
mit z1(¢) € R" und z5(t) € R"".

Beweis: Ubungsaufgabe.

Beachte, dass sich das charakteristische Polynom einer Matrix bei Koordinatentransforma-
tionen nicht veréndert. Es gilt also

xa(z) = det(21d — A) = det(21d — A) = det(zId — A) - det(21d — As) = xa,(2) - X45(2).

Dies motiviert die folgende Definition.

Definition 2.15 Wir nennen x4, den kontrollierbaren und x4, den unkontrollierbaren
Anteil des charakteristischen Polynoms x 4. a

Der folgende Satz liefert alternative Charakterisierungen der Kontrollierbarkeit, die oh-
ne die Berechnung der Kontrollierbarkeitsmatrix auskommen. Hierbei bezeichnet (AId —
A|B) € R™("+t™) die Matrix, die durch Nebeneinanderschreiben der Matrizen A\Id — A
und B entsteht.

Satz 2.16 (Hautus-Kriterium)
Die folgenden Bedingungen sind dquivalent:

(i) (A, B) ist kontrollierbar
(ii) rg(AMld — A|B) = n fiir alle A € C
(iii) rg(Ald — A | B) = n fiir alle Eigenwerte A € C von A
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Beweis: Wir beweisen zuerst “(ii) < (iii)” und dann “(i) < (ii)”.
“(ii) = (iii)”: klar
“(ii) < (iii)”: Es sei A € C kein Eigenwert von A. Dann gilt det(Ad — A) # 0, woraus
rg(Ald — A) = n folgt. Hieraus folgt (ii) wegen rg(Ald — A | B) > rg(Ald — A).
“(i) < (ii)”: Wir beweisen dies mit Kontraposition, zeigen also “nicht (i) < nicht (ii)”.
“nicht (i) <= nicht (ii)”: Wenn (ii) nicht gilt, existiert ein A € C mit rg(A\ld — A|B) < n.
Also existiert ein p € R”, p # 0 mit p” (Ad — A| B) = 0, also
pr A= X\p? und p"B =0.
Aus der ersten Gleichheit folgt p” A¥ = \fpT und damit insgesamt
p'A*B=\p'B =0

fir k =0,...,n — 1. Also gilt p? (BAB ... A" 'B) = 0, womit rg(BAB ... A" 'B) <n
ist. Also ist (A, B) nicht kontrollierbar.
“nicht (i) = nicht (ii)”: Wenn (A, B) nicht kontrollierbar ist, existiert die Zerlegung

A=T71AT = < fél fé > B=T"'B= ( 131 )
gemifl Lemma 2.14 mit Koordinatentransformationsmatrix 7.
Sei nun A € C ein Eigenwert von Al zum Eigenvektor v. Dann gilt v (AId — A3) = 0.
Damit gilt fiir w? = (0,v7T)

wl(AId — A) = (07 (M — A;) + 070, 07(—Az) + (A — 43)) = 0

und

Mit p? = wT T~ # 0 folgt dann
p'ANd—A|B)=w'T7'(A\d— A|B) = (w" (A\ld — A)T~' |w”B) =0,

weswegen (ii) nicht gilt. U

Bemerkung 2.17 Fiir zeitdiskrete Systems (1.4) mit U = R™ sind die Bedingungen fiir
vollstédndige Kontrollierbarkeit vollkommen identisch. Es gibt aber einen entscheidenden
Unterschied: Wahrend Kontrollierbarkeit im Kontinuierlichen immer Kontrollierbarkeit in
beliebig kurzer Zeit bedeutet, braucht man im Zeitdiskreten im schlechtesten Fall bis zu n
Zeitschritte. Ein Beispiel hierfiir ist das System

x(k—i—l)—(g é):r(k)—l—((l))u(k)

0

10
barkeit gilt. Um das System von (0,0)” nach (1,1)7 zu steuern, sind aber mindestens zwei
Zeitschritte notwendig. Lemma 2.5 gilt im Zeitdiskreten tatséchlich nur fiir s, > n. o

mit 2z € R? und v € R. Hier gilt (B AB) = < >, weswegen vollstindige Kontrollier-



Kapitel 3

Stabilitdt und Stabilisierung

In diesem Kapitel werden wir uns mit dem Problem der Stabilisierung linearer Kontrollsy-
steme beschiftigen. Bevor wir dieses Problem angehen, miissen wir zunéchst kliren, was
wir unter Stabilitéit verstehen.

3.1 Definitionen

In diesem und den folgenden zwei Abschnitten werden wir wichtige Resultate der Stabi-
litdtstheorie linearer zeitinvarianter Differentialgleichungen (1.8)

(t) = Ax(t)

einfiihren. Die Darstellung wird dabei relativ knapp gehalten; eine ausfiihrlichere Be-
handlung dieses Themas findet sich z.B. in dem Skript [?] sowie in vielen Lehrbiichern
tiber gewohnliche Differentialgleichungen. Wir beschréinken uns hier auf die Stabilitdt von
Gleichgewichten.

Definition 3.1 Ein Punkt 2* € R" heifit Gleichgewicht (auch Ruhelage oder Equilibrium)
einer gewohnlichen Differentialgleichung, falls fiir die zugehorige Lésung

x(t;x*) = o* fir allet € R

gilt. a

Gleichgewichte haben wir bereits ohne formale Definition im einfithrenden Kapitel be-
trachtet. Man rechnet leicht nach, dass ein Punkt z* genau dann ein Gleichgewicht einer
allgemeinen zeitinvarianten Differentialgleichung & (t) = f(z(t)) ist, wenn f(z*) = 0 ist. Fiir
die lineare Differentialgleichung (1.8) ist daher der Punkt 2* = 0 immer ein Gleichgewicht.
Dieses Gleichgewicht x* = 0 wollen wir in der folgenden Analyse niher betrachten.

Definition 3.2 Sei z* = 0 das Gleichgewicht der linearen Differentialgleichung (1.8).

19
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(i) Das Gleichgewicht 2* = 0 heifit stabil, falls fiir jedes ¢ > 0 ein § > 0 existiert, so dass
die Ungleichung
|z (t; zo)|| < e fiir alle t >0

fiir alle Anfangswerte zo € R™ mit ||zo|| < ¢ erfiillt ist.

(ii) Das Gleichgweicht * = 0 heifit lokal asymptotisch stabil, falls es stabil ist und dariiber-
hinaus
tliglo z(t; o) =0

gilt fiir alle Anfangswerte xy aus einer offenen Umgebung N von xz* = 0.

(iii) Das Gleichgewicht z* = 0 hei8t global asymptotisch stabil, falls (ii) mit U = R" erfiillt

ist.

(iv) Das Gleichgewicht x* = 0 heifit lokal bzw. global exponentiell stabil, falls Konstanten
c,0 > 0 existieren, so dass die Ungleichung

llz(t; z0)|| < ce™ 7|0 fiir alle t > 0

fiir alle zp aus einer Umgebung U von z* = 0 (mit U = R™ im globalen Fall) erfiillt ist.
O

Bemerkung 3.3 Die Stabilitéit aus (i) wird auch ,,Stabilitdt im Sinne von Ljapunov® ge-
nannt, da dieses Konzept Ende des 19. Jahrhunderts vom russischen Mathematiker Alex-
ander M. Ljapunov eingefiihrt wurde. Beachte, dass aus den Definitionen die Implikationen

(lokal/global) exponentiell stabil =- (lokal/global) asymptotisch stabil = stabil

folgen. Die zweite Implikation ergibt sich direkt aus der Definition. Dass aus exponentieller

Stabilitdt die asymptotische Stabilitét folgt, sieht man folgendermaflen:

Fiir ein gegebenes ¢ folgt (i) mit 6 = ¢/c¢, denn damit gilt fiir ||zg|| < § die Ungleichung

lz(t; 20)|| < ce 7 |xo|l < c|lzo]| < e. Die in (ii) geforderte Konvergenz ist offensichtlich.
O

3.2 Eigenwertkriterien

Der folgende Satz gibt Kriterien an die Matrix A, mit denen man Stabilitét leicht {iber-
priifen kann.

Satz 3.4 Betrachte die lineare zeintinvariante Differentialgleichung (1.8) fiir eine Matrix
A € R™" Seien \,...,Aq € C, \; = a; + ib;, die Eigenwerte der Matrix A, die hier
so angeordnet seien, dass jedem Eigenwert A; ein Jordan-Block J; in der Jordan’schen
Normalform entspricht. Dann gilt:

(i) Das Gleichgewicht x* = 0 ist stabil genau dann, wenn alle Eigenwerte )\; nichtpositiven
Realteil a@; < 0 besitzen und fiir alle Eigenwerte mit Realteil a; = 0 der entsprechende
Jordan-Block J; eindimensional ist.

(ii) Das Gleichgewicht z* = 0 ist lokal asymptotisch stabil genau dann, wenn alle Eigen-
werte \; negativen Realteil a; < 0 besitzen. In diesem Fall nennt man die Matrix A eine
Hurwitz-Matriz oder kurz Hurwitz.
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Beweisskizze: Zunichst iiberlegt man sich, dass alle Stabilitdtseigenschaften unter li-
nearen Koordinatentransformationen mit invertierbarer Transformationsmatrix T° € R™*"
erhalten bleiben, da die Losungen y(t; yp) des transformierten Systems mittels

y(tiyo) = T~ 'a(t; Tyo)
ineinander umgerechnet werden koénnen.

Es reicht also, die Stabilitdtseigenschaften fiir die Jordan’sche Normalform

Ji 0 ... 0
J— 0 0
0 0
0 0 Jg
mit den Jordan-Blocken der Form
N1 0 0
0 XN 1 :
=1+ o 0 0 | (3.1)
. . . >\l 1
0 -+ - 0 N

j = 1,...,d, der Matrix A zu beweisen. Wir bezeichnen die zu #(t) = Jz(t) gehorigen
Losungen wiederum mit z(t; zg).

Aus den Eigenschaften der Matrix-Exponentialfunktion folgt nun, dass die allgemeine
Losung

z(t; z0) = e’lag
fir J die Form
et 0 ... 0
2(t: 20) = 0 o0 zo
o . .0
0 ... 0 et
besitzt. Weiter rechnet man nach, dass
t2 tmfl
Lt 5 - o
0 1 t
eJlt — e)\ﬂf ﬁ
2!
: . . 1 t
0 -+ -~ 0 1

ist, wobei eM? die (iibliche) skalare Exponentialfunktion ist, fiir die

— 0, a; <0
|eMit| = et =1, a=0
— 00, a; >0
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fiir t — oo gilt.
Die Eintriige von e”!! sind also genau dann beschrinkt, wenn die Bedingung aus (i) erfiillt

ist. Weil zudem fiir jedes k € N und jedes € > 0 ein ¢ > 0 existiert mit
etttk < celatolt (3.2)

konvergieren die Eintriige von e”!! genau dann gegen 0, wenn (ii) erfiillt ist.

Dieses Verhalten der Matrix-Eintrage iibertrégt sich bei der Matrix-Vektor-Multiplikation
e’tzq auf die Losungen, weswegen es fquivalent zur Stabilitit bzw. asymptotischen Stabi-
litat ist. U

Der Beweis von (ii) zeigt tatséichlich globale exponentielle Stabilitéit, da die Eintrdge in
(3.2) exponentiell gegen 0 konvergieren. Die Konsequenz dieser Tatsache formulieren wir
explizit in dem folgenden Satz.

Satz 3.5 Betrachte die lineare zeintinvariante Differentialgleichung (1.8) fiir eine Matrix
A € R"™ ™, Seien A1,..., g € C, \j = a; + ib;, die Eigenwerte der Matrix A. Dann sind die
folgenden vier Eigenschaften dquivalent.

(i) Alle Eigenwerte \; besitzen negativen Realteil a; < 0, d.h. die Matrix ist Hurwitz.
(ii) Das Gleichgewicht z* = 0 ist lokal asymptotisch stabil.

(iii) Das Gleichgewicht z* = 0 ist global exponentiell stabil, wobei die Konstante o > 0
aus Definition 3.2(iv) beliebig aus dem Intervall (0, — max;—; _qa;) gewéhlt werden kann.

(iv) Die Norm der Matrix-Exponentialfunktion erfiillt ||e4t|| < ce™?* fiir ¢ aus (iii) und
eine von ¢ abhingige Konstante ¢ > 0.

Beweis: (iii) = (ii) folgt mit Bemerkung 3.3, (ii) = (i) folgt aus Satz 3.4(ii) und (i) =
(iii) wurde im Beweis von Satz 3.4(ii) gezeigt. Schlieflich folgt (iii) < (iv) sofort aus der
Definition der induzierten Matrix-Norm (und gilt dann fiir alle Normen auf R™*"  weil
diese dquivalent sind). U

Beispiel 3.6 Wir betrachten das Pendelmodell aus Kapitel 1 fiir v = 0 und ohne Beriick-
sichtigung der Bewegung des Wagens. Die Linearisierung im unteren ( = herunterhéngen-
den) Gleichgewicht z* = 7 liefert
0 1
4= < -9 —k )

1 1
A1/2 = —§]€:|: 5\/ k2 —4g

Hierbei ist \/k2 — 4g entweder komplex oder < k, weswegen man in jedem Fall Re); 2 <0
und damit exponentielle Stabilitiat erhélt.

mit Eigenwerten

Die Linearisierung im oberen ( = aufgerichteten) Gleichgewicht z* = 0 lautet

= )
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liefert. Hier erhilt man die Eigenwerte

1 1
)\1/2:—§k’i§ k2+4,

deren grofierer wegen \/k2 +4g > k immer positiv ist. Man erhélt also keine Stabilitiit.
O

Bemerkung 3.7 Fiir zeitdiskrete Systeme bleibt Satz 3.5 im Prinzip gleich, allerdings
dndert sich in (i) die Bedingung “Realteil a; < 0” zu “Betrag |A\| < 1”7 und in (iv) wird
aus ||e4t|| < ce™* die Ungleichung || A*|| < ce~“%. Eine Matrix, bei der alle Eigenwerte die
Ungleichung |\;| < 1 erfiillen, heifit Schur-stabil. O

3.3 Ljapunov Funktionen

In diesem Kapitel werden wir ein wichtiges Hilfsmittel zur Untersuchung asymptotisch
stabiler Differentialgleichungen behandeln, ndmlich die sogenannten Ljapunov Funktionen.
Asymptotische (und auch exponentielle Stabilitdt) verlangen nur, dass die Norm ||z (¢)]]
einer Losung fiir ¢ — oo abnimmt. Fiir viele Anwendungen wére es aber viel einfacher,
wenn die Norm streng monoton in ¢ fallen wiirde. Dies ist natiirlich im Allgemeinen nicht
zu erwarten. Wir kénnen die strenge Monotonie aber erhalten, wenn wir die euklidische
Norm ||z(t)|| durch eine allgemeinere Funktion, nédmlich gerade die Ljapunov Funktion,
ersetzen.

Fiir lineare Systeme kénnen wir uns auf sogenannte quadratische Ljapunov Funktionen
beschréinken, wie sie durch die folgende Definition gegeben sind.

Definition 3.8 Sei A € R™*™. Eine stetig differenzierbare Funktion V : R™ — Rg heifit
(quadratische) Ljapunov Funktion fiir A, falls positive reelle Konstanten ¢, c2,c3 > 0 exi-
stieren, so dass die Ungleichungen

allz]? < V(w) < coloff?

und
DV (x)Az < —63||3UH2

fir alle x € R™ gelten. a

Der folgende Satz zeigt, dass die Existenz einer Ljapunov Funktion exponentielle Stabilitéat
der zugehorigen Differentialgleichung impliziert.

Satz 3.9 Seien A € R™*" eine Matrix und x(¢; xg) die Losungen des zugehorigen linearen
Anfangswertproblems (1.8), (1.9). Dann gilt: Falls eine quadratische Ljapunov Funktion
mit Konstanten ¢y, co, c3 > 0 existiert, so erfiillen alle Losungen die Abschétzung

(5 o) || < ce™ |||

fir o = c3/2co und ¢ = /co/c1, d.h. das Gleichgewicht x* = 0 ist exponentiell stabil und
die Matrix A ist Hurwitz.
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Beweis: Aus der Ableitungsbedingung fiir z = x(7, z¢) folgt

d

7 V(xz(t;xo)) = DV (z(1;20))2(1520) = DV (2(T; 20) ) A2(T; 20) < —03|]93(T;x0)|]2

t=1
Wegen —||z||? < —V (x)/cy folgt damit fiir A = c3/co die Ungleichung

%v«z(t; 70)) < =AV (@ (t; 20))-

Aus dieser Differentialungleichung folgt die Ungleichung
V(x(t;z0)) < e MV (),

(siehe z.B. den Beweis von [1, Satz 8.2]). Mit den Abschéitzungen fiir V(x) erhalten wir
daraus

1
la(t: o) [* < =™V (o) < Z2e|faql
C1 C1
und damit durch Ziehen der Quadratwurzel auf beiden Seiten die Ungleichung
(5 o) | < ce™"[|avo|

fiir ¢ = \/ca/c1 und o = \/2. U

Wir wollen uns nun mit einer speziellen Klasse von Ljapunov Funktionen beschiéftigen, bei
denen V' durch eine Bilinearform der Form x” Pz dargestellt wird, wobei P € R™*™,

Wir erinnern daran, dass eine Matrix P € R™" positiv definit heifit, falls 7 Pz > 0
ist fir alle x € R™ mit  # 0. Das folgende Lemma fasst zwei Eigenschaften bilinearer
Abbildungen zusammen.

Lemma 3.10 Sei P € R™*". Dann gilt: (i) Es existiert eine Konstante ca > 0, so dass
2 T 2 po n
—co||z||* < " Pz < co|z||” fiir alle z € R".
(ii) P ist positiv definit genau dann, wenn eine Konstante ¢; > 0 existiert mit

c1l|z||? < 2T Pz fiir alle z € R™.

Beweis: Aus der Bilinearitét folgt fiir alle z € R™ mit  # 0 und y = z/||z|| die Gleichung

TPz = ||z||*y" Py. (3.3)

Da y” Py eine stetige Abbildung in y € R™ ist, nimmt sie auf der kompakten Menge
{y € R"| |ly|]| = 1} ein Maximum c¢pax und ein Minimum ¢, an.

(i) Die Ungleichung (i) folgt nun aus (3.3) mit ca = max{cmax, —Cmin }-

(ii) Falls P positiv definit ist, ist cpin > 0, und (ii) folgt mit ¢; = cpin. Andererseits folgt die
positive Definitheit von P sofort aus (ii), also erhalten wir die behauptete Aquivalenz. U

Hiermit erhalten wir die folgende Aussage.
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Lemma 3.11 Seien A, P € R™ " und c3 > 0 so, dass die Funktion V(z) = 27 Pz die
Ungleichung
DV (z)Azx < —c3||z||?

fiir alle x € R™ erfiillt. Dann gilt: P ist genau dann positiv definit ist, wenn A Hurwitz ist.
In diesem Fall ist V' eine quadratische Ljapunov Funktion.

Beweis: Falls P positiv definit ist, folgt aus Lemma 3.10(ii) sofort, dass V' eine quadratische
Ljapunov Funktion ist, womit 2* = 0 exponentiell stabil und A folglich Hurwitz ist.

Falls P nicht positiv definit ist, gibt es ein 2o € R™ mit xy # 0 und V(z¢) < 0. Weil sich
verschiedene Losungen der Differentialgleichung nicht schneiden kénnen, kann die Losung
x(t;xp) mit xg # 0 niemals 0 werden. Daher folgt aus der Ableitungsbedingung, dass
V(z(t; zp)) fiir alle t > 0 streng monoton féllt. Insbesondere gibt es also ein ¢ > 0, so dass
V(z(t;z0)) < —c fur alle ¢ > 1. Mit der ersten Abschétzung aus Lemma 3.10(i) folgt dann

|z (t; 20)||? > ¢/co > 0 fiir alle ¢ > 1.
Also konvergiert z(t;xo) nicht gegen den Nullpunkt, weswegen z* = 0 nicht exponentiell
stabil und A folglich nicht Hurwitz ist. U

Wir koénnen das Ableitungskriterium vereinfachen, indem wir die bilineare Form der Lja-
punov Funktion ausnutzen.

Lemma 3.12 Fiir eine bilineare Funktion V(z) = 27 Px sind dquivalent:
(i) DV (z)Az < —cs||z|? fiir alle x € R™ und eine Konstante c3 > 0
(ii) Die Matrix C = —AT P — PA ist positiv definit.

Beweis: Wegen 27 Py = y” PTz gilt %(a;TPy)Am = %(yTPTx)Ax =T PT Az = 2T AT Py.
Daraus folgt nach Produktregel

DV (z)Ax = 2T AT Py 4+ 2T PAzx = 27 (ATP 4+ PA)x = —2" Cx.
Bedingung (i) ist also dquivalent zu
2T Cx > ¢3|z||? fiir alle z € R™.
Wegen Lemma 3.10 (ii) ist diese Bedingung genau dann fiir ein ¢ > 0 erfiillt, wenn C

positiv definit ist. 0

Die Gleichung in Lemma 3.12 (iii) wird auch Ljapunov Gleichung genannt. Es liegt nun
nahe, diese Gleichung zur Konstruktion von Ljapunov Funktionen zu verwenden. Die Frage
ist, wann kann man zu einer gegebenen Matrix A und einer gegebenen positiv definiten
Matrix C eine Matrix P finden, so dass ATP + PA = —C gilt? Das folgende Lemma
beantwortet diese Frage.

Lemma 3.13 Fiir eine Matrix A € R™*™ und eine positiv definite Matrix C' € R"*™ hat
die Ljapunov Gleichung
ATP+PA=-C (3-4)

genau dann eine (sogar eindeutige) positiv definite Losung P € R™*", wenn A Hurwitz ist.
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Beweis: Falls eine positiv definite Losung P von (3.4) existiert, ist die Funktion V(z) =
2T Pz wegen den Lemmas 3.12 und 3.11 eine quadratische Lyapunov Funktion, womit A
Hurwitz ist.

Sei umgekehrt A Hurwitz und C positiv definit. Wir zeigen zunichst, dass (3.4) losbar
ist. O.B.d.A. kdnnen wir annehmen, dass A in Jordan’scher Normalform vorliegt, denn fiir
A = TAT! sieht man leicht, dass P (3.4) genau dann 16st, wenn P = (T-H)TPT~! die
Gleichung

ATP+PA=—(1HTCcT™!

16st. Wir konnen also annehmen, dass A von der Form

o B 0 - 0
0 a9 52 .
A= S B 0 (3.5)
: . - Qp_1 anl
0 - o 0 an

ist, wobei die a; gerade Eigenwerte von A sind und die 5; entweder 0 oder 1 sind. Schreibt
man die Spalten von P untereinander in einen Spaltenvektor p € R"Q, und macht das gleiche
fiir die Matrix C' und einen Vektor ¢, so ist (3.4) dquivalent zu einem Gleichungssystem

Ap = —c,

mit einer geeigneten Matrix A € C**"*, Falls A in der Form (3.5) ist, sieht man durch
Nachrechnen der Koeflizienten, dass A eine untere Dreiecksmatrix ist, d.h.

a0 0 0
* a9 0
A= 0 ,
O_énQ,l 0
* * a2

wobei * beliebige Werte bezeichnet, und die &; von der Form &; = \; + A, fiir Eigenwerte
der Matrix A sind. Aus der linearen Algebra ist bekannt, dass

(i) bei einer Dreiecksmatrix die Elemente auf der Diagonalen gerade die Eigenwerte sind
(ii) eine Matrix genau dann invertierbar ist, wenn alle Eigenwerte ungleich Null sind.

Da A Hurwitz ist und folglich alle A; negativen Realteil haben, sind die @; alle ungleich Null,
also ist die Matrix A wegen (i) und (ii) invertierbar. Demnach gibt es genau eine Losung
des Gleichungssystems Ap = ¢ und damit genau eine Losung P der Ljapunov Gleichung
(3.4).

Es bleibt zu zeigen, dass diese Losung P positiv definit ist. Wegen Lemma 3.12 erfiillt P
alle Voraussetzungen von Lemma 3.11. Da A Hurwitz ist, muss P also nach Lemma 3.11
positiv definit sein. U

Der folgende Satz fasst das Hauptresultat dieses Abschnitts zusammen.
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Satz 3.14 Fiir A € R"*" gilt: Eine quadratische Ljapunov Funktion fiir die lineare Diffe-
rentialgleichung (1.8) existiert genau dann, wenn z* = 0 exponentiell stabil ist, d.h. wenn
die Matrix A Hurwitz ist.

Beweis: Sei eine quadratische Ljapunov Funktion V' gegeben. Dann ist A nach Satz 3.9
Hurwitz.

Sei A umgekehrt Hurwitz. Dann existiert nach Lemma 3.13 eine positiv definite Matrix P,
die die Ljapunov Gleichung (3.4) fiir eine positiv definite Matrix C' 16st. Wegen Lemma
3.12 und Lemma 3.11 ist V(z) = 27 Pz dann eine quadratische Ljapunov Funktion. U

Die Existenz einer quadratischen Ljapunov Funktion ist also eine notwendige und hinrei-
chende Bedingung fiir die exponentielle Stabilitdt des Gleichgewichts z* = 0 und liefert
damit eine Charakterisierung, die dquivalent zu der Eigenwertbedingung aus Satz 3.5 ist.

Beispiel 3.15 Fiir das im unteren Gleichgewicht linearisierte Pendelmodell mit

T

ist die bilineare Ljapunov Funktion zu C = Id gegeben durch die Matrix

k2+92+g L
29k 2
P= g 7.
1 g+1

2g 29k

Bemerkung 3.16 Fiir zeitdiskrete Systeme dndert sich die untere Ungleichung in Defini-

tion 3.8 zu
V(Az) = V(z) < —03HmH2.

Die Lyapunov-Gleichung (3.4) dndert sich dadurch zu
ATPA—-P=—C. (3.6)

Mit diesen Anderungen bleiben alle Siitze in diesem Abschnitt giiltig. a

3.4 Das Stabilisierungsproblem fiir lineare Kontrollsysteme

Wir haben nun das technische Werkzeug, um uns wieder den linearen Kontrollsystemen zu
widmen. In den Ubungen haben wir gesehen, dass die Vorausberechnung einer Kontroll-
funktion u(t) auf grofien Zeithorizonten i.A. nicht funktioniert, um ein System in einen
gegebenen Punkt (0.B.d.A. 0) zu steuern und dort zu halten — selbst die geringen Fehler
einer genauen numerischen Simulation reichten dort aus, um die Losung weit von dem
gewiinschten Punkt zu entfernen.

Wir machen daher nun einen anderen Ansatz. Statt die Kontrolle als Steuerung — abhéngig
von t — anzusetzen, wahlen wir nun eine Regelung, in der wir die Kontrollfunktion in
jedem Zeitpunkt zustandsabhéngig als u(t) = F(xz(t)) fiir eine zu bestimmende Funktion
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F : R" — R™ ansetzen. Eine solche Funktion, die jedem Zustand einen Kontrollwert
zuordnet, nennt man Feedback (auch Zustandsfeedback, (Zustands-)Riickfihrung oder kurz
Regler). Da unser System linear ist, liegt es nahe, die Feedback-Funktion F’ linear zu wéhlen,
also u = Fx fiir ein F' € R™*™. Dies hat den Vorteil, dass das entstehende System

#(t) = Az(t) + BFz(t) = (A + BF)z(t)

eine lineare zeitinvariante Differentialgleichung wird, auf die wir die Theorie der vorher-
gehenden Abschnitte anwenden kénnen. Wir bezeichnen die Losungen dieses Systems mit
x(t, xo, F).

Um nun einen Zustand nach 0 zu steuern und ihn dort zu halten, kénnen wir das folgende
Stabilisierungsproblem l6sen.

Definition 3.17 Gegeben sei ein lineares Kontrollsystem (1.3)
z(t) = Az(t) + Bu(t)

mit Matrizen A € R"" B € R™™. Das (Feedback-) Stabilisierungsproblem fiir (1.3)
besteht darin, eine lineare Abbildung F' : R™ — R™ (bzw. die dazugehorige Matrix F' €
R™*™) zu finden, so dass die lineare gewohnliche Differentialgleichung

#(t) = (A+ BF)a(t)

asymptotisch stabil ist. Diese Gleichung wird als geschlossener Regelkreis oder closed loop
System bezeichnet. o

Aus unseren Kriterien fiir asymptotische Stabilitdt kann man leicht das folgende Lemma
ableiten.

Lemma 3.18 Gegeben seien zwei Matrizen A € R™ "™ und B € R™ ™. Dann 16st die
Matrix F' € R™*™ das Stabilisierungsproblem, falls alle Eigenwerte der Matrix A + BF' €
R™*™ negativen Realteil haben.

Wir werden uns im weiteren Verlauf mit der Frage beschéftigen, wann — zu gegebenen
Matrizen A und B — eine solche Matrix F' existiert und wie man sie berechnen kann.

Beispiel 3.19 Als einfaches und intuitiv losbares Beispiel fiir ein Stabilisierungsproblem
betrachten wir ein (sehr einfaches) Modell fiir eine Heizungsregelung. Nehmen wir an, dass
wir wir die Temperatur x; in einem Raum an einem festgelegten Messpunkt regeln wollen.
Der Einfachheit halber sei die gewiinschte Temperatur durch Verschiebung der Skala auf
x} = 0 festgesetzt!. In dem Raum befindet sich ein Heizkérper mit Temperatur o, auf die
wir mit der Kontrolle v Einfluss nehmen kénnen. Die Verdnderung von z9 sei durch die
Differentialgleichung @2 (t) = wu(t) beschrieben, d.h. die Kontrolle u regelt die Zunahme (falls
u > 0) bzw. Abnahme (falls v < 0) der Temperatur. Fiir die Temperatur z; im Messpunkt

'Die Grofle x1 sollte also als Abweichung von der gewiinschten Temperatur und nicht als absoluter Wert
interpretiert werden.
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nehmen wir an, dass sie der Differentialgleichung 1 (t) = —x1(t) 4+ z2(t) geniigt, d.h. fiir
konstante Heiztemperatur xo ergibt sich

x1(t) = e tw1(0) + (1 — e "o (0).

Mit anderen Worten nehmen wir an, dass die Raumtemperatur x; im Messpunkt exponen-
tiell gegen die Temperatur des Heizkorpers konvergiert.

Aus diesem Modell erhalten wir das Kontrollsystem

i(t) = < e )x(t)+ ( ; )u(t).

Eine naheliegende Regelstrategie ergibt sich nun wie folgt: Falls z; > x] = 0 ist, so ver-
mindern wir die Temperatur in x9, d.h., wir wihlen v < 0. Im umgekehrten Fall, d.h.
falls 1 < 27 = 0 ist, erhohen wir die Temperatur und setzen u > 0. Da unser Feedback
linear sein soll, ldsst sich dies durch die Wahl F'(z) = —Az; fiir ein A > 0 erreichen, oder, in
Matrix-Schreibweise F' = (—\, 0) (beachte, dass hier n = 2 und m = 1 ist, F' also eine 1 x 2-
Matrix bzw. ein 2-dimensionaler Zeilenvektor ist). Damit erhalten wir das riickgekoppelte

System
#(t) = < j é )x(t).

Berechnet man die Eigenwerte fiir A > 0, so sieht man, dass alle Realteile negativ sind. Wir
haben also (ohne es zu wollen) das Stabilisierungsproblem gelost und folglich konvergieren
x1(t) und zo(t) fiir alle beliebige Anfangswerte exponentiell schnell gegen 0, insbesondere
konvergiert 1 exponentiell schnell gegen die gewiinschte Temperatur 7 = 0. Damit ha-
ben wir bewiesen, dass unser von Hand konstruierter Regler tatsidchlich das gewiinschte
Ergebnis erzielt.

Falls wir die Temperatur zo am Heizkérper messen kénnen, so konnen wir auch F(x) =
—Azg, bzw. in Matrix-Schreibweise F' = (0, —\) setzen. Wiederum sieht man durch Be-
trachtung der Eigenwerte, dass das riickgekoppelte System fiir alle A > 0 exponentiell stabil
ist und damit das gewiinschte Verhalten erzielt wird. Das Verhalten dieses Systems mit den
zwel verschiedenen Feedbacks ist allerdings recht unterschiedlich. Wir werden dies in den
Ubungen genauer untersuchen. |

Bemerkung 3.20 In der Praxis ist der Zustand x(t) eines Systems oft nicht vollstindig
messbar, stattdessen hat man nur Zugriff auf einen Ausgangsvektor y = Cx fiir eine Matrix
C € R¥", In diesem Fall kann ein Feedback F nur vom Ausgangsvektor y abhéingen, man
spricht von einem Ausgangsfeedback.

Tatséichlich haben wir im obigen Beispiel so etwas Ahnliches gemacht, indem wir zur Kon-
struktion von F' nur die ,Information“ aus der Variablen z; bzw. x5 verwendet haben.
Wir werden im Folgenden zun&chst annehmen, dass alle Zusténde messbar sind und den
allgemeinen Fall in Kapitel 4 behandeln. a
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3.5 Losung des Stabilisierungsproblems mit eindimensiona-
ler Kontrolle

In diesem Abschnitt werden wir Bedingungen untersuchen, unter denen wir eine Losung
fiir das Stabilisierungsproblems aus Definition 3.17 mit eindimensionaler Kontrolle finden
konnen. Insbesondere werden wir eine hinreichende und notwendige Bedingung an die Ma-
trizen A und B in (1.3) angeben, unter der das Problem losbar ist. Die einzelnen Schritte der
Herleitung liefern dabei ein konstruktives Verfahren zur Berechnung eines stabilisierenden
Feedbacks.

Bei der Herleitung werden wieder einmal Koordinatentransformationen eine wichtige Rolle
spielen. Fiir eine Transformationsmatrix T € R™*" ist das zu

i(t) = Ax(t) + Bu(t) (3.7)

gehorige transformierte System

i(t) = Az(t) + Bu(t) (3.8)

durch A = T~ AT und B = T~' B gegeben. Ein Feedback F fiir (3.7) wird mittels F = FT
in eines fiir (3.8) transformiert; dies folgt sofort aus der Bedingung T~'(A + BF)T =
A+ BF.

Wir haben in Lemma 2.14 bereits gesehen, dass man Paare (A, B) mittels einer geeigneten
Koordinatentransformation in die Form

T A1 A2 n By
(v ) o ()

d.h. in ein kontrollierbares Paar (Aj, By) und einen unkontrollierbaren Rest zerlegen kann.

Wir benétigen hier noch eine zweite Koordinatentransformation, die fiir kontrollierbare
Systeme gilt, bei denen u eindimensional ist. In diesem Fall haben wir m = 1, also B €
R™*1 d.h. die Matrix B ist ein n-dimensionaler Spaltenvektor.

Lemma 3.21 Sei A € R™" und B € R"*!. Dann gilt: Das Paar (4, B) ist kontrollierbar
genau dann, wenn es eine Koordinatentransformation S gibt, so dass

0 1 - 0 0
A=gtas=| + &+ " und B =S~ 'B =
a1 Qg e Qp 1

ist, wobei die Werte o; € R gerade die Koeffizienten des charakteristischen Polynoms von

A sind, d.h. xa(2) = 2" — @,2" ! — - — a9z — a.

Beweis: Wir zeigen zunichst, dass fiir Matrizen A der angegebenen Form die «; gerade
die Koeffizienten des charakteristischen Polynoms sind. Dies folgt durch Induktion iiber n:
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Fiir n = 1 ist die Behauptung sofort klar. Fiir den Induktionsschritt sei A,, € R™*" von
der Form des Satzes und A, 1 € R™*" gegeben durch

0
An+1 = A

@
Entwickeln wir nun det(zIdgn+1 — A,11) nach der ersten Spalte, so ergibt sich

+1

n n
XApi1 = 2XA,(2) — o = 2 —apZt — - — a1z — ag,

also nach Umnummerierung der «; gerade der gewiinschte Ausdruck.
Nehmen wir nun an, dass S existiert. Durch Nachrechnen sieht man leicht, dass

0

R—(BAB.. A1B)— (3.9)

_ o O O

* X X =

*

gilt, wobei * beliebige Werte bezeichnet. Diese Matrix hat vollen Rang, denn durch Um-
ordnung der Zeilen (dies dndert den Rang nicht) erhalten wir eine obere Dreiecksmatrix
mit lauter Einsen auf der Diagonalen, welche offenbar invertierbar ist, also vollen Rang
besitzt. Daher ist (11, E) kontrollierbar und da Kontrollierbarkeit unter Koordinatentrans-
formationen erhalten bleibt, ist auch das Paar (A, B) kontrollierbar.

Sei umgekehrt (A, B) kontrollierbar. Dann ist die Matrix R = (B AB ... A""!B) inver-
tierbar, folglich existiert R~'. Wir zeigen nun zunichst, dass R"'AR = AT ist. Dazu
reicht es zu zeigen, dass AR = RAT ist. Dies folgt (unter Verwendung des Satzes von
Cayley-Hamilton) aus der Rechnung

AR = A(BAB ... A" 'B)=(ABA?’B ... A" 'B A"B)
(ABA’B ... A" 'B a,A" !B+ .- +aB)

0 -+ 0 o
1 - 0 a -
= (BAB...A"'B)| . . 2| = rar
0 -+ 1 ap

Mit R aus (3.9) folgt mit analoger Rechnung die Gleichung R1AR = AT und damit
A=RATR™' = RRT'ARR™.

Aus den Definitionen von R und R folgt R(1,0,..., 0)7 = B und é(l, 0,...,0)T = E, also

RR™'B = B. Damit ergibt sich § = RR~! als die gesuchte Transformation. 1l

Die durch Lemma 3.21 gegebene Form der Matrizen A und B wird auch Regelungsnormal-
form genannt. Beachte, dass sich die Koordinatentransformation S allein durch Kenntnis
von A, B und den Koeffizienten des charakteristischen Polynoms von A berechnen lasst.
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Mit Hilfe der Regelungsnormalform kénnen wir nun die Losung des Stabilisierungsproblems
fiir u € R angehen.

Zunéchst driicken wir das Stabilisierungsproblem mit Hilfe des charakteristischen Polynoms
aus. Dies konnen wir fiir beliebige Kontrolldimensionen machen.

Definition 3.22 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R"*" und B €
R™™_Ein Polynom x heifit vorgebbar fiir das Kontrollsystem, falls ein lineares Feedback

F € R™*™ existiert, so dass x = xa+pr ist fiir das charakteristische Polynom ya.pp der
Matrix A + BF. o

Da wir wissen, dass die Nullstellen des charakteristischen Polynoms gerade die Eigenwerte
der zugehorigen Matrix sind, erhalten wir aus Lemma 3.18 sofort die folgende Charakteri-
sierung.

Lemma 3.23 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R"*" und B € R"*™.
Dann gilt: Das Stabilisierungsproblem ist genau dann lésbar, falls ein vorgebbares Polynom
existiert, dessen Nullstellen iiber C alle negativen Realteil haben.

Der folgende Satz zeigt die Beziehung zwischen der Kontrollierbarkeit von (A, B) und der
Vorgebbarkeit von Polynomen.

Satz 3.24 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R®*" und B € R™*!, d.h.
mit eindimensionaler Kontrolle. Dann sind die folgenden zwei Eigenschaften dquivalent.

(i) Das Paar (A, B) ist kontrollierbar.

(ii) Jedes Polynom der Form x(z) = 2" — 2" ' — -+ — foz — By mit B1,...,B, € R ist
vorgebbar.

Beweis: (i) = (ii): Sei (4, B) kontrollierbar und sei S die Koordinatentransformation aus
Lemma 3.21. Wir setzen

F=(B1—a1 Br—az ... Bn—ay) € R

Dann gilt
0 1 0 0
o e R : 0
A+ BF = . . . : + i (51—0&1 ,82—042 Bn—ozn)
o o --- 1 :
ayp Qg Qp, 1
0 1 0 0 0
_ s R I : : : :
o 0 --- 1 0 0
ar g e oy Bi—oar Bo—aa - Bn—an
0 1 0
B 0 0 1
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Aus der zweiten Aussage von Lemma 3.21 folgt, dass x 7 LBF = X ist. Also ist, nach

Riicktransformation, F' = FS—1 die gesuchte Feedback Matrix, da das charakteristische
Polynom einer Matrix invariant unter Koordinatentransformationen ist.

(ii) = (i): Wir zeigen die Implikation ,nicht (i) = nicht (ii)“:

Sei (A, B) nicht kontrollierbar. Sei 7' die Koordinatentransformation aus Lemma 2.14.
Dann ergibt sich fiir jedes beliebige Feedback F' = (F} F)

-

A+ BF - ( A+ BiFy Ay + B Fy ) _

0 As

Fiir das charakteristische Polynom dieser Matrix gilt

Xﬁ - XA1+B1F1XA37

daher sind (beachte, dass (Aj, B1) kontrollierbar ist) die vorgebbaren Polynome gerade
von der Form x = xxXu, wobei xi ein beliebiges normiertes Polynom vom Grad d ist und
Xu = XA ist. Dies sind sicherlich weniger als die in (ii) angegebenen Polynome, weshalb
(ii) nicht gelten kann. U

Natiirlich ist es zur Stabilisierung nicht notwendig, dass jedes Polynom vorgebbar ist, wir
brauchen lediglich eines zu finden, dessen Nullstellen nur negative Realteile haben. Der
Beweis von Satz 3.24 ldsst bereits erahnen, wann dies moglich ist.

Satz 3.25 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R™ " und B € R™*! d.h.
mit eindimensionaler Kontrolle. Seien A; € R¥*4 A, € R¥*(n=d) g, ¢ R(r—d)x(n—d) ypd
By € R die Matrizen aus Lemma 2.14 mit der Konvention, dass A1 = Aund By = B
ist, falls (A, B) kontrollierbar ist.

Dann sind die vorgebbaren Polynome von (1.3) gerade die Polynome der Form x = xxX A5,
wobei X ein beliebiges normiertes Polynom vom Grad d und x4, das charakteristische
Polynom der Matrix As, also gerade der unkontrollierbare Anteil des charakteristischen
Polynoms x4 ist, vgl. Definition 2.15. Hierbei machen wir die Konvention x4, = 1 falls
d=n.

Insbesondere gilt: Das Stabilisierungsproblem ist genau dann lésbar, wenn alle Eigenwerte
von As negativen Realteil haben (die Eigenwerte von Az werden auch ”unkontrollierbare
Eigenwerte” genannt). In diesem Fall nennen wir das Paar (A, B) stabilisierbar.

Beweis: Die erste Behauptung folgt sofort aus dem zweiten Teil des Beweises von Satz
3.24. Die Aussage iiber das Stabilisierungsproblem folgt dann sofort aus Lemma 3.23. 1l

Bemerkung 3.26 Alle Aussagen dieses Abschnitts gelten auch fiir zeitdiskrete Systeme,
wenn man die Bedingung “Realteil des Eigenwerts kleiner als 0” durch ”Betrag des Eigen-
werts kleiner als 1”7 ersetzt. a
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3.6 Losung des Stabilisierungsproblems mit mehrdimensio-
naler Kontrolle

Die Resultate fiir mehrdimensionale Kontrolle m > 1 sind vollig analog zu denen fiir
eindimensionale Kontrolle. Bei einer direkten Herangehensweise sind allerdings die Beweise
etwas aufwindiger, da wir nicht direkt auf Lemma 3.21 zuriickgreifen kénnen. Wir werden
den mehrdimensionalen Fall deswegen auf den Fall m = 1 zuriickfithren, indem wir das
folgende Lemma verwenden, das als Heymanns Lemma bezeichnet wird.

Lemma 3.27 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R"*" und B € R™*™.
Das Paar (A, B) sei kontrollierbar. Sei v € R™ ein Vektor mit B = Bv # 0. Dann gibt es
eine Matrix F' € R™*", so dass das Kontrollsystem

i(t) = (A+ BF)z(t) + Bu(t)

mit eindimensionaler Kontrolle @(t) kontrollierbar ist.

Beweis: Mittels der rekursiven Vorschrift z;41 := Az; + Bu; mit geeigneten u; konstru-
ieren wir uns zunéchst linear unabhéngige Vektoren zi,...,x, € R™ mit der folgenden
Eigenschaft: Fiir alle [ € {1,...,n} gilt

Az; € Vifiiri=1,...,0—1mit V = (z1,...,3). (3.10)

Setze dazu x1 = B (wir konnen die n x 1 Matrix B als Spaltenvektor auffassen) und
beachte, dass die Eigenschaft (3.10) fiir [ = 1 und jedes x1 # 0 trivialerweise erfiillt ist.

Fir k£ € 1,...,n — 1 und gegebene linear unabhéngige Vektoren xzi,...,z, die (3.10)
fir [ € {1,...,k} erfiillen, konstruieren wir nun wie folgt einen Vektor xp,;, so dass
X1,...,Tk, Tky1 linear unabhingig sind und (3.10) fir [ € {1,...,k + 1} erfiillen:

1. Fall: Azy, & Vi: Setze ug :=0 € R™ und x4 = Axy.

2. Fall: Axy, € Vi Wegen (3.10) folgt dann, dass Vj, A-invariant ist. Aus Kapitel 2 wissen
wir, dass (A|im B) = im R fiir die Erreichbarkeitsmatrix R = (BAB ... A" 1B) der
kleinste A-invariante Unterraum ist, der das Bild von B enthilt. Da (A, B) kontrollierbar
ist, ist (A|im B) = R™. Weil V}, nun ein A-invarianter Unterraum mit dimV = k£ < n
ist, kann dieser das Bild von B also nicht enthalten. Folglich gibt es ein u; € R™ mit
Azxy, + Buy ¢ Vi, und wir setzen x4 = Axy + Bug.

Wir konstruieren nun die gesuchte Abbildung F aus den Vektoren z1,...,z,. Da die z;
linear unabhéngig sind, ist die Matrix X = (21 ... z,) invertierbar, und wir kénnen
F:=UX"1fir U= (u1,...,u,) € R™*" definieren, wobei die u; fiir i = 1,...,n — 1 die
in der obigen Rekursion verwendeten Kontrollvektoren sind und wir u, := 0 € R™ setzen.
Damit gilt Fo; = u; und deswegen (A + BF)x; = z;41 fiiri = 1,...,n — 1. Wegen B = 11
folgt somit
(B (A+BF)B ... (A+BF)"'B) =X,

also hat (B (A+BF)B ... (A+BF)" !'B) den Rang n, weswegen das Paar (A+ BF, B)
kontrollierbar ist. U

Mit diesem Resultat lassen sich nun die Sdtze 3.24 und 3.25 leicht auf beliebige Kontroll-
dimensionen verallgemeinern.
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Satz 3.28 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R™*" und B € R™™.
Dann sind die folgenden zwei Eigenschaften dquivalent.

(i) Das Paar (A, B) ist kontrollierbar.

(ii) Jedes Polynom der Form x(z) = 2" — 3,2" ' — -+ — oz — 1 mit B1,...,B, € R ist
vorgebbar.

Beweis: (i) = (ii): Sei (A, B) kontrollierbar und y gegeben. Seien F' € R™*™ und B €
R™*! die Matrizen aus Lemma 3.27 fiir ein v € R™ mit Bv # 0 (beachte, dass solch ein
v € R" existiert, da (A, B) kontrollierbar ist, also B # 0 ist). Dann ist das Paar (A+BF, B)
kontrollierbar und aus Satz 3.24 folgt die Existenz eines Feedbacks Fy € R'*", so dass

XA+BF+BF, — X

ist. Wegen
A+ BF +BF, = A+ BF + BvFy = A+ B(F +vFy)

ist also F' = F + vF} das gesuchte Feedback.
(ii) = (i): Vollig analog zum Beweis von Satz 3.24. U

Satz 3.29 Betrachte ein Kontrollsystem (1.3) mit Matrizen A € R™*" und B € R™™.
Seien A; € R¥*d A, € Rix(n=d) p; ¢ R(r=d)x(n—d) ypd B, € R¥™ die Matrizen aus
Lemma 2.14 mit der Konvention, dass A; = A und B; = B ist, falls (A, B) kontrollierbar
ist.

Dann sind die vorgebbaren Polynome von (1.3) gerade die Polynome der Form x = xxXa,
wobei xj ein beliebiges normiertes Polynom vom Grad d und y, das charakteristische
Polynom der Matrix Aj ist, mit der Konvention x, = 1 falls d = n.

Insbesondere gilt: Das Stabilisierungsproblem ist genau dann lésbar, wenn alle Eigenwerte
von As negativen Realteil haben. In diesem Fall nennen wir das Paar (A, B) stabilisierbar.

Beweis: Vollig analog zum Beweis von Satz 3.25. 1l

Bemerkung 3.30 Satz 3.29 wird oft als Polverschiebungssatz bezeichnet, da die Nullstel-
len des charakteristischen Polynoms in der Regelungstechnik als “Pole“ bezeichnet werden
(den Grund erkliart Bemerkung 5.15) und dieser Satz gerade angibt wie man diese Null-
stellen durch geeignete Wahl des Feedbacks , verschieben* kann. a

Wir kénnen die wesentlichen Ergebnisse iiber das Stabilisierungsproblem wie folgt schema-
tisch darstellen:
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(A, B) ist kontrollierbar

{ (Satz 3.28)

Jedes normierte Polynom vom Grad n ist vorgebbar

Es gibt ei bb
s gibt ein vorgebbares & (A, B) ist

Polynom, dessen Nullstellen Lemma 3.23 o
alle negativen Realteil haben ( 23) | stabilisierbar

$ (Satz 3.29)

(A, B) ist kontrollierbar
oder
(A, B) ist nicht kontrollierbar und A3 aus Lemma 2.14 hat nur
FEigenwerte mit negativem Realteil

Ersetzt man iiberall “negativer Realteil” durch “Betrag kleiner 17, so gelten diese Aussagen
analog fiir zeitdiskrete Systeme.

3.7 Lokale Stabilisierung nichtlinearer Systeme

In diesem Abschnitt zeigen wir, dass ein lineares stabilisierendes Feedback zur lokalen
Stabilisierung eines nichtlinearen Kontrollsystems verwendet werden kann. Grundlage dafiir
ist der folgende Satz aus der Theorie gewthnlicher Differentialgleichungen.

Satz 3.31 Betrachte eine nichtlineare Differentialgleichung
&= g(z) (3.11)

mit Gleichgewicht x* € R™ und stetig differenzierbarem Vektorfeld g : R” — R". Betrachte
zudem die Linearisierung

. -~ d
= A it A= —g(z*). 3.12
y=Ay mi dxg(x ) (3.12)

Dann ist das Gleichgewicht x* lokal exponentiell stabil fiir Gleichung (3.11) genau dann,
wenn das Gleichgewicht y* = 0 global exponentiell stabil fir Gleichung (3.12) ist.
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Ein Beweis findet sich z.B. in [/, Satz 8.8].

Betrachten wir nun das nichtlineare Kontrollsystem

T = f(x,u)

und seine Linearisierung
)= Ay + B it A 8f(* "), B af(* )
= v mi = — r .U = — xr ., u ).
y y 81' 9y Y 8“ Y

Aus den Uberlegungen in Kapitel 1 folgt, dass f, A und B die Beziehung f(x,u) ~ A(x —
x*) + B(u — u*) verbunden sind. Folglich miissen y und v als y = z — «* und v = u — u*
gewihlt werden.

Sei nun F' ein stabilisierendes lineares Feedback fiir das lineare Kontrollsystem. Fiir das

lineare System errechnet sich die Kontrolle dann als v = F'u, was fiir v und « die Beziehung
u = u*+F(x—x*) ergibt. Setzen wir diese in f ein, so erhalten wir die Differentialgleichung

&= f(z,u" + F(zx —2%)) =: g(z). (3.13)
Die Linearisierung dieser Gleichung ist gegeben durch
j = Ay
mit
A= %g(x )= . _ flz,u* + F(x —2*)) = E (x*,u )+%f(x ,u*)F'= A+ BF.

o
Da F' das lineare System exponentiell stabilisiert, ist y* = 0 folglich exponentiall stabil fiir
(3.12) und aus Satz 3.31 folgt, dass z* ein lokal exponentiell stabiles Gleichgewicht fiir das
nichtlineare System mit linearem Feedback (3.13) ist. Das stabilisierende lineare Feedback
stabilisiert das nichtlineare System also lokal in z*.

Beispiel 3.32 Betrachte das nichtlineare invertierte Pendel (1.5)

.fl(t) = ZL‘Q(t)

ia(t) = —kwa(t) +gsinzi(t) +u(t)cosaa(t) |
P =: f(z(t), u(t))
Ta(t) = wu(t)

Die Linearisierung in (z*,u*) = (0, 0) ergibt hier

0 1 00 0
- g —k 0 _ 1
A=10 0 01 ud - B=1
0 0 00 1

vgl. (1.6). In den Ubungen wurde ein stabilisierendes lineares Feedback F : R* — R fiir
dieses lineare System berechnet. Die zugehorige Matrix F' € R4 lautet

k2 4k E 4 1 k 4
F:(—L———G—g, —— — — — 4+, 7,—2+—)
g 9° g
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Abbildung 3.1: Losungstrajektorie des nichtlinearen Pendels mit stabilisierendem linearem
Feedback

Abbildung (3.1) zeigt, dass dieses Feedback auch das nichtlineare Pendel stabilisiert. Die
Abbildung zeigt die Komponenten der Trajektorie z(t, zq, F) fiir zo = (1/2, 0, 0, 0)7".



Kapitel 4

Beobachtbarkeit und Beobachter

Die im letzten Kapitel vorgestellte Losung des Stabilisierungsproblems geht davon aus,
dass der gesamte Vektor x(t) zur Verfiigung steht, um den Kontrollwert u(t) = Fz(t) zu
berechnen. Dies ist in der Praxis im Allgemeinen nicht der Fall. Dort kann man nur davon
ausgehen, gewisse von x(t) abhingige Werte y(t) = C(z(t)) € R¥ zu kennen, aus denen
u(t) dann berechnet werden muss. Da wir uns in diesem Teil der Vorlesung mit linearen
Systemen beschéftigen, nehmen wir wieder an, dass die Funktion C : R® — R linear ist,
also durch eine Matrix C' € RF¥*" gegeben ist.

Definition 4.1 Ein lineares Kontrollsystem mit Ausgang ist gegeben durch! die Gleichun-
gen
z(t) = Ax(t) + Bu(t), y(t) = Cx(t) (4.1)

mit A € R™", B € R™™ und C € RF*™, o

In diesem Kapitel werden wir Bedingungen herleiten, unter denen das Stabilisierungspro-
blem fiir (4.1) 16sbar ist und zeigen, wie man den Feedback-Regler in diesem Fall konstru-
leren muss.

4.1 Beobachtbarkeit und Dualitiat

Die wichtigste Frage bei der Analyse von (4.1) ist, wie viel “Information” in dem Ausgang
y(t) = Cxz(t) enthalten ist. Dies wird durch die folgenden Definitionen formalisiert.

Definition 4.2 (i) Zwei Zusténde x1,x2 € R™ heiflen unterscheidbar, falls ein v € U und
ein t > 0 existiert mit

Cx(t,x1,u) # Cx(t, zo,u).

(ii) Das System (4.1) heit beobachtbar, falls alle Zustéande x1,z2 € R™ mit x; # x2 unter-
scheidbar sind. .

'"Manchmal wird auch die Variante y(t) = Cz(t) + Du(t) mit D € R¥*™ betrachtet. Die hier betrachtete
Form erhélt man dann durch die Wahl D = 0.

39
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Das folgende Lemma zeigt, dass die Unterscheidbarkeit wegen der Linearitdt des Systems
einfacher ausgedriickt werden kann.

Lemma 4.3 Zwei Zustdnde z1, x5 € R" sind genau dann unterscheidbar, wenn ein ¢ > 0
existiert mit

Cx(t,x1 — x2,0) # 0.

Beweis: Aus dem Superpositionsprinzip (1.15) folgt die Gleichung
x(t,x1,u) — z(t, vo,u) = x(t,x1 — 22,0),

woraus wegen der Linearitéit von C sofort die Behauptung folgt. U

Aus diesem Lemma folgt, dass die Beobachtbarkeit von (4.1) nicht von u und damit nicht
von B abhingt. Falls das System (4.1) beobachtbar ist, nennen wir daher das Paar (A, C)
beobachtbar.

Zudem motiviert das Lemma die folgende Definition.

Definition 4.4 (i) Wir nennen xg € R" beobachtbar, falls ein t > 0 existiert mit
Cx(t,x0,0) #0

und unbeobachtbar auf [0, 1], falls
Cx(s,x0,0) =

fiir alle s € [0, t].

(ii) Wir definieren die Mengen der unbeobachtbaren Zustinde auf [0,t] fiir ¢ > 0 durch

N(t) :={zg € R" | Cx(s,x0,0) = 0 fiir alle s € [0,t]}

und die Menge der unbeobachtbaren Zustinde durch

N = ﬂ./\/'(t)

t>0

Das folgende Lemma zeigt die Struktur dieser Mengen auf.

Lemma 4.5 Fiir alle t > 0 gilt

n—1
N =N(t) = [ ker(CAY).

=0

Insbesondere ist N also ein linearer Unterraum, der zudem A-invariant ist, also AN C N
erfiillt.
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Beweis: Ein Zustand zg € R™ liegt genau dann in A (¢), wenn gilt

0 = Cz(s, z0,0) = Ce?¥xy fiir alle s € [0, 1]. (4.2)

Sei nun zg € ﬂ?;ol ker(C'A%). Dann gilt mit dem Satz von Cayley-Hamilton C Alzq = 0 fiir
alle i € Ny. Aus der Reihendarstellung von e4® folgt damit Ce*zy = 0 fiir alle s > 0 und
daher (4.2), also zg € N (t).

Sei umgekehrt xop € N(t). Dann gilt nach (4.2) Ce*zg = 0. Durch i-maliges Ableiten
dieses Ausdrucks in s = 0 folgt

CAil‘o =0, 1 €Ny

und damit insbesondere zg € ker CA?, i = 0,...,n — 1. Also folgt xy € ﬂ?z_ol ker(C A?).
Die A-Invarianz folgt mit dem Satz von Cayley-Hamilton aus der Darstellung von N U

Offenbar gibt es hier eine gewisse Ahnlichkeit mit der Kontrollierbarkeit, speziell mit den
Mengen R(t) und R. Wir zeigen nun, dass dies mehr als eine oberfldchliche Ahnlichkeit
ist, wenn wir ein geeignetet definiertes duales System einfiihren.

Definition 4.6 Zu einem durch (A4, B, C) gegebenen Kontrollsystem (4.1) definieren wir
das duale System durch die Matrizen (AT, CT, BT). Ausgeschrieben lautet das duale System
zu

#(t) = Az(t) + Bu(t), y(t) = Cx(t), z(t) € R, u(t) € R™, y(t) € R
also

i(t) = ATz(t) + CTu(t), y(t) = BTz(t), z(t) € R™, u(t) € R¥, y(t) e R™.

In Worten ausgedriickt erhélt man das duale System also durch Transponieren und Ver-
tauschen von B und C, also von Eingangs- und Ausgangsmatrix.

Satz 4.7 Fiir ein durch (A, B,C) gegebenes Kontrollsystem (4.1) und das zugehorige
durch (AT, CT, BT) gegebene duale System definiere

R = (Al|imB) N N7y ker(CA?)

RT = (AT |imCT) NT NPy ker(BT(AT)?).

Dann gilt
RT =Nt wd NT=R‘

Insbesondere gilt

(A, B, C) kontrollierhar <= (AT,CT, BT) beobachtbar

(A, B,C) beobachtbar «= (AT, 7, BT) kontrollierbar.



42 KAPITEL 4. BEOBACHTBARKEIT UND BEOBACHTER

Beweis: Betrachte die Matrix

C
C'A.”_1
Fiir diese Matrix gilt mit Lemma 4.5 offenbar

N = ker M.

Andererseits ist

MT _ (CT ATCT o (AT)nflcT) c Rnx(nk)

gerade die Erreichbarkeitsmatrix des dualen Systems, vgl. Definition 2.10, weswegen R’ =
im M7 gilt. Aus der linearen Algebra ist bekannt:

im MT = (ker M)™*.
Hieraus folgt die erste Behauptung wegen
RT =im M7 = (ker M)t = N1

Durch Vertauschen der beiden Systeme folgt analog R = (NT)+, woraus die zweite Aussage
wegen

RE= (W) = A7
folgt U

Wir kénnen damit alle Aussagen zur Kontrollierbarkeit auf die Beobachtbarkeit iibertragen
und formulieren dies explizit fiir Korollar 2.13 und Lemma 2.14.

Definition 4.8 Die Matrix (CT,ATCT ... (AT)»~1CT) e R™* ") heiBt Beobachtbar-
keitsmatriz des Systems (1.3). O

Korollar 4.9 Das System (4.1) ist genau dann beobachtbar, wenn
rg(CT, ATCT ... (AT"1CT) =n
ist.

Beweis: Folgt aus Korollar 2.13 angewendet auf das duale System. U

Wir formulieren nun noch das Analogon zu der Zerlegung

T A1 AQ o By
(v ) o ()

aus Lemma 2.14.
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Lemma 4.10 Sei (A,C) nicht beobachtbar, d.h., dimN = [ > 0. Dann existiert ein
invertierbares T € R™ ", so dass A =T'AT, B=T"'B und C = CT die Form

~ [ A Ay ~ [ B ~
A_<0 A3>’ B_<B2>, C=(0 Cy)

mit 4; € RXL Ay € R*X(=D gy ¢ R-Dx(n=D) B ¢ RIx™m B, ¢ R(=Dxm ynd ¢y €
RE* (1) besitzen, wobei das Paar (A3, Cy) beobachtbar ist.

Beweis: Lemma 2.14 angewendet auf das duale System (AT, CT) liefert T mit

PP A A ~ C
T lATT _ 1 A2 T 1T _ 1 .
( 0 Ay ) ¢ 0

Also folgt mit S = (fT)_1

AT o A
“14q_ 1 _ (AT
S AS—<A2T ’\3T>’ CS—(Cl 0).

Durch eine weitere Koordinatentransformation

o 0 Ian—l
@= < I 0 )

folgt die behauptete Zerlegung mit 7' = S und

A1=£7A2=£,A3=A?,C2=61T-

Als Alternative hier noch ein direkter Beweis, der ohne Lemma 2.14 auskommt:

Es sei v1,...,v; eine Basis von N, also N' = (v1,...,v;), die wir durch wy, ..., w,_; zu einer Basis
des R"™ ergénzen. Definiere nun 7" := (v, ..., v, w1, ..., W,—;). Bezeichnen wir mit e; wie iiblich den
i-ten Einheitsvektor im R, so gilt Te; = v;, i =1,...,1, Te; = wi_;, i =1+ 1,...,n, T v = e,
i=1,...,0und T tw; =e;qy,i=1,...,n—L

Wir zeigen zunéchst die Struktur von A. Angenommen, ein Eintrag im 0-Block von A ist ungleich
Null. Dann gilt N
A@i ¢ <€1, vy €l> = T_l./\/

fiir ein 7 € {1,...,1}. Andererseits folgt aus der A-Invarianz von N’
Ae; =T YATe; = T ' Av; e TN,

was ein Widerspruch ist.

Die Struktur von C folgt aus

n—1
N = ﬂ ker(C'AY) C ker C.
i=0
Es muss also v; € ker C' gelten und damit éei = CTe; = Cv; = 0. Also miissen die ersten [ Spalten
von C gleich 0 sein.
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Es bleibt, die Beobachtbarkeit von (Asz, Cy) zu zeigen. Fiir jedes & € R* ! & # 0 gilt
@Aé@:éﬁi( 0 ) :CA"T( 0 )
z T

wobei wir in der ersten Gleichung die Struktur von Aund C ausgenutzt haben. Wegen

w:T(g)¢N

existiert nun ein i € {0,...,n — 1} mit CA*w # 0 und damit CyALF # 0. Da & # 0 beliebig war,
folgt

n—1

[ ker(C2A4%) = {0},

=0

also die Beobachtbarkeit von (Az, Cy). U

Bemerkung 4.11 Alle Aussagen in diesem Abschnitt gelten auch fiir zeitdiskrete Syste-
me. Die einzige Anderung ergibt sich in Lemma 4.5, das — analog zur Kontrollierbarkeit,
vgl. Bemerkung 2.17 — im Zeitdiskreten nur fiir ¢t > n gilt. |

4.2 Entdeckbarkeit

Wir haben gesehen, dass (vollstdndige) Kontrollierbarkeit zwar hinreichend, nicht jedoch
notwendig zur Losung des Stabilisierungsproblems ist. Notwendig ist nur, dass das Paar
(A, B) stabilisierbar ist, was nach Satz 3.29 genau dann der Fall ist, wenn alle Eigenwerte
des unkontrollierbaren Anteils As der Matrix A negative Realteile besitzen.

Ahnlich verhilt es sich mit der Beobachtbarkeit. Um das Stabilisierungsproblem fiir das
System (4.1) zu lésen, braucht man die Beobachtbarkeit nicht. Es reicht eine schwichere
Bedingung, die durch die folgende Definition gegeben ist.

Definition 4.12 Das System (4.1) heiit entdeckbar (oder auch asymptotisch beobachtbar),
falls

Jim x(t,x0,0) =0 fiir alle zp € N.

—00

Dies bedeutet, dass die Losungen fiir unbeobachtbare Anfangswerte und u = 0 bereits gegen
0 konvergieren. Anschaulich gesprochen wird die Information iiber diese Anfangswerte fiir
das Stabilisierungsproblem nicht benétigt, da die zugehorigen Losungen ja bereits gegen 0
konvergieren, also asymptotisch (und damit auch exponentiell) stabil sind.

Das folgende Lemma charakterisiert die Entdeckbarkeit fiir die Zerlegung aus Lemma 4.10.

Lemma 4.13 System (4.1) ist genau dann entdeckbar, wenn die Matrix A; aus Lemma
4.10 Hurwitz ist, also nur Eigenwerte mit negativem Realteil besitzt.
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Beweis: Beachte zunéchst, dass die Entdeckbarkeit unter Koordinatenwechseln erhalten
bleibt, wir kénnen also alle Rechnungen in der Basis von Lemma 4.10 durchfiihren.

In der Basis von Lemma 4.10 ist N gerade durch

1
a;o—<:%0>, xéeRl}

gegeben. Aus der Form der Matrix A folgt damit, dass alle Losungen zu Anfangswerten

x9 €N als
~ Aqt,.1
x(t, x0,0) = eArg = < € Oxo >

geschrieben werden kénnen.

N_{.I'()ERn

Aus der Entdeckbarkeit folgt nun x(t,z9,0) — 0 fiir alle z € N, also Mty § = 0 fiir alle
{L‘(l) € R!. Dies ist nur maglich, wenn A; Hurwitz ist.

Umgekehrt folgt aus der Hurwitz-Eigenschaft von A; die Konvergenz etz ¢ — 0 fiir alle

r} € RY, also x(t,20,0) — 0 fiir alle * € A" und damit die Entdeckbarkeit. U

Der folgende Satz zeigt, dass die Entdeckbarkeit gerade die duale Eigenschaft zur Stabili-
sierbarkeit ist.

Satz 4.14 (A, O) ist entdeckbar genau dann, wenn (AT, CT) stabilisierbar ist.

Beweis: Wir bezeichnen die Komponenten der Zerlegung aus Lemma 4.10 angewendet auf
(A,C) mit A, Ao, A3, Cy und die Komponenten der Zerlegung aus Lemma 2.14 angewendet
auf (AT, CT) mit Al, AQ, Ag, C1. Aus dem Beweis von Lemma 4.10 folgt mit dieser Notation
gerade A; = ET .

Nach Lemma 4.13 folgt, dass Entdeckbarkeit von (A, C) gerade #quivalent zur Hurwitz-
Eigenschaft von A, ist. Andererseits folgt aus Satz 3.29, dass (AT CT) genau dann stabili-
sierbar ist, wenn A3 Hurwitz ist. Da die Eigenwerte von A3 und A3 = A; iibereinstimmen,
folgt die behauptete Aquivalenz. U

Bemerkung 4.15 Um die Aussagen dieses Abschnitts ins Zeitdiskrete zu tibertragen,
miissen lediglich die Eigenwertbedingungen von “negativ”’ auf “Betrag kleiner als 17 geén-
dert werden. a

4.3 Dynamische Beobachter

Ein naheliegender Ansatz zur Losung des Stabilisierungsproblems fiir (4.1) ist die Wahl
u(t) = Fy(t). Dies kann funktionieren (vgl. Beispiel 3.19, wo wir C' = (0 1) und C = (1 0)
betrachtet haben), muss aber nicht, wie das kontrollierbare und beobachtbare System (4.1)

mit
0 1 0
A—<00>, B—<1>, und C' = (1 0)
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zeigt, vgl. die Ubungen. Tatsichlich ist dieses System nicht einmal dann stabilisierbar,
wenn F'(y(t)) eine beliebige stetige Funktion F': R — R sein darf.

Wir wollen daher nun eine Methode zur Stabilisierung entwickeln, die immer funktioniert,
wenn (4.1) stabilisierbar und entdeckbar ist. Die Methode funktioniert fiir ein durch die
Matrizen (A, B, C) gegebenes System (4.1) wie folgt:

(1) Entwerfe ein stabilisierendes lineares Feedback F fiir (A, B)

(2) Entwerfe einen Algorithmus, der aus den gemessenen Ausgéngen y(s), s € [0, t], einen
Schiitzwert z(t) ~ z(t) ermittelt

(3) Regle das System (4.1) mittels u(t) = Fz(t).

Schritt (1) kénnen wir mit den Methoden aus Kapitel 3 bereits 16sen. In diesem Abschnitt
werden wir Schritt (2) betrachten und im folgenden Abschnitt dann beweisen, dass die
Methode mit den Schritten (1)—(3) tatséchlich funktioniert.

Der Grund dafiir, dass das obige Beispiel nicht stabilisiert werden kann, liegt darin, dass
Beobachtbarkeit nicht verlangt, dass Czy # 0 ist fiir zg # 0. Es wird lediglich verlangt,
dass Cx(t;tg,20,0) # 0 fiir ¢ > 0. Um zu erkennen, dass der Schitzwert z(t) # 0 sein
sollte (und das Feedback reagieren muss), muss der Algorithmus in Schritt (2) also die
Ausgangswerte iiber einen ldngeren Zeitraum verwenden, nicht nur den aktuellen Wert.
Dies erreichen wir, indem wir den Schétzwert z(t) als Losung eines geeignet formulierten
Kontrollsystem definieren, in dem neben der Kontrollfunktion u(t) der Ausgang y(¢) von
(4.1) eine weitere Eingangsfunktion bildet. Die folgende Definition formalisiert diese Idee.

Definition 4.16 Ein dynamischer Beobachter (oder auch Luenberger-Beobachter) fiir (4.1)
ist ein lineares Kontrollsystem der Form

2(t) = Jz(t) + Ly(t) + Ku(t) (4.3)

mit J € R™", L € R"*k K € R™™, so dass fiir alle Anfangswerte zg, 2o € R” und alle
Kontrollfunktionen u € U fiir die Losungen x(t, g, u) und z(t, zp, u,y) von (4.1), (4.3) mit
y(t) = Cx(t, xo,u) die Abschétzung

l(t, 0, u) — 2(t, 20,u, y) | < ce™|[zo — 2|

fiir geeignete Konstanten ¢, > 0 gilt. ]

In der Praxis kann System (4.3) z.B. numerisch gelost werden, um die Werte z(¢) zu
bestimmen.

Der folgende Satz zeigt, wann ein dynamischer Beobachter existiert; im Beweis wird dieser
explizit konstruiert.

Satz 4.17 Ein dynamischer Beobachter fiir (4.1) existiert genau dann, wenn das System
entdeckbar ist.
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Beweis: “<=" Da (4.1) entdeckbar ist, ist (AT, CT) stabilisierbar. Wir kénnen also ein
lineares Feedback I € RF X’l finden, so dass AT + CTF Hurwitz ist. Mit G = F' ist dann
auch A+ GC = (AT + CTF)T Hurwitz.

Wir wéhlen nun in (4.3) J = A+ GC, L = —G und K = B, also
2(t) = (A+ GO)z(t) — Gy(t) + Bu(t).

Schreiben wir kurz x(t) = z(t, zo,u), 2(t) = 2(t, 20, u,y) und e(t) = z(t) — x(t), so gilt fiir
e(t) die Differentialgleichung

) = () —a(t)

= (A+GC)z(t) — Gy(t) + Bu(t) — Ax(t) — Bu(t)
= (A4+GO)z(t) — GCx(t) — Ax(t)
= (A+GCO)(z(t) —z(t)) = (A+GQC)e(t)

Aus der Hurwitz-Eigenschaft von A + GC folgt damit

lle(®)]] < ce™"[le(0)]
fiir geeignetes c¢,0 > 0, was wegen e(t) = z(t) — z(t) und e(0) = zp — xo gerade die
gewiinschte Abschétzung liefert.

“=7” Sei 9 € N, also y(t) = Cx(t,z9,0) = 0 fiir alle ¢ > 0. Fiir zp = 0 gilt damit
z(t,20,0,y) = 2(¢,0,0,0) = 0. Damit folgt aus der Eigenschaft des dynamischen Beobach-
ters

(¢, o, 0)[| = [lx(t, w0, 0) — (¢, 20,0, 9)|| < ce™[|lwo — 20| = ce™ " [lawol| — 0

fiir ¢ — oo. Also gilt (¢, z0,0) — 0 und damit die Entdeckbarkeit. U

4.4 Losung des Stabilisierungsproblems mit Ausgang

Wir wollen nun die im vorherigen Abschnitt angegebene Methode zur Stabilisierung ana-
lysieren und zeigen, dass diese zum Erfolg fithrt, wenn man in Schritt (2) den dynamischen
Beobachter (4.3) verwendet.

Aus den Schritten (1)—(3) unter Verwendung von (4.3) in Schritt (2) ergibt sich die Feed-
back-Gleichung

u(t) = Fz(t), 2(t) = Jz(t) + Ly(t) + KF2(t). (4.4)

Diese Form von Feedback nennt man dynamisches Ausgangsfeedback, da u(t) aus dem
Ausgang y(t) = Cx(t) berechnet wird und das Feedback eine “interne” Dynamik besitzt,
die gerade durch die Differentialgleichung fiir z gegeben ist?.

2Im Gegensatz dazu nennt man das in Kapitel 3 behandelte Feedback u(t) = Fx(t) statisches Zustands-
feedback.
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Definition 4.18 Ein dynamisches Ausgangsfeedback (4.4) 16st das Stabilisierungsproblem
mit Ausgang, wenn das durch Einsetzen von (4.4) entstehende System von Differential-
gleichungen

(t) = Axz(t)+ BFz(t)
2(t) = Jz(t)+ LCx(t) + KFz(t)

mit Losungen <jgg) € R?" exponentiell stabil ist. o

Satz 4.19 Gegeben sei ein Kontrollsystem (4.1) mit Matrizen (A, B,C). Dann ist das
Stabilisierungsproblem mit Ausgang genau dann im Sinne von Definition 4.18 16sbar, wenn
(A, B) stabilisierbar und (A, C') entdeckbar ist.

In diesem Fall ist (4.4) mit dem im Beweis von Satz 4.17 konstruierten dynamischen Beob-
achter (4.3) und einem stabilisierendes Feedback F' € R™*" fiir (A, B) ein stabilisierendes
dynamisches Feedback.

Beweis: “<”: Es sei (4, B) stabilisierbar und (A4, C) entdeckbar. Es sei F' € R™*™ ein
stabilisierendes Feedback fiir (A, B) und (4.3) der im Beweis von Satz 4.17 konstruierte
dynamischen Beobachter. Dann ergibt sich das mittels (4.4) geregelte System zu

(50) = (e o275 ) (50)
- <—éc A+GBCF+BF><:§EQ>

- < A+OBF Afgc >T< 2(t) )

Idgn O 1 Idg- O
= ( —Idgr Idg~ >’ = < Idgr Idg~ )

Da die exponentielle Stabilitdt unter Koordinatentransformationen erhalten bleibt, reicht
es nun nachzuweisen, dass die Matrix in der letzten Zeile der Rechnung Hurwitz ist. Fiir
Blockdreiecksmatrizen sind die Eigenwerte nun aber gerade gleich den Eigenwerten der
Diagonalblécke A + BF und A + GC. Da A + BF nach Wahl von F' Hurwitz ist und
A+ GC nach Wahl von G im Beweis von Satz 4.17 ebenfalls Hurwitz ist, hat obige Matrix
also nur Eigenwerte mit negativem Realteil und ist damit Hurwitz.

“=". Mit der Koordinatentransformation 7" aus Lemma 2.14 erhalt man fiir das transfor-
mierte System die Gleichungen

it(t) = Apzt(t) + Axx®(t) + B1Fz(t)
i2(t) = Azz’(t)
2(t) = Jz(t)+ LCx(t) + KFz(t)



4.4. LOSUNG DES STABILISIERUNGSPROBLEMS MIT AUSGANG 49

mit z(t) =T (ﬁ;gg) Nehmen wir nun an, dass (A, B) nicht stabilisierbar ist. Dann besitzt
As Eigenwerte mit positivem Realteil, der Ursprung ist also nicht asymptotisch stabil fiir
die Gleichung #2(t) = A3x?(t) und es gibt daher einen Anfangswert a3 mit z2(t, 23) /4 0.
Wiéhlen wir also

74

zo=T | 23 | eR™

20

mit x3, 2o beliebig, so gilt (¢, zg, Fz) # 0 fiir jede Wahl des dynamischen Feedbacks. Dies

widerspricht der Tatsache, dass das Stabilisierungsproblem lgsbar ist, das Paar (A, B) ist
also stabilisierbar.

Die Entdeckbarkeit von (A, C') folgt analog zum Beweis von “=" in Satz 4.17. 1l

Bemerkung 4.20 Die Konstruktionen und Aussagen in diesem und dem vorhergehen-
den Abschnitt gelten mit den offensichtlichen Anderungen analog fiir zeitdiskrete Syste-
me. O
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Kapitel 5

Analyse im Frequenzbereich

Ein nicht unerheblicher Teil der modernen Kontroll- und Systemtheorie ist aus der Elek-
trotechnik heraus entstanden, in der das Verhalten von Schaltungen mit Eingangs- und
Ausgangssignalen betrachtet wird. Als Beispiel kann hierbei z.B. ein Verstérker dienen,
der ein Eingangssignal (von einem Mikrophon, einem Handy etc.) in ein Ausgangssignal
umwandelt, das dann an die Lautsprecher geschickt wird. Ein anderes Beispiel ist ein (ana-
loges) Radio, in dem das Eingangssignal (die elektromagnetischen Wellen) in ein horbares
Ausgangssignal umgewandelt wird. Stellen wir uns den Verstérker bzw. das Radio als Kon-
trollsystem vor, so kénnen wir das Eingangssignal geméfl mit v und das Ausgangssignal
mit y bezeichnen. Dies dndert die Interpretation dieser Funktionen: u(¢) ist nun ein von
auBen kommendes Signal (statt einer von uns wihlbaren Kontrollfunktion) und y(t) ist ein
Ausgangssignal, das bestimmten Kriterien gentigen soll (statt einer Messgrofle). Es dndert
aber zunéchst nichts an der mathematischen Darstellung des Zusammenhangs zwischen u
und y iiber das System (4.1). Der Anfangswert wird bei dieser Betrachtung iiblicherweise
als zg = 0 gewahlt. Man geht also davon aus, dass sich das System bis zur Zeit t = 0 in der
Ruhelage 0 befindet und ab dann durch das Eingangssignal u(t), t > 0, beeinflusst wird.

Die beiden genannten Anwendungsbeispiele zeigen, dass Frequenzen eine wichtige Rolle
bei dieser Betrachtungsweise spielen. Aus diesem Grunde werden u und y bei dieser Art
der Betrachtung nicht als Funktionen der Zeit sondern der Frequenz dargestellt. Zu diesem
Zweck betrachten wir zunéchst die sogenannte Laplace-Transformation.

5.1 Laplace-Transformation

Es sei K = R oder C und Rj = [0,00). Wir bezeichnen mit L} (R{,K™) die Menge
aller Funktionen w : Rg — K™, die auf jedem kompakten Intervall in ]Rar Lebesgue-
integrierbar sind und mit Ll(Ra' ,K™) die Menge der Funktionen u : Ra' — K™, die auf
ganz Ry Lebesgue-integrierbar sind. Fiir ein v € L}, (RS, K™) und ein o € R definiere

Ug : RE — K™ mittels uq(t) := u(t)e . Dann definieren wir den Raum der a-ezponentiell
integrierbaren Funktionen als

Ea(K™) := {u € L (RY, K™) |uq € L (RS, K™)}.

o1
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Beispiel 5.1 Die Funktion u(t) = e’ liegt als stetige Funktion offenbar in L} (Rf,R),

loc
wegen

t
/erT:et—l—H)o
0

fiir ¢t — oo liegt sie aber nicht in L*(RJ, R). Fiir a > 1 gilt

t t 1 1
/ ue(T)dT = / e"e T Ydr = (e(lfa)t -1)—
0 0 11—« a—1

fiir t — oco. Damit existiert zunéchst das unendliche Riemann-Integral und wegen u,,(t) > 0
auch das unendliche Lebesgue-Integral. Folglich liegt u(t) = e! in &, (R) fiir alle o > 1. o

Definition 5.2 Die Funktionen in &, (K™) heiflen Laplace-transformierbar. Die (einseitige)
Laplace-Transformation fir ein u € E,(K™) ist fiir alle s € C, := {s € C|Re(s) > a}
definiert als

u(s) == (Lu)(s) == /000 u(t)e 5tdt.

Die Laplace-Transformierte & = Lu ist damit eine Funktion von C, nach C™. O

Beispiel 5.3 Laplace-Transformationen einiger Funktionen von Rar nach R mit a € C,
w e R, me Ny:

(@) u(t)=1 = ils) = - fiir Re(s) > 0
(b) u(t) = sin(wt) = as) = WQLHQ fiir Re(s) > 0
(©) u(t) = cos(wt) = d(s) = %HQ fiir Re(s) > 0
(d) ult) = eat = is)=- ! - fiir Re(s) > Re(a)
(e) u(t)=esin(wt) =  a(s) = m fiir Re(s) > Re(a)
(f) u(t)=etcos(wt) =  as)= m fiir Re(s) > Re(a)
() u(t) = %eat S as) = (S_al)mH fiir Re(s) > Re(a)

Bemerkung 5.4 Wenngleich das Integral in der Laplace-Transformation nur fiir die hier
angegebenen Werte von Re(s) definiert ist, ist der berechnete Ausdruck fiir einen gréfieren
Bereich von Werten von s definiert. In (d) beispielsweise ist @(s) fiir alle s # a definiert.
Im Folgenden werden wir fiir 4 stets alle Argumente s € C zulassen, fiir die der berechnete
Ausdruck definiert ist. O
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Die Umkehrung der Laplace-Transformation ist gegeben durch

1 B+ico eﬂt oo
(L7ra)(t) == 27y i eSti(s)ds = i et (B + iw)dw.
Genauer gilt fiir alle u € £,(K™) und beliebiges 8 > « die Gleichung £~ Lu(t) = u(t) fiir
fast alle t € ]Rar; falls u stetig ist gilt dies sogar fiir alle ¢ € Rg, vgl. [8, Theorem A.3.19].

Im Folgenden sind einige wichtige Rechenregeln fiir die Laplace-Transformation aufgefiihrt.
Dabei sind a,a1,as € R und w,uy,us € E,(K™). Weitere Annahmen sind unten zusam-
mengefasst.

(2) E(alul + CLQUQ)(S) = alﬁl (8) + a2’LAL2(S)
(i4) Llu(a)(s) = %a (2), fira>0
(731) Lu(-—a))(s) = e *u(s), fira>0
(1v) L(e*u)(s) = u(s—a)

(v) L(a)(s) = si(s) —u(0)

(vii LCu)s) = (-)F
(viid) L(ug xuz)(s) = 1(s)ua(s)
) dpe =l i)

In (i4i) setzen wir dabei voraus, dass u auf [—a,o0) definiert ist mit u(t) = 0 fiir alle
t € [—a,0]. In (v) nehmen wir an, dass u auf (—¢,00) fiir ein € > 0 definiert und in s
differenzierbar ist. Falls v in 0 unstetig ist, muss «(0) in (v) durch limy <o u(t) ersetzt
werden. In (viii) ist ug * ug(t) = fot ui(t — 7)ug(7)dr die Faltung.

5.2 Die Ubertragungsfunktion

Die Ubertragungsfunktion dient dazu, das Eingangs-Ausgangsverhalten eines Systems mit
Hilfe der Laplace-Transformation auszudriicken. Mit dem Eingangs- Ausgangsverhalten be-
zeichnet man die Abbildung v — y mit y(t) = Cxz(¢,0,u), also die Abbildung, die der
Eingangsfunktion u die Ausgangsfunktion der zugehorigen Losung mit Anfangswert zg = 0
zuordnet.

Wir betrachten nun, wie diese Abbildung fiir die Laplace-transformierten Signale aussieht.
Dazu betrachten wir wieder das System (4.1), also

#(t) = Az(t) + Bu(t), y(t) = Cx(t)

mit A € R™", B € R und C € RF*".
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Satz 5.5 Betrachte das Kontrollsystem (4.1). Seiu € U, u € E,(R™) und y(t) = Cz(t,0,u).
Dann ist y Laplace-transformierbar und es gilt

mit G(s) = C(sld — A)~!B.
Beweis: Geméf (1.14) gilt

t
y(t) = C / A=) By (r)dr
0

Da u € £,(R™) gilt, ist u exponentiell beschriinkt, ebenso ist ||e4?|| durch elAl* exponentiell
beschrénkt. Folglich ist der Integrand exponentiell beschrinkt, damit auch das Integral und
weil z und y als Ergebnisse einer Integration zudem stetig sind, gilt 2 € E,(R"), y € Eo(R¥)
fiir geeignetes (hinreichend grofies) a > 0.

Wenden wir nun die Laplace-Transformation auf (4.1) an, so erhalten wir mit Rechenregeln
(i), (v) und zg = 0
sz(s) = Az(s) + Bu(s), y(s) = Cz(s)

fiir alle s € C mit Re(s) > a. Die erste Gleichung ist dquivalent zu
st(s) — Az(s) = Bu(s) < (sld — A)z(s) = Bu(s).

Fiir alle s € C, die keine Eigenwerte von A sind (also insbesondere fiir s mit hinreichend
grofiem Realteil) ist die Matrix auf der linken Seite invertierbar und es folgt

i(s) = (sld — A)7'Ba(s) = 9(s) = Ci(s) = C(sIld — A) "' Bi(s) = G(s)u(x).
U

Definition 5.6 Die Funktion G : C — C**™ aus Satz 5.5 heiit Ubertragungsfunktion (auf
englisch transfer function). |

Bemerkung 5.7 (i) Aus der Darstellung

(sId — A)~! adj(sId — A)

1
 det(sId — A)

mit der adjunkten Matrix adj(sId — A) folgt, dass G : C — CFX™ eine matrixwertige
Funktion mit rationalen Eintrédgen ist, d.h. mit Eintrdgen der Form

gy = Pid(s)
9i5(s) 05(5) (5.1)

mit Polynomen p;j, g;;, fiir deren Grad gilt! degp;; < degqi; < n.

(ii) Die sogenannte Realisierungstheorie befasst sich mit der Frage, ob es zu einer gegebenen
Funktion G : C — C**™ ein Kontrollsystem (4.1) gibt, so dass G die Ubertragungsfunktion

'Fiir Ausgiinge der Form y(t) = Cz(t)+ Du(t) gilt G(s) = D+C(sld—A) "' B und deg p;; < degqi; < n.
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dieses Kontrollsystems ist. Man kann zeigen, dass das fiir jede propere? rationale Matrix-
funktion tatséichlich der Fall ist, allerdings sind A, B, C' dabei in der Regel nicht eindeutig.

(iii) Definieren wir g(t) := Ce*B, so folgt aus der Losungsdarstellung

t t
y(t) = / Cer=7) Bu(r)dr = / g(t — T)u(r)dr = g * u(t).
0 0
Mit der Rechenregel (viii) der Laplace-Transformation ergibt sich

9(s) = L(g*u)(s) = g(s)a(s).

Also gilt fiir die Ubertragungsfunktion G = § (wenn wir die Definition der Laplace-
Transformation in der natiirlichen Weise auf matrixwertige Funktionen verallgemeinern).
m

Beispiel 5.8 Wir betrachten das herunterhéingende und das invertierte linearisierte Pen-
del, jeweils ohne Beriicksichtigung der Wagenkoordinaten, also

() 5 (2)
(1) ()

In beiden Féllen sei C' = (1 0), d.h. der Ausgang misst die Position des Pendels.

und

Fiir das herunterhéingende Pendel ergibt sich dann

s —1 \ ! ot L

-1 _ — ks+s*+ ks—+s2+

(sIld — A) —< 5 k‘> = = sy
9 ks+s2+g  ks+s?+g

und damit 1
G(s)=C(sld— A 'B= ———.
() (s ) ks+s2+4g
Analog ergibt sich fiir das invertierte Pendel
1
=C(sld—A) 'B= ———.
G(s) = C(ald = 4) B =

2Proper heift, dass degpi; < degq;; fiir alle i, j.
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5.3 Eingangs-Ausgangs Stabilitit

Wir fithren nun einen Stabilitétsbegriff ein, der zu der Eingangs-Ausgangs-Sichtweise der
Ubertragungsfunktion G passt.

Definition 5.9 Ein Kontrollsystem heiit Fingangs-Ausgangs-stabil (kurz E/A-stabil), falls
eine Konstante K > 0 existiert, so dass fiir jede auf Rg beschriankte Funktion u € U und
den zugehorigen Ausgang

t
y(t) = C/ A7) Bu(s)dr
0

zum Anfangswert zg = 0 die Ungleichung ||y]|co < K||ul|eo  gilt. O

Bemerkung 5.10 (i) Man kann zeigen, dass E/A-Stabilitét dquivalent zu der Implika-
tion “||ulloe < 00 = ||Y|loc < 00” ist. In dieser Form findet sich die Definition der E/A-
Stabilitiit in vielen Biichern. Der Beweis dieser Aquivalenz verlangt aber einige technische
Abschétzungen, die wir hier aus Zeitgriinden vermeiden. Fiir unsere Zwecke ist die obige
Definition im Folgenden giinstiger.

(ii) Um den bisherigen Stabilitétsbegriff (A bzw. das geregelte System mit Feedback ist
exponentiell stabil, d.h. alle Eigenwerte von A bzw. des geregelten Systems haben negativen
Realteil) von dem Begriff der E/A-Stabilitdt zu unterscheiden, nennen wir die Stabilitét
von A auch Zustandsstabilitit. |

Eine erste hinreichende und notwendige Bedingung gibt das folgende Lemma.

Lemma 5.11 Ein System (4.1) ist genau dann E/A-stabil, falls fiir g(t) = CeA*B gilt

G = /0 T llg(®)]dt < oo, (5.2)

Beweis: “=": Das System sei E/A-stabil. Wir zeigen

/0 i)t < K (5.3)

fir alle Komponentenfunktionen v;;, i = 1,...,k, 7 = 1,...,mvon g = (Vij)i=1,...k,j=1,..m:
woraus (5.2) folgt.

Zu gegebenem ¢ > 0 sei dazu u gegeben durch u(7) := sgn(y;;(t —7))e; fiir 7 € [0, ¢]. Damit
gilt [g(t —7)u(7)]i = |7ij(t —7)|. Setzen wir u(7) = 0 fiir 7 > ¢, so gilt |Ju|l = 1 und damit
fiir den zugehorigen Ausgang ||yl < K, folglich auch |y;(¢)| < K fur alle ¢ > 0. Damit
folgt

= [ hite=tar = [yt

t
=| [ st = niar

Weil dies fiir alle ¢ > 0 gilt, folgt (5.3).

K> ()] = \ [ttt = yutear
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“<": Es sel gmax < 0o und es sei u ein Eingangssignal mit ||u||oc < co. Dann gilt fiir alle
t>0

IIy(t)H=H/O g(t = T)u(r)dr S/O ||g(7f—T)HIIU(T)IIdTS/0 lg(t=m)lld7[ullco = gmax [ ulloo-

Folglich ist das System E/A-stabil mit K = gpax. 1l

Korollar 5.12 Falls (4.1) zustandsstabil ist, also A Hurwitz ist, so ist (4.1) auch E/A-
stabil.

Beweis: Falls (4.1) zustandsstabil ist, ist A Hurwitz. Also gilt nach Satz 3.5 die Un-
gleichung ||e4?|| < ce™@ fiir Konstanten ¢,o > 0 und alle ¢ > 0. Damit folgt ||g(t)|| <
|C|lce=*||B|| und damit

o0 [o%) B
/0 Hg(t)Hdtg/O HC’HceUtHB\dt:CHCl”H .

U

Die Umkehrung dieses Korollars gilt offensichtlich nicht; ein einfaches Gegenbeispiel er-
halten wir, wenn wir C' = 0 setzen, da das System dann wegen y(t) = 0 fiir alle u € U
trivialerweise E/A-stabil mit K = 0 ist, egal ob die Matrix A stabil ist oder nicht.

Die Uberpriifung des Kriteriums (5.2) ist im Allgemeinen miithsam, weil hier ein uneigentli-
ches Integral abgeschiitzt werden muss. Falls aber die Ubertragungsfunktion G bekannt ist,
so léasst sich dies Kriterium leicht anhand dieser Funktion iiberpriifen. Dabei heift s* € C
Polstelle einer rationalen (Matrix-)Funktion G, wenn s* Polstelle fiir mindestens eine ihrer
Komponentenfunktionen ist, was wiederum bedeutet, dass j, k € Ny existieren mit j < k,
so dass s* k-fache Nullstelle des Nennerpolynoms und j-fache Nullstelle des Z&dhlerpoly-
noms ist (wobei j = 0 bedeutet, dass s* keine Nullstelle ist). Beachte, dass s* genau dann
eine Polstelle ist, wenn ||G(s)|| in jeder Umgebung von s* unbeschrénkt ist.

Satz 5.13 Gegeben sei ein Kontrollsystem (4.1) mit Ubertragungsfunktion G. Dann ist
das System genau dann E/A-stabil, wenn alle Polstellen s* von G in der offenen linken
komplexen Halbebene C~ = {z € C|Re(z) < 0} liegen, also Re(s*) < 0 erfiillen.

Beweis: “=”: Wenn das System E/A-stabil ist, gilt nach Lemma 5.11 die Ungleichung
gmax = [y lg(t)||dt < oo. Damit folgt fiir alle s € C mit Re(s) > 0 die Ungleichung

6o = [ awe i < [T la@l < [Tl = g
0 0 —~— 0
<1
weswegen G keine Polstellen aulerhalb von C~ haben kann.

“<": Es seien 7;;(t) die Komponenten der Funktion g(t) = Ce!B. Aus Bemerkung 5.7
folgt, dass die Eintrdge von G durch g;; = 4;; gegeben sind. Aus der Form der Matrix-
Exponentialfunktion folgt, dass die 7;;(t) von der Form

! A ttkp
%ii(t) = ppe’ 1
p=1 »
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sind, wobei die \; Eigenwerte von A sind. Aus Beispiel 5.3(g) folgt daher

q
. 1
9ii () = Aii(s) = Zupm‘
p=1 P

Hieraus folgt, dass die Polstellen von G' gerade durch die \, gegeben sind. Aus der Annahme
an die Polstellen von G folgt daher, dass alle A\, in C™ liegen. Daraus folgt wiederum, dass
das Integral [°~;;(t)dt fiir alle 7, j endlich ist, womit auch [;°[|g(¢)||dt < oo ist. GemiB
Lemma 5.11 ist das System damit E/A-stabil. 0

Beispiel 5.14 Fiir das Pendel sieht man mit diesem Kriterium leicht, dass das herun-
terhéingende Pendel E/A-stabil ist, weil die Polstellen (also die Nullstellen des Nenners)
gegeben sind durch —k/2 4+ \/k? — 4g/2 und damit stets negativen Realteil besitzen. Ana-
log sieht man beim invertierten Pendel an den Polstellen —k/2 + \/k? + 4g/2, von denen
einer positiven Realteil besitzt, dass das invertierte Pendel nicht E/A-stabil ist. O

Bemerkung 5.15 (i) Der Beweis zeigt, dass alle Polstellen von G Eigenwerte von A sind.
Dies erklédrt den Namen Polverschiebungssatz fiir Satz 3.29.

(ii) Im Allgemeinen sind nicht alle Eigenwerte von A Polstellen von G. Zum einen feh-
len diejenigen Eigenwerte, fiir die der zugehorige Eigenraum in A liegt, fiir die man also
die darin liegenden Losungen nicht beobachten kann. Zum anderen fehlen die Eigenwerte,
deren Eigenrdume man von xg = 0 aus nicht erreichen kann, weil sie nicht in der Erreich-
barkeitsmenge R liegen.

Falls das System kontrollierbar und beobachtbar ist, sind alle Eigenwerte von A Pole von G,
was man auch beim Vergleich von Beispiel 5.14 mit Beispiel 3.6 sieht. Falls das System sta-
bilisierbar und entdeckbar ist, sind alle instabilen Eigenwerte (also diejenigen mit positivem
Realteil) Pole von G. In diesen Fillen ist Zustandsstabilitét dquivalent zur E/A-Stabilitét.

O

5.4 Feedbacks im Frequenzbereich

Um ein Feedback bzw. eine Riickfithrung im Frequenzbereich formulieren zu kénnen, miissen
wir das Konzept zuerst etwas erweitern. Dazu beobachten wir zuerst, dass wir sowohl das
statische Feedback-Konzept mit u(t) = Fz(t) als auch das dynamische Konzept mit der
u(t) = Fz(t) und der Differentialgleichung 2(t) = (J + KF)z(t) + Ly(t) leicht Laplace-
transformieren kénnen. Es ergeben sich die Ubertragungsfunktionen

K(s)=F bzw. K(s)=F(sld—M)'L,

wobei wir im ersten Fall C' = Id annehmen und im zweiten Fall kurz M = J + KF
geschrieben haben. Ein geschlossener Regelkreis kann also immer als eine Verkopplung
zweier Ubertragungsfunktionen G und K dargestellt werden. Konsistent mit dem E/A-
Konzept wiire es nun, wenn solch eine Verkopplung selbst wieder eine Ubertragungsfunktion
wére. Dazu brauchen wir aber einen Eingang fiir unser geregeltes System, den wir bisher
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nicht hatten, da der urspriingliche Eingang ja mit v = Fx bzw. u = Fz “belegt” ist.
Zur Abhilfe fithren wir einen neuen Eingang w(t) ein, indem wir Fx(t) bzw. Ly(t) durch
F(z(t) + w(t)) bzw. L(y(t) + w(t)) ersetzen.

Satz 5.16 Gegeben seien zwei Ubertragungsfunktionen G und K passender Dimension,
die mittels g(s) = G(s)u(s) und u(s) = K(y(s) + w(s)) verkoppelt sind. Dann gilt

g(s) = (1d — G(5)K(s)) " G(s)K (s)i(s)
fiir alle s € C fiir die Id — G(s) K (s) invertierbar ist.

Beweis: Aus den beiden angegebenen Gleichungen folgt
9(s) = G(s)u(s) = G(s)K(g(s) + w(s)).
Umstellen liefert, dass diese Gleichung dquivalent ist zu
(Id — G(s)K(s))g(s) = G(s)K(s)w(s),
woraus die behauptete Gleichung sofort folgt. 1l

Das Feedback-Stabilisierungsproblem besteht im Frequenzraum nun darin, eine Ubertra-
gungsfunktion K zu finden, so dass (Id—G(s)K (s)) ~1G(s) K (s) stabil ist, also nur Polstellen
in C~ besitzt. Dafiir gibt es insbesondere im Fall, dass u und y eindimensional sind, eine
ganze Reihe von Techniken, die wir hier aus Zeitgriinden aber nicht besprechen wollen.

Wir wollen stattdessen noch kurz darauf eingehen, was die Rolle des neuen Eingangsignals
im stabilisierten System ist. Dazu betrachten wir der Einfachheit halber den Fall eines
statischen stabilisierenden Feedbacks © = Fx und C' = Id. Dann ergeben sich die Lésungen
des geregelten Systems mit dem neuen Eingang zu

t
x(t) = eA+BF), —I—/ €(A+BF)(t_T)BFw(T)dT.
0

~~

=w(t)

A+BE)t gegen () konvergiert fiir

Exponentielle Stabilitiit ist nun dquivalent dazu, dass e
t — oco. Damit gilt

lo(t) = v(®)]] < ce™[loll,

d.h. die Losung konvergiert gegen v(t). Stabilitéit stellt also sicher, dass die Losung un-
abhingig vom Anfangswert gegen eine wohldefinierte Grenzfunktion konvergiert, die nur
vom Eingang w(t) abhingt. Dies ist eine neue Interpretation der Stabilitéit, die dquivalent
zur E/A-Stabilitdt ist und daher wie diese aus der Stabilitdt des Systems im Sinne von
Kapitel 3 und 4 folgt. Im Fall w = 0 gilt fiir diese Grenzfunktion v = 0 und wir befinden
uns gerade wieder in der Situation dieser Kapitel.

5.5 Grafische Analyse

Wir betrachten in diesem Abschnitt zwei in der Regelungstechnik iibliche grafische Dar-
stellungsweisen. Diese sind auf Systeme mit eindimensionalem Eingang und Ausgang, also
m = k = 1 anwendbar. Beachte, dass die Ubertragungsfunktion G in diesem Fall eine
skalare Funktion ist. Systeme dieser Art werden als SISO-Systeme (Single Input Single
Output) bezeichnet.



60 KAPITEL 5. ANALYSE IM FREQUENZBEREICH

Das Bodediagramm

Das Bodediagramm?® dient dazu, den Zusammenhang zwischen u und y grafisch zu ver-
anschaulichen. Insbesondere wird durch diese Interpretation klar, warum die Betrachtung
der Laplace-Transformierten “Analyse im Frequenzbereich” genannt wird. Zur Vorberei-
tung bendétigen wir zundchst den folgenden Satz.

Satz 5.17 Betrachte die Ubertragungsfunktion G : C — C fiir ein E/A-stabiles SISO-
System der Form (4.1). Dann konvergiert das Ausgangssignal y(t) zum Eingangssignal
u(t) = sin(wt) fiir t — oo gegen die Funktion

Yoo (t) = |G(iw)| sin(wt + ¢ (w)),

wobei ¢ eine Argumentfunktion® von w > G(wi) ist.

Beweis: Siehe [3, Proposition 2.3.22].

Die Werte der Ubertragungsfunktion G entlang der imaginéiren Achse iR — der sogenann-
te Frequenzgang von G — haben also eine ganz konkrete Bedeutung fiir das Verhalten
des Ausgangs y(t) bei sinusformigen Eingéngen u(t): Das Ausgangssignal wird gerade da-
durch erzeugt, dass das Eingangssignal um |G (iw)| verstéirkt wird und die Phase um ¢(w)
verschoben wird.

Abbildung 5.5 illustriert dies an Hand des (herunterhdngenden) Pendelmodells mit & = 0.1
und g = 9.81.

08F
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Abbildung 5.1: Eingang (schwarz gestrichelt) mit Frequenz w = 4 und zugehoriger Ausgang
(rot) fiir das herunterhingende Pendel

Hier ist der numerisch simulierte Ausgang fiir den Eingang u(t) = sin(wt) fir w = 4 zu
sehen. Man erkennt, dass das Ausgangssignal eine Amplitude von etwa 0.16 besitzt und
die Phase um ca. 7 gegeniiber dem Eingangssignal verschoben ist; das Pendel pendelt

3Hendrik Wade Bode (1905-1982), US-amerikanischer Elektrotechniker
4Sei I ein Intervall. Eine stetige Funktion ¢ : I — R heifit Argumentfunktion einer Funktion v : I —
C\ {0}, wenn ~(t) = |y(t)]|e**® gilt fiir alle t € I. Wir schreiben dann kurz ¢ = arg-y.
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also gegenlaufig zur periodischen Wagenbewegung und mit kleineren Ausschligen. Fiir die
zugehorige Ubertragungsfunktion gilt |G(i4)| = 0.1612 und arg(G(i4)) = —3.077, was diese
Beobachtung genau bestétigt.

Diese direkte Bezichung zwischen Ubertragungsfunktion und Ausgangssignal bedeutet um-
gekehrt, dass durch das Messen der Amplitude und der Phase des Ausgangs bei sinusférmi-
gem Eingang die Werte G(iw) = |G(iw)|e¥™) leicht errechnet werden kénnen. Die Uber-
tragungsfunktion kann auf der imaginidren Achse also durch experimentelle Messungen
bestimmt werden.

Diese Tatsache gewinnt durch einen Satz aus der Funktionentheorie besondere Bedeutung:
Man kann némlich beweisen, dass die Funktion G(iw) durch ihre Werte auf iR eindeutig
bestimmt ist. Genauer folgt aus der Integralformel von Cauchy fiir E/A-stabile Systeme

(4.1) die Darstellung
1 [ G(iw)
= — ——d
Gls) 2mi /_OO w—s v

fiir alle s € C mit Re(s) > 0 (beachte, dass hier wichtig ist, dass kein “Du(t)” in der For-
mel fiir y(¢) in (4.1) auftaucht; ansonsten muss die Formel modifiziert werden). Da zudem
G(iw) — 0 gilt fiir w — 400, kann das obige Integral durch ein Integral mit kompaktem In-
tegrationsintervall approximiert werden. Folglich kann die komplette Ubertragungsfunktion
eines E/A-stabilen Systems aus Messdaten fiir sinusformige Eingangssignale rekonstruiert
werden, vgl. [11, Abschnitt 6.5.3].

Grafisch werden diese Messdaten nun in dem sogenannten Bodediagramm dargestellt, wobei
fir die Frequenz und fiir den Betrag |G(iw)| logarithmische Skalen verwendet wird. In
Abbildung 5.2 ist dieses Diagramm fiir das herunterhdngende Pendel, wiederum mit k£ = 0.1
und g = 9.81 dargestellt.
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Abbildung 5.2: Bodediagramm fiir das herunterhingende Pendel

Das linke Diagramm besagt, dass das Eingangssignal zunéchst schwach, mit steigender Fre-
quenz bis zu etwa w = 3 dann aber immer stérker verstiarkt wird, wihrend die Verstarkung
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fiir groflere w dann wieder abnimmt. Die Phase bleibt dabei fiir kleine w fast unverdndert,
um dann ab etwa w = 3 abrupt um ca. —7 verschoben zu werden. Genau dies Verhalten
zeigt sich in den numerischen Simulationen in Abbildung 5.3.

= o/ v\ n ( d
7 / A\ /) T ~ !
/ o2l / \ g — \ — \

Abbildung 5.3: Eingang (schwarz gestrichelt) und Ausgang (rot) fiir das herunterhingende
Pendel mit w = 2, 3,4 von links nach rechts

Das Nyquistdiagramm

Das Nyquistdiagramm?® dient dazu, um zu priifen, ob ein Feedbacksystem E/A-stabil ist.
Wie beim Bodediagramm kann die Grafik dabei allein aus Messwerten erstellt werden und
die Stabilitdt damit experimentell verifiziert werden.

Die Ubertragungsfunktion eines Feedbacksystems ist nach Satz 5.16 im SISO-Fall gegeben
durch
G(s)K(s)
Ge i = ——F— .
1—-G(s)K(s)

Diese ist nach Satz 5.13 genau dann E/A-stabil, wenn keine Polstellen in der abgeschlos-
senen rechten Halbebene liegen. Hinreichend dafiir ist, dass F(s) := 1 — G(s)K(s) keine
Nullstellen in der abgeschlossenen rechten Halbebene besitzt, was genau dann der Fall ist,
wenn Go(s) := —G(s)K(s) in der rechten Halbebene nie den Wert —1 annimmt.

Das Nyquistdiagramm?® stellt nun die Werte von Go(wi) fiir w € (—o0,0), grafisch dar.
Praktisch wird dies dadurch nidherungsweise realisiert, dass Werte von —R bis R fiir ein
groBes R € R an Stelle von o0 verwendet werden. Da G(s)K(s) die Ubertragungsfunkti-
on der Hintereinanderschaltung von Feedback und System ist, konnen diese Werte dieses
Produkts wiederum experimentell ermittelt werden.

In Abbildung 5.4 sind diese Kurven fiir das invertierte Pendel mit G(s) = 1/(ks + 52 — g)
mit £ = 0.1 und g = 9.81 und das statische Feedback K = —1 (links) und K = —10
(rechts) dargestellt.

Betrachtung der Z&hler- und Nennerpolynome in Gy liefert nun das folgende Stabilitéits-
kriterium.

Nyquistkriterium: Es sei n™ € N die Anzahl der Polstellen von Gy mit positivem Realteil,
zudem habe G keine Polstellen mit Realteil gleich 0. Dann ist das Feedbacksystem mit

SHarry Nyquist (1889-1976), US-Amerikanischer Elektrotechniker
SWir stellen hier nur die Version fiir D = 0 vor, siehe z.B. [11, Abschnitt 8.5] fiir den allgemeinen Fall.
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r-0.0010 r-0.010

Abbildung 5.4: Nyquistdiagramm fiir das invertierte Pendel mit K = —1 (links) und K =
—10 (rechts)

Ubertragungsfunktion G, genau dann E/A-stabil, wenn die Ortskurve G(wi) fiir w =
—00...,00 den Punkt —1 = —1 4 0i € C genau nt-mal entgegen dem Uhrzeigersinn
umlduft. Im Fall n™ = 0 gilt Stabilitit genau dann, wenn die Ortskurve den Punkt —1
keinmal im Uhrzeigersinn umlauft.

In unserem Beispiel aus Abbildung 5.4 hat Gg wegen K = const gerade die gleichen
Polstellen wie Gj also existiert eine Polstelle mit positivem Realteil und keine mit Realteil
0. Folglich muss die Ortskurve einmal entgegen dem Uhrzeigersinn um den Punkt —1 + 0
laufen. Dies ist in der linken Kurve fiir K’ = —1 offenbar nicht der Fall. Es trifft aber in der
rechten Kurve fiir K = —10 zu (die Umlaufrichtung ist in dieser Grafik natiirlich nicht zu
sehen, verlduft aber tatséchlich entgegen dem Uhrzeigersinn). Eine Analyse im Zeitbereich
zeigt, dass die zugehorige closed-loop Matrix fiir K = —1 bzw. K = —10 gegeben ist durch

0 1 0 1 0o 1
A<g—K —k><8.81 —0.1) b A<—0.19 —0.1)‘

Eine Analyse der Eigenwerte dieser Matrix bestétigt die Instabilitiat fiir X = —1 und die
Stabilitédt fiir K = —10. Tatséchlich liegt die Grenze zwischen Instabilitéit und Stabilitét
gerade bei K = —9.81.

Bemerkung 5.18 Auch fiir zeitdiskrete Systeme ist eine Betrachtung im Frequenzbe-
reich moglich. Statt der Laplace-Transformation verwendet man dort die sogenannte z-
Transformation, auf die wir hier aus Zeitgriinden nicht weiter eingehen wollen. a
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Kapitel 6

Optimale Stabilisierung

Die in Kapitel 3 vorgestellte Methode zur Berechnung stabilisierender Feedbacks hat den
Nachteil, dass man zwar die Eigenwerte bestimmen kann, ansonsten aber relativ wenig Ein-
flussmoglichkeiten auf die Dynamik des geregelten Systems hat. So ist es z.B. oft so, dass
groe Werte der Kontrollvariablen v nur mit groem Energieaufwand zu realisieren sind
(wie im Pendelmodell, wo u gerade die Beschleunigung des Wagens ist), weswegen man
grofie Werte vermeiden méchte. Im Heizungsmodell andererseits mochte man z.B. Uber-
schwingen (d.h. starke Schwankungen bis zum Erreichen der gewiinschten Temperatur)
vermeiden.

Wir werden deshalb in diesem Kapitel einen Ansatz verfolgen, der grofleren Einfluss auf
das Verhalten des geregelten Systems ermdoglicht, indem wir Methoden der Optimierung
zur Berechnung der Feedback-Matrix F' verwenden. Dabei konnen die gewiinschten Eigen-
schaften durch die verwendete Kostenfunktion bestimmt werden. Wir nehmen dabei aus
Vereinfachungsgriinden wieder an, dass wie in Kapitel 3 der gesamte Zustandsvektor z fiir
die Regelung zur Verfiigung steht. Falls das nicht der Fall ist, kann ein dyamischer Beob-
achter gemifl Kapitel 4 verwendet werden. Wir beschrianken uns hier suf Optimierungspro-
bleme, die direkt mit dem Stabilisierungsproblem in Zusammenhang stehen. Allgemeinere
Probleme werden wir spéter in der Vorlesung im Rahmen der Modellpréadiktiven Regelung
betrachten.

6.1 Grundlagen der optimalen Steuerung

In diesem Abschnitt werden wir einige Grundlagen der optimalen Steuerung herleiten, die
zur Losung unseres Problems nétig sind. Da es fiir die abstrakten Resultate keinen Unter-
schied macht, ob die Dynamik linear oder nichtlinear ist, betrachten wir hier allgemeine
Kontrollsysteme der Form

w(t) = fz(t), u(t)), (6.1)

unter der Annahme, dass f : R” x R" — R" stetig ist und dass fiir alle R > 0 ein Ly > 0
existiert, so dass die Lipschitz-Bedingung

[ (@1, u) = fz2, u)|| < Lrlley — o (6.2)

65
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fiir alle 21, 22 € R™ und alle u € R™ mit ||z1]|, [|z2]], [Ju|| < R erfiillt ist (vgl. Satz 8.1). Unter
dieser Bedingung kann man den aus der Theorie der gewthnlichen Differentialgleichungen
bekannten Existenz- und Eindeutigkeitssatz so modifizieren, dass er fiir jede stiickweise
stetige Kontrollfunktion v € U und jeden Anfangswert zy die Existenz einer eindeutige
Losung x(t, zg, u) mit (0, zg, u) = xq liefert.

Wir definieren nun das optimale Steuerungsproblem, mit dem wir uns im Folgenden be-
schéftigen wollen.

Definition 6.1 Fiir eine stetige nichtnegative Kostenfunktion g : R*xR™ — R{ definieren
wir das Kostenfunktional

oo
J(xo,u) ::/ g(x(t, xo,u), u(t))dt.
0
Das optimale Steuerungsproblem ist damit gegeben durch das Optimierungsproblem
Minimiere J(zo,u) iiber u € U fiir jedes zg € R".

Die Funktion
V(zo) := inf J(zo,u)
ueU

wird als optimale Wertefunktion dieses optimalen Steuerungsproblems bezeichnet. Ein Paar
(x*,u*) € R" x Y mit J(z*,u*) = V(z*) wird als optimales Paar bezeichnet. o

Als Funktionenraum & wéhlen wir hierbei wie bisher den Raum der stiickweise stetigen
Funktionen, und nehmen dabei zusétzlich an, dass jede Funktion u auf jedem kompakten
Intervall beschréankt ist und dass die Funktionen u rechtsseitig stetig sind, d.h, dass fiir
alle tg € R die Bedingung limy 4, u(t) = u(to) gilt. Beachte dass wir die zweite Annahme
0.B.d.A. machen koénnen, da die Lésung nicht vom dem Wert von « in der Sprungstelle
abhingt.

Bemerkung 6.2 Im Zeitdiskreten mit der Dynamik

w(k+1) = fz(k), u(k))

und Anfangswert x(0) = xo lautet das Kostenfunktional

J(xo,u Zg (k,zg,u), u(k)).

Beachte, dass das Funktional J(xg,u) nicht endlich sein muss. Ebenso muss das Infimum
in der Definition von V kein Minimum sein.

Der erste Satz dieses Kapitels liefert eine Charakterisierung der Funktion V.
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Satz 6.3 (Prinzip der dynamischen Programmierung oder Bellman’sches Opti-
malititsprinzip)
(i) Fiir die optimale Wertefunktion gilt fiir jedes 7 > 0

V(zo) = inf {/()Tg(x(t,xo,u),u(t))dt +V(a(r xo,u))} .

uel

(ii) Fiir ein optimales Paar (z*,u*) gilt fiir jedes 7 > 0

V(z*) = /OT g(z(t, ™, u™),u"(t))dt + V(z(r, 2™, u")).

Beweis: (i) Wir zeigen zunéchst

Vi) < /0 " gt 30, w), u(t))dt + V(@ (r, w0, 1))

fiir alle w € U und alle 7 > 0. Sei dazu z, = x(7, 20, u), € > 0 beliebig und u, € U so
gewihlt, dass

J(xrur) <V(xr)+e

gilt. Sei @ = u&,u (- — 7) (vgl. Definition 1.7). Dann gilt

V(zg) < /OOO g(x(t, x0, ), u(t))dt
= /Tg(m(t,xo,ﬁ),ﬁ(t))dt + /00 g(x(t,xo,w), u(t))dt
0 T
= / g(w(t,xo,u),u(t))dt—i—/ g( x(t,zo,u) ,ur(t—7))dt
0 T

= /OTg(:U(t,$o,u),u(t))dt+ ; g(z(t,zryur), ur(t))dt

= /Tg(a:(t, zo,u), u(t))dt + J(zr,ur) < /T g(x(t,zo,u),u(t))dt + V(z;) + €.
0 0

Da € > 0 beliebig war, folgt die behauptete Ungleichung.

Als zweiten Schritt zeigen wir

V(zg) > inf {/OTg(x(t,azo,u),u(t))dt +V (el xo,u))}.

ueU

Sei dazu wiederum e > 0 beliebig. Wir wéhlen ug so, dass V(xg) > J(zg, ug) — € gilt und
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schreiben z, = x(7, zo, up). Damit folgt

V(zg) > /000 g(x(t, xo,up), ug(t))dt — e
- /Tg(m(t,xo,uo),uo(t))dt + /OO g (t, 20, o), uo(t))dt — ¢
0 T
= / g(x(t, xo,ug), up(t))dt + / g(x(t, z(T, 20, uo), uo(- + 7)), ug(t + 7))dt — &
0 0

= /OTg(:z:(t, xo,u), uo(t))dt + J(x (7, 2o, u0), uo(- + 7)) — €

Y

/OTg(a:(t, xo,up), uo(t))dt + V(x(1, 20, u0)) — €

ueU

> inf {/OTg(a:(t,xo,u),u(t))dt + V(x(r, :z:o,u))} —€

woraus die Behauptung folgt, da ¢ > 0 beliebig war.
(i) Aus (i) folgt sofort die Ungleichung

V(z*) < /OTg(x(t,x*,u*),u*(t))dt + V(z(r, z*,u")).
Die umgekehrte Ungleichung folgt aus
V(et) = /Ooog(m(t,x*,u*),u*(t))dt
g(x(t, x™, u*),u*(t))dt + /OO g(z(t, ™, u™),u"(t))dt
g(x(t,x™, u*),u*(t))dt + /000 g(x(t,x(r,x*,u*),u" (- + 7)), u*(t + 7))dt

g(x(t,x™, u*),u* (t))dt + J(x(r, 2", u"),u* (- + 7))

v

g(x(t,x™, u*),u*(t))dt + V(x(r,x*,u")).

Eine Folgerung dieses Prinzips liefert das folgende Korollar.

Korollar 6.4 Sei (z*,u*) ein optimales Paar. Dann ist (z(7,2*, u*),u*(- + 7)) fiir jedes
7 > 0 ein optimales Paar.

Beweis: Ubungsaufgabe.

Anschaulich besagt Korollar 6.4, dass Endstiicke optimaler Trajektorien selbst wieder op-
timale Trajektorien sind.

Die bisherigen Aussagen gelten analog (und mit analogen Beweisen) auch im Zeitdiskreten.
Dort gilt fiir alle K € N

K-1
V(.To) = ;2{{ { Z g(x(kvx()vu)vu(k)) + V(x(Kv xOvu))} (63)

k=0
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sowie fiir alle optimalen Paare (z*,u*)

K-

>—‘

g(x(k,x*u),u* (k) + V(e(K, 2", u")).
k=0

Fiir die folgende Aussage, mit der wir durch einen geschickten Grenziibergang fiir 7 — 0
die Gleichung aus Satz 6.3 als (partielle) Differentialgleichung ausdriicken konnen, gibt es
kein zeitdiskretes Gegenstiick.

Satz 6.5 (Hamilton-Jacobi-Bellman Differentialgleichung)
Es sei g stetig in z und w. Zudem sei O C R" offen und V'|p endlich.

(i) Wenn V in xg € O stetig differenzierbar ist, so folgt
DV (o) - f(zo, u0) + g(z0, uo) = 0

fir alle ug € R™.
(ii) Wenn (z*,u*) ein optimales Paar ist und V stetig differenzierbar in z* € O ist, so folgt
U m

wobei das Minimum in «*(0) angenommen wird. Gleichung (6.4) wird Hamilton-Jacobi-
Bellman Gleichung genannt.

Beweis: Wir zeigen zunéchst fiir alle © € U die Hilfsbehauptung

1 T
lim ~ t, o, u), u(t))dt = ,u(0)).
tim — | gt 0, ), u(t))dt = (o, u(0))
Wegen der (rechtssitigen) Stetigkeit von z und u in ¢ und der Stetigkeit von g existiert zu
€ > 0 ein t; > 0 mit

l9(2(t, 20, u), u(t)) — g(xo, u(0))| < e

fiir alle t € [0,¢1). Damit folgt fiir 7 € (0, ¢1]

L[ sttt an . utonat  gteo )| < [ latott . ue) - gteo u)ar

i
17’
— € = €
T Jo

und damit die Aussage fiir den Limes, da € > 0 beliebig war.

IN

Hiermit folgen nun beide Behauptungen:

(i) Aus Satz 6.3(i) folgt fiir u(t) = ug € R™

V(zg) < /OT g(x(t, xo,u), u(t))dt + V(x(1, 20, 1))
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und damit
DV (zo) f(zo,u(0)) = 11{% V(z(r, wo,z)) — Vi(xo)
> li{‘%_j—/ng($(t,Jj0,u) u(t))dt — _g(x(),u(o)),

also die Behauptung.

(ii) Aus (i) folgt

Jnf {DV(27) - f(27,u) + g(2", u)} 2 0.

Aus Satz 6.3(ii) folgt zudem

Viz*) = /OTg(m(t,x*,u*),u*(t))dt + V(x(r, ™, u")).

Damit gilt
V(z(r,x*,u*)) — V(x*)

DV (z*)f(z*,u"(0)) = lim

\0 T
1 T
— / glalt, 2’ u) ()t = —g(a*,u(0)),
woraus die Existenz des Minimums in v = »*(0) und die behauptete Gleichheit folgt. U

Satz 6.5 gibt notwendige Optimalitétsbedingungen, d.h. Bedingungen die die optimale Wer-
tefunktion bzw. ein optimales Paar erfiillen muss — vorausgesetzt die optimale Wertefunk-
tion ist stetig differenzierbar. Im Allgemeinen folgt aus der Erfiillung der angegebenen
notwendigen Bedingungen aber noch nicht, dass eine Funktion tatséchlich eine optima-
le Wertefunktion ist oder ein Paar ein optimales Paar. Hierzu braucht man hinreichende
Optimalitdtsbedingungen, die wir im Folgenden untersuchen.

Zur Herleitung der hinreichenden Bedingungen brauchen wir zusédtzliche Annahmen, fiir
deren genaue Ausgestaltung es verschiedene Moglichkeiten gibt. Da wir die optimale Steue-
rung auf das Stabilisierungsproblem anwenden wollen, verwenden wir dazu die folgende
Definition.

Definition 6.6 Fiir das Kontrollsystem gelte f(0,0) = 0, d.h. der Nullpunkt ist ein Gleich-
gewicht fiir v = 0. Dann nennen wir das optimale Steuerungsproblem nullkontrollierend,
falls die Implikation

J(xo,u) <oco = xz(t,zo,u) — 0 fiir t — oo

gilt. i
Nun koénnen wir die hinreichende Bedingung formulieren.

Satz 6.7 (Hinreichende Optimalititsbedingung)
Betrachte ein nullkontrollierendes optimales Steuerungsproblem. Es sei W : R” — Rg eine
stetig differenzierbare Funktion, die die Hamilton-Jacobi-Bellman Gleichung

min {DW () f(z,u) + g(a,u)} =0
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erfiillt und fiir die W (0) = 0 gilt.

Zu gegebenem x* € R™ sei u* € U eine Kontrollfunktion, so dass fiir die zugehotrige Losung
z(t,z*,u*) und alle ¢ > 0 das Minimum in der obigen Gleichung fiir z = x(¢,z*,u*) in
u = u*(t) angenommen wird.

Dann ist (z*,u*) ein optimales Paar und es gilt
Vix(t,z",u*)) = W(z(t, z*,u"))

fir alle ¢t > 0.

Beweis: Wir zeigen die Aussage fiir ¢ = 0. Fiir ¢ > 0 folgt sie durch Anwendung des
Beweises auf (z(t,z*,u*),u*(t + ). Es sei u € U und z(t) = =z(t,z*,u) die zugehorige
Losungsfunktion. Wir zeigen zunéchst die Ungleichung

J(x* u) > W(z").
Im Falle J(z*,u) = oo ist nichts zu zeigen, es reicht also den Fall J(x*,u) < oo zu betrach-
ten. Aus der Hamilton-Jacobi-Bellman Gleichung folgt

d

2V (@(t) = DW(a()) f(2(t), u(t)) = —g(x(t), u(?)),

und damit mit dem Hauptsatz der Differential- und Integralrechnung

. T d T
W(a(T)) - W(z") = ; 27V (z(t))dt = —/0 9(x(t), u(t))dt.
Daraus folgt
T
Tt u) = Jim | gla(e), u)ar > Jim (W) = W(a(T) = W)

fiir alle T' > 0. Die letzte Gleichung folgt dabei, weil das Problem nullkontrollierend ist und
J(z*,u) < oo gilt, weswegen x(T') — 0 fiir T — oo und damit wegen der Stetigkeit von W
und W(0) = 0 auch W (z(T')) — 0 gilt.

Beachte, dass aus dieser Ungleichung insbesondere V (z*) = inf,cy J(z*, u) > W (x*) folgt.
Zum Abschluss des Beweises reicht es daher,

J(x* u*) = W(x")

zu zeigen. Fiir die Kontrolle u* und die zugehorige Losung z* = x(t, x*, u*) folgt aus der
Hamilton-Jacobi-Bellman Gleichung

d

W@ (t)) = DW (2" (1) f(27(1), u” (1)) = —g(2(t), u"(2)),

und analog zu oben
T
J(z*,u*) = lim g(z*(t),w*(t))dt = lim (W (z*) — W (2(T))) = W(z*).

T—oo Jg T—oo
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0

Beachte, dass beide Sétze dieses Abschnitts nur anwendbar sind, wenn V bzw. W diffe-
renzierbar sind. Diese Annahme ist im allgemeinen nichtlinearen Fall sehr einschréinkend®.
Zudem ist es im Allgemeinen sehr schwierig, die Funktion V' mittels dieser Gleichung zu
bestimmen, selbst wenn sie differenzierbar ist.

Im linearen Fall hingegen vereinfacht sich das Problem und die Hamilton-Jacobi-Bellman
Gleichung so weit, dass eine explizite Losung moglich ist, wie wir im folgenden Abschnitt
sehen werden.

6.2 Das linear-quadratische Problem

Wir kommen nun zuriick zu unserem linearen Kontrollsystem (1.3)
#(t) = Aw(t) + Bu(t) =: f(z(t), u(t)).

Um eine schone Losungstheorie zu erhalten, miissen wir auch fiir die Kostenfunktion g(z, u)
eine geeignete Struktur annehmen.

Definition 6.8 Eine quadratische Kostenfunktion g : R” x R"™ — Rar ist gegeben durch

se =6y (& ) (0)

mit @ € R™"™ N € R"™™ und R € R™*™ so dass G := ( ]\?T J}\g ) symmetrisch und

positiv definit ist. o

Hieraus ergibt sich der Name “linear-quadratisches” optimales Steuerungsproblem: die Dy-
namik ist linear und die Kostenfunktion ist quadratisch.

Wir zeigen zunéchst, dass dieses Problem nullkontrollierend ist.

Lemma 6.9 Das linear-quadratische Problem ist nullkontrollierend im Sinne von Defini-
tion 6.6.

Beweis: Wir zeigen zunéchst die Ungleichungen
gz, u) > erflz|® und g(z,u) > el f(z,u)||? (6.5)

fiir geeignete Konstanten ¢y, co > 0.

Da die Matrix G positiv definit ist, folgt aus Lemma 3.10 die Ungleichung

X

u

'Die nichtlineare Theorie dieser Gleichungen verwendet den verallgemeinerten Losungsbegriff der “Vis-
kositatslosungen”, der auch fiir nichtdifferenzierbare Funktionen V' sinnvoll ist.

2

g(z,u) > 1 > cp|z||?, (6.6)
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also die erste Abschitzung in (6.5). Wegen

el =6t (g ) (0

folgt ebenfalls aus Lemma 3.10
x
u

woraus wir mit (6.6) und cy = ¢;1/c3 die zweite Abschitzung in (6.5) erhalten.

2
1 (@, u)|* < s

)

Es sei nun w € U und z(t) = (¢, xo, ) die zugehorige Losungsfunktion. Es gelte

J(xo,u) < oco.
Zu zeigen ist also, dass
lim z(t) =0
t—o0

gilt. Dazu nehmen wir an, dass x(t) 4 0. Es existiert also ein ¢ > 0 und eine Folge
t — 00, so dass ||z(tx)|| > € gilt. O.B.d.A. gelte t41 — tx > /2. Nun wéhlen wir § = ¢/4
und unterscheiden fiir jedes k € N zwei Fille:

1. Fall: ||z(t)|| > €/2 fiir alle t € [tg, g + 0]. In diesem Fall erhalten wir aus (6.5) fiir diese
t die Ungleichung g(z(t), u(t)) > c1e2/4 und es folgt

tr+0
/ g(z(t), u(t))dt > c16e? /4 = 163 /16.
tg

2. Fall: ||z(t)|| < e/2 fiir ein t € [tg, t; + 0]. In diesem Fall folgt

Aus der zweiten Abschétzung in (6.5) erhalten wir

t f(@(7), u(r))dr

= [lz(tx) — @) = lz(E) ]| = @] = &/2.

0, [1f (2, w)] <1

M%WZ@W@MWE{@W@mm 1,0l > 1

}zmwwwwm

und damit

tp+0 ty46
/ 9(z(7),u(r))dr > 62/ 1f(z(7), u(r))|| — 1dT = c2(e/2 = 0) = coe /4.

tg tg

Mit v = min{c1e3/16, cae/4} > 0 ergibt sich

[e'e) oo te+0 [ee)
J (w0, u) = /O g(x(t),u(t))dt > ;/tk g(x(t), u(t))dt > kzly = 00,

ein Widerspruch. 0
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Wir konnen also Satz 6.7 verwenden, um die Optimalitdt einer Losung des linear-quadra-
tischen Problems nachzuweisen.

Um eine Kandidatin fiir die optimale Wertefunktion zu finden, machen wir den Ansatz
W(z) = 2T Pz (6.7)

fiir eine symmetrische und positiv definite Matrix P € R™*".

A priori wissen wir nicht, ob dieser Ansatz gerechtfertigt ist — wir nehmen dies zunéchst
einfach an und untersuchen die Folgerungen dieser Annahme.

Lemma 6.10 Falls das linear-quadratische optimale Steuerungsproblem eine optimale Wer-
tefunktion der Form (6.7) besitzt, so sind alle optimalen Paare (z*,u*) von der Form

u*(t) = Fx(t,z*, F)
mit F' € R™*™ gegeben durch
F=—-RYBTP+NT),
wobei z(t,z*, F') die Losung des mittels F' geregelten Systems
z(t) = (A+ BF)z(t) = Ax(t) + Bu*(t)

mit Anfangsbedingung z(0,z*, F') = x* bezeichnet.

Dariiberhinaus ist das mittels F' geregelte System exponentiell stabil.

Beweis: Die optimale Wertefunktion der Form (6.7) ist stetig differenzierbar und erfiillt
W(0) = 0, weswegen sowohl Satz 6.5 als auch Satz 6.7 anwendbar ist.

Wenn W die optimale Wertefunktion ist, so folgt aus Satz 6.5(ii), dass die optimale Kon-
trolle u = w*(t) fiir = x(¢,2*, u*) den Ausdruck

DW(z) - f(x,u) + g(z,u) (6.8)

minimiert. Umgekehrt folgt aus Satz 6.7, dass jede Kontrollfunktion, die (6.8) entlang der
zugehorigen Trajektorie minimiert, ein optimales Paar erzeugt. Wir miissen also zeigen,
dass das angegebene Feedback gerade solche Losungen und Kontrollfunktionen erzeugt
und dass das angegebene u* die einzige Kontrollfunktion ist, die (6.8) minimiert.

Der zu minimierende Ausdruck ist unter den gemachten Annahmen gerade gleich
DW(z) - f(z,u) + g(z, u)
= 2TP(Az + Bu) + (Az + Bu)" Pz 4+ 27Qx + 2" Nu + v" N7z + v’ Ru
= 2¢TP(Az + Bu) + 27 Qx + 22" Nu+u'Ru = h(u),

da P symmetrisch ist. Da R wegen der positiven Definitheit von GG ebenfalls positiv definit
sein muss, ist die zweite Ableitung von h nach u positiv definit, die Funktion A ist also
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strikt konvex in u. Folglich ist jede Nullstelle der Ableitung von h nach wu ein globales
Minimum. Diese Nullstellen sind gerade gegeben durch

0 = Dh(u)=22"PB+22TN +2u'R
& —2u'R = 22TPB+22TN
& —Ru BTpPy 4+ NTy
& v = —RYBTPr+ NTz) = Fu,

was die Behauptung zeigt.
Die exponentielle Stabilitdt des geregelten Systems folgt aus der Hamilton-Jacobi-Bellman
Gleichung. Diese impliziert wegen der positiven Definitheit von g nach Lemma 3.10

DW (x) - f(x,Fx) = —g(x, Fx) < —c|| (2", (F2)")"|* < —cz|
fiir ein geeignetes ¢ > 0. Da P zudem positiv definit ist, ist das System nach Lemma 3.11
exponentiell stabil mit Lyapunov Funktion W (x). 1l

Wenn die optimale Wertefunktion also von der Form (6.7) ist, so erhalten wir eine beson-
ders schone Losung: Nicht nur lassen sich die optimalen Kontrollen u* explizit berechnen,
sie liegen dartiberhinaus auch in linearer Feedback-Form vor und liefern als (natiirlich
gewiinschtes) Nebenprodukt ein stabilisierendes Feedback.

Wie miissen also untersuchen, wann V' die Form (6.7) annehmen kann. Das néchste Lemma
gibt eine hinreichende Bedingung dafiir an, dass die optimale Wertefunktion diese Form
besitzt. Zudem liefert es eine Moglichkeit, P zu berechnen.

Lemma 6.11 Wenn die Matrix P € R™*" eine symmetrische und positiv definite Losung
der algebraischen Riccati-Gleichung?

PA+ATP4+Q— (PB+N)RYBTP+NT)=0 (6.9)

ist, so ist die optimale Wertefunktion des Problems gegeben durch V(z) = =’ Pz.

Insbesondere existiert hochstens eine symmetrische und positiv definite Losung P von (6.9).

Beweis: Wir zeigen zuniichst, dass die Funktion W(x) = 27 Pz die Hamilton-Jacobi-
Bellman Gleichung (6.4) 1ost.

Im Beweis von Lemma 6.10 wurde bereits die Identitét

min{ DW (2) - f(z,u) + g(z,u)} = DW(2) - (2, Fz) + g(x, F)

fiir die Matrix ' = —R™1(BTP + NT) gezeigt. Mit

FTBTP 4+ FTRF + FTNT
= —(N+PB)R'B"P+(N+PBR'RR'B'"P+NT)— (N+PBR N =0

Zbenannt nach Jacopo Francesco Riccati, italienischer Mathematiker, 16761754
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ergibt sich

= 2T(P(A+ BF)+(A+BF)'P+Q+ NF+ F'NT + FTRF)x
= 2T(PA+ATP+Q+ (PB+N)F+ F'BT"P+ FTRF + FTNT)x
=0

= 21(PA+ATP+Q+ (PB+ N)F)x
= 2 (PA+ATP+Q — (PB+ N)R"Y(BTP+ NT))z.

Wenn die algebraische Riccati-Gleichung (6.9) erfiillt ist, so ist dieser Ausdruck gleich Null,
womit die Hamilton-Jacobi-Bellman Gleichung erfiillt ist.

Um V(z) = W(z) zu zeigen weisen wir nun nach, dass die Voraussetzungen von Satz 6.7
erfiillt sind. Aus der positiven Definitheit von P folgt W(x) > 0 und W (0) = 0. Wie oben
gezeigt erfiillt W (z) = 27 Pz die Hamilton-Jacobi-Bellman Gleichung, zudem wurde die in
Lemma 6.10 mittels des Feedbacks F' angegebene optimale Kontrolle u* im Beweis gerade
so konstruiert, dass sie die in Satz 6.7 and u* geforderten Bedingungen erfiillt. Also folgt
die Behauptung V(x) = W(x) aus Satz 6.7.

Die Eindeutigkeit der symmetrischen und positiv definiten Losung P folgt aus der Tatsache,
dass jede solche Losung die Gleichung V(z) = 27 Pz fiir alle € R™ erfiillt, wodurch P
eindeutig bestimmt ist. U

Bemerkung 6.12 Beachte, dass die Eindeutigkeitsaussage dieses Lemmas nur fiir die
symmetrischen und positiv definiten Losungen gilt. Die algebraische Riccati-Gleichung
(6.9) kann durchaus mehrere Losungen P haben, von denen dann aber héchstens eine
positiv definit sein kann. o

Die Lemmata 6.10 und 6.11 legen die folgende Strategie zur Losung des linear-quadratischen
Problems nahe:

Finde eine positiv definite Losung P der algebraischen Riccati-Gleichung (6.9)
und berechne daraus das optimale lineare Feedback F' gemifli Lemma 6.10.

Dies liefert ein optimales lineares Feedback, das nach Lemma 6.10 zugleich das Stabilisie-
rungsproblem 16st.

Die wichtige Frage ist nun, unter welchen Voraussetzungen man die Existenz einer po-
sitiv definiten Losung der algebraischen Riccati-Gleichung erwarten kann. Der folgende
Satz zeigt, dass dieses Vorgehen unter der schwéchsten denkbaren Bedingung an A und B
funktioniert.

Satz 6.13 Fiir das linear-quadratische optimale Steuerungsproblem sind die folgenden
Aussagen dquivalent:

(i) Das Paar (A, B) ist stabilisierbar.
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(ii) Die algebraische Riccati-Gleichung (6.9) besitzt genau eine symmetrische und positiv
definite Losung P.

(iii) Die optimale Wertefunktion ist von der Form (6.7).

(iv) Es existiert ein optimales lineares Feedback, welches das Kontrollsystem stabilisiert.

Beweis: “(i) = (ii)”: Betrachte die Riccati-Differentialgleichung
P(t) = P()A+ ATP(t) + Q — (P(t)B + N)RY(BTP(t) + NT)

mit Matrix-wertiger Losung P(t), die die Anfangsbedingung P(0) = 0 erfiillt. Aus der
Theorie der gewohnlichen Differentialgleichungen folgt, dass die Losung P(t) zumindest
fiir ¢t aus einem Intervall der Form [0,¢*) existiert, wobei t* maximal gewihlt sei. Durch
Nachrechnen sieht man, dass auch P(t)T eine Losung ist, die ebenfalls P(0)T = 0 erfiillt.
Wegen der Eindeutigkeit muss also P(t) = P(t)” sein, d.h. die Lésung ist symmetrisch.

Wir wollen zunéchst zeigen, dass diese Losung fiir alle ¢ > 0 existiert, dass also t* = oo
gilt. Wir nehmen dazu an, dass t* < oo ist.

Mit analogen Rechnungen wie im Beweis von Lemma 6.10 rechnet man nach, dass die
Funktion W (t,t1,2) := 2T P(t; —t)x fiir alle t; —t € [0,¢*) und alle v € U die Ungleichung

) )
. > .
—8tW(t,t1,w) + 8xW(tat1ax) flz,u) +g(z,u) >0 (6.10)

erfiillt. Fiir jede Losung z(t, zo, u) des Kontrollsystems mit beliebigem u € U folgt daraus

d 0 0
%W(t tlv CL‘(t, o, u)) = aw(t, tla CL‘) + %W(ta t17 33) : f(l'a u) > —g(m, U)
Der Hauptsatz der Differential- und Integralrechnung unter Ausnutzung von W (ty,t1,x) =

0 liefert nun

t1 t1
W(0,t1,z0) = —/ %W(t, t1,z)dt < / g(x(t, xo,u), u(t))dt (6.11)
0 0

fir t; € [0,t*). Ebenfalls analog zu Lemma 6.10 rechnet man nach, dass fir v = v* =
—R7Y(BTP(t) + NT)x definierte Kontrollfunktion Gleichheit in (6.10) gilt, woraus mit
analoger Rechnung fiir die durch u*(t) = —R™Y(BT P(t) + NT)x(t, zo,u*) definierte Kon-
trollfunktion die Gleichung

W(0,t1,z0) = /0t1 g(x(t, xo,u™),u"(t))dt (6.12)

gilt. Da G positiv definit und die Losungen x(t, g, u*) stetig sind, ist W (0,¢1,z¢) > 0 fiir
xo # 0, weswegen P(t1) positiv definit ist. Mit der speziellen Wahl u = 0 folgt aus (6.11),
dass W(0,t1,20) = x? P(t1)x gleichmiflig beschriinkt ist fiir alle ¢; € [0,¢*). Wegen der
Symmetrie gilt fiir die Eintréige von P(t) die Gleichung

[P()]ij = ef P(t)e; = %((ez‘ +¢;) P(t)(e; + €) — e P(t)e; — €] P(t)ey), (6.13)
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weswegen also auch diese fiir ¢ € [0,t*) gleichmé&Big beschriinkt sind. Aus der Theorie der
gewOhnlichen Differentialgleichungen ist bekannt, dass, wenn die rechte Seite der Diffe-
rentialgleichung global definiert ist (was bei uns der Fall ist, weil sie fiir alle P € R™*"
definiert ist) und t* < oo gilt, die Norm der Losung gegen unendlich strebt fiir ¢ 7 ¢t*. Dies
wiederum ist nur moéglich, wenn mindestens ein Eintrag von P(t) unbeschrénkt wichst. Da
hier allerdings alle Eintrdge beschrinkt sind, ist ¢* < oo nicht moéglich.

Die Losung P(t) ist also eine fiir alle t > 0 definierte symmetrische und positiv defini-
te matrixwertige Funktion. Zudem folgt aus (6.12) fiir alle s > ¢ und alle x € R" die
Ungleichung

2T P(s)x > 2T P(t)x.

Wir zeigen nun, dass P, := limy_,o, P(t) existiert. Dazu wéhlen wir ein stabilisierendes
Feedback F fiir das Paar (A, B) und setzen up(t) = Fz(t, zg, F). Damit erhalten wir aus
(6.11) und der Abschétzung

g(z, Fa) < K||z||?

die Ungleichung

W(O,tl,wo) < /019(1'(7'73307}7)7"”7(7—))6[7—

t1

K(Ce*UtonH)th

IN

IA

00
/ KC?e7%qt ||zo]|> < Dzl
0

-~

_KC?_.
=52 =:D<oo

Daraus folgt 27 P(t)z < D|z||? fiir alle t > 0, womit 27 P(t)x fiir jedes feste € R"
beschrénkt und monoton ist und damit fiir £ — oo konvergiert. Mit e; bezeichnen wir den
j-ten Basisvektor. Definieren wir

. T : T
lij = tllglo(ei + ej) P(t)(ei + 6]‘) und lj = tliglo €; P(t)ej,

so folgt aus (6.13)

lim [P(t)];; = %(lij —li—1j).

t—o00

Dies zeigt, dass der Limes P, := lim;_,o, P(t) existiert. Diese Matrix ist symmetrisch und
wegen
T Py > 2T P(t)x > 0 fiir alle  # 0 und beliebiges ¢ > 0

positiv definit.

Wir zeigen schliefflich, dass P, die algebraische Riccati-Gleichung 16st. Aus der qualitativen
Theorie der gewohnlichen Differentialgleichungen ist bekannt, dass aus P(t) — P folgt,
dass Py ein Gleichgewicht der Riccati-DGL sein muss.? Daraus folgt sofort, dass Py, die
algebraische Riccati-Gleichung erfiillt, was die Existenz einer symmetrischen und positiv
definiten Losung zeigt. Die Eindeutigkeit folgt aus Lemma 6.11.

3siehe z.B.Lemma 7.2 in [4]
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“(ii) = (iii)”: Folgt aus Lemma 6.11
“(iii) = (iv)”: Folgt aus Lemma 6.10.
(

“(iv) = (i)”: Da ein stabilisierendes Feedback existiert, ist das Paar (A, B) stabilisier-
bar. U

Bemerkung 6.14 Die im Beweis von “(i)=-(ii)” verwendete Hilfsfunktion W (to,t1) ist
tatséchlich die optimale Wertefunktion des optimalen Steuerungsproblems

t1
Minimiere J(to,t1, zo, u) ::/ g(x(t,to, zo, ), u(t))dt
to
auf endlichem Zeithorizont [to, t1], wobei x(t, to, o, u) die Losung des Kontrollsystems mit

Anfangszeit top und Anfangswert xg, also x(tg, to, xo, u) = o, bezeichnet. |

Diese Beobachtung lésst sich sogar noch verallgemeinern, was wir (ohne Beweise) kurz
skizzieren:

Fiir das linear quadratische Problem auf endlichem Zeithorizont mit Endkosten [(x) =
2T Lz fiir eine positiv definite Matrix L € R x n, also

t1
Minimiere J(to,t1, zo, u) = / g(x(t,to, zo, w), u(t))dt + l(x(t1, to, xo, u))
to

ergibt sich die optimale Wertefunktion als
W(to, tl) = a;TP(tl — to)CE,

wobei P(-) wie im obigen Beweis die Losung der Riccati-Differentialgleichung ist, nun aber
mit Anfangsbedingung P(0) = L.

Das optimale Feedback ist dann analog zum unendlichen Horizont gegeben durch
F(t)= R YBTP(t; —t) + NT),
héngt aber nun von der Zeit ¢ ab. Das auf [to, ;] optimal geregelte System lautet also
(t) = (A+ BF(t))x(t).

Beachte, dass F'(t) fiir t; — oo gegen F' aus Lemma 6.10 konvergiert.

Bemerkung 6.15 Fiir zeitdiskrete Systeme lassen sich analoge Resultate herleiten. Hier
baut man nicht auf der Hamilton-Jacobi-Bellman Gleichung sondern direkt auf dem Op-
timalitdtsprinzip (6.3) fiir K = 1 auf. Damit kommt man auf die zeitdiskrete algebraische
Riccati-Gleichung

ATPA—P— (A"PB+ N)B'PB+R) ' (B'PA+N")+Q=0.

Die Formel fiir das optimale Feedback lautet F' = (BT PB + R)~'(BTPA + NT). o
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6.3 Linear-quadratische Ausgangsregelung

Wir haben im vorhergehenden Abschnitt stets vorausgesetzt, dass die Matrix G in der
Definition von g(z,w) positiv definit ist. In den Ubungsaufgaben haben wir gesehen, dass
das LQ-Problem i.A. nicht nullkontrollierend ist und dass auch das Losungsverfahren i.A.
nicht funktioniert, wenn diese Bedingung verletzt ist.

Es gibt aber trotzdem Griinde, diese Bedingung abzuschwéchen. Betrachten wir wie in
Kapitel 4 ein Kontrollsystem mit Ausgang (4.1), also

x(t) = Ax(t) + Bu(t), y(t) = Cx(t),

so ist es sinnvoll, das Optimierungskriterium nur von y und nicht von z abhéngig zu
machen, d.h. eine Kostenfunktion der Form §(y, u) zu betrachten. Formal wihlt man dazu
die Teilmatrizen () und N von G von der Form

Q=C"QC, N=C"N

fiir Matrizen @ und N passender Dimension. Dann gilt

o = @ (G0 (1) = ern ((GRCOF) (1)

=G

~ T ( f\% g)(g) = G(y,u). (6.14)
S

=G

Wir wéhlen dabei @ und N so, dass G symmetrisch und positiv definit ist. Die Matrix G
ist nun allerdings nicht mehr positiv definit. Trotzdem lassen sich die Resultate aus dem
vorhergehenden Abschnitt auf dieses neue G iibertragen. Dazu muss man betrachten, wo
und wie die positive Definitheit in den Beweisen eingeht:

(i) In Lemma 6.9 wird die positive Definitheit von G ausgenutzt, um zu zeigen, dass das
Problem nullkontrollierend ist.

(ii) In Lemma 6.10 wird die positive Definitheit der Teilmatrix R implizit ausgenutzt, da
die Inverse R~! verwendet wird.

(iii) Im Beweis von Teil “(i)=(ii)” von Satz 6.13 wird die positive Definitheit von G
verwendet um zu zeigen, dass P(t) positiv definit ist.

Punkt (ii) ist hierbei unproblematisch, denn R ist weiterhin positiv definit. Punkt (i) und
(iii) kldren wir im Folgenden. Wesentlich dafiir ist die Aussage des folgenden Lemmas.

Lemma 6.16 Das Paar (A, C) sei beobachtbar. Dann existiert fiir jedes ¢t; > 0 ein ¢ > 0,
so dass fiir g aus (6.14) die Abschétzung

t1
J(0, 11, 70, u) = / g (t; 20, w), u(t))dt > cljzol?
0

fiir alle zg € R™ und alle v € U gilt.
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Beweis: Aus der allgemeinen Losungsformel
t
z(t; 20, u) = eAlag + / A% Bu(s)ds = x(t; 0, 0) + (£ 0, u)
0

folgt fiir alle o > 0 die Gleichung
x(t; g, au) = ax(t; To, u).
Daraus folgt fiir 2o # 0 und a = ||zo||
J(0, t1, w0, w) = & J (0, b1,z /v, uf/c) = ||zo|[ (0,1, o /||l w/|ol])-
Um die Behauptung zu zeigen reicht es also aus, die Existenz von ¢ > 0 mit
J(0,t1,x0,u) > ¢ fur alle zp € R"™ mit ||zo|| =1 und alle u € U (6.15)

Zu zeigen.

Um (6.15) zu zeigen, betrachten wir zunéchst

t1 t1 .
J(O,tbﬂ?oyo):/o x(t;JUo,O)TQﬂC(t;CUo,O)dt:/O y(t)T Qy(t)dt.

Da (A, C) beobachtbar ist, gilt fiir 2o # 0 nach Lemma 4.5 y(7) # 0 fiir ein 7 € [0, ¢1].
Da y(t) stetig ist, folgt y(t) # 0 auf einem Intervall um 7, woraus wegen der positiven
Definitheit von @ die Ungleichung J(0, t1, g, 0) > 0 folgt. Da J(0, 1, x0,0) stetig in ¢ ist,
existiert auf der kompakten Menge {z¢ € R" | ||zo|| = 1} das Minimum ¢y > 0, weswegen

J(O,tl,l'o,()) > Co (6.16)

fir alle 29 € R™ mit [jzo]| = 1 gilt.

Zur Abschétzung von J(0,t1, xo,u) wihlen wir nun ein beliebiges zg € R™ mit ||zl = 1
sowie ein € > 0. Fiir Kontrollen u mit

/ )T Ru(tydt > (6.17)
0

gilt fgl u(t)Tu(t)dt > kie, wobei k1 = 1/||R|| und folglich wegen der positiven Definitheit
von G mit ko = 1/||G7L|

J(0,t1, z0,u) = /0t1 (y(t)Tu(t)T)é<zgg) dt > kikae > 0. (6.18)

>ka | (40) 2R w11

Es bleibt also die Ungleichung zu zeigen fiir die Kontrollen u € U mit

/t1 u(t)T Ru(t)dt < e. (6.19)
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Da R positiv definit ist, folgt
lu(®)]* < eru(t)” Ru(t)
fiir ein ¢; > 0 und damit

t1
/ u()[2dt < cre.
0

Zudem gilt
Ve, lu(®)|> < e

lu@)?/Ve,  lu@®)]? > e.

lu(®)] <
Damit folgt

/0 Ol < [ max{VZ Juo)|P/vEY < [ VE+ )2/ VEdt = (e + )R

Aus der allgemeinen Losungsformel folgt damit die Existenz einer Konstanten co > 0, so
dass
|2 (t; 0, u)|| < cav/e (6.20)

fiir alle t € [0, ¢1] gilt. Ebenso folgt aus der Losungsformel
[ (t; 20, 0)]] < es|zoll = 3 (6.21)
fiir eine geeignete Konstante ¢z > 0 und alle ¢ € [0, ¢1]. Insbesondere folgt damit
[z (t; 20, u)|| < c4 (6.22)
fiir cq4 = cov/e + c3.
Fiir das Funktional gilt nun

t1 t1
J(0,t1, 0, u) > / z(t; zo, w) T Qu(t; 2o, w)dt + 2/ & (t; 2o, u)T Nu(t)dt.
0 0

Fiir den zweiten Summanden gilt dabei wegen (6.22) die Abschétzung
t1 t1
2/ 2(t: 30, 0) Nu(t)dt > —QC4ny|y/ u(®)l|dt > —2e4 | N||(c1 + t1)v/E = —csVE.
0 0

Aus der Abschitzung
(z1 + xg)TQ(xl + x9) = :leQam + :chxg + 23:1TQ332 > x{@ml + 2x{Q:c2

folgt fiir den ersten Summanden mit z1(t) = x(t; zo,0), z2(t) = x(£;0,u) und der Cauchy-
Schwarz-Ungleichung

t1

/tl z(t; zo, u) T Qu(t; xo, u)dt > /tl z1(t)T Q1 (1) —i—/ 221 (t)T Qu(t)dt
0 0

0
t1 t1
> 2N / o2 ()2 / Jea(8)2dt
0 0
> o —2||N|esy/ticde =: co — cev/e.
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Insgesamt ergibt sich damit mit ¢7 := c5 + cg
J(0,t1,0,u) > co — crv/z.
Wiihlen wir nun € = ¢/(2¢7)? (womit 71/ = ¢o/2 gilt), so folgt letztendlich im Fall (6.19)
J(0,t1,x0,u) > /2.
Zusammen der Abschétzung (6.18) fiir den Fall (6.17) erhalten wir also
J(0,t1, 20, u) > max{co/2, kikack/(4cr)?} =: ¢

und folglich (6.15). U

Nun kénnen wir die Punkte (i) und (iii) in der obigen Aufstellung kldren. Als erstes betrach-
ten wir Punkt (i), d.h. wir verallgemeinern wir Lemma 6.9 auf die neue Kostenfunktion
(6.14).

Lemma 6.17 Das Paar (A, C) sei beobachtbar. Dann ist das linear quadratische Problem
mit ¢ aus (6.14) nullkontrollierend.

Beweis: Wir beweisen
z(t;xo,u) A0 = J(xg,u) = oo.

Gelte also x(t; zp,u) 4 0. Dann existiert eine Folge von Zeiten t; — oo und ein € > 0, so
dass [|z(tg; xo,u)|| > . O.B.d.A. gelte txy1 — tx > 1. Mit Lemma 6.16, x = z(tg; xo,u)
und ug(-) = u(ty + -) folgt dann

trp+1 1
/ g(x(t; xo,u), u(t))dt = / g(x(t; xp, ug), ug(t))dt = J(0,1, xp, ug) > ce2.
tr 0

Damit folgt

J(xo,u) = /Ooog(x(t;azo,u),u(t))dt

Y

> tp+1 0
S [T stetaowati > 3 = o
k=1

E=1"1tk

U

Es bleibt Punkt (iii) nachzuweisen, also dass der Beweis “(i)=-(ii)” von Satz 6.13 auch fiir
g aus (6.14) gilt. Dies zeigt der folgende Satz.

Satz 6.18 Das Paar (A, C) sei beobachtbar. Dann gilt Satz 6.13 auch fiir das linear qua-
dratische Problem mit g aus (6.14).

Beweis: Mit Lemma 6.17 an Stelle von Lemma 6.9 folgen alle Beweisteile bis auf “(i)=-(ii)”
ganz analog zu Satz 6.13.
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Im Beweis von “(i)=-(ii)” wird die positive Definitheit von G nur an einer Stelle benutzt,
namlich um zu zeigen dass

W0, 1, 20) — /Olg(g;(t,xo,u*),u*(t))dt

in Gleichung (6.12) positiv ist fiir alle xg # 0. Dies folgt aber mit Lemma 6.16 und der Be-
obachtbarkeitsannahme ebenfalls fiir g aus (6.14). Damit 14sst sich der Beweis unveréndert
iibernehmen und die Aussage folgt. U

Bemerkung 6.19 Die zugehorige Riccati-Gleichung lautet ausgeschrieben
PA+ATP+CTQC — (PB+CTN)R(B"P+ N"C)
und das optimale Feedback
F=—-R'(B"P+NT0).

Beachte, dass sowohl V(z) = 27 Px als auch Fz i.A. nicht von der Form yT Py oder Fy sind.
Um F fiir ein Kontrollsystem der Form (4.1) in Abhéngigkeit von y zu implementieren,
bendétigen wir also nach wie vor einen Beobachter. o



Kapitel 7

Der Kalman Filter

Wir haben bereits in Kapitel 4 eine Moglichkeit gesehen, wie man aus dem gemessenen
Ausgang y(t) = Cz(t) den Zustand z(t) eines Kontrollsystems mittels eines dynamischen
Beobachters z(t) rekonstruieren kann. Allerdings stand bei den dortigen Uberlegungen in
erster Linie die asymptotische Stabilitdt des geregelten Systems im Vordergrund und nicht
so sehr die Giite der Approximation z(t) ~ z(t).

Mit Hilfe der im letzten Kapitel entwickelten linear quadratischen optimalen Steuerung
wollen wir nun eine Methode entwickeln, mit der eine — in einem gewissen Sinne — optimale
Zustandsschitzung z(t) ~ z(t) erzielt werden kann.

Die Losung dieses linear quadratischen Zustandsschéitzproblems wird durch den sogenann-
ten Kalman Filter (oder auch LQ-Schitzer) geliefert. Dieser Filter findet sich heutzutage
— in der ein oder anderen Variante — in unzéhligen technischen Anwendungen, von Ra-
dargeréten iiber Satelliten bis zu Smartphones. Hier betrachten wir eine deterministische,
zeitkontinuierliche Variante auf unendlichem Zeithorizont, weil wir fiir diese Version direkt
auf den Ergebnissen des letzten Kapitels aufbauen kénnen.

7.1 Zustandsschitzung auf unendlichem Zeithorizont

Wir betrachten zunéchst das folgende, etwas anders formulierte Problem: Gegeben sei ein
Kontrollsystem mit Ausgang (4.1) mit der etwas geinderten Notation B = D und u = v,
also

z(t) = Az(t) + Do(t), y(t) = Cx(t), (7.1)

wobei (A, C') beobachtbar sei.

Gegeben sei weiterhin eine Funktion y,, : R — R!. Ziel ist es nun, mit Hilfe der Losungen
von (7.1) eine konstruktiv berechenbare Funktion x*(¢) zu finden, so dass y(t) = Cz*(t) die
Funktion y,,(t) gut approximiert. Die Interpretation ist, dass y.,(t) = Cx,,(t) gemessene
Ausgangswerte einer Losung x,, der Differentialgleichung ,, = Ax,, mit der gleichen
Matrix A wie in (7.1) sind, aus denen der Zustand x,,(t) moglichst gut geschétzt werden
soll. Die Erweiterung dieser Problemstellung auf Losungen z,,, von Kontrollsystemen mit
zusétzlicher Kontrolle u betrachten wir im nachfolgenden Abschnitt.
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Der Kalman-Filter, den wir in den folgenden Schritten herleiten werden, 16st dieses Pro-
blem optimal im Sinne einer “indirekten” kleinsten Quadrate-Approximation, die in zwei
Schritten vorgeht:

Im ersten Schritt wahlen wir symmetrische und positiv definite Matrizen M und N pas-
sender Dimension und berechnen fiir jedes 7 > 0 und jeden Anfangswert zo zur An-
fangszeit to = 7 eine Kontrollfunktion v : (—oo, 7] — R", so dass die zugehorige Losung
x(t) = x(t; 7, 20, v) das Funktional

Jr(z0,v) := /T (Czr(t) — ym ()T M (Czr(t) — ym (1)) + v(t)T No(t)dt (7.2)

minimiert. Wir nehmen dabei an, dass die optimale Wertefunktion
P (xg) := 516115 Jr(zo,v)

endlich ist.

Im zweiten Schritt wéhlen wir dann x*(7) so, dass Pr(z*(7)) minimal wird, d.h. dass

P-(z*(7)) = min Pr(xg)

zgER™
gilt.

Der Ansatz mag auf den ersten Blick etwas umsténdlich erscheinen. Er fiihrt aber auf eine
sehr einfach zu implementierende Losung, die wir nun herleiten wollen.

Zunichst einmal transformieren wir die Zeit so, dass das Integral in (7.2) von 0 bis co lduft,
wie dies in unserem iiblichen linear-quadratischen Problem der Fall ist.

Dazu setzen wir x7 (t;xo,v) = z(7 — t;x0,v) und y7 (t) = Ym(7 — t). Dann gilt mit der
Abkiirzung x7 (t) = 2" (¢; 2o, v) fiir

Jr (w0, v) := /OOO(C:ET(t) — ()T M(Ca™ (1) =y, (1) +0(t) 'No()dt — (7.3)

die Gleichheit J~ (zg,v) = J-(xo,v(7 — -)) und damit insbesondere

P ;= inf J~ = P, .
- (20) := inf J-(x0,v) (o)

Beachte, dass z7 (t; zo, v) Losung des Kontrollsystems
7 (t) = —Ax"(t) — Dv(T — t)

ist. Mit einer weiteren Transformation kénnen wir (7.3) nun (fast) auf die Form unseres
linear quadratischen Ausgangsregelungsproblems gemifl Definition 6.1 mit g aus (6.14)
bringen:

Dazu erweitern wir den Zustand x € R™ des Systems um eine Komponente x,,1(t) = const,
also @p,4+1(t) = 0. Dies erreichen wir durch die Wahl

_ T — -A 0 — -D
x._<$n+l>,A._< ; O) undD._< / )
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Definieren wir nun

[ cTMCc  —CTNIyL()
M (t) .= ( —y:n(t)TMC y;;L(t)TMern(t) )

und g(t,Z,v) := 7 M ()T +vT Nov so folgt fiir 7 = ( alc >

9(t,2,0) = (Cz =y, (£)) " M(Ca = g7, (1)) + v(t) " No(t)dt

)
Folglich gilt fiir oy = < 5610 > und 77 (t, Tg,v) = ( T(t fUO, )

J- (xo,v) = /000 g(t, z7 (t; o, v),v(t))dt =: J+(Zo,v).

Mit P, bezeichnen wir wie iiblich die optimale Wertefunktion. Dieses Problem ist von der
iiblichen LQ-Form mit Ausnahme der Tatsache, dass ¢ nun explizit von der Zeit abhingt.
Tatsédchlich sind aber die im Beweis von Satz 6.13 verwendeten Gleichungen weiterhin
giiltig, wenn wir die Zeit in M (t) passend beriicksichtigen. Genauer gilt (was wir hier aus
Zeitgriinden nicht beweisen):

Betrachte fiir ¢ € [0, 0] die Losung der Riccati-Differentialgleichung

Qrot) = Q0 (VA +ATQ, (1) + Moo — 1) — Q,,()DNID'Q, (1) (7.4)
mit Anfangsbedingung Q. ,(0) = 0. Dann gilt die Konvergenz

P(3) = lim 77Q, ,(0)7.

g —r00

Nun zerlegen wir @Tﬂ(t) passend zur Definition von A: Schreiben wir

O B )

dr.o (t) Qr o (t)

so folgt aus der Form der Matrizen A und D, dass Q. ,(t) die Gleichung

Q’T,O’ (t) = _QT,J (t)A - ATQT,U (t) + CTMC - Q’T,O’ (t)DNilDTQT,U (t)

erfiillt. Dies ist aber genau die Riccati-Differentialgleichung aus dem Beweis von Satz 6.13.
Zudem sind alle Daten und damit auch Q;,(t) = Q(t) unabhéngig von 7 und o. Es folgt
also

lim Q(0) = @,
g— 00
wobei () die algebraische Riccati-Gleichung
—QA-ATQ+C"MC -QDN'DTQ =0 (7.5)

lost.
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Damit erhalten wir mit z{' = (2, 1) und ¢, = limy—00 ¢r.0(0), @7 = limy_y00 A7 o (0)
PT('rO) = ?T(jo) = Uli—>rgo jgaT,U(U)jO = xngxO + 2$qu + Qr.

Der im zweiten Schritt des Ansatzes gesuchte Wert z*(7) ergibt sich damit (durch Ableiten
des Ausdrucks und Umstellen nach x) zu

o*(1) = ~Q ¢y = —Sqs

fir S := Q~!. Durch Multiplikation von (7.5) mit S von links und rechts sowie mit —1
folgt, dass S die sogenannte duale Riccati-Gleichung

AS + SAT — scTMCS+ DN'DT =0 (7.6)

6st.

Es bleibt ¢, zu berechnen. Aus der Riccati-Differentialgleichung (7.4) folgt fiir ¢, () die
Differentialgleichung

QT,U<t) = _ATQT,U(t) - Q(t)DN_lDTQT,U(t) - CTMym(T — 0+ t)
mit Anfangsbedingung ¢, »(0) = 0. Hieraus folgt

q7+S,U+S (t) = QT,U (t)

und da diese beiden Losungen fiir ¢ = 0 iibereinstimmen, folgt

QT+5,U+S(t) = QT,U(t)'
Damit folgt

d

% - QT—i—s,cf—I—s(U + 3) = QT,0<U)

= ~AT4:5(0) = QUO)DN "D 41 () = O Mym(7)
und folglich mit ¢ — oo

da
dTQT N

Damit erhalten wir schliefilich mit (7.6)

fATqT — QDN_IDTqT - CTMym(T).

- d
(1) = —SEqT

= SAT¢, + DN7'D" ¢, + SCT My, (7)
—SATS 4% (r) = DN DTS\ (1) + SCT My ()
(—=SAT — DN1DT)S 2% (1) + SCT My, (7)

= (AS — SCTMCOS)S ™ a*(7) + SCT My (r)

= Az*(r) — SCTM(Cz*(7) = ym (7))

= Ax*(7) 4+ L(Cz*(T) — ym(7))
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mit L = —SCT M.
Diese Differentialgleichung ist der sogenannte Kalman-Filter. Seine Anwendung ist wie
folgt: Ist 2*(¢) bekannt, so kann z*(s), s > ¢, durch Losen der Differentialgleichung auf

dem Intervall [t, s] (analytisch oder numerisch) aus den Daten [ berechnet werden.
Der Kalman-Filter eignet sich also zur rekursiven Online-Implementierung.

Zwei Eigenschaften des Kalman-Filters wollen wir hier noch explizit festhalten:

(i) Die Matrix L hingt nicht von y,, ab. Um L zu berechnen, muss lediglich eine der
beiden Riccati-Gleichungen (7.5) oder (7.6) geldst werden.

(ii) Die Matrix A+ LC ist Hurwitz. Die Matrix L7 ist nimlich das LQ-optimale Feedback
des zur dualen Riccati-Gleichung (7.6) gehorigen dualen optimalen Steuerungspro-
blems ist. Daher ist AT + CTLT asymptotisch stabil und folglich auch A + LC =
(AT + OTLT)T | weil diese beiden Matrizen die gleichen Eigenwerte besitzen.

7.2 Der Kalman-Filter als Beobachter

Wir wollen den Kalman-Filter nun fiir das in der Einfithrung dieses Kapitels skizzierte
Beobachterproblem anwenden.

Gegeben sei dazu ein Kontrollsystem mit Ausgang (4.1), also
B(t) = Aw(t) + Bu(t),  y(t) = Ca(t),

mit beobachtbarem Paar (A, C'). Gegeben seien weiterhin ein unbekannter Anfangswert xg
sowie eine bekannte Kontrollfunktion u(t), ¢ > 0, die zugehorigen Ausgangswerte y(t) =
Cx(t;xg,u), t > 0, sowie eine Schétzung zp des Anfangswerts xg. Gesucht ist nun eine
Kurve z(t), t > 0, mit 2(0) = zp im R", so dass der Schétzfehler C'z(t) — y(t) in einem
geeigneten Sinne moglichst klein wird und so, dass z(t) nur von y||o 4 abhéingt (also aus den
zur Zeit t bekannten Daten berechenbar ist). Der Ausgang y(t) spielt hier also die Rolle
der Messgrofie y,, (t) im Kalman-Filter.

Zur Losung des Problems machen wir den Ansatz
2(t) = Az(t) + Bu(t) + v(t), (7.7)

wobei v : R — R” so bestimmt werden soll, dass z(t) eine méglichst gute Schétzung ist.
Um den Term Bu(t) aus der Gleichung zu eleminieren, definieren wir den Schitzfehler
e(t) := z(t) — x(t). Dieser erfiillt die Gleichung

e(t) = Ae(t) + v(t), (7.8)

d.h. wir haben hier ein Kontrollsystem (7.1) mit D = Id und = = e. Der Fehler e spielt
hier also die Rolle des z in (7.1).

Wir wollen uns nun iiberlegen, wie das Gegenstiick der Messgrofle y,, fiir das e-System
lautet. Wir bezeichnen diese mit e,,. In Abschnitt 7.1 haben wir (in der Notation dieses
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Abschnitts) die GroBe Ce(t) — e (t) minimiert, hier wollen wir die GréBe Cz(t) — y(t)
minimieren. Also muss gelten

Ce(t) — em(t) = C2(t) — y(t) (7.9)
und damit

em(t) = y(t) + Ce(t) — Cz(t) = y(t) + Cz(t) — Cz(t) —C=z(t) = 0.
~——
=y(t)
Die Messwerte fiir die e-Gleichung sind also konstant gleich Null. Dies liegt daran, dass
wir die gemessene Grofie yn,(t) = y(t) = Cz(t) durch die Definition von e bereits in die
Gleichung fiir e einbezogen haben.

Berechnen wir nun geméafl dem vorhergehenden Abschnitt das Feedback L fiir den Kalman-
Filter fiir (7.8), so ergibt sich die Filtergleichung wegen e,, = 0 zu

€*(t) = (A+ LC)e*(t).
Dies ist dquivalent zu
2(t) = Az(t) + Bu(t) + L(Cz(t) — y(t)) (7.10)

und liefert damit eine online implementierbare Beobachtergleichung (beachte die struk-
turelle Ahnlichkeit zum dynamischen Beobachter in Kapitel 4) zur Berechnung von z(t),
die nur noch (analytisch oder numerisch) gelost werden muss. Beachte, dass die optimalen
Schétzungen fiir die e und die z-Variable mittels e*(t) = z*(t) — z(¢) zusammenhéngen.
Wiéhrend wir den Kalman Filter formal auf die e-Gleichung (7.8) anwenden, verwenden
wir zur Berechnung des Schitzers z*(t) die z-Gleichung (7.10), denn ansonsten briauchten
wir den unbekannten Zustand x(t), um z*(¢) aus e*(t) zu berechnen.

Nachdem wir hier keine Messwerte y(t) fiir ¢ < 0 gegeben haben, kénnen wir den optimalen
Startwert €*(0) hier nicht wie im vorhergehenden Abschnitt berechnen. Aber selbst wenn
wir es konnten, wiirde uns dies nichts niitzen, denn fiir (7.10) miissten wir dann ja z(0) =
e*(0) + xo verwenden — der Wert zg ist aber unbekannt. Es liegt also nahe, in (7.10) den
Schétzwert zg =~ xg als Anfangswert zu verwenden. Weil A — LC is Hurwitz ist, konvergiert
der Schitzfehler e*(t) fiir t — oo gegen 0, d.h. die Approximation z(t) ~ x(t) wird mit
wachsendem t immer besser. Da unserem Ansatz aber ein LQ-optimales Steuerungsproblem
zu Grunde liegt, kann man erwarten, dass die Schitzung z(¢) ausgehend von z(0) = 2o in
einem gewissen Sinne optimal ist.

Um zu sehen, welcher Art diese Optimalitéit ist, setzen wir y(¢) fiir ¢ < 0 so fort, dass sich
e*(0) = zp — o und damit z(0) = 29 als Losung des Kalman-Filters ergibt. Wir erzeugen
also gewissermaflen “kiinstliche” Messwerte, fiir die der Kalman Filter zur Zeit t = 0 gerade
den Schitzwert zg liefert. Dies ist gerade dann der Fall, wenn wir y(¢) mittels

_J Cxz(t;20,0), t<0
= { Cx(t;zo,u), t>0 (7.11)

aus der Vorwértslosung von (4.1) fiir zp und v und der Riickwértslosung fiir zp und v =0
zusammensetzen: Fiir v = 0 und e(0) = 0 gilt dann wegen e, =0

Ce(t) —emn =0
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fiir alle t < 0 und es folgt Jy(0,0) = 0 fiir das Optimalitétskriterium (7.2), folglich auch
Py(0) = 0 und somit €*(0) = 0. Damit folgt z*(0) = 29 — €*(0) = 2.

Der aus dem Anfangswert zy berechnete Approximationswert z(t) ist also gerade der End-
wert derjenigen Losung von (7.7), welche die zusammengesetzte Kurve (7.11) im Sinne von
(7.2) am Besten approximiert.

Der grofie Vorteil des Kalman-Filters ist es, dass er auch bei ungenauen Daten g(t) =
y(t) gute Approximationen liefert. Dies kann mit stochastischen Methoden mathematisch
rigoros formuliert und bewiesen werden.

Auch fiir den Kalman-Filter existiert eine zeitdiskrete Version. In diesem Fall wird die
Differentialgleichung (7.10) zu einer Differenzengleichung

2(k+1) = Az(k) + Bu(k) + L(Cz(k) — y(k)).

Da diese leichter zu implementieren ist als die Differentialgleichung (7.10) (die man ja
zuerst noch numerisch 16sen muss) und zudem mit diskreten Messwerten y(k) auskommt
(welche technisch leichter zu messen sind als kontinuierliche Messwerte y(t)), wird in der
Praxis der zeitdiskrete Kalman-Filter oft bevorzugt.
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Kapitel 8

Nichtlineare Kontrollsysteme

In diesem und den folgenden Kapiteln werden wir uns mit nichtlinearen Kontrollsystemen
der allgemeinen zeitkontinuierlichen Form

o(t) = f(x(t),u(t)) (8.1)
bzw. der zeitdiskreten Form
x(k+1) = f(x(k),u(k)), (8.2)

kurz auch geschrieben als 27 = f(z,u), befassen. Ein Beispiel fiir ein nichtlineares Kon-
trollsystem in kontinuierlicher Zeit ist das bereits bekannte nichtlineare Pendel auf dem
Wagen (1.5). Wéhrend wir den Zustands- und Kontrollwerteraum fiir zeitkontinuierliche
Systeme als R™ bzw. R™ gew#hlt haben, konnen wir bei zeitdiskreten Systemen beliebige
metrische Rdume X und U als Zustands- und Kontrollraum verwenden.

In den folgenden beiden Abschnitten fassen wir einige wichtige Grundlagen zusammen.

8.1 Zeitkontinuierliche Systeme

Im kontinuierlichen betrachten wir Kontrollfunktionen mit Werten in U C R™. Die Funk-
tion f: R® x U — R" ist ein parameterabhéingiges stetiges Vektorfeld. Den Raum der Kon-
trollfunktionen bezeichnen wir weiterhin mit I/, werden diesen aber im Vergleich zu den vor-
hergehenden Kapiteln im folgenden Abschnitt in Zusammenhang mit einem Existenz- und
Eindeutigkeitsresultat erweitern. Genauer verwenden wir Kontrollfunktionen aus L> (R, U)
und den folgenden Satz von Carathéodory.

Satz 8.1 (Satz von Carathéodory) Betrachte ein Kontrollsystem mit folgenden Eigen-
schaften:

i) Der Raum der Kontrollfunktionen ist gegeben durch

U=L®R,U):={u:R — U |u ist messbar und essentiell beschrinkt!}.

'd.h. beschrankt auBlerhalb einer Lebesgue-Nullmenge
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ii) Das Vektorfeld f : R™ x U — R" ist stetig.
iii) Fiir jedes R > 0 existiert eine Konstante Lr > 0, so dass die Abschétzung

| f(21,u) — f(22,w)|| < Lr|lz1 — 22|

fir alle z1,x2 € R"™ und alle w € U mit ||z1]], |22, [Ju|| < R erfiillt ist.

Dann gibt es fiir jeden Punkt xg € R", jede Zeit ty € R und jede Kontrollfunktion u € U
ein (maximales) offenes Intervall I mit to € I und genau eine absolut stetige? Funktion
x(t), die die Integralgleichung

£(t) = w0 + / f (), u(r)) dr

to
fiir alle t € I erfiillt.

Definition 8.2 Wie bezeichnen die eindeutige Funktion z(¢) aus Satz 8.1 mit x,,(¢; to, zo)
und nennen sie die Lisung von (8.1) zum Anfangswert xg € R™ und zur Kontrollfunktion
u € Y. Im Fall ¢ty = 0 schreiben wir kurz z, (¢, zo, u) = x(¢; 0, z9). O

Die folgende Beobachtung rechtfertigt diese Definition: Da x,,(¢; tg, z¢) absolut stetig ist,
ist diese Funktion fiir fast alle ¢ € I nach ¢ differenzierbar. Insbesondere folgt also aus dem
Satz 8.1, dass x,(t;to, zo) die Differentialgleichung (8.1) fiir fast alle ¢ € I erfiillt, d.h. es
gilt

Ty (t; o, x0) = fau(t; to, xo), u(t))
fiir fast alle t € 1.

Bemerkung 8.3 Im Weiteren nehmen wir stets an, dass die Voraussetzungen (i)—(iii) von
Satz 8.1 erfiillt sind, werden dies aber nur in wichtigen Sétzen explizit formulieren. o

Der Beweis von Satz 8.1 (auf den wir aus Zeitgriinden nicht niher eingehen) verlauft ahnlich
wie der Beweis des entsprechenden Satzes fiir stetige gewOhnliche Differentialgleichungen,
d.h. mit dem Banach’schen Fixpunktsatz angewendet auf einen passenden Funktionen-
raum. Er findet sich zusammen mit einer Einfithrung in die zugrundeliegende Lebesgue—
Maftheorie z.B. in dem Buch Mathematical Control Theory von E.D. Sontag [15, Anhang
Cl.

Aus dem Eindeutigkeitssatz folgen wie bei stetigen gewohnlichen Differentialgleichungen
fiir alle ¢, s € R die Beziehungen

X (t5t0, o) = x40 (t5 8, T4 (85 t0, T0)) (8.3)
(die sogenannte Kozykluseigenschaft) und
Ty (t;t0, T0) = Ty(s4) (t — s5t0 — 5, T0),

die wir in Korollar 1.10 bereits fiir lineare Systeme formuliert haben. Aus der zweiten
Gleichung folgt mit s = ¢y insbesondere

Ty (t;t0, T0) = Ty(tg+) (t — to, o) (8.4)

2Eine Funktion heifit absolut stetig, wenn sie als Integral iiber eine L°°-Funktion geschrieben werden
kann.
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8.2 Abtastsysteme

Wie im ersten Kapitel schon erwéhnt, kann jedem zeitkontinuierlichem Kontrollsystem,
das die Voraussetzungen des Satzes von Carathéodory erfiillt, durch Abtastung ein zeit-
diskretes System zugeordnet werden. Dieses entsteht einfach daraus, dass wir den Zustand
des kontinuierlichen Systems nur zu den Zeitpunkten k7 fiir £ € N und eine feste Abtast-
zeit®> T > 0 betrachten. Bezeichnet #(t,zq, ) die zeitkontinuierliche Losung, so sind die
Zustiande z(k) des Abtastsystems gegeben durch

2(k) = &4 (KT, o).
Mit Hilfe von (8.3) und (8.4) folgt
x(k+1) = 24((k + V)T kT, 24(kT, x0)) = Ta((k + 1)T5 kT, 2(k)) = Zagr) (T, z(k)).
Definieren wir fiir die Kontrollfunktion 4(-) die Funktionen u(k) : [0,7] — R mittels
u(k)(t) == a(kT +1t), t€[0,T]

so ergibt sich
w(k +1) = Ty (T, 2(k)) =: f(x(k), u(k)), (8.5)

wodurch das zeitdiskrete Abtastsystem definiert ist. Im Allgemeinen ist dabei u(k) €
L*>([0,T],U). Wie in Kapitel 1 bereits erldutert, ist es ist aber moglich (und in der techni-
schen Praxis iiblich), u(k) aus einer eingeschriinkteren Menge zu wihlen. Sehr verbreitet ist
die Wahl, u(k) einfach als konstante Funktion zu wihlen. Die zugehorige zeitkontinuierliche
Kontrollfunktion @ ist dann stiickweise konstant. Manchmal werden die u(k) auch als Po-
lynome gewihlt, dann ist @ eine stiickweise polynomiale (aber i.d.R. in den “Nahtstellen”
kT nicht stetige) Funktion.

Wir werden im weiteren Verlauf der Vorlesung zumeist zeitdiskrete Systeme verwenden, weil
fiir diese die Methode der Modellpridiktiven Regelung, die im Folgenden im Vordergund
stehen soll, einfacher handzuhaben ist. Wir werden aber an einigen Stellen auf Eigenheiten
der Abtastsysteme eingehen.

3englisch: Abtastung = sampling, Abtastzeit = sampling time, Abtastsystem = sampled-data system
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Kapitel 9

Introduction to Model Predictive
Control

In this introduction, we present the basics of Model Predictive Control (henceforth abbre-
viated as MPC) in an informal way. In particular, we introduce the central idea of iterative
optimal control on a moving finite horizon.

MPC is a method for obtaining an approximately optimal feedback control for an optimal
control problem on an infinite or indefinite time horizon. Feedback here means that the
control at time k is of the form u(k) = p(x(k)) for a map pu : X — U. We have already seen
how linear quadratic optimal control leads to an optimal feedback control. The decisive
property that makes the approach via the Riccati equation computationally feasible is that
the optimal value function V is of quadratic form V(z) = 27 Pz. This means that we only
have to determine the coefficients of the matrix P, whose number is of the order O(n?).
However, as soon as the cost is nonquadratic, the dynamics is nonlinear or state and/or
control constraints are introduced into the problem, the function V' is no longer quadratic.
This means that an exact representation by finitely many coefficients is in general no
longer possible. The same holds for the optimal feedback law, which is in general a rather
complicated function in = for which already the storage poses challenging problems, known
as the “curse of dimensionality”. This implies that the direct computation and storage of
an approximately optimal feedback law is computationally intractable even for problems
in moderate space dimensions, say 5—10.

In contrast to this, nowadays there exist powerful optimization algorithms which can com-
pute single optimal trajectories in very short time, even for high dimensional systems like
accurately discretized PDEs. The key idea of MPC is now to use this computational ap-
proach for obtaining a feedback law which is near optimal for infinite horizon problems.

In order to describe the idea of MPC, consider the discrete time model
v = f(,u) (9.1)

where f : X x U — X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state ™ at the next time instant and X and
U are metric spaces. Starting from the current state x(j), for any given control sequence
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u(0),...,u(N—1) with horizon length N > 2, we can now iterate (9.1) in order to construct
a prediction trajectory z, defined by

2,(0) = 2(j), xu(k+1)= f(ay(k),u(k)), k=0,...,N—1. (9.2)

Proceeding this way, we obtain predictions x,, (k) for the state of the system z(j + k) for k
time steps into the future, depending on the chosen control sequence u(0),...,u(N —1).

Now we use optimal control in order to determine u(0),...,u(/N — 1). To this end, we fix
a cost function ¢(z,u). This function may be very general. In the simplest case, X and U
are vector spaces with norms and ¢ penalizes the distance of x to some “reference state”
T4; for simplicity we assume z, = 0. Typically, one does not penalize the deviation of the
state from the reference but also—if desired—the distance of the control values u(k) to a
reference control u,, which here we also choose as u, = 0. A common and popular choice
for such a function is the quadratic function

U (k) uk)) = [z (k)|* + Alu(k)|%,

where || - | denotes the norms! of the spaces X and U and A > 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired. The
purpose of MPC with a stage cost penalizing the distance to an equilibrium is that the
optimal control should drive the system towards the reference state z, = 0, in order to
stabilize the system at this state, just as in the linear quadratic case. MPC with such
stage costs is thus called stabilizing MPC. In contrast to this, MPC with more general cost
function is often called economic MPC.

Regardless which cost function is used, the optimal control problem now reads

N-1
minimize  Jy(z(j),u(-)) = (xy(k), u(k))
k=0
with respect to all admissible? control sequences u(0),...,u(N — 1) with x,, generated by

(9.2).

Let us assume that this optimal control problem has a solution which is given by the
minimizing control sequence u*(0),...,u*(N — 1), i.e.,

—

N
“(0),.TziLI(1N—1) In(@(5),ul)) = -~ Uy (k),u*(k)).

In order to get the desired feedback value u(x(j)), we now set p(z(j)) := u*(0), i.e., we
apply the first element of the optimal control sequence. This procedure is sketched in
Fig. 9.1.

We now apply this feedback law, i.e., the first element of u*, on the time interval from j
to j + 1. Thus we obtain

z(j +1) = f(z(), u(x(4))) (9:3)

1For simplicity of notation we use the same symbol for the in gereral different norms on X and U.
2The meaning of “admissible” will be defined in Sect. 11.2.
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past current time prediction horizon

past trajectory / b optimal predicted trajectory x,+(k)
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state x(j) feedback value ft(x(j)) =a*(0):

past feedback values Lo i

oo time

Abbildung 9.1: Mlustration of the MPC step at time j

System (9.3) is called the MPC closed-loop system.

At the following time instants j + 1,7 + 2,... we repeat the procedure with the new
measurements z(j+1), z(j+2), ... in order to derive the feedback values p(z(j+1)), p(xz(j+
2)),.... In other words, we obtain the feedback law p by an iterative online optimization
over the predictions generated by our model (9.1). This is the first key feature of model
predictive control.

From the prediction horizon point of view, proceeding this iterative way the trajectories
xy(k), k=0,..., N provide a prediction on the discrete interval j,...,j+ N at time j, on
the interval j4+1,...,5+ N 41 at time 5 + 1, on the interval 7 +2,...,5 4+ N + 2 at time
7 + 2, and so on. Hence, the prediction horizon is moving and this moving horizon is the
second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model predictive
control is receding horizon control. While the former expression stresses the use of model
based predictions, the latter emphasizes the moving horizon idea. Despite these slightly
different literal meanings, we prefer and follow the common practice to use these names
synonymously. In addition, one often uses the term Nonlinear Model Predictive Control
(NMPC) if one wants to indicate that our model (9.1) need not be a linear map.

9.1 Motivating examples

In this section we present three motivating examples (the corresponding numerical si-
mulations and experiments will only be presented in the lectures), which show different
phenomema which can be observed when using MPC.

The first example is the classical inverted pendulum, which is available as a real experiment
at the Chair of Applied Mathematics. The cost function £ here penalizes the distance to the
upright equilibrium. The ordinary differential equation system (which is similar to (1.5) but
a little more complex in order to take into account the motor dynamics) is sampled with
sampling time 7' = 50ms. The video shows that this time is enough to solve the optimal
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control problem numerically in each sampling interval®.

The second example is a very simple economic problem of optimal investment. Let > 0
be the amount of capital invested in a company. The invested capital = yields a return
of Az® — z in one time unit (e.g., a year), i.e., after one time step the amount of capital
is Az®. The control u describes the amount of capital which is invested again in the
next time step. Hence, the amount of money to be consumed is Az® — u. The utility of
consumption is measured by a classical logarithmic utility function In(Az® —u). We want to
maximize this utility over several time steps, hence we want to minimize the cost function
lz,u) = —In(Az® — u). We note that this cost function is not of the form of a function
which penalizes the distance from a reference point z,. Numerical simulations for A = 5
and a = 0.34 and state constraint set X = [0,10] show that the finite horizon optimal
solutions always end up at x = 0, i.e., at the end of the optimization horizon all money
is spent (which is natural). However, for longer horizons the solutions spend quite some
time in the vicinity of the point z¢ ~ 2.2344 and the MPC closed-loop (9.3) converges
to an equilibrium near this point. Further tests reveal that the limit point of the MPC
closed-loop itself converges as N — oo.

There are many questions which arise from this behaviour: Why does the MPC closed-loop
converge to a point far away from the endpoint of the finite horizon optimal trajectories?
How do we characterize this point and its limit for N — oo? Is the MPC closed-loop
trajectory approximately optimal in some sense? And how can we check whether an optimal
control problem has such a behavior?

The third example is a simple partial differential equation control system governed by the
1d heat equation on € = (0, L). We consider the equation either with distributed control

ye(z,t) = Ypa(x,t) + py(z,t) + a(x,t) on Q x (0,00)
y(0,t) = y(L,t) = 0 on (0, 00)
y(z,0) = yo(x) on

or with boundary control.

ye(z,t) = ypa(x,t) + py(z,t) on 2 x (0,00)
y(0,t) = 0, y(L,t) = u(t) on (0, 00)
y(z,0) = yo(x) on

We set © = 15, which implies that y = 0 is an unstable equilibrium for v = 0. In order
to stabilize this equilibrium, we consider the cost functions £(y,u) = ||yl|72 + AfJul|* (“L*-
cost”) and £(y,u) = ||yz ]2, 4+ Al|ul|* (“V-cost”). As usual in MPC, it depends on the length
of the horizon N whether the equilibrium y = 0 is indeed stable. The simulations — all with
sampling time 7" = 0.01 — show that depending on the parameters L and A\ as well as on
the type of the cost the minimal horizon length needed for stabilization differs significantly.
This immediately leads to the question how we can estimate this minimal horizon length
and whether we can tune, e.g., the stage cost £ such that this horizon becomes small.

3In practice, the state 2(7) must be computed from sensor data using a suitable observed, as, e.g., the
Kalman filter or variants thereof. Also, in practice the MPC problem is initialized with the state z(j — 1)
such that the time span until time j can be fully used in order to solve the optimal control problem. Both
aspects will be neglected in the analysis of MPC schemes we will present in this lecture.
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As we will see later, in all these examples we can prove that MPC yields approximately
optimal infinite horizon trajectories. Hence, the problem on (rather short) finite horizons
already contains enough information to compute near optimal solutions on an infinite ho-
rizon, a property that can be seen as a complexity reduction technique in time. In the
subsequent analysis, we will in particular investigate the mechanisms behind this comple-
xity reduction.
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Kapitel 10

Stability of discrete time nonlinear
systems

10.1 Stability definitions

In the introduction, we already specified one of the goals of model predictive control, namely
to control the state x(n) of the system toward a reference point z, and then keep it close
to this point. In this section we formalize what we mean by “toward” and “close to” using
concepts from stability theory of nonlinear systems. These concepts will also turn out to
be useful for the analysis of MPC schemes in which £ does not penalize the distance to an
equilibrium z,.

We assume that the states z(k) are generated by a difference equation of the form
v = g(z) (10.1)

for a not necessarily continuous map ¢g : X — X via the usual iteration z(k + 1) =
g(x(k)). Similar to before, we write z(k, zo) for the trajectory satisfying the initial condition
x(0,z9) = x9 € X. Allowing g to be discontinuous is important for our MPC application,
because g will later represent the MPC closed-loop system (9.3), i.e., g(z) = f(z, u(x)).
Since p is obtained as an outcome of an optimization algorithm, in general we cannot
expect u to be continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called comparison func-
tions which were first introduced by Hahn in 1967 [7] and popularized in nonlinear control
theory during the 1990s by Sontag, particularly in the context of input-to-state stability
[13]. Although we mainly deal with discrete time systems, we stick to the usual continuous
time definition of these functions using the notation RY = [0, c0).

Definition 10.1 [Comparison functions] We define the following classes of comparison
functions.

K :={a: R — R{ | is continuous & strictly increasing with «/(0) = 0}
Koo :={a:R{ = R} |a € K, a is unbounded}
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L:={6: R — R |4 is continuous & strictly decreasing with lim 4(t) = 0}

— 00

KL:={B:Rf xR{ — Ry | B is continuous, B(-,t) € KVt >0, B(r,-) € LVr > 0}.

Using this function, we can now introduce the concept of asymptotic stability. Here, for
arbitrary z1,z9 € X we denote the distance from z; to xo by

‘371’352 = dx(.%'l,.%'2>.
Furthermore, we use the ball
By(a.) = {z € X |[als. <n)

and we say that a set Y C X is forward invariant for (10.1) if g(x) € Y holds forall z € Y.

Definition 10.2 [Asymptotic stability] Let z. € X be an equilibrium for (10.1), i.e.,
g(z+) = x«. Then we say that x, is locally asymptotically stable if there exist n > 0 and a
function 8 € KL such that the inequality

e < 6(|$0 m*an) (102)

| (n, o)

holds for all zg € B, (z«) and all n € No.

We say that x, is asymptotically stable on a forward invariant set Y with x, € Y if there
exists # € ICL such that (10.2) holds for all g € Y and all n € Nyg and we say that x is
globally asymptotically stable if x, is asymptotically stable on Y = X.

If one of these properties holds then 8 is called attraction rate. O

Note that asymptotic stability on a forward invariant set Y implies local asymptotic sta-
bility if ¥ contains a ball B, (x). However, we do not necessarily require this property.

Asymptotic stability thus defined consists of two main ingredients:

(i) The smaller the initial distance from xy to x, is, the smaller the distance from z(n)
to x,« becomes for all future n, or formally: for each £ > 0 there exists § > 0 such that
|z(n, 20)|z, < € holds for all n € Ny and all zg € Y (or x¢ € By(x4)) with |zg|,, < 9.

This fact is easily seen by choosing ¢ so small that 3(d,0) < e holds, which is possible
since 3(-,0) € K. Since § is decreasing in its second argument, for |zg|,, < 0 from
(10.2) we obtain

2, 20) e, < B(Z0ler ) < Bllols.,0) < B(6,0) <e.

(ii) As the system evolves, the distance from z(n, xg) to x, becomes arbitrarily small, or
formally: for each € > 0 and each R > 0 there exists N > 0 such that |z(n, zo)|s, <€
holds for all n > N and all zg € Y (or 9 € By(x4)) with |zo|,, < R. This property
easily follows from (10.2) by choosing N > 0 with S(R, N) < ¢ and exploiting the
monotonicity properties of 3.
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These two properties are known as (i) stability (in the sense of Lyapunov) and (ii) attracti-
on. In the literature, asymptotic stability is often defined via these two properties. In fact,
for continuous time (and continuous) systems (i) and (ii) are known to be equivalent to
the continuous time counterpart of Definition 10.2, cf. [10, Sect. 3]. We conjecture that the
arguments in this reference can be modified in order to prove that equivalence also holds
for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the MPC closed loop described
earlier: whenever we are already close to the reference equilibrium we want to stay close;
otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop solution
to the equilibrium z, becomes arbitrarily small. Occasionally, this may be too demanding.
For instance, we will see that in general we cannot expect this behavior for stage costs
£ which do not penalize the distance to z,. In this case, one can relax the asymptotic
stability definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y.

Definition 10.3 [P-practically asymptotic stability| Let Y be a forward invariant set and
let P C Y be asubset of Y. Then we say that a point x, € Y is P-practically asymptotically
stable on Y if there exists § € ICL such that (10.2) holds for all zp € Y and all n € Ny
with x(n,zo) € P. o

Fig. 10.1 illustrates practical asymptotic stability (on the right) as opposed to “usual”
asymptotic stability (on the left).

Xo X(n,Xo) X0 X(Nn,Xo)

Abbildung 10.1: Sketch of asymptotic stability (left) as opposed to practical asymptotic
stability (right)

This definition is typically used with P contained in a small ball around the equilibrium,
i.e., P C Bs(xy) for some small § > 0. In this case one obtains the estimate

(1, o)z, < max{S(|zols.,n), } (10.3)

for all 9 € Y and all n € Ny, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bs(z.). Note that z, does not need to be an equilibrium in
Definition 10.3.
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10.2 Lyapunov functions

In order to verify that our MPC controller achieves asymptotic stability we will utilize the
concept of Lyapunov functions.

Definition 10.4 [Lyapunov function] Consider a system (10.1), a point z, € X and let
S C X be a subset of the state space. A function V : S — ]Rar is called a Lyapunov
function on S if the following conditions are satisfied:

(i) There exist functions aq, as € Ko such that

ar(|zle,) < V() < o]z

) (10.4)
holds for all z € S.

(ii) There exists a function ay € K such that
Vig(x)) < V(z) = av(|z]s.) (10.5)

holds for all z € S with g(x) € S.

The following theorem shows that the existence of a Lyapunov function ensures asymptotic
stability.

Theorem 10.5 [Asymptotic stability using Lyapunov functions] Let z, be an equilibrium
of (10.1) and assume there exists a Lyapunov function V on S. If S contains a ball B, (z)
with g(x) € S for all x € B, (z.) then x, is locally asymptotically stable with n = a2_1 o
ai(v). If S =Y holds for some forward invariant set ¥ C X containing z, then x, is

asymptotically stable on Y. If S = X holds then z, is globally asymptotically stable.

Proof: The idea of the proof lies in showing that by (10.5) the function V(x(n,zo)) is
strictly decreasing in n and converges to 0. Then by (10.4) we can conclude that x(n, zg)
converges to x,. The function 8 from Definition 10.2 will be constructed from «q, as and
ay. In order to simplify the notation, throughout the proof we write |z| instead of ||, .

First, if S is not forward invariant, define the value v := o (v) and the set S := {z €
S|V (xz) <~} Then from (10.4) we get

zeS=a(z) <V <y=|z|<ail(y) =v =z € B,(z.),

observing that each a € K is invertible with o' € Kx.

Hence, for each z € S inequality (10.5) applies and consequently V (g(z)) < V(z) <y
implying g(z) € S. If § =Y for some forward invariant set ¥ C X we define S := S. With
these definitions, in both cases the set S becomes forward invariant.
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Now we define of, = ay o ay ! Note that concatenations of K-functions are again in K,
hence o}, € K. Since |z| > a; ' (V(x)), using monotonicity of ey this definition implies

av(|z]) = ay o ay (V(2)) = ay (V(2)).
Hence, along a trajectory z(n, zo) with zo € S, from (10.5) we get the inequality

V(z(n+1,20)) < V(x(n,x0)) — ay(|z(n,x)|) < V(z(n,x0)) — ay (V(z(n,z0))). (10.6)

For the construction of 8 we need the last expression in (10.6) to be strictly increasing in
V(z(n,xo)). To this end we define

ay(r) = Srell[égl{ab(S) +(r—s)/2}.

Straightforward computations show that this function satisfies ro — @y (r2) > 11 —ay (r1) >
0 for all ro > 71 > 0 and min{ay,(r/2),r/4} < av(r) < af,(r) for all r > 0. In particular,
(10.6) remains valid and we get the desired monotonicity when o}, is replaced by ay .

We inductively define a function 8y : R x Ng — ]R(J)r via

Bi(r,0) :=r, pBi(r,n+1) = pi(r,n) —ay(Bi(r,n)). (10.7)

By induction over n using the properties of ay (r) and Inequality (10.6) one easily verifies
the following inequalities:

Bi(ra,m) > B1(r1,m) >0 for all ro > r; > 0 and all n € Ny (10.8)
Bi(r,ny) > B1(r,n2) > 0 for all ng >ny >0 and all » > 0 (10.9)
V(z(n,x0)) < B1(V(xg),n) for all n € Ny and all 29 € S (10.10)

From (10.9) it follows that 3 (r,n) is monotone decreasing in n and by (10.8) it is bounded
from below by 0. Hence, for each r > 0 the limit 5{°(r) = lim,, oo B1(7, n) exists. We claim
that 57°(r) = 0 holds for all r. Indeed, convergence implies 51 (r,n) — B1(r,n +1) — 0 as
n — oo which together with (10.7) yields ay (Bi(r,n)) — 0. On the other hand, since ay
is continuous, we get ay (B1(r,n)) — ay(67°(r)). This implies

ay (B7°(r)) =0

which because of &y (r) > min{ay (r/2),r/4} and ay € K is only possible if 52°(r) = 0.

Consequently, 31 (r,n) has all properties of a KL function except that it is only defined for
n € Ny. Defining the linear interpolation

Bo(r,t) :==(n+1—1t)B1(r,n) + (t —n)B1(r,n + 1)

for t € [n,n+ 1) and n € Ny, we obtain a function Sy € KL which coincides with 3y for
t = n € Np. Finally, setting

B(r,t) = afl o Ba(aa(r), 1)
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we can use (10.10) in order to obtain

‘.Z'(TL, 1’0)‘ < al_l(v(x(n7 .’L'())) < 041_1 ° ﬂl(V(x[)), n)
= ay'oBa(V(wo),n) < ait o Ba(as(wol,n) = B(lol,n),
for all zg € S and all n € Np. This is the desired inequality (10.2). If S = S =Y this
shows the claimed asymptotic stability on Y and global asymptotic stability if Y = X. If

S # S, then in order to satisfy the local version of Definition 10.2 it remains to show that
x € By(z,) implies z € S. Since by definition of 1 and v we have n = ay ' (v), we get

z € By(r.) = |z| <n=a3'(y) = V(z) < a(z]) <y=z€b.

This finishes the proof. []

Likewise, P-practical asymptotic stability can be ensured by a suitable Lyapunov function
condition provided the set P is forward invariant.

Theorem 10.6 [P-practical asymptotic stability]
Consider forward invariant sets Y and P C Y and a point z, € P. If there exists a
Lyapunov function V on S =Y \ P then z, is P-practically asymptotically stable on Y.

Proof: The same construction of 5 as in the proof of Theorem 10.5 yields

|z(n, 20|z, < B(|2]2.,n) (10.2)

for all m = 0,...,n* — 1, where n* € Ny is minimal with x(n*,zg) € P. This follows with
the same arguments as in the proof of Theorem 10.5 by restricting the times considered in
(10.6) and (10.10) ton =0,...,n* =2 and n =0,...,n* — 1, respectively.

Since forward invariance of P ensures z(n,xo) € P for all n > n*, the times n for which
x(n,xo) ¢ P holds are exactly n = 0,...,n* — 1. Since these are exactly the times at which
(10.2) is required, this yields the desired P-practical asymptotic stability. [

For continuous time systems & = g(z) all the concepts introduced in this section can be
carried over directly. Particularly, the definitions of asymptotic and P-practical asymptotic
stability are identical. In the definition of Lyapunov functions, condition (10.4) stays the
same while condition (10.5) becomes

V@@%DSV@w—AGWWWMMJ

This is equivalent to

V@@ﬂ?_vwdg_iAaﬂ@@%MJ

and if V is continuously differentiable, then by letting ¢ — 0 one obtains the equivalent
characterization
DV (x0)g(z0) < —av(|zolz.)- (10.11)

Now it is obvious that this concept generalizes Definition 3.8, which we used in the linear
case. With this definition of a Lyapunov function, all results in this section remain valid
in the continuous time case.
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Model predictive control schemes

11.1 The MPC algorithm without terminal conditions

We start this chapter by formulating the basic MPC algorithm already sketched in Chap-
ter 9 in a more rigorous way. Here, the stage cost £ : X x U — R is a general function. In
the case of sampled data systems we can take the continuous time nature of the underly-
ing model into account by defining the stage cost £ as an integral over a continuous time
running cost function L : X x U — RS‘ on a sampling interval. Using the continuous time
solution & from (8.5), we can define

T
Uz, u) ::/0 L(z(t,x,u),u(t))dt. (11.1)

Defining ¢ this way, we can incorporate the intersampling behavior of the sampled data
system, i.e., the behavior of the continuous time solution between two sampling times tx
and tx41, explicitly into our optimal control problem.

Given such a cost function ¢ and a prediction horizon length N > 2, we can now formulate
the basic MPC scheme as an algorithm. In the optimal control problem (OCPy) within this
algorithm we introduce a set of control sequences UV (z¢) € U over which we optimize.
This set may include constraints depending on the initial value xg. Details about how
this set should be chosen will be discussed in Sect. 11.2. For the moment we simply set
UN(z0) := UN for all 2o € X.

Algorithm 11.1 (Basic MPC algorithm)
At each time instant 7 =0,1,2.. .

(1) Measure the state z(j) € X of the system

(2) Set zg := x(j), solve the optimal control problem
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i

minimize  Jy(zo, u(-)) := U(xy(ky o), u(k))
0

B
I

(OCPy)
with respect to wu(-) € UN(z), subject to

xu(O,ﬂJo) = 20, xu(k + 17x0) = f(zu(k?,l‘o), u(k))

and denote the obtained optimal control sequence by u*(-) € UY (zq).

(3) Define the MPC-feedback value uy(z(j)) := u*(0) € U and use this control value in
the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence u*(+)
exists. Sufficient conditions for this existence are briefly discussed after Definition 12.1,
below.

The MPC closed loop system resulting from Algorithm 11.1 is given by (9.3) with state
feedback law p = py, i.e.,
o = (@, (o). (11.2)

The trajectories of this system will be denoted by z,, (n) or, if we want to emphasize the
initial value xo = 2, (0), by z,y (n, zo).

During our theoretical investigations we will neglect the fact that computing the solution
of (OCPy) in Step (2) of the algorithm usually needs some computation time 7. which —
in the case when 7, is relatively large compared to the sampling period 7" — may not be
negligible in a real time implementation.

In our abstract formulations of the MPC Algorithm 11.1 only the first element u*(0) of
the respective minimizing control sequence is used in each step, the remaining entries
u*(1),...,u*(N —1) are discarded. In the practical implementation, however, these entries
play an important role because numerical optimization algorithms for solving (OCPy) (or
its variants) usually work iteratively: starting from an initial guess u°(-) an optimization
algorithm computes iterates u’(-), i = 1,2, ... converging to the minimizer u*(-) and a good
choice of u°(-) is crucial in order to obtain fast convergence of this iteration, or even to
ensure convergence, at all. Here, the minimizing sequence from the previous time step can
be efficiently used in order to construct such a good initial guess. Ways to implement this
idea will be discussed in the excercises.

11.2 Constraints

One of the main reasons for the success of MPC (and MPC in general) is its ability to
explicitly take constraints into account. Here, we consider constraints both on the control
as well as on the state. To this end, we introduce a nonempty state constraint set X C X
and for each x € X we introduce a nonempty control constraint set U(x) C U. Of course,



11.2. CONSTRAINTS 111

U may also be chosen independent of x. The idea behind introducing these sets is that we
want the trajectories to lie in X and the corresponding control values to lie in U(x). This
is made precise in the following definition.

Definition 11.2 [Admissibility] Consider a control system (8.2) and the state and control
constraint sets X C X and U(z) C U.

(i) The states x € X are called admissible states and the control values u € U(z) are called
admissible control values for x. The elements of the set Y := {(z,u) € X x U |z € X;u €
U(x)} are called admissible pairs.

(ii) For N € N and an initial value 2o € X we call a control sequence v € U and the
corresponding trajectory x,(k,zo) admissible for xo up to time N, if

(xy(k,x0),u(k)) €Y forall k=0,...,N—1 and x,(N,z0) € X

holds. We denote the set of admissible control sequences for zg up to time N by UN (zg).

(iii) A control sequence u € U and the corresponding trajectory x,(k,xo) are called
admissible for xq if they are admissible for z¢ up to every time N € N. We denote the set
of admissible control sequences for z¢ by U>(z).

(iv) A feedback law p : X — U is called admissible if u(x) € U'(x) holds for all = € X.

Whenever the reference to x or xg is clear from the context we will omit the additional
“for 2”7 or “for xq”. a

Since we can (and will) identify control sequences with only one element with the respective
control value, we can consider U'(zg) as a subset of U, which we already implicitly did in
the definition of admissibility for the feedback law p, above. However, in general U!(zq)
does not coincide with U(zg) C U because using z,(1,2) = f(x,u) and the definition of
UM (29) we get Ul(z) := {u € U(x) | f(z,u) € X}. With this subtle difference in mind, one
sees that our admissibility condition (iv) on p ensures both p(z) € U(x) and f(z, u(z)) € X
whenever = € X.

Furthermore, our definition of UV (z) implies that even if U(x) = U is independent of x
the set UV (z) may depend on z for some or all N € N..

Often, in order to be suitable for optimization purposes these sets are assumed to be com-
pact and convex. For our theoretical investigations, however, we do not need any regularity
requirements of this type except that these sets are nonempty.

MPC is well suited to handle constraints because these can directly be inserted into Algo-
rithm 11.1. In fact, since we already formulated the corresponding optimization problem
(OCPy) with state dependent control value sets, the constraints are readily included if we
use UM () from Definition 11.2(ii) in (OCPy). However, when doing so we have to make
sure that the constraints in (OCPy) can be satisfied for all j, i.e., that we do not optimize
over an empty set because UV (zq) = (. This is formalized in the following definition.

Definition 11.3 (i) An initial condition z¢ € X is called feasible for (OCPy) if the cons-
traints imposed in (OCPy) can be satisfied, i.e, if UV (xq) # 0.
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(i) A MPC algorithm 11.1 is called recursively feasible on a set A C X if each z € A is
feasible for (OCPy) and = € A implies f(z, un(x)) € A (implying that f(z, un(x)) is again
feasible). o

One easily sees that recursive feasibility implies that x,, (j) is feasible for all j € N if
2,y (0) € A. In order to ensure recursive feasibility of A = X for Algorithm 11.1, we need
the following assumption.

Assumption 11.4 [Viability] For each z € X there exists u € U(x) such that f(z,u) € X
holds. O

The property defined in this assumption is called wviability or weak (or controlled) forward
invariance of X. It excludes the situation that there are states x € X from which the
trajectory leaves the set X for all admissible control values. Hence, it ensures UV (zg) # ()
for all xg € X and all N € Ny,. Thus, it ensures that any zy € X is feasible for (OCPy)
and hence ensures that py(x) is well defined for each z € X. We will see after the next
example that viability of X also implies recursive feasibility and admissibility of the closed
loop. Furthermore, a straightforward induction shows that under Assumption 11.4 any
finite admissible control sequence u(-) € UM (xg) can be extended to an infinite admissible
control sequence u(-) € U*(xg) with u(k) = a(k) for all k =0,..., N — 1.

In order to see that the construction of a constraint set X meeting Assumption 11.4 is
usually a nontrivial task, we consider the following Example.

Example 11.5 Consider
x+ :f(x,u) _ < $1+x2+U/2 ) :

To +Uu

which can be seen as a sampled-data model for a car on a one-dimensional road with
position z1, speed x5 and piecewise constant acceleration u. Assume we want to constrain
all variables, i.e., the position z, the velocity xo and the acceleration u to the interval
[~1,1]. For this purpose one could define X = [~1,1]? and U(z) = U = [~1,1]. Then,
however, for = (1,1)T, one immediately obtains

i =2 + a9 +u/2=2+u/2>3/2

for all u, hence + ¢ X for all u € U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint on
u to U = [—2,2] the viability of X = [~1,1]? is guaranteed, because then by elementary
computations one sees that for each z € X the control value

0, xr1+ T2 € [—1, 1]
u = 2 —2x1 — 229, 1 +x9 > 1
—2 — 2z — 29, T+ a9 < —1

is in U and satisfies f(z,u) € X. A way to achieve viability without changing U is by
tightening the constraint on x2 by defining

X ={(z1,22)T €R? |z € [-1,1],29 € [-1,1] N [-3/2 — z1,3/2 — 1]}, (11.3)
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0.8f
0.6f
0.4f
0.2f

-0.2r
—0.4f
-0.61
-0.8

Abbildung 11.1: Ilustration of the set X from (11.3)

see Fig. 11.5. Again, elementary computations show that for each z € X and

1, 2y < —1/2
u=14 —2m9, x2€[—1/2,1/2]
~1,  z>1/2
the desired properties u € U and f(z,u) € X hold. a

This example shows that finding viable constraint sets X (and the corresponding U or
U(x)) is a tricky task already for very simple systems. Still, Assumption 11.4 significantly
simplifies the subsequent analysis, cf. Theorem 11.6, below. For this reason we will impose
this condition in our theoretical investigations for schemes without stabilizing terminal
conditions. The assumption can be avoided if suitable terminal constraints are employed.
We will discuss this extension of the scheme in Section 11.3.

The following theorem shows that the viability assumption ensures recursive feasibility of
Algorithm 11.1 and that the resulting MPC closed loop satisfies the desired constraints.

Theorem 11.6 [Recursive Feasibility and Admissibility] Consider Algorithm 11.1 using
UN(z0) from Def. 11.2(ii) in the optimal control problem (OCPy) for constraint sets X C X,
U(z) C U, z € X, satisfying Assumption 11.4. Consider the MPC closed loop system (11.2).
Then the MPC algorithm is recursively feasible on A = X and for any x,, (0) € X the
constraints are satisfied along the solution of (11.2), i.e.,

(@ (), v (2 () €Y (11.4)

for all n € N. Thus, the MPC-feedback p is admissible in the sense of Definition 11.2(iv).

Proof: First, recall from the discussion after Assumption 11.4 that under this assumption
the optimal control problem (OCPy) is feasible for each x € X, hence uy(z) is well defined
for each = € X.

We now show that z,,(n) € X implies pn(z,y(n)) € U(zuy(n)) and z,(n +1) € X
This implies recursive feasibility of A = X, and admissibility follows by induction from
zp,(0) € X,
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The viability of X from Assumption 11.4 ensures that whenever z,,, (n) € X holds in Algo-
rithm 11.1 then xy € X is feasible for the respective optimal control problem (OCPy).
Since the optimization is performed with respect to admissible control sequences on-
ly, also the optimal control sequence u*(-) is admissible for xy = x,,(n). This implies
pn (2 (n)) = u*(0) € Uz, (n)) € U(x,uy (n)) and thus also

Tuy (N4 1) = f(@uy (n), uv (2y () = f (20, u™(0)) € X,
Le, z,,(n+1)eX O

In the underlying optimization algorithms for solving (OCPy), usually the constraints
cannot be specified via sets X and U(z). Rather, one uses so-called equality and inequality
constraints in order to specify X and U(z) according to the following definition.

Definition 11.7 Given functions GY : X x U — R, i € &5 = {1,...,pg} and HY .
XxU—=R,ieIf= {pg+1,...,pg + pn} with pg, pr, € Ny, we define the constraint sets
X and U(z) via

X::{:L‘GX

there exists u € U with G¥(z,u) = 0 for all i € £
and HP (z,u) > 0 for all i € Z°

and, for x € X

U(~T)1={ueU Gy (x,u) =0 for all i € £ and}

H?(z,u) >0 for all € 79

Here, the functions Gf and Hf do not need to depend on both arguments. The functions
GZ-S , HZS not depending on u are called pure state constraints, the functions Gf , HZS not
S

depending on z are called pure control constraints and the functions G?, H;q depending

on both x and w are called mized constraints. O

Observe that if we do not have mixed constraints then U(z) is independent of z.

The reason for defining X and U(x) via these (in)equality constraints is purely algorithmic:
the plain information “x,(k,zo) ¢ X” does not yield any information for the optimizati-
on algorithm in order to figure out how to find an admissible u(-), i.e., a u(-) for which
“ry(k, o) € X" holds. In contrast to that, an information of the form “H? (z,(k, z¢), u(k)) <
0” together with additional knowledge about HZS (provided, e.g., by the derivative of H ZS )
enables the algorithm to compute a “direction” in which u(-) needs to be modified in order
to reach an admissible u(-).

In our theoretical investigations we will use the notationally more convenient set charac-
terization of the constraints via X and U(z) or U¥(z). In the practical implementation of
our MPC method, however, we will use their characterization via the inequality constraints
from Definition 11.7.

11.3 The MPC algorithm with terminal conditions

In this section we discuss an important variant of the basic MPC Algorithm 11.1. This al-
gorithm adds a constraint on the terminal state x, (NN, zg) of the trajectory over which we
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optimize in (OCPy), as well as a weight on this term. This combination of constraint and
weight on the terminal state is called terminal conditions. As we will see, under suitable
assumptions on the terminal conditions, the behavior of the MPC closed-loop can signifi-
cantly improve. The main disadvantage of terminal condition is that a rigorous derivation
of a constraint and a weight meeting these assumptions can be very difficult for complex
control systems.

The terminal constraint is of the form
(N, xo) € Xp for a terminal constraint set Xo C X. (11.5)
Of course, in the practical implementation the constraint set X is again expressed via

(in)equalities of the form given in Definition 11.7.

When using terminal constraints, the MPC-feedback law is only defined for those states
x¢ for which the optimization problem within the MPC algorithm is feasible also for these
additional constraints, i.e., for which there exists an admissible control sequence with cor-
responding trajectory starting in zp and ending in the terminal constraint set. Such initial
values are again called feasible and the set of all feasible initial values form the feasible set.
This set along with the corresponding admissible control sequences is formally defined as
follows.

Definition 11.8 [Feasible set and admissible control sequences]
For Xy from (11.5) we define the feasible set for horizon N € N by

Xy = {xg € X | there exists u(-) € UV (x¢) with z, (N, z0) € Xo}
and for each zg € Xy we define the set of admissible control sequences by

Ugo(xo) ={u(-) € UN(J}()) | 2o (N, z9) € Xo}.

Note that Xy = X and Ugo (r) = UN(x) holds if Xp = X, i.e., if no additional terminal
constraints are imposed.

The additional weight on the terminal state z,(N) is formalized by means of a terminal
cost of the form F(z,(N,zp)) with F': X9 — R in the optimization objective.

Together this leads to the following MPC algorithms extending the basic Algorithms 11.1.
Note that compared to these basic algorithms only the optimal control problems are diffe-
rent, i.e., the part in the boxes in Step (2).

Algorithm 11.9 (MPC algorithm with terminal conditions)
At each time instant 7 =0,1,2.. .

(1) Measure the state z(j) € X of the system.
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(2) Set zg := x(j), solve the optimal control problem

N-1
minimize  Jy(xo,u(-)) := Uxy(kyxo),u(k)) + F(zu(N,z0))
k=0
with respect to u(-) € Ugﬂ (xo), subject to (OCPy.e)

fEu(O?xO) = 20, xu(k + on) = f(:Eu(k,ajo), u(k))

and denote the obtained optimal control sequence by u*(:) € Ugo (o).

(3) Define the MPC-feedback value pn(x(j)) := u*(0) € U and use this control value in
the next sampling period.

We end this section with three useful results on the sets of admissible control sequences
from Definition 11.8.

Lemma 11.10 Let 29 € Xy, N € Nand K € {0,..., N} be given.
(i) For each u(-) € Ugo (xzg) we have x, (K, zg) € Xy_k.

(ii) For each u(-) € Ugo (7o) the control sequences u; € UX and uy € UN~X uniquely
defined by the relation

u(k):{ up (k), ::0,...'.',1(—1 (11.6)

satisfy uj € [UQN_K(:UO) and ug € Ug{;K(mul (K, xzp)).
(iii) For each uy(-) € UgN_K(l‘o) there exists ug(+) € UgofK (xy, (K, x0)) such that u(-) from
(11.6) satisfies u € Ugo (x0)-
Proof: (i) Using (8.4) we obtain the identity
xu(K-i—)(N - K, :BU(K? iC()))) = :EU(Nv .CC(]) € Xo,
which together with the definition of Xy_x implies the assertion.

(ii) The relation (11.6) together with (8.4) implies

_ :UU1(kaxO); kZO,,K
.’L’u(k7x0) - { xug(k . K, xu1(K’ xo))7 k - (117)

For k =0,..., K — 1 this identity and (11.6) yield

ui (k) = u(k) € U(zy(k,z0)) = U(xy, (k,x0))
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and for k =0,...,N — K — 1 we obtain
ug(k) =u(k+ K) € U(zy(k + K, x0)) = U(zy, (K, 24, (K, 20))),

implying u; € UK (zg) and uy € UN~E (2, (K, z0)). Furthermore, (11.7) implies the equa-
tion Xy, (N — K, 2y, (K, x0)) = x, (N, z9) € X which proves ug € UgO_K(n—I—K, T, (K, 20)).
This, in turn, implies that UQO_K(n—i—K, Ty, (K, xg)) is nonempty, hence ., (K, z9) € Xy_x
and consequently u; € [UgNiK(n, x0) follows.

(iii) By definition, for each x € Xy_x(n+ K) there exists ug € UQO_K(n + K, x). Choosing
such a ug for v =z, (K, z9) € Xy_g(n+ K) and defining u via (11.6), similar arguments
as in Part (ii), above, show the claim u € Ugo (n,zg). U

A straightforward corollary of this lemma is the following.

Corollary 11.11 For each x € Xy the MPC-feedback law pn obtained from Algorithm
11.9 satisfies

flz,un(x)) € Xn_1.

m}

Proof: Since pn(x) is the first element u*(0) of the optimal control sequence u* € [Ugo (x)
we get f(x,un(z)) = x4+ (1, 7). Now Lemma 11.10(i) yields the assertion. [l

The final result shows that with terminal conditions we can obtain Theorem 11.6 without
having to assume viability of X — if in exchange we assume viability of the terminal
constraint set Xg.

Theorem 11.12 [Recursive Feasibility and Admissibility] Consider Algorithm 11.9 for
constraint sets X C X, U(z) C U, z € X, and a terminal constraint set X which satisfies
Assumption 11.4. Consider the MPC closed loop system (11.2). Then the MPC algorithm
is recursively feasible on A = Xy and for z,,(0) € Xy the constraints are satisfied along
the solution of (11.2), i.e.,

(2 (1), v (@ () € ¥ (11.5)

for all n € N. Thus, the MPC-feedback p is admissible in the sense of Definition 11.2(iv).

Proof: We show that under the viability assumption on Xy the inclusion Xy_; C Xy
holds. Then recursive feasibility follows from Corollary 11.11 and admissibility follows as
in the proof of Theorem 11.6.

In order to show the inclusion Xy _1 € X, consider x € Xy_1. Then there is an admissible
control u € Ugo_l(x), implying x, (N — 1,z) € Xy. Viability of Xy implies the existence of
a control value @ € U(xy(N — 1,z)) with f(z,(N — 1,2),u) € Xo. This implies that the
control sequence

= (u(0),...,u(N —1),a) (11.9)

is admissible and satisfies z4(N,z) = f(zy(N — 1,2),4) € Xp. This implies z € Xy and
thus the desired inclusion. [J
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Kapitel 12
Dynamic programming

This chapter repeats and extends some of the results from Section 6.1. As we will see,
dynamic programming is not only important for deriving the Riccati equation but also as
a basis for analyzing MPC schemes in the next chapters. We first consider finite horizon
problems and then discuss infinite horizon problems.

12.1 Finite horizon problems

In this section we provide one of the classical tools in optimal control, the dynamic pro-
gramming principle. We will formulate and prove the results in this section for (OCPy.),
since all other optimal control problems introduced above can be obtained as special cases
of this problem. We will first formulate the principle for the open loop control sequences
in (OCPy,) and then derive consequences for the MPC-feedback law pn. The dynamic
programming principle is often used as a basis for numerical algorithms. In contrast to this,
here we will exclusively use the principle for analyzing the behavior of MPC closed loop
systems. The reason for this is that the numerical effort of solving (OCPy ) via dynamic
programming usually grows exponentially with the dimension of the state of the system.
In contrast to this, the computational effort of solving a single problem of type (OCPy) or
(OCPy ) scales much more moderately with the space dimension.

We start by defining some objects we need in the sequel.

Definition 12.1 Consider the optimal control problem (OCPy ) with initial value zy € X
and optimization horizon N € Nj.

(i) The function
VN(iL‘()) = inf JN(anu('))

u(-)EUZ (wo)
is called optimal value function.

(ii) A control sequence u*(-) € Ugo (z9) is called optimal control sequence for xq, if

Vn (z0) = In (2o, u*(+))

119
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holds. The corresponding trajectory x,» (-, zg) is called optimal trajectory.

In our MPC Algorithms 11.1 and 11.9 we have assumed that an optimal control sequence
u*(+) exists, cf. the comment after Algorithms 11.1. In general, this is not necessarily the
case but under reasonable continuity and compactness conditions the existence of u*(-)
can be rigorously shown. Examples of such theorems for a general infinite-dimensional
state space can be found in Keerthi and Gilbert [9] or Dolezal [3]. While for formulating
and proving the dynamic programming principle we will not need the existence of u*(-),
for all subsequent results we will assume that u*(-) exists, in particular when we derive
properties of the MPC-feedback law py. While we conjecture that most of the subsequent
results in this lecture notes can be generalized to the case when uy is defined via an
approximately minimizing control sequence, we decided to use the existence assumption
because it considerably simplifies the presentation of the results in these lecture notes.

The following theorem introduces the dynamic programming principle. It gives an equation
which relates the optimal value functions for different optimization horizons N and for
different points in space.

Theorem 12.2 [Dynamic programming principle] Consider the optimal control problem
(OCPy,e) with 29 € Xy and N € Ny. Then for all N € N and all K = 1,..., N the
equation

K-1
VN (zo) = inf Uy (k,x0),u(k))
u(~)EU§'§N_K z0) kZ:O

(12.1)
+ VNfK(-Tu(K> $0))}

holds. If, in addition, an optimal control sequence u*(-) € Ug@ (o) exists for zg, then we
get the equation

K-1
f k) .iL'o (k‘)) + VN_K(a:u* (K, 1’0)) (12.2)
k=0

In particular, in this case the “inf” in (12.1) is a “min”.

Proof: First observe that from the definition of Jy for u(:) € [Ugo (z9) we immediately

obtain
K—

In(zo,u(-) = Y Uwu(k,x0),u(k)) (12.3)
k=0
+ In-k(wu(K; w0), ul- + K)).

)_l

Since u(- + K) equals ua(-) from Lemma 11.10(ii) we obtain u(- + K) € [UgofK(xu(K, x0)).
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We now prove (12.1) by proving “>” and “<” separately. From (12.3) we obtain

K—
In(xo,u(r)) = (zy(k, xo), u(k))
k=

,_.

o

+ JN,K(xu(K, 330), u( + K))

Y
0

Uxy(k,x0),u(k)) + Vo (24 (K, 20)).

i
=)

Since this inequality holds for all u(-) € [Ugo (x0), it also holds when taking the infimum on
both sides. Hence we get

V = inf J , u(
N (o) u(_)elélN o) N (o, u(-))

K-1
inf (g (k,x0), u(k
()EUN xo){ Z o), ulk)

=0

+ VNfK(xu(K7 .To))}

K-1
= mf Uy, (kyxo), u(k

XNK =0

+ VN—K(xm (K7 xo))},

i.e., (12.1) with “>”. Here in the last step we used the fact that by Lemma 11.10(ii) the
control sequence u; consisting of the first K elements of u(-) € [Ugo (x0) lies in UgN_K(xo)

and, conversely, by Lemma 11.10(iii) each control sequence in ui(-) € [Uglg{N_K(l‘o) can be

extended to a sequence in u(-) € [Ugo (z9). Thus, since the expression in braces does not
depend on u(K),...,u(N — 1), the infima coincide.

In order to prove “<”, fix £ > 0 and let u*(+) be an approximately optimal control sequence
for the right hand side of (12.3), i.e

K-

,_.

Uxye (k, x0), u" (k) + IN—k (2ye (K, 20),u° (- + K))
k=0

IN

K-1
inf { Z Uy (K, o), u(k))

( )E]UN xo) -0

+ In—k (2o (K, x0),u(- + K))} +e

Now we use the decomposition (11.6) of u(-) into u; € UgN_K (o) and ug € Ug{;K(mul (K, xp))
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from Lemma 11.10(ii). This way we can proceed

()e%ljg {Zmu k,xo), u(k))

+ JIn—g(zu (K, x0),u(- + K))}

K-1
inf o {Zﬁ(xul(k,xo),ul(k))

NenK
AR ST k=0
up ()UK (wuy (K.w0))

+ JN—K($u1(K7$O)7u2('))}

;_x

K-
= mf 02y, (ky o), ur (k))
ur(1)ely (@) | 1o

+ Vn_k (@ (K, l‘o))}

Now (12.3) yields

= Uy (ky o), u (k) + IN—K (ye (K, 20),u" (- + K))

+ Vn_r(zu (K, xo))} +e.

Since the first and the last term in this inequality chain are independent of £ and since
e > 0 was arbitrary, this shows (12.1) with “<” and thus (12.1).

In order to prove (12.2) we use (12.3) with u(-) = v*(-). This yields

V(o) = J(wo,u"("))

K-1

= Uy (kyxo), u* (k) + In— kg (zux (K, z0), v (- + K))
o

> Uy (kyz0), u* (k) + Vv—k (zur (K, 20))
k=0

>

K-1
inf {Z Uk, w0), u(k)) + Viv_i (zu (K, xo))}
=0

u() €U,

N— K(I‘O)
- VN(-TO)a
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where we used the (already proven) equality (12.1) in the last step. Hence, the two “>" in
this chain are actually “=" which implies (12.2). U

The following corollary states an immediate consequence of the dynamic programming prin-
ciple. It shows that tails of optimal control sequences are again optimal control sequences
for suitably adjusted optimization horizon, time instant and initial value.

Corollary 12.3 If u*(-) is an optimal control sequence for initial value zp € Xy and
optimization horizon N > 2, then for each K = 1,..., N—1 the sequence u}(-) = uv*(-+K),
ie.,

ug(k) =u(K+k), k=0,....N—-K-1
is an optimal control sequence for initial value (K, ), time instant K and optimization
horizon N — K. O

Proof: Inserting Vy(x9) = Jn(xo,u*(-)) and the definition of uj(-) into (12.3) we obtain

0) = 3 Uays (ko) wt (k) + In— i (e (K, o), wie ()

Subtracting (12.2) from this equation yields

0= JN—k(Tu (K, 20), uk (*)) = VN-K (20 (K, 20))
which shows the assertion. [l

The next theorem relates the MPC-feedback law py defined in the MPC Algorithms 11.1
and 11.9 to the dynamic programming principle. Here we use the argmin operator in the
following sense: for a map a : U — R, a nonempty subset U C U and a value u* € U we
write

u* = argmin a(u) (12.4)

uelU

if and only if a(u*) = inf _5 a(u) holds. Whenever (12.4) holds the existence of the mini-
mum min, a(u) follows. However, we do not require uniqueness of the minimizer v*. In
case of uniqueness equation (12.4) can be understood as an assignment, otherwise it is just
a convenient way of writing “u* minimizes a(u)”.

Theorem 12.4 [Dynamic programming and MPC] Consider the optimal control problem
(OCPy,) with g € Xy and N € Ny and an admissible feedback law p : X — U in the
sense of Definition 11.2(iv). Then p satisfies

w(zg) = argmi? ){E(xo, u) + Vn-1(f(zo,u))} (12.5)
ueU}lgN—l ts)

if and only if p satisfies

VN (zo) = l(zo, u(x0)) + V-1(f (20, u(0))), (12.6)

where in (12.5) we interpret U%§N—1 (o) as a subset of U, i.e., we identify the one element
sequence u = u(-) with its only element u = u(0). Moreover, if an optimal control sequence
u* exists then the MPC-feedback law p(xg) = pun(xo) = u*(0) satisfies both (12.5) and
(12.6).
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Proof: Equation (12.6) follows from (12.5) by using (12.1) for K = 1 and the minimizing
property of pu.
Conversely, assume (12.6). Inserting x,(1,z9) = f(xg,u) into the dynamic programming

principle (12.1) for K =1 we obtain

Vi (z0) = ueUlinf (o) {0, u) + Vv-1(1, f(wo,u))} - (12.7)

This implies that the right hand sides of (12.6) and (12.7) coincide. Thus, the definition of
argmin in (12.4) with a(u) = (zg,u) + Vn_1(1, f(xg,u)) and U = U%gN_l(ﬂj‘o) yields (12.5).

Finally, if u* exists, then (12.6) (and thus also (12.5)) follows for p = p,, from the existence
by inserting u*(0) = pn(zo) and xux (1, z9) = f(zo, un(x0)) into (12.2) for K = 1. U

Our final corollary in this section shows that we can reconstruct the whole optimal control
sequence u*(+) using the feedback from (12.5).

Corollary 12.5 Consider the optimal control problem (OCPy ) with zp € X and N € Nj
and consider admissible feedback laws uy_x : X = U, £k =0,...,N — 1, in the sense of
Definition 11.2(iv). Denote the solution of the closed loop system

z(0) =x0, =z(k+1)= f(z(k), un—r(z(k))), k=0,...,N -1 (12.8)

by x,(-) and assume that the py_j satisfy (12.5) with horizon N — k instead of N and
initial value xg = x, (k) for k =0,...,N — 1. Then

u (k) = pn—i(zu(k)), k=0,...,N—1 (12.9)

is an optimal control sequence for initial value xg and the solution of the closed loop system
(12.8) is a corresponding optimal trajectory. O

Proof: Applying the control (12.9) to the dynamics (12.8) we immediately obtain
xur (k) =x,(k), k=0,...,N -1

Hence, we need to show that

N—
Vi (z9) = Iy (20, u”) = Uz, (Kk),u*(k)) + F(x(N)).
k=0

Using (12.9) and (12.6) for N — k instead of N and z¢ = z,(k) we get

VN -i(wu(k)) = L(zu(k), u (k) + V_p—1(zu(k + 1))

[y

for k =0,...,N — 1. Summing these equalities for kK = 0,..., N — 1 and eliminating the
identical terms Vy_g(z,(k)), Kk =1,..., N — 1 on both sides we obtain

=z

Vn(zo) = ) zu(k),u*(k)) + Vo(z(N))

i
o

Since by definition of Jy we have Vp(z) = F(x), this shows the assertion. 0
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12.2 Infinite horizon problems

In this section we present the counterparts of the result from the previous section for infi-
nite horizon problems. These are defined by as follows.

minimize  Joo(xo,u(")) = Zf(xu(k,xo),u(k))
k=0

P
with respect to u(-) € U®(zg), subject to (OCP)

xu(oa xo) = Zo, ‘Tu(k +1, ZC()) = f(.ivu(k,l'o), u(k))

Similar to Definition 12.1 we define the optimal value function and optimal trajectories.

Definition 12.6 Consider the optimal control problem (OCP,) with initial value z¢ € X.

(i) The function
Voo (o) 1= inf Joo (20, u(-
( O) u(-)eU> (zg) ( 0 ())

is called optimal value function.

(i) If Voo(xo) attains a finite value, then a control sequence u*(-) € U™(xg) is called
optimal control sequence for xg if

Voo(.f()) = Joo(x()? U*())

holds. The corresponding trajectory x,» (-, zq) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears in the defi-
nition of J, it is no longer straightforward that V, is finite. In fact, it is not even clear
that the limit “hidden” in the infinite sum

K-1

Zﬁ(a:u(k,xo),u(k)) = Klgnoo U(zu(k, z0), u(k))
k=0 k=0

in the definition of J,, exists. All the results in the subsequent sections hold true if we
simply assume that this limit exists and Vi, is finite. Yet, in order to illustrate that one
can ensure existence of the limit and finiteness of V, by imposing conditions to the optimal
control problem, in the remainder of this section we present such results. We start with a
condition that ensures that the limit exists and that J,, cannot attain the value —oo.

To this end, we assume that the optimal control problem is strictly dissipative according
to the following definition
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Definition 12.7 Consider an optimal control problem with stage cost £: Y — R. We call
the optimal control problem strictly dissipative on Y at an equilibrium pair (z€ u¢) € Y,
if there exists a storage function A : X — R that satisfes A(z¢) = 0 and is bounded from
below, and a p € K, such that for all (z,u) € Y with f(x,u) € X the inequality

A(f(@,u)) < Ma) + (@, u) — £z, u®) — p(|a]ze) (12.10)
holds. ]

This definition requires that, unless the system is in the equilibrium z€, a certain amount
of “energy” must be dissipated in each time step. Here “energy” is in quotes since in an
optimal control context the quantity measured by A may not be physical energy. We will
see later in Proposition 13.14 that under additional regularity properties strict dissipativity
implies that optimal trajectories that evolve in X stay near z° most of the time. This
phenomenon is known as the turnpike property. Observe that any optimal control problem
with stage cost satisfying £(z,u) > p(|z|ze) and £(z¢ u®) = 0 is strictly dissipative with
A = 0. This in particular applies to the quadratic cost from Definition ?? if (z¢, u¢) = (0, 0)
is an equilibrium pair.

Note that the requirement A(z€) = 0 can be made without loss of generality, as inequality
(12.10) remains true when we add an arbitrary constant to A. We further assume that
the storage function A is continuous at x¢. The following assumption gives a quantitative
formulation of this property.

Assumption 12.8 There are ) € K and ¢ > 0 such that A(z) < y(|z|ge) for all z € X
with |z]ze <e. o

Using the storage function A\ from Definition 12.7 we define the modified or rotated stage

cost as
Uz, u) =z, u) — 0z, u®) + Mz) — M f(z,u)), (12.11)

noting that strict dissipativity implies that £(x,u) > p(|2|z¢). The name “rotated cost”
stems from the fact that for linear f and A and strictly convex ¢ the graph of { is obtained
by rotating the graph of £. We denote the cost functional and the optimal value function
when ¢ is replaced by { with J and VOO, respectively. We note that lis nonnegative and
satisfies £(2¢,u¢) = 0. Observe that dissipativity is satisfied with A = 0 and when £ is of
the form

Uz, u) = |z + v|u|?, (12.12)

for some v > 0, i.e., when £ penalizes the distance of x to z¢ and, if v > 0, the distance of
u to uf. In this case, we obtain £ = /.

Using the optimal control problem with modified cost we can now show that for strictly
dissipative problems the infinite sum in the definition of J, either converges or diverges
to +oo.

Lemma 12.9 Assume that the optimal control problem is strictly dissipative at z€ with
storage function A satisfying Assumption 12.8 and that ¢(x¢,u®) = 0. Then for any z¢ € X

and u € U*(xp) the sum
K-

H

Uz (k, o), u(k))
k=0
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either converges to a finite limit or diverges to +00 as K — oo and it converges if and only
if the sum ZkK:_Ol 0(xy(k, o), u(k)) converges. In case of convergence to a finite limit, the
convergence |z, (k,zo)|ze — 0 as k — oo and the identity Joo(xo,u) = —A(z0) + Joo(x0, u)
hold.

Proof: From the definition of ¢ and using ¢(z¢,u¢) = 0, we obtain the relation

K-1

(ko). u(k))
k=0

K-1
= 3 (Uwulk.a0), ulk) = Awulk,20)) + Mau(k + 1,20)))

e K-1 _

)+ ) Uk, x0), ulk)) + Mau(K, 20)). (12.13)
k=0

Now we distinguish two cases:

(i) If Efz_ol U(xy (K, z0), u(k)) diverges to 400 as K — oo, then, since by Definition 12.7 the
inequality A(z,(K,20)) > A holds, we obtain that S 5" £(x,(k, z0), u(k)) also diverges to
~+00.

(ii) Otherwise, since £(z,u) > p(|z|zc) > 0, ZkK;Ol U(xy(k, x0), u(k)) converges to a finite
limit as K — oo. This implies that £(x,(k,zo), u(k)) converges to 0 as k — oo, implying
that |xy(k, zo)|ge — 0. Assumption 12.8 then implies that A(z, (K, z9)) — 0 as K — oo,
and consequently S ot (zy (k, o), u(k)) converges to —A(zq) + Sreq £ (k, z0), u(k))
as K — oo. U

Remark 12.10 Under the assumptions of Lemma 12.9 the functionals J,, and joo are
now well defined as the existence of the limit—possibly attaining the value 4+oco—is gua-
ranteed. =

We now turn to a condition that ensures the existence of controls for which J,, and joo
attain finite values.

Definition 12.11 Consider the control system (8.2) and and equilibrium pair (z¢, u¢) € Y.
We say that the system is asymptotically controllable to x€ if there exists a function g € KL
such that for each admissible initial value zg € X there exists an admissible control sequence
u € U(zp) such that the inequality

2w (1, 20)]ze < B(|20lze, 1) (12.14)

holds for all n € Ny. We say that this asymptotic controllability has the small control
property if u € U*(xp) can be chosen such that the inequality

[T (1, 20)|ze + [u(n)|ue < B(|T0|ze,n) (12.15)

holds for all n € Nj. a
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Observe that asymptotic controllability is a necessary condition for feedback stabilization.
Indeed, if we assume asymptotic stability of the closed-loop system ™ = g(z) = f(z, u(x)),
then we immediately get asymptotic controllability with control u(n) = pu(z,(n,zg)). The
small control property, however, is not satisfied in general.

In order to use Definition 12.11 for deriving bounds on the optimal value function, we need
a result known as Sontag’s K£L-Lemma [, Proposition 7]. This proposition states that for
each KL-function S there exist functions v1,v2 € Ko such that the inequality

B(r,n) < yi(e "ya(r))

holds for all 7,n > 0 (in fact, the result holds for real n > 0 but we only need it for integers
here). Using the functions 7; and v2 we now assume that the modified stage cost functions
{ from (12.11) satisfies .

Uz, u) <yt (|2lee) + 07 (ulue) (12.16)

for v > 0. We point out two special cases when this is true. The first case is that the system
is exponentially controllable, i.e., 8 is an exponential function. In this case, ~; is a linear
function and the inequality (12.16) is satisfied whenever { is Lipschitz, i.e., when ¢ and the
storage function A from Definition 12.7 are Lipschitz. The second case is when ¢ penalizes
the distance to a desired equilibrium z¢, i.e., when it is of the form (12.12).

The following theorem states that under Definition 12.11 this stage cost ensures (uniformly)
finite upper and positive lower bounds on V.

Theorem 12.12 [Bounds on V] Consider the optimal control problem (OCP,) for the
control system (8.2). Assume that the optimal control problem is strictly dissipative at an
equilibrium (z¢, u®) with storage function A satisfying Assumption 12.8. If the system is
asymptotically controllable to 2¢ and the modified cost £ satisfies (12.16) with v = 0, then
there exists aq, as € Ko such that the optimal value function V., satisfies

a1(|7olze) < Vio(2o) < an(|zolse) (12.17)

for all zyp € X. In case that additionally ¢(z¢, u®) = 0 holds, the optimal value function V
satisfies
Oé1(|l'0‘xe) — )\({B()) S Voo(l'()) S a2(|x0\xe) — )\($0) (1218)

for all g € X and the optimal solutions and controls for costs ¢ and ? coincide.

If, moreover, the asymptotic controllability has the small control property then the state-
ments also hold for ¢ satisfying (12.16) for arbitrary v > 0.

Proof: The lower bound in (12.17) follows from the inequality E(in,u) > p(|x|ze) for all
r € Xand u € U(z). For aq = p this inequality implies Joo (w0, u) > £(29,u(0)) > a1 (|wo|ze)
for all u € U*(xp) and hence also for the infimum over all u, i.e., for V.

For proving the upper bound for 1700 in (12.17), we first consider the case v = 0. For all
zo € X the control u € U*(xg) from Definition 12.11 yields

VOO(I'O) < Joo(l'07 u)
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M

Uzulk,zo),u(k) < Y21 (Jwulk, 20)lae)
k=0

i
o

ol

v Bllwolae k) <D e (|wolae)
k=0

k=

[Q )

= ——y(lzole),
i.e., the upper inequality from (12.17) with aa(r) = ey2(r)/(e — 1). If the small control
property holds, then the upper bound for v > 0 follows similarly with as(r) = (1 +

v)eya(r)/(e —1).
The bounds on Vi in (12.18) then follow immediately from Lemma 12.9, since (12.17)
implies that Zszo 0(xy(k, o), u(k)) converges for any approximately optimal control w.

In order to prove that the optimal solutions for ¢ and 0 coincide, recall that Lemma 12.9
shows the identity J(w0,u) = —A(20) + Joo(wo, u) if all functionals are finite and that
Joo (20, 1) is finite if and only if Joo(x0,w) is finite. Since for all candidates u for optimal
controls for £ and 7 the functionals Ju (20, 1) and Juo (o, ) are finite, they differ only by
the value —\(xg), which is independent of u. Hence, the optimal controls and the optimal
trajectories coincide. U

Theorem 12.12 shows that under the stated conditions the optimal value function Vi
attains a finite value. It can thus in particular be used to define optimal controls according
to Definition 12.6(ii). However, we have excluded the case that ¢(x¢,u®) # 0. The reason
is that in this case the proof of inequality (12.18) leads to the inequality

ot (foles) = Awo) < D (Uaur O w0), u* () = £, ) ) < aa(|olae) = Alwo), (12.19)
k=0

which implies that except for special cases Vi (z¢) will assume unbounded values. This is
not an unrealistic situation in practical applications. Consider, for instance, that ¢ models
the energy needed to operate a certain device, then it is reasonable that over an infinite
horizon an infinite amount of energy is needed.

There are two ways to resolve this problem and both will be used in our analysis of NMPC
schemes later on in this book. The first is to subtract ¢(z¢, u¢) from the cost, i.e., to consider
the shifted cost

A~

Uz, u) = l(z,u) — 0(x® u).

Then the corresponding optimal value function XA/OO satisfies

Vao(w0) = 3 (Ul (k, o), u* (k) — £(af,u) )
k=0

and inequality (12.19) shows that it attains finite values.

The shifted cost causes the shifted optimal value function 1700 to measure the cost difference
compared to the infinite horizon cost of the particular solution z¢ with control u¢ from the
strict dissipativity property in Definition 12.7. From a practical point of view, this is a
reasonable solution if ¢ and u® are known. If this is not the case, then a solution that
avoids the shifting of the cost is to use the following notion of infinite horizon optimality.
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Definition 12.13 A trajectory z* with initial condition z*(0) = x¢ and control u* €
U (x0) is called overtaking optimal if

lim sup (JK($07U*) - JK(CCO,U)) <0

K—oo

holds for all admissible controls v € U (zg). u]

In other terms, this definition demands that for each € > 0 there is a time index K. > 0
such that the accumulated cost of * and w* on any horizon of length K > K, is at most ¢
larger than the accumulated cost of x, and w. This notion hence compares infinitely long
solutions on arbitrarily long but finite time horizons, on which the sums are finite even if
they diverge for K — oo. It is not difficult to check that overtaking optimality is equivalent
to the usual optimality notion if the sums converge for K — oc.

We now turn to adapting the results from Section 12.1 to the infinite horizon case. We
begin with the dynamic programming principle for the infinite horizon problem (OCP).
Throughout this section we assume that Voo (x) is finite for all x € X as ensured, e.g., by
Theorem 12.12.

Theorem 12.14 [Infinite-horizon dynamic programming principle] Consider the optimal
control problem (OCP«) with zg € X. Then for all K € N the equation

Voo(xzg) = inf {Z Uy (K, o), u(k)) + Voo(xy (K, xg))} (12.20)

u(-)EUK (z0)

holds. If, in addition, an optimal control sequence u*(-) exists for xg, then we get the

equation
K-1

f k‘ Io (k)) + Voo(:cu* (K, xo)) (12.21)
k=0

In particular, in this case the “inf” in (12.20) is a “min”.

Proof: From the definition of J, for u(-) € U*(x¢) we immediately obtain

K-1
Joo(x0,u(+)) = U xy(kyx0), u(k)) + Joo(xy (K, xo), u(- + K)), (12.22)
k=0

where u(- + K) denotes the shifted control sequence defined by u(- + K)(k) = u(k + K),
which is admissible for z, (K, x¢).

We now prove (12.20) by showing “>” and “<” separately: From (12.22) we obtain

K—1
Joo(@o, u()) = D U(wu(k; 20), u(k)) + Joo (2u (K x0), u(- + K))

T
LL

> Uy (k,z0), w(k)) + Voo (zu (K, x0)).

iy
=)
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Since this inequality holds for all u(-) € U™, it also holds when taking the infimum on both
sides. Hence we get

o) - inf Joo ) '
% (xo) = () 1m (z0) (:1?0 u( ))
f e ’LL k k u b )
IIIK ) { E l‘ x[) )) + Voo(gc (K 1‘0))}

i.e., (12.20) with “>".

In order to prove “<”, fix £ > 0 and let u*(-) be an approximately optimal control sequence
for the right hand side of (12.22), i.e
K-1

Uxye (k, x0), u" (k) + Joo(zus (K, z0), v (- + K))
k=0

K—1
< inf {Z xy(kyxo), u(k)) + Joo(zy (K, zo), ul- —i—K))} +e€
k=0

EUOO xo

Now we decompose u(-) € U>(zg) analogously to Lemma 11.10(ii) and (iii) into u; €
U (20) and ug € U (zy, (K, z0)) via

M_{uﬂ@, k=0,..., K -1

u( w(k—K), k>K

This implies

GUOO :L‘Q)

inf {ZE xy(k, z0), k))+Joo(xu(K7$0)7U('+K)>}

uq (-)€UK (2q)
ug (1) EU® (zuq (K,z0))

— inf {Z g(:L‘ul (k, l’o),ul(k)) + Joo(iﬁul (K, iL'()), UQ(>)}

= inf {Z (2, (ky o), u1 (k) + Voo (2, (K, xo))} .

EUK :L‘()
Now (12.22) yields
Voo(xO < Joo(x0>u5('))

K-1
= e(xu‘f(kvl:(]))ua(k))+Joo(xu5(Ka xO)aUE('+K))

k=0
< e1urj11f< o) {Z Uy (b, o), u(k)) + Voo(xu (K, xo))} + ¢,
VOO(ZL‘())
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Since € > 0 was arbitrary and the expressions in this inequality are independent of &, this
inequality also holds for ¢ = 0, which shows (12.20) with “<” and thus (12.20).

In order to prove (12.21) we use (12.22) with u(-) = w*(-). This yields

Voo(z0) = Joo(z0,u* ("))
K-1

= g(l'u*(k>x0)7U*(k))+Joo(xu*(K¢$0)aU*('+K))
b

> Uy (ky 20), u* (k) + Voo (2 (K, 20))

B
Il
o

> inf {Z Uy (K, z0), u(k)) + Voo(zy(K, fUO))}

G]UK xo
= Ve (ZL‘()),
where we used the (already proved) equality (12.20) in the last step. Hence, the two “>”
in this chain are actually “=" which implies (12.21). U

The following corollary states an immediate consequence from the dynamic programming
principle. It shows that tails of optimal control sequences are again optimal control se-
quences for suitably adjusted initial value.

Corollary 12.15 If u*(-) is an optimal control sequence for (OCP) with initial value zo,
then for each K € N the sequence uj(-) = u*(- + K), i

Wi (k) =u (K + k), k=0,1,...

is an optimal control sequence for initial value z,« (K, z). o

Proof: Inserting Vo (z0) = Joo (0, w*(-)) and the definition of w}(-) into (12.22) we obtain

K-1
f :L'u* k‘ .T() (k?)) +Joo(xu*(Ka J:O)vu;(())
k=0

Subtracting (12.21) from this equation yields
0 = Joo(zur (K, 20), ufc (+)) — Voo(wur (K, 20))

which shows the assertion. U

The next two results are the analogues of Theorem 12.4 and Corollary 12.5 in the infinite
horizon setting.

Theorem 12.16 Consider the optimal control problem (OCP;) with zy € X and assume
that an optimal control sequence u*(-) exists. Then the feedback law po(z9) = u*(0)
satisfies

too () = aer]lgjﬁlin) {l(xg,u) + Voo (f(x0,u))} . (12.23)
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and
Voo (20) = €(0, poo(20)) + Voo (f (@0, too(20))) (12.24)

where in (12.23)—as usual—we interpret Ul (z) as a subset of U, i.e., we identify the one
element sequence u = u(-) with its only element u = u(0).

Proof: The proof is identical to the finite horizon counterpart Theorem 12.4. 1l

As in the finite horizon case, the following corollary shows that the feedback law (12.23)
can be used in order to construct the optimal control sequence.

Corollary 12.17 Consider the optimal control problem (OCP ) with 2y € X and consider
an admissible feedback law po : X — U in the sense of Definition 11.2(iv). Denote the
solution of the closed-loop system

z(0) =x0, xz(k+1)= f(z(k), po(z(k)), k=0,1,... (12.25)

by z,. and assume that ., satisfies (12.23) for initial values xy = z,_ (k) for all £ =
0,1,... and that liminfx_, Voo (z(K)) > 0. Then

u*(k) = poo(Tpo (k,z0)), k=0,1,... (12.26)

is an optimal control sequence for initial value ¢ and the solution of the closed-loop system
(12.25) is a corresponding optimal trajectory. O

Proof: Abbreviate z(n) = z,_ (n). We need to show that
Joo (20, u™) = Vio (o),

where it is enough to show “<” because the opposite inequality follows by definition of
V. From the definition of u* we immediately obtain

Ty (ny20) = x(n), n=0,1,....
Hence, using (12.26) and (12.24) we get
Voo (z(k)) = (z(k),u* (k) + Voo (x(k + 1))

for k = 0,1,.... Summing these equalities for kK = 0,..., K — 1 for arbitrary K € N and
eliminating the identical terms Vy(z9), K = 1,..., K — 1 on the left and on the right we

obtain
K—

>—‘

e ) + Voo (z(K)). (12.27)
k=0

Now the assumption that liminfx o Voo(2(K)) > 0 implies that for any € > 0 there is
K. > 0 such that Voo (2(K)) > —¢ for all K > K,. This implies

K-1
Ux(k),u*(k)) —e
k=0



134 KAPITEL 12. DYNAMIC PROGRAMMING

for all K > K.. This yields J(zg,u*) < Vo (xo) + € for all € > 0 and thus optimality of
u*. U
Corollary 12.17 implies that infinite horizon optimal control is nothing but NMPC with
N = oo: Formula (12.26) for k& = 0 yields that if we replace the optimization problem
(OCPy) in Algorithm 11.1 by (OCP«,), then the feedback law resulting from this algorithm
equals fioo-

Remark 12.18 The condition liminfx_, Voo (z(K)) > 0 is in particular satisfied if strict
dissipativity holds with ¢(z¢ u¢) = 0 and the storage function satisfies Assumption 12.8:
By Lemma 12.9 we know that |z(k)|.e — 0 as k — oco. Thus inequality (12.18) implies that

Voo (z(K)) 4+ A(
Since Assumption 12.8 implies A(2(K)) < ya(|z(K)|ze) — 0, we can conclude Voo (2(K)) —
0 as K — oo. o

z(K))| < ag(|z(k)|ze) > 0 as K — oo.
(

12.3 Asymptotic Stability

The following proposition gives conditions under which the infinite horizon NMPC feedback
law yields an asymptotically stable closed loop.

Proposition 12.19 Counsider the optimal control problem (OCP,) for the control system
(8.2) and an equilibrium pair (z¢,u¢) € Y. Assume that there exist oy, ag, a3 € K such
that the inequalities

a1 (|z]ze) € Voo(z) < ag(|zlze) and  L(x,u) > as(|x]ze) (12.28)

hold for all z € X and u € U(x). Assume furthermore that an optimal feedback po exists,
i.e., an admissible feedback law o, : X — U satisfying (12.23) for all € X. Then this
optimal feedback asymptotically stabilizes the closed-loop system

ot = g(2) = f(=, poo(2))

on X in the sense of Definition 10.2. O

Proof: For the closed-loop system, (12.24) and the last inequality in (12.28) yield

Voo () = £(2, p1oo (7)) + Voo (f (2, poo (7))
> az(|z]ze) + Voo (f (2, floo ()

Together with the first two inequalities in (12.28) this shows that V. is a Lyapunov function
on X in the sense of Definition 10.4 with oy = ag. Thus, Theorem 10.5 yields asymptotic
stability on X. 00

By Theorem 12.12 the assumptions of this proposition are satisﬁedeor ¢ and ‘7007 if the
asymptotic controllability condition from Definition 12.11 holds and ¢ satisfies (12.16) and

{(x,u) > a1(|z|ze). This implies that the infinite horizon optimal feedback law for the cost
¢ yields asymptotic stability of ¢ in the sense of Proposition 12.19. It may be somewhat
surprising that under the same conditions the same holds for the infinite horizon optimal

feedback law for the cost £. The following theorem shows that this is indeed the case.
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Theorem 12.20 [Asymptotic stability] Consider the optimal control problem (OCPy)
for the control system (8.2) and assume it is strictly dissipative in the sense of Definition
12.7 at an equilibrium pair (z¢,u¢) € Y and with storage function A satisfying Assumption
12.8. Assume that the system is asymptotically controllable to z¢ and that a feedback fiso
satisfying (12.23) exists for the cost function ¢ : X x U — R. Assume that ¢ from (12.11)
satisfies (12.16) with v = 0 and that ¢(z° u®) = 0. Then p is an infinite horizon optimal
feedback law, which asymptotically stabilizes the closed-loop system

ot =g(2) = f(2, hoo(2))

on X in the sense of Definition 10.2 at x€.

If, in addition, the asymptotic controllability has the small control property then the state-
ment also holds for arbitrary v > 0 in (12.16).

Proof: Theorem 12.12 yields

a1 (|z0lze) < Vio(zo) < ca(|zo|se )

for suitable ay,ay € K. Hence, (12.28) holds and Proposition 12.19 yields asymptotic
stability on X for the optimally controlled system with cost /. Since we know from Theorem
12.12 that the optimal solutions for costs ¢ and ? coincide, we can conclude that the
optimally controlled system with cost £ has the same asymptotic stability property.

It remains to show that u, satisfying (12.23) is an optimal feedback law for cost ¢. To
this end, it suffices to show that the solution z(-) generated by p satisfies Voo (2(K)) — 0
as K — o0, because then we can conclude optimality of o, from Corollary 12.17. As this
convergence was already shown in Remark 12.18, u is indeed an optimal feedback law.

0

The last results show that infinite horizon optimal control can be used in order to derive a
stabilizing feedback law. Unfortunately, a direct solution of infinite horizon optimal control
problem is in general impossible, both analytically and numerically. Still, infinite horizon
optimal control plays an important role in our analysis since we will interpret the model
predictive control algorithm as an approximation of the infinite horizon optimal control
problem. Here the term “approximation” is not necessarily to be understood in the sense
of “being close to” (although this aspect is not excluded) but rather in the sense of ‘sharing
the important structural properties”.

12.4 Relaxed and approximate dynamic programming

Looking at the proof of Proposition 12.19 we see that the important property for stability
is the inequality

Voo (@) 2 £(2; oo () + Voo (f (2, oo ()
which follows from the feedback version (12.24) of the dynamic programming principle.

Observe that although (12.24) yields equality, only this inequality is needed in the proof
of Proposition 12.19.
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This observation motivates a relaxed version of this dynamic programming inequality,
which on the one hand yields asymptotic stability and on the other hand provides a quan-
titative measure of the closed-loop performance of the system. This relaxed version will be
formulated in Theorem 12.22, below. In order to quantitatively measure the closed-loop
performance, we use the infinite horizon cost functional evaluated along the closed-loop
trajectory which we define as follows. In order to keep the presentation technically simple,
in this section we limit ourselves to nonnegative stage costs £ : X x U — Rg of the form
(12.12) for a reference trajectory z¢. If desired, these results could be carried over to the
strictly dissipative situation with similar arguments as in the proof of Theorem 12.20, if
we impose the subsequent assumptions on l7, Joo, and V.

Definition 12.21 [Infinite horizon cost] Let p : X — U be an admissible feedback law.
For the trajectories z,(n) of the closed-loop system a2t = f(x,u(x)) with initial value
2,(0) = o € X and K € N we define the finite and infinite horizon closed-loop cost as

Tt (o, u) ==Y Uau(k), plau(k) and I (o, ) =Y Lau(k), plau(k))):
k=0

=

>
Il

0

O

Since in this section we limit ourselves to nonnegative ¢, either the infinite sum has a well
defined finite value or it diverges to infinity, in which case we write J (g, ) = oo.

By Corollary 12.17 for the infinite horizon optimal feedback law ., we obtain

Jgf)(an ,Uoo) = Voo(-TO)

while for all other admissible feedback laws p we get

Jgé(l’m /~L) > Voo(xO)‘

In other words, V. is a lower bound for J& (xg, u1).

The following theorem now gives a relaxed dynamic programming condition from which
we can derive both asymptotic stability and an upper bound on the infinite horizon cost
JS (xg, ) for an arbitrary admissible feedback law p.

Theorem 12.22 [Asymptotic stability and suboptimality estimate] Consider a stage cost
0:XxU— R and a function V : X — R Let p: X — U(x) be an admissible feedback
law and let S C X a forward invariant set for the closed-loop system

2 = g(z) = f(a,p(x)). (12.29)
Assume there exists a € (0, 1] such that the relaxed dynamic programming inequality
V(@) > al(z, u(z)) + V (@, n(@))) (12.30)
holds for all x € S. Then the suboptimality estimate

JE (2, p0) < Vi(z)/o (12.31)
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holds for all z € S.

If, in addition, there exist a1, o, a3 € K such that the inequalities
ar(|zee) S V() < aa(lzfee) and  lz,u) > az(|2]ze)

hold for all x € S, all v € U, and an equilibrium z¢ € X, then the closed-loop system
(12.29) is asymptotically stable at ¢ on S in the sense of Definition 10.2.

Proof: In order to prove (12.31) consider x € S and the trajectory x,(-) of (12.29) with
x,(0) = 2. By forward invariance of the sets S this trajectory satisfies x,(k) € S. Hence
from (12.30) for all £ € Ny we obtain

al(zpu(k), p(xyu(k)))
< V(zu(k)) = V(zu(k +1)).

Summing over k yields for all K € N

K-1
o 3" (k). plap(£))) < V(@,(0) — V(@u(K)) < V(2)
k=0

since V(z,(K)) > 0 and x,(0) = =. Since the stage cost £ is nonnegative, the term on
the left is monotone increasing and bounded, hence for K — oo it converges to ané(x, 1).
Since the right hand side is independent of K, this yields (12.31).

The stability assertion now immediately follows by observing that V' satisfies all assump-
tions of Theorem 10.5 with oy = a 3. U

The central condition in this result is the relaxed dynamic programming inequality (12.30),
which we can rewrite as

V([ w(x))) < V(z) =z, p(@)) + (1 = )bz, p(x)).

As we will see later, obtaining such an inequality is realistic in case ¢ is of the form (12.12),
but in the more general strictly dissipative setting it is in general too demanding. In this
setting, we will typically only be able to obtain an inequality of the form®

V(f(z,u(x))) < V(z) =z, n(x)) + €

for an error term € > 0 that may not satisfy ¢ < (1 — a)l(z, u(x)). The following theorem
shows how the statement of Theorem 12.22 changes under this weaker assumption.

Theorem 12.23 [Practical asymptotic stability and suboptimality estimate] Consider a
stage cost £ : Y — R satisfying (12.12) and a function V' : X — R. Let u : X — U be
an admissible feedback law and let Y C X, be a forward invariant set for the closed-loop
system

2t = g(w) = f(z, n(x)) (12.32)

"More precisely, we will obtain this inequality for 7, but in order to keep the notation simple we omit
the tilde in this section.
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whose solutions are denoted by x,,. Assume there exists € > 0 such that the relazed dynamic
programming inequality

V(f (@, p(x))) < V(z) -z, u(x)) + & (12.33)
holds for all € Y. Then the performance estimate
J(x,p) < V(z) + Ke — V(zu(K)) (12.34)
holds for all z € Y.
If, in addition, there exist ay, a2, as € Ko such that the inequalities

a1 (|z|ee) < V(x) < ag(|zlze) and  l(x,u) > az(|x]ze) (12.35)

hold for all z € Y, all u € U, and an equilibrium z¢ € X, then the closed-loop system
(12.32) is P-practically asymptotically stable at 2 on Y in the sense of Definition 10.3
with P = V71([0, az(az ' (22)) +¢]) C B 1 (a5 20 10) (T):

Proof: Evaluating (12.33) at points z,(k) on the closed-loop solution yields
Uz (k) p(zu(k))) < V(wu(k)) +e = Vizu(k +1)).

Summing this inequalitiy from £ = 0 to k = K — 1 then yields (12.34).

For proving the P-practical asymptotic stability statement, we prove that V is a Lyapunov
function for the closed-loop system on S = Y\ P. Then the statement follows from Theorem
10.6. In order to prove the Lyapunov function property, it suffices to prove inequality (10.5)
with g(x) = f(z,u(x)) and forward invariance of P, since the remaining assumptions on
V' in Definition 10.4 follow immediately from the assumptions in this theorem.

For proving (10.5), observe that z ¢ P implies that

o (|7)ze) > V(z) > ag(agt(2e)) +e.
From this inequality we obtain that ag(|z|ze) > 2¢, implying that
—(x) < —az(|z|e) < —2¢ (12.36)

and thus
—l(x)+e < —L(x)/2 < —as(|z]we)/2,

which together with (12.33) proves (10.5) with ay = a3z/2.
For proving forward invariance of P we pick # € P, which implies V(z) < az(az'(2¢)) +e,
and distinguish two cases:
(i) V(x) > as(az'(e)): Then, with analogous arguments as those leading to (12.36), we
obtain —¢(z) < —e and hence (12.33) implies
V(f(@, pz)) < V(@) = U, p(x)) +e < V(@) < az(ag’(26)) +¢
and thus f(z,u(z)) € P.
(i) V() < aa(az'()): Then, since £ > 0, (12.33) implies
V(f(z,u(x) < V(z) —lz, w(z) +e < V(z)+e
< az(azt(e)) + e < ag(azt(2)) +e.

Hence, again f(z, u(x)) € P follows, which shows forward invariance of P. 0



Kapitel 13

Dissipativity-based analysis of
MPC schemes

13.1 Setting

In this chapter we will provide a comprehensive analysis of NMPC schemes with general
stage costs £. Our goal is to prove stability and near optimality properties of the NMPC
closed loop on long and infinite time horizons. However, it is in general too optimistic to
expect that this is possible without imposing any structural properties on the dynamics
f and the stage cost £. Intuitively speaking, the property that we will use here is that
the optimal solutions on sufficiently long finite time horizons and on the infinite time
horizon do not differ too much, which of course must be made precise. In order to obtain
such a property, it turns out that the strict dissipativity property, which was introduced in
Definition 12.7, along with the closely related turnpike property, which we will introduce
in this chapter, provides a suitable mathematical framework.

Example 13.1 An example, which will serve as an illustration for all results in this section,
is the 1d discrete-time system with dynamics and stage cost

et =2r+u and f(r,u) =u’

and state and control constraint sets X = [-2,2] and U(z) = U = [-3,3], i.e., Y =
[—2,2] x [-3,3].

The uncontrolled system is unstable, hence for initial values zy # 0 the solution will leave
the admissible set X if no control is used. Hence, control action is needed in order to keep
the system inside X. Interpreting the stage cost £(z,u) = u® as the energy of the current
control action, the control objective can be formulated as “keep the state inside X with
minimal control effort”.

Using the storage function A\(x) = —22/2, one sees that the problem is strictly dissipative
in the sense of Definition 12.7 at the equilibrium (z¢ u¢) = (0,0): Clearly, A is bounded

139
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from below on the compact interval X, and for any (z,u) € Y we obtain

Oz, u) — 0z, u’) + Mz) = M f(z,u) =u® — 0 —22/2+ (22 + u)?/2
=3u?/2 + 32%/2 + 2zu
=22/24+u%/2 + (z +u)? > 2%/2,

which shows inequality (12.10) with p(r) = r2/2. o

In order to measure the performance of the NMPC closed loop, we evaluate the stage cost
function along the closed-loop trajectory (11.2). To this end, we recall the finite-horizon
closed-loop performance from Definition 12.21

K-1

Th@o, ) = 3 U (k). pla(h))). (13.1)
k=0

Only in exceptional cases the limit J< (2o, ) of these quantities for K — oo will exist.
Hence, in order to measure infinite-horizon performance, we also consider the averaged
infinite horizon performance

—cl . 1
Tk o, 1) = limnsup - 5o, 1)

K—o0
In addition, we consider an approximate version of the overtaking optimality property
from Definition 12.13: For a horizon-dependent error term err(K), K € N, we say that a
closed-loop solution is approximately overtaking optimal if

lim sup (Jfé(wo,u) — Jr(zo,u) — err(K)) <0 (13.2)

K—o0

holds for all admissible controls v € U (zg).

Throughout this chapter, by (z¢ u®) € Y we denote an equilibrium of the system, i.e.,
f(xf u®) = x°. Of particular interest are optimal equilibria according to the following
definition.

Definition 13.2 An equilibrium (z¢ u¢) € Y is called an optimal equilibrium, if it yields
the lowest value of the cost function among all admissible equilibria, i.e.,

(2 u®) < l(x,u) for all (z,u) € Y with f(z,u) = =.

Example 13.3 In Example 13.1, the equilibria are of the form (x, —x) with cost ¢(x, —x) =
22, Thus, the (unique) optimal equilibrium is given by (z¢,u¢) = (0,0). O

The following lemma shows that an optimal equilibrium always exists when f and £ are
continuous and Y is compact.
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Lemma 13.4 If the constraint set Y C X x U is compact and the maps £ : X x U — R
and f : X x U — X are continuous, then there exists an optimal equilibrium, i.e., a pair
z¢ € X, u® € U with f(2¢ u®) = x° such that

(2 u®) = inf{l(z,u) | (z,u) €Y, f(z,u) = z}.

Proof: Since preimages of closed sets under continuous mappings are closed, the set
{(z,u) € Y| f(x,u) = =z} is closed, hence compact and thus the continuous function ¢
attains a minimum. [J

13.2 Averaged Performance with Terminal Ingredients

In this and in the following three sections, we analyze NMPC schemes with terminal in-
gredients. To this end, we choose the optimal control problem (OCPy ) in Algorithm 11.9
as

N-1
minimize  Ji(xo,u Z Uxy(k,x0),u(k))

+ F (24 (N, z0)) (13.3)

with respect to u(:) € Ugo (xo) subject to

J,‘u(O, xU) = 20, xu(k +1, 1,‘()) = f(:cu(k,xo),u(k))

where Ugo (x0) is defined in Definition 11.2(ii). We note that the terminal ingredients—i.e.,
the terminal cost F' and the terminal constraint Xg C X—are only added to the open-
loop functional Ji(xo,u) used in the NMPC Algorithm 11.9 but not to the closed-loop
performance index J§ (z, 1) from (13.1) or to the open-loop performance index Jy (7, u) in
(13.2), which are still defined without terminal cost and constraints. In order to distinguish
these two different functionals, we have added the index “#” (for “terminal ingredients”)
to JL n in (13.3). The corresponding optimal value function is defined by

Vi(x):= inf  JV(z,u(")
o u()evd @

and we assume the existence of an optimal control sequence for each feasible initial condition
z in order to synthesize the NMPC feedback law un according to Algorithm 11.9.

The following assumption formulates the conditions on F' and X, that we will need for the
subsequent results on the NMPC Algorithm 11.9 with optimal control problem (OCPy ) =
(13.3). The assumption requires the existence of an equilibrium, which will later be chosen
as an optimal equilibrium. For its formulation, recall the definition of the feasible sets Xy
from Definition 11.8(i).
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Assumption 13.5 [Terminal ingredients] (a) The set X is bounded and there is an equi-
librium (z¢,u®) € Y with 2¢ € Xy and F(z¢) = 0 such that for each z € Xy there exists
uy € U(x) with f(x,u,) € Xo and

F(f(x,uz)) < F(x) —l(x,uz) + 0(x° u) (13.4)

(b) There exists Ng € N and 7 > 0 such that Xy, contains the ball B, (z°). O

Observe that the requirement F'(z) = 0 in this assumption can be made without loss of
generality because inequality 13.4 is invariant with respect to addition of a constant to
F. Note also that (a) implies that Xy is viable, hence Theorem 11.12 implies recursive
feasibility of the MPC scheme.

A simple choice of Xy and F' satisfying Assumption 13.5(a) is Xg = {z¢} and F = 0,
which is known as equilibrium terminal constraint. Part (b) of Assumption 13.5(a) then
requires exact controllability to x¢ from each point a neighborhood of z€ in at most Ny time
steps. Besides the fact that exact controllability to ¢ may not hold, equilibrium terminal
constraints have the disadvantage that the feasible sets Xy may be rather small and that
the optimal control problem (13.3) may be numerically difficult to solve. It can thus be
advantageous to choose an Xy that contains a larger region around z€, but then the design
of F satisfying inequality 13.4 is nontrivial.

Lemma 13.6 If Assumption 13.5(a) holds, then for each N > 1 and each z¢ € Xy_; the
optimal value functions of Problem (13.3) satisfy

V]@i(xg) < Vﬁ_l(xo) + (2%, u®) (13.5)

Proof: We first show that for each uy_1 € Ugo_l(xo) the control sequence uy := 4 €
[Ugo (z9) from (11.9) satisfies

th\é(xo,uN) < Jf\’},l(a:o,u]v_l) +€(a:€,ue). (13.6)

To this end, recall from the proof of Theorem 11.12 that the trajectories zy, (-, zo9) and
Tyy_, (-, x0) satisfy

Tuy (k,20) = upy_, (kyxo), k=0,...,N =1, xy,(N,z0) = f(Z,uz),

where & =z, _,(N —1,z0). Together with (13.4) this yields

N-1
J]t\i7<x07uN) = E(.%'UN(/{?,JJ()), UN(k)) + F<muN (Nv 330))
N
= E(xuN(k,xo), uN(k)) + g(xuN(N - 17 xo)auN(N - 1)) + F(xUN (Nv .%'0))
N
=D Mwuy_,(k,x0), un—1(k)) + (#,uz) + F(f (2, uz))
k=0

<F(Z)+£(xe,ue)

=Jn-1(zo,un—1)
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< JR_(zo,un—1) + €(x°,u).

This shows (13.6). In order to prove (13.5), let u%, | € Ugo_l(xg), k € N, be a sequence of
control sequences such that

Vﬁ—l(fvo) = }VT{fl J%—1($07U) = inf J%—l(%ﬂ’f\f—l)
uEUXO (zo) keN

holds. Then, we can find u%;, € Ugo (z0) such that (13.6) holds for uy = uk;, and uy_; =

u’fV_l . This implies

Vi(zg) = inf  J(zo,u) < inf JE(z0, uf
N (o) O o) N (@0, u) < fnf Jy(zo, uy)

S Iirellf\‘f Jf\z}—1(930»u§€v_1) + f(xe,ue) = V]l\?—l(‘ro) + ‘g(xe?ue)

and thus (13.5). U

Now we are in the position to prove our first performance result, which gives a bound on
the infinite horizon average performance.

Theorem 13.7 Consider the NMPC Algorithm 11.9 with optimal control problem (OCPy )
= (13.3). Let Assumption 13.5(a) be satisfied, let N > 2, and assume V}! is bounded from
below on Xp. Then, for any N > 2 and any = € Xy the averaged closed-loop performance
satisfies the inequality

T (2, un) < 002, u®). (13.7)

Proof: Using (13.5) and the dynamic programming principle, we obtain

Uz, pn (@) < VN (@) = VY (f (@, 1n (@) < VR (@) = VE(f (@, iy (@) + 02, uf)

and we can conclude

T

Tt un) = D Uy (k). v (wy (K))
o |
< D VA (B)) = VE y (k + 1)) + €2, )]
k=0

= V]{}i(xo) — Vﬁ(x#N(K)) + K0(x°u)
< Vﬁ(wo) — M + K0(z°,u®),

where M € R is a lower bound on Vj{,i. This yields

—e 1% M
Jolo(xg,uN) < lim sup Vylzo) M +0(x%u®) | = 0(x°,uc).
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We note that the boundedness assumption from below on Vi is satisfied if £ and F are
bounded from below on Y or X, respectively. This is in particular the case if these functions
are continuous and Y and X are compact.

Clearly, the estimate from Theorem 13.7 is particularly powerful if £(z¢, u€) is the best, i.e.,
the smallest possible value that jzlo (o, un) can attain. To this end, recall the Definition
12.7 of strict dissipativity. We have already observed in Example 13.1 that the optimal
control problem from this example is strictly dissipative with A\(z) = —22/2 at (z°,u¢) =
(0,0). We also recall that a stage cost satisfying £(z,u) > p(|z|ze) and £(z¢,u®) = 0 is
strictly dissipative with A = 0.

The following proposition now shows that if the problem is dissipative, then £(z¢, u€) is an
optimal equilibrium and a lower bound on the average cost.

Proposition 13.8 For an optimal control problem (OCPy) that is strictly dissipative at
(€, u®), the point (z¢ u°) is an optimal equilibrium and the inequality

K-1

1
lim sup — Z Uy (k, x), u(k)) > 0(z¢, u®) (13.8)
K—oo k 0
holds for all € X and all admissible control sequences u € U (z). O

Proof: Consider an arbitrary equilibrium (x,u) € Y. Then the identity z = f(x,u) and
(12.10) together with p > 0 imply

Uzyu) —L(x¢u’) = L(z,u) — L(z¢u’) + AN(x) — A(f(z,u)) >0,

which yields ¢(z¢, u®) < ¢(z,u), and thus (¢, u®) is an optimal equilibrium.
Moreover, using again (12.10) and p > 0, and denoting by M a lower bound on A we have

K-1 K-1
Uzy(k,x),u(k)) > Z 0z u’) — Mzy(k,z)) + Moy (k+1,2))
k=0 k=
= Kl(z%u) — MNx) + AMzy (K, x))
> Kl(z%u®) — Nx)+ M

for any u € U*°(x). This yields

K-1
1 - M
hmsup E Uy (k,x),u(k)) > limsup (Z(xe,ue) - A(x)) =l(x%, u®).
K=

K—00 K —o00 K
U
The property expressed by inequality (13.8) is known as optimal operation at steady state.
It has been shown in [12] that under a controllability condition on the system, the converse

of Proposition 13.8 is also true, i.e., that optimal operation at a steady state implies
dissipativity.

An immediate consequence of Proposition 13.8 is the following corollary.
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Corollary 13.9 Consider the NMPC Algorithm 11.9 with dissipative optimal control pro-
blem (OCPy )=(13.3). Then for all x € Xy

jilo(a:,,uN) inf hmsup— Z Uy (k,x),u(k)).

uelU>®(z) Koo

Hence, if strict dissipativity holds, then Theorem 13.7 ensures infinite horizon averaged
optimality of the NMPC closed loop.

Example 13.10 Since Example 13.1 is dissipative, the NMPC closed loop must be infinite
horizon averaged optimal. Indeed, as Fig. 13.1 shows, the closed-loop solution converges
to the optimal equilibrium. Since the control (not shown in the figure) does the same,
Uz (k), pn(zpy (k) — 0 as k — oo follows. This implies ji(x,,u]v) = 0, which is
clearly optimal since ¢ > 0.

2y (k) (solid) and z; (-) (dashed)

Abbildung 13.1: NMPC closed-loop solution (solid) and open-loop predictions (dashed) for
Example 13.1 with terminal constraint Xg = {0} and horizon N = 3. The solid line at
r = 2 indicates the upper bound of the admissible set X

13.3 Asymptotic Stability with Terminal Ingredients

One might conjecture that optimal operation at the steady state (¢, u¢) implies that closed-
loop solutions satisfying (13.7) must also converge to z¢. However, under the assumptions
imposed in Theorem 13.7 and Proposition 13.8 this is not necessarily the case. To see this, it
suffices to consider an optimal control problem with ¢ = 0. Such a problem clearly satisfies
all assumptions (with terminal cost F' = 0 and storage function A = 0), yet every trajectory
is an optimal trajectory and thus optimal trajectories obviously need not converge to x°.
In order to achieve this—and, in fact, even asymptotic stability of z—we need to assume
strict dissipativity.
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We establish asymptotic stability by proving the existence of a Lyapunov function. It will
turn out that the optimal value function of the auxiliary optimal control problem using
the modified or rotated cost

Uz, u) = bz, u) — 0z, u®) + Mz) — M f(z,u))

introduced in (12.11) provides this Lyapunov function. Since our optimal control problem
(13.3) now has a terminal cost F', we also need to modify this cost, which we do by defining

F(z) := F(z) + A(x).

The corresponding functional is given by

N-1

T (0, u Z (zu(k, z0), u(k)) + F(zu(N, z0))
k=0

and the optimal value function by

Vi(zo):=  inf  J&(zo,u(")).
N u(.)GUQO(a:O) N

It is an easy exercise to check that the equalities £(2¢, u¢) = 0 and F(2¢) = 0 and—under
Assumption 13.5(a)—that the inequality

F(f(z,u) < F(a) - i(z,u) (13.9)

holds for each = € Xy and the control u from Assumption 13.5(a). Moreover, for any = € Xy
and u € [Ugo (x), one easily verifies the identity

Ji(z,u) = JE(z,u) + Ma) — NO(z°, u). (13.10)

Since the last two terms in (13.10) are independent of u, this implies that the optimal
trajectories for Jy and Jy coincide and that the optimal value functions satisfy

Vil(z) = VE(z) + Az) — N(z°,u®). (13.11)

If the optimal control problem is strictly dissipative, ( satisfies £(z,u) > p(|z|q) for all
(x,u) € Y and ¢(x°, u®) = 0. This immediately implies

Vi(2¢) =0 and thus V¥ (2°) = N£(2°, u®) (13.12)
using (13.11) and A(z€) =

The optimal value function YN/J{? is now our candidate for a Lyapunov function. Using this
function, we first obtain asymptotic stability for the NMPC closed loop with modified costs,
but since the optimal solutions with original and modified costs coincide, this immediately
yields asymptotic stability for the original NMPC scheme. For the formal proof, we need
the following technical properties.
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Assumption 13.11 [Continuity of F'; A and V at z¢] There exists yr, 7z, and vy € Koo
such that the following properties hold.
(a) For all z € Xy it holds that

|F(z) — F(z°)] < yp(|zlee)-
(b) For all x € X it holds that

[A(@) = AMa)| < m(]afee).
¢) For eac € N and each x € X 1t holds that
(c) F h N € N and h Xpu it holds th

VN () = VN ()] < v (Jaloe).

Note that vy in (c) is independent of N. We will comment at the end of this section on
conditions under which (c¢) can be ensured. Moreover, since we made the convention that
A(z€) =0, (b) is equivalent to |[A(x)| < ya(|x|ze), i.e., to Assumption 12.8.

Theorem 13.12 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPy)=(13.3). Let Assumptions 13.5(a) and 13.11 be satisfied. Then
the optimal equilibrium z€ is asymptotically stable for the NMPC closed loop on Xy.

Proof: We show that the modified optimal value function 17]'{} is a Lyapunov function for
the closed-loop system in the sense of Theorem 12.22 for :rref(n) = z°. To this end, we first
check inequality (12.30) with V' = Vi ¢=7and o = 1. As in the proof of Theorem 13.7,
from Assumption 13.5(a) we obtain ((z, un(z)) < Vi (z) — VE(f(z, un(2))) + 0(x°,u),
which we can rewrite as

Vi (@) 2 £z, oy (@) + VR (f (2, pv () — €@, uf). (13.13)

Using (13.11) this implies

Vi(z) = VE(x)+ A=x) — No(a€,u®)
> Uz, pn(z)) + yftvi(f(w, pn(x))) — (2%, u’) + A(x) — NL(2°, u®)
= {(z,pun(7)) + ‘jﬁ(f(:c, pn () = A(f (2, pn (7)) — £(2€,u®) + A(z)
= Uz, un (@) + VI (f (@, pn (2))),

i.e., the desired inequality (12.30).

It remains to establish the inequalities

a1 (|zlee) < VE(2) < ag(|@]ee)  and  I(z,u) > as(|z]ze) (13.14)

for o, g, a3 € Koo. The third inequality follows immediately from the definition of ¢ and
strict dissipativity for ag = p from Definition 12.7. For the inequalities involving a; and
a9, we first need to establish a lower bound for F'.
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To this end, for each z € Xy we denote the control u from (13.9) by po(x). Then (13.9)
and strict dissipativity implies

F(f(2, po(x))) < F(x) = Uz, po(x)) < F(2) = pl|]e)-
By induction along the closed-loop solution for the feedback law g, we obtain

K-1

Fay (K@) < F(x) = Y pllaug (k, @)]ae)-
k=0

This implies that z,,(K,z) — x¢ as K — o0, because otherwise the sum on the right-
hand side of this inequality grows unboundedly, which implies ﬁ(wuo (K,z)) - —oo and
contradicts Assumption 13.11(a) and (b) since x,, (K, x) is contained in the bounded set
Xp. Again by Assumption 13.11(a) and (b), this implies ﬁ(azuo (K,z)) — F(z¢) = 0 as
K — oo from which we can finally conclude

K-1
P2 i, 3 ol )le) 2 pllle) 20
From this, the definitions of jf\} and 17]@@ immediately imply 17]’{} (2) > Uz, pn(x) > p(|x]ze),
and thus the inequality for oy in (13.14) with oy = p.

Finally, since jﬁ‘}(me,ue) = 0, we obtain 17]’{}(306) = 0 and the second inequality in (13.14)
follows from (13.11) and Assumption 13.11(b) and (c¢) with ag = y\ +yv. U

We end this section by discussing sufficient conditions for the bound on ij,i required in
Assumption 13.11(c). In the case of equilibrium terminal constraints, i.e., Xg = {2} and
F = 0, this property can be ensured by the condition that z¢ is reachable from every x € Xy
with suitable bounded costs. In case £ and f are continuous, it is sufficient to assume that
the control sequence steering = to x¢ is sufficiently close to the constant control with value
u®. For details we refer to [!], particularly to part 2 of Assumption 2 in [1].

In case Xq contains a neighborhood of z¢, using (13.5) inductively starting from V{(z) =
F(z) yields for all z € X the inequality

Vi (2) < F(x) + N£(2°,u°) (13.15)
while from (13.11) and 17]'{} > 0 we obtain
Vi (z) > =) + NO(z°, u).

Since from (13.12) we moreover know VI (z¢) = N{(z¢ u®), this implies Assumption
13.11(c) for = € Xy provided Assumption 13.11(a) and (b) hold. For z € Xy \ Xy the
inequality can be extended using that V]’{f is bounded from above on Xy.

Example 13.13 As observed in Example 13.1, the optimal control problem from this
example is strictly dissipative. Moreover, one easily verifies that x¢ is reachable in two steps
from each z € X with cost 422, which implies the upper bound on Vy for the terminal
constraint set Xo = {0}. Hence, we expect the NMPC closed loop to be asymptotically
stable, which was already illustrated in Fig. 13.1. o
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13.4 Non-averaged and Transient Performance with Termi-
nal Ingredients

The averaged performance result from Theorem 13.7 provides a useful estimate for large
times k. However, it also has two significant weaknesses. First, it does not provide an
advantage over a stabilizing NMPC algorithm. Indeed, for any combination of a continuous
stage cost and a terminal ingredients for which the NMPC closed-loop solution converges to
x¢ and the corresponding control sequence converges to u®, the value £(x,, (k), un (2. (K)))

converges to ¢(x¢,u®) from which ji(x,uN) = ((x¢ u®) follows. Hence, Theorem 13.7
states that the economic NMPC scheme does not perform worse than a stabilizing one.
Second, the averaged estimate does not allow any statement about the finite time behavior
of the closed-loop trajectory. Indeed, on any finite time interval of arbitrary length, the
closed-loop trajectory could behave arbitrarily bad as long as eventually it converges to
the equilibrium, cf. Remark 13.20 for a concrete example. Clearly, this is not what we
would expect an NMPC closed-loop trajectory to do and it is also not consistent with
what we see in numerical simulations, e.g., in Fig. 13.1. Hence in this section, we derive
estimates for the non-averaged finite horizon performance Jf(l(av,u]v), as well es for its
limit as K — oo in the overtaking sense of (13.2). As we already know that—under the
conditions of Theorem 13.12—the equilibrium z° is asymptotically stable, the finite horizon
value Jf(l(a:, ) measures the performance of the solution during the transient phase, i.e.,
until it reaches a small neighborhood of z¢. This is why we also call this value transient
performance.

We recall that the value Jf(l(a:, un ) does not involve any terminal constraints or costs, while
in the NMPC scheme we solve problem (13.3) with terminal ingredients in each step. As
before, we distinguish between the these problems by indicating the cost functional and
optimal value function with terminal ingredients by J]t\z,' and VY, respectively. We emphasize
that all functional use the same stage cost ¢. This implies that if one of the problems is
strictly dissipative, then all problems are. If this is the case, we also consider (OCPx)
for the rotated cost ¢ from (12.11) and denote the corresponding functional by Jy. A
straightforward computation reveals that Jy and Jy are related by the identity

In(z,u) = Jn(z,u) + Ax) — Mzu(N, z)) — N(z°, u®). (13.16)

Observe that compared to (13.10), the additional term A(x,(N,x)) appears here due to
the absence of the terminal ingredients.

In order to establish our theorems on transient performance, we will need a few preparatory
results. The first statement shows that the finite horizon optimal trajectories most of the
time stay close to the optimal equilibrium z°.

Proposition 13.14 Assume that the optimal control problem (OCPy) is strictly dissipa-
tive with storage function A satisfying Assumption 13.11(ii) with vy € K&, and p € K.
Then for each 6 > 0 and A > 0 each there exists 0 = osa € £ such that for all
N,P € N, z € X with |z|;e < A and u € UV (z) with Jy(z,u) < NO(z% u®) + §, the
set Q(z,u, P,N) :={k € {0,...,N — 1} ||zy(k,2)|ze > o(P)} has at most P elements.

o
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Proof: We fix 6, A > 0 and claim that the assertion holds with o(P) := p~1((M +~yx(A) +
9)/P) where —M is a lower bound on A. To prove this claim, assume that there are N,
P, z and u such that Jy(z,u) < Nl(x¢,u®) + 0 but Q(z,u, P, N) contains at least P + 1
elements. Then from (13.16) we can estimate

In(z,u) < In(z,u) + Ma) + M — N6z, u®) < M + yx(A) + 0.
On the other hand, (12.10), (12.11), and the fact that Q(x, u, P, N) contains at least P+ 1

elements imply

N— N-—

In(z,u) > Uzy(k, ) > p(|xy(k, z)|ge) > Z p(os(P))

k=0 k=0 ke{0,....,N—1}
|z (k)| e >05(P)

H
)_l

> (P+Dplos(P)) = (P+1)

M A 1)
+7>§ )+ > M+ (A) + 0,

which is a contradiction. [J

Abbildung 13.2: Tllustration of the set Q(z,u, P, N) defined in Proposition 13.14

We refer to the property described by Proposition 13.14 as the turnpike property. For
an illustration, we refer to Fig. 13.2. In fact, there are various variants of the turnpike
property known in optimal control, of which the one described by Proposition 13.14 is just
a particular version.

We note that if X is bounded then there is A > 0 with |z|,e < A for all x € X. This implies
that we can find o € L for which the turnpike inequality in Proposition 13.14 is valid for
all x € X.

Example 13.15 Since Example 13.1 is strictly dissipative with continuous storage functi-
on, we expect the system to have the turnpike property. The numerical optimal trajectories
depicted in Fig. 13.3 support this claim. o

Next we derive upper and lower bounds for V., under the assumption that ¢(x¢, u¢) = 0. We
note that these bounds are similar to (12.18), but are obtained under different assumptions
on the problem.

Lemma 13.16 Assume that the optimal control problem (OCPy) is strictly dissipative
with storage function A, that £(z¢,u®) = 0 and that Assumptions 13.5(a) and 13.11 hold.
Then there is C' > 0 such that the inequalities

—C = AN#) < Voo(®) < (|2]ae) (13.17)
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(k,2)

Abbildung 13.3: Open loop optimal trajectories (without terminal ingredients) for Example
13.1 with different optimization horizons N. The turnpike property is clearly visible

hold for all z € |y ey Xy with 4y from Assumption 13.11(c).

Proof: For « € Xy, using the control sequence u(k) = un(z,y (k,x)) induced by the closed
loop, from (13.13) with ¢(x¢,u®) = 0 for any K > 0 we obtain

K-1
Teau) = 3 faalk,a) ul@) < V(@) - Vi @K, 2)).
k=0

By asymptotic stability of ¢ for this solution we obtain z,(K,z) — z¢, and thus, since
Vi(z¢) = Nl(z°,u®) = 0 by (13.12), Assumption 13.11(c) yields V¥ (z,(K,z)) — 0 as
K — o0o. Using Assumption 13.11(c) and V#(z¢) = 0, this implies
Vio(2) < limsup J (2, u) < Vi (2) < v (|2]oe).
K—oo
On the other hand, the fact that Jy(z,u) > 0 and that X is bounded from below, (13.16)

implies Jy(z,u) > —C — A(x), where —C' is a lower bound on . Since this inequality holds
for all N € N and all admissible u, it also holds for Voo (z). U

Using the inequality ensured by this lemma, we can prove an infinite horizon version of the
turnpike property from Proposition 13.14.

Proposition 13.17 Assume that the optimal control problem (OCPy) is strictly dissipa-
tive with storage function A satisfying Assumption 13.11(ii), £(z¢, u®) = 0, and the inequa-
lities (13.17) hold for all x € UNeNO Xpn. Then for each A > 0 there exists 0o = 0oo,A € L
such that for all P € N, 2 € X with |z|,e < A, and v € U (z) with Jo(z,u) < V() + 1,
the set Q(z,u, P,oo) := {k € Ng | |xy(k, z)|ze > 0o (P)} has at most P elements. O

Proof: First note that by Lemma 13.16 and the assumption, we get

Joo(,u) < sup Vo(z) +1 <Ay (A)+1=:0.
IEUNENXN7|w‘:CESA

Now we can proceed as in the proof of Proposition 13.14: denoting by M an upper bound
on A, from (13.16) and ¢(z°,u®) = 0 we obtain

joo(:x,u) = lim sup jK(:L‘,u) <limsup Jg(x,u) + M + 7\ (A) <6+ M + 7\ (A).

K—oo K—o0
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Setting oo (K) = p (M + yA(A) + §)/K), the assumption that Q(x,u, P, c0) contains
more than P elements again yields a contradiction to this inequality. []

We note that this theorem implies ., (k, ) — 2 as k — 0o, because otherwise Q(z, u, P, o)
would contain infinitely many elements for sufficiently large P € N. Using this fact, we can
improve the lower bound on V, from Lemma 13.16.

Lemma 13.18 Under the assumptions of Proposition 13.17, the inequality Voo (z) > —A(x)
holds for all x € ey, Xn-

Proof: Let u € U*(x) be such that J(z,u) < Voo(x) + ¢ for an € € (0,1). As explained
above, Proposition 13.17 implies that x,(k,x) — ¢ as k — oo. The definition of V, and
(13.16) then imply that

Voo(z) + 2 > limsup Jx(z,u)
K—oo

= limsup ( — Ma) + Jr (2, u) + Mz (K, x)) > —Ax) + A(z).
e >0 A(z€)=0
—A(x€)=

This implies the assertion since € € (0,1) was arbitrary. [

We now have all the tools to prove the first main theorem of this section. It gives an
upper bound for the non-averaged infinite horizon performance of the NMPC closed-loop
trajectory. In the general case we formulate the performance estimate in the approximate
overtaking form (13.2). In the special case of £(x¢, u¢) = 0 we can reformulate this estimate
in an estimate involving the optimal value function V.. In both cases, the theorem shows
that MPC delivers an approximately (non-averaged) infinite horizon optimal closed-loop
solution for which the approximation error tends to 0 as the horizon N tends to infinity.

Theorem 13.19 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPy)=(13.3). Assume that Assumptions 13.5 and 13.11 hold. Then
for each bounded subset X? C X, there exists 6; € £ such that the inequality

lim sup (J;é(a:,uN) — Jx(z,u) — & (N)) <0 (13.18)

K—oo

holds and, in case that £(x¢, u¢) = 0, the inequality

Jim T (2, ) < VR () < Voo () + 01(N) (13.19)
— 00
holds, both for all z € Xy N X°.

Proof: First observe that the optimal control problem with shifted cost ¢(z,u) = £(z, u) —
0(x°, u®) satisfies all assumptions of the theorem that we imposed for the original problem
and yields the same NMPC closed-loop solutions. Now assume that (13.19) holds for the
shifted problem, i.e., that limsupy_, ., j\f{l(:v,uN) < Vao(z) 4 61(N) is true for the corre-
sponding functionals. In the following,we use j}c(l(x, pn) = J& (2, un) — K€(2¢,u®) and the
same relation for .J, x and Jg, as well as the fact that by Lemma 12.9 the limit (and hence
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the lower limit) of;jK(x,u) for K — oo either exists or jK(x,u) diverges to oo, which
likewise holds for J¢(z, uy). We then obtain

lim sup (Jf(l(x,,uN) — Ji(z,u) — 51(N)) = lim sup (jfé(:z;, UN) — jK(a:,u) — 51(N))

K—oo K—o0
= lim jf(l(x,,uN) — lim jK(:c,u) —61(N)
K—oo K—oo
< 1700(33) — liminf jK(x, u)
K—o0
= Vio(2) — Joo(z,u) <0,
proving (13.18). It is thus sufficient to show (13.19) in case ¢(z¢, u¢) = 0.

In order to prove the first inequality in (13.19), from (13.13) we obtain ¢(z, un(z)) <
Vi(z) — VE(f(z, un(z))). This implies for any K € N

K-1
ché(xqu) = Z E(x,uN(k?‘T)vMN(xuN (kvx))) < Vlj\bll(x) - Vlffi(xllz\f (K,l‘)) (13‘20)
k=0

Now from Theorem 13.12 we know that |z, (k, )|z < B(|2|ze, k) < B(M, k) =: v(k),
where M := sup, ,exv d(7,y). Note that v € L. Moreover, by (13.12) we have Vi(z©) =
N{(z¢,u®) = 0 and from Assumption 13.11(c) we know the existence of vy € K with
|Vi(z)| = |VE(x) — VE(2¢)] < v (|z|ze) for all z € X. Together this yields

VN (@ (K, 2))| < (v(K)).
Since vy (v(K)) — 0 for K — oo, this inequality together with (13.20) yields the first
inequality by letting K — oo.

For the second inequality in (13.19), we note that it is sufficient to prove the inequality for
all sufficiently large N, because by boundedness of V¥ and Vu on X® (which follows from
Assumption 13.11(c) for V¥ and from Lemma 13.16 together with Assumption 13.11(b)
for V), for small N the inequality can always be satisfied by choosing d; (V) sufficiently
large without violating the requirement §; € L. Consider o4 from Proposition 13.17, pick
Ny and 7 from Assumption 13.5(b), choose N; such that oo(N1) <7, fix 0 < e < 1 and
choose an admissible control u. satisfying Jo(x,u:) < Voo(x) + €. Then for N > 2Ny, we
use Proposition 13.17 with P = | N/2]. We thus obtain the existence of k € {0,..., P —1}
such that |z, (k,2)|ze < 00o(P) < 050(N1) < m, implying z,(k,z) € Xy, C Xy, and
thus u. € U§N2 (z) for all Ny > Nj. Particularly, this holds for No = N — k, implying
Ug € U%N_k(a:). Now from Assumption 13.11(c) applied to Vi _,, we can conclude (again
using V¥ (z¢) = 0)
VA (@0, ()] < (00 (P).
Moreover, Lemma 13.18 and the bound on A from Assumption 13.11(b) yield

Vo) + £ > Joo(zyue) > Ji(z,ue) + Voo, (K, 2)))
> (@ ue) = Mo (k@) > T2, ue) — (000 (P)).
Together with the dynamic programming principle (12.1) these inequalities imply

Vﬁ(.%’) = eUkinf ){Jk(x7u) + V]%/Z—k(xu(kvx))} < Jk(xv u€) + V]%fi—k(xus(hx))
uely (=

< Voo(#) + W (000 (P)) + (000 (P)) + €.
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Since € > 0 was arbitrary, this proves the assertion for 0;(N) = v (0a([N/2])) +
Mo (IN/2])). O

Remark 13.20 The difference between the performance estimates (13.7) and (13.18) are
subtle, hence we illustrate them by a small example. Assume that ¢(z¢, u¢) = 1 and consider
two solutions z, (k, z¢) and x,,(k,z¢) starting in 2¢. The first solution satisfies

02y, (k,x%),ui(k)) =1 for all k > 0,
while the second yields the stage cost values

. 10, for all 0 < k < 100,
H@un (b, %), wa (k) = { 1,  for all k> 100.

One easily checks that both solutions satisfy Joo(z,u;) < €(x¢, u®), i.e., (13.7). However,
for all K > 100 we obtain

Tz, ug) — J& (2, u1) > 1000,

meaning that due to the “excursion” from the optimal value during the time period k =
0,...,99, the solution controlled by ug will never be able to satisfy (13.18) for small 6 (V).
In other words, (13.18) excludes that the NMPC closed-loop makes large non-optimal
excursions from the optimal path, while (13.7) is satisfied for all solutions that eventually
reach the optimal equilibrium value, no matter how late this happens. o

The results in the remainder of this section were not presented in the lecture.

However, what (13.18) does not tell us is how large K must be such that we can ensure
J(z, 1) ~ Jg(z,u). In order to shed light on this question, we provide another perfor-
mance theorem, which explicitly makes use of asymptotic stability of the NMPC closed
loop. It evaluates the optimal value of the problem with control functions u that steer a
given initial value = € X to the closed ball B (z¢) with radius £ > 0 around z¢. In order
to simplify the notation, we briefly write

UK (z) .= Ugﬁ(xe)(x) (13.21)
using the notation from Definition 11.8 with B, (z¢) in place of Xg. We remark that Theorem
13.12 yields the existence of a 5 € KL such that for all x € Xy and all K with 5(|z|ze, K) <
+ the control u obtained from the NMPC feedback law via u(k) = pn(x,y (k,x)) is con-

tained in UK (z). This, in particular, shows that this set is nonempty for sufficiently large
K.

The next lemma shows that the infimum of Jx (x,u) over u € UX () and the corresponding
approximately optimal trajectories behave similar to those of the infinite horizon problem.
More precisely, part (a) of the following lemma is similar to Lemma 13.16, part (b) to
Lemma 13.18 and part (c) to Proposition 13.17. Note that since we only consider finite
horizon problems here, we do not need to assume £(z¢, u¢) = 0.
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Lemma 13.21 Assume that the optimal control problem (OCPy) is strictly dissipative
and that Assumptions 13.5(a) and 13.11 hold. Fix k9 > 0 and let 8 be a KC-function
characterizing the asymptotic stability of the closed loop, whose existence is guaranteed by
Theorem 13.12. Then for any x € (0, ko), any z € Uyey, Xn, and Ko € N minimal with
B(|x|ze, Ko) < K, the following holds.

(a) For all K > K the inequality

inf Jxe(w,u) = KU(a®,u) < v (olee) + v (5)
uelUE ()

holds with vy € Ko from Assumption 13.11(c).
(b) For all K € N with UX () # 0 the inequality

- ve) — < inf Jg(w,u) — K0(z€,u
(lelee) = aR) < nE ) — Kb )

holds with vy from Assumption 13.11(b).
(c) For all A > 0 there exists 0 = oa € L such that for all K > Ky, all P € N, all

r € X with |z]ze <A, and any u € UE (z) with Jx (7, u) < inf,cux (z) Ji (@, u) + 1 there is
k < min{P, K — 1} such that |z, (k,2)|zc < o(min{P, K — 1}).

Proof: (a) The proof of this inequality works similarly to the first part of the proof of
Lemma 13.16. For z € Xp, we choose the control u obtained from the NMPC feedback
law via u(k) = un(zuy (k,x)). By Theorem 13.12 and the choice of Ky, this control lies in
UK (x). As in the proof of Lemma 13.16, from (13.13)—now with ¢(z¢, u®) # 0—for this u
we get

Jr(x,u) < Vy(z) — Vi(zy (K, x)) + K(z¢,u)

and from Assumption 13.11(c) and |z, (K, x)|ze < K, we obtain the assertion.

(b) Let € > 0 and take a control u. € UX (x) with inf,cyx (o) JK (¥, u)+€ > Jk (z,ue). Then

by (13.16), Assumption 13.11(b), and recalling that strict dissipativity implies J; K (T, ue) >
0 we get

i f J 9 +6 2 J y e
= M) F Tr(z,ue) + Mz, (K, 2)) +K0(z¢, uf)
N—— e e
>—x(je]ze) A (@) >0 > (R)+A(2¢)

> ([zlee) = a (k) + KLl(€, uf).

This implies (b) since € > 0 was arbitrary.

(¢) The assumptions and (a) imply that Proposition 13.14 can be applied with § =
supgex Y(|xlze) + v(ko) + 1 for all z € X and all k € (0, kg]. We set 0 = 05 from this
proposition. Since the set Q(z,u, min{P, K — 1}, K) has at most min{P, K — 1} elements,
there exists at least one k € {0,...,min{P, K — 1}} with k£ ¢ Q(x,u,min{P, K — 1}, K),
which thus satisfies |z, (k, x)|ze < o(min{P, K —1}). [

Since x¢ is asymptotically stable for the NMPC closed-loop trajectories, the closed-loop
solutions converge toward x¢ as k — oco. More precisely, given a time K, by Theorem 13.12
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the solutions are guaranteed to satisfy z,, (k,x) € Bx(z¢) for all k > K and £ = B(|z|ze, K)
for B from Theorem 13.12. We denote the time span {0, ..., K —1} during which the system
is (possibly) outside By(x¢) as transient time and the related finite horizon functional
J¥(x,u) as transient performance. The next theorem then shows that among all possible
trajectories from x to By (2¢), the NMPC closed loop has the best transient performance up
to error terms vanishing as K — oo and NV — oo. Again, in order to simplify the notation,
we use UX (x) from (13.21). We remark that unlike the previous theorem, here we do not
need to assume ¢(z¢, u®) = 0.

Theorem 13.22 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPy)=(13.3). Assume that Assumptions 13.5 and 13.11 hold. Then
for any bounded set X? C X, there exist 61,02 € £ such that for all z € Xy N X? the
inequality

Jfé(x,uN) < inf  Jg(x,u) + 61(N) + 52(K)
ueUK (x)

holds with UX (z) from (13.21), = B(|z|4, K), and 8 € KL characterizing the asymptotic
stability of the closed loop guaranteed by Theorem 13.12.

Proof: We can without loss of generality assume ¢(z¢, u¢) = 0, because the claimed inequa-
lity is invariant under adding constants to £. Moreover, similar to the proof of inequality
(13.19) in the proof of Theorem 13.19, it is sufficient to prove the inequality for all suffi-
ciently large K and N, because by boundedness of all functions involved on X, for small
N and K the inequality can always be achieved by choosing §;(/N) and do(K) sufficiently
large. As in the proof of the first inequality in (13.19) in the proof of Theorem 13.19, we
obtain |V (2, (K,2))| < v (v(K)). It is thus sufficient to show the existence of &1, € £
with

Vi(z) < inf  Jg(z)+ 61 (N) + 6z(K) (13.22)

T weUK (z)

for all 2 € X because then the assertion follows from (13.20) with do = vy ov + 5s.

In order to prove (13.22), consider o from Lemma 13.21(c), which we apply with P =
|N/2] and pick u. € UE(z) with Jg(z,u:) < inf,cux (z) JE° (2, u) + € with an arbitrary
but fixed ¢ € (0,1). This yields the existence of k € {0,...,|N/2]}, k < K — 1 with
|2y, (k, 7)|ze < o(min{P, K —1}). Since u. steers = to B, (z¢), the shifted sequence u.(k+-)
lies in UX=*(x,_(k,x)), implying that this set is nonempty. Hence, we can apply Lemma
13.21(b) in order to conclude J3¢ | (@, (k, ), us(k+-)) > —ya(o(min{N, K —1})) —va(k).
This implies

iIle( )JK(.’];,U) E > J (.’L’,'LL ) — Jk(x7u8) JK k:(xu (k7x)?u€(k+))
uelU (z — YK € +

Moreover, by choosing N and K sufficiently large we can ensure o(min{P, K — 1}) < n for
71 from Assumption 13.5(b), implying u. € U%Q (z) for all @ > Ny and Ny from Assumption

13.5(b). Particularly, choosing N > 2Ny implies N — k > Ny and thus u. € U%N_k(az).



13.5. AVERAGED OPTIMALITY WITHOUT TERMINAL INGREDIENTS 157

J55(1.9, 1)

B L T

¥
Abbildung 13.4: Value of J¢(z,uy) for K = 30, 2 = 1.9 and varying N with terminal
constraint X = {0}

Using this relation, the inequality derived above, the dynamic programming principle (12.1)
and Assumption 13.11(c) for V}_, we obtain

Vi(z) = L (){Jk(wvu)+vai_k(wu(k,x))} < il ue) + V(2. (k, @)
ue XNk x
< Ticle ) + (o min{P K = 11) + 3 () + 2
ucUg (z

+ v (o(min{P, K — 1})).
This shows the desired inequality (13.22) for

01(N) =y (o (LN/2])) + (o (LN/2]))),

and using the choice of &,
2(K) = w(o(K —1))+n(o(K —1)) + n(B(M, K))

with M = sup, ,ex» d(@,y) and 8 € KL characterizing the asymptotic stability of the closed
loop. [

Note that the K-dependent term d2(K') essentially depends on how fast the closed-loop
solution reaches a small neighborhood of the equilibrium z¢. Hence, the closer z,, (K, x)
is to x¢, the smaller the K-dependent error term will be.

Example 13.23 Figure 13.4 illustrates how J¢&(z, uy) depends on N for Example 13.1.
The value K = 30 is so large that the effect of the term d2(K) is negligible and not visible
in the figure, hence J&(z, uy) converges to inf,cyx (z) JE(z, u) for increasing N. o

13.5 Averaged Optimality Without Terminal Ingredients

In this and in the subsequent sections, we discuss the case in which we do not impose
terminal ingredients on the problem, i.e., we consider the NMPC Algorithm with optimal
control problem (OCPy). The corresponding functionals and optimal value functions will,
as usual, be denoted by Jy and Vj and their infinite horizon counterparts by J,, and
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V. The results are presented in parallel to Sects. 13.2-13.4. Throughout this and the the
following sections we assume viability of X, which ensures recursive feasibility of the MPC
scheme by Theorem 11.6.

Since we do not impose any terminal ingredients, we do not need Assumptions 13.5 and
13.11(a) anymore. However, we still need Part (b) and (a relaxed version of) Part (c)
of Assumption 13.11, where the latter now refers to the optimal value function of the
unconstrained problem (OCPy).

Assumption 13.24 [Continuity of A and Vx at x¢] There exist vy, and vy € K& and
w € L such that the following properties hold.
(a) For all z € X it holds that

[A(z) = A(@)| < m(l2lee)-
(b) For each N € N and each = € X it holds that

Vv (z) = Vv (2%)] <y (|]ze) + w(NV).

We start our analysis with proving averaged optimality without imposing terminal ingre-
dients. Based on Propositions 13.14 and 13.17, we can prove the following two auxiliary
results, which lead to the main result of this section. In what follows, we denote by u%, and
w}y the optimal control sequences for (OCP) and (OCPy), respectively, for initial value
reX

Lemma 13.25 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation
Vn(z) = Ju(z,un) + V- (2) + Ri(z, M, N) (13.23)

holds with |Ry(z, M, N)| < yv(osa(P)) +w(N — M) forallz € X, all N e N, all P € N
and all M ¢ Q(x,u)y, P,N), with o5 A from Proposition 13.14 with § = vy (|z|ze) + w(V)
and A = |z ge.

Proof: Using that the control v = u® yields Jy(z¢ u) = Nl(x° u°), we can estimate
Vn(z€) < Nl(2¢ u®). Thus, using Assumption 13.24 we get Jy(z,u)) < NO(z¢u®) +
Y (|Z|ze) + w(N), hence Proposition 13.14 applies to the optimal trajectory with § =
W (|2]ze) +w(N) and A = |z[ze. This in particular ensures |z,x, (M, z)|ze < 05 A (P) for all
M & Q(z,uy, P,N).

Now the dynamic programming principle (12.2) yields
V() = Ju(z,ul) + V- pr(zus, (M, x)).

Hence, (13.23) holds with Ryi(z, M, N) = VN_p(2uy, (M, x)) — V—pr(2€). Then for any
P € N and any M ¢ Q(x,u}, P, N), this implies [Ry(x, M, N)| < yv(|zuy (M, )|ze) +
w(N — M) <y (o5a(P)) +w(N — M) and thus the assertion. []
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Lemma 13.26 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation

VN(QJ> = VN_1(.Z') + 0(x°, ue) + RQ(.%’, N)
holds with Ra(z, N) < va(|x|ze, N) = 2yv (o5 (| N/2])) + 2w([N/2] — 1) for all z € X, all
N € N, and o5 from Proposition 13.14 with 0 = vy (|2|ze) + w(V — 1) and A = |z|ze.

Proof: Given z € X, consider the optimal control u};_; for horizon length N —1 and o5
from Proposition 13.14 with § and A from the lemma. Then Lemma 13.25 applied with
N — 1 in place of N and P = | N/2] implies the existence of M € {0,...,[N/2] — 1} with

VN_l(J}) = JM(x,u?V_l) + VN_M_l(.%'e) + R1<{L‘, M,N — 1)
with |Ry(x, M, N —1)| <y (05a(|N/2])) +w(|N/2| — 1). The construction in the proof
of Lemma 13.25 moreover yields |wyx,_ (M, z)|ze < o5a([N/2]). Using u(k) = uy_;(k)

for k=0,...,M —1 and w(M + k) = u}j,_,,(k) with the optimal control u},_,, for initial
value xu}*v,l(M’x) and horizon N — M for k=0,...,N — M — 1, yields

In(z,w) = Jar(z, uly_ )+ V-n (@ay, (M, 2)) = Jag (2w 1)+ Vivon (2°) + Ry(z, M, N)

with |Ry(z, M, N)| < w(osa(|N/2])) +w([N/2]). Since for initial value z¢ we can always
stay at the equilibrium for one step and use the optimal control for initial value z¢ for the
remaining horizon, we obtain the inequality Vy_as(z¢) < €(x¢, u®)+ Vy_pr—1(2¢). Together
this yields

JN(J/‘, u) = JM('T7 u,J(V—l) + VN*M(‘/Ee) + El(xv M, N)

< JM(xau}(Vfl)+£(‘T67ue)+VN—M—1(‘T6)+§1(x7M7N)

= Vy_1(z) + £(zf,u®) — Ry(x, M, N — 1) + Ry (z, M, N),

Vn(z)

IN

and thus the claim with Ry(z, N) < Ry(z, M, N) — Ry(z, M,N —1). [

Now we can state the theorem on the infinite horizon average performance.

Theorem 13.27 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy). Let Assumption 13.24 hold and assume Vy is bounded from
below on X. Then, for any N > 2 and for any « € X for which the NMPC scheme yields a
bounded closed-loop solution x,, (k,x), the averaged closed-loop performance satisfies the
inequality

T (2, i) < 002, u®) + 61 (N) (13.24)
with 01(N) < 29y (o5a(|N/2])) + 2w(|N/2| — 1) for o5 from Proposition 13.14 with
§ = maxgen W (|Tuy (kB 2)|ze) + wW(N — 1), A = maxpen |2y (K, 2)|ze and yy and w from
Assumption 13.24.

Proof: Abbreviate x,, (k) = z,,(k,z) and v(k, N) := va(|zuy (kK + 1)|ze, N) for v from
Lemma 13.26. Then, from this lemma applied with = = z,,(k + 1) and the dynamic
programming principle (12.2) we obtain

Uy (R), (@ () = Viv(ay (R)) = Vv @y (k + 1))
< Vil (R)) = Viv(@py (b + 1)) + €2, u®) + vk, V).
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(1.9, 1N
*

Abbildung 13.5: Value of jzlo(:c, pun) for x = 1.9 without terminal ingredients depending
on N

Thus we obtain

K—-1
—cl . 1
Joolt, ) = limsup o »  apy (k) uv(zuy (k)
K—oo k=0
| K1
< timsup = > (Vv () = Viv(@uy (6 + 1)) + £z, ) + v(k, V)
Koo K k=0
< (2 u®) + maxv(k, N) + lim sup V(@) = Vv (@uy (K))
keN K—s00 K
VN(I') + M

IN

0(z°,u®) + maxv(k, N) 4 limsup
keN K—o0

= (af,uf k, N
(¢, u®) + max v(k, N)

where —M is a lower bound on Viy on X. This shows the claim with 6; (N) = maxgen v(k, N).

0

The difference between this and the corresponding result with terminal ingredients is that
we get the error term d1(N) on the right-hand side of the estimate, which does, however,
tend to 0 as N — oo.

Example 13.28 Figure 13.5 shows 722(36, pn ) for Example 13.1 depending on N. The plot
in the logarithmic scale shows that the value converges to the optimal value ¢(0,0) = 0
exponentially fast, hence the error §; (V) also vanishes exponentially fast. This is actually
not a coincidence. However, an analysis of the rate of convergence is beyond the scope of
this chapter. We refer to [0] for details. o

13.6 Semiglobal Practical Asymptotic Stability Without Ter-
minal Ingredients

Now we turn to analyzing the stability properties of the NMPC closed-loop solutions wi-
thout terminal ingredients. As in the case with terminal ingredients, our goal is to assume
strict dissipativity and to use the optimal value function for the modified stage cost £ from
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(12.11) as a Lyapunov function, but now without imposing terminal ingredients. The cru-
cial difference is that while for the NMPC closed-loop with modified stage cost ¢ we could
still prove asymptotic stability, without terminal ingredients the optimal trajectories of the
original and the modified problem no longer coincide.

In order to see why, we refer to the optimal control problem (OCPy) with stage cost { as
((ﬁN) and, as before, denote the corresponding functional and the optimal value function
by J; ~ and 1~/N. Due to the fact that we no longer impose terminal ingredients, the relations
between Vi and ‘7N are not the same as in Sect. 13.3. For Jy and jN, instead of (13.10)
we now have

In(z,u) = In(z,u) + Az) — Mau (N, z)) — NO(z°,u®). (13.16)

Unfortunately, in contrast to (13.10), this equation does not allow for an easy derivation of
a relation between the optimal value functions of the form (13.11), because of the additional
u-dependent term A(z, (N, x)) on the right-hand side of (13.16). A first consequence of this
fact is that the continuity Assumption 13.24(b) on Vy does not immediately carry over to
I7N. Hence, we need to introduce this as an independent assumption.

Assumption 13.29 [Continuity of Vy at z¢] There exist 7y € Koo such that for each
N € N and each x € X it holds that

Vv (z) — Vv (29)] < 75 (|]ae)-

m}

In case strict dissipativity holds, ¢ is positive definite w.r.t. the equilibrium z¢, hence we
obtain Vi (z¢) =0 and Vi (x) > 0 for all 2 € X. Thus, the inequality in Assumption 13.29
is equivalent to Vi (x) < vy (|2[ze).

Unlike continuity, a straightforward check of Definition 12.7 (with storage function A\ = 0)
shows that strict dissipativity carries over from (OCPy) to ((/)E]TDN), even with the same
p. Thus, in particular, all the previous lemmas that apply to (OCPy) in case of strict
dissipativity also apply to (6@?’1\1) As a general rule, we denote all parameters, sets, etc.,
referring to (6(\3?1\1) with a tilde, e.g., the set Q(x,u, N, P) from Proposition 13.14 will be
denoted by é(a:, u, N, P) when this proposition is applied to (6(\3?1\1)

As already mentioned above, from the definition we cannot directly deduce a simple relation
like (13.11) between Vy and V. The reason why we can still use Vy as an—at least
practical—Lyapunov function lies in the fact that we can establish an approximate version
of (13.11). To this end, we first need the following preparatory lemma.

Lemma 13.30 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation
Vn(z®) = Me(z°,u®) + Vy_p(2°) — Rg(x®, P,N)

holds with 0 < R3(z®, P, N) < v (osa(P)) + w(N — M) + yr(o5a(P)) for all N,P € N
and for all M ¢ Q(z¢,u%,, N, P), where u%, € UN(2¢) is the optimal control of (OCPy) for
initial value ¢ and o5 is from Proposition 13.14 with § = w(/N) and A = 0.
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Proof: The inequality Vy(z¢) < M{(2¢ u®) + Vn_p(z) follows from the dynamic pro-
gramming principle (12.1) using the control u = u°. For the opposite inequality, consider
the optimal control u%, € UM (z¢) for initial value z°. As in the proof of Lemma 13.25, we
can apply Proposition 13.14 with § = vy (|2¢|ze) + wW(N) = w(N) and A = |z¢[ze = 0 in
order to conclude that for each M ¢ Q(z,uy, N, P) we have

M-1
Vin(a®) = Y by, (k) ul (k) + Vivoa (g, (M)
. M-1 ~
= —A@°) + Awuy, (M) + MU u®) + ) U(wuy, (k), un (k) +Vvpr (2ug, (M)
k=0

> MU, u) + Vivoar (59) + [Vivoar (g, (M) = Vi (5] + [Moag, (M) = M)
> Me(z%u®) + VN_m(2°) — v (osa(P)) —w(N — M) —y(os5a(P)),
which shows the claim. [

Now we can prove the approximate relation of the form (13.11) between ‘7N and V.

Lemma 13.31 If Assumptions 13.24 and 13.29 as well as the assumptions of Proposition
13.14 hold, then for all € X the equation

Vn(z) = Vn(z) + A(z) — Vi (z°) + Ra(z, N)
holds with |R4(x, N)| < v4(|x|ze, N) with

va(|zlee, N) - = max{yv (a5 A ([N/3])) + v (05.a(LN/3])) + 7505 A (LN/3]))
+ (05,4 (LN/3]) + (05 A (LIN/3])) + 3w([N/3]),
V(05,4 (LN/3]) + v (a5.a(LN/3])) + (05,4 (LN/3]))

+2w([N/3])}

with o5 A and G5 o from Proposition 13.14 applied to (OCPy) and (6(\3T3N), respectively,
with & = Y (|2[ee) + w(N), 6 = 75 (|z[ee ), and A = |z]se.

Proof: Fix r € X and let w} and @} € UM(x) denote the optimal control minimizing
Jn(z,u) and Jy(x,u), respectively. We note that if (OCPy) is strictly dissipative then
(6@?’1\1) is strictly dissipative, too, with bounded storage function A = 0 and same p € K.
Moreover, Vy(z) < NU(z¢ u®) + v (|7|e) + w(N) and Vy(x) < N2 u®) + vy (|2]ee),
since Viy (2¢) < N£(2,u¢) and Vi (2¢) = 0. Hence, Proposition 13.14 applies to the optimal
trajectories for both problems, yielding o5 € £ and Q(x,u}, P, N) for (OCPy) and 557A

and é(m,ﬂ?v,P, N) for ((j(\}TDN) For all M ¢ @(m,ﬂjV,P, N), we can estimate

Vn(z) < Jum(z,ay) + V-m(zay, (M))
< Ju(, i) + Ve a(29) + v (65,4 (P) +w(N — M)
< Ju(x i) = Mx) + M) + MO, ) + V- ar(2°) + v (65 4 (P))
+ (G54 (P)) +w(N = M)
< Vn(z) = Ri(z,P,N) — A(z)

+ Vv (2%) + R3(x, P, N) + v (05 A (P)) +71(55 5 (P)) + w(N — M),
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where we have applied the dynamic programming principle (12.1) in the first inequality,
Proposition 13.14 for (OCPy) and Assumption 13.24(b), respectively, Assumption 13.24(a)

and (13.16) in the second and third inequality and Lemma 13.25 (applied to (6@?’1\1), hence
with remainder term denoted by R;) and Lemma 13.30 (applied to (OCPy)) in the last
step. Moreover, A\(z¢) = 0 and Vi (z¢) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities as above,
we get

‘7]\[(1‘) < VN(x) — Rl(x, P, N) + )\(x) — VN(xe) + ’)/‘7(05,A(P)) + ’y)\(a(;,A(P))
+w(N - M)

for all M ¢ Q(x,u}),P,N). Here we can omit the negative —R3-term. Now, choosing
P = |N/3], the union Q(x,uy, P, N)U Q(z,u), P, N) has at most 2N /3 elements, hence
there exists M < 2N/3 for which both inequalities hold. This yields N — M > |[N/3] and
thus

[Ba(z, PN)| < v(osa(lN/3]) +w(IN/3)),
[Ri(z, P,N)| < 3p(05 A(IN/3])) + w([N/3]) and
Ry(z, P,N) < wv(osa(lN/3])) +w([N/3]) +m(o5a(IN/3])),

which shows the claim. [

We now define the stability property that we will prove in the remainder of this section.

Definition 13.32 Consider the NMPC Algorithm 11.1 and the resulting nominal closed-
loop system (11.2) with feedback law pn and solutions x, (k, x).

We call the equilibrium x¢ semziglobally practically asymptotically stable with respect to the
optimization horizon N for the closed-loop system (11.2) if there exists § € KL such that
the following property holds: for each 6 > 0 and A > ¢ there exists Nsa € N, such that
for all N > Nsa and all € Ax the inequality

|y (Fs @) |e < max{B(|2|ze, k), 0}

holds for all £ € Ny. o

Semiglobal asymptotic stability relaxes the asymptotic stability condition by requiring
asymptotic stability only for the set of initial values z € X with |z|,e < A. Although A
can be chosen arbitrarily large by suitably adjusting the optimization horizon N, for each
finite N it will in general be a finite value.

Semiglobal practical asymptotic stability additionally relaxes the requirement that the
solution exactly tends to the equilibrium z¢ by only requiring that the solution behaves
like an asymptotically stable solution until it reaches a d-neighborhood of z¢. Similar to
the value of A, the size § of this neighborhood can be arbitrarily tuned by adjusting the
optimization horizon N, but for each finite N it will in general be a positive value.

Semiglobal and semiglobal practical asymptotic stability can be expressed via the stability
properties introduced in Chap. 10. This is made precise in the following lemma.
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Lemma 13.33 The equilibrium z¢ is semiglobally practically asymptotically stable with
respect to the optimization horizon N if for each 6 > 0 and A > ¢ there exists Nsa > 0
such that for all N > Nj A there exist forward invariant sets Y and P with BA(aﬁe) CYCX
and P C Bs(2¢) such that the system is P-practically asymptotically stable on Y in the
sense of Definition 10.3.

Proof: The claimed stability property follows from the fact that according to Definition
10.3 for each k € Ny either |z, (k,x)|ze < B(|2|ze, k) or x4y (k,2) € P holds. Since the
latter implies |z, (k, z)|ze < & we obtain the assertion. [

The following proposition shows in which sense VN is a Lyapunov function for the sy-
stem. This will be used in the subsequent theorem in order to prove semiglobal practical
asymptotic stability of the closed loop.

Proposition 13.34 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy) with storage function A and p € Ko, and let Assumptions 13.24
and 13.29 hold. Then for each © > 0 there exists Ng € N such that for all N > Ng and all
z € X with Viy(z) < O the optimal value function Vy of (OCPy) satisfies the inequalities

Vv (f(2, un(2))) < Viv(@) — U, pn (@) + v(N) (13.25)

and B
a1(|z]ze) < V(@) < a(|z]ee) (13.26)
with a; = p, ag = 7, and v € L defined in the proof. o

Proof: The lower bound in (13.26) follows with a; = p because strict dissipativity implies
(x,u) > p(|z|ze) and thus

i

V = inf Uy (k,z),u(k inf Ty(k,2)|ze) = p(|x|ze).
e uemz W)= st 5 ool aller) > plele)

f

The upper bound in (13.26) follows from Assumption 13.29 and ‘7N(:n€) = 0 with ag = ¢,
observing that ¥ C X holds, because for x ¢ X we have that \7}\7(3:) = 0.

In order to obtain inequality (13.25), we abbreviate x+ = f(z, un(z)). Now, for all z € S
we obtain Vy(z) < ©, which implies |z];e < p~1(©) and thus Y C B,-1@)(z¢) for all
N. In order to obtain a similar estimate for |27 |.e, we observe that using Assumption
13.24(b), Vi (z) < O implies Vi (z) < Viv(2¢) + v (p~2(O)) 4+ w(1). Abbreviating Me =
w(p~H(O)) + w(1) and using Viy(z¢) < N€(z¢ u®), Theorem 12.4 and strict dissipativity
yield

V_1(zT) = Vy(x) =z, uy(z)) < Vn(z) + Mx) — AMzh) — 0(2°,u)
< Mo — Mat) 4+ My + (N — 1)£(z°, u®),

where M) is a bound on A on B,-1(g)(z¢). This implies

17N,1(33+) < VN,l(:L""') + )\(1:+) + M, —(N—-1)l(z°u) < Mo+ Mx+M,=M
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with M, being a lower bound on A on X. We can conclude that |z7|. < p~1(M). Hence,
using first Lemma 13.26 and then Eq. (12.6) we obtain

VN(:U+) = VN,1($+) + 0(xf,u®) + RQ(£+, N)
= Vn(@) + Uz, un(x)) + (2%, u®) + Ra(zt, N) (13.27)

with Ro(zt, N) < va(p~ (M), N) from Lemma 13.26. Using this we can compute

VN(1'+) = VN($+) + )\(:L'+) — Vn(z) + R4({L‘+, N)
= Vn_i(@®) + 0% uf) + AMa) — Viv(2) + Ra(z", N) + Ry(x™, N)
= Vn(x) — Uz, un(x)) + £(2¢,u®) + MzT) — Vi (z°)
+ RQ(SC+,N) + R4(£+,N)
= Vn(x) =Lz, pn () + 02, u®) + MzT) — A(z)

=—L(z,un ()
+ Ra(x™, N) + Ry(x", N) — Ry(z, N).

where we used Lemma 13.31 for x = zT for the first equality, Lemma 13.26 for the second,
Eq. (12.6) for the third and Lemma 13.31 in the last step, all with with A = p~}(M).
Defining v(N) = va(p~ (M), N) +2v4(p~ 1 (M), N) with vy and v4 from Lemmas 13.26 and
13.31, respectively, we thus obtain

Viv(z™) < Viv(a) — U, pn () + v(N),

ie. (13.25). [

The final theorem on semiglobal practical asymptotic stability is now a consequence of
Proposition 13.34 and Theorem 12.23. To this end, recall the notion of semiglobal practical
stability from Definition 13.32(ii).

Theorem 13.35 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy) with a storage function A that is bounded on bounded sets and
p € Ko, and let Assumptions 13.24 and 13.29 hold. Then the equilibrium z€ is semiglobally
practically asymptotically stable on X with respect to the optimization horizon N.

Proof: Choose A > § > 0. We apply Proposition 13.34 with ©® = as(A). This implies
that Ba(z¢) N X C S = f/ﬁl([(), O]). One checks that V = Vy satisfies all assump-
tions of Theorem 12.23 with a3 = p, ¢ = v(N), and ¢ in place of ¢. Hence, we ob-
tain P-practical asymptotic stability on S with P = ‘7]\71([0, as(azt(2v(N))) + v(N)]) C
Bal—l(aQ(agl(2u(N)))+u(N))(xe)' The assertion the follows from Lemma 13.33 by choosing
N5 A > Ng so large that the inequality 061_1(042(04371<21/(N57A))) + v(Nsa)) < 8 holds. [

Example 13.36 Figure 13.6 shows the trajectories (open-loop dashed, NMPC closed-loop
solid) of Example 13.1 without terminal ingredients for N = 5 and N = 10. One clearly
sees the practical asymptotic stability of the closed loop and the turnpike phenomenon for
the open-loop trajectories. a
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Abbildung 13.6: NMPC closed-loop solution (solid) and open-loop predictions (dashed) for
Example 13.1 without terminal ingredients and horizon N =5 (left) and N = 10 (right).
The solid line at x = 2 indicates the upper bound of the admissible set X

13.7 Non-averaged and Transient Performance Without Ter-
minal Ingredients

Our final results in this chapter concern the adaptation of the results from Sect. 13.4 to the
case without terminal ingredients. In order to formulate the conditions for the adaptation
of Theorem 13.19, we need an auxiliary optimal control problem. To this end, we recall the
shifted stage cost

U, u) =z, u) — 0(z€,u®),
which we already used in the proof of Theorem 13.19. We denote the corresponding finite
and infinite-horizon functional with .J, v and JAOO, respectively, and the optimal value func-
tions with XA/N and 1700. It is easy to see that XA/N = VN — Nl(x¢,u®). If strict dissipativity
holds and ¢ satisfies (12.16), then inequality (12.17) from Theorem 12.12 applies to Vi
and thus XA/OO assumes finite values. The assumption that we need in addition is now that
1700 is continuous in z€.

Assumption 13.37 [Continuity of Vio at x€] There exists V9., € Koo such that for each
x € X it holds that

Voo @) = Voo (2°)] < g, (J]e)-

Lemma 13.38 If Assumption 13.37 and the assumptions of Proposition 13.17 hold for the
problem with shifted stage cost ¢, then the equation

o~

Vio(z) = Jar(z, @) + Voo (2€) + Rs(x, M) (13.28)

holds with |R5(z, M)| < v (00c,a(P)) forallz € X, all P € Nand all M ¢ Q(z, uZ,, P, 00),
where 4%, € U™ (z) denotes the infinite horizon optimal control for the problem with shifted
cost and initial value x and oo A is from Proposition 13.17 with A = |z|ze.
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Proof: The dynamic programming principle (12.21) yields
Veo(@) = Jar(w, %) + Voo (as, (M, ).

Hence, (13.28) holds with Rs(z, M) = Viao(zax_ (M, )) — Voo (2°). Then for any P € N and
M ¢ Q(z, iz, P, 00) we obtain [Rs(z, M)| < vp_([[zag, (M, ) —2°||) < vp_ (000,a(P)) and

b o0 !
thus the assertion. []

Lemma 13.39 If Assumptions 13.24 and 13.37 and the assumptions of Propositions 13.14
and 13.17 hold for the problem with shifted stage cost ¢, then the equation

In(z,al,) = Iy (z,un) + Re(x, M, N) (13.29)

holds with [Rg(z, M, N)| < max{yy (05 (P))+ (0cc,a(P))+2w(N—M), vy _(0c0,a(P))+
V9 (05a(P))} for all P € N, all z € X and all M € {0,..., N} \ (Q(z,uy, P,N) U
Q(z,u},, P,00)), with 0, A from Proposition 13.17, o5 A from Proposition 13.14 with § =
W(|x|ze) + w(N), A = |x|ge, and 4%, being the infinite horizon optimal control for the
problem with shifted cost and initial value x.

Proof: The finite horizon dynamic programming principle (12.1), (12.2) implies that v =

w) minimizes the expression Jys(x,u) + Vn—nr(xy (M, x)). Together with the error term

Ry from Lemma 13.25 and Ry(z, M, N) = VN_n(2ax, (M, z)) — VN_p(2°) this yields
Ju(z,uy) + Vv-m (29) = Iy (2, uly) + Vv-m (zuy, (M, 2)) — Ra(z, M, N)

< Ju(z,4%) + Vv-m(vag, (M, 2)) — Ri(z, M, N)

= Jula, @) + V_n(2°) — Ri(x, M, N) + Ry (z, M, N).
Similar to the proof of Lemma 13.25 one sees that | Ry (z, M, N)| < W(Ooo,A(P))+w(N—M)
for all M & Q(x,uk,, P, 00).

Conversely, the infinite horizon dynamic programming principle (12.21) implies that a%,
minimizes the expgfession JM(x,ﬂ/*(zo) + Voo (waz (M, f)) Using the error terms Rs from
Lemma 13.38 and Rs(z, M, N) = Voo (2uy, (M, x)) — Voo(2€) we obtain
Tni(@, %) + Vool@®) = (i) + Voo(was, (M, @) — Rs(x, M)
< Ju(@,uk) + Veo(zuy, (M, 7)) — Rs(x, M)
Jar(z, ) + Vio(2€) — Rs(z, M) + Rs(x, M, N)

and subtracting M/(z°, u®) and Vao(2¢) on both sides yields
Jar (@, 050) = Ty (2, ufy) = R, M) + Rs(x, M, N).

As in the proof of Lemma 13.25 one sees that Proposition 13.14 applies to s (-, z) with
0 = v (|z|ge). Hence, similar to the proof of Lemma 13.38 one obtains |Rs(z, M, N)| <
Vo (o5A(P)) for all M & Q(z,uk;, P, N). Together with the estimates for R; and Rs from
Lemmas 13.25 and 13.38 this yields
|Re (2, M,N)| = |Ju(x, 0%,) — Ju(z,uy)|
< max{|Ri(z, M, N)| + | Ri (e, M, N)|, | s, M)| + | s, M, N)|}
< max{yv(5a(P)) + W (0x,a(P)) + 2w(N — M), 75 _(00c,a(P)) + 75 (05,a(P))}
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and thus the claim. U

Now we can establish a version of Theorem 13.19 for NMPC without terminal ingredients.
We will discuss after the proof how Theorem 13.40 relates to Theorem 13.19.

Theorem 13.40 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy) and storage function A and let Assumptions 13.24 and 13.37
hold. Then for each bounded subset X? C X there exists §; € £ such that for all sufficiently
large N € N the inequality

lim sup (J]Cé(a:,uN) —Jr(z,u) — K51(N)> <0 (13.30)

K—oo

holds and, in case that ¢(z¢, u¢) = 0, there are d3,03 € £ such that the inequality
J(x, un) < Vio(x) + K61 (N) + 62(N) + 03(K) (13.31)

holds for all K € N and z € X N X°.

Proof: First observe that for proving (13.30) we can assume £(z¢, u¢) = 0 without loss of
generality, since the inequality is invariant under additions of constants to ¢. For £(z¢, u®) =
0, however, (13.30) follows from (13.31), so it suffices to prove (13.31). We also assume
A(z€) = 0 without loss of generality.

As the assumptions from Theorem 13.35 are satisfied and X’ is bounded, there is 8 € KL
such that for each € > 0 there is N. € N with |z, (k, 2)|ze < max{f(|z|ze,k),e} forall N >
N and all # € XP. This in particular implies |z, (k, Z)|ze < supgexs B(|2|ze,0) =: A for all
z € Xb and all k € N, which in turn implies Vi (2, (k, )) < N€(2¢,u®) + vy (A) + w(N),
implying the inequality from the assumptions of Proposition 13.14 with § = vy (A) +w(1).
Since for N, — oo the achievable ¢ tends to 0, we can find a function ¢ € L such that
e < ¢(N), implying |z, (k, 2)|| < max{S(|z|zc, k), #(N)} < max{B(C,k),p(N)} for C :=
SUPexh | ze

We now consider an arbitrary point of the form z,, (k, x) for x € X? and all k € N and, in
order to simplify notation, we denote it again by z. We abbreviate ™ := f(z, un(x)). For
the corresponding optimal control u};, Corollary 12.3 yields that w},(- + 1) is an optimal
control for initial value + and horizon N — 1. Hence, for each M € {1,..., N} we obtain

Uz, un(z) = Vn(z) = Vnoa(z®) = In(z,uy) — Ivoa(e un(- 4+ 1))
= JM(.%,U?\J — JM_1($+,U?V(' + 1)),

where the last equality follows from the fact that the omitted terms in the sums defining
Iy (z,uyy) and Jy—q(zt, uly (- + 1)) coincide. Using Lemma 13.38 for N, z and M and for
N — 1, 2+ and M — 1, respectively, yields

Vo) = Vo (2T) = Jps(z,ul.) + Vo (z°) + Rs(x, M)

T (4 1) — Vaole) — Re(art, M~ 1)
= Ju(z,ul) — Jy_1(@t ul (- +1)) + Rs(z, M) — Rs(zt, M — 1).
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Putting the two equations together and using Lemma 13.39 yields
Uz, un (7)) = Voo(x) — Vo (2) + Ry (z, M, N). (13.32)
with
R7(z,M,N) = —Rg(z,M,N) + Rg(zt,M —1,N — 1) — Rs(z, M) + Rs(z", M — 1).
From Lemmas 13.38 and 13.39, we obtain the bound
[Re(a, MUN)| < 299 (05(P)) + 200 (00 (P) + 275 (05(P)) + 475, (0 (P))
+4w(N — M)

provided we choose M € {1,..., N} with M & Q(z,u},, P, N)UQ(x, u},, P,00) and M —1 ¢
Ozt ,uy(-+1),P,N —1)UQ(at,ul,(-+1), P,0o). Since each of the four Q sets contains
at most P elements, their union contains at most 4P elements and hence if N > 8P then
there is at least one such M with M < N/2.

Thus, choosing P = | (N — 1)/8] yields the existence of M < N/2 such that
|R7(x, M, N)| < 61(N), (13.33)
where

01(N) = 2yv(os(L(N = 1)/8])) + 2w (0o ([(N = 1)/8]))
+ 277, (o5a([(N = 1)/8])) + 475, _(000,a([(N —1)/8])) + dw([N/2]).
Applying (13.32), (13.33) for x =z, (k,z), k =0,..., K — 1, we can conclude

K-1
J%($7NN) = g(xuw(kvm)aﬂN(xﬂN(kﬂx)))
o
< 3 (Vaol (k) = Vao(a (k + 1)) + 1 (V)
k=0

< Voo (@) = Voo (2 (K, 2)) + K61 (N).
Since Vao(2¢) = A(z¢) = 0 by (12.18), Assumption 13.37 yields
—Voo(@uy (K, 2)) < =Voo(2°) + 5 (max{B(C, K), ¢(N)})
= max{vyy_(B(C,K)),vp_(o(N)} <. (B(C, K)) +vp_(6(N))}
this proves (13.31) with 6,(N) = 7p_(6(N)) and 65(K) = 7p_(8(C, K)). O

Comparing (13.30) and (13.31) with (13.18) and (13.19), respectively, one sees that the
absence of terminal ingredients yields potentially larger error terms. On the other hand,
this way we do not need to design terminal ingredients satisfying Assumption 13.5. One
might be concerned about the factor K in front of d; in (13.30) and (13.31), since this
implies that the error grows linearly in K and thus unboundedly as K — oo. However,
except for the particular case that ¢(x¢, u¢) = 0, the accumulated costs Jg (z,u) also grow
linearly in K, hence the relative error is constant in K.

Finally, we formulate and prove the counterpart of Theorem 13.22 for the case without
terminal ingredients. To this end, recall the definition of UX () from (13.21).
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Theorem 13.41 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy), let X® C X be a bounded set and let Assumptions 13.24 and
13.29 hold. Then there exist 61, 2,3 € £ such that for all z € X N X® the inequality

J(x, py) < IiUr}(f( : Jx(z,u) + K61 (N) + 52(N) + 03(K)
ueUg (z
holds with k = max{5(|z|ze, K),»(N)}. Here § is from Definition 13.32(ii), which is gua-
ranteed to hold by Theorem 13.35, N is at least as large that X* C Ba(z®) for A in
Definition 13.32(ii), and ¢ is the £-function constructed in the proof of Theorem 13.35.

Proof: We may again assume ¢(x¢, u¢) = 0 without loss of generality. Consider a control
u; € UX(z) and let 21 = 2,(K,z). Then by Assumption 13.29 the optimal control u} €
U (z1) satisfies Joo(71,u2) < 7p (k). Then the concatenation of u; and uix, denoted by
u, satisfies

Voo (7) < Joo(,u) < Tk (2,u1) + 75 (K)-

Since u1 was arbitrary in UX (z), it follows that

Voo(z) < ue%jrin(x) Ji (7, u) + 75 (k).

Hence, inequality (13.31) from Theorem 13.40 yields (renaming d1, d2, 3 to b1, 09, 53)

Jit (@, pn) < Vio(2) + K61(N) + 62(N) + 53(K)
< JK(ac,ul) + Kgl(N) + SQ(N) + gg(K) + ’7‘700(,%).

Since we can estimate

Yo, (K) < g, (sup 5(1’Ixe,K)> + 79, (@(N)),

zeXb

we obtain the assertion by defining 8; := 8y, 6y = 0o + Yy (#()) and 03 := o3 +
Vo, (SuPeexo B(|Z]ee, ). U
We note that it follows from Theorem 13.35 that the choice of k ensures that the control
generated by py lies in UX(z). Thus, Theorem 13.41 shows that NMPC yields an ap-
proximately optimal control in UX (z), i.e., the NMPC controller steers x to B,(z¢) in an
approximately optimal way.

Example 13.42 As our final example we slightly modify Example 13.1 by setting ¢(z, u) =
u? 4 1. This allows us to illustrate the results for the typical case that £(z¢, u¢) # 0. Note
that the open- and closed-loop trajectories as well as the strict dissipativity property are
not affected by the addition of a constant to ¢ and that the change thus yields ¢(z¢, u®) =
£(0,0) = 1.

(i) Figure 13.7 illustrates how J§(x, ux) depends on N. As in Fig. 13.4, the value K = 30
is so large that the effect of the term d2(K) is negligible and not visible in the figure, hence
Jé(z, py) converges to inf,cyx (z) JE (2, u) for increasing N.
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Abbildung 13.7: Value of J&(z, uy) for K = 30, x = 1.9 and varying N without terminal
ingredients
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Abbildung 13.8: Value of J&(z, uy) for K = 30, x = 1.9 and varying N without terminal
ingredients for X = [—2, 2] on the left and X = [—3, 3] on the right

(ii) We note that the error estimate depends on the bound on the storage function A which
enters in several of the previous estimates. This dependence is actually visible when compu-
ting J& (x, un) via numerical simulations. In Example 13.1, the bound on \ increases with
increasing X. Figure 13.8 shows that increasing the state constraint set from X = [—2,2] to
X = [-3, 3] indeed considerably increases the error, although the optimal trajectories and
thus the limiting values for J fé(az, un) for N — oo are independent of the choice of X.

(iii) Finally, we observe that the main structural difference between Theorems 13.22 and
13.41 lies in the factor K in the error estimate in Theorem 13.41 without terminal ingre-
dients. This predicts a deterioration of the value J&(x, uy) for fixed N and growing K
in the case without terminal ingredients, which should not appear if terminal ingredients
are used. This effect can again be seen in numerical simulations, see Fig. 13.9. Both values
increase with K (as expected, since ¢(z¢, u®) > 0), but the closed-loop cost without termi-
nal ingredients increases faster, with the gap becoming smaller for increasing N. Fig. 13.9

nicely illustrates that while the absolute difference between the scheme with and without

terminal ingredients increases with K, the relative difference is bounded and proportional
to 01 (V).
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Abbildung 13.9: Value of J¢(x, ux) for varying K, z = 1.9 and N = 5 on the left and
N =10 on the right, both with and without terminal ingredients Xy = {0} and F' =0



Kapitel 14

Analysis of stabilizing MPC
schemes

In this chapter we look at the particular — but practically very relevant — special case in
which the stage cost ¢ penalizes the distance from a desired equilibrium. More precisely,
we consider stage costs satisfying the conditions

Uzs,ux) =0 and fl(xz,u) > as(|x

z.) (14.1)

for all x € X and a K-function as. In normed spaces X and U, the simplest choice for
such a function is
Uz, u) = (| =z + Mlu — u.|

for a control penalization parameter A > 0.

As we have already observed, problems of this kind are always strictly dissipative (with
storage function A = 0). Hence, all results of the previous chapter apply and — under the
stated conditions — we can conclude asymptotic stability for the scheme with terminal
conditions and semiglobal practical asymptotic stability without terminal conditions. In
practice, however, one often observes “real” asymptotic stability also in the case without
terminal conditions. Also, schemes without terminal conditions are often preferred in prac-
tice, because for complex systems the design of terminal conditions satisfying Assumption
13.5 is very difficult if not impossible. Hence, in this chapter we will analyze stabilizing
MPC schemes without terminal conditions.

The basis for the considerations in this chapter is Theorem 12.22. We want to establish
inequality (12.30) for V' = Vi and p = pun.

14.1 Bounds on Vy

The central assumption we will use in order to ensure asymptotic stability and performan-
ce bounds imposes upper bounds on the optimal value functions V. These bounds are
formulated relative to the stage cost £. To this end, we define

0" (x) := inlfjf(as,u). (14.2)

ue
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With this notation, we can formulate our central assumption.

Assumption 14.1 [Bound on Vy| Consider the optimal control problem (OCPy). We
assume that there exist functions Bx € K, K € N such that for each x € X the inequality

Vi (x) < Bg(£*(x)) (14.3)
holds for all K € N. o

We observe that Vi (z) > £(z,u*(0)) > ¢*(x) implies Bg(r) > r.

Assumption 14.1 is satisfied for instance if for each x € X and each IV € N there exists an
admissible control sequence u, € UN(z) satisfying

U, (n, @), ug(n)) < B (), n) (14.4)

for all n € {0,..., N — 1}. We refer to this property as cost controllability. It is easily seen
that it implies Assumption 14.1 with By (r) = Zf;ol (r,k).

An important special case for 8 € KL is
B(r,n) = Co"r (14.5)

for real constants C' > 1 and o € (0,1), i.e., exponential controllability. In this case we

obtain p
1 _
Br(r)=C—2

1—0

It is easily seen that if the state trajectories itself are exponentially controllable to some
equilibrium x, then exponential controllability, i.e., (14.4) with 5 from (14.5), holds if
{ has polynomial growth. In particular, this covers the usual linear-quadratic setting for
stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential controlla-
bility in the sense of (14.4) can be achieved by proper choice of ¢, as the following example
shows.

Example 14.2 Consider the control system

T =z + ua?
with X = [—1,1] and U = [—1, 1]. The system is controllable to x, = 0, which can be seen
by choosing u = —1. This results in the system z+ = 2 — 23 whose solutions approach

x4 = 0 monotonically for g € X.

However, the system it is not exponentially controllable to 0: exponential controllability
would mean that there exist constants C' > 0, o € (0, 1) such that for each x € X there is
uy € U®(z) with

|y, (n,2)| < Co"|x|.

This implies that by choosing n* > 0 so large such that Co™ < 1/2 holds the inequality

|y, (n*, )] < |x|/2 (14.6)
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must hold for each x € X. However, for each > 0 the restriction v € [—1, 1] implies
zt > 2 — 23 = (1 — 2?)x which by induction yields

*

To(n*,z) > (1—2%)" 2

for all u € U*°(x) which contradicts (14.6) for z < 1 —271/7",
On the other hand, since |z| < 1 we obtain (1 — 22)?(222 + 1) = 1 + 22% — 32* < 1 which

implies
1 202 +1 1

——>2%%4+1 = - < - S
(1—22)2 — v 202(1 — 22)?2 — 212 212

Hence, choosing
(e, u) = f(x) = 727,
for u = —1 we obtain
1

1
(o) =l(x —a3) = e 220207 = ¢ 270292 < elem T = e ().

By induction this implies (14.4) with 3 from (14.5) with C =1 and ¢ = e~ 1. o

14.2 Implications of the bounds on Vy

In this section we will use the bound on the V from Assumption 14.1 in order to establish
two lemmas which yield bounds for optimal value functions and functionals along pieces
of optimal trajectories. In the subsequent section, these bounds will then be used for the
calculation of « in (12.30).

In order to be able to calculate « in (12.30), we will need an upper bound for Vv (f(z, pn(2))).
To this end, recall from Step (3) of Algorithm 11.1 that un(zo) is the first element of

the optimal control sequence u*(-) for (OCPy) with initial value z¢. In particular, this

implies f(xo, un(z0)) = x4+ (1,20). Hence, if we want to derive an upper bound for

VN (f(zo, un(x0))) then we can alternatively derive an upper bound for Vi (z.«(1,z0)).

This will be done in the following lemma.

Lemma 14.3 Suppose Assumption 14.1 holds and consider g € X and an optimal control
u* € UN(20) for (OCPy). Then for each j =0,..., N — 2 the inequality

Vi (2 (1, 20)) < Jj(@ur (1, 20)), " (1 4 ) + By— (" (@ur (1 + j, 70)))

holds for By from (14.3).

Proof: We define the control sequence

uw(1+n), ne{0,...,j—1}
), mnef{j...,N—1},
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where u, is an optimal control for initial value x = x,«(1 + j,z9) and N = N — j. By
construction, this control sequence is admissible for x,«(1, o) and we obtain

VN($U*(1,$0)) S J(:ﬁu*(l,xo),ﬂ)
= Jj(zu (1, 20), 0™ (1 + ) + In—j(zu (1 + 7, 20), Uz)
< Jj(zu (L, 20), u*(1 + ) + Bn—j (¢ (2w (1 + J,20)))

where we used Jy_j(y (144, 20), uz) = VN—j(zur (147, 20)) and Assumption 14.1 in the
last step. This is the desired inequality. []

In words, the idea of this proof is as follows. The upper bound for each j € {0,..., N — 2}
is obtained from a specific trajectory. We follow the optimal trajectory for initial value zq
and horizon N for j steps and for the point x reached this way we use the optimal control
sequence for initial value x and horizon N — j for another N — j steps.

In the next lemma we derive upper bounds for the Ji-terms along tails of the optimal
trajectory x,«, which will later be used in order to bound the right hand side of the
inequality from Lemma 14.3. To this end we use that these tails are optimal trajectories
themselves.

Lemma 14.4 Suppose Assumption 14.1 holds and consider gy € X and an optimal control
u* € UV (x¢) for (OCPy). Then for each k= 0,..., N — 1 the inequality

IN k(@ (K, o), w(k + ) < BNk (" (2ur (K, 0)))

holds for Bi from (14.3).

Proof: Corollary 12.3 implies Jy_g(zy+ (k, x0), u*(k + -)) = VN_g (2 (k,x0)). Hence the
assertion follows immediately from Assumption 14.1. [J

14.3 Computation of a and stability results

We will now use the inequalities derived in the previous section in order to compute « for
which (12.30) with V = Viy and pu = py, ie.,

Vn(z) = al(z, pn(x)) + V(f (@, pv (2))) (12.30")

holds for all z € X. When trying to put together these inequalities in order to bound
VN (2 (1,20)) from above, one notices that the functionals in Lemma 14.3 and 14.4 are
not exactly the same. Hence, in order to combine these results into a closed form which is
suitable for computing a we need to look at the single terms of the stage cost £ contained
in these functionals.

To this end, let u* be an optimal control for (OCPy) with initial value g = x. Then from

the definition of Vy and uy it follows that (12.30) is equivalent to

N-1
Uz (kyx),u (k) > al(z,u*(0)) + Vi (zur (1, x)). (14.7)
k=0
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Thus, in order to compute « for which (12.30) holds for all z € X we can equivalently
compute « for which (14.7) holds for all optimal trajectories x,» (-, ) with initial values
z eX.

For this purpose we now consider arbitrary real values Ag,...,Ay_1,~ > 0 and start by
deriving necessary conditions which hold if these values coincide with the cost along an
optimal trajectory £(z,+(k,x),u*(k)) and an optimal value Vy(z,+(1,z)), respectively.

Proposition 14.5 Suppose Assumption 14.1 holds and consider N > 1, values A, > 0,
n=20,...,N —1, and a value v > 0. Consider x € X and assume that there exists an
optimal control sequence u* € UM (x) for (OCPy) such that

e = Uxys (kyx),u*(k)), k=0,...,.N—1

holds. Then
N-1
> A< Byvk(M), k=0,...,N—2 (14.8)
n=k
holds. If, furthermore,
v="Vn(zyu(1,2))
holds then
j—1
v <Y Anyr+ Byoj(Nj1), §=0,...,N—2 (14.9)
n=0
holds. a

Proof: If the stated conditions hold, then A, and v must meet the inequalities given in
Lemmas 14.3 and 14.4, which is exactly (14.9) and (14.8). [

Using this proposition we can give a sufficient condition for (14.7) and thus for (12.30).
The idea behind the following proposition is to express the terms in inequality (14.7) using
the values \g, ..., Any_1 and v introduced above.

Proposition 14.6 Consider N > 1 and Bg € Ko, K = 2,..., N and assume that all
values A, >0, n=0,...,N —1and v > 0 fulfilling (14.8) and (14.9) satisfy the inequality

N-—1
d d—v=ak (14.10)
n=0

for some v € (0,1]. Then for this a and each optimal control problem (OCPy) satisfying
Assumption 14.1 inequality (12.30) holds for py from Algorithm 11.1 and all z € X. a

Proof: Consider a control system satisfying Assumption 14.1 and an optimal control se-
quence u* € UN(x) for initial value € X. Then by Proposition 14.5 the values \; =
Uxy (k,x),u*(k)) and v = Viy(zyx (1, 2)) satisfy (14.8) and (14.9), hence by assumption
also (14.10). Thus, using ¢(x,u*(0)) = ¢(xyx(0,x),u*(0)) = Ao we obtain

N-1

N-1
Vn(zu (1,2) + ol(z,u(0) =v+ady < > M= Lww(k,z),u*(k)).
k=0 k=0
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This proves (14.7) and thus also (12.30%). [J

Proposition 14.6 is the basis for computing « as specified in the following theorem.

Theorem 14.7 [Abstract optimization problem| Consider N > 1 and Bx € Ko, K =

2,...,N and assume that the optimization problem
N-1
0 A —V
= inf 20 An =V
A0se e AN -1,V Ao

(14.11)
subject to the constraints (14.8), (14.9), and

A >0, .. AN,y >0

has an optimal value a € (0, 1]. Then for this o and each optimal control problem (OCPy)
satisfying Assumption 14.1 inequality (12.30") holds for py from Algorithm 11.1 and all
z € X,

In particular, J (z, un) < Viv(z)/a < Vao(x)/a holds and if there are ag, a3 € Ko with
az(|z]z,) < 0*(z) < aa(|z|s, ) then the MPC closed-loop system is asymptotically stable at
Ty on X.

Proof: Consider arbitrary values Ao, ..., An_1,v > 0 satisfying (14.8) and (14.9).
If Ao > 0 then the definition of Problem (14.11) immediately implies (14.10).

If Ao = 0, then inequality (14.8) for k = 0 together with By (0) = 0 implies A1, ..., Ay_1 =
0. Thus, (14.9) for j =1 yields v = 0 and again (14.10) holds.

Hence, (14.10) holds in both cases and Proposition 14.6 yields the assertion.

The additional statements then follow from Theorem 12.22, observing that the inequalities
on /* imply

ar(|zle.) = az(|z]s.) < £(z) < Vi(z) < By (€ (2)) < By(aa(|z]e.)) = a2(|]e.)-

0

The following lemma shows that the optimization problem (14.11) specializes to a linear
program if the functions By (r) are linear in r.

Lemma 14.8 If the functions By (r) from (14.3) in the constraints (14.8), (14.9) are linear
in r, then a from Problem (14.11) coincides with

N—-1
o= min E Ap — UV
A0see s AN -1,V
n=0

(14.12)
subject to the (now linear) constraints (14.8), (14.9), and

)\OZI,Al,...,)\N_l,VZO.

In particular, this holds if (14.4) holds with functions 3(r,t) being linear in 7.
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Proof: Due to the linearity, all sequences Ag,..., A\N_1,7 satisfying the constraints in
(14.11) can be written as 7)‘0l- .y YAN—1, 7V for some Ag, ..., An_1, v satisfying the cons-
traints in (14.12), where v = X¢. Since

Zg;()l j\n -V _ 27]:[;01 ’Y)‘n - _ 27];[;01 A” v _ NZ_:I b\
— = == — n — VU,

the values o in Problems (14.11) and (14.12) coincide. [

The next result gives an explicit bound for Problem (14.12) and thus also (14.11) if the
functions Bk are linear.

Proposition 14.9 If the functions Bg(r) from (14.3) in the constraints (14.8), (14.9) are
linear in 7, then the solution of Problems (14.11) and (14.12) satisfies the inequality

o> ay (14.13)
for
p Y — 1
ay=1-(-Dw-1]] ( . ) with v, = Bi(r)/r. (14.14)
k=2
(]

Proof: We prove the theorem by showing the inequality

N-1
o< o =D T (20 ) g (14.15)

k=2 \ Tk

for all feasible Ay, ..., Ay—1. From this (14.13) follows since (14.9) with j = N — 2 implies

N—
Z n+Y2AN-1

and thus (14.15), 72 > 1 and )\ = 1 yield

-« gy Ve —1
Z)\n—VZ)\o-i-(l—’yz))\N—l >X—(r2—1)0ON~—-1) H < o >>\0:dN
n=0 k=2

for all feasible A1,..., Ay—1 and v, which yields a > ay.

In order to prove (14.15), we start by observing that (14.8) with j = p implies

Z M < (Wvep — DAy (14.16)
k=p+1
forp=0,..., N — 2. From this we can conclude

N-1 N—1
e 3z T S e S,
k=p+1 k=p+1 TN-p k=p+1



180 KAPITEL 14. ANALYSIS OF STABILIZING MPC SCHEMES

Using this inequality inductively for p =1,..., N — 2 yields

which implies (14.15). [

A much more complicated proof (see [5, Proposition 6.18]) shows that the optimal ay is
given by

(v —1) IJ_V[ (v —1)

ayi=1-— k;Q with v, = By(r)/r, (14.17)
[Tw—IT0w-1
k=2 k=2

A comparison of the two formulas (14.17) and (14.13) can be found in Remark 14.10, below.

Remark 14.10 Let us compare the two different bounds on « given by ay from (14.13)
and ay from (14.17). In order to illustrate that the criterion &y > 0 is more conservative
than the criterion ay > 0, we consider the case where v, = ~ for all &, i.e., the ~; are
independent of k, and compute the minimal N for which &y > 0 and ay > 0, respectively,
hold. For 7 = v the expressions simplify to

- (v =D~

(y—1V
AN = 1—
AN-2

RIS

and ay=1-

Thus, an optimization horizon N for which &y > 0 must satisfy

In~
N>2+2
ZeT Iny —1In(y—1)
while the same condition for ay > 0 is given by
In(y —1)
N >2 .
- +ln'y—ln(’y—1)

This means that the estimate for the minimal stabilizing horizon based on &y is about
twice as large as the estimate based on a.

In this context, it is interesting to look at the asymptotic behavior of the bounds on N for
~ — o0o. For large v the denominator is approximately 1/+. This implies that asymptotically
for v — oo the first estimate for IV behaves like 2 Iny while the second behaves like v In .

O
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Example 14.11 We reconsider Example 14.2, i.e.,
1
T =z +ur® with f(z,u) =e 27,

As shown in Example 14.2, inequality (14.4) holds with §(r, k) = Co*r with C = 1 and
o = e~ . The bounds in Assumption 14.1 resulting from this 3 are
1—oK 11— e K

B = =
K(r) 01_07" e 1"

thus Theorem 14.7 is applicable and we obtain a > ay with ay from Formula (14.17).
The 7y, in Formula (14.17) are given by

1= ek
T T
A straightforward computation reveals that for these values Formula (14.17) simplifies to

N

(=1 TT(w—1)
1— h=2 —1—eV,
N N
IT%—II0w—1)
f—2 =2

Hence, for N = 2 we obtain a« = 1 —e ™2 ~ 0.865 and for N = 3 we get @ > 1— e 3 2~ 0.95.
Hence, Theorem thm:optprobl ensures asymptotic stability for all N > 2 and — since
1/0.95 ~ 1.053 — for N = 3 the performance of the MPC controller is at most about 5.3%
worse than the infinite horizon controller. a

While in this simple example the computation of a via Formula (14.17) is possible, in many
practical examples this will not be the case. However, Formula (14.17) can still be used to
obtain valuable information for the design of MPC schemes. This aspect will be discussed
at the end of this section.

Although the main benefit of the approach developed in this chapter compared to other
approaches is that we can get rather precise quantitative estimates, it is nevertheless good
to know that our approach also guarantees asymptotic stability for sufficiently large opti-
mization horizons N under suitable assumptions. This is the statement of our final stability
result.

Theorem 14.12 [Stability for sufficiently large N] Consider the MPC Algorithm 11.1
with optimization horizon N € N and stage cost ¢ satisfying as(|x|z,) < 0*(z) < as(|z|s,)
for suitable ag, as € Ko Suppose that Assumption 14.1 holds for linear Bg € K of the
form Bg(r) = yxr with Yoo 1= Supgen e < 0.

Then the MPC closed loop system (11.2) with MPC-feedback law px is asymptotically
stable at x, on X provided N is sufficiently large.

Furthermore, for each C > 1 there exists N¢ > 0 such that
Js(@, i) < CVi (@) < CVio(2)
holds for each = € X and each N > N¢.
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Proof: The assertion follows immediately from Theorem 14.7 if we show that ay — 1
holds in (14.13) as N — oo. Since all factors in (14.13) are monotone increasing in ~y; and
the product has a negative sign, we obtain

i 2 1 (0~ 12

Since (Yoo — 1)/700 < 1 we obtain that
N-2
(’yoo - 1) =0
Yoo

Theorem 14.12 justifies what is often done in practice: we set up an MPC scheme using a
reasonable stage cost £ and increase N until the closed loop system becomes stable.

as N — oo and thus ay — 1. U

Of course, Theorem 14.12 immediately leads to the question how large the optimization ho-
rizon N needs to be for achieving stability or a certain performance. As the computational
cost grows with the length of a horizon, this is also important for the practical implemen-
tability of the MPC scheme. We investigate this question for the case that the asymptotic
controllability inequality (14.4) holds with the exponential functions 3(r,n) = Co™Nr from
(14.5). To this end, we look at the minimal horizon N for which ayy is larger than a certain
threshold depending on the parameters C' and o. This dependence is illustrated in Figure
14.3 for thresholds 0 and 0.5.

8 7 8
7 7
6 6
N=16 a<0 o<0.5
5 5
c c N=16
4 4
N=8
3 3 N=8
4 N=4 4
2 2 Ned
N=2 N=2
1 . . . : , 1 . . : : )
0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0
(e} (e}

Abbildung 14.1: Suboptimality regions for different optimization horizons N depending on
C and o in (14.5) for an > 0 (left) and any > 0.5 (right)

As we see, the two parameters C and o play a very different role. While for fixed o > 0 it
is always possible to reduce the necessary horizon to N = 2, i.e., to the shortest possible
horizon, by making C' smaller, this is not possible for fixed C' by reducing o. Hence, the
constant C plays a more important role for obtaining stability and performance with small
optimization horizon N. Particularly, any tuning of the stage cost £ which leads to a
reduction of C' is likely also to reduce the necessary optimization horizon.
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