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Vorwort

Dieses Skript ist im Rahmen einer gleichnamigen Vorlesung entstanden, die ich im Win-
tersemester 2025/2026 an der Universität Bayreuth gehalten habe. Kapitel 1–7 behandeln
dabei Themen aus der linearen Kontrolltheorie, während Kapitel 8–14 eine Einführung
in die Modellprädiktive Regelung für nichtlineare Systeme geben. Gegenüber der vorheri-
gen Auflage aus dem Sommersemester 2023 wurden einige Korrekturen und Ergänzungen
gemacht. Insbesondere wird der Begriff der striktien Dissipativität nun stärker betont.
Kapitel 14 wurde etwas gekürzt, weil es sich als zu lang für die Vorlesung herausgestellt
hat.

Teile des ersten Teils des Skriptes wurden auf Basis des Skripts [2], der Lehrbücher [15]
und [11] sowie der Monographie [8] erstellt, die auch ohne explizite Erwähnung intensiv ge-
nutzt wurden. Die Kapitel über die Modellprädiktive Regelung sind überarbeitete Auszüge
aus der demnächst erscheinenden dritten Auflage der Monographie [5]. Herzlich bedanken
möchte ich mich bei Jonas Koziorek und Leander Boll sowie bei allen anderen aufmerksa-
men Studentinnen und Studenten, die mich auf Fehler und Ungenauigkeiten hingewiesen
haben.

Die jeweils aktuelle Version dieses Skripts erhalten Sie im Internet über meine Homepage
(Google: Lars Grüne).

Bayreuth, Februar 2026 Lars Grüne
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Kapitel 1

Grundbegriffe

Kontrollsysteme sind dynamische Systeme in kontinuierlicher oder diskreter Zeit, die von
einem Parameter u ∈ Rm abhängen, der sich — abhängig von der Zeit und/oder vom
Zustand des Systems — verändern kann. Dieser Parameter kann verschieden interpretiert
werden. Er kann entweder als Steuergröße verstanden werden, also als Größe, die von
außen aktiv beeinflusst werden kann (z.B. die Beschleunigung bei einem Fahrzeug, die In-
vestitionen in einem Unternehmen) oder auch als Störung, die auf das System wirkt (z.B.
Straßenunebenheiten bei einem Auto, Kursschwankungen bei Wechselkursen). Für das ma-
thematische Fachgebiet, das sich mit der Analyse dieser Systeme beschäftigt, hat sich im
deutschen Sprachgebrauch der Begriff

”
Kontrolltheorie“ etabliert, wenngleich er eine etwas

missverständliche Übersetzung des englischen Ausdrucks
”
control theory“ darstellt, da es

hier nicht um Kontrolle im Sinne von Überwachung sondern im Sinne von Einflussnahme
von außen geht. Statt von Kontrolle spricht man auch von Steuerung, wenn die Parameter
u lediglich von der Zeit abhängen und von Regelung, wenn die Parameter u vom aktuellen
Zustand abhängen. Neben Mathematischer Kontrolltheorie ist auch der Ausdruck Mathe-
matische Systemtheorie gebräuchlich.

1.1 Lineare Kontrollsysteme

Wir werden uns in dieser Vorlesung mit Kontrollsystemen beschäftigen, die in kontinu-
ierlicher oder in diskreter Zeit definiert sind. In kontinuierlicher Zeit sind Kontrollsysteme
durch gewöhnliche oder partielle Differentialgleichungen beschrieben. Wir beschränken uns
in dieser Vorlesung in den meisten Fällen auf gewöhnliche Differentialgeichungen. Dann ist
das Kontrollsystem durch die Gleichung

ẋ(t) = f(t, x(t), u(t)) (1.1)

beschrieben. Die Variable t ∈ R werden wir hierbei stets als Zeit interpretieren und die
Notation ẋ(t) steht kurz für die zeitliche Ableitung d/dt x(t). Die Größe x(t) ∈ Rn heißt
der Zustand und u(t) ∈ Rm heißt der Kontrollwert oder die Eingangsgröße, jeweils zur Zeit
t. Die Abbildung f : R × Rn × Rm → Rn heißt Vektorfeld. Sowohl f als auch die Funk-
tion u : R → Rm müssen gewisse Regularitätseigenschaften erfüllen, damit die Lösungen
von (1.1) existieren und eindeutig sind. Wir wollen uns mit diesem allgemeinen Problem

1



2 KAPITEL 1. GRUNDBEGRIFFE

aber zunächst nicht weiter beschäftigen, da wir uns im ersten Teil der Vorlesung nur mit
Spezialfall von Kontrollsystemen befassen werden.

In diskreter Zeit ist das allgemeine Modell gegeben durch die Abbildung

x(k + 1) = f(k, x(k), u(k)). (1.2)

Hierbei ist k ∈ N ein abstrakter Zeitindex und f : N × Rn × U → Rn die Übergangsab-
bildung. Der abstrakte Zeitindex k steht dabei üblicherweise für eine reale Zeit tk ∈ R,
oft von der Form tn = nT für ein festes T > 0. Ein zeitdiskretes Kontrollsystem kann
das Verhalten eines kontinuierlichen Modells zu den diskreten Zeitpunkten tk wiedergeben
— dieses Vorgehen nennt man Abtastung oder Sampling und das entstehende zeitdiskre-
te System heißt Abtastsystem1. In diesem Fall gibt es unterschiedliche Möglichkeiten zur
Wahl von U . Z.B. könnte u(k) ein konstanter Kontrollwert aus dem Rm sein, der im Inter-
vall [tk, tk+1) verwendet wird. In diesem Fall wäre U = Rm. Die Größe u(k) könnte aber
auch eine zeitveränderliche Kontrollfunktion sein, die im kontinuierlichen System auf dem
Intervall [tk, tk+1) verwendet wird. In diesem Fall wäre U eine Menge von Funktionen.

Fast alle Ergebnisse in dieser Vorlesung gelten sowohl für zeitkontinuierliche als auch für
zeitdiskrete Kontrollsysteme, allerdings werden wir meistens nur einen der beiden Fälle
beweisen. Im ersten Teil der Vorlesung werden wir die Beweise i.d.R. für zeitkontinuierliche
Systeme angeben und im zweiten Teil i.d.R. für zeitdiskrete Systeme.

Im ersten Teil der Vorlesung werden wir uns mit den folgenden speziellen Kontrollsystemen
befassen.

Definition 1.1 Ein lineares zeitinvariantes Kontrollsystem ist in kontinuierlicher Zeit ge-
geben durch die Differentialgleichung

ẋ(t) = Ax(t) +Bu(t) (1.3)

mit A ∈ Rn×n und B ∈ Rn×m. In diskreter Zeit ist es gegeben durch die Gleichung

x(k + 1) = Ax(k) +Bu(k) (1.4)

mit A ∈ Rn×n und einer linearen Abbildung B : U → Rn.

Diese Klasse von Kontrollsystemen ist besonders einfach, da die rechte Seite linear in
x und u ist und zudem nicht explizit von der Zeit t abhängt. Trotzdem ist sie bereits
so reichhaltig, dass man mit ihr eine große Anzahl realer Prozesse z.B. für technische
Anwendungen brauchbar beschreiben kann. Tatsächlich werden in der technischen Praxis
auch heute noch viele lineare Modelle eingesetzt, wenn auch nicht immer in der einfachen
Form (1.3) (wir werden später in der Vorlesung noch eine wichtige Erweiterung kennen
lernen).

Um zu veranschaulichen, warum die Klasse (1.3) oft eine brauchbare Modellierung ermög-
licht, betrachten wir ein Modell aus der Mechanik, und zwar ein auf einem Wagen befe-
stigtes umgedrehtes starres Pendel, vgl. Abb. 1.1.

1Eine formale Definition des Abtastsystems findet sich in Abschnitt 8.2.
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Abbildung 1.1: Schematische Darstellung des Pendels auf einem Wagen

Die Kontrolle u ist hierbei die Beschleunigung des Wagens. Mittels physikalischer Gesetze
kann ein “exaktes”2 Differentialgleichungsmodell hergeleitet werden.

ẋ1(t) = x2(t)

ẋ2(t) = −kx2(t) + g sinx1(t) + u(t) cosx1(t)

ẋ3(t) = x4(t)

ẋ4(t) = u

 =: f(x(t), u(t)) (1.5)

Hierbei besteht der Zustandsvektor x ∈ R4 aus 4 Komponenten: x1 entspricht dem Winkel
φ des Pendels (vgl. Abb. 1.1), der entgegen dem Uhrzeigersinn zunimmt, wobei x1 = 0
dem aufgerichteten Pendel entspricht. x2 ist die Winkelgeschwindigkeit, x3 die Position
des Wagens und x4 dessen Geschwindigkeit. Die Konstante k beschreibt die Reibung des
Pendels (je größer k desto mehr Reibung) und die Konstante g ≈ 9.81m/s2 ist die Erdbe-
schleunigung.

Sicherlich ist (1.5) von der Form (1.1). Es ist aber nicht von der Form (1.3), da sich die
nichtlinearen Funktionen sin und cos nicht mittels der Matrizen A und B darstellen lassen
(beachte, dass in A und B nur konstante Koeffizienten stehen dürfen, die Matrizen dürfen
also nicht von x abhängen).

Trotzdem kann ein lineares Modell der Form (1.3) verwendet werden, um (1.5) in der
Nähe gewisser Punkte zu approximieren. Diese Prozedur, die man Linearisierung nennt,
ist möglich in der Nähe von Punkten (x∗, u∗) ∈ Rn × Rm, in denen f(x∗, u∗) = 0 gilt. In
solchen Punkten erhalten wir ein System der Form (1.3), indem wir A und B definieren als

A :=
∂f

∂x
(x∗, u∗) und B :=

∂f

∂u
(x∗, u∗).

Wenn f stetig differenzierbar ist gilt

f(x+ x∗, u+ u∗) = Ax+Bu+ o(‖x‖+ ‖u‖),
2Das Modell (1.5) ist nicht ganz exakt, da es bereits etwas vereinfacht ist: es wurde angenommen, dass

das Pendel so leicht ist, dass es keinen Einfluss auf die Bewegung des Wagens hat. Zudem wurde eine Reihe
von Konstanten so gewählt, dass sie sich gegeneinander aufheben.
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d.h., für x ≈ 0 und u ≈ 0 stimmen f(x+ x∗, u+ u∗) und Ax+Bu gut überein. Man kann
nun beweisen, dass sich diese Näherung auf die Lösungen der Differentialgleichungen (1.1)
und (1.3) überträgt.3

Für unser Beispiel wenden wir die Linearisierung in (x∗, u∗) = (0, 0) an. Dieses Gleichge-
wicht entspricht dem aufgerichteten oder invertierten Pendel. Aus der obigen Rechnung
ergibt sich ein System der Form (1.3) mit

A =


0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

 und B =


0
1
0
1

 (1.6)

−0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

Abbildung 1.2: Vergleich der Lösungen von (1.5) (durchgezogen) mit (1.3, 1.6) (gestrichelt)

Abbildung 1.1 zeigt einen Vergleich der Lösungen von (1.5) (durchgezogen) mit den Lösun-
gen von (1.3, 1.6) (gestrichelt), jeweils für u ≡ 0 und mit k = 0.1, g = 9.81, in zwei
verschiedenen Umgebungen um die 0. Dargestellt sind hier für jede der zwei Gleichungen
jeweils 4 Lösungskurven der Form{(

x1(t)
x2(t)

) ∣∣∣∣ t ∈ [−10, 10]

}
⊂ R2.

Während in der kleinen Umgebung im linken Bildausschnitt mit bloßem Auge kein Un-
terschied zu erkennen ist, weichen die Lösungen in der größeren Umgebung im rechten
Ausschnitt deutlich voneinander ab.

1.2 Existenz und Eindeutigkeit

Wann immer man sich mit Differentialgleichungen beschäftigt, muss man zunächst die
Existenz und die Eindeutigkeit der Lösungen klären. Wir wollen dies zunächst für das
lineare Kontrollsystem (1.3) mit u ≡ 0 machen.

3Eine mathematisch exakte Formulierung dieser Eigenschaft für unkontrollierte Differentialgleichungen
findet sich z.B. als Satz 4.5 in [4].
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Hierzu benötigen wir zunächst etwas Notation.

Für eine Matrix A ∈ Rn×n bezeichnen wir im Folgenden mit [A]ij ∈ R den Eintrag in
der i-ten Zeile und j-ten Spalte. Für A ∈ Rn×n und t ∈ R bezeichnen wir mit At die
komponentenweise Multiplikation, also [At]i,j = [A]ijt. Für k ∈ N0 ist die Matrix-Potenz
Ak induktiv mittels A0 = Id und Ak+1 = AAk definiert.

Zudem benötigen wir die folgende Definition.

Definition 1.2 Für eine Matrix A ∈ Rn×n und eine reelle Zahl t ∈ R ist die Matrix-
Exponentialfunktion gegeben durch

eAt :=

∞∑
k=0

Ak
tk

k!
.

Die Konvergenz der unendlichen Reihe in dieser Definition ist dabei als komponentenweise
Konvergenz, also als

[eAt]ij =

∞∑
k=0

[Ak
tk

k!
]ij , n ∈ N0

zu verstehen. Dass die Komponenten dieser Reihe tatsächlich konvergieren, und zwar sogar
absolut (also im Betrag), folgt aus dem Majorantenkriterium, denn mit der Zeilensummen-
norm

α = ‖A‖∞ = max
i=1,...,n

n∑
j=1

|[A]ij |

gilt |[Ak]ij | ≤ ‖Ak‖∞ ≤ ‖A‖k∞ = αk, also∣∣∣∣[Ak tkk!
]ij

∣∣∣∣ = |[Ak]ij |
∣∣∣∣ tkk!

∣∣∣∣ ≤ αk ∣∣∣∣ tkk!

∣∣∣∣ =
(α|t|)k
k!

und damit

|[eAt]ij | ≤ eα|t|,

wobei hier auf die rechten Seite die (übliche) skalare Exponentialfunktion steht.

Beachte, dass im Allgemeinen

[eAt]ij 6= e[At]ij

gilt, wobei e[At]ij die (komponentenweise angewandte) skalare Exponentialfunktion ist.

Aus der Definition der Matrix-Exponentialfunktion folgen sofort die Eigenschaften

(i) eA0 = Id und (ii) AeAt = eAtA (1.7)

Das folgende Lemma liefert eine weitere wichtige Eigenschaft der Matrix-Exponential-
funktion.
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Lemma 1.3 Für beliebiges A ∈ Rn×n ist die Funktion t 7→ eAt differenzierbar und es gilt

d

dt
eAt = AeAt

für jedes t ∈ R.

Beweis: Übungsaufgabe.

Satz 1.4 Betrachte die lineare Differentialgleichung

ẋ(t) = Ax(t) (1.8)

mit x : R→ Rn und einer gegebenen Matrix A ∈ Rn×n.

Dann gilt: Für jede Anfangsbedingung der Form

x(t0) = x0 (1.9)

mit t0 ∈ R und x0 ∈ Rn existiert genau eine Lösung x : R→ Rn von (1.8), die (1.9) erfüllt
und die wir mit x(t; t0, x0) bezeichnen. Für diese Lösung gilt

x(t; t0, x0) = eA(t−t0)x0. (1.10)

Beweis: Wir zeigen zunächst, dass die in (1.10) angegebene Funktion x(t) = eA(t−t0)x0

sowohl die Differentialgleichung (1.8) als auch die Anfangsbedingung (1.9) erfüllt. Aus
Lemma 1.3 folgt

d

dt
x(t) =

d

dt
eA(t−t0)x0 = AeA(t−t0)x0 = Ax(t),

also (1.8). Wegen (1.7)(i) gilt zudem

x(t0) = eA(t0−t0)x0 = eA0x0 = Idx0 = x0,

also (1.9).

Da wir damit (1.10) als Lösung verifiziert haben, folgt insbesondere die Existenz.

Es bleibt die Eindeutigkeit zu zeigen. Hierzu zeigen wir zunächst, dass die Matrix eAt

invertierbar ist mit

(eAt)−1 = e−At. (1.11)

Für jedes y0 ∈ Rn löst y(t) = e−Aty0 die Differentialgleichung ẏ(t) = −Ay(t). Nach Pro-
duktregel gilt dann

d

dt
(e−AteAtx0) =

d

dt
e−At(eAtx0) + e−At

d

dt
eAtx0 = −Ae−AteAtx0 + e−AtAeAtx0 = 0,

wobei wir im letzten Schritt (1.7)(ii) ausgenutzt haben. Also ist e−AteAtx0 konstant in t.
Damit gilt für alle t ∈ R und alle x0 ∈ Rn

e−AteAtx0 = e−A0eA0x0 = Id Idx0 = x0,
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und folglich

e−AteAt = Id ⇒ e−At = (eAt)−1.

Mit (1.11) können wir nun die Eindeutigkeit zeigen. Es sei x(t) eine beliebige Lösung von
(1.8), (1.9). Dann gilt

d

dt
(e−A(t−t0)x(t)) =

d

dt
e−A(t−t0)(x(t)) + e−A(t−t0)ẋ(t)

= −Ae−A(t−t0)x(t) + e−A(t−t0)Ax(t) = 0,

wobei wir wiederum (1.7)(ii) ausgenutzt haben. Also ist e−A(t−t0)x(t) konstant in t, woraus
für alle t ∈ R

e−A(t−t0)x(t) = e−A(t0−t0)x(t0) = Idx(t0) = x0

folgt. Multiplizieren wir nun beide Seiten dieser Gleichung mit eA(t−t0) und verwenden
(1.11), so ergibt sich

x(t) = eA(t−t0)x0.

Da x(t) eine beliebige Lösung war, folgt daraus die Eindeutigkeit.

Eine nützliche Folgerung aus diesem Satz ist das folgende Korollar.

Korollar 1.5 Die Matrix-Exponentialfunktion eAt ist die eindeutige Lösung der Matrix-
Differentialgleichung

Ẋ(t) = AX(t) (1.12)

mit X : R→ Rn×n und Anfangsbedingung

X(0) = Id. (1.13)

Beweis: Es bezeichne ej den j-ten Einheitsvektor im Rn. Eine einfache Rechnung zeigt,
dass eine matrixwertige Funktion X(t) genau dann eine Lösung von (1.12), (1.13) ist, wenn
X(t)ej eine Lösung von (1.8), (1.9) mit t0 = 0 und x0 = ej ist. Mit dieser Beobachtung
folgt die Behauptung sofort aus Satz 1.4.

Das folgende Lemma fasst weitere Eigenschaften der Matrix-Exponentialfunktion zusam-
men.

Lemma 1.6 Für A,A1, A2 ∈ Rn×n und s, t ∈ R gilt:

(i) (eAt)−1 = e−At

(ii) eAteAs = eA(t+s)

(iii) eA1teA2t = e(A1+A2)t falls A1A2 = A2A1

(iv) Für eine invertierbare Matrix T ∈ Rn×n gilt

eT
−1ATt = T−1eAtT.
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Beweis: (i) Wurde im Beweis von Satz 1.4 gezeigt.

(ii) Mit Hilfe von (i) ergibt sich, dass sowohl eAteAse−As als auch eA(t+s)e−As das Matrix-
Anfangswertproblem (1.12), (1.13) erfüllen. Da dessen Lösung nach Korollar 1.5 eindeutig
ist und e−As invertierbar ist, folgt die behauptete Gleichheit.

(iii) Unter der angegebenen Bedingung A1A2 = A2A1 rechnet man nach, dass beide Aus-
drücke das Matrix-Anfangswertproblem (1.12), (1.13) mit A = A1 + A2 erfüllen. Also
müssen die Ausdrücke wegen der Eindeutigkeit nach Korollar 1.5 übereinstimmen.

(iv) Man rechnet nach, dass beide Ausdrücke das Matrix-Anfangswertproblem (1.12), (1.13)
mit T−1AT an Stelle von A erfüllen. Wiederum folgt daraus die Gleichheit wegen der
Eindeutigkeit der Lösungen nach Korollar 1.5.

Nach diesen Vorbereitungen kehren wir nun zum linearen Kontrollsystem (1.3) zurück. Zur
Formulierung eines Existenz- und Eindeutigkeitssatzes müssen wir einen geeigneten Funk-
tionenraum U für die Kontrollfunktion u(·) definieren. Sicherlich wären stetige Funktionen
geeignet, diese Wahl ist aber zu einschränkend, da wir im Verlauf dieser Vorlesung öfter
einmal Kokatenationen von Kontrollfunktionen gemäß der folgenden Definition benötigen
werden.

Definition 1.7 Für zwei Funktionen u1, u2 : R → Rm und s ∈ R definieren wir die
Konkatenation zur Zeit s als

u1&su2(t) :=

{
u1(t), t < s
u2(t), t ≥ s

Selbst wenn u1 und u2 stetig sind, wird u1&su2 im Allgemeinen nicht stetig sein. Wir
benötigen also einen Funktionenraum, der abgeschlossen bezüglich der Konkatenation ist.
Hier gibt es verschiedene Möglichkeiten, die einfachste ist die folgende.

Definition 1.8 Eine Funktion u : R→ Rm heißt stückweise stetig, falls für jedes kompakte
Intervall [t1, t2] eine endliche Folge von Zeiten t1 = τ1 < τ2 < . . . < τk = t2 existiert, so
dass u|(τi,τi+1) beschränkt und stetig ist für alle i = 1, . . . , k − 1. Wir definieren U als den
Raum der stückweise stetigen Funktionen von R nach Rm.

Sicherlich ist U abgeschlossen unter Konkatenation, aber auch unter Addition und Multi-
plikation (wobei wir (u1 +u2)(t) := u1(t)+u2(t) und (u1 ·u2)(t) := u1(t) ·u2(t) definieren).
Zudem — und dies ist für unsere Zwecke wichtig — existiert das Riemann-Integral∫ t2

t1

u(t)dt

über Funktionen u ∈ U , da es in jedem kompakten Integrationsintervall nur endlich viele
Unstetigkeitsstellen gibt.4

Mit diesem Funktionenraum können wir nun das entsprechende Resultat formulieren.

4Eine Alternative zu den stückweise stetigen Funktionen bietet der Raum der Lebesgue-messbaren Funk-
tionen, wobei das Integral dann als das Lebesgue-Integral gewählt wird. Diesen Raum werden wir bei den
nichtlinearen Systemen verwenden, vgl. Kapitel 8. Für lineare Kontrollsysteme bringt die Verwendung
Lebesgue-messbarer Kontrollfunktionen keinen Vorteil.
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Satz 1.9 Betrachte das lineare Kontrollsystem (1.3)

ẋ(t) = Ax(t) +Bu(t)

mit x : R→ Rn und gegebenen Matrizen A ∈ Rn×n, B ∈ Rn×m.

Dann gilt: Für jede Anfangsbedingung der Form (1.9)

x(t0) = x0

mit t0 ∈ R, x0 ∈ Rn und jede stückweise stetige Kontrollfunktion u ∈ U existiert genau
eine stetige Funktion x : R→ Rn, die (1.9) erfüllt und deren Ableitung für jedes t, in dem
u stetig ist, existiert und (1.3) erfüllt. Diese eindeutige Funktion nennen wir die Lösung
von (1.3), (1.9) und bezeichnen sie mit x(t; t0, x0, u). Für diese Lösung gilt

x(t; t0, x0, u) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds. (1.14)

Beweis: Wir rechnen zunächst nach, dass (1.14) tatsächlich eine Lösung im angegeben
Sinne ist. Die Abbildung t 7→

∫ t
t0
g(s)ds ist stetig für jede Riemann-integrierbare Funktion,

also ist x(t; t0, x0, u) stetig in t. In den Stetigkeitsetellen von u gilt

d

dt

[
eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds

]
=

d

dt
eA(t−t0)x0 +

d

dt

∫ t

t0

eA(t−s)Bu(s)ds

= AeA(t−t0)x0 + eA(t−s)Bu(s)|s=t︸ ︷︷ ︸
=Bu(t)

+

∫ t

t0

AeA(t−s)Bu(s)ds

= A

(
eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds

)
+Bu(t),

also (1.3). Zudem gilt

eA(t0−t0)︸ ︷︷ ︸
=Id

x0 +

∫ t0

t0

eA(t0−s)Bu(s)ds︸ ︷︷ ︸
=0

= x0,

also (1.9).

Es bleibt die Eindeutigkeit zu zeigen. Dazu betrachten wir zwei beliebige Lösungen x(t),
y(t) von (1.3), (1.9) im Sinne des Satzes. Dann gilt zunächst

ż(t) = ẋ(t)− ẏ(t) = Ax(t) +Bu(t)−Ay(t)−Bu(t) = A(x(t)− y(t)) = Az(t)

für alle Punkte in denen u stetig ist. Da z selbst stetig ist, kann ż in den Unstetigkeitsstellen
τi von u durch ż(τi) = limt→τi Az(t) wohldefiniert stetig fortgesetzt werden. Wir erhalten
damit eine Funktion, die die Differentialgleichung ż(t) = Az(t) für alle t ∈ R löst. Da
zudem

z(t0) = x(t0)− y(t0) = x0 − x0 = 0
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gilt, erfüllt z ein Anfangswertproblem der Form (1.8), (1.9), dessen nach Satz 1.4 eindeutige
Lösung durch z(t) = eAt0 = 0 gegeben ist. Also ist x(t) = y(t) für alle t ∈ R, womit die
Eindeutigkeit folgt.

Eine Folgerung aus diesem Satz ist das folgende Korollar.

Korollar 1.10 Für die Lösungen von (1.3), (1.9) gelten für alle t, s ∈ R die Gleichungen

x(t; t0, x0, u) = x(t; s, x(s; t0, x0, u), u)

und
x(t; t0, x0, u) = x(t− s; t0 − s, x0, u(s+ ·)),

wobei die Funktion u(s + ·) ∈ U mittels u(s + ·)(t) = u(s + t) definiert ist. Aus der
Kombination der beiden Formeln folgt für t0 = 0 dann auch

x(t;x0, u) = x(t− s;x(s;x0, u), u(s+ ·)).

Beweis: Folgt sofort aus der Darstellung (1.14).

Bemerkung 1.11 Eine weitere unmittelbare Folgerung aus der Lösungsformel (1.14) ist
die Identität

x(t; t0, x0, u) = x(t; t0, x0, 0) + x(t; t0, 0, u). (1.15)

Diese Identität besagt, dass jede Lösung als Überlagerung (oder Superposition) einer un-
kontrollierten Lösung (also mit Kontrolle 0) und einer Lösung ohne Eigendynamik (also
mit Anfangswert 0) zusammengesetzt ist. Sie ist daher als Superpositionsprinzip bekannt.

Bemerkung 1.12 Da wir uns in den folgenden Kapiteln in vielen Fällen auf die Betrach-
tung von Lösungen mit der speziellen Anfangszeit t0 = 0 beschränken, schreiben wir für
t0 = 0 oft kurz x(t;x0, u) = x(t; 0, x0, u).

Bemerkung 1.13 Wenn man die Zeiten tn = nT betrachtet und ein kontinuierliches
Kontrollsystem mit Kontrollfunktionen, die auf den Intervallen [tk, tk+1) konstant gleich
uT (k) sind, so kann man aus der Lösungsformel (1.14) explizite Formeln für die Matrizen
AT und BT in dem zugehörigen Abtastsystem

xT (k + 1) = ATxT (k) +BTuT (k)

herleiten. Details werden in einer Übungsaufgabe ausgearbeitet.



Kapitel 2

Kontrollierbarkeit

2.1 Definitionen

Ein wichtiger Aspekt in der Analyse lineare Kontrollsysteme der Form (1.3) ist die Frage
der Kontrollierbarkeit. In der allgemeinsten Formulierung ist dies die Frage, für welche
Punkte x0, x1 ∈ Rn und Zeiten t1 eine Kontrollfunktion u ∈ U gefunden werden kann,
so dass x(t1;x0, u) = x1 gilt, d.h., so dass die zwei Punkte durch eine Lösungstrajektorie
verbunden werden. Formal definieren wir dies wie folgt.

Definition 2.1 Betrachte ein lineares Kontrollsystem (1.3).

Ein Zustand x0 ∈ Rn heißt kontrollierbar (oder auch steuerbar) zu einem Zustand x1 ∈ Rn
zur Zeit t1 > 0, falls ein u ∈ U existiert mit

x1 = x(t1;x0, u).

Der Punkt x1 heißt dann erreichbar von x0 zur Zeit t1.

Das folgende Lemma zeigt, dass man den Fall beliebiger x0 ∈ Rn auf x0 = 0 zurückführen
kann.

Lemma 2.2 Ein Zustand x0 ∈ Rn ist genau dann kontrollierbar zu einem Zustand x1 ∈ Rn
zur Zeit t1 > 0, falls der Zustand x̃0 = 0 kontrollierbar zu dem Zustand x̃1 = x1−x(t1;x0, 0)
zur Zeit t1 ist.

Beweis: Übungsaufgabe.

Diese Tatsache motiviert, im Weiteren die Kontrollierbarkeit bzw. Erreichbarkeit der 0
speziell zu betrachten.

Definition 2.3 Betrachte ein lineares Kontrollsystem (1.3).

(i) Die Erreichbarkeitsmenge (reachable set) von x0 = 0 zur Zeit t ≥ 0 ist gegeben durch

R(t) = {x(t; 0, u) |u ∈ U}.

11
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(ii) Die Kontrollierbarkeitsmenge (controllable set) nach x1 = 0 zur Zeit t ≥ 0 ist gegeben
durch

C(t) = {x0 ∈ Rn | es existiert u ∈ U mit x(t;x0, u) = 0}.

Die Beziehung zwischen diesen beiden Mengen klärt das folgende Lemma.

Lemma 2.4 Die Erreichbarkeitsmenge R(t) für (1.3) ist gerade gleich der Kontrollierbar-
keitsmenge C(t) für das zeitumgekehrte System

ż(t) = −Az(t)−Bu(t). (2.1)

Beweis: Durch Überprüfen des Anfangswertproblems sieht man, dass zwischen den Lösun-
gen von (1.3) und (2.1) für alle t, s ∈ R die Beziehung

x(s, 0, u) = z(t− s, x(t, 0, u), u(t− ·)).

Wenn also x1 ∈ R(t) für (1.3) ist und x(s, 0, u) die zugehörige Lösung, so folgt

z(0, x(t, 0, u), u(t− ·)) = x(t, 0, u) = x1 und z(t, x(t, 0, u), u(t− ·)) = x(0, 0, u) = 0,

womit x1 ∈ C(t) folgt. Umgekehrt argumentiert man genauso.

2.2 Analyse von Kontrollierbarkeitseigenschaften

Wir wollen nun die Struktur dieser Mengen klären. Wir leiten die technischen Zwischenre-
sultate dabei für R(t) her und formulieren nur die Hauptresultate auch für C(t).

Lemma 2.5 (i) R(t) ist für alle t ≥ 0 ein Untervektorraum des Rn.

(ii) R(t) = R(s) für alle s, t > 0.

Beweis: (i) Zu zeigen ist, dass für x1, x2 ∈ R(t) und α ∈ R auch α(x1 + x2) ∈ R(t) ist.
Für x1, x2 in R(t) existieren Kontrollfunktionen u1, u2 ∈ U mit

xi = x(t; 0, ui) =

∫ t

0
eA(t−s)Bui(s)ds.

Also gilt für u = α(u1 + u2) die Gleichung

x(t; 0, u) =

∫ t

0
eA(t−s)Bu(s)ds =

∫ t

0
eA(t−s)Bα(u1(s) + u2(s))ds

= α

(∫ t

0
eA(t−s)Bu1(s)ds+

∫ t

0
eA(t−s)Bu2(s)ds

)
= α(x1 + x2),
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woraus α(x1 + x2) ∈ R(t) folgt. Dies beweist (i).

(ii) Wir geben hier einen direkten Beweis, die Aussage folgt aber unabhängig davon auch
aus Satz 2.12.

Wir zeigen zuerst die Hilfsaussage

R(t1) ⊆ R(t2) (2.2)

für 0 < t1 < t2: Falls y ∈ R(t1) existiert ein u ∈ U mit

x(t1; 0, u) = y.

Mit der neuen Kontrolle ũ = 0&t2−t1u(t1 − t2 + ·) und Korollar 1.10 ergibt sich so

x(t2; 0, ũ) = x(t2; t2 − t1, x(t2 − t1; 0, 0)︸ ︷︷ ︸
=0

, ũ) = x(t2; t2 − t1, 0, ũ) = x(t1; 0, u) = y,

weswegen y ∈ R(t2) gilt.

Als nächstes zeigen wir, dass für beliebige 0 < t1 < t2 aus der Gleichheit R(t1) = R(t2)
bereits die Gleichheit R(t1) = R(t) für alle t ≥ t1 folgt. Um dies zu zeigen sei x ∈
R(2t2 − t1), es existiere also ein u ∈ U mit x = x(2t2 − t1, 0, u).

Da x(t2, 0, u) ∈ R(t2) und R(t2) = R(t1), existiert ein v ∈ U mit x(t1, 0, v) = x(t2, 0, u).
Definieren wir nun eine Kontrollfunktion w = v&t1u(t2 − t1 + ·), so gilt mit Korollar 1.10

x(t2, 0, w) = x(t2, t1, x(t1, 0, v)︸ ︷︷ ︸
=x(t2,0,u)

, w)

= x(t2 + t2 − t1, t1 + t2 − t1, x(t2, 0, u), w(t1 − t2 + ·)︸ ︷︷ ︸
=u(·)

)

= x(2t2 − t1, 0, u) = x.

Damit gilt also x ∈ R(t2) und folglich R(t1) = R(t2) = R(2t2 − t1) = R(2(t2 − t1) + t1).
Induktive Wiederholung dieser Konstruktion liefert R(t1) = R(2k(t2 − t1) + t1) für alle
k ∈ N und damit wegen (2.2) die Behauptung R(t1) = R(t) für alle t ≥ t1.

Nun zeigen wir die Behauptung (ii): Sei dazu s > 0 beliebig und sei 0 < s0 < . . . < sn+1 = s
eine aufsteigende Folge von Zeiten. Dann ist R(s0), . . . ,R(sn+1) nach (2.2) eine aufsteigen-
de Folge von n+ 2 Unterräumen des Rn. Aus R(sk+1) 6= R(sk) folgt daher dimR(sk+1) ≥
dimR(sk)+1. Wären also die R(sk) paarweise verschieden, so müsste dimR(sn+1) ≥ n+1
gelten, was ein Widerspruch zu R(sn+1) ⊆ Rn ist, weswegen mindestens zwei der R(sk)
übereinstimmen müssen. Nach der vorhergehenden Überlegung folgt daraus R(t) = R(s)
für alle t ≥ s und da s > 0 beliebig war, folgt die Behauptung.

Bemerkung 2.6 Da die Menge R(t) also nicht von t abhängt, schreiben wir im Folgenden
oft einfach R.



14 KAPITEL 2. KONTROLLIERBARKEIT

Bemerkung 2.7 Die Verbindung von Lemma 2.2 und Lemma 2.5 zeigt also, dass die
Menge der von einem Punkt x0 ∈ Rn in einer Zeit t > 0 erreichbaren Zustände der affine
Unterraum

x(t;x0, 0) +R
ist, dessen Dimension gerade gleich der von R ist. Beachte, dass diese Menge i.A. nicht
unabhängig von t ist. Eine Ausnahme ist der FallR = Rn, da dann auch x(t;x0, 0)+R = Rn
gilt. In diesem Fall ist jeder Zustand x0 zu jedem anderen Zustand x1 kontrollierbar,
weswegen wir das System für R = Rn vollständig kontrollierbar oder kurz kontrollierbar
nennen.

Wie in den Übungen zu sehen war, kann es bereits für recht einfache Kontrollsysteme
ziemlich schwierig sein, die Mengen R und C direkt auszurechnen. Wir wollen daher jetzt
eine einfache Charakterisierung dieser Mengen herleiten. Hierzu benötigen wir etwas lineare
Algebra.

Definition 2.8 (i) Ein Unterraum U ⊆ Rn heißt A-invariant für eine Matrix A ∈ Rn×n,
falls Av ∈ U für alle v ∈ U (oder kurz AU ⊆ U) gilt.

(ii) Für einen Unterraum V ⊆ Rn und A ∈ Rn×n bezeichne

〈A |V 〉

den kleinsten (bezüglich der Dimension)A-invarianten Unterraum von Rn, der V enthält.

Beachte, dass ein kleinster solcher Raum existiert und eindeutig ist: Einerseits existiert
mit dem Rn selbst ein A-invarianter Unterraum, der V enthält. Da die Dimension endlich
ist, existiert also auch ein solcher Raum kleinster Dimension. Zudem ist der Schnitt zweier
A-invarianter Unterräume, die V enthalten, wieder ein A-invarianter Unterraum, der V
enthält. Existieren also mehrere A-invariante Unterräume kleinster Dimension, die alle V
enthalten, so müssen diese alle übereinstimmen, da ihr Schnitt ansonsten einen solchen
Raum kleinerer Dimension bilden würde.

Lemma 2.9 Für einen Unterraum V ⊆ Rn und A ∈ Rn×n gilt

〈A |V 〉 = V +AV + . . .+An−1V.

Beweis: “⊇”: Wegen der A-Invarianz von 〈A |V 〉 und V ⊆ 〈A |V 〉 gilt

AkV ⊆ 〈A |V 〉

für alle k ∈ N0 und damit 〈A |V 〉 ⊇ V +AV + . . .+An−1V .

“⊆”: Es genügt zu zeigen, dass V + AV + . . . + An−1V A-invariant ist, da dann wegen
V ⊆ V +AV + . . .+An−1V sofort 〈A |V 〉 ⊆ V +AV + . . .+An−1V folgt.

Zum Beweis der A-Invarianz betrachte das charakteristische Polynom von A

χA(z) = det(zId−A) = zn + an−1z
n−1 + . . .+ a1z + a0.
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Für dieses gilt nach dem Satz von Cayley-Hamilton

χA(A) = An + an−1A
n−1 + . . .+ a1A+ a0Id = 0,

woraus
An = −an−1A

n−1 − . . .− a1A− a0Id

folgt. Sei also v ∈ V +AV + . . .+An−1V . Dann lässt sich v darstellen als v = v0 +Av1 +
. . .+An−1vn−1 für v0, . . . , vn−1 ∈ V . Damit folgt

Av = Av0 +A2v1 + . . .+Anvn−1

= Av0 +A2v1 − an−1A
n−1vn−1 − . . .− a1Avn−1 − a0vn−1

= ṽ0 +Aṽ1 + . . .+An−1ṽn−1

für geeignete ṽ0, . . . , ṽn−1 ∈ V . Damit folgt Av ∈ V + AV + . . . + An−1V , also die A-
Invarianz.

Wir werden nun den Spezialfall betrachten, dass V = imB das Bild der Matrix B ist. In
diesem Fall sagt Lemma 2.9, dass

〈A | imB〉 = {Bx0+ABx1+. . .+An−1Bxn−1 |x0, . . . , xn−1 ∈ Rm} = im (BAB . . . An−1B),

wobei (BAB . . . An−1B) ∈ Rn×(m·n) ist.

Definition 2.10 Die Matrix (BAB . . . An−1B) ∈ Rn×(m·n) heißt Kontrollierbarkeitssma-
trix des Systems (1.3).

Im Folgenden verwenden wir für t ∈ R die Notation

Wt :=

∫ t

0
eAτBBT (eAτ )Tdτ.

Beachte, dass Wt ∈ Rn×n gilt und Wt damit ein linearer Operator auf dem Rn ist. Die
Matrix Wt wird Kontrollierbarkeitsgramsche genannt und ist symmetrisch und positiv se-
midefinit, denn es gilt

xTWtx =

∫ t

0
xT eAτBBT (eAτ )Tx︸ ︷︷ ︸

=‖BT (eAτ )T x‖2≥0

dτ ≥ 0.

Für das Bild imWt dieses Operators gilt das folgende Lemma.

Lemma 2.11 Für alle t > 0 gilt 〈A | imB〉 = imWt.

Beweis: Wir zeigen 〈A | imB〉⊥ = (imWt)
⊥.

“⊆”: Sei x ∈ 〈A | imB〉⊥, also xTAkB = 0 für alle k ∈ N0. Dann gilt

xT eAtB =

∞∑
k=0

tkxTAkB

k!
= 0



16 KAPITEL 2. KONTROLLIERBARKEIT

und damit xTWt = 0, also x ∈ (imWt)
⊥.

“⊇”: Sei x ∈ (imWt)
⊥ für ein t > 0. Dann gilt

0 = xTWtx =

∫ t

0
‖BT (eAτ )Tx‖2dτ,

woraus wegen der Stetigkeit des Integranden xT eAτB = (BT (eAτ )Tx)T = 0 folgt.

Sukzessives Differenzieren von xTBeAτ nach τ liefert

xTAkeAτB = 0

für alle k ∈ N0. Für τ = 0 folgt xTAkB = 0, also x ∈ (imAkB)⊥ für alle k ∈ N0 und damit
auch x ∈ [im (BAB . . . An−1B)]⊥ = 〈A | imB〉⊥.

Der folgende Satz ist das Hauptresultat über die Struktur der Erreichbarkeits- und Kon-
trollierbarkeitsmengen.

Satz 2.12 Für das System (1.3) gilt für alle t > 0

R(t) = C(t) = 〈A | imB〉 = im (BAB . . . An−1B).

Beweis: Die Gleichheit 〈A | imB〉 = im (BAB . . . An−1B) wurde bereits in der Rechnung
vor Definition 2.10 gezeigt. Wir zeigen R(t) = 〈A | imB〉 (woraus insbesondere wiederum
die Unabhängigkeit von R(t) von t folgt). Die Aussage für C(t) folgt dann mit Lemma 2.4,
denn es gilt 〈A | imB〉 = 〈−A | im −B〉.
“⊆”: Sei x = x(t; 0, u) ∈ R(t). Nach der allgemeinen Lösungsformel ist

x =

∫ t

0
eA(t−τ)Bu(τ)dτ.

Nun gilt für all τ ∈ [0, t] nach Definition von 〈A | imB〉

eA(t−τ)Bu(τ) =
∞∑
k=0

(t− τ)k

k!
AkBu(τ) ∈ 〈A | imB〉

und damit auch x ∈ 〈A | imB〉, da die Integration über Elemente eines Unterraums wieder
ein Element dieses Unterraums ergibt.

“⊇”: Sei x ∈ 〈A | imB〉 und t > 0 beliebig. Dann existiert nach Lemma 2.11 ein ein z ∈ Rn
mit x = Wtz. Definieren wir nun u ∈ U durch u(τ) := BT (eA(t−τ))T z für τ ∈ [0, t], so gilt

x(t; 0, u) =

∫ t

0
eA(t−τ)BBT (eA(t−τ))T zdτ = Wtz = x,

und damit x ∈ R(t).

Beachte, dass der Beweis konstruktiv ist: er liefert eine Formel für die Kontrollfunktion u,
mit der man von 0 nach x steuern kann.
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Korollar 2.13 (Kalman-Kriterium)
Das System (1.3) ist genau dann vollständig kontrollierbar, wenn

rg(BAB . . . An−1B) = n

ist. In diesem Fall nennen wir das Matrizenpaar (A,B) kontrollierbar.

Wenn (A,B) nicht kontrollierbar ist, kann man den Zustandsraum Rn wie folgt aufteilen,
um das Paar (A,B) in seinen kontrollierbaren und unkontrollierbaren Anteil zu zerlegen.

Lemma 2.14 Sei (A,B) nicht kontrollierbar, d.h., r := dim〈A | imB〉 < n. Dann existiert
ein invertierbares T ∈ Rn×n, so dass Ã = T−1AT und B̃ = T−1B die Form

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

0

)
mit A1 ∈ Rr×r, A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×(n−r), B1 ∈ Rr×m besitzen, wobei das Paar
(A1, B1) kontrollierbar ist. Insbesondere hat das System nach Koordinatentransformation
mit T also die Form

ż1(t) = A1z1(t) +A2z2(t) +B1u(t)

ż2(t) = A3z2(t)

mit z1(t) ∈ Rr und z2(t) ∈ Rn−r.

Beweis: Übungsaufgabe.

Beachte, dass sich das charakteristische Polynom einer Matrix bei Koordinatentransforma-
tionen nicht verändert. Es gilt also

χA(z) = det(zId−A) = det(zId− Ã) = det(zId−A1) · det(zId−A3) = χA1(z) · χA3(z).

Dies motiviert die folgende Definition.

Definition 2.15 Wir nennen χA1 den kontrollierbaren und χA3 den unkontrollierbaren
Anteil des charakteristischen Polynoms χA.

Der folgende Satz liefert alternative Charakterisierungen der Kontrollierbarkeit, die oh-
ne die Berechnung der Kontrollierbarkeitsmatrix auskommen. Hierbei bezeichnet (λId −
A |B) ∈ Rn×(n+m) die Matrix, die durch Nebeneinanderschreiben der Matrizen λId − A
und B entsteht.

Satz 2.16 (Hautus-Kriterium)
Die folgenden Bedingungen sind äquivalent:

(i) (A,B) ist kontrollierbar

(ii) rg(λId−A |B) = n für alle λ ∈ C

(iii) rg(λId−A |B) = n für alle Eigenwerte λ ∈ C von A
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Beweis: Wir beweisen zuerst “(ii) ⇔ (iii)” und dann “(i) ⇔ (ii)”.

“(ii) ⇒ (iii)”: klar

“(ii) ⇐ (iii)”: Es sei λ ∈ C kein Eigenwert von A. Dann gilt det(λId − A) 6= 0, woraus
rg(λId−A) = n folgt. Hieraus folgt (ii) wegen rg(λId−A |B) ≥ rg(λId−A).

“(i) ⇔ (ii)”: Wir beweisen dies mit Kontraposition, zeigen also “nicht (i) ⇔ nicht (ii)”.

“nicht (i) ⇐ nicht (ii)”: Wenn (ii) nicht gilt, existiert ein λ ∈ C mit rg(λId − A |B) < n.
Also existiert ein p ∈ Rn, p 6= 0 mit pT (λId−A |B) = 0, also

pTA = λpT und pTB = 0.

Aus der ersten Gleichheit folgt pTAk = λkpT und damit insgesamt

pTAkB = λkpTB = 0

für k = 0, . . . , n− 1. Also gilt pT (BAB . . . An−1B) = 0, womit rg(BAB . . . An−1B) < n
ist. Also ist (A,B) nicht kontrollierbar.

“nicht (i) ⇒ nicht (ii)”: Wenn (A,B) nicht kontrollierbar ist, existiert die Zerlegung

Ã = T−1AT =

(
A1 A2

0 A3

)
, B̃ = T−1B =

(
B1

0

)
gemäß Lemma 2.14 mit Koordinatentransformationsmatrix T .

Sei nun λ ∈ C ein Eigenwert von AT3 zum Eigenvektor v. Dann gilt vT (λId − A3) = 0.
Damit gilt für wT = (0, vT )

wT (λId− Ã) =
(
0T (λId−A1) + vT 0, 0T (−A2) + vT (λId−A3)

)
= 0

und

wT B̃ =

(
0TB1

vT 0

)
= 0.

Mit pT = wTT−1 6= 0 folgt dann

pT (λId−A |B) = wTT−1(λId−A |B) = (wT (λId− Ã)T−1 |wT B̃) = 0,

weswegen (ii) nicht gilt.

Bemerkung 2.17 Für zeitdiskrete Systems (1.4) mit U = Rm sind die Bedingungen für
vollständige Kontrollierbarkeit vollkommen identisch. Es gibt aber einen entscheidenden
Unterschied: Während Kontrollierbarkeit im Kontinuierlichen immer Kontrollierbarkeit in
beliebig kurzer Zeit bedeutet, braucht man im Zeitdiskreten im schlechtesten Fall bis zu n
Zeitschritte. Ein Beispiel hierfür ist das System

x(k + 1) =

(
0 1
0 0

)
x(k) +

(
0
1

)
u(k)

mit x ∈ R2 und u ∈ R. Hier gilt (BAB) =

(
0 1
1 0

)
, weswegen vollständige Kontrollier-

barkeit gilt. Um das System von (0, 0)T nach (1, 1)T zu steuern, sind aber mindestens zwei
Zeitschritte notwendig. Lemma 2.5 gilt im Zeitdiskreten tatsächlich nur für s, t ≥ n.



Kapitel 3

Stabilität und Stabilisierung

In diesem Kapitel werden wir uns mit dem Problem der Stabilisierung linearer Kontrollsy-
steme beschäftigen. Bevor wir dieses Problem angehen, müssen wir zunächst klären, was
wir unter Stabilität verstehen.

3.1 Definitionen

In diesem und den folgenden zwei Abschnitten werden wir wichtige Resultate der Stabi-
litätstheorie linearer zeitinvarianter Differentialgleichungen (1.8)

ẋ(t) = Ax(t)

einführen. Die Darstellung wird dabei relativ knapp gehalten; eine ausführlichere Be-
handlung dieses Themas findet sich z.B. in dem Skript [?] sowie in vielen Lehrbüchern
über gewöhnliche Differentialgleichungen. Wir beschränken uns hier auf die Stabilität von
Gleichgewichten.

Definition 3.1 Ein Punkt x∗ ∈ Rn heißt Gleichgewicht (auch Ruhelage oder Equilibrium)
einer gewöhnlichen Differentialgleichung, falls für die zugehörige Lösung

x(t;x∗) = x∗ für alle t ∈ R

gilt.

Gleichgewichte haben wir bereits ohne formale Definition im einführenden Kapitel be-
trachtet. Man rechnet leicht nach, dass ein Punkt x∗ genau dann ein Gleichgewicht einer
allgemeinen zeitinvarianten Differentialgleichung ẋ(t) = f(x(t)) ist, wenn f(x∗) = 0 ist. Für
die lineare Differentialgleichung (1.8) ist daher der Punkt x∗ = 0 immer ein Gleichgewicht.
Dieses Gleichgewicht x∗ = 0 wollen wir in der folgenden Analyse näher betrachten.

Definition 3.2 Sei x∗ = 0 das Gleichgewicht der linearen Differentialgleichung (1.8).

19
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(i) Das Gleichgewicht x∗ = 0 heißt stabil, falls für jedes ε > 0 ein δ > 0 existiert, so dass
die Ungleichung

‖x(t;x0)‖ ≤ ε für alle t ≥ 0

für alle Anfangswerte x0 ∈ Rn mit ‖x0‖ ≤ δ erfüllt ist.

(ii) Das Gleichgweicht x∗ = 0 heißt lokal asymptotisch stabil, falls es stabil ist und darüber-
hinaus

lim
t→∞

x(t;x0) = 0

gilt für alle Anfangswerte x0 aus einer offenen Umgebung N von x∗ = 0.

(iii) Das Gleichgewicht x∗ = 0 heißt global asymptotisch stabil, falls (ii) mit U = Rn erfüllt
ist.

(iv) Das Gleichgewicht x∗ = 0 heißt lokal bzw. global exponentiell stabil, falls Konstanten
c, σ > 0 existieren, so dass die Ungleichung

‖x(t;x0)‖ ≤ ce−σt‖x0‖ für alle t ≥ 0

für alle x0 aus einer Umgebung U von x∗ = 0 (mit U = Rn im globalen Fall) erfüllt ist.

Bemerkung 3.3 Die Stabilität aus (i) wird auch
”
Stabilität im Sinne von Ljapunov“ ge-

nannt, da dieses Konzept Ende des 19. Jahrhunderts vom russischen Mathematiker Alex-
ander M. Ljapunov eingeführt wurde. Beachte, dass aus den Definitionen die Implikationen

(lokal/global) exponentiell stabil ⇒ (lokal/global) asymptotisch stabil ⇒ stabil

folgen. Die zweite Implikation ergibt sich direkt aus der Definition. Dass aus exponentieller
Stabilität die asymptotische Stabilität folgt, sieht man folgendermaßen:
Für ein gegebenes ε folgt (i) mit δ = ε/c, denn damit gilt für ‖x0‖ ≤ δ die Ungleichung
‖x(t;x0)‖ ≤ ce−σt‖x0‖ ≤ c‖x0‖ ≤ ε. Die in (ii) geforderte Konvergenz ist offensichtlich.

3.2 Eigenwertkriterien

Der folgende Satz gibt Kriterien an die Matrix A, mit denen man Stabilität leicht über-
prüfen kann.

Satz 3.4 Betrachte die lineare zeintinvariante Differentialgleichung (1.8) für eine Matrix
A ∈ Rn×n. Seien λ1, . . . , λd ∈ C, λl = al + ibl, die Eigenwerte der Matrix A, die hier
so angeordnet seien, dass jedem Eigenwert λl ein Jordan-Block Jl in der Jordan’schen
Normalform entspricht. Dann gilt:

(i) Das Gleichgewicht x∗ = 0 ist stabil genau dann, wenn alle Eigenwerte λl nichtpositiven
Realteil al ≤ 0 besitzen und für alle Eigenwerte mit Realteil al = 0 der entsprechende
Jordan-Block Jl eindimensional ist.

(ii) Das Gleichgewicht x∗ = 0 ist lokal asymptotisch stabil genau dann, wenn alle Eigen-
werte λl negativen Realteil al < 0 besitzen. In diesem Fall nennt man die Matrix A eine
Hurwitz-Matrix oder kurz Hurwitz.
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Beweisskizze: Zunächst überlegt man sich, dass alle Stabilitätseigenschaften unter li-
nearen Koordinatentransformationen mit invertierbarer Transformationsmatrix T ∈ Rn×n
erhalten bleiben, da die Lösungen y(t; y0) des transformierten Systems mittels

y(t; y0) = T−1x(t;Ty0)

ineinander umgerechnet werden können.

Es reicht also, die Stabilitätseigenschaften für die Jordan’sche Normalform

J =


J1 0 . . . 0

0
. . .

. . . 0

0
. . .

. . . 0
0 . . . 0 Jd


mit den Jordan-Blöcken der Form

Jl =



λl 1 0 · · · 0

0 λl 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . λl 1

0 · · · · · · 0 λl


, (3.1)

j = 1, . . . , d, der Matrix A zu beweisen. Wir bezeichnen die zu ẋ(t) = Jx(t) gehörigen
Lösungen wiederum mit x(t;x0).

Aus den Eigenschaften der Matrix-Exponentialfunktion folgt nun, dass die allgemeine
Lösung

x(t;x0) = eJtx0

für J die Form

x(t;x0) =


eJ1t 0 . . . 0

0
. . .

. . . 0

0
. . .

. . . 0
0 . . . 0 eJdt

x0

besitzt. Weiter rechnet man nach, dass

eJlt = eλlt



1 t t2

2! · · · tm−1

(m−1)!

0 1 t
. . .

...
...

. . .
. . .

. . . t2

2!
...

. . .
. . . 1 t

0 · · · · · · 0 1


ist, wobei eλlt die (übliche) skalare Exponentialfunktion ist, für die

|eλlt| = ealt


→ 0, al < 0
≡ 1, al = 0
→∞, al > 0
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für t→∞ gilt.

Die Einträge von eJlt sind also genau dann beschränkt, wenn die Bedingung aus (i) erfüllt
ist. Weil zudem für jedes k ∈ N und jedes ε > 0 ein c > 0 existiert mit

ealttk ≤ ce(al+ε)t, (3.2)

konvergieren die Einträge von eJlt genau dann gegen 0, wenn (ii) erfüllt ist.

Dieses Verhalten der Matrix-Einträge überträgt sich bei der Matrix-Vektor-Multiplikation
eJtx0 auf die Lösungen, weswegen es äquivalent zur Stabilität bzw. asymptotischen Stabi-
lität ist.

Der Beweis von (ii) zeigt tatsächlich globale exponentielle Stabilität, da die Einträge in
(3.2) exponentiell gegen 0 konvergieren. Die Konsequenz dieser Tatsache formulieren wir
explizit in dem folgenden Satz.

Satz 3.5 Betrachte die lineare zeintinvariante Differentialgleichung (1.8) für eine Matrix
A ∈ Rn×n. Seien λ1, . . . , λd ∈ C, λl = al + ibl, die Eigenwerte der Matrix A. Dann sind die
folgenden vier Eigenschaften äquivalent.

(i) Alle Eigenwerte λl besitzen negativen Realteil al < 0, d.h. die Matrix ist Hurwitz.

(ii) Das Gleichgewicht x∗ = 0 ist lokal asymptotisch stabil.

(iii) Das Gleichgewicht x∗ = 0 ist global exponentiell stabil, wobei die Konstante σ > 0
aus Definition 3.2(iv) beliebig aus dem Intervall (0,−maxl=1,...,d al) gewählt werden kann.

(iv) Die Norm der Matrix-Exponentialfunktion erfüllt ‖eAt‖ ≤ ce−σt für σ aus (iii) und
eine von σ abhängige Konstante c > 0.

Beweis: (iii) ⇒ (ii) folgt mit Bemerkung 3.3, (ii) ⇒ (i) folgt aus Satz 3.4(ii) und (i) ⇒
(iii) wurde im Beweis von Satz 3.4(ii) gezeigt. Schließlich folgt (iii) ⇔ (iv) sofort aus der
Definition der induzierten Matrix-Norm (und gilt dann für alle Normen auf Rn×n, weil
diese äquivalent sind).

Beispiel 3.6 Wir betrachten das Pendelmodell aus Kapitel 1 für u ≡ 0 und ohne Berück-
sichtigung der Bewegung des Wagens. Die Linearisierung im unteren ( = herunterhängen-
den) Gleichgewicht x∗ = π liefert

A =

(
0 1
−g −k

)
mit Eigenwerten

λ1/2 = −1

2
k ± 1

2

√
k2 − 4g.

Hierbei ist
√
k2 − 4g entweder komplex oder < k, weswegen man in jedem Fall Reλ1/2 < 0

und damit exponentielle Stabilität erhält.

Die Linearisierung im oberen ( = aufgerichteten) Gleichgewicht x∗ = 0 lautet

A =

(
0 1
g −k

)
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liefert. Hier erhält man die Eigenwerte

λ1/2 = −1

2
k ± 1

2

√
k2 + 4g,

deren größerer wegen
√
k2 + 4g > k immer positiv ist. Man erhält also keine Stabilität.

Bemerkung 3.7 Für zeitdiskrete Systeme bleibt Satz 3.5 im Prinzip gleich, allerdings
ändert sich in (i) die Bedingung “Realteil al < 0” zu “Betrag |λl| < 1” und in (iv) wird
aus ‖eAt‖ ≤ ce−σt die Ungleichung ‖Ak‖ ≤ ce−σk. Eine Matrix, bei der alle Eigenwerte die
Ungleichung |λl| < 1 erfüllen, heißt Schur-stabil.

3.3 Ljapunov Funktionen

In diesem Kapitel werden wir ein wichtiges Hilfsmittel zur Untersuchung asymptotisch
stabiler Differentialgleichungen behandeln, nämlich die sogenannten Ljapunov Funktionen.
Asymptotische (und auch exponentielle Stabilität) verlangen nur, dass die Norm ‖x(t)‖
einer Lösung für t → ∞ abnimmt. Für viele Anwendungen wäre es aber viel einfacher,
wenn die Norm streng monoton in t fallen würde. Dies ist natürlich im Allgemeinen nicht
zu erwarten. Wir können die strenge Monotonie aber erhalten, wenn wir die euklidische
Norm ‖x(t)‖ durch eine allgemeinere Funktion, nämlich gerade die Ljapunov Funktion,
ersetzen.

Für lineare Systeme können wir uns auf sogenannte quadratische Ljapunov Funktionen
beschränken, wie sie durch die folgende Definition gegeben sind.

Definition 3.8 Sei A ∈ Rn×n. Eine stetig differenzierbare Funktion V : Rn → R+
0 heißt

(quadratische) Ljapunov Funktion für A, falls positive reelle Konstanten c1, c2, c3 > 0 exi-
stieren, so dass die Ungleichungen

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

und
DV (x)Ax ≤ −c3‖x‖2

für alle x ∈ Rn gelten.

Der folgende Satz zeigt, dass die Existenz einer Ljapunov Funktion exponentielle Stabilität
der zugehörigen Differentialgleichung impliziert.

Satz 3.9 Seien A ∈ Rn×n eine Matrix und x(t;x0) die Lösungen des zugehörigen linearen
Anfangswertproblems (1.8), (1.9). Dann gilt: Falls eine quadratische Ljapunov Funktion
mit Konstanten c1, c2, c3 > 0 existiert, so erfüllen alle Lösungen die Abschätzung

‖x(t;x0)‖ ≤ ce−σt‖x0‖

für σ = c3/2c2 und c =
√
c2/c1, d.h. das Gleichgewicht x∗ = 0 ist exponentiell stabil und

die Matrix A ist Hurwitz.
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Beweis: Aus der Ableitungsbedingung für x = x(τ, x0) folgt

d

dt

∣∣∣∣
t=τ

V (x(t;x0)) = DV (x(τ ;x0))ẋ(τ ;x0) = DV (x(τ ;x0))Ax(τ ;x0) ≤ −c3‖x(τ ;x0)‖2

Wegen −‖x‖2 ≤ −V (x)/c2 folgt damit für λ = c3/c2 die Ungleichung

d

dt
V (x(t;x0)) ≤ −λV (x(t;x0)).

Aus dieser Differentialungleichung folgt die Ungleichung

V (x(t;x0)) ≤ e−λtV (x0),

(siehe z.B. den Beweis von [4, Satz 8.2]). Mit den Abschätzungen für V (x) erhalten wir
daraus

‖x(t;x0)‖2 ≤ 1

c1
e−λtV (x0) ≤ c2

c1
e−λt‖x0‖2

und damit durch Ziehen der Quadratwurzel auf beiden Seiten die Ungleichung

‖x(t;x0)‖ ≤ ce−σt‖x0‖

für c =
√
c2/c1 und σ = λ/2.

Wir wollen uns nun mit einer speziellen Klasse von Ljapunov Funktionen beschäftigen, bei
denen V durch eine Bilinearform der Form xTPx dargestellt wird, wobei P ∈ Rn×n.

Wir erinnern daran, dass eine Matrix P ∈ Rn×n positiv definit heißt, falls xTPx > 0
ist für alle x ∈ Rn mit x 6= 0. Das folgende Lemma fasst zwei Eigenschaften bilinearer
Abbildungen zusammen.

Lemma 3.10 Sei P ∈ Rn×n. Dann gilt: (i) Es existiert eine Konstante c2 > 0, so dass

−c2‖x‖2 ≤ xTPx ≤ c2‖x‖2 für alle x ∈ Rn.

(ii) P ist positiv definit genau dann, wenn eine Konstante c1 > 0 existiert mit

c1‖x‖2 ≤ xTPx für alle x ∈ Rn.

Beweis: Aus der Bilinearität folgt für alle x ∈ Rn mit x 6= 0 und y = x/‖x‖ die Gleichung

xTPx = ‖x‖2yTPy. (3.3)

Da yTPy eine stetige Abbildung in y ∈ Rn ist, nimmt sie auf der kompakten Menge
{y ∈ Rn | ‖y‖ = 1} ein Maximum cmax und ein Minimum cmin an.

(i) Die Ungleichung (i) folgt nun aus (3.3) mit c2 = max{cmax,−cmin}.
(ii) Falls P positiv definit ist, ist cmin > 0, und (ii) folgt mit c1 = cmin. Andererseits folgt die
positive Definitheit von P sofort aus (ii), also erhalten wir die behauptete Äquivalenz.

Hiermit erhalten wir die folgende Aussage.
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Lemma 3.11 Seien A, P ∈ Rn×n und c3 > 0 so, dass die Funktion V (x) = xTPx die
Ungleichung

DV (x)Ax ≤ −c3‖x‖2

für alle x ∈ Rn erfüllt. Dann gilt: P ist genau dann positiv definit ist, wenn A Hurwitz ist.
In diesem Fall ist V eine quadratische Ljapunov Funktion.

Beweis: Falls P positiv definit ist, folgt aus Lemma 3.10(ii) sofort, dass V eine quadratische
Ljapunov Funktion ist, womit x∗ = 0 exponentiell stabil und A folglich Hurwitz ist.

Falls P nicht positiv definit ist, gibt es ein x0 ∈ Rn mit x0 6= 0 und V (x0) ≤ 0. Weil sich
verschiedene Lösungen der Differentialgleichung nicht schneiden können, kann die Lösung
x(t;x0) mit x0 6= 0 niemals 0 werden. Daher folgt aus der Ableitungsbedingung, dass
V (x(t;x0)) für alle t ≥ 0 streng monoton fällt. Insbesondere gibt es also ein c > 0, so dass
V (x(t;x0)) ≤ −c für alle t ≥ 1. Mit der ersten Abschätzung aus Lemma 3.10(i) folgt dann

‖x(t;x0)‖2 ≥ c/c2 > 0 für alle t ≥ 1.

Also konvergiert x(t;x0) nicht gegen den Nullpunkt, weswegen x∗ = 0 nicht exponentiell
stabil und A folglich nicht Hurwitz ist.

Wir können das Ableitungskriterium vereinfachen, indem wir die bilineare Form der Lja-
punov Funktion ausnutzen.

Lemma 3.12 Für eine bilineare Funktion V (x) = xTPx sind äquivalent:

(i) DV (x)Ax ≤ −c3‖x‖2 für alle x ∈ Rn und eine Konstante c3 > 0

(ii) Die Matrix C = −ATP − PA ist positiv definit.

Beweis: Wegen xTPy = yTP Tx gilt d
dx(xTPy)Ax = d

dx(yTP Tx)Ax = yTP TAx = xTATPy.
Daraus folgt nach Produktregel

DV (x)Ax = xTATPx+ xTPAx = xT (ATP + PA)x = −xTCx.

Bedingung (i) ist also äquivalent zu

xTCx ≥ c3‖x‖2 für alle x ∈ Rn.

Wegen Lemma 3.10 (ii) ist diese Bedingung genau dann für ein c3 > 0 erfüllt, wenn C
positiv definit ist.

Die Gleichung in Lemma 3.12 (iii) wird auch Ljapunov Gleichung genannt. Es liegt nun
nahe, diese Gleichung zur Konstruktion von Ljapunov Funktionen zu verwenden. Die Frage
ist, wann kann man zu einer gegebenen Matrix A und einer gegebenen positiv definiten
Matrix C eine Matrix P finden, so dass ATP + PA = −C gilt? Das folgende Lemma
beantwortet diese Frage.

Lemma 3.13 Für eine Matrix A ∈ Rn×n und eine positiv definite Matrix C ∈ Rn×n hat
die Ljapunov Gleichung

ATP + PA = −C (3.4)

genau dann eine (sogar eindeutige) positiv definite Lösung P ∈ Rn×n, wenn A Hurwitz ist.
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Beweis: Falls eine positiv definite Lösung P von (3.4) existiert, ist die Funktion V (x) =
xTPx wegen den Lemmas 3.12 und 3.11 eine quadratische Lyapunov Funktion, womit A
Hurwitz ist.

Sei umgekehrt A Hurwitz und C positiv definit. Wir zeigen zunächst, dass (3.4) lösbar
ist. O.B.d.A. können wir annehmen, dass A in Jordan’scher Normalform vorliegt, denn für
Ã = TAT−1 sieht man leicht, dass P (3.4) genau dann löst, wenn P̃ = (T−1)TPT−1 die
Gleichung

ÃT P̃ + P̃ Ã = −(T−1)TCT−1

löst. Wir können also annehmen, dass A von der Form

A =



α1 β1 0 · · · 0

0 α2 β2
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . αn−1 βn−1

0 · · · · · · 0 αn


(3.5)

ist, wobei die αi gerade Eigenwerte von A sind und die βi entweder 0 oder 1 sind. Schreibt
man die Spalten von P untereinander in einen Spaltenvektor p ∈ Rn2

, und macht das gleiche
für die Matrix C und einen Vektor c, so ist (3.4) äquivalent zu einem Gleichungssystem

Ap = −c,

mit einer geeigneten Matrix A ∈ Cn2×n2
. Falls A in der Form (3.5) ist, sieht man durch

Nachrechnen der Koeffizienten, dass A eine untere Dreiecksmatrix ist, d.h.

A =



ᾱ1 0 0 · · · 0

∗ ᾱ2 0
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . ᾱn2−1 0

∗ · · · · · · ∗ ᾱn2


,

wobei ∗ beliebige Werte bezeichnet, und die ᾱi von der Form ᾱi = λj + λk für Eigenwerte
der Matrix A sind. Aus der linearen Algebra ist bekannt, dass

(i) bei einer Dreiecksmatrix die Elemente auf der Diagonalen gerade die Eigenwerte sind

(ii) eine Matrix genau dann invertierbar ist, wenn alle Eigenwerte ungleich Null sind.

Da A Hurwitz ist und folglich alle λi negativen Realteil haben, sind die āi alle ungleich Null,
also ist die Matrix A wegen (i) und (ii) invertierbar. Demnach gibt es genau eine Lösung
des Gleichungssystems Ap = c und damit genau eine Lösung P der Ljapunov Gleichung
(3.4).

Es bleibt zu zeigen, dass diese Lösung P positiv definit ist. Wegen Lemma 3.12 erfüllt P
alle Voraussetzungen von Lemma 3.11. Da A Hurwitz ist, muss P also nach Lemma 3.11
positiv definit sein.

Der folgende Satz fasst das Hauptresultat dieses Abschnitts zusammen.
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Satz 3.14 Für A ∈ Rn×n gilt: Eine quadratische Ljapunov Funktion für die lineare Diffe-
rentialgleichung (1.8) existiert genau dann, wenn x∗ = 0 exponentiell stabil ist, d.h. wenn
die Matrix A Hurwitz ist.

Beweis: Sei eine quadratische Ljapunov Funktion V gegeben. Dann ist A nach Satz 3.9
Hurwitz.

Sei A umgekehrt Hurwitz. Dann existiert nach Lemma 3.13 eine positiv definite Matrix P ,
die die Ljapunov Gleichung (3.4) für eine positiv definite Matrix C löst. Wegen Lemma
3.12 und Lemma 3.11 ist V (x) = xTPx dann eine quadratische Ljapunov Funktion.

Die Existenz einer quadratischen Ljapunov Funktion ist also eine notwendige und hinrei-
chende Bedingung für die exponentielle Stabilität des Gleichgewichts x∗ = 0 und liefert
damit eine Charakterisierung, die äquivalent zu der Eigenwertbedingung aus Satz 3.5 ist.

Beispiel 3.15 Für das im unteren Gleichgewicht linearisierte Pendelmodell mit

A =

(
0 1
−g −k

)
ist die bilineare Ljapunov Funktion zu C = Id gegeben durch die Matrix

P =

(
k2+g2+g

2gk
1
2g

1
2g

g+1
2gk

)
.

Bemerkung 3.16 Für zeitdiskrete Systeme ändert sich die untere Ungleichung in Defini-
tion 3.8 zu

V (Ax)− V (x) ≤ −c3‖x‖2.
Die Lyapunov-Gleichung (3.4) ändert sich dadurch zu

ATPA− P = −C. (3.6)

Mit diesen Änderungen bleiben alle Sätze in diesem Abschnitt gültig.

3.4 Das Stabilisierungsproblem für lineare Kontrollsysteme

Wir haben nun das technische Werkzeug, um uns wieder den linearen Kontrollsystemen zu
widmen. In den Übungen haben wir gesehen, dass die Vorausberechnung einer Kontroll-
funktion u(t) auf großen Zeithorizonten i.A. nicht funktioniert, um ein System in einen
gegebenen Punkt (o.B.d.A. 0) zu steuern und dort zu halten – selbst die geringen Fehler
einer genauen numerischen Simulation reichten dort aus, um die Lösung weit von dem
gewünschten Punkt zu entfernen.

Wir machen daher nun einen anderen Ansatz. Statt die Kontrolle als Steuerung – abhängig
von t – anzusetzen, wählen wir nun eine Regelung, in der wir die Kontrollfunktion in
jedem Zeitpunkt zustandsabhängig als u(t) = F (x(t)) für eine zu bestimmende Funktion
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F : Rn → Rm ansetzen. Eine solche Funktion, die jedem Zustand einen Kontrollwert
zuordnet, nennt man Feedback (auch Zustandsfeedback, (Zustands-)Rückführung oder kurz
Regler). Da unser System linear ist, liegt es nahe, die Feedback-Funktion F linear zu wählen,
also u = Fx für ein F ∈ Rm×n. Dies hat den Vorteil, dass das entstehende System

ẋ(t) = Ax(t) +BFx(t) = (A+BF )x(t)

eine lineare zeitinvariante Differentialgleichung wird, auf die wir die Theorie der vorher-
gehenden Abschnitte anwenden können. Wir bezeichnen die Lösungen dieses Systems mit
x(t, x0, F ).

Um nun einen Zustand nach 0 zu steuern und ihn dort zu halten, können wir das folgende
Stabilisierungsproblem lösen.

Definition 3.17 Gegeben sei ein lineares Kontrollsystem (1.3)

ẋ(t) = Ax(t) +Bu(t)

mit Matrizen A ∈ Rn×n, B ∈ Rn×m. Das (Feedback-) Stabilisierungsproblem für (1.3)
besteht darin, eine lineare Abbildung F : Rn → Rm (bzw. die dazugehörige Matrix F ∈
Rm×n) zu finden, so dass die lineare gewöhnliche Differentialgleichung

ẋ(t) = (A+BF )x(t)

asymptotisch stabil ist. Diese Gleichung wird als geschlossener Regelkreis oder closed loop
System bezeichnet.

Aus unseren Kriterien für asymptotische Stabilität kann man leicht das folgende Lemma
ableiten.

Lemma 3.18 Gegeben seien zwei Matrizen A ∈ Rn×n und B ∈ Rn×m. Dann löst die
Matrix F ∈ Rm×n das Stabilisierungsproblem, falls alle Eigenwerte der Matrix A+ BF ∈
Rn×n negativen Realteil haben.

Wir werden uns im weiteren Verlauf mit der Frage beschäftigen, wann – zu gegebenen
Matrizen A und B – eine solche Matrix F existiert und wie man sie berechnen kann.

Beispiel 3.19 Als einfaches und intuitiv lösbares Beispiel für ein Stabilisierungsproblem
betrachten wir ein (sehr einfaches) Modell für eine Heizungsregelung. Nehmen wir an, dass
wir wir die Temperatur x1 in einem Raum an einem festgelegten Messpunkt regeln wollen.
Der Einfachheit halber sei die gewünschte Temperatur durch Verschiebung der Skala auf
x∗1 = 0 festgesetzt1. In dem Raum befindet sich ein Heizkörper mit Temperatur x2, auf die
wir mit der Kontrolle u Einfluss nehmen können. Die Veränderung von x2 sei durch die
Differentialgleichung ẋ2(t) = u(t) beschrieben, d.h. die Kontrolle u regelt die Zunahme (falls
u > 0) bzw. Abnahme (falls u < 0) der Temperatur. Für die Temperatur x1 im Messpunkt

1Die Größe x1 sollte also als Abweichung von der gewünschten Temperatur und nicht als absoluter Wert
interpretiert werden.
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nehmen wir an, dass sie der Differentialgleichung ẋ1(t) = −x1(t) + x2(t) genügt, d.h. für
konstante Heiztemperatur x2 ergibt sich

x1(t) = e−tx1(0) + (1− e−t)x2(0).

Mit anderen Worten nehmen wir an, dass die Raumtemperatur x1 im Messpunkt exponen-
tiell gegen die Temperatur des Heizkörpers konvergiert.

Aus diesem Modell erhalten wir das Kontrollsystem

ẋ(t) =

(
−1 1

0 0

)
x(t) +

(
0
1

)
u(t).

Eine naheliegende Regelstrategie ergibt sich nun wie folgt: Falls x1 > x∗1 = 0 ist, so ver-
mindern wir die Temperatur in x2, d.h., wir wählen u < 0. Im umgekehrten Fall, d.h.
falls x1 < x∗1 = 0 ist, erhöhen wir die Temperatur und setzen u > 0. Da unser Feedback
linear sein soll, lässt sich dies durch die Wahl F (x) = −λx1 für ein λ > 0 erreichen, oder, in
Matrix-Schreibweise F = (−λ, 0) (beachte, dass hier n = 2 und m = 1 ist, F also eine 1×2-
Matrix bzw. ein 2-dimensionaler Zeilenvektor ist). Damit erhalten wir das rückgekoppelte
System

ẋ(t) =

(
−1 1
−λ 0

)
x(t).

Berechnet man die Eigenwerte für λ > 0, so sieht man, dass alle Realteile negativ sind. Wir
haben also (ohne es zu wollen) das Stabilisierungsproblem gelöst und folglich konvergieren
x1(t) und x2(t) für alle beliebige Anfangswerte exponentiell schnell gegen 0, insbesondere
konvergiert x1 exponentiell schnell gegen die gewünschte Temperatur x∗1 = 0. Damit ha-
ben wir bewiesen, dass unser von Hand konstruierter Regler tatsächlich das gewünschte
Ergebnis erzielt.

Falls wir die Temperatur x2 am Heizkörper messen können, so können wir auch F (x) =
−λx2, bzw. in Matrix-Schreibweise F = (0, −λ) setzen. Wiederum sieht man durch Be-
trachtung der Eigenwerte, dass das rückgekoppelte System für alle λ > 0 exponentiell stabil
ist und damit das gewünschte Verhalten erzielt wird. Das Verhalten dieses Systems mit den
zwei verschiedenen Feedbacks ist allerdings recht unterschiedlich. Wir werden dies in den
Übungen genauer untersuchen.

Bemerkung 3.20 In der Praxis ist der Zustand x(t) eines Systems oft nicht vollständig
messbar, stattdessen hat man nur Zugriff auf einen Ausgangsvektor y = Cx für eine Matrix
C ∈ Rd×n. In diesem Fall kann ein Feedback F nur vom Ausgangsvektor y abhängen, man
spricht von einem Ausgangsfeedback.

Tatsächlich haben wir im obigen Beispiel so etwas Ähnliches gemacht, indem wir zur Kon-
struktion von F nur die

”
Information“ aus der Variablen x1 bzw. x2 verwendet haben.

Wir werden im Folgenden zunächst annehmen, dass alle Zustände messbar sind und den
allgemeinen Fall in Kapitel 4 behandeln.
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3.5 Lösung des Stabilisierungsproblems mit eindimensiona-
ler Kontrolle

In diesem Abschnitt werden wir Bedingungen untersuchen, unter denen wir eine Lösung
für das Stabilisierungsproblems aus Definition 3.17 mit eindimensionaler Kontrolle finden
können. Insbesondere werden wir eine hinreichende und notwendige Bedingung an die Ma-
trizen A und B in (1.3) angeben, unter der das Problem lösbar ist. Die einzelnen Schritte der
Herleitung liefern dabei ein konstruktives Verfahren zur Berechnung eines stabilisierenden
Feedbacks.

Bei der Herleitung werden wieder einmal Koordinatentransformationen eine wichtige Rolle
spielen. Für eine Transformationsmatrix T ∈ Rn×n ist das zu

ẋ(t) = Ax(t) +Bu(t) (3.7)

gehörige transformierte System

ẋ(t) = Ãx(t) + B̃u(t) (3.8)

durch Ã = T−1AT und B̃ = T−1B gegeben. Ein Feedback F für (3.7) wird mittels F̃ = FT
in eines für (3.8) transformiert; dies folgt sofort aus der Bedingung T−1(A + BF )T =
Ã+ B̃F̃ .

Wir haben in Lemma 2.14 bereits gesehen, dass man Paare (A,B) mittels einer geeigneten
Koordinatentransformation in die Form

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

0

)
,

d.h. in ein kontrollierbares Paar (A1, B1) und einen unkontrollierbaren Rest zerlegen kann.

Wir benötigen hier noch eine zweite Koordinatentransformation, die für kontrollierbare
Systeme gilt, bei denen u eindimensional ist. In diesem Fall haben wir m = 1, also B ∈
Rn×1, d.h. die Matrix B ist ein n-dimensionaler Spaltenvektor.

Lemma 3.21 Sei A ∈ Rn×n und B ∈ Rn×1. Dann gilt: Das Paar (A,B) ist kontrollierbar
genau dann, wenn es eine Koordinatentransformation S gibt, so dass

Ã = S−1AS =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn

 und B̃ = S−1B =


0
...
0
1


ist, wobei die Werte αi ∈ R gerade die Koeffizienten des charakteristischen Polynoms von
A sind, d.h. χA(z) = zn − αnzn−1 − · · · − α2z − α1.

Beweis: Wir zeigen zunächst, dass für Matrizen Ã der angegebenen Form die αi gerade
die Koeffizienten des charakteristischen Polynoms sind. Dies folgt durch Induktion über n:
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Für n = 1 ist die Behauptung sofort klar. Für den Induktionsschritt sei An ∈ Rn×n von
der Form des Satzes und An+1 ∈ Rn×n gegeben durch

An+1 =


0 1 · · · 0
0
... An
α0

 .

Entwickeln wir nun det(zIdRn+1 −An+1) nach der ersten Spalte, so ergibt sich

χAn+1 = zχAn(z)− α0 = zn+1 − αnzn − · · · − α1z − α0,

also nach Umnummerierung der αi gerade der gewünschte Ausdruck.

Nehmen wir nun an, dass S existiert. Durch Nachrechnen sieht man leicht, dass

R̃ = (B̃ ÃB̃ . . . Ãn−1B̃) =


0 · · · 0 1
0 · · · . · ˙ ∗
0 1 ∗ ∗
1 ∗ · · · ∗

 (3.9)

gilt, wobei ∗ beliebige Werte bezeichnet. Diese Matrix hat vollen Rang, denn durch Um-
ordnung der Zeilen (dies ändert den Rang nicht) erhalten wir eine obere Dreiecksmatrix
mit lauter Einsen auf der Diagonalen, welche offenbar invertierbar ist, also vollen Rang
besitzt. Daher ist (Ã, B̃) kontrollierbar und da Kontrollierbarkeit unter Koordinatentrans-
formationen erhalten bleibt, ist auch das Paar (A,B) kontrollierbar.

Sei umgekehrt (A,B) kontrollierbar. Dann ist die Matrix R = (BAB . . . An−1B) inver-
tierbar, folglich existiert R−1. Wir zeigen nun zunächst, dass R−1AR = ÃT ist. Dazu
reicht es zu zeigen, dass AR = RÃT ist. Dies folgt (unter Verwendung des Satzes von
Cayley-Hamilton) aus der Rechnung

AR = A(BAB . . . An−1B) = (ABA2B . . . An−1B AnB)

= (ABA2B . . . An−1B αnA
n−1B + · · ·+ α1B)

= (BAB . . . An−1B)


0 · · · 0 α1

1 · · · 0 α2
...

. . .
...

...
0 · · · 1 αn

 = RÃT

Mit R̃ aus (3.9) folgt mit analoger Rechnung die Gleichung R̃−1ÃR̃ = ÃT und damit

Ã = R̃ÃT R̃−1 = R̃R−1ARR̃−1.

Aus den Definitionen von R und R̃ folgt R(1, 0, . . . , 0)T = B und R̃(1, 0, . . . , 0)T = B̃, also
RR̃−1B̃ = B. Damit ergibt sich S = RR̃−1 als die gesuchte Transformation.

Die durch Lemma 3.21 gegebene Form der Matrizen A und B wird auch Regelungsnormal-
form genannt. Beachte, dass sich die Koordinatentransformation S allein durch Kenntnis
von A, B und den Koeffizienten des charakteristischen Polynoms von A berechnen lässt.
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Mit Hilfe der Regelungsnormalform können wir nun die Lösung des Stabilisierungsproblems
für u ∈ R angehen.

Zunächst drücken wir das Stabilisierungsproblem mit Hilfe des charakteristischen Polynoms
aus. Dies können wir für beliebige Kontrolldimensionen machen.

Definition 3.22 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈
Rn×m. Ein Polynom χ heißt vorgebbar für das Kontrollsystem, falls ein lineares Feedback
F ∈ Rm×n existiert, so dass χ = χA+BF ist für das charakteristische Polynom χA+BF der
Matrix A+BF .

Da wir wissen, dass die Nullstellen des charakteristischen Polynoms gerade die Eigenwerte
der zugehörigen Matrix sind, erhalten wir aus Lemma 3.18 sofort die folgende Charakteri-
sierung.

Lemma 3.23 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈ Rn×m.
Dann gilt: Das Stabilisierungsproblem ist genau dann lösbar, falls ein vorgebbares Polynom
existiert, dessen Nullstellen über C alle negativen Realteil haben.

Der folgende Satz zeigt die Beziehung zwischen der Kontrollierbarkeit von (A,B) und der
Vorgebbarkeit von Polynomen.

Satz 3.24 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈ Rn×1, d.h.
mit eindimensionaler Kontrolle. Dann sind die folgenden zwei Eigenschaften äquivalent.

(i) Das Paar (A,B) ist kontrollierbar.

(ii) Jedes Polynom der Form χ(z) = zn − βnzn−1 − · · · − β2z − β1 mit β1, . . . , βn ∈ R ist
vorgebbar.

Beweis: (i) ⇒ (ii): Sei (A,B) kontrollierbar und sei S die Koordinatentransformation aus
Lemma 3.21. Wir setzen

F̃ = (β1 − α1 β2 − α2 . . . βn − αn) ∈ R1×n.

Dann gilt

Ã+ B̃F̃ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn

+


0
0
...
1

 (β1 − α1 β2 − α2 . . . βn − αn)

=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn

+


0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

β1 − α1 β2 − α2 · · · βn − αn



=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
β1 β2 · · · βn

 .
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Aus der zweiten Aussage von Lemma 3.21 folgt, dass χ
Ã+B̃F̃

= χ ist. Also ist, nach

Rücktransformation, F = F̃S−1 die gesuchte Feedback Matrix, da das charakteristische
Polynom einer Matrix invariant unter Koordinatentransformationen ist.

(ii) ⇒ (i): Wir zeigen die Implikation
”
nicht (i) ⇒ nicht (ii)“:

Sei (A,B) nicht kontrollierbar. Sei T die Koordinatentransformation aus Lemma 2.14.
Dann ergibt sich für jedes beliebige Feedback F̃ = (F1 F2)

Ã+ B̃F̃ =

(
A1 +B1F1 A2 +B1F2

0 A3

)
=: D̃.

Für das charakteristische Polynom dieser Matrix gilt

χ
D̃

= χA1+B1F1χA3 ,

daher sind (beachte, dass (A1, B1) kontrollierbar ist) die vorgebbaren Polynome gerade
von der Form χ = χkχu, wobei χk ein beliebiges normiertes Polynom vom Grad d ist und
χu = χA3 ist. Dies sind sicherlich weniger als die in (ii) angegebenen Polynome, weshalb
(ii) nicht gelten kann.

Natürlich ist es zur Stabilisierung nicht notwendig, dass jedes Polynom vorgebbar ist, wir
brauchen lediglich eines zu finden, dessen Nullstellen nur negative Realteile haben. Der
Beweis von Satz 3.24 lässt bereits erahnen, wann dies möglich ist.

Satz 3.25 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈ Rn×1, d.h.
mit eindimensionaler Kontrolle. Seien A1 ∈ Rd×d, A2 ∈ Rd×(n−d), A3 ∈ R(n−d)×(n−d) und
B1 ∈ Rd×1 die Matrizen aus Lemma 2.14 mit der Konvention, dass A1 = A und B1 = B
ist, falls (A,B) kontrollierbar ist.

Dann sind die vorgebbaren Polynome von (1.3) gerade die Polynome der Form χ = χkχA3 ,
wobei χk ein beliebiges normiertes Polynom vom Grad d und χA3 das charakteristische
Polynom der Matrix A3, also gerade der unkontrollierbare Anteil des charakteristischen
Polynoms χA ist, vgl. Definition 2.15. Hierbei machen wir die Konvention χA3 = 1 falls
d = n.

Insbesondere gilt: Das Stabilisierungsproblem ist genau dann lösbar, wenn alle Eigenwerte
von A3 negativen Realteil haben (die Eigenwerte von A3 werden auch ”unkontrollierbare
Eigenwerte” genannt). In diesem Fall nennen wir das Paar (A,B) stabilisierbar.

Beweis: Die erste Behauptung folgt sofort aus dem zweiten Teil des Beweises von Satz
3.24. Die Aussage über das Stabilisierungsproblem folgt dann sofort aus Lemma 3.23.

Bemerkung 3.26 Alle Aussagen dieses Abschnitts gelten auch für zeitdiskrete Systeme,
wenn man die Bedingung “Realteil des Eigenwerts kleiner als 0” durch ”Betrag des Eigen-
werts kleiner als 1” ersetzt.
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3.6 Lösung des Stabilisierungsproblems mit mehrdimensio-
naler Kontrolle

Die Resultate für mehrdimensionale Kontrolle m > 1 sind völlig analog zu denen für
eindimensionale Kontrolle. Bei einer direkten Herangehensweise sind allerdings die Beweise
etwas aufwändiger, da wir nicht direkt auf Lemma 3.21 zurückgreifen können. Wir werden
den mehrdimensionalen Fall deswegen auf den Fall m = 1 zurückführen, indem wir das
folgende Lemma verwenden, das als Heymanns Lemma bezeichnet wird.

Lemma 3.27 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈ Rn×m.
Das Paar (A,B) sei kontrollierbar. Sei v ∈ Rm ein Vektor mit B = Bv 6= 0. Dann gibt es
eine Matrix F ∈ Rm×n, so dass das Kontrollsystem

ẋ(t) = (A+BF )x(t) +Bū(t)

mit eindimensionaler Kontrolle ū(t) kontrollierbar ist.

Beweis: Mittels der rekursiven Vorschrift xi+1 := Axi + Bui mit geeigneten ui konstru-
ieren wir uns zunächst linear unabhängige Vektoren x1, . . . , xn ∈ Rn mit der folgenden
Eigenschaft: Für alle l ∈ {1, . . . , n} gilt

Axi ∈ Vl für i = 1, . . . , l − 1 mit Vl = 〈x1, . . . , xl〉. (3.10)

Setze dazu x1 = B (wir können die n × 1 Matrix B als Spaltenvektor auffassen) und
beachte, dass die Eigenschaft (3.10) für l = 1 und jedes x1 6= 0 trivialerweise erfüllt ist.

Für k ∈ 1, . . . , n − 1 und gegebene linear unabhängige Vektoren x1, . . . , xk, die (3.10)
für l ∈ {1, . . . , k} erfüllen, konstruieren wir nun wie folgt einen Vektor xk+1, so dass
x1, . . . , xk, xk+1 linear unabhängig sind und (3.10) für l ∈ {1, . . . , k + 1} erfüllen:

1. Fall: Axk 6∈ Vk: Setze uk := 0 ∈ Rm und xk+1 = Axk.

2. Fall: Axk ∈ Vk: Wegen (3.10) folgt dann, dass Vk A-invariant ist. Aus Kapitel 2 wissen
wir, dass 〈A | imB〉 = imR für die Erreichbarkeitsmatrix R = (BAB . . . An−1B) der
kleinste A-invariante Unterraum ist, der das Bild von B enthält. Da (A,B) kontrollierbar
ist, ist 〈A | imB〉 = Rn. Weil Vk nun ein A-invarianter Unterraum mit dimVk = k < n
ist, kann dieser das Bild von B also nicht enthalten. Folglich gibt es ein uk ∈ Rm mit
Axk +Buk 6∈ Vk und wir setzen xk+1 = Axk +Buk.

Wir konstruieren nun die gesuchte Abbildung F aus den Vektoren x1, . . . , xn. Da die xi
linear unabhängig sind, ist die Matrix X = (x1 . . . xn) invertierbar, und wir können
F := UX−1 für U = (u1, . . . , un) ∈ Rm×n definieren, wobei die ui für i = 1, . . . , n − 1 die
in der obigen Rekursion verwendeten Kontrollvektoren sind und wir un := 0 ∈ Rm setzen.
Damit gilt Fxi = ui und deswegen (A+BF )xi = xi+1 für i = 1, . . . , n− 1. Wegen B = x1

folgt somit
(B (A+BF )B . . . (A+BF )n−1B) = X,

also hat (B (A+BF )B . . . (A+BF )n−1B) den Rang n, weswegen das Paar (A+BF,B)
kontrollierbar ist.

Mit diesem Resultat lassen sich nun die Sätze 3.24 und 3.25 leicht auf beliebige Kontroll-
dimensionen verallgemeinern.
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Satz 3.28 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈ Rn×m.
Dann sind die folgenden zwei Eigenschaften äquivalent.

(i) Das Paar (A,B) ist kontrollierbar.

(ii) Jedes Polynom der Form χ(z) = zn − βnzn−1 − · · · − β2z − β1 mit β1, . . . , βn ∈ R ist
vorgebbar.

Beweis: (i) ⇒ (ii): Sei (A,B) kontrollierbar und χ gegeben. Seien F ∈ Rn×m und B ∈
Rn×1 die Matrizen aus Lemma 3.27 für ein v ∈ Rm mit Bv 6= 0 (beachte, dass solch ein
v ∈ Rn existiert, da (A,B) kontrollierbar ist, also B 6= 0 ist). Dann ist das Paar (A+BF,B)
kontrollierbar und aus Satz 3.24 folgt die Existenz eines Feedbacks F1 ∈ R1×n, so dass

χA+BF+BF1
= χ

ist. Wegen
A+BF +BF1 = A+BF +BvF1 = A+B(F + vF1)

ist also F = F + vF1 das gesuchte Feedback.

(ii) ⇒ (i): Völlig analog zum Beweis von Satz 3.24.

Satz 3.29 Betrachte ein Kontrollsystem (1.3) mit Matrizen A ∈ Rn×n und B ∈ Rn×m.
Seien A1 ∈ Rd×d, A2 ∈ Rd×(n−d), A3 ∈ R(n−d)×(n−d) und B1 ∈ Rd×m die Matrizen aus
Lemma 2.14 mit der Konvention, dass A1 = A und B1 = B ist, falls (A,B) kontrollierbar
ist.

Dann sind die vorgebbaren Polynome von (1.3) gerade die Polynome der Form χ = χkχu,
wobei χk ein beliebiges normiertes Polynom vom Grad d und χu das charakteristische
Polynom der Matrix A3 ist, mit der Konvention χu = 1 falls d = n.

Insbesondere gilt: Das Stabilisierungsproblem ist genau dann lösbar, wenn alle Eigenwerte
von A3 negativen Realteil haben. In diesem Fall nennen wir das Paar (A,B) stabilisierbar.

Beweis: Völlig analog zum Beweis von Satz 3.25.

Bemerkung 3.30 Satz 3.29 wird oft als Polverschiebungssatz bezeichnet, da die Nullstel-
len des charakteristischen Polynoms in der Regelungstechnik als “Pole“ bezeichnet werden
(den Grund erklärt Bemerkung 5.15) und dieser Satz gerade angibt wie man diese Null-
stellen durch geeignete Wahl des Feedbacks

”
verschieben“ kann.

Wir können die wesentlichen Ergebnisse über das Stabilisierungsproblem wie folgt schema-
tisch darstellen:



36 KAPITEL 3. STABILITÄT UND STABILISIERUNG

(A,B) ist kontrollierbar

m (Satz 3.28)

Jedes normierte Polynom vom Grad n ist vorgebbar

⇓

Es gibt ein vorgebbares
Polynom, dessen Nullstellen
alle negativen Realteil haben

⇔
(Lemma 3.23)

(A,B) ist
stabilisierbar

m (Satz 3.29)

(A,B) ist kontrollierbar
oder

(A,B) ist nicht kontrollierbar und A3 aus Lemma 2.14 hat nur
Eigenwerte mit negativem Realteil

Ersetzt man überall “negativer Realteil” durch “Betrag kleiner 1”, so gelten diese Aussagen
analog für zeitdiskrete Systeme.

3.7 Lokale Stabilisierung nichtlinearer Systeme

In diesem Abschnitt zeigen wir, dass ein lineares stabilisierendes Feedback zur lokalen
Stabilisierung eines nichtlinearen Kontrollsystems verwendet werden kann. Grundlage dafür
ist der folgende Satz aus der Theorie gewöhnlicher Differentialgleichungen.

Satz 3.31 Betrachte eine nichtlineare Differentialgleichung

ẋ = g(x) (3.11)

mit Gleichgewicht x∗ ∈ Rn und stetig differenzierbarem Vektorfeld g : Rn → Rn. Betrachte
zudem die Linearisierung

ẏ = Ây mit Â =
d

dx
g(x∗). (3.12)

Dann ist das Gleichgewicht x∗ lokal exponentiell stabil für Gleichung (3.11) genau dann,
wenn das Gleichgewicht y∗ = 0 global exponentiell stabil für Gleichung (3.12) ist.
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Ein Beweis findet sich z.B. in [4, Satz 8.8].

Betrachten wir nun das nichtlineare Kontrollsystem

ẋ = f(x, u)

und seine Linearisierung

ẏ = Ay +Bv mit A =
∂

∂x
f(x∗, u∗), B =

∂

∂u
f(x∗, u∗).

Aus den Überlegungen in Kapitel 1 folgt, dass f , A und B die Beziehung f(x, u) ≈ A(x−
x∗) + B(u − u∗) verbunden sind. Folglich müssen y und v als y = x − x∗ und v = u − u∗
gewählt werden.

Sei nun F ein stabilisierendes lineares Feedback für das lineare Kontrollsystem. Für das
lineare System errechnet sich die Kontrolle dann als v = Fu, was für u und x die Beziehung
u = u∗+F (x−x∗) ergibt. Setzen wir diese in f ein, so erhalten wir die Differentialgleichung

ẋ = f(x, u∗ + F (x− x∗)) =: g(x). (3.13)

Die Linearisierung dieser Gleichung ist gegeben durch

ẏ = Ây

mit

Â =
d

dx
g(x∗) =

d

dx

∣∣∣∣
x=x∗

f(x, u∗ + F (x− x∗)) =
∂

∂x
f(x∗, u∗) +

∂

∂u
f(x∗, u∗)F = A+BF.

Da F das lineare System exponentiell stabilisiert, ist y∗ = 0 folglich exponentiall stabil für
(3.12) und aus Satz 3.31 folgt, dass x∗ ein lokal exponentiell stabiles Gleichgewicht für das
nichtlineare System mit linearem Feedback (3.13) ist. Das stabilisierende lineare Feedback
stabilisiert das nichtlineare System also lokal in x∗.

Beispiel 3.32 Betrachte das nichtlineare invertierte Pendel (1.5)

ẋ1(t) = x2(t)

ẋ2(t) = −kx2(t) + g sinx1(t) + u(t) cosx1(t)

ẋ3(t) = x4(t)

ẋ4(t) = u(t)

 =: f(x(t), u(t)).

Die Linearisierung in (x∗, u∗) = (0, 0) ergibt hier

A =


0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

 und B =


0
1
0
1


vgl. (1.6). In den Übungen wurde ein stabilisierendes lineares Feedback F : R4 → R für
dieses lineare System berechnet. Die zugehörige Matrix F ∈ R1×4 lautet

F =
(
− g + k2

g2
− 4k

g
− 6− g, − k

g2
− 4

g
− 4 + k,

1

g
,
k

g2
+

4

g

)
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0 2 4 6 8 10
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

x
3

x
4

x
1

x
2

Abbildung 3.1: Lösungstrajektorie des nichtlinearen Pendels mit stabilisierendem linearem
Feedback

Abbildung (3.1) zeigt, dass dieses Feedback auch das nichtlineare Pendel stabilisiert. Die
Abbildung zeigt die Komponenten der Trajektorie x(t, x0, F ) für x0 = (1/2, 0, 0, 0)T .



Kapitel 4

Beobachtbarkeit und Beobachter

Die im letzten Kapitel vorgestellte Lösung des Stabilisierungsproblems geht davon aus,
dass der gesamte Vektor x(t) zur Verfügung steht, um den Kontrollwert u(t) = Fx(t) zu
berechnen. Dies ist in der Praxis im Allgemeinen nicht der Fall. Dort kann man nur davon
ausgehen, gewisse von x(t) abhängige Werte y(t) = C(x(t)) ∈ Rk zu kennen, aus denen
u(t) dann berechnet werden muss. Da wir uns in diesem Teil der Vorlesung mit linearen
Systemen beschäftigen, nehmen wir wieder an, dass die Funktion C : Rn → Rk linear ist,
also durch eine Matrix C ∈ Rk×n gegeben ist.

Definition 4.1 Ein lineares Kontrollsystem mit Ausgang ist gegeben durch1 die Gleichun-
gen

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (4.1)

mit A ∈ Rn×n, B ∈ Rn×m und C ∈ Rk×n.

In diesem Kapitel werden wir Bedingungen herleiten, unter denen das Stabilisierungspro-
blem für (4.1) lösbar ist und zeigen, wie man den Feedback-Regler in diesem Fall konstru-
ieren muss.

4.1 Beobachtbarkeit und Dualität

Die wichtigste Frage bei der Analyse von (4.1) ist, wie viel “Information” in dem Ausgang
y(t) = Cx(t) enthalten ist. Dies wird durch die folgenden Definitionen formalisiert.

Definition 4.2 (i) Zwei Zustände x1, x2 ∈ Rn heißen unterscheidbar, falls ein u ∈ U und
ein t ≥ 0 existiert mit

Cx(t, x1, u) 6= Cx(t, x2, u).

(ii) Das System (4.1) heißt beobachtbar, falls alle Zustände x1, x2 ∈ Rn mit x1 6= x2 unter-
scheidbar sind.

1Manchmal wird auch die Variante y(t) = Cx(t)+Du(t) mit D ∈ Rk×m betrachtet. Die hier betrachtete
Form erhält man dann durch die Wahl D = 0.

39
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Das folgende Lemma zeigt, dass die Unterscheidbarkeit wegen der Linearität des Systems
einfacher ausgedrückt werden kann.

Lemma 4.3 Zwei Zustände x1, x2 ∈ Rn sind genau dann unterscheidbar, wenn ein t ≥ 0
existiert mit

Cx(t, x1 − x2, 0) 6= 0.

Beweis: Aus dem Superpositionsprinzip (1.15) folgt die Gleichung

x(t, x1, u)− x(t, x2, u) = x(t, x1 − x2, 0),

woraus wegen der Linearität von C sofort die Behauptung folgt.

Aus diesem Lemma folgt, dass die Beobachtbarkeit von (4.1) nicht von u und damit nicht
von B abhängt. Falls das System (4.1) beobachtbar ist, nennen wir daher das Paar (A,C)
beobachtbar.

Zudem motiviert das Lemma die folgende Definition.

Definition 4.4 (i) Wir nennen x0 ∈ Rn beobachtbar, falls ein t ≥ 0 existiert mit

Cx(t, x0, 0) 6= 0

und unbeobachtbar auf [0, t], falls

Cx(s, x0, 0) = 0

für alle s ∈ [0, t].

(ii) Wir definieren die Mengen der unbeobachtbaren Zustände auf [0, t] für t > 0 durch

N (t) := {x0 ∈ Rn |Cx(s, x0, 0) = 0 für alle s ∈ [0, t]}

und die Menge der unbeobachtbaren Zustände durch

N :=
⋂
t>0

N (t).

Das folgende Lemma zeigt die Struktur dieser Mengen auf.

Lemma 4.5 Für alle t > 0 gilt

N = N (t) =
n−1⋂
i=0

ker(CAi).

Insbesondere ist N also ein linearer Unterraum, der zudem A-invariant ist, also AN ⊆ N
erfüllt.
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Beweis: Ein Zustand x0 ∈ Rn liegt genau dann in N (t), wenn gilt

0 = Cx(s, x0, 0) = CeAsx0 für alle s ∈ [0, t]. (4.2)

Sei nun x0 ∈
⋂n−1
i=0 ker(CAi). Dann gilt mit dem Satz von Cayley-Hamilton CAix0 = 0 für

alle i ∈ N0. Aus der Reihendarstellung von eAs folgt damit CeAsx0 = 0 für alle s ≥ 0 und
daher (4.2), also x0 ∈ N (t).

Sei umgekehrt x0 ∈ N (t). Dann gilt nach (4.2) CeAsx0 = 0. Durch i-maliges Ableiten
dieses Ausdrucks in s = 0 folgt

CAix0 = 0, i ∈ N0

und damit insbesondere x0 ∈ kerCAi, i = 0, . . . , n− 1. Also folgt x0 ∈
⋂n−1
i=0 ker(CAi).

Die A-Invarianz folgt mit dem Satz von Cayley-Hamilton aus der Darstellung von N .

Offenbar gibt es hier eine gewisse Ähnlichkeit mit der Kontrollierbarkeit, speziell mit den
Mengen R(t) und R. Wir zeigen nun, dass dies mehr als eine oberflächliche Ähnlichkeit
ist, wenn wir ein geeignetet definiertes duales System einführen.

Definition 4.6 Zu einem durch (A,B,C) gegebenen Kontrollsystem (4.1) definieren wir
das duale System durch die Matrizen (AT , CT , BT ). Ausgeschrieben lautet das duale System
zu

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rk

also

ẋ(t) = ATx(t) + CTu(t), y(t) = BTx(t), x(t) ∈ Rn, u(t) ∈ Rk, y(t) ∈ Rm.

In Worten ausgedrückt erhält man das duale System also durch Transponieren und Ver-
tauschen von B und C, also von Eingangs- und Ausgangsmatrix.

Satz 4.7 Für ein durch (A,B,C) gegebenes Kontrollsystem (4.1) und das zugehörige
durch (AT , CT , BT ) gegebene duale System definiere

R = 〈A | imB〉 N =
⋂n−1
i=0 ker(CAi)

RT = 〈AT | imCT 〉 N T =
⋂n−1
i=0 ker(BT (AT )i).

Dann gilt
RT = N⊥ und N T = R⊥.

Insbesondere gilt

(A,B,C) kontrollierbar ⇐⇒ (AT , CT , BT ) beobachtbar

(A,B,C) beobachtbar ⇐⇒ (AT , CT , BT ) kontrollierbar.
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Beweis: Betrachte die Matrix

M =


C
CA

...
CAn−1

 ∈ R(n·k)×n.

Für diese Matrix gilt mit Lemma 4.5 offenbar

N = kerM.

Andererseits ist

MT = (CT ATCT . . . (AT )n−1CT ) ∈ Rn×(n·k)

gerade die Erreichbarkeitsmatrix des dualen Systems, vgl. Definition 2.10, weswegen RT =
imMT gilt. Aus der linearen Algebra ist bekannt:

imMT = (kerM)⊥.

Hieraus folgt die erste Behauptung wegen

RT = imMT = (kerM)⊥ = N⊥.

Durch Vertauschen der beiden Systeme folgt analogR = (N T )⊥, woraus die zweite Aussage
wegen

R⊥ =
(

(N T )⊥
)⊥

= N T

folgt

Wir können damit alle Aussagen zur Kontrollierbarkeit auf die Beobachtbarkeit übertragen
und formulieren dies explizit für Korollar 2.13 und Lemma 2.14.

Definition 4.8 Die Matrix (CT , ATCT . . . (AT )n−1CT ) ∈ Rn×(k·n) heißt Beobachtbar-
keitsmatrix des Systems (1.3).

Korollar 4.9 Das System (4.1) ist genau dann beobachtbar, wenn

rg(CT , ATCT . . . (AT )n−1CT ) = n

ist.

Beweis: Folgt aus Korollar 2.13 angewendet auf das duale System.

Wir formulieren nun noch das Analogon zu der Zerlegung

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

0

)
aus Lemma 2.14.
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Lemma 4.10 Sei (A,C) nicht beobachtbar, d.h., dimN = l > 0. Dann existiert ein
invertierbares T ∈ Rn×n, so dass Ã = T−1AT , B̃ = T−1B und C̃ = CT die Form

Ã =

(
A1 A2

0 A3

)
, B̃ =

(
B1

B2

)
, C̃ = (0 C2)

mit A1 ∈ Rl×l, A2 ∈ Rl×(n−l), A3 ∈ R(n−l)×(n−l), B1 ∈ Rl×m, B2 ∈ R(n−l)×m und C2 ∈
Rk×(n−l) besitzen, wobei das Paar (A3, C2) beobachtbar ist.

Beweis: Lemma 2.14 angewendet auf das duale System (AT , CT ) liefert T̂ mit

T̂−1AT T̂ =

(
Â1 Â2

0 Â3

)
, T̂−1CT =

(
Ĉ1

0

)
.

Also folgt mit S = (T̂ T )−1

S−1AS =

(
ÂT1 0

ÂT2 ÂT3

)
, CS =

(
ĈT1 0

)
.

Durch eine weitere Koordinatentransformation

Q =

(
0 IdRn−l

IdRl 0

)
folgt die behauptete Zerlegung mit T = SQ und

A1 = ÂT3 , A2 = ÂT2 , A3 = ÂT1 , C2 = ĈT1 .

Als Alternative hier noch ein direkter Beweis, der ohne Lemma 2.14 auskommt:

Es sei v1, . . . , vl eine Basis von N , also N = 〈v1, . . . , vl〉, die wir durch w1, . . . , wn−l zu einer Basis
des Rn ergänzen. Definiere nun T := (v1, . . . , vl, w1, . . . , wn−l). Bezeichnen wir mit ei wie üblich den
i-ten Einheitsvektor im Rn, so gilt Tei = vi, i = 1, . . . , l, Tei = wi−l, i = l + 1, . . . , n, T−1vi = ei,
i = 1, . . . , l und T−1wi = ei+l, i = 1, . . . , n− l.
Wir zeigen zunächst die Struktur von Ã. Angenommen, ein Eintrag im 0-Block von Ã ist ungleich
Null. Dann gilt

Ãei 6∈ 〈e1, . . . , el〉 = T−1N
für ein i ∈ {1, . . . , l}. Andererseits folgt aus der A-Invarianz von N

Ãei = T−1ATei = T−1Avi ∈ T−1N ,

was ein Widerspruch ist.

Die Struktur von C̃ folgt aus

N =

n−1⋂
i=0

ker(CAi) ⊆ kerC.

Es muss also vi ∈ kerC gelten und damit C̃ei = CTei = Cvi = 0. Also müssen die ersten l Spalten
von C̃ gleich 0 sein.
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Es bleibt, die Beobachtbarkeit von (A3, C2) zu zeigen. Für jedes x̃ ∈ Rn−l, x̃ 6= 0 gilt

C2A
i
3x̃ = C̃Ãi

(
0
x̃

)
= CAiT

(
0
x̃

)
,

wobei wir in der ersten Gleichung die Struktur von Ã und C̃ ausgenutzt haben. Wegen

w := T

(
0
x̃

)
/∈ N

existiert nun ein i ∈ {0, . . . , n − 1} mit CAiw 6= 0 und damit C2A
i
3x̃ 6= 0. Da x̃ 6= 0 beliebig war,

folgt
n−1⋂
i=0

ker(C2A
i
3) = {0},

also die Beobachtbarkeit von (A3, C2).

Bemerkung 4.11 Alle Aussagen in diesem Abschnitt gelten auch für zeitdiskrete Syste-
me. Die einzige Änderung ergibt sich in Lemma 4.5, das — analog zur Kontrollierbarkeit,
vgl. Bemerkung 2.17 — im Zeitdiskreten nur für t ≥ n gilt.

4.2 Entdeckbarkeit

Wir haben gesehen, dass (vollständige) Kontrollierbarkeit zwar hinreichend, nicht jedoch
notwendig zur Lösung des Stabilisierungsproblems ist. Notwendig ist nur, dass das Paar
(A,B) stabilisierbar ist, was nach Satz 3.29 genau dann der Fall ist, wenn alle Eigenwerte
des unkontrollierbaren Anteils A3 der Matrix A negative Realteile besitzen.

Ähnlich verhält es sich mit der Beobachtbarkeit. Um das Stabilisierungsproblem für das
System (4.1) zu lösen, braucht man die Beobachtbarkeit nicht. Es reicht eine schwächere
Bedingung, die durch die folgende Definition gegeben ist.

Definition 4.12 Das System (4.1) heißt entdeckbar (oder auch asymptotisch beobachtbar),
falls

lim
t→∞

x(t, x0, 0) = 0 für alle x0 ∈ N .

Dies bedeutet, dass die Lösungen für unbeobachtbare Anfangswerte und u ≡ 0 bereits gegen
0 konvergieren. Anschaulich gesprochen wird die Information über diese Anfangswerte für
das Stabilisierungsproblem nicht benötigt, da die zugehörigen Lösungen ja bereits gegen 0
konvergieren, also asymptotisch (und damit auch exponentiell) stabil sind.

Das folgende Lemma charakterisiert die Entdeckbarkeit für die Zerlegung aus Lemma 4.10.

Lemma 4.13 System (4.1) ist genau dann entdeckbar, wenn die Matrix A1 aus Lemma
4.10 Hurwitz ist, also nur Eigenwerte mit negativem Realteil besitzt.
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Beweis: Beachte zunächst, dass die Entdeckbarkeit unter Koordinatenwechseln erhalten
bleibt, wir können also alle Rechnungen in der Basis von Lemma 4.10 durchführen.

In der Basis von Lemma 4.10 ist N gerade durch

N =

{
x0 ∈ Rn

∣∣∣∣x0 =

(
x1

0

0

)
, x1

0 ∈ Rl
}

gegeben. Aus der Form der Matrix Ã folgt damit, dass alle Lösungen zu Anfangswerten
x0 ∈ N als

x(t, x0, 0) = eÃtx0 =

(
eA1tx1

0

0

)
geschrieben werden können.

Aus der Entdeckbarkeit folgt nun x(t, x0, 0) → 0 für alle x ∈ N , also eA1tx1
0 → 0 für alle

x1
0 ∈ Rl. Dies ist nur möglich, wenn A1 Hurwitz ist.

Umgekehrt folgt aus der Hurwitz-Eigenschaft von A1 die Konvergenz eA1tx1
0 → 0 für alle

x1
0 ∈ Rl, also x(t, x0, 0)→ 0 für alle x ∈ N und damit die Entdeckbarkeit.

Der folgende Satz zeigt, dass die Entdeckbarkeit gerade die duale Eigenschaft zur Stabili-
sierbarkeit ist.

Satz 4.14 (A,C) ist entdeckbar genau dann, wenn (AT , CT ) stabilisierbar ist.

Beweis: Wir bezeichnen die Komponenten der Zerlegung aus Lemma 4.10 angewendet auf
(A,C) mit A1, A2, A3, C2 und die Komponenten der Zerlegung aus Lemma 2.14 angewendet
auf (AT , CT ) mit Â1, Â2, Â3, Ĉ1. Aus dem Beweis von Lemma 4.10 folgt mit dieser Notation
gerade A1 = ÂT3 .

Nach Lemma 4.13 folgt, dass Entdeckbarkeit von (A,C) gerade äquivalent zur Hurwitz-
Eigenschaft von A1 ist. Andererseits folgt aus Satz 3.29, dass (AT , CT ) genau dann stabili-
sierbar ist, wenn Â3 Hurwitz ist. Da die Eigenwerte von Â3 und ÂT3 = A1 übereinstimmen,
folgt die behauptete Äquivalenz.

Bemerkung 4.15 Um die Aussagen dieses Abschnitts ins Zeitdiskrete zu übertragen,
müssen lediglich die Eigenwertbedingungen von “negativ” auf “Betrag kleiner als 1” geän-
dert werden.

4.3 Dynamische Beobachter

Ein naheliegender Ansatz zur Lösung des Stabilisierungsproblems für (4.1) ist die Wahl
u(t) = Fy(t). Dies kann funktionieren (vgl. Beispiel 3.19, wo wir C = (0 1) und C = (1 0)
betrachtet haben), muss aber nicht, wie das kontrollierbare und beobachtbare System (4.1)
mit

A =

(
0 1
0 0

)
, B =

(
0
1

)
, und C = (1 0)
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zeigt, vgl. die Übungen. Tatsächlich ist dieses System nicht einmal dann stabilisierbar,
wenn F (y(t)) eine beliebige stetige Funktion F : R→ R sein darf.

Wir wollen daher nun eine Methode zur Stabilisierung entwickeln, die immer funktioniert,
wenn (4.1) stabilisierbar und entdeckbar ist. Die Methode funktioniert für ein durch die
Matrizen (A,B,C) gegebenes System (4.1) wie folgt:

(1) Entwerfe ein stabilisierendes lineares Feedback F für (A,B)

(2) Entwerfe einen Algorithmus, der aus den gemessenen Ausgängen y(s), s ∈ [0, t], einen
Schätzwert z(t) ≈ x(t) ermittelt

(3) Regle das System (4.1) mittels u(t) = Fz(t).

Schritt (1) können wir mit den Methoden aus Kapitel 3 bereits lösen. In diesem Abschnitt
werden wir Schritt (2) betrachten und im folgenden Abschnitt dann beweisen, dass die
Methode mit den Schritten (1)–(3) tatsächlich funktioniert.

Der Grund dafür, dass das obige Beispiel nicht stabilisiert werden kann, liegt darin, dass
Beobachtbarkeit nicht verlangt, dass Cx0 6= 0 ist für x0 6= 0. Es wird lediglich verlangt,
dass Cx(t; t0, x0, 0) 6= 0 für t > 0. Um zu erkennen, dass der Schätzwert z(t) 6= 0 sein
sollte (und das Feedback reagieren muss), muss der Algorithmus in Schritt (2) also die
Ausgangswerte über einen längeren Zeitraum verwenden, nicht nur den aktuellen Wert.
Dies erreichen wir, indem wir den Schätzwert z(t) als Lösung eines geeignet formulierten
Kontrollsystem definieren, in dem neben der Kontrollfunktion u(t) der Ausgang y(t) von
(4.1) eine weitere Eingangsfunktion bildet. Die folgende Definition formalisiert diese Idee.

Definition 4.16 Ein dynamischer Beobachter (oder auch Luenberger-Beobachter) für (4.1)
ist ein lineares Kontrollsystem der Form

ż(t) = Jz(t) + Ly(t) +Ku(t) (4.3)

mit J ∈ Rn×n, L ∈ Rn×k, K ∈ Rn×m, so dass für alle Anfangswerte x0, z0 ∈ Rn und alle
Kontrollfunktionen u ∈ U für die Lösungen x(t, x0, u) und z(t, z0, u, y) von (4.1), (4.3) mit
y(t) = Cx(t, x0, u) die Abschätzung

‖x(t, x0, u)− z(t, z0, u, y)‖ ≤ ce−σt‖x0 − z0‖

für geeignete Konstanten c, σ > 0 gilt.

In der Praxis kann System (4.3) z.B. numerisch gelöst werden, um die Werte z(t) zu
bestimmen.

Der folgende Satz zeigt, wann ein dynamischer Beobachter existiert; im Beweis wird dieser
explizit konstruiert.

Satz 4.17 Ein dynamischer Beobachter für (4.1) existiert genau dann, wenn das System
entdeckbar ist.
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Beweis: “⇐” Da (4.1) entdeckbar ist, ist (AT , CT ) stabilisierbar. Wir können also ein
lineares Feedback F̂ ∈ Rk×n finden, so dass AT + CT F̂ Hurwitz ist. Mit G = F̂ T ist dann
auch A+GC = (AT + CT F̂ )T Hurwitz.

Wir wählen nun in (4.3) J = A+GC, L = −G und K = B, also

ż(t) = (A+GC)z(t)−Gy(t) +Bu(t).

Schreiben wir kurz x(t) = x(t, x0, u), z(t) = z(t, z0, u, y) und e(t) = z(t)− x(t), so gilt für
e(t) die Differentialgleichung

ė(t) = ż(t)− ẋ(t)

= (A+GC)z(t)−Gy(t) +Bu(t)−Ax(t)−Bu(t)

= (A+GC)z(t)−GCx(t)−Ax(t)

= (A+GC)(z(t)− x(t)) = (A+GC)e(t)

Aus der Hurwitz-Eigenschaft von A+GC folgt damit

‖e(t)‖ ≤ ce−σt‖e(0)‖

für geeignetes c, σ > 0, was wegen e(t) = z(t) − x(t) und e(0) = z0 − x0 gerade die
gewünschte Abschätzung liefert.

“⇒” Sei x0 ∈ N , also y(t) = Cx(t, x0, 0) = 0 für alle t ≥ 0. Für z0 = 0 gilt damit
z(t, z0, 0, y) = z(t, 0, 0, 0) = 0. Damit folgt aus der Eigenschaft des dynamischen Beobach-
ters

‖x(t, x0, 0)‖ = ‖x(t, x0, 0)− z(t, z0, 0, y)‖ ≤ ce−σt‖x0 − z0‖ = ce−σt‖x0‖ → 0

für t→∞. Also gilt x(t, x0, 0)→ 0 und damit die Entdeckbarkeit.

4.4 Lösung des Stabilisierungsproblems mit Ausgang

Wir wollen nun die im vorherigen Abschnitt angegebene Methode zur Stabilisierung ana-
lysieren und zeigen, dass diese zum Erfolg führt, wenn man in Schritt (2) den dynamischen
Beobachter (4.3) verwendet.

Aus den Schritten (1)–(3) unter Verwendung von (4.3) in Schritt (2) ergibt sich die Feed-
back-Gleichung

u(t) = Fz(t), ż(t) = Jz(t) + Ly(t) +KFz(t). (4.4)

Diese Form von Feedback nennt man dynamisches Ausgangsfeedback, da u(t) aus dem
Ausgang y(t) = Cx(t) berechnet wird und das Feedback eine “interne” Dynamik besitzt,
die gerade durch die Differentialgleichung für z gegeben ist2.

2Im Gegensatz dazu nennt man das in Kapitel 3 behandelte Feedback u(t) = Fx(t) statisches Zustands-
feedback.
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Definition 4.18 Ein dynamisches Ausgangsfeedback (4.4) löst das Stabilisierungsproblem
mit Ausgang, wenn das durch Einsetzen von (4.4) entstehende System von Differential-
gleichungen

ẋ(t) = Ax(t) +BFz(t)

ż(t) = Jz(t) + LCx(t) +KFz(t)

mit Lösungen
(
x(t)
z(t)

)
∈ R2n exponentiell stabil ist.

Satz 4.19 Gegeben sei ein Kontrollsystem (4.1) mit Matrizen (A,B,C). Dann ist das
Stabilisierungsproblem mit Ausgang genau dann im Sinne von Definition 4.18 lösbar, wenn
(A,B) stabilisierbar und (A,C) entdeckbar ist.

In diesem Fall ist (4.4) mit dem im Beweis von Satz 4.17 konstruierten dynamischen Beob-
achter (4.3) und einem stabilisierendes Feedback F ∈ Rm×n für (A,B) ein stabilisierendes
dynamisches Feedback.

Beweis: “⇐”: Es sei (A,B) stabilisierbar und (A,C) entdeckbar. Es sei F ∈ Rm×n ein
stabilisierendes Feedback für (A,B) und (4.3) der im Beweis von Satz 4.17 konstruierte
dynamischen Beobachter. Dann ergibt sich das mittels (4.4) geregelte System zu(

ẋ(t)
ż(t)

)
=

(
A BF
LC J +KF

)(
x(t)
z(t)

)

=

(
A BF
−GC A+GC +BF

)(
x(t)
z(t)

)

= T−1

(
A+BF BF

0 A+GC

)
T

(
x(t)
z(t)

)
.

mit

T =

(
IdRn 0
−IdRn IdRn

)
, T−1 =

(
IdRn 0
IdRn IdRn

)
Da die exponentielle Stabilität unter Koordinatentransformationen erhalten bleibt, reicht
es nun nachzuweisen, dass die Matrix in der letzten Zeile der Rechnung Hurwitz ist. Für
Blockdreiecksmatrizen sind die Eigenwerte nun aber gerade gleich den Eigenwerten der
Diagonalblöcke A + BF und A + GC. Da A + BF nach Wahl von F Hurwitz ist und
A+GC nach Wahl von G im Beweis von Satz 4.17 ebenfalls Hurwitz ist, hat obige Matrix
also nur Eigenwerte mit negativem Realteil und ist damit Hurwitz.

“⇒”: Mit der Koordinatentransformation T aus Lemma 2.14 erhält man für das transfor-
mierte System die Gleichungen

ẋ1(t) = A1x
1(t) +A2x

2(t) +B1Fz(t)

ẋ2(t) = A3x
2(t)

ż(t) = Jz(t) + LCx(t) +KFz(t)
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mit x(t) = T
(
x1(t)
x2(t)

)
. Nehmen wir nun an, dass (A,B) nicht stabilisierbar ist. Dann besitzt

A3 Eigenwerte mit positivem Realteil, der Ursprung ist also nicht asymptotisch stabil für
die Gleichung ẋ2(t) = A3x

2(t) und es gibt daher einen Anfangswert x2
0 mit x2(t, x2

0) 6→ 0.
Wählen wir also

x0 = T

 x1
0

x2
0

z0

 ∈ R2n

mit x1
0, z0 beliebig, so gilt x(t, x0, F z) 6→ 0 für jede Wahl des dynamischen Feedbacks. Dies

widerspricht der Tatsache, dass das Stabilisierungsproblem lösbar ist, das Paar (A,B) ist
also stabilisierbar.

Die Entdeckbarkeit von (A,C) folgt analog zum Beweis von “⇒” in Satz 4.17.

Bemerkung 4.20 Die Konstruktionen und Aussagen in diesem und dem vorhergehen-
den Abschnitt gelten mit den offensichtlichen Änderungen analog für zeitdiskrete Syste-
me.
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Kapitel 5

Analyse im Frequenzbereich

Ein nicht unerheblicher Teil der modernen Kontroll- und Systemtheorie ist aus der Elek-
trotechnik heraus entstanden, in der das Verhalten von Schaltungen mit Eingangs- und
Ausgangssignalen betrachtet wird. Als Beispiel kann hierbei z.B. ein Verstärker dienen,
der ein Eingangssignal (von einem Mikrophon, einem Handy etc.) in ein Ausgangssignal
umwandelt, das dann an die Lautsprecher geschickt wird. Ein anderes Beispiel ist ein (ana-
loges) Radio, in dem das Eingangssignal (die elektromagnetischen Wellen) in ein hörbares
Ausgangssignal umgewandelt wird. Stellen wir uns den Verstärker bzw. das Radio als Kon-
trollsystem vor, so können wir das Eingangssignal gemäß mit u und das Ausgangssignal
mit y bezeichnen. Dies ändert die Interpretation dieser Funktionen: u(t) ist nun ein von
außen kommendes Signal (statt einer von uns wählbaren Kontrollfunktion) und y(t) ist ein
Ausgangssignal, das bestimmten Kriterien genügen soll (statt einer Messgröße). Es ändert
aber zunächst nichts an der mathematischen Darstellung des Zusammenhangs zwischen u
und y über das System (4.1). Der Anfangswert wird bei dieser Betrachtung üblicherweise
als x0 = 0 gewählt. Man geht also davon aus, dass sich das System bis zur Zeit t = 0 in der
Ruhelage 0 befindet und ab dann durch das Eingangssignal u(t), t ≥ 0, beeinflusst wird.

Die beiden genannten Anwendungsbeispiele zeigen, dass Frequenzen eine wichtige Rolle
bei dieser Betrachtungsweise spielen. Aus diesem Grunde werden u und y bei dieser Art
der Betrachtung nicht als Funktionen der Zeit sondern der Frequenz dargestellt. Zu diesem
Zweck betrachten wir zunächst die sogenannte Laplace-Transformation.

5.1 Laplace-Transformation

Es sei K = R oder C und R+
0 = [0,∞). Wir bezeichnen mit L1

loc(R
+
0 ,Km) die Menge

aller Funktionen u : R+
0 → Km, die auf jedem kompakten Intervall in R+

0 Lebesgue-
integrierbar sind und mit L1(R+

0 ,Km) die Menge der Funktionen u : R+
0 → Km, die auf

ganz R+
0 Lebesgue-integrierbar sind. Für ein u ∈ L1

loc(R
+
0 ,Km) und ein α ∈ R definiere

uα : R+
0 → Km mittels uα(t) := u(t)e−αt. Dann definieren wir den Raum der α-exponentiell

integrierbaren Funktionen als

Eα(Km) := {u ∈ L1
loc(R

+
0 ,K

m) |uα ∈ L1(R+
0 ,K

m)}.

51
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Beispiel 5.1 Die Funktion u(t) = et liegt als stetige Funktion offenbar in L1
loc(R

+
0 ,R),

wegen ∫ t

0
eτdτ = et − 1→∞

für t→∞ liegt sie aber nicht in L1(R+
0 ,R). Für α > 1 gilt∫ t

0
uα(τ)dτ =

∫ t

0
eτe−ατdτ =

1

1− α(e(1−α)t − 1)→ 1

α− 1

für t→∞. Damit existiert zunächst das unendliche Riemann-Integral und wegen uα(t) ≥ 0
auch das unendliche Lebesgue-Integral. Folglich liegt u(t) = et in Eα(R) für alle α > 1.

Definition 5.2 Die Funktionen in Eα(Km) heißen Laplace-transformierbar. Die (einseitige)
Laplace-Transformation für ein u ∈ Eα(Km) ist für alle s ∈ Cα := {s ∈ C |Re(s) > α}
definiert als

û(s) := (Lu)(s) :=

∫ ∞
0

u(t)e−stdt.

Die Laplace-Transformierte û = Lu ist damit eine Funktion von Cα nach Cm.

Beispiel 5.3 Laplace-Transformationen einiger Funktionen von R+
0 nach R mit a ∈ C,

ω ∈ R, m ∈ N0:

(a) u(t) = 1 ⇒ û(s) =
1

s
für Re(s) > 0

(b) u(t) = sin(ωt) ⇒ û(s) =
ω

ω2 + s2
für Re(s) > 0

(c) u(t) = cos(ωt) ⇒ û(s) =
s

ω2 + s2
für Re(s) > 0

(d) u(t) = eat ⇒ û(s) =
1

s− a für Re(s) > Re(a)

(e) u(t) = eat sin(ωt) ⇒ û(s) =
ω

ω2 + (s− a)2
für Re(s) > Re(a)

(f) u(t) = eat cos(ωt) ⇒ û(s) =
s− a

ω2 + (s− a)2
für Re(s) > Re(a)

(g) u(t) =
tm

m!
eat ⇒ û(s) =

1

(s− a)m+1
für Re(s) > Re(a)

Bemerkung 5.4 Wenngleich das Integral in der Laplace-Transformation nur für die hier
angegebenen Werte von Re(s) definiert ist, ist der berechnete Ausdruck für einen größeren
Bereich von Werten von s definiert. In (d) beispielsweise ist û(s) für alle s 6= a definiert.
Im Folgenden werden wir für û stets alle Argumente s ∈ C zulassen, für die der berechnete
Ausdruck definiert ist.
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Die Umkehrung der Laplace-Transformation ist gegeben durch

(L−1û)(t) :=
1

2πi

∫ β+i∞

β−i∞
estû(s)ds =

eβt

2πi

∫ ∞
−∞

eiωtû(β + iω)dω.

Genauer gilt für alle u ∈ Eα(Km) und beliebiges β > α die Gleichung L−1Lu(t) = u(t) für
fast alle t ∈ R+

0 ; falls u stetig ist gilt dies sogar für alle t ∈ R+
0 , vgl. [8, Theorem A.3.19].

Im Folgenden sind einige wichtige Rechenregeln für die Laplace-Transformation aufgeführt.
Dabei sind a, a1, a2 ∈ R und u, u1, u2 ∈ Eα(Km). Weitere Annahmen sind unten zusam-
mengefasst.

(i) L(a1u1 + a2u2)(s) = a1û1(s) + a2û2(s)

(ii) L(u(a ·))(s) =
1

a
û
(s
a

)
, für a > 0

(iii) L(u(· − a))(s) = e−saû(s), für a > 0

(iv) L(ea ·u)(s) = û(s− a)

(v) L(u̇)(s) = sû(s)− u(0)

(vi) L
(∫ ·

0
u(τ)dτ

)
(s) =

1

s
û(s)

(vii) L(·ku)(s) = (−1)k
dkû

dsk
(s)

(viii) L(u1 ? u2)(s) = û1(s)û2(s)

(ix) lim
t→0,t>0

u(t) = lim
s→∞

sû(s)

In (iii) setzen wir dabei voraus, dass u auf [−a,∞) definiert ist mit u(t) = 0 für alle
t ∈ [−a, 0]. In (v) nehmen wir an, dass u auf (−ε,∞) für ein ε > 0 definiert und in s
differenzierbar ist. Falls u in 0 unstetig ist, muss u(0) in (v) durch limt→0,t<0 u(t) ersetzt

werden. In (viii) ist u1 ? u2(t) =
∫ t

0 u1(t− τ)u2(τ)dτ die Faltung.

5.2 Die Übertragungsfunktion

Die Übertragungsfunktion dient dazu, das Eingangs-Ausgangsverhalten eines Systems mit
Hilfe der Laplace-Transformation auszudrücken. Mit dem Eingangs-Ausgangsverhalten be-
zeichnet man die Abbildung u 7→ y mit y(t) = Cx(t, 0, u), also die Abbildung, die der
Eingangsfunktion u die Ausgangsfunktion der zugehörigen Lösung mit Anfangswert x0 = 0
zuordnet.

Wir betrachten nun, wie diese Abbildung für die Laplace-transformierten Signale aussieht.
Dazu betrachten wir wieder das System (4.1), also

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t)

mit A ∈ Rn×n, B ∈ Rn×m und C ∈ Rk×n.
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Satz 5.5 Betrachte das Kontrollsystem (4.1). Sei u ∈ U , u ∈ Eα(Rm) und y(t) = Cx(t, 0, u).
Dann ist y Laplace-transformierbar und es gilt

ŷ(s) = G(s)û(s)

mit G(s) = C(sId−A)−1B.

Beweis: Gemäß (1.14) gilt

y(t) = C

∫ t

0
eA(t−τ)Bu(τ)dτ.

Da u ∈ Eα(Rm) gilt, ist u exponentiell beschränkt, ebenso ist ‖eAt‖ durch e‖A‖t exponentiell
beschränkt. Folglich ist der Integrand exponentiell beschränkt, damit auch das Integral und
weil x und y als Ergebnisse einer Integration zudem stetig sind, gilt x ∈ Eα(Rn), y ∈ Eα(Rk)
für geeignetes (hinreichend großes) α > 0.

Wenden wir nun die Laplace-Transformation auf (4.1) an, so erhalten wir mit Rechenregeln
(i), (v) und x0 = 0

sx̂(s) = Ax̂(s) +Bû(s), ŷ(s) = Cx̂(s)

für alle s ∈ C mit Re(s) > α. Die erste Gleichung ist äquivalent zu

sx̂(s)−Ax̂(s) = Bû(s) ⇔ (sId−A)x̂(s) = Bû(s).

Für alle s ∈ C, die keine Eigenwerte von A sind (also insbesondere für s mit hinreichend
großem Realteil) ist die Matrix auf der linken Seite invertierbar und es folgt

x̂(s) = (sId−A)−1Bû(s) ⇒ ŷ(s) = Cx̂(s) = C(sId−A)−1Bû(s) = G(s)û(x).

Definition 5.6 Die Funktion G : C→ Ck×m aus Satz 5.5 heißt Übertragungsfunktion (auf
englisch transfer function).

Bemerkung 5.7 (i) Aus der Darstellung

(sId−A)−1 =
1

det(sId−A)
adj(sId−A)

mit der adjunkten Matrix adj(sId − A) folgt, dass G : C → Ck×m eine matrixwertige
Funktion mit rationalen Einträgen ist, d.h. mit Einträgen der Form

gij(s) =
pij(s)

qij(s)
(5.1)

mit Polynomen pij , qij , für deren Grad gilt1 deg pij < deg qij ≤ n.

(ii) Die sogenannte Realisierungstheorie befasst sich mit der Frage, ob es zu einer gegebenen
Funktion G : C→ Ck×m ein Kontrollsystem (4.1) gibt, so dass G die Übertragungsfunktion

1Für Ausgänge der Form y(t) = Cx(t)+Du(t) gilt G(s) = D+C(sId−A)−1B und deg pij ≤ deg qij ≤ n.



5.2. DIE ÜBERTRAGUNGSFUNKTION 55

dieses Kontrollsystems ist. Man kann zeigen, dass das für jede propere2 rationale Matrix-
funktion tatsächlich der Fall ist, allerdings sind A, B, C dabei in der Regel nicht eindeutig.

(iii) Definieren wir g(t) := CeAtB, so folgt aus der Lösungsdarstellung

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ =

∫ t

0
g(t− τ)u(τ)dτ = g ? u(t).

Mit der Rechenregel (viii) der Laplace-Transformation ergibt sich

ŷ(s) = L(g ? u)(s) = ĝ(s)û(s).

Also gilt für die Übertragungsfunktion G = ĝ (wenn wir die Definition der Laplace-
Transformation in der natürlichen Weise auf matrixwertige Funktionen verallgemeinern).

Beispiel 5.8 Wir betrachten das herunterhängende und das invertierte linearisierte Pen-
del, jeweils ohne Berücksichtigung der Wagenkoordinaten, also

A =

(
0 1
−g −k

)
, B =

(
0
1

)
und

A =

(
0 1
g −k

)
, B =

(
0
1

)
.

In beiden Fällen sei C = (1 0), d.h. der Ausgang misst die Position des Pendels.

Für das herunterhängende Pendel ergibt sich dann

(sId−A)−1 =

(
s −1
g s+ k

)−1

=

(
s+k

ks+s2+g
1

ks+s2+g
−g

ks+s2+g
s

ks+s2+g

)

und damit

G(s) = C(sId−A)−1B =
1

ks+ s2 + g
.

Analog ergibt sich für das invertierte Pendel

G(s) = C(sId−A)−1B =
1

ks+ s2 − g .

2Proper heißt, dass deg pij ≤ deg qij für alle i, j.



56 KAPITEL 5. ANALYSE IM FREQUENZBEREICH

5.3 Eingangs-Ausgangs Stabilität

Wir führen nun einen Stabilitätsbegriff ein, der zu der Eingangs-Ausgangs-Sichtweise der
Übertragungsfunktion G passt.

Definition 5.9 Ein Kontrollsystem heißt Eingangs-Ausgangs-stabil (kurz E/A-stabil), falls
eine Konstante K > 0 existiert, so dass für jede auf R+

0 beschränkte Funktion u ∈ U und
den zugehörigen Ausgang

y(t) = C

∫ t

0
eA(t−τ)Bu(s)dτ

zum Anfangswert x0 = 0 die Ungleichung ‖y‖∞ ≤ K‖u‖∞ gilt.

Bemerkung 5.10 (i) Man kann zeigen, dass E/A-Stabilität äquivalent zu der Implika-
tion “‖u‖∞ < ∞ ⇒ ‖y‖∞ < ∞” ist. In dieser Form findet sich die Definition der E/A-
Stabilität in vielen Büchern. Der Beweis dieser Äquivalenz verlangt aber einige technische
Abschätzungen, die wir hier aus Zeitgründen vermeiden. Für unsere Zwecke ist die obige
Definition im Folgenden günstiger.

(ii) Um den bisherigen Stabilitätsbegriff (A bzw. das geregelte System mit Feedback ist
exponentiell stabil, d.h. alle Eigenwerte von A bzw. des geregelten Systems haben negativen
Realteil) von dem Begriff der E/A-Stabilität zu unterscheiden, nennen wir die Stabilität
von A auch Zustandsstabilität.

Eine erste hinreichende und notwendige Bedingung gibt das folgende Lemma.

Lemma 5.11 Ein System (4.1) ist genau dann E/A-stabil, falls für g(t) = CeAtB gilt

gmax :=

∫ ∞
0
‖g(t)‖dt <∞. (5.2)

Beweis: “⇒”: Das System sei E/A-stabil. Wir zeigen∫ ∞
0
|γij(t)|dt ≤ K (5.3)

für alle Komponentenfunktionen γij , i = 1, . . . , k, j = 1, . . . ,m von g = (γij)i=1,...,k,j=1,...,m,
woraus (5.2) folgt.

Zu gegebenem t > 0 sei dazu u gegeben durch u(τ) := sgn(γij(t−τ))ej für τ ∈ [0, t]. Damit
gilt [g(t− τ)u(τ)]i = |γij(t− τ)|. Setzen wir u(τ) = 0 für τ > t, so gilt ‖u‖∞ = 1 und damit
für den zugehörigen Ausgang ‖y‖∞ ≤ K, folglich auch |yi(t)| ≤ K für alle t ≥ 0. Damit
folgt

K ≥ |yi(t)| =
∣∣∣∣∫ t

0
[g(t− τ)u(τ)]idτ

∣∣∣∣ =

∣∣∣∣∫ t

0
|γij(t− τ)|dτ

∣∣∣∣ =

∫ t

0
|γij(t−τ)|dτ =

∫ t

0
|γij(τ)|dτ.

Weil dies für alle t ≥ 0 gilt, folgt (5.3).



5.3. EINGANGS-AUSGANGS STABILITÄT 57

“⇐”: Es sei gmax < ∞ und es sei u ein Eingangssignal mit ‖u‖∞ < ∞. Dann gilt für alle
t ≥ 0

‖y(t)‖ =

∥∥∥∥∫ t

0
g(t− τ)u(τ)dτ

∥∥∥∥ ≤ ∫ t

0
‖g(t−τ)‖‖u(τ)‖dτ ≤

∫ t

0
‖g(t−τ)‖dτ‖u‖∞ = gmax‖u‖∞.

Folglich ist das System E/A-stabil mit K = gmax.

Korollar 5.12 Falls (4.1) zustandsstabil ist, also A Hurwitz ist, so ist (4.1) auch E/A-
stabil.

Beweis: Falls (4.1) zustandsstabil ist, ist A Hurwitz. Also gilt nach Satz 3.5 die Un-
gleichung ‖eAt‖ ≤ ce−σt für Konstanten c, σ > 0 und alle t ≥ 0. Damit folgt ‖g(t)‖ ≤
‖C‖ce−σt‖B‖ und damit∫ ∞

0
‖g(t)‖dt ≤

∫ ∞
0
‖C‖ce−σt‖B‖dt =

c‖C‖‖B‖
σ

<∞.

Die Umkehrung dieses Korollars gilt offensichtlich nicht; ein einfaches Gegenbeispiel er-
halten wir, wenn wir C = 0 setzen, da das System dann wegen y(t) ≡ 0 für alle u ∈ U
trivialerweise E/A-stabil mit K = 0 ist, egal ob die Matrix A stabil ist oder nicht.

Die Überprüfung des Kriteriums (5.2) ist im Allgemeinen mühsam, weil hier ein uneigentli-
ches Integral abgeschätzt werden muss. Falls aber die Übertragungsfunktion G bekannt ist,
so lässt sich dies Kriterium leicht anhand dieser Funktion überprüfen. Dabei heißt s∗ ∈ C
Polstelle einer rationalen (Matrix-)Funktion G, wenn s∗ Polstelle für mindestens eine ihrer
Komponentenfunktionen ist, was wiederum bedeutet, dass j, k ∈ N0 existieren mit j < k,
so dass s∗ k-fache Nullstelle des Nennerpolynoms und j-fache Nullstelle des Zählerpoly-
noms ist (wobei j = 0 bedeutet, dass s∗ keine Nullstelle ist). Beachte, dass s∗ genau dann
eine Polstelle ist, wenn ‖G(s)‖ in jeder Umgebung von s∗ unbeschränkt ist.

Satz 5.13 Gegeben sei ein Kontrollsystem (4.1) mit Übertragungsfunktion G. Dann ist
das System genau dann E/A-stabil, wenn alle Polstellen s∗ von G in der offenen linken
komplexen Halbebene C− = {z ∈ C |Re(z) < 0} liegen, also Re(s∗) < 0 erfüllen.

Beweis: “⇒”: Wenn das System E/A-stabil ist, gilt nach Lemma 5.11 die Ungleichung
gmax =

∫∞
0 ‖g(t)‖dt <∞. Damit folgt für alle s ∈ C mit Re(s) ≥ 0 die Ungleichung

‖G(s)‖ =

∥∥∥∥∫ ∞
0

g(t)e−stdt

∥∥∥∥ ≤ ∫ ∞
0
‖g(t)‖ |e−st|︸ ︷︷ ︸

≤1

dt ≤
∫ ∞

0
‖g(t)‖dt = gmax,

weswegen G keine Polstellen außerhalb von C− haben kann.

“⇐”: Es seien γij(t) die Komponenten der Funktion g(t) = CeAtB. Aus Bemerkung 5.7
folgt, dass die Einträge von G durch gij = γ̂ij gegeben sind. Aus der Form der Matrix-
Exponentialfunktion folgt, dass die γij(t) von der Form

γij(t) =

q∑
p=1

µpe
λpt t

kp

kp!



58 KAPITEL 5. ANALYSE IM FREQUENZBEREICH

sind, wobei die λj Eigenwerte von A sind. Aus Beispiel 5.3(g) folgt daher

gij(s) = γ̂ij(s) =

q∑
p=1

µp
1

(s− λp)kp+1
.

Hieraus folgt, dass die Polstellen von G gerade durch die λp gegeben sind. Aus der Annahme
an die Polstellen von G folgt daher, dass alle λp in C− liegen. Daraus folgt wiederum, dass
das Integral

∫∞
0 γij(t)dt für alle i, j endlich ist, womit auch

∫∞
0 ‖g(t)‖dt < ∞ ist. Gemäß

Lemma 5.11 ist das System damit E/A-stabil.

Beispiel 5.14 Für das Pendel sieht man mit diesem Kriterium leicht, dass das herun-
terhängende Pendel E/A-stabil ist, weil die Polstellen (also die Nullstellen des Nenners)
gegeben sind durch −k/2±

√
k2 − 4g/2 und damit stets negativen Realteil besitzen. Ana-

log sieht man beim invertierten Pendel an den Polstellen −k/2 ±
√
k2 + 4g/2, von denen

einer positiven Realteil besitzt, dass das invertierte Pendel nicht E/A-stabil ist.

Bemerkung 5.15 (i) Der Beweis zeigt, dass alle Polstellen von G Eigenwerte von A sind.
Dies erklärt den Namen Polverschiebungssatz für Satz 3.29.

(ii) Im Allgemeinen sind nicht alle Eigenwerte von A Polstellen von G. Zum einen feh-
len diejenigen Eigenwerte, für die der zugehörige Eigenraum in N liegt, für die man also
die darin liegenden Lösungen nicht beobachten kann. Zum anderen fehlen die Eigenwerte,
deren Eigenräume man von x0 = 0 aus nicht erreichen kann, weil sie nicht in der Erreich-
barkeitsmenge R liegen.

Falls das System kontrollierbar und beobachtbar ist, sind alle Eigenwerte von A Pole von G,
was man auch beim Vergleich von Beispiel 5.14 mit Beispiel 3.6 sieht. Falls das System sta-
bilisierbar und entdeckbar ist, sind alle instabilen Eigenwerte (also diejenigen mit positivem
Realteil) Pole von G. In diesen Fällen ist Zustandsstabilität äquivalent zur E/A-Stabilität.

5.4 Feedbacks im Frequenzbereich

Um ein Feedback bzw. eine Rückführung im Frequenzbereich formulieren zu können, müssen
wir das Konzept zuerst etwas erweitern. Dazu beobachten wir zuerst, dass wir sowohl das
statische Feedback-Konzept mit u(t) = Fx(t) als auch das dynamische Konzept mit der
u(t) = Fz(t) und der Differentialgleichung ż(t) = (J + KF )z(t) + Ly(t) leicht Laplace-
transformieren können. Es ergeben sich die Übertragungsfunktionen

K(s) = F bzw. K(s) = F (sId−M)−1L,

wobei wir im ersten Fall C = Id annehmen und im zweiten Fall kurz M = J + KF
geschrieben haben. Ein geschlossener Regelkreis kann also immer als eine Verkopplung
zweier Übertragungsfunktionen G und K dargestellt werden. Konsistent mit dem E/A-
Konzept wäre es nun, wenn solch eine Verkopplung selbst wieder eine Übertragungsfunktion
wäre. Dazu brauchen wir aber einen Eingang für unser geregeltes System, den wir bisher



5.5. GRAFISCHE ANALYSE 59

nicht hatten, da der ursprüngliche Eingang ja mit u = Fx bzw. u = Fz “belegt” ist.
Zur Abhilfe führen wir einen neuen Eingang w(t) ein, indem wir Fx(t) bzw. Ly(t) durch
F (x(t) + w(t)) bzw. L(y(t) + w(t)) ersetzen.

Satz 5.16 Gegeben seien zwei Übertragungsfunktionen G und K passender Dimension,
die mittels ŷ(s) = G(s)û(s) und û(s) = K(ŷ(s) + ŵ(s)) verkoppelt sind. Dann gilt

ŷ(s) = (Id−G(s)K(s))−1G(s)K(s)ŵ(s)

für alle s ∈ C für die Id−G(s)K(s) invertierbar ist.

Beweis: Aus den beiden angegebenen Gleichungen folgt

ŷ(s) = G(s)û(s) = G(s)K(ŷ(s) + ŵ(s)).

Umstellen liefert, dass diese Gleichung äquivalent ist zu

(Id−G(s)K(s))ŷ(s) = G(s)K(s)ŵ(s),

woraus die behauptete Gleichung sofort folgt.

Das Feedback-Stabilisierungsproblem besteht im Frequenzraum nun darin, eine Übertra-
gungsfunktionK zu finden, so dass (Id−G(s)K(s))−1G(s)K(s) stabil ist, also nur Polstellen
in C− besitzt. Dafür gibt es insbesondere im Fall, dass u und y eindimensional sind, eine
ganze Reihe von Techniken, die wir hier aus Zeitgründen aber nicht besprechen wollen.

Wir wollen stattdessen noch kurz darauf eingehen, was die Rolle des neuen Eingangsignals
im stabilisierten System ist. Dazu betrachten wir der Einfachheit halber den Fall eines
statischen stabilisierenden Feedbacks u = Fx und C = Id. Dann ergeben sich die Lösungen
des geregelten Systems mit dem neuen Eingang zu

x(t) = e(A+BF )tx0 +

∫ t

0
e(A+BF )(t−τ)BFw(τ)dτ︸ ︷︷ ︸

=:v(t)

.

Exponentielle Stabilität ist nun äquivalent dazu, dass e(A+BF )t gegen 0 konvergiert für
t→∞. Damit gilt

‖x(t)− v(t)‖ ≤ ce−σt‖x0‖,
d.h. die Lösung konvergiert gegen v(t). Stabilität stellt also sicher, dass die Lösung un-
abhängig vom Anfangswert gegen eine wohldefinierte Grenzfunktion konvergiert, die nur
vom Eingang w(t) abhängt. Dies ist eine neue Interpretation der Stabilität, die äquivalent
zur E/A-Stabilität ist und daher wie diese aus der Stabilität des Systems im Sinne von
Kapitel 3 und 4 folgt. Im Fall w ≡ 0 gilt für diese Grenzfunktion v ≡ 0 und wir befinden
uns gerade wieder in der Situation dieser Kapitel.

5.5 Grafische Analyse

Wir betrachten in diesem Abschnitt zwei in der Regelungstechnik übliche grafische Dar-
stellungsweisen. Diese sind auf Systeme mit eindimensionalem Eingang und Ausgang, also
m = k = 1 anwendbar. Beachte, dass die Übertragungsfunktion G in diesem Fall eine
skalare Funktion ist. Systeme dieser Art werden als SISO-Systeme (Single Input Single
Output) bezeichnet.
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Das Bodediagramm

Das Bodediagramm3 dient dazu, den Zusammenhang zwischen u und y grafisch zu ver-
anschaulichen. Insbesondere wird durch diese Interpretation klar, warum die Betrachtung
der Laplace-Transformierten “Analyse im Frequenzbereich” genannt wird. Zur Vorberei-
tung benötigen wir zunächst den folgenden Satz.

Satz 5.17 Betrachte die Übertragungsfunktion G : C → C für ein E/A-stabiles SISO-
System der Form (4.1). Dann konvergiert das Ausgangssignal y(t) zum Eingangssignal
u(t) = sin(ωt) für t→∞ gegen die Funktion

y∞(t) = |G(iω)| sin(ωt+ ϕ(ω)),

wobei ϕ eine Argumentfunktion4 von ω 7→ G(ωi) ist.

Beweis: Siehe [8, Proposition 2.3.22].

Die Werte der Übertragungsfunktion G entlang der imaginären Achse iR — der sogenann-
te Frequenzgang von G — haben also eine ganz konkrete Bedeutung für das Verhalten
des Ausgangs y(t) bei sinusförmigen Eingängen u(t): Das Ausgangssignal wird gerade da-
durch erzeugt, dass das Eingangssignal um |G(iω)| verstärkt wird und die Phase um ϕ(ω)
verschoben wird.

Abbildung 5.5 illustriert dies an Hand des (herunterhängenden) Pendelmodells mit k = 0.1
und g = 9.81.
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Abbildung 5.1: Eingang (schwarz gestrichelt) mit Frequenz ω = 4 und zugehöriger Ausgang
(rot) für das herunterhängende Pendel

Hier ist der numerisch simulierte Ausgang für den Eingang u(t) = sin(ωt) für ω = 4 zu
sehen. Man erkennt, dass das Ausgangssignal eine Amplitude von etwa 0.16 besitzt und
die Phase um ca. π gegenüber dem Eingangssignal verschoben ist; das Pendel pendelt

3Hendrik Wade Bode (1905–1982), US-amerikanischer Elektrotechniker
4Sei I ein Intervall. Eine stetige Funktion ϕ : I → R heißt Argumentfunktion einer Funktion γ : I →

C \ {0}, wenn γ(t) = |γ(t)|eiϕ(t) gilt für alle t ∈ I. Wir schreiben dann kurz ϕ = arg γ.
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also gegenläufig zur periodischen Wagenbewegung und mit kleineren Ausschlägen. Für die
zugehörige Übertragungsfunktion gilt |G(i4)| = 0.1612 und arg(G(i4)) = −3.077, was diese
Beobachtung genau bestätigt.

Diese direkte Beziehung zwischen Übertragungsfunktion und Ausgangssignal bedeutet um-
gekehrt, dass durch das Messen der Amplitude und der Phase des Ausgangs bei sinusförmi-
gem Eingang die Werte G(iω) = |G(iω)|eϕ(ω) leicht errechnet werden können. Die Über-
tragungsfunktion kann auf der imaginären Achse also durch experimentelle Messungen
bestimmt werden.

Diese Tatsache gewinnt durch einen Satz aus der Funktionentheorie besondere Bedeutung:
Man kann nämlich beweisen, dass die Funktion G(iω) durch ihre Werte auf iR eindeutig
bestimmt ist. Genauer folgt aus der Integralformel von Cauchy für E/A-stabile Systeme
(4.1) die Darstellung

G(s) =
1

2πi

∫ ∞
−∞

G(iω)

iω − sdω

für alle s ∈ C mit Re(s) > 0 (beachte, dass hier wichtig ist, dass kein “Du(t)” in der For-
mel für y(t) in (4.1) auftaucht; ansonsten muss die Formel modifiziert werden). Da zudem
G(iω)→ 0 gilt für ω → ±∞, kann das obige Integral durch ein Integral mit kompaktem In-
tegrationsintervall approximiert werden. Folglich kann die komplette Übertragungsfunktion
eines E/A-stabilen Systems aus Messdaten für sinusförmige Eingangssignale rekonstruiert
werden, vgl. [11, Abschnitt 6.5.3].

Grafisch werden diese Messdaten nun in dem sogenannten Bodediagramm dargestellt, wobei
für die Frequenz und für den Betrag |G(iω)| logarithmische Skalen verwendet wird. In
Abbildung 5.2 ist dieses Diagramm für das herunterhängende Pendel, wiederum mit k = 0.1
und g = 9.81 dargestellt.

Abbildung 5.2: Bodediagramm für das herunterhängende Pendel

Das linke Diagramm besagt, dass das Eingangssignal zunächst schwach, mit steigender Fre-
quenz bis zu etwa ω = 3 dann aber immer stärker verstärkt wird, während die Verstärkung
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für größere ω dann wieder abnimmt. Die Phase bleibt dabei für kleine ω fast unverändert,
um dann ab etwa ω = 3 abrupt um ca. −π verschoben zu werden. Genau dies Verhalten
zeigt sich in den numerischen Simulationen in Abbildung 5.3.
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Abbildung 5.3: Eingang (schwarz gestrichelt) und Ausgang (rot) für das herunterhängende
Pendel mit ω = 2, 3, 4 von links nach rechts

Das Nyquistdiagramm

Das Nyquistdiagramm5 dient dazu, um zu prüfen, ob ein Feedbacksystem E/A-stabil ist.
Wie beim Bodediagramm kann die Grafik dabei allein aus Messwerten erstellt werden und
die Stabilität damit experimentell verifiziert werden.

Die Übertragungsfunktion eines Feedbacksystems ist nach Satz 5.16 im SISO-Fall gegeben
durch

Gcl :=
G(s)K(s)

1−G(s)K(s)
.

Diese ist nach Satz 5.13 genau dann E/A-stabil, wenn keine Polstellen in der abgeschlos-
senen rechten Halbebene liegen. Hinreichend dafür ist, dass F (s) := 1 − G(s)K(s) keine
Nullstellen in der abgeschlossenen rechten Halbebene besitzt, was genau dann der Fall ist,
wenn G0(s) := −G(s)K(s) in der rechten Halbebene nie den Wert −1 annimmt.

Das Nyquistdiagramm6 stellt nun die Werte von G0(ωi) für ω ∈ (−∞,∞), grafisch dar.
Praktisch wird dies dadurch näherungsweise realisiert, dass Werte von −R bis R für ein
großes R ∈ R an Stelle von ±∞ verwendet werden. Da G(s)K(s) die Übertragungsfunkti-
on der Hintereinanderschaltung von Feedback und System ist, können diese Werte dieses
Produkts wiederum experimentell ermittelt werden.

In Abbildung 5.4 sind diese Kurven für das invertierte Pendel mit G(s) = 1/(ks+ s2 − g)
mit k = 0.1 und g = 9.81 und das statische Feedback K = −1 (links) und K = −10
(rechts) dargestellt.

Betrachtung der Zähler- und Nennerpolynome in G0 liefert nun das folgende Stabilitäts-
kriterium.

Nyquistkriterium: Es sei n+ ∈ N die Anzahl der Polstellen vonG0 mit positivem Realteil,
zudem habe G0 keine Polstellen mit Realteil gleich 0. Dann ist das Feedbacksystem mit

5Harry Nyquist (1889–1976), US-Amerikanischer Elektrotechniker
6Wir stellen hier nur die Version für D = 0 vor, siehe z.B. [11, Abschnitt 8.5] für den allgemeinen Fall.
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Abbildung 5.4: Nyquistdiagramm für das invertierte Pendel mit K = −1 (links) und K =
−10 (rechts)

Übertragungsfunktion Gcl genau dann E/A-stabil, wenn die Ortskurve G(ωi) für ω =
−∞ . . . ,∞ den Punkt −1 = −1 + 0i ∈ C genau n+-mal entgegen dem Uhrzeigersinn
umläuft. Im Fall n+ = 0 gilt Stabilität genau dann, wenn die Ortskurve den Punkt −1
keinmal im Uhrzeigersinn umläuft.

In unserem Beispiel aus Abbildung 5.4 hat G0 wegen K = const gerade die gleichen
Polstellen wie G; also existiert eine Polstelle mit positivem Realteil und keine mit Realteil
0. Folglich muss die Ortskurve einmal entgegen dem Uhrzeigersinn um den Punkt −1 + 0i
laufen. Dies ist in der linken Kurve für K = −1 offenbar nicht der Fall. Es trifft aber in der
rechten Kurve für K = −10 zu (die Umlaufrichtung ist in dieser Grafik natürlich nicht zu
sehen, verläuft aber tatsächlich entgegen dem Uhrzeigersinn). Eine Analyse im Zeitbereich
zeigt, dass die zugehörige closed-loop Matrix für K = −1 bzw. K = −10 gegeben ist durch

A =

(
0 1

g −K −k

)
=

(
0 1

8.81 −0.1

)
bzw. A =

(
0 1

−0.19 −0.1

)
.

Eine Analyse der Eigenwerte dieser Matrix bestätigt die Instabilität für K = −1 und die
Stabilität für K = −10. Tatsächlich liegt die Grenze zwischen Instabilität und Stabilität
gerade bei K = −9.81.

Bemerkung 5.18 Auch für zeitdiskrete Systeme ist eine Betrachtung im Frequenzbe-
reich möglich. Statt der Laplace-Transformation verwendet man dort die sogenannte z-
Transformation, auf die wir hier aus Zeitgründen nicht weiter eingehen wollen.
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Kapitel 6

Optimale Stabilisierung

Die in Kapitel 3 vorgestellte Methode zur Berechnung stabilisierender Feedbacks hat den
Nachteil, dass man zwar die Eigenwerte bestimmen kann, ansonsten aber relativ wenig Ein-
flussmöglichkeiten auf die Dynamik des geregelten Systems hat. So ist es z.B. oft so, dass
große Werte der Kontrollvariablen u nur mit großem Energieaufwand zu realisieren sind
(wie im Pendelmodell, wo u gerade die Beschleunigung des Wagens ist), weswegen man
große Werte vermeiden möchte. Im Heizungsmodell andererseits möchte man z.B. Über-
schwingen (d.h. starke Schwankungen bis zum Erreichen der gewünschten Temperatur)
vermeiden.

Wir werden deshalb in diesem Kapitel einen Ansatz verfolgen, der größeren Einfluss auf
das Verhalten des geregelten Systems ermöglicht, indem wir Methoden der Optimierung
zur Berechnung der Feedback-Matrix F verwenden. Dabei können die gewünschten Eigen-
schaften durch die verwendete Kostenfunktion bestimmt werden. Wir nehmen dabei aus
Vereinfachungsgründen wieder an, dass wie in Kapitel 3 der gesamte Zustandsvektor x für
die Regelung zur Verfügung steht. Falls das nicht der Fall ist, kann ein dyamischer Beob-
achter gemäß Kapitel 4 verwendet werden. Wir beschränken uns hier suf Optimierungspro-
bleme, die direkt mit dem Stabilisierungsproblem in Zusammenhang stehen. Allgemeinere
Probleme werden wir später in der Vorlesung im Rahmen der Modellprädiktiven Regelung
betrachten.

6.1 Grundlagen der optimalen Steuerung

In diesem Abschnitt werden wir einige Grundlagen der optimalen Steuerung herleiten, die
zur Lösung unseres Problems nötig sind. Da es für die abstrakten Resultate keinen Unter-
schied macht, ob die Dynamik linear oder nichtlinear ist, betrachten wir hier allgemeine
Kontrollsysteme der Form

ẋ(t) = f(x(t), u(t)), (6.1)

unter der Annahme, dass f : Rn × Rm → Rn stetig ist und dass für alle R > 0 ein LR > 0
existiert, so dass die Lipschitz-Bedingung

‖f(x1, u)− f(x2, u)‖ ≤ LR‖x1 − x2‖ (6.2)

65
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für alle x1, x2 ∈ Rn und alle u ∈ Rm mit ‖x1‖, ‖x2‖, ‖u‖ ≤ R erfüllt ist (vgl. Satz 8.1). Unter
dieser Bedingung kann man den aus der Theorie der gewöhnlichen Differentialgleichungen
bekannten Existenz- und Eindeutigkeitssatz so modifizieren, dass er für jede stückweise
stetige Kontrollfunktion u ∈ U und jeden Anfangswert x0 die Existenz einer eindeutige
Lösung x(t, x0, u) mit x(0, x0, u) = x0 liefert.

Wir definieren nun das optimale Steuerungsproblem, mit dem wir uns im Folgenden be-
schäftigen wollen.

Definition 6.1 Für eine stetige nichtnegative Kostenfunktion g : Rn×Rm → R+
0 definieren

wir das Kostenfunktional

J(x0, u) :=

∫ ∞
0

g(x(t, x0, u), u(t))dt.

Das optimale Steuerungsproblem ist damit gegeben durch das Optimierungsproblem

Minimiere J(x0, u) über u ∈ U für jedes x0 ∈ Rn.

Die Funktion

V (x0) := inf
u∈U

J(x0, u)

wird als optimale Wertefunktion dieses optimalen Steuerungsproblems bezeichnet. Ein Paar
(x∗, u∗) ∈ Rn × U mit J(x∗, u∗) = V (x∗) wird als optimales Paar bezeichnet.

Als Funktionenraum U wählen wir hierbei wie bisher den Raum der stückweise stetigen
Funktionen, und nehmen dabei zusätzlich an, dass jede Funktion u auf jedem kompakten
Intervall beschränkt ist und dass die Funktionen u rechtsseitig stetig sind, d.h, dass für
alle t0 ∈ R die Bedingung limt↘t0 u(t) = u(t0) gilt. Beachte dass wir die zweite Annahme
o.B.d.A. machen können, da die Lösung nicht vom dem Wert von u in der Sprungstelle
abhängt.

Bemerkung 6.2 Im Zeitdiskreten mit der Dynamik

x(k + 1) = f(x(k), u(k))

und Anfangswert x(0) = x0 lautet das Kostenfunktional

J(x0, u) :=

∞∑
k=0

g(x(k, x0, u), u(k)).

Beachte, dass das Funktional J(x0, u) nicht endlich sein muss. Ebenso muss das Infimum
in der Definition von V kein Minimum sein.

Der erste Satz dieses Kapitels liefert eine Charakterisierung der Funktion V .
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Satz 6.3 (Prinzip der dynamischen Programmierung oder Bellman’sches Opti-
malitätsprinzip)
(i) Für die optimale Wertefunktion gilt für jedes τ > 0

V (x0) = inf
u∈U

{∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

}
.

(ii) Für ein optimales Paar (x∗, u∗) gilt für jedes τ > 0

V (x∗) =

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

Beweis: (i) Wir zeigen zunächst

V (x0) ≤
∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

für alle u ∈ U und alle τ > 0. Sei dazu xτ = x(τ, x0, u), ε > 0 beliebig und uτ ∈ U so
gewählt, dass

J(xτ , uτ ) ≤ V (xτ ) + ε

gilt. Sei ũ = u&τuτ (· − τ) (vgl. Definition 1.7). Dann gilt

V (x0) ≤
∫ ∞

0
g(x(t, x0, ũ), ũ(t))dt

=

∫ τ

0
g(x(t, x0, ũ), ũ(t))dt+

∫ ∞
τ

g(x(t, x0, ũ), ũ(t))dt

=

∫ τ

0
g(x(t, x0, u), u(t))dt+

∫ ∞
τ

g( x(t, x0, ũ)︸ ︷︷ ︸
=x(t−τ,xτ ,uτ )

, uτ (t− τ))dt

=

∫ τ

0
g(x(t, x0, u), u(t))dt+

∫ ∞
0

g(x(t, xτ , uτ ), uτ (t))dt

=

∫ τ

0
g(x(t, x0, u), u(t))dt+ J(xτ , uτ ) ≤

∫ τ

0
g(x(t, x0, u), u(t))dt+ V (xτ ) + ε.

Da ε > 0 beliebig war, folgt die behauptete Ungleichung.

Als zweiten Schritt zeigen wir

V (x0) ≥ inf
u∈U

{∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

}
.

Sei dazu wiederum ε > 0 beliebig. Wir wählen u0 so, dass V (x0) ≥ J(x0, u0) − ε gilt und
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schreiben xτ = x(τ, x0, u0). Damit folgt

V (x0) ≥
∫ ∞

0
g(x(t, x0, u0), u0(t))dt− ε

=

∫ τ

0
g(x(t, x0, u0), u0(t))dt+

∫ ∞
τ

g(x(t, x0, u0), u0(t))dt− ε

=

∫ τ

0
g(x(t, x0, u0), u0(t))dt+

∫ ∞
0

g(x(t, x(τ, x0, u0), u0(·+ τ)), u0(t+ τ))dt− ε

=

∫ τ

0
g(x(t, x0, u0), u0(t))dt+ J(x(τ, x0, u0), u0(·+ τ))− ε

≥
∫ τ

0
g(x(t, x0, u0), u0(t))dt+ V (x(τ, x0, u0))− ε

≥ inf
u∈U

{∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))

}
− ε

woraus die Behauptung folgt, da ε > 0 beliebig war.

(ii) Aus (i) folgt sofort die Ungleichung

V (x∗) ≤
∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

Die umgekehrte Ungleichung folgt aus

V (x∗) =

∫ ∞
0

g(x(t, x∗, u∗), u∗(t))dt

=

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+

∫ ∞
τ

g(x(t, x∗, u∗), u∗(t))dt

=

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+

∫ ∞
0

g(x(t, x(τ, x∗, u∗), u∗(·+ τ)), u∗(t+ τ))dt

=

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ J(x(τ, x∗, u∗), u∗(·+ τ))

≥
∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

Eine Folgerung dieses Prinzips liefert das folgende Korollar.

Korollar 6.4 Sei (x∗, u∗) ein optimales Paar. Dann ist (x(τ, x∗, u∗), u∗(· + τ)) für jedes
τ > 0 ein optimales Paar.

Beweis: Übungsaufgabe.

Anschaulich besagt Korollar 6.4, dass Endstücke optimaler Trajektorien selbst wieder op-
timale Trajektorien sind.

Die bisherigen Aussagen gelten analog (und mit analogen Beweisen) auch im Zeitdiskreten.
Dort gilt für alle K ∈ N

V (x0) = inf
u∈U

{
K−1∑
k=0

g(x(k, x0, u), u(k)) + V (x(K,x0, u))

}
(6.3)
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sowie für alle optimalen Paare (x∗, u∗)

V (x∗) =
K−1∑
k=0

g(x(k, x∗, u), u∗(k)) + V (x(K,x∗, u∗)).

Für die folgende Aussage, mit der wir durch einen geschickten Grenzübergang für τ → 0
die Gleichung aus Satz 6.3 als (partielle) Differentialgleichung ausdrücken können, gibt es
kein zeitdiskretes Gegenstück.

Satz 6.5 (Hamilton-Jacobi-Bellman Differentialgleichung)
Es sei g stetig in x und u. Zudem sei O ⊆ Rn offen und V |O endlich.

(i) Wenn V in x0 ∈ O stetig differenzierbar ist, so folgt

DV (x0) · f(x0, u0) + g(x0, u0) ≥ 0

für alle u0 ∈ Rm.

(ii) Wenn (x∗, u∗) ein optimales Paar ist und V stetig differenzierbar in x∗ ∈ O ist, so folgt

min
u∈Rm

{DV (x∗) · f(x∗, u) + g(x∗, u)} = 0, (6.4)

wobei das Minimum in u∗(0) angenommen wird. Gleichung (6.4) wird Hamilton-Jacobi-
Bellman Gleichung genannt.

Beweis: Wir zeigen zunächst für alle u ∈ U die Hilfsbehauptung

lim
τ↘0

1

τ

∫ τ

0
g(x(t, x0, u), u(t))dt = g(x0, u(0)).

Wegen der (rechtssitigen) Stetigkeit von x und u in t und der Stetigkeit von g existiert zu
ε > 0 ein t1 > 0 mit

|g(x(t, x0, u), u(t))− g(x0, u(0))| ≤ ε

für alle t ∈ [0, t1). Damit folgt für τ ∈ (0, t1]∣∣∣∣1τ
∫ τ

0
g(x(t, x0, u), u(t))dt− g(x0, u(0))

∣∣∣∣ ≤ 1

τ

∫ τ

0
|g(x(t, x0, u), u(t))− g(x0, u(0))|dt

≤ 1

τ

∫ τ

0
ε = ε

und damit die Aussage für den Limes, da ε > 0 beliebig war.

Hiermit folgen nun beide Behauptungen:

(i) Aus Satz 6.3(i) folgt für u(t) ≡ u0 ∈ Rm

V (x0) ≤
∫ τ

0
g(x(t, x0, u), u(t))dt+ V (x(τ, x0, u))
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und damit

DV (x0)f(x0, u(0)) = lim
τ↘0

V (x(τ, x0, u))− V (x0)

τ

≥ lim
τ↘0
−1

τ

∫ τ

0
g(x(t, x0, u), u(t))dt = −g(x0, u(0)),

also die Behauptung.

(ii) Aus (i) folgt
inf
u∈Rm

{DV (x∗) · f(x∗, u) + g(x∗, u)} ≥ 0.

Aus Satz 6.3(ii) folgt zudem

V (x∗) =

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt+ V (x(τ, x∗, u∗)).

Damit gilt

DV (x∗)f(x∗, u∗(0)) = lim
τ↘0

V (x(τ, x∗, u∗))− V (x∗)

τ

= lim
τ↘0
−1

τ

∫ τ

0
g(x(t, x∗, u∗), u∗(t))dt = −g(x∗, u∗(0)),

woraus die Existenz des Minimums in u = u∗(0) und die behauptete Gleichheit folgt.

Satz 6.5 gibt notwendige Optimalitätsbedingungen, d.h. Bedingungen die die optimale Wer-
tefunktion bzw. ein optimales Paar erfüllen muss — vorausgesetzt die optimale Wertefunk-
tion ist stetig differenzierbar. Im Allgemeinen folgt aus der Erfüllung der angegebenen
notwendigen Bedingungen aber noch nicht, dass eine Funktion tatsächlich eine optima-
le Wertefunktion ist oder ein Paar ein optimales Paar. Hierzu braucht man hinreichende
Optimalitätsbedingungen, die wir im Folgenden untersuchen.

Zur Herleitung der hinreichenden Bedingungen brauchen wir zusätzliche Annahmen, für
deren genaue Ausgestaltung es verschiedene Möglichkeiten gibt. Da wir die optimale Steue-
rung auf das Stabilisierungsproblem anwenden wollen, verwenden wir dazu die folgende
Definition.

Definition 6.6 Für das Kontrollsystem gelte f(0, 0) = 0, d.h. der Nullpunkt ist ein Gleich-
gewicht für u = 0. Dann nennen wir das optimale Steuerungsproblem nullkontrollierend,
falls die Implikation

J(x0, u) <∞ ⇒ x(t, x0, u)→ 0 für t→∞

gilt.

Nun können wir die hinreichende Bedingung formulieren.

Satz 6.7 (Hinreichende Optimalitätsbedingung)
Betrachte ein nullkontrollierendes optimales Steuerungsproblem. Es sei W : Rn → R+

0 eine
stetig differenzierbare Funktion, die die Hamilton-Jacobi-Bellman Gleichung

min
u∈Rm

{DW (x)f(x, u) + g(x, u)} = 0
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erfüllt und für die W (0) = 0 gilt.

Zu gegebenem x∗ ∈ Rn sei u∗ ∈ U eine Kontrollfunktion, so dass für die zugehörige Lösung
x(t, x∗, u∗) und alle t ≥ 0 das Minimum in der obigen Gleichung für x = x(t, x∗, u∗) in
u = u∗(t) angenommen wird.

Dann ist (x∗, u∗) ein optimales Paar und es gilt

V (x(t, x∗, u∗)) = W (x(t, x∗, u∗))

für alle t ≥ 0.

Beweis: Wir zeigen die Aussage für t = 0. Für t > 0 folgt sie durch Anwendung des
Beweises auf (x(t, x∗, u∗), u∗(t + ·)). Es sei u ∈ U und x(t) = x(t, x∗, u) die zugehörige
Lösungsfunktion. Wir zeigen zunächst die Ungleichung

J(x∗, u) ≥W (x∗).

Im Falle J(x∗, u) =∞ ist nichts zu zeigen, es reicht also den Fall J(x∗, u) <∞ zu betrach-
ten. Aus der Hamilton-Jacobi-Bellman Gleichung folgt

d

dt
W (x(t)) = DW (x(t))f(x(t), u(t)) ≥ −g(x(t), u(t)),

und damit mit dem Hauptsatz der Differential- und Integralrechnung

W (x(T ))−W (x∗) =

∫ T

0

d

dt
W (x(t))dt ≥ −

∫ T

0
g(x(t), u(t))dt.

Daraus folgt

J(x∗, u) = lim
T→∞

∫ T

0
g(x(t), u(t))dt ≥ lim

T→∞

(
W (x∗)−W (x(T ))

)
= W (x∗).

für alle T > 0. Die letzte Gleichung folgt dabei, weil das Problem nullkontrollierend ist und
J(x∗, u) <∞ gilt, weswegen x(T )→ 0 für T →∞ und damit wegen der Stetigkeit von W
und W (0) = 0 auch W (x(T ))→ 0 gilt.

Beachte, dass aus dieser Ungleichung insbesondere V (x∗) = infu∈U J(x∗, u) ≥W (x∗) folgt.
Zum Abschluss des Beweises reicht es daher,

J(x∗, u∗) = W (x∗)

zu zeigen. Für die Kontrolle u∗ und die zugehörige Lösung x∗ = x(t, x∗, u∗) folgt aus der
Hamilton-Jacobi-Bellman Gleichung

d

dt
W (x∗(t)) = DW (x∗(t))f(x∗(t), u∗(t)) = −g(x∗(t), u∗(t)),

und analog zu oben

J(x∗, u∗) = lim
T→∞

∫ T

0
g(x∗(t), u∗(t))dt = lim

T→∞

(
W (x∗)−W (x(T ))

)
= W (x∗).
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Beachte, dass beide Sätze dieses Abschnitts nur anwendbar sind, wenn V bzw. W diffe-
renzierbar sind. Diese Annahme ist im allgemeinen nichtlinearen Fall sehr einschränkend1.
Zudem ist es im Allgemeinen sehr schwierig, die Funktion V mittels dieser Gleichung zu
bestimmen, selbst wenn sie differenzierbar ist.

Im linearen Fall hingegen vereinfacht sich das Problem und die Hamilton-Jacobi-Bellman
Gleichung so weit, dass eine explizite Lösung möglich ist, wie wir im folgenden Abschnitt
sehen werden.

6.2 Das linear-quadratische Problem

Wir kommen nun zurück zu unserem linearen Kontrollsystem (1.3)

ẋ(t) = Ax(t) +Bu(t) =: f(x(t), u(t)).

Um eine schöne Lösungstheorie zu erhalten, müssen wir auch für die Kostenfunktion g(x, u)
eine geeignete Struktur annehmen.

Definition 6.8 Eine quadratische Kostenfunktion g : Rn × Rn → R+
0 ist gegeben durch

g(x, u) = (xT uT )

(
Q N
NT R

)(
x
u

)

mit Q ∈ Rn×n, N ∈ Rn×m und R ∈ Rm×m, so dass G :=

(
Q N
NT R

)
symmetrisch und

positiv definit ist.

Hieraus ergibt sich der Name “linear-quadratisches” optimales Steuerungsproblem: die Dy-
namik ist linear und die Kostenfunktion ist quadratisch.

Wir zeigen zunächst, dass dieses Problem nullkontrollierend ist.

Lemma 6.9 Das linear-quadratische Problem ist nullkontrollierend im Sinne von Defini-
tion 6.6.

Beweis: Wir zeigen zunächst die Ungleichungen

g(x, u) ≥ c1‖x‖2 und g(x, u) ≥ c2‖f(x, u)‖2 (6.5)

für geeignete Konstanten c1, c2 > 0.

Da die Matrix G positiv definit ist, folgt aus Lemma 3.10 die Ungleichung

g(x, u) ≥ c1

∥∥∥∥( x
u

)∥∥∥∥2

≥ c1‖x‖2, (6.6)

1Die nichtlineare Theorie dieser Gleichungen verwendet den verallgemeinerten Lösungsbegriff der “Vis-
kositätslösungen”, der auch für nichtdifferenzierbare Funktionen V sinnvoll ist.
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also die erste Abschätzung in (6.5). Wegen

‖f(x, u)‖2 = (xT , uT )

(
A ATB

BTA B

)(
x
u

)
folgt ebenfalls aus Lemma 3.10

‖f(x, u)‖2 ≤ c3

∥∥∥∥( x
u

)∥∥∥∥2

,

woraus wir mit (6.6) und c2 = c1/c3 die zweite Abschätzung in (6.5) erhalten.

Es sei nun u ∈ U und x(t) = x(t, x0, u) die zugehörige Lösungsfunktion. Es gelte

J(x0, u) <∞.

Zu zeigen ist also, dass

lim
t→∞

x(t) = 0

gilt. Dazu nehmen wir an, dass x(t) 6→ 0. Es existiert also ein ε > 0 und eine Folge
tk →∞, so dass ‖x(tk)‖ ≥ ε gilt. O.B.d.A. gelte tk+1 − tk ≥ ε/2. Nun wählen wir δ = ε/4
und unterscheiden für jedes k ∈ N zwei Fälle:

1. Fall: ‖x(t)‖ ≥ ε/2 für alle t ∈ [tk, tk + δ]. In diesem Fall erhalten wir aus (6.5) für diese
t die Ungleichung g(x(t), u(t)) ≥ c1ε

2/4 und es folgt∫ tk+δ

tk

g(x(t), u(t))dt ≥ c1δε
2/4 = c1ε

3/16.

2. Fall: ‖x(t)‖ < ε/2 für ein t ∈ [tk, tk + δ]. In diesem Fall folgt∥∥∥∥∫ t

tk

f(x(τ), u(τ))dτ

∥∥∥∥ = ‖x(tk)− x(t)‖ ≥ ‖x(tk)‖ − ‖x(t)‖ ≥ ε/2.

Aus der zweiten Abschätzung in (6.5) erhalten wir

g(x, u) ≥ c2‖f(x, u)‖2 ≥
{

0, ‖f(x, u)‖ ≤ 1
c2‖f(x, u)‖, ‖f(x, u)‖ > 1

}
≥ c2(‖f(x, u)‖ − 1)

und damit∫ tk+δ

tk

g(x(τ), u(τ))dτ ≥ c2

∫ tk+δ

tk

‖f(x(τ), u(τ))‖ − 1dτ ≥ c2(ε/2− δ) ≥ c2ε/4.

Mit γ = min{c1ε
3/16, c2ε/4} > 0 ergibt sich

J(x0, u) =

∫ ∞
0

g(x(t), u(t))dt ≥
∞∑
k=1

∫ tk+δ

tk

g(x(t), u(t))dt ≥
∞∑
k=1

γ =∞,

ein Widerspruch.
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Wir können also Satz 6.7 verwenden, um die Optimalität einer Lösung des linear-quadra-
tischen Problems nachzuweisen.

Um eine Kandidatin für die optimale Wertefunktion zu finden, machen wir den Ansatz

W (x) = xTPx (6.7)

für eine symmetrische und positiv definite Matrix P ∈ Rn×n.

A priori wissen wir nicht, ob dieser Ansatz gerechtfertigt ist – wir nehmen dies zunächst
einfach an und untersuchen die Folgerungen dieser Annahme.

Lemma 6.10 Falls das linear-quadratische optimale Steuerungsproblem eine optimale Wer-
tefunktion der Form (6.7) besitzt, so sind alle optimalen Paare (x∗, u∗) von der Form

u∗(t) = Fx(t, x∗, F )

mit F ∈ Rm×n gegeben durch

F = −R−1(BTP +NT ),

wobei x(t, x∗, F ) die Lösung des mittels F geregelten Systems

ẋ(t) = (A+BF )x(t) = Ax(t) +Bu∗(t)

mit Anfangsbedingung x(0, x∗, F ) = x∗ bezeichnet.

Darüberhinaus ist das mittels F geregelte System exponentiell stabil.

Beweis: Die optimale Wertefunktion der Form (6.7) ist stetig differenzierbar und erfüllt
W (0) = 0, weswegen sowohl Satz 6.5 als auch Satz 6.7 anwendbar ist.

Wenn W die optimale Wertefunktion ist, so folgt aus Satz 6.5(ii), dass die optimale Kon-
trolle u = u∗(t) für x = x(t, x∗, u∗) den Ausdruck

DW (x) · f(x, u) + g(x, u) (6.8)

minimiert. Umgekehrt folgt aus Satz 6.7, dass jede Kontrollfunktion, die (6.8) entlang der
zugehörigen Trajektorie minimiert, ein optimales Paar erzeugt. Wir müssen also zeigen,
dass das angegebene Feedback gerade solche Lösungen und Kontrollfunktionen erzeugt
und dass das angegebene u∗ die einzige Kontrollfunktion ist, die (6.8) minimiert.

Der zu minimierende Ausdruck ist unter den gemachten Annahmen gerade gleich

DW (x) · f(x, u) + g(x, u)

= xTP (Ax+Bu) + (Ax+Bu)TPx+ xTQx+ xTNu+ uTNTx+ uTRu

= 2xTP (Ax+Bu) + xTQx+ 2xTNu+ uTRu =: h(u),

da P symmetrisch ist. Da R wegen der positiven Definitheit von G ebenfalls positiv definit
sein muss, ist die zweite Ableitung von h nach u positiv definit, die Funktion h ist also
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strikt konvex in u. Folglich ist jede Nullstelle der Ableitung von h nach u ein globales
Minimum. Diese Nullstellen sind gerade gegeben durch

0 = Dh(u) = 2xTPB + 2xTN + 2uTR
⇔ −2uTR = 2xTPB + 2xTN
⇔ −Ru = BTPx+NTx
⇔ u = −R−1(BTPx+NTx) = Fx,

was die Behauptung zeigt.

Die exponentielle Stabilität des geregelten Systems folgt aus der Hamilton-Jacobi-Bellman
Gleichung. Diese impliziert wegen der positiven Definitheit von g nach Lemma 3.10

DW (x) · f(x, Fx) = −g(x, Fx) ≤ −c‖(xT , (Fx)T )T ‖2 ≤ −c‖x‖2

für ein geeignetes c > 0. Da P zudem positiv definit ist, ist das System nach Lemma 3.11
exponentiell stabil mit Lyapunov Funktion W (x).

Wenn die optimale Wertefunktion also von der Form (6.7) ist, so erhalten wir eine beson-
ders schöne Lösung: Nicht nur lassen sich die optimalen Kontrollen u∗ explizit berechnen,
sie liegen darüberhinaus auch in linearer Feedback-Form vor und liefern als (natürlich
gewünschtes) Nebenprodukt ein stabilisierendes Feedback.

Wie müssen also untersuchen, wann V die Form (6.7) annehmen kann. Das nächste Lemma
gibt eine hinreichende Bedingung dafür an, dass die optimale Wertefunktion diese Form
besitzt. Zudem liefert es eine Möglichkeit, P zu berechnen.

Lemma 6.11 Wenn die Matrix P ∈ Rn×n eine symmetrische und positiv definite Lösung
der algebraischen Riccati-Gleichung2

PA+ATP +Q− (PB +N)R−1(BTP +NT ) = 0 (6.9)

ist, so ist die optimale Wertefunktion des Problems gegeben durch V (x) = xTPx.

Insbesondere existiert höchstens eine symmetrische und positiv definite Lösung P von (6.9).

Beweis: Wir zeigen zunächst, dass die Funktion W (x) = xTPx die Hamilton-Jacobi-
Bellman Gleichung (6.4) löst.

Im Beweis von Lemma 6.10 wurde bereits die Identität

min
u∈U
{DW (x) · f(x, u) + g(x, u)} = DW (x) · f(x, Fx) + g(x, Fx)

für die Matrix F = −R−1(BTP +NT ) gezeigt. Mit

F TBTP + F TRF + F TNT

= −(N + PB)R−1BTP + (N + PB)R−1RR−1(BTP +NT )− (N + PB)R−1NT = 0

2benannt nach Jacopo Francesco Riccati, italienischer Mathematiker, 1676–1754
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ergibt sich

DW (x) · f(x, Fx) + g(x, Fx)

= xT (P (A+BF ) + (A+BF )TP +Q+NF + F TNT + F TRF )x

= xT (PA+ATP +Q+ (PB +N)F + F TBTP + F TRF + F TNT︸ ︷︷ ︸
=0

)x

= xT (PA+ATP +Q+ (PB +N)F )x

= xT (PA+ATP +Q− (PB +N)R−1(BTP +NT ))x.

Wenn die algebraische Riccati-Gleichung (6.9) erfüllt ist, so ist dieser Ausdruck gleich Null,
womit die Hamilton-Jacobi-Bellman Gleichung erfüllt ist.

Um V (x) = W (x) zu zeigen weisen wir nun nach, dass die Voraussetzungen von Satz 6.7
erfüllt sind. Aus der positiven Definitheit von P folgt W (x) ≥ 0 und W (0) = 0. Wie oben
gezeigt erfüllt W (x) = xTPx die Hamilton-Jacobi-Bellman Gleichung, zudem wurde die in
Lemma 6.10 mittels des Feedbacks F angegebene optimale Kontrolle u∗ im Beweis gerade
so konstruiert, dass sie die in Satz 6.7 and u∗ geforderten Bedingungen erfüllt. Also folgt
die Behauptung V (x) = W (x) aus Satz 6.7.

Die Eindeutigkeit der symmetrischen und positiv definiten Lösung P folgt aus der Tatsache,
dass jede solche Lösung die Gleichung V (x) = xTPx für alle x ∈ Rn erfüllt, wodurch P
eindeutig bestimmt ist.

Bemerkung 6.12 Beachte, dass die Eindeutigkeitsaussage dieses Lemmas nur für die
symmetrischen und positiv definiten Lösungen gilt. Die algebraische Riccati-Gleichung
(6.9) kann durchaus mehrere Lösungen P haben, von denen dann aber höchstens eine
positiv definit sein kann.

Die Lemmata 6.10 und 6.11 legen die folgende Strategie zur Lösung des linear-quadratischen
Problems nahe:

Finde eine positiv definite Lösung P der algebraischen Riccati-Gleichung (6.9)
und berechne daraus das optimale lineare Feedback F gemäß Lemma 6.10.

Dies liefert ein optimales lineares Feedback, das nach Lemma 6.10 zugleich das Stabilisie-
rungsproblem löst.

Die wichtige Frage ist nun, unter welchen Voraussetzungen man die Existenz einer po-
sitiv definiten Lösung der algebraischen Riccati-Gleichung erwarten kann. Der folgende
Satz zeigt, dass dieses Vorgehen unter der schwächsten denkbaren Bedingung an A und B
funktioniert.

Satz 6.13 Für das linear-quadratische optimale Steuerungsproblem sind die folgenden
Aussagen äquivalent:

(i) Das Paar (A,B) ist stabilisierbar.
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(ii) Die algebraische Riccati-Gleichung (6.9) besitzt genau eine symmetrische und positiv
definite Lösung P .

(iii) Die optimale Wertefunktion ist von der Form (6.7).

(iv) Es existiert ein optimales lineares Feedback, welches das Kontrollsystem stabilisiert.

Beweis: “(i) ⇒ (ii)”: Betrachte die Riccati-Differentialgleichung

Ṗ (t) = P (t)A+ATP (t) +Q− (P (t)B +N)R−1(BTP (t) +NT )

mit Matrix-wertiger Lösung P (t), die die Anfangsbedingung P (0) = 0 erfüllt. Aus der
Theorie der gewöhnlichen Differentialgleichungen folgt, dass die Lösung P (t) zumindest
für t aus einem Intervall der Form [0, t∗) existiert, wobei t∗ maximal gewählt sei. Durch
Nachrechnen sieht man, dass auch P (t)T eine Lösung ist, die ebenfalls P (0)T = 0 erfüllt.
Wegen der Eindeutigkeit muss also P (t) = P (t)T sein, d.h. die Lösung ist symmetrisch.

Wir wollen zunächst zeigen, dass diese Lösung für alle t ≥ 0 existiert, dass also t∗ = ∞
gilt. Wir nehmen dazu an, dass t∗ <∞ ist.

Mit analogen Rechnungen wie im Beweis von Lemma 6.10 rechnet man nach, dass die
Funktion W (t, t1, x) := xTP (t1− t)x für alle t1− t ∈ [0, t∗) und alle u ∈ U die Ungleichung

∂

∂t
W (t, t1, x) +

∂

∂x
W (t, t1, x) · f(x, u) + g(x, u) ≥ 0 (6.10)

erfüllt. Für jede Lösung x(t, x0, u) des Kontrollsystems mit beliebigem u ∈ U folgt daraus

d

dt
W (t, t1, x(t, x0, u)) =

∂

∂t
W (t, t1, x) +

∂

∂x
W (t, t1, x) · f(x, u) ≥ −g(x, u).

Der Hauptsatz der Differential- und Integralrechnung unter Ausnutzung von W (t1, t1, x) =
0 liefert nun

W (0, t1, x0) = −
∫ t1

0

d

dt
W (t, t1, x)dt ≤

∫ t1

0
g(x(t, x0, u), u(t))dt (6.11)

für t1 ∈ [0, t∗). Ebenfalls analog zu Lemma 6.10 rechnet man nach, dass für u = u∗ =
−R−1(BTP (t) + NT )x definierte Kontrollfunktion Gleichheit in (6.10) gilt, woraus mit
analoger Rechnung für die durch u∗(t) = −R−1(BTP (t) + NT )x(t, x0, u

∗) definierte Kon-
trollfunktion die Gleichung

W (0, t1, x0) =

∫ t1

0
g(x(t, x0, u

∗), u∗(t))dt (6.12)

gilt. Da G positiv definit und die Lösungen x(t, x0, u
∗) stetig sind, ist W (0, t1, x0) > 0 für

x0 6= 0, weswegen P (t1) positiv definit ist. Mit der speziellen Wahl u ≡ 0 folgt aus (6.11),
dass W (0, t1, x0) = xTP (t1)x gleichmäßig beschränkt ist für alle t1 ∈ [0, t∗). Wegen der
Symmetrie gilt für die Einträge von P (t) die Gleichung

[P (t)]ij = eTi P (t)ej =
1

2
((ei + ej)

TP (t)(ei + ej)− eTi P (t)ei − eTj P (t)ej), (6.13)
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weswegen also auch diese für t ∈ [0, t∗) gleichmäßig beschränkt sind. Aus der Theorie der
gewöhnlichen Differentialgleichungen ist bekannt, dass, wenn die rechte Seite der Diffe-
rentialgleichung global definiert ist (was bei uns der Fall ist, weil sie für alle P ∈ Rn×n
definiert ist) und t∗ <∞ gilt, die Norm der Lösung gegen unendlich strebt für t↗ t∗. Dies
wiederum ist nur möglich, wenn mindestens ein Eintrag von P (t) unbeschränkt wächst. Da
hier allerdings alle Einträge beschränkt sind, ist t∗ <∞ nicht möglich.

Die Lösung P (t) ist also eine für alle t ≥ 0 definierte symmetrische und positiv defini-
te matrixwertige Funktion. Zudem folgt aus (6.12) für alle s ≥ t und alle x ∈ Rn die
Ungleichung

xTP (s)x ≥ xTP (t)x.

Wir zeigen nun, dass P∞ := limt→∞ P (t) existiert. Dazu wählen wir ein stabilisierendes
Feedback F für das Paar (A,B) und setzen uF (t) = Fx(t, x0, F ). Damit erhalten wir aus
(6.11) und der Abschätzung

g(x, Fx) ≤ K‖x‖2

die Ungleichung

W (0, t1, x0) ≤
∫ t1

0
g(x(τ, x0, F ), uF (τ))dτ

≤
∫ t1

0
K(Ce−σt‖x0‖)2dt

≤
∫ ∞

0
KC2e−2σtdt︸ ︷︷ ︸

=KC2

2σ
=:D<∞

‖x0‖2 ≤ D‖x0‖2.

Daraus folgt xTP (t)x ≤ D‖x‖2 für alle t ≥ 0, womit xTP (t)x für jedes feste x ∈ Rn
beschränkt und monoton ist und damit für t→∞ konvergiert. Mit ej bezeichnen wir den
j-ten Basisvektor. Definieren wir

lij = lim
t→∞

(ei + ej)
TP (t)(ei + ej) und lj = lim

t→∞
eTj P (t)ej ,

so folgt aus (6.13)

lim
t→∞

[P (t)]ij =
1

2
(lij − li − lj).

Dies zeigt, dass der Limes P∞ := limt→∞ P (t) existiert. Diese Matrix ist symmetrisch und
wegen

xTP∞x ≥ xTP (t)x > 0 für alle x 6= 0 und beliebiges t > 0

positiv definit.

Wir zeigen schließlich, dass P∞ die algebraische Riccati-Gleichung löst. Aus der qualitativen
Theorie der gewöhnlichen Differentialgleichungen ist bekannt, dass aus P (t) → P∞ folgt,
dass P∞ ein Gleichgewicht der Riccati-DGL sein muss.3 Daraus folgt sofort, dass P∞ die
algebraische Riccati-Gleichung erfüllt, was die Existenz einer symmetrischen und positiv
definiten Lösung zeigt. Die Eindeutigkeit folgt aus Lemma 6.11.

3siehe z.B.Lemma 7.2 in [4]
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“(ii) ⇒ (iii)”: Folgt aus Lemma 6.11

“(iii) ⇒ (iv)”: Folgt aus Lemma 6.10.

“(iv) ⇒ (i)”: Da ein stabilisierendes Feedback existiert, ist das Paar (A,B) stabilisier-
bar.

Bemerkung 6.14 Die im Beweis von “(i)⇒(ii)” verwendete Hilfsfunktion W (t0, t1) ist
tatsächlich die optimale Wertefunktion des optimalen Steuerungsproblems

Minimiere J(t0, t1, x0, u) :=

∫ t1

t0

g(x(t, t0, x0, u), u(t))dt

auf endlichem Zeithorizont [t0, t1], wobei x(t, t0, x0, u) die Lösung des Kontrollsystems mit
Anfangszeit t0 und Anfangswert x0, also x(t0, t0, x0, u) = x0, bezeichnet.

Diese Beobachtung lässt sich sogar noch verallgemeinern, was wir (ohne Beweise) kurz
skizzieren:

Für das linear quadratische Problem auf endlichem Zeithorizont mit Endkosten l(x) =
xTLx für eine positiv definite Matrix L ∈ Rn × n, also

Minimiere J(t0, t1, x0, u) :=

∫ t1

t0

g(x(t, t0, x0, u), u(t))dt+ l(x(t1, t0, x0, u))

ergibt sich die optimale Wertefunktion als

W (t0, t1) = xTP (t1 − t0)x,

wobei P (·) wie im obigen Beweis die Lösung der Riccati-Differentialgleichung ist, nun aber
mit Anfangsbedingung P (0) = L.

Das optimale Feedback ist dann analog zum unendlichen Horizont gegeben durch

F (t) = −R−1(BTP (t1 − t) +NT ),

hängt aber nun von der Zeit t ab. Das auf [t0, t1] optimal geregelte System lautet also

ẋ(t) = (A+BF (t))x(t).

Beachte, dass F (t) für t1 →∞ gegen F aus Lemma 6.10 konvergiert.

Bemerkung 6.15 Für zeitdiskrete Systeme lassen sich analoge Resultate herleiten. Hier
baut man nicht auf der Hamilton-Jacobi-Bellman Gleichung sondern direkt auf dem Op-
timalitätsprinzip (6.3) für K = 1 auf. Damit kommt man auf die zeitdiskrete algebraische
Riccati-Gleichung

ATPA− P − (ATPB +N)(BTPB +R)−1(BTPA+NT ) +Q = 0.

Die Formel für das optimale Feedback lautet F = (BTPB +R)−1(BTPA+NT ).
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6.3 Linear-quadratische Ausgangsregelung

Wir haben im vorhergehenden Abschnitt stets vorausgesetzt, dass die Matrix G in der
Definition von g(x, u) positiv definit ist. In den Übungsaufgaben haben wir gesehen, dass
das LQ-Problem i.A. nicht nullkontrollierend ist und dass auch das Lösungsverfahren i.A.
nicht funktioniert, wenn diese Bedingung verletzt ist.

Es gibt aber trotzdem Gründe, diese Bedingung abzuschwächen. Betrachten wir wie in
Kapitel 4 ein Kontrollsystem mit Ausgang (4.1), also

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

so ist es sinnvoll, das Optimierungskriterium nur von y und nicht von x abhängig zu
machen, d.h. eine Kostenfunktion der Form g̃(y, u) zu betrachten. Formal wählt man dazu
die Teilmatrizen Q und N von G von der Form

Q = CT Q̃C, N = CT Ñ

für Matrizen Q̃ und Ñ passender Dimension. Dann gilt

g(x, u) = (xT uT )

(
Q N
NT R

)
︸ ︷︷ ︸

=:G

(
x
u

)
= (xT uT )

(
CT Q̃C CT Ñ

ÑTC R

)(
x
u

)

= (yT uT )

(
Q̃ Ñ

ÑT R

)
︸ ︷︷ ︸

=:G̃

(
y
u

)
=: g̃(y, u). (6.14)

Wir wählen dabei Q̃ und Ñ so, dass G̃ symmetrisch und positiv definit ist. Die Matrix G
ist nun allerdings nicht mehr positiv definit. Trotzdem lassen sich die Resultate aus dem
vorhergehenden Abschnitt auf dieses neue G übertragen. Dazu muss man betrachten, wo
und wie die positive Definitheit in den Beweisen eingeht:

(i) In Lemma 6.9 wird die positive Definitheit von G ausgenutzt, um zu zeigen, dass das
Problem nullkontrollierend ist.

(ii) In Lemma 6.10 wird die positive Definitheit der Teilmatrix R implizit ausgenutzt, da
die Inverse R−1 verwendet wird.

(iii) Im Beweis von Teil “(i)⇒(ii)” von Satz 6.13 wird die positive Definitheit von G
verwendet um zu zeigen, dass P (t) positiv definit ist.

Punkt (ii) ist hierbei unproblematisch, denn R ist weiterhin positiv definit. Punkt (i) und
(iii) klären wir im Folgenden. Wesentlich dafür ist die Aussage des folgenden Lemmas.

Lemma 6.16 Das Paar (A,C) sei beobachtbar. Dann existiert für jedes t1 > 0 ein c > 0,
so dass für g aus (6.14) die Abschätzung

J(0, t1, x0, u) =

∫ t1

0
g(x(t;x0, u), u(t))dt ≥ c‖x0‖2

für alle x0 ∈ Rn und alle u ∈ U gilt.
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Beweis: Aus der allgemeinen Lösungsformel

x(t;x0, u) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds = x(t;x0, 0) + x(t; 0, u)

folgt für alle α > 0 die Gleichung

x(t;αx0, αu) = αx(t;x0, u).

Daraus folgt für x0 6= 0 und α = ‖x0‖

J(0, t1, x0, u) = α2J(0, t1, x0/α, u/α) = ‖x0‖2J(0, t1, x0/‖x0‖, u/‖x0‖).

Um die Behauptung zu zeigen reicht es also aus, die Existenz von c > 0 mit

J(0, t1, x0, u) ≥ c für alle x0 ∈ Rn mit ‖x0‖ = 1 und alle u ∈ U (6.15)

zu zeigen.

Um (6.15) zu zeigen, betrachten wir zunächst

J(0, t1, x0, 0) =

∫ t1

0
x(t;x0, 0)TQx(t;x0, 0)dt =

∫ t1

0
y(t)T Q̃y(t)dt.

Da (A,C) beobachtbar ist, gilt für x0 6= 0 nach Lemma 4.5 y(τ) 6= 0 für ein τ ∈ [0, t1].
Da y(t) stetig ist, folgt y(t) 6= 0 auf einem Intervall um τ , woraus wegen der positiven
Definitheit von Q̃ die Ungleichung J(0, t1, x0, 0) > 0 folgt. Da J(0, t1, x0, 0) stetig in x0 ist,
existiert auf der kompakten Menge {x0 ∈ Rn | ‖x0‖ = 1} das Minimum c0 > 0, weswegen

J(0, t1, x0, 0) ≥ c0 (6.16)

für alle x0 ∈ Rn mit ‖x0‖ = 1 gilt.

Zur Abschätzung von J(0, t1, x0, u) wählen wir nun ein beliebiges x0 ∈ Rn mit ‖x0‖ = 1
sowie ein ε > 0. Für Kontrollen u mit∫ t1

0
u(t)TRu(t)dt > ε (6.17)

gilt
∫ t1

0 u(t)Tu(t)dt ≥ k1ε, wobei k1 = 1/‖R‖ und folglich wegen der positiven Definitheit

von G̃ mit k2 = 1/‖G̃−1‖

J(0, t1, x0, u) =

∫ t1

0
(y(t)Tu(t)T )G̃

(
y(t)

u(t)

)
︸ ︷︷ ︸
≥k2

∥∥∥(y(t)u(t))
∥∥∥2≥k2‖u(t)‖2

dt ≥ k1k2ε > 0. (6.18)

Es bleibt also die Ungleichung zu zeigen für die Kontrollen u ∈ U mit∫ t1

0
u(t)TRu(t)dt ≤ ε. (6.19)
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Da R positiv definit ist, folgt

‖u(t)‖2 ≤ c1u(t)TRu(t)

für ein c1 > 0 und damit ∫ t1

0
‖u(t)‖2dt ≤ c1ε.

Zudem gilt

‖u(t)‖ ≤


√
ε, ‖u(t)‖2 ≤ ε

‖u(t)‖2/√ε, ‖u(t)‖2 > ε.

Damit folgt∫ t1

0
‖u(t)‖dt ≤

∫ t1

0
max{√ε, ‖u(t)‖2/√ε}dt ≤

∫ t1

0

√
ε+ ‖u(t)‖2/√εdt = (c1 + t1)

√
ε.

Aus der allgemeinen Lösungsformel folgt damit die Existenz einer Konstanten c2 > 0, so
dass

‖x(t; 0, u)‖ ≤ c2

√
ε (6.20)

für alle t ∈ [0, t1] gilt. Ebenso folgt aus der Lösungsformel

‖x(t;x0, 0)‖ ≤ c3‖x0‖ = c3 (6.21)

für eine geeignete Konstante c3 > 0 und alle t ∈ [0, t1]. Insbesondere folgt damit

‖x(t;x0, u)‖ ≤ c4 (6.22)

für c4 = c2
√
ε+ c3.

Für das Funktional gilt nun

J(0, t1, x0, u) ≥
∫ t1

0
x(t;x0, u)TQx(t;x0, u)dt+ 2

∫ t1

0
x(t;x0, u)TNu(t)dt.

Für den zweiten Summanden gilt dabei wegen (6.22) die Abschätzung

2

∫ t1

0
x(t;x0, u)TNu(t)dt ≥ −2c4‖N‖

∫ t1

0
‖u(t)‖dt ≥ −2c4‖N‖(c1 + t1)

√
ε =: −c5

√
ε.

Aus der Abschätzung

(x1 + x2)TQ(x1 + x2) = xT1 Qx1 + xT2 Qx2 + 2xT1 Qx2 ≥ xT1 Qx1 + 2xT1 Qx2

folgt für den ersten Summanden mit x1(t) = x(t;x0, 0), x2(t) = x(t; 0, u) und der Cauchy-
Schwarz-Ungleichung∫ t1

0
x(t;x0, u)TQx(t;x0, u)dt ≥

∫ t1

0
x1(t)TQx1(t) +

∫ t1

0
2x1(t)TQx2(t)dt

≥ c0 − 2‖N‖
√∫ t1

0
‖x1(t)‖2dt

√∫ t1

0
‖x2(t)‖2dt

≥ c0 − 2‖N‖c3

√
t1c2

2ε =: c0 − c6

√
ε.
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Insgesamt ergibt sich damit mit c7 := c5 + c6

J(0, t1, x0, u) ≥ c0 − c7

√
ε.

Wählen wir nun ε = c2
0/(2c7)2 (womit c7

√
ε = c0/2 gilt), so folgt letztendlich im Fall (6.19)

J(0, t1, x0, u) ≥ c0/2.

Zusammen der Abschätzung (6.18) für den Fall (6.17) erhalten wir also

J(0, t1, x0, u) ≥ max{c0/2, k1k2c
2
0/(4c7)2} =: c

und folglich (6.15).

Nun können wir die Punkte (i) und (iii) in der obigen Aufstellung klären. Als erstes betrach-
ten wir Punkt (i), d.h. wir verallgemeinern wir Lemma 6.9 auf die neue Kostenfunktion
(6.14).

Lemma 6.17 Das Paar (A,C) sei beobachtbar. Dann ist das linear quadratische Problem
mit g aus (6.14) nullkontrollierend.

Beweis: Wir beweisen

x(t;x0, u) 6→ 0 ⇒ J(x0, u) =∞.
Gelte also x(t;x0, u) 6→ 0. Dann existiert eine Folge von Zeiten tk → ∞ und ein ε > 0, so
dass ‖x(tk;x0, u)‖ ≥ ε. O.B.d.A. gelte tk+1 − tk ≥ 1. Mit Lemma 6.16, xk = x(tk;x0, u)
und uk(·) = u(tk + ·) folgt dann∫ tk+1

tk

g(x(t;x0, u), u(t))dt =

∫ 1

0
g(x(t;xk, uk), uk(t))dt = J(0, 1, xk, uk) ≥ cε2.

Damit folgt

J(x0, u) =

∫ ∞
0

g(x(t;x0, u), u(t))dt

≥
∞∑
k=1

∫ tk+1

tk

g(x(t;x0, u), u(t))dt ≥
∞∑
k=1

ε2 = ∞.

Es bleibt Punkt (iii) nachzuweisen, also dass der Beweis “(i)⇒(ii)” von Satz 6.13 auch für
g aus (6.14) gilt. Dies zeigt der folgende Satz.

Satz 6.18 Das Paar (A,C) sei beobachtbar. Dann gilt Satz 6.13 auch für das linear qua-
dratische Problem mit g aus (6.14).

Beweis: Mit Lemma 6.17 an Stelle von Lemma 6.9 folgen alle Beweisteile bis auf “(i)⇒(ii)”
ganz analog zu Satz 6.13.
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Im Beweis von “(i)⇒(ii)” wird die positive Definitheit von G nur an einer Stelle benutzt,
nämlich um zu zeigen dass

W (0, t1, x0) =

∫ t1

0
g(x(t, x0, u

∗), u∗(t))dt

in Gleichung (6.12) positiv ist für alle x0 6= 0. Dies folgt aber mit Lemma 6.16 und der Be-
obachtbarkeitsannahme ebenfalls für g aus (6.14). Damit lässt sich der Beweis unverändert
übernehmen und die Aussage folgt.

Bemerkung 6.19 Die zugehörige Riccati-Gleichung lautet ausgeschrieben

PA+ATP + CT Q̃C − (PB + CT Ñ)R−1(BTP + ÑTC)

und das optimale Feedback

F = −R−1(BTP + ÑTC).

Beachte, dass sowohl V (x) = xTPx als auch Fx i.A. nicht von der Form yT P̃ y oder F̃ y sind.
Um F für ein Kontrollsystem der Form (4.1) in Abhängigkeit von y zu implementieren,
benötigen wir also nach wie vor einen Beobachter.



Kapitel 7

Der Kalman Filter

Wir haben bereits in Kapitel 4 eine Möglichkeit gesehen, wie man aus dem gemessenen
Ausgang y(t) = Cx(t) den Zustand x(t) eines Kontrollsystems mittels eines dynamischen
Beobachters z(t) rekonstruieren kann. Allerdings stand bei den dortigen Überlegungen in
erster Linie die asymptotische Stabilität des geregelten Systems im Vordergrund und nicht
so sehr die Güte der Approximation z(t) ≈ x(t).

Mit Hilfe der im letzten Kapitel entwickelten linear quadratischen optimalen Steuerung
wollen wir nun eine Methode entwickeln, mit der eine – in einem gewissen Sinne – optimale
Zustandsschätzung z(t) ≈ x(t) erzielt werden kann.

Die Lösung dieses linear quadratischen Zustandsschätzproblems wird durch den sogenann-
ten Kalman Filter (oder auch LQ-Schätzer) geliefert. Dieser Filter findet sich heutzutage
– in der ein oder anderen Variante – in unzähligen technischen Anwendungen, von Ra-
dargeräten über Satelliten bis zu Smartphones. Hier betrachten wir eine deterministische,
zeitkontinuierliche Variante auf unendlichem Zeithorizont, weil wir für diese Version direkt
auf den Ergebnissen des letzten Kapitels aufbauen können.

7.1 Zustandsschätzung auf unendlichem Zeithorizont

Wir betrachten zunächst das folgende, etwas anders formulierte Problem: Gegeben sei ein
Kontrollsystem mit Ausgang (4.1) mit der etwas geänderten Notation B = D und u = v,
also

ẋ(t) = Ax(t) +Dv(t), y(t) = Cx(t), (7.1)

wobei (A,C) beobachtbar sei.

Gegeben sei weiterhin eine Funktion ym : R→ Rl. Ziel ist es nun, mit Hilfe der Lösungen
von (7.1) eine konstruktiv berechenbare Funktion x∗(t) zu finden, so dass y(t) = Cx∗(t) die
Funktion ym(t) gut approximiert. Die Interpretation ist, dass ym(t) = Cxm(t) gemessene
Ausgangswerte einer Lösung xm der Differentialgleichung ẋm = Axm mit der gleichen
Matrix A wie in (7.1) sind, aus denen der Zustand xm(t) möglichst gut geschätzt werden
soll. Die Erweiterung dieser Problemstellung auf Lösungen xm von Kontrollsystemen mit
zusätzlicher Kontrolle u betrachten wir im nachfolgenden Abschnitt.
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Der Kalman-Filter, den wir in den folgenden Schritten herleiten werden, löst dieses Pro-
blem optimal im Sinne einer “indirekten” kleinsten Quadrate-Approximation, die in zwei
Schritten vorgeht:

Im ersten Schritt wählen wir symmetrische und positiv definite Matrizen M̃ und N pas-
sender Dimension und berechnen für jedes τ ≥ 0 und jeden Anfangswert x0 zur An-
fangszeit t0 = τ eine Kontrollfunktion v : (−∞, τ ] → Rn, so dass die zugehörige Lösung
xτ (t) = x(t; τ, x0, v) das Funktional

Jτ (x0, v) :=

∫ τ

−∞
(Cxτ (t)− ym(t))T M̃(Cxτ (t)− ym(t)) + v(t)TNv(t)dt (7.2)

minimiert. Wir nehmen dabei an, dass die optimale Wertefunktion

Pτ (x0) := inf
v∈U

Jτ (x0, v)

endlich ist.

Im zweiten Schritt wählen wir dann x∗(τ) so, dass Pτ (x∗(τ)) minimal wird, d.h. dass

Pτ (x∗(τ)) = min
x0∈Rn

Pτ (x0)

gilt.

Der Ansatz mag auf den ersten Blick etwas umständlich erscheinen. Er führt aber auf eine
sehr einfach zu implementierende Lösung, die wir nun herleiten wollen.

Zunächst einmal transformieren wir die Zeit so, dass das Integral in (7.2) von 0 bis∞ läuft,
wie dies in unserem üblichen linear-quadratischen Problem der Fall ist.

Dazu setzen wir xτ (t;x0, v) := x(τ − t;x0, v) und yτm(t) = ym(τ − t). Dann gilt mit der
Abkürzung xτ (t) = xτ (t;x0, v) für

J−τ (x0, v) :=

∫ ∞
0

(Cxτ (t)− yτm(t))T M̃(Cxτ (t)− yτm(t)) + v(t)TNv(t)dt (7.3)

die Gleichheit J−τ (x0, v) = Jτ (x0, v(τ − ·)) und damit insbesondere

P−τ (x0) := inf
v∈U

J−τ (x0, v) = Pτ (x0).

Beachte, dass xτ (t;x0, v) Lösung des Kontrollsystems

ẋτ (t) = −Axτ (t)−Dv(τ − t)

ist. Mit einer weiteren Transformation können wir (7.3) nun (fast) auf die Form unseres
linear quadratischen Ausgangsregelungsproblems gemäß Definition 6.1 mit g aus (6.14)
bringen:

Dazu erweitern wir den Zustand x ∈ Rn des Systems um eine Komponente xn+1(t) ≡ const,
also ẋn+1(t) ≡ 0. Dies erreichen wir durch die Wahl

x̄ :=

(
x
xn+1

)
, A :=

(
−A 0
0 0

)
und D :=

(
−D

0

)
.
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Definieren wir nun

M τ (t) :=

(
CT M̃C −CT M̃yτm(t)

−yτm(t)T M̃C yτm(t)T M̃yτm(t)

)

und g(t, x̄, v) := x̄TM τ (t)x̄+ vTNv so folgt für x̄ =

(
x
1

)
g(t, x̄, v) = (Cx− yτm(t))T M̃(Cx− yτm(t)) + v(t)TNv(t)dt.

Folglich gilt für x̄0 =

(
x0

1

)
und x̄τ (t, x̄0, v) =

(
xτ (t, x0, v)

1

)

J−τ (x0, v) =

∫ ∞
0

g(t, x̄τ (t; x̄0, v), v(t))dt =: Jτ (x̄0, v).

Mit P τ bezeichnen wir wie üblich die optimale Wertefunktion. Dieses Problem ist von der
üblichen LQ-Form mit Ausnahme der Tatsache, dass g nun explizit von der Zeit abhängt.
Tatsächlich sind aber die im Beweis von Satz 6.13 verwendeten Gleichungen weiterhin
gültig, wenn wir die Zeit in M(t) passend berücksichtigen. Genauer gilt (was wir hier aus
Zeitgründen nicht beweisen):

Betrachte für t ∈ [0, σ] die Lösung der Riccati-Differentialgleichung

Q̇τ,σ(t) = Qτ,σ(t)A+A
T
Qτ (t) +M τ (σ − t)−Qτ,σ(t)DN−1D

T
Qτ,σ(t) (7.4)

mit Anfangsbedingung Qτ,σ(0) = 0. Dann gilt die Konvergenz

P τ (x̄) := lim
σ→∞

x̄TQτ,σ(σ)x̄.

Nun zerlegen wir Qτ,σ(t) passend zur Definition von A: Schreiben wir

Qτ,σ(t) =

(
Qτ,σ(t) qτ,σ(t)
qτ,σ(t)T ατ,σ(t)

)
,

so folgt aus der Form der Matrizen A und D, dass Qτ,σ(t) die Gleichung

Q̇τ,σ(t) = −Qτ,σ(t)A−ATQτ,σ(t) + CT M̃C −Qτ,σ(t)DN−1DTQτ,σ(t)

erfüllt. Dies ist aber genau die Riccati-Differentialgleichung aus dem Beweis von Satz 6.13.
Zudem sind alle Daten und damit auch Qτ,σ(t) = Q(t) unabhängig von τ und σ. Es folgt
also

lim
σ→∞

Q(σ) = Q,

wobei Q die algebraische Riccati-Gleichung

−QA−ATQ+ CT M̃C −QDN−1DTQ = 0 (7.5)

löst.
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Damit erhalten wir mit x̄T0 = (xT0 , 1) und qτ = limσ→∞ qτ,σ(σ), ατ = limσ→∞ ατ,σ(σ)

Pτ (x0) = P τ (x̄0) = lim
σ→∞

x̄T0 Qτ,σ(σ)x̄0 = xT0 Qx0 + 2xT0 qτ + ατ .

Der im zweiten Schritt des Ansatzes gesuchte Wert x∗(τ) ergibt sich damit (durch Ableiten
des Ausdrucks und Umstellen nach x0) zu

x∗(τ) = −Q−1qτ = −Sqτ

für S := Q−1. Durch Multiplikation von (7.5) mit S von links und rechts sowie mit −1
folgt, dass S die sogenannte duale Riccati-Gleichung

AS + SAT − SCT M̃CS +DN−1DT = 0 (7.6)

löst.

Es bleibt qτ zu berechnen. Aus der Riccati-Differentialgleichung (7.4) folgt für qτ,σ(t) die
Differentialgleichung

q̇τ,σ(t) = −AT qτ,σ(t)−Q(t)DN−1DT qτ,σ(t)− CT M̃ym(τ − σ + t)

mit Anfangsbedingung qτ,σ(0) = 0. Hieraus folgt

q̇τ+s,σ+s(t) = q̇τ,σ(t)

und da diese beiden Lösungen für t = 0 übereinstimmen, folgt

qτ+s,σ+s(t) = qτ,σ(t).

Damit folgt

d

ds

∣∣∣∣
s=0

qτ+s,σ+s(σ + s) = q̇τ,σ(σ)

= −AT qτ,σ(σ)−Q(σ)DN−1DT qτ,σ(σ)− CT M̃ym(τ)

und folglich mit σ →∞
d

dτ
qτ = −AT qτ −QDN−1DT qτ − CT M̃ym(τ).

Damit erhalten wir schließlich mit (7.6)

ẋ∗(τ) = −S d

dτ
qτ

= SAT qτ +DN−1DT qτ + SCT M̃ym(τ)

= −SATS−1x∗(τ)−DN−1DTS−1x∗(τ) + SCT M̃ym(τ)

= (−SAT −DN−1DT )S−1x∗(τ) + SCT M̃ym(τ)

= (AS − SCT M̃CS)S−1x∗(τ) + SCT M̃ym(τ)

= Ax∗(τ)− SCT M̃(Cx∗(τ)− ym(τ))

= Ax∗(τ) + L(Cx∗(τ)− ym(τ))
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mit L = −SCT M̃ .

Diese Differentialgleichung ist der sogenannte Kalman-Filter. Seine Anwendung ist wie
folgt: Ist x∗(t) bekannt, so kann x∗(s), s > t, durch Lösen der Differentialgleichung auf
dem Intervall [t, s] (analytisch oder numerisch) aus den Daten ym|[t,s] berechnet werden.
Der Kalman-Filter eignet sich also zur rekursiven Online-Implementierung.

Zwei Eigenschaften des Kalman-Filters wollen wir hier noch explizit festhalten:

(i) Die Matrix L hängt nicht von ym ab. Um L zu berechnen, muss lediglich eine der
beiden Riccati-Gleichungen (7.5) oder (7.6) gelöst werden.

(ii) Die Matrix A+LC ist Hurwitz. Die Matrix LT ist nämlich das LQ-optimale Feedback
des zur dualen Riccati-Gleichung (7.6) gehörigen dualen optimalen Steuerungspro-
blems ist. Daher ist AT + CTLT asymptotisch stabil und folglich auch A + LC =
(AT + CTLT )T , weil diese beiden Matrizen die gleichen Eigenwerte besitzen.

7.2 Der Kalman-Filter als Beobachter

Wir wollen den Kalman-Filter nun für das in der Einführung dieses Kapitels skizzierte
Beobachterproblem anwenden.

Gegeben sei dazu ein Kontrollsystem mit Ausgang (4.1), also

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

mit beobachtbarem Paar (A,C). Gegeben seien weiterhin ein unbekannter Anfangswert x0

sowie eine bekannte Kontrollfunktion u(t), t ≥ 0, die zugehörigen Ausgangswerte y(t) =
Cx(t;x0, u), t ≥ 0, sowie eine Schätzung z0 des Anfangswerts x0. Gesucht ist nun eine
Kurve z(t), t ≥ 0, mit z(0) = z0 im Rn, so dass der Schätzfehler Cz(t) − y(t) in einem
geeigneten Sinne möglichst klein wird und so, dass z(t) nur von y|[0,t] abhängt (also aus den
zur Zeit t bekannten Daten berechenbar ist). Der Ausgang y(t) spielt hier also die Rolle
der Messgröße ym(t) im Kalman-Filter.

Zur Lösung des Problems machen wir den Ansatz

ż(t) = Az(t) +Bu(t) + v(t), (7.7)

wobei v : R → Rn so bestimmt werden soll, dass z(t) eine möglichst gute Schätzung ist.
Um den Term Bu(t) aus der Gleichung zu eleminieren, definieren wir den Schätzfehler
e(t) := z(t)− x(t). Dieser erfüllt die Gleichung

ė(t) = Ae(t) + v(t), (7.8)

d.h. wir haben hier ein Kontrollsystem (7.1) mit D = Id und x = e. Der Fehler e spielt
hier also die Rolle des x in (7.1).

Wir wollen uns nun überlegen, wie das Gegenstück der Messgröße ym für das e-System
lautet. Wir bezeichnen diese mit em. In Abschnitt 7.1 haben wir (in der Notation dieses
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Abschnitts) die Größe Ce(t) − em(t) minimiert, hier wollen wir die Größe Cz(t) − y(t)
minimieren. Also muss gelten

Ce(t)− em(t) = Cz(t)− y(t) (7.9)

und damit

em(t) = y(t) + Ce(t)− Cz(t) = y(t) + Cz(t)− Cx(t)︸ ︷︷ ︸
=y(t)

−Cz(t) = 0.

Die Messwerte für die e-Gleichung sind also konstant gleich Null. Dies liegt daran, dass
wir die gemessene Größe ym(t) = y(t) = Cx(t) durch die Definition von e bereits in die
Gleichung für e einbezogen haben.

Berechnen wir nun gemäß dem vorhergehenden Abschnitt das Feedback L für den Kalman-
Filter für (7.8), so ergibt sich die Filtergleichung wegen em ≡ 0 zu

ė∗(t) = (A+ LC)e∗(t).

Dies ist äquivalent zu

ż(t) = Az(t) +Bu(t) + L(Cz(t)− y(t)) (7.10)

und liefert damit eine online implementierbare Beobachtergleichung (beachte die struk-
turelle Ähnlichkeit zum dynamischen Beobachter in Kapitel 4) zur Berechnung von z(t),
die nur noch (analytisch oder numerisch) gelöst werden muss. Beachte, dass die optimalen
Schätzungen für die e und die z-Variable mittels e∗(t) = z∗(t) − x(t) zusammenhängen.
Während wir den Kalman Filter formal auf die e-Gleichung (7.8) anwenden, verwenden
wir zur Berechnung des Schätzers z∗(t) die z-Gleichung (7.10), denn ansonsten bräuchten
wir den unbekannten Zustand x(t), um z∗(t) aus e∗(t) zu berechnen.

Nachdem wir hier keine Messwerte y(t) für t < 0 gegeben haben, können wir den optimalen
Startwert e∗(0) hier nicht wie im vorhergehenden Abschnitt berechnen. Aber selbst wenn
wir es könnten, würde uns dies nichts nützen, denn für (7.10) müssten wir dann ja z(0) =
e∗(0) + x0 verwenden — der Wert x0 ist aber unbekannt. Es liegt also nahe, in (7.10) den
Schätzwert z0 ≈ x0 als Anfangswert zu verwenden. Weil A−LC is Hurwitz ist, konvergiert
der Schätzfehler e∗(t) für t → ∞ gegen 0, d.h. die Approximation z(t) ≈ x(t) wird mit
wachsendem t immer besser. Da unserem Ansatz aber ein LQ-optimales Steuerungsproblem
zu Grunde liegt, kann man erwarten, dass die Schätzung z(t) ausgehend von z(0) = z0 in
einem gewissen Sinne optimal ist.

Um zu sehen, welcher Art diese Optimalität ist, setzen wir y(t) für t < 0 so fort, dass sich
e∗(0) = z0 − x0 und damit z(0) = z0 als Lösung des Kalman-Filters ergibt. Wir erzeugen
also gewissermaßen “künstliche” Messwerte, für die der Kalman Filter zur Zeit t = 0 gerade
den Schätzwert z0 liefert. Dies ist gerade dann der Fall, wenn wir y(t) mittels

y(t) =

{
Cx(t; z0, 0), t < 0
Cx(t;x0, u), t ≥ 0

(7.11)

aus der Vorwärtslösung von (4.1) für x0 und u und der Rückwärtslösung für z0 und u ≡ 0
zusammensetzen: Für v ≡ 0 und e(0) = 0 gilt dann wegen em ≡ 0

Ce(t)− em = 0
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für alle t < 0 und es folgt J0(0, 0) = 0 für das Optimalitätskriterium (7.2), folglich auch
P0(0) = 0 und somit e∗(0) = 0. Damit folgt z∗(0) = z0 − e∗(0) = z0.

Der aus dem Anfangswert z0 berechnete Approximationswert z(t) ist also gerade der End-
wert derjenigen Lösung von (7.7), welche die zusammengesetzte Kurve (7.11) im Sinne von
(7.2) am Besten approximiert.

Der große Vorteil des Kalman-Filters ist es, dass er auch bei ungenauen Daten ỹ(t) ≈
y(t) gute Approximationen liefert. Dies kann mit stochastischen Methoden mathematisch
rigoros formuliert und bewiesen werden.

Auch für den Kalman-Filter existiert eine zeitdiskrete Version. In diesem Fall wird die
Differentialgleichung (7.10) zu einer Differenzengleichung

z(k + 1) = Az(k) +Bu(k) + L(Cz(k)− y(k)).

Da diese leichter zu implementieren ist als die Differentialgleichung (7.10) (die man ja
zuerst noch numerisch lösen muss) und zudem mit diskreten Messwerten y(k) auskommt
(welche technisch leichter zu messen sind als kontinuierliche Messwerte y(t)), wird in der
Praxis der zeitdiskrete Kalman-Filter oft bevorzugt.
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Kapitel 8

Nichtlineare Kontrollsysteme

In diesem und den folgenden Kapiteln werden wir uns mit nichtlinearen Kontrollsystemen
der allgemeinen zeitkontinuierlichen Form

ẋ(t) = f(x(t), u(t)) (8.1)

bzw. der zeitdiskreten Form

x(k + 1) = f(x(k), u(k)), (8.2)

kurz auch geschrieben als x+ = f(x, u), befassen. Ein Beispiel für ein nichtlineares Kon-
trollsystem in kontinuierlicher Zeit ist das bereits bekannte nichtlineare Pendel auf dem
Wagen (1.5). Während wir den Zustands- und Kontrollwerteraum für zeitkontinuierliche
Systeme als Rn bzw. Rm gewählt haben, können wir bei zeitdiskreten Systemen beliebige
metrische Räume X und U als Zustands- und Kontrollraum verwenden.

In den folgenden beiden Abschnitten fassen wir einige wichtige Grundlagen zusammen.

8.1 Zeitkontinuierliche Systeme

Im kontinuierlichen betrachten wir Kontrollfunktionen mit Werten in U ⊂ Rm. Die Funk-
tion f : Rn×U → Rn ist ein parameterabhängiges stetiges Vektorfeld. Den Raum der Kon-
trollfunktionen bezeichnen wir weiterhin mit U , werden diesen aber im Vergleich zu den vor-
hergehenden Kapiteln im folgenden Abschnitt in Zusammenhang mit einem Existenz- und
Eindeutigkeitsresultat erweitern. Genauer verwenden wir Kontrollfunktionen aus L∞(R, U)
und den folgenden Satz von Carathéodory.

Satz 8.1 (Satz von Carathéodory) Betrachte ein Kontrollsystem mit folgenden Eigen-
schaften:

i) Der Raum der Kontrollfunktionen ist gegeben durch

U = L∞(R, U) := {u : R→ U |u ist messbar und essentiell beschränkt1}.
1d.h. beschränkt außerhalb einer Lebesgue–Nullmenge
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ii) Das Vektorfeld f : Rn × U → Rn ist stetig.

iii) Für jedes R > 0 existiert eine Konstante LR > 0, so dass die Abschätzung

‖f(x1, u)− f(x2, u)‖ ≤ LR‖x1 − x2‖
für alle x1, x2 ∈ Rn und alle u ∈ U mit ‖x1‖, ‖x2‖, ‖u‖ ≤ R erfüllt ist.

Dann gibt es für jeden Punkt x0 ∈ Rn, jede Zeit t0 ∈ R und jede Kontrollfunktion u ∈ U
ein (maximales) offenes Intervall I mit t0 ∈ I und genau eine absolut stetige2 Funktion
x(t), die die Integralgleichung

x(t) = x0 +

∫ t

t0

f(x(τ), u(τ)) dτ

für alle t ∈ I erfüllt.

Definition 8.2 Wie bezeichnen die eindeutige Funktion x(t) aus Satz 8.1 mit xu(t; t0, x0)
und nennen sie die Lösung von (8.1) zum Anfangswert x0 ∈ Rn und zur Kontrollfunktion
u ∈ U . Im Fall t0 = 0 schreiben wir kurz xu(t, x0, u) = x(t; 0, x0).

Die folgende Beobachtung rechtfertigt diese Definition: Da xu(t; t0, x0) absolut stetig ist,
ist diese Funktion für fast alle t ∈ I nach t differenzierbar. Insbesondere folgt also aus dem
Satz 8.1, dass xu(t; t0, x0) die Differentialgleichung (8.1) für fast alle t ∈ I erfüllt, d.h. es
gilt

ẋu(t; t0, x0) = f(xu(t; t0, x0), u(t))

für fast alle t ∈ I.

Bemerkung 8.3 Im Weiteren nehmen wir stets an, dass die Voraussetzungen (i)–(iii) von
Satz 8.1 erfüllt sind, werden dies aber nur in wichtigen Sätzen explizit formulieren.

Der Beweis von Satz 8.1 (auf den wir aus Zeitgründen nicht näher eingehen) verläuft ähnlich
wie der Beweis des entsprechenden Satzes für stetige gewöhnliche Differentialgleichungen,
d.h. mit dem Banach’schen Fixpunktsatz angewendet auf einen passenden Funktionen-
raum. Er findet sich zusammen mit einer Einführung in die zugrundeliegende Lebesgue–
Maßtheorie z.B. in dem Buch Mathematical Control Theory von E.D. Sontag [15, Anhang
C].

Aus dem Eindeutigkeitssatz folgen wie bei stetigen gewöhnlichen Differentialgleichungen
für alle t, s ∈ R die Beziehungen

xu(t; t0, x0) = xu(t; s, xu(s; t0, x0)) (8.3)

(die sogenannte Kozykluseigenschaft) und

xu(t; t0, x0) = xu(s+·)(t− s; t0 − s, x0),

die wir in Korollar 1.10 bereits für lineare Systeme formuliert haben. Aus der zweiten
Gleichung folgt mit s = t0 insbesondere

xu(t; t0, x0) = xu(t0+·)(t− t0, x0). (8.4)
2Eine Funktion heißt absolut stetig, wenn sie als Integral über eine L∞-Funktion geschrieben werden

kann.
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8.2 Abtastsysteme

Wie im ersten Kapitel schon erwähnt, kann jedem zeitkontinuierlichem Kontrollsystem,
das die Voraussetzungen des Satzes von Carathéodory erfüllt, durch Abtastung ein zeit-
diskretes System zugeordnet werden. Dieses entsteht einfach daraus, dass wir den Zustand
des kontinuierlichen Systems nur zu den Zeitpunkten kT für k ∈ N und eine feste Abtast-
zeit3 T > 0 betrachten. Bezeichnet x̂(t, x0, û) die zeitkontinuierliche Lösung, so sind die
Zustände x(k) des Abtastsystems gegeben durch

x(k) = x̂û(kT, x0).

Mit Hilfe von (8.3) und (8.4) folgt

x(k + 1) = x̂û((k + 1)T ; kT, x̂û(kT, x0)) = x̂û((k + 1)T ; kT, x(k)) = x̂û(kT+·)(T, x(k)).

Definieren wir für die Kontrollfunktion û(·) die Funktionen u(k) : [0, T ]→ R mittels

u(k)(t) := û(kT + t), t ∈ [0, T ]

so ergibt sich
x(k + 1) = x̂u(k)(T, x(k)) =: f(x(k), u(k)), (8.5)

wodurch das zeitdiskrete Abtastsystem definiert ist. Im Allgemeinen ist dabei u(k) ∈
L∞([0, T ], U). Wie in Kapitel 1 bereits erläutert, ist es ist aber möglich (und in der techni-
schen Praxis üblich), u(k) aus einer eingeschränkteren Menge zu wählen. Sehr verbreitet ist
die Wahl, u(k) einfach als konstante Funktion zu wählen. Die zugehörige zeitkontinuierliche
Kontrollfunktion û ist dann stückweise konstant. Manchmal werden die u(k) auch als Po-
lynome gewählt, dann ist û eine stückweise polynomiale (aber i.d.R. in den “Nahtstellen”
kT nicht stetige) Funktion.

Wir werden im weiteren Verlauf der Vorlesung zumeist zeitdiskrete Systeme verwenden, weil
für diese die Methode der Modellprädiktiven Regelung, die im Folgenden im Vordergund
stehen soll, einfacher handzuhaben ist. Wir werden aber an einigen Stellen auf Eigenheiten
der Abtastsysteme eingehen.

3englisch: Abtastung = sampling, Abtastzeit = sampling time, Abtastsystem = sampled-data system
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Kapitel 9

Introduction to Model Predictive
Control

In this introduction, we present the basics of Model Predictive Control (henceforth abbre-
viated as MPC) in an informal way. In particular, we introduce the central idea of iterative
optimal control on a moving finite horizon.

MPC is a method for obtaining an approximately optimal feedback control for an optimal
control problem on an infinite or indefinite time horizon. Feedback here means that the
control at time k is of the form u(k) = µ(x(k)) for a map µ : X → U . We have already seen
how linear quadratic optimal control leads to an optimal feedback control. The decisive
property that makes the approach via the Riccati equation computationally feasible is that
the optimal value function V is of quadratic form V (x) = xTPx. This means that we only
have to determine the coefficients of the matrix P , whose number is of the order O(n2).
However, as soon as the cost is nonquadratic, the dynamics is nonlinear or state and/or
control constraints are introduced into the problem, the function V is no longer quadratic.
This means that an exact representation by finitely many coefficients is in general no
longer possible. The same holds for the optimal feedback law, which is in general a rather
complicated function in x for which already the storage poses challenging problems, known
as the “curse of dimensionality”. This implies that the direct computation and storage of
an approximately optimal feedback law is computationally intractable even for problems
in moderate space dimensions, say 5–10.

In contrast to this, nowadays there exist powerful optimization algorithms which can com-
pute single optimal trajectories in very short time, even for high dimensional systems like
accurately discretized PDEs. The key idea of MPC is now to use this computational ap-
proach for obtaining a feedback law which is near optimal for infinite horizon problems.

In order to describe the idea of MPC, consider the discrete time model

x+ = f(x, u) (9.1)

where f : X × U → X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x+ at the next time instant and X and
U are metric spaces. Starting from the current state x(j), for any given control sequence

97
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u(0), . . . , u(N−1) with horizon length N ≥ 2, we can now iterate (9.1) in order to construct
a prediction trajectory xu defined by

xu(0) = x(j), xu(k + 1) = f(xu(k), u(k)), k = 0, . . . , N − 1. (9.2)

Proceeding this way, we obtain predictions xu(k) for the state of the system x(j + k) for k
time steps into the future, depending on the chosen control sequence u(0), . . . , u(N − 1).

Now we use optimal control in order to determine u(0), . . . , u(N − 1). To this end, we fix
a cost function `(x, u). This function may be very general. In the simplest case, X and U
are vector spaces with norms and ` penalizes the distance of x to some “reference state”
x∗; for simplicity we assume x∗ = 0. Typically, one does not penalize the deviation of the
state from the reference but also—if desired—the distance of the control values u(k) to a
reference control u∗, which here we also choose as u∗ = 0. A common and popular choice
for such a function is the quadratic function

`(xu(k), u(k)) = ‖xu(k)‖2 + λ‖u(k)‖2,

where ‖ · ‖ denotes the norms1 of the spaces X and U and λ ≥ 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired. The
purpose of MPC with a stage cost penalizing the distance to an equilibrium is that the
optimal control should drive the system towards the reference state x∗ = 0, in order to
stabilize the system at this state, just as in the linear quadratic case. MPC with such
stage costs is thus called stabilizing MPC. In contrast to this, MPC with more general cost
function is often called economic MPC.

Regardless which cost function is used, the optimal control problem now reads

minimize JN (x(j), u(·)) :=
N−1∑
k=0

`(xu(k), u(k))

with respect to all admissible2 control sequences u(0), . . . , u(N − 1) with xu generated by
(9.2).

Let us assume that this optimal control problem has a solution which is given by the
minimizing control sequence u?(0), . . . , u?(N − 1), i.e.,

min
u(0),...,u(N−1)

JN (x(j), u(·)) =

N−1∑
k=0

`(xu?(k), u?(k)).

In order to get the desired feedback value µ(x(j)), we now set µ(x(j)) := u?(0), i.e., we
apply the first element of the optimal control sequence. This procedure is sketched in
Fig. 9.1.

We now apply this feedback law, i.e., the first element of u?, on the time interval from j
to j + 1. Thus we obtain

x(j + 1) = f(x(j), µ(x(j))) (9.3)

1For simplicity of notation we use the same symbol for the in gereral different norms on X and U .
2The meaning of “admissible” will be defined in Sect. 11.2.
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optimal predicted trajectory xu⋆(k)past trajectory

optimal control sequence u⋆(k)

feedback value µ(x( j)) = u⋆(0)

j+Nj+1j

current time

time j

Abbildung 9.1: Illustration of the MPC step at time j

System (9.3) is called the MPC closed-loop system.

At the following time instants j + 1, j + 2, . . . we repeat the procedure with the new
measurements x(j+1), x(j+2), . . . in order to derive the feedback values µ(x(j+1)), µ(x(j+
2)), . . . . In other words, we obtain the feedback law µ by an iterative online optimization
over the predictions generated by our model (9.1). This is the first key feature of model
predictive control.

From the prediction horizon point of view, proceeding this iterative way the trajectories
xu(k), k = 0, . . . , N provide a prediction on the discrete interval j, . . . , j +N at time j, on
the interval j + 1, . . . , j +N + 1 at time j + 1, on the interval j + 2, . . . , j +N + 2 at time
j + 2, and so on. Hence, the prediction horizon is moving and this moving horizon is the
second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model predictive
control is receding horizon control. While the former expression stresses the use of model
based predictions, the latter emphasizes the moving horizon idea. Despite these slightly
different literal meanings, we prefer and follow the common practice to use these names
synonymously. In addition, one often uses the term Nonlinear Model Predictive Control
(NMPC) if one wants to indicate that our model (9.1) need not be a linear map.

9.1 Motivating examples

In this section we present three motivating examples (the corresponding numerical si-
mulations and experiments will only be presented in the lectures), which show different
phenomema which can be observed when using MPC.

The first example is the classical inverted pendulum, which is available as a real experiment
at the Chair of Applied Mathematics. The cost function ` here penalizes the distance to the
upright equilibrium. The ordinary differential equation system (which is similar to (1.5) but
a little more complex in order to take into account the motor dynamics) is sampled with
sampling time T = 50ms. The video shows that this time is enough to solve the optimal
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control problem numerically in each sampling interval3.

The second example is a very simple economic problem of optimal investment. Let x ≥ 0
be the amount of capital invested in a company. The invested capital x yields a return
of Axα − x in one time unit (e.g., a year), i.e., after one time step the amount of capital
is Axα. The control u describes the amount of capital which is invested again in the
next time step. Hence, the amount of money to be consumed is Axα − u. The utility of
consumption is measured by a classical logarithmic utility function ln(Axα−u). We want to
maximize this utility over several time steps, hence we want to minimize the cost function
`(x, u) = − ln(Axα − u). We note that this cost function is not of the form of a function
which penalizes the distance from a reference point x∗. Numerical simulations for A = 5
and α = 0.34 and state constraint set X = [0, 10] show that the finite horizon optimal
solutions always end up at x = 0, i.e., at the end of the optimization horizon all money
is spent (which is natural). However, for longer horizons the solutions spend quite some
time in the vicinity of the point xe ≈ 2.2344 and the MPC closed-loop (9.3) converges
to an equilibrium near this point. Further tests reveal that the limit point of the MPC
closed-loop itself converges as N →∞.

There are many questions which arise from this behaviour: Why does the MPC closed-loop
converge to a point far away from the endpoint of the finite horizon optimal trajectories?
How do we characterize this point and its limit for N → ∞? Is the MPC closed-loop
trajectory approximately optimal in some sense? And how can we check whether an optimal
control problem has such a behavior?

The third example is a simple partial differential equation control system governed by the
1d heat equation on Ω = (0, L). We consider the equation either with distributed control

yt(x, t) = yxx(x, t) + µy(x, t) + û(x, t) on Ω× (0,∞)

y(0, t) = y(L, t) = 0 on (0,∞)

y(x, 0) = y0(x) on Ω

or with boundary control.

yt(x, t) = yxx(x, t) + µy(x, t) on Ω× (0,∞)

y(0, t) = 0, y(L, t) = û(t) on (0,∞)

y(x, 0) = y0(x) on Ω

We set µ = 15, which implies that y ≡ 0 is an unstable equilibrium for u ≡ 0. In order
to stabilize this equilibrium, we consider the cost functions `(y, u) = ‖y‖2L2 + λ‖u‖2 (“L2-
cost”) and `(y, u) = ‖yx‖2L2 +λ‖u‖2 (“∇-cost”). As usual in MPC, it depends on the length
of the horizon N whether the equilibrium y ≡ 0 is indeed stable. The simulations — all with
sampling time T = 0.01 — show that depending on the parameters L and λ as well as on
the type of the cost the minimal horizon length needed for stabilization differs significantly.
This immediately leads to the question how we can estimate this minimal horizon length
and whether we can tune, e.g., the stage cost ` such that this horizon becomes small.

3In practice, the state x(j) must be computed from sensor data using a suitable observed, as, e.g., the
Kalman filter or variants thereof. Also, in practice the MPC problem is initialized with the state x(j − 1)
such that the time span until time j can be fully used in order to solve the optimal control problem. Both
aspects will be neglected in the analysis of MPC schemes we will present in this lecture.
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As we will see later, in all these examples we can prove that MPC yields approximately
optimal infinite horizon trajectories. Hence, the problem on (rather short) finite horizons
already contains enough information to compute near optimal solutions on an infinite ho-
rizon, a property that can be seen as a complexity reduction technique in time. In the
subsequent analysis, we will in particular investigate the mechanisms behind this comple-
xity reduction.
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Kapitel 10

Stability of discrete time nonlinear
systems

10.1 Stability definitions

In the introduction, we already specified one of the goals of model predictive control, namely
to control the state x(n) of the system toward a reference point x∗ and then keep it close
to this point. In this section we formalize what we mean by “toward” and “close to” using
concepts from stability theory of nonlinear systems. These concepts will also turn out to
be useful for the analysis of MPC schemes in which ` does not penalize the distance to an
equilibrium x∗.

We assume that the states x(k) are generated by a difference equation of the form

x+ = g(x) (10.1)

for a not necessarily continuous map g : X → X via the usual iteration x(k + 1) =
g(x(k)). Similar to before, we write x(k, x0) for the trajectory satisfying the initial condition
x(0, x0) = x0 ∈ X. Allowing g to be discontinuous is important for our MPC application,
because g will later represent the MPC closed-loop system (9.3), i.e., g(x) = f(x, µ(x)).
Since µ is obtained as an outcome of an optimization algorithm, in general we cannot
expect µ to be continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called comparison func-
tions which were first introduced by Hahn in 1967 [7] and popularized in nonlinear control
theory during the 1990s by Sontag, particularly in the context of input-to-state stability
[13]. Although we mainly deal with discrete time systems, we stick to the usual continuous
time definition of these functions using the notation R+

0 = [0,∞).

Definition 10.1 [Comparison functions] We define the following classes of comparison
functions.

K := {α : R+
0 → R+

0 |α is continuous & strictly increasing with α(0) = 0}

K∞ := {α : R+
0 → R+

0 |α ∈ K, α is unbounded}
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L := {δ : R+
0 → R+

0 | δ is continuous & strictly decreasing with lim
t→∞

δ(t) = 0}

KL := {β : R+
0 × R+

0 → R+
0 |β is continuous, β(·, t) ∈ K∀t ≥ 0, β(r, ·) ∈ L∀r > 0}.

Using this function, we can now introduce the concept of asymptotic stability. Here, for
arbitrary x1, x2 ∈ X we denote the distance from x1 to x2 by

|x1|x2 := dX(x1, x2).

Furthermore, we use the ball

Bη(x∗) := {x ∈ X | |x|x∗ < η}

and we say that a set Y ⊆ X is forward invariant for (10.1) if g(x) ∈ Y holds for all x ∈ Y .

Definition 10.2 [Asymptotic stability] Let x∗ ∈ X be an equilibrium for (10.1), i.e.,
g(x∗) = x∗. Then we say that x∗ is locally asymptotically stable if there exist η > 0 and a
function β ∈ KL such that the inequality

|x(n, x0)|x∗ ≤ β(|x0|x∗ , n) (10.2)

holds for all x0 ∈ Bη(x∗) and all n ∈ N0.

We say that x∗ is asymptotically stable on a forward invariant set Y with x∗ ∈ Y if there
exists β ∈ KL such that (10.2) holds for all x0 ∈ Y and all n ∈ N0 and we say that x∗ is
globally asymptotically stable if x∗ is asymptotically stable on Y = X.

If one of these properties holds then β is called attraction rate.

Note that asymptotic stability on a forward invariant set Y implies local asymptotic sta-
bility if Y contains a ball Bη(x∗). However, we do not necessarily require this property.

Asymptotic stability thus defined consists of two main ingredients:

(i) The smaller the initial distance from x0 to x∗ is, the smaller the distance from x(n)
to x∗ becomes for all future n, or formally: for each ε > 0 there exists δ > 0 such that
|x(n, x0)|x∗ ≤ ε holds for all n ∈ N0 and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with |x0|x∗ ≤ δ.
This fact is easily seen by choosing δ so small that β(δ, 0) ≤ ε holds, which is possible
since β(·, 0) ∈ K. Since β is decreasing in its second argument, for |x0|x∗ ≤ δ from
(10.2) we obtain

|x(n, x0)|x∗ ≤ β(|x0|x∗ , n) ≤ β(|x0|x∗ , 0) ≤ β(δ, 0) ≤ ε.

(ii) As the system evolves, the distance from x(n, x0) to x∗ becomes arbitrarily small, or
formally: for each ε > 0 and each R > 0 there exists N > 0 such that |x(n, x0)|x∗ ≤ ε
holds for all n ≥ N and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with |x0|x∗ ≤ R. This property
easily follows from (10.2) by choosing N > 0 with β(R,N) ≤ ε and exploiting the
monotonicity properties of β.
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These two properties are known as (i) stability (in the sense of Lyapunov) and (ii) attracti-
on. In the literature, asymptotic stability is often defined via these two properties. In fact,
for continuous time (and continuous) systems (i) and (ii) are known to be equivalent to
the continuous time counterpart of Definition 10.2, cf. [10, Sect. 3]. We conjecture that the
arguments in this reference can be modified in order to prove that equivalence also holds
for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the MPC closed loop described
earlier: whenever we are already close to the reference equilibrium we want to stay close;
otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop solution
to the equilibrium x∗ becomes arbitrarily small. Occasionally, this may be too demanding.
For instance, we will see that in general we cannot expect this behavior for stage costs
` which do not penalize the distance to x∗. In this case, one can relax the asymptotic
stability definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y .

Definition 10.3 [P -practically asymptotic stability] Let Y be a forward invariant set and
let P ⊂ Y be a subset of Y . Then we say that a point x∗ ∈ Y is P -practically asymptotically
stable on Y if there exists β ∈ KL such that (10.2) holds for all x0 ∈ Y and all n ∈ N0

with x(n, x0) 6∈ P .

Fig. 10.1 illustrates practical asymptotic stability (on the right) as opposed to “usual”
asymptotic stability (on the left).

x0 x0

x∗x∗
P

x(n,x0) x(n,x0)

Abbildung 10.1: Sketch of asymptotic stability (left) as opposed to practical asymptotic
stability (right)

This definition is typically used with P contained in a small ball around the equilibrium,
i.e., P ⊆ Bδ(x∗) for some small δ > 0. In this case one obtains the estimate

|x(n, x0)|x∗ ≤ max{β(|x0|x∗ , n), δ} (10.3)

for all x0 ∈ Y and all n ∈ N0, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bδ(x∗). Note that x∗ does not need to be an equilibrium in
Definition 10.3.
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10.2 Lyapunov functions

In order to verify that our MPC controller achieves asymptotic stability we will utilize the
concept of Lyapunov functions.

Definition 10.4 [Lyapunov function] Consider a system (10.1), a point x∗ ∈ X and let
S ⊆ X be a subset of the state space. A function V : S → R+

0 is called a Lyapunov
function on S if the following conditions are satisfied:

(i) There exist functions α1, α2 ∈ K∞ such that

α1(|x|x∗) ≤ V (x) ≤ α2(|x|x∗) (10.4)

holds for all x ∈ S.

(ii) There exists a function αV ∈ K such that

V (g(x)) ≤ V (x)− αV (|x|x∗) (10.5)

holds for all x ∈ S with g(x) ∈ S.

The following theorem shows that the existence of a Lyapunov function ensures asymptotic
stability.

Theorem 10.5 [Asymptotic stability using Lyapunov functions] Let x∗ be an equilibrium
of (10.1) and assume there exists a Lyapunov function V on S. If S contains a ball Bν(x∗)
with g(x) ∈ S for all x ∈ Bν(x∗) then x∗ is locally asymptotically stable with η = α−1

2 ◦
α1(ν). If S = Y holds for some forward invariant set Y ⊆ X containing x∗ then x∗ is
asymptotically stable on Y . If S = X holds then x∗ is globally asymptotically stable.

Proof: The idea of the proof lies in showing that by (10.5) the function V (x(n, x0)) is
strictly decreasing in n and converges to 0. Then by (10.4) we can conclude that x(n, x0)
converges to x∗. The function β from Definition 10.2 will be constructed from α1, α2 and
αV . In order to simplify the notation, throughout the proof we write |x| instead of |x|x∗ .
First, if S is not forward invariant, define the value γ := α1(ν) and the set S̃ := {x ∈
S |V (x) < γ}. Then from (10.4) we get

x ∈ S̃ ⇒ α1(|x|) ≤ V (x) < γ ⇒ |x| < α−1
1 (γ) = ν ⇒ x ∈ Bν(x∗),

observing that each α ∈ K∞ is invertible with α−1 ∈ K∞.

Hence, for each x ∈ S̃ inequality (10.5) applies and consequently V (g(x)) ≤ V (x) < γ
implying g(x) ∈ S̃. If S = Y for some forward invariant set Y ⊆ X we define S̃ := S. With
these definitions, in both cases the set S̃ becomes forward invariant.
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Now we define α′V := αV ◦ α−1
2 . Note that concatenations of K-functions are again in K,

hence α′V ∈ K. Since |x| ≥ α−1
2 (V (x)), using monotonicity of αV this definition implies

αV (|x|) ≥ αV ◦ α−1
2 (V (x)) = α′V (V (x)).

Hence, along a trajectory x(n, x0) with x0 ∈ S̃, from (10.5) we get the inequality

V (x(n+ 1, x0)) ≤ V (x(n, x0))− αV (|x(n, x0)|) ≤ V (x(n, x0))− α′V (V (x(n, x0))). (10.6)

For the construction of β we need the last expression in (10.6) to be strictly increasing in
V (x(n, x0)). To this end we define

α̃V (r) := min
s∈[0,r]

{α′V (s) + (r − s)/2}.

Straightforward computations show that this function satisfies r2− α̃V (r2) > r1− α̃V (r1) ≥
0 for all r2 > r1 ≥ 0 and min{α′V (r/2), r/4} ≤ α̃V (r) ≤ α′V (r) for all r ≥ 0. In particular,
(10.6) remains valid and we get the desired monotonicity when α′V is replaced by α̃V .

We inductively define a function β1 : R+
0 × N0 → R+

0 via

β1(r, 0) := r, β1(r, n+ 1) = β1(r, n)− α̃V (β1(r, n)). (10.7)

By induction over n using the properties of α̃V (r) and Inequality (10.6) one easily verifies
the following inequalities:

β1(r2, n) > β1(r1, n) ≥ 0 for all r2 > r1 ≥ 0 and all n ∈ N0 (10.8)

β1(r, n1) > β1(r, n2) > 0 for all n2 > n1 ≥ 0 and all r > 0 (10.9)

V (x(n, x0)) ≤ β1(V (x0), n) for all n ∈ N0 and all x0 ∈ S̃ (10.10)

From (10.9) it follows that β1(r, n) is monotone decreasing in n and by (10.8) it is bounded
from below by 0. Hence, for each r ≥ 0 the limit β∞1 (r) = limn→∞ β1(r, n) exists. We claim
that β∞1 (r) = 0 holds for all r. Indeed, convergence implies β1(r, n) − β1(r, n + 1) → 0 as
n → ∞ which together with (10.7) yields α̃V (β1(r, n)) → 0. On the other hand, since α̃V
is continuous, we get α̃V (β1(r, n))→ α̃V (β∞1 (r)). This implies

α̃V (β∞1 (r)) = 0

which because of α̃V (r) ≥ min{αV (r/2), r/4} and αV ∈ K is only possible if β∞1 (r) = 0.

Consequently, β1(r, n) has all properties of a KL function except that it is only defined for
n ∈ N0. Defining the linear interpolation

β2(r, t) := (n+ 1− t)β1(r, n) + (t− n)β1(r, n+ 1)

for t ∈ [n, n + 1) and n ∈ N0, we obtain a function β2 ∈ KL which coincides with β1 for
t = n ∈ N0. Finally, setting

β(r, t) := α−1
1 ◦ β2(α2(r), t)
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we can use (10.10) in order to obtain

|x(n, x0)| ≤ α−1
1 (V (x(n, x0)) ≤ α−1

1 ◦ β1(V (x0), n)

= α−1
1 ◦ β2(V (x0), n) ≤ α−1

1 ◦ β2(α2(|x0|, n) = β(|x0|, n),

for all x0 ∈ S̃ and all n ∈ N0. This is the desired inequality (10.2). If S̃ = S = Y this
shows the claimed asymptotic stability on Y and global asymptotic stability if Y = X. If
S̃ 6= S, then in order to satisfy the local version of Definition 10.2 it remains to show that
x ∈ Bη(x∗) implies x ∈ S̃. Since by definition of η and γ we have η = α−1

2 (γ), we get

x ∈ Bη(x∗)⇒ |x| < η = α−1
2 (γ)⇒ V (x) ≤ α2(|x|) < γ ⇒ x ∈ S̃.

This finishes the proof.

Likewise, P -practical asymptotic stability can be ensured by a suitable Lyapunov function
condition provided the set P is forward invariant.

Theorem 10.6 [P -practical asymptotic stability]
Consider forward invariant sets Y and P ⊂ Y and a point x∗ ∈ P . If there exists a
Lyapunov function V on S = Y \ P then x∗ is P -practically asymptotically stable on Y .

Proof: The same construction of β as in the proof of Theorem 10.5 yields

|x(n, x0)|x∗ ≤ β(|x|x∗ , n) (10.2)

for all n = 0, . . . , n∗ − 1, where n∗ ∈ N0 is minimal with x(n∗, x0) ∈ P . This follows with
the same arguments as in the proof of Theorem 10.5 by restricting the times considered in
(10.6) and (10.10) to n = 0, . . . , n∗ − 2 and n = 0, . . . , n∗ − 1, respectively.

Since forward invariance of P ensures x(n, x0) ∈ P for all n ≥ n∗, the times n for which
x(n, x0) 6∈ P holds are exactly n = 0, . . . , n∗−1. Since these are exactly the times at which
(10.2) is required, this yields the desired P -practical asymptotic stability.

For continuous time systems ẋ = g(x) all the concepts introduced in this section can be
carried over directly. Particularly, the definitions of asymptotic and P -practical asymptotic
stability are identical. In the definition of Lyapunov functions, condition (10.4) stays the
same while condition (10.5) becomes

V (x(t, x0)) ≤ V (x0)−
∫ t

0
αV (|x(t, x0)|x∗).

This is equivalent to

V (x(t, x0))− V (x0)

t
≤ −1

t

∫ t

0
αV (|x(t, x0)|x∗)

and if V is continuously differentiable, then by letting t → 0 one obtains the equivalent
characterization

DV (x0)g(x0) ≤ −αV (|x0|x∗). (10.11)

Now it is obvious that this concept generalizes Definition 3.8, which we used in the linear
case. With this definition of a Lyapunov function, all results in this section remain valid
in the continuous time case.



Kapitel 11

Model predictive control schemes

11.1 The MPC algorithm without terminal conditions

We start this chapter by formulating the basic MPC algorithm already sketched in Chap-
ter 9 in a more rigorous way. Here, the stage cost ` : X × U → R is a general function. In
the case of sampled data systems we can take the continuous time nature of the underly-
ing model into account by defining the stage cost ` as an integral over a continuous time
running cost function L : X × U → R+

0 on a sampling interval. Using the continuous time
solution x̂ from (8.5), we can define

`(x, u) :=

∫ T

0
L(x̂(t, x, u), u(t))dt. (11.1)

Defining ` this way, we can incorporate the intersampling behavior of the sampled data
system, i.e., the behavior of the continuous time solution between two sampling times tk
and tk+1, explicitly into our optimal control problem.

Given such a cost function ` and a prediction horizon length N ≥ 2, we can now formulate
the basic MPC scheme as an algorithm. In the optimal control problem (OCPN) within this
algorithm we introduce a set of control sequences UN (x0) ⊆ UN over which we optimize.
This set may include constraints depending on the initial value x0. Details about how
this set should be chosen will be discussed in Sect. 11.2. For the moment we simply set
UN (x0) := UN for all x0 ∈ X.

Algorithm 11.1 (Basic MPC algorithm)

At each time instant j = 0, 1, 2 . . .:

(1) Measure the state x(j) ∈ X of the system

(2) Set x0 := x(j), solve the optimal control problem

109
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minimize JN (x0, u(·)) :=

N−1∑
k=0

`(xu(k, x0), u(k))

with respect to u(·) ∈ UN (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCPN)

and denote the obtained optimal control sequence by u?(·) ∈ UN (x0).

(3) Define the MPC-feedback value µN (x(j)) := u?(0) ∈ U and use this control value in
the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence u?(·)
exists. Sufficient conditions for this existence are briefly discussed after Definition 12.1,
below.

The MPC closed loop system resulting from Algorithm 11.1 is given by (9.3) with state
feedback law µ = µN , i.e.,

x+ = f(x, µN (x)). (11.2)

The trajectories of this system will be denoted by xµN (n) or, if we want to emphasize the
initial value x0 = xµN (0), by xµN (n, x0).

During our theoretical investigations we will neglect the fact that computing the solution
of (OCPN) in Step (2) of the algorithm usually needs some computation time τc which —
in the case when τc is relatively large compared to the sampling period T — may not be
negligible in a real time implementation.

In our abstract formulations of the MPC Algorithm 11.1 only the first element u?(0) of
the respective minimizing control sequence is used in each step, the remaining entries
u?(1), . . . , u?(N − 1) are discarded. In the practical implementation, however, these entries
play an important role because numerical optimization algorithms for solving (OCPN) (or
its variants) usually work iteratively: starting from an initial guess u0(·) an optimization
algorithm computes iterates ui(·), i = 1, 2, . . . converging to the minimizer u?(·) and a good
choice of u0(·) is crucial in order to obtain fast convergence of this iteration, or even to
ensure convergence, at all. Here, the minimizing sequence from the previous time step can
be efficiently used in order to construct such a good initial guess. Ways to implement this
idea will be discussed in the excercises.

11.2 Constraints

One of the main reasons for the success of MPC (and MPC in general) is its ability to
explicitly take constraints into account. Here, we consider constraints both on the control
as well as on the state. To this end, we introduce a nonempty state constraint set X ⊆ X
and for each x ∈ X we introduce a nonempty control constraint set U(x) ⊆ U . Of course,
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U may also be chosen independent of x. The idea behind introducing these sets is that we
want the trajectories to lie in X and the corresponding control values to lie in U(x). This
is made precise in the following definition.

Definition 11.2 [Admissibility] Consider a control system (8.2) and the state and control
constraint sets X ⊆ X and U(x) ⊆ U .

(i) The states x ∈ X are called admissible states and the control values u ∈ U(x) are called
admissible control values for x. The elements of the set Y := {(x, u) ∈ X × U |x ∈ X, u ∈
U(x)} are called admissible pairs.

(ii) For N ∈ N and an initial value x0 ∈ X we call a control sequence u ∈ UN and the
corresponding trajectory xu(k, x0) admissible for x0 up to time N , if

(xu(k, x0), u(k)) ∈ Y for all k = 0, . . . , N − 1 and xu(N, x0) ∈ X

holds. We denote the set of admissible control sequences for x0 up to time N by UN (x0).

(iii) A control sequence u ∈ U∞ and the corresponding trajectory xu(k, x0) are called
admissible for x0 if they are admissible for x0 up to every time N ∈ N. We denote the set
of admissible control sequences for x0 by U∞(x0).

(iv) A feedback law µ : X → U is called admissible if µ(x) ∈ U1(x) holds for all x ∈ X.

Whenever the reference to x or x0 is clear from the context we will omit the additional
“for x” or “for x0”.

Since we can (and will) identify control sequences with only one element with the respective
control value, we can consider U1(x0) as a subset of U , which we already implicitly did in
the definition of admissibility for the feedback law µ, above. However, in general U1(x0)
does not coincide with U(x0) ⊆ U because using xu(1, x) = f(x, u) and the definition of
UN (x0) we get U1(x) := {u ∈ U(x) | f(x, u) ∈ X}. With this subtle difference in mind, one
sees that our admissibility condition (iv) on µ ensures both µ(x) ∈ U(x) and f(x, µ(x)) ∈ X
whenever x ∈ X.

Furthermore, our definition of UN (x) implies that even if U(x) = U is independent of x
the set UN (x) may depend on x for some or all N ∈ N∞.

Often, in order to be suitable for optimization purposes these sets are assumed to be com-
pact and convex. For our theoretical investigations, however, we do not need any regularity
requirements of this type except that these sets are nonempty.

MPC is well suited to handle constraints because these can directly be inserted into Algo-
rithm 11.1. In fact, since we already formulated the corresponding optimization problem
(OCPN) with state dependent control value sets, the constraints are readily included if we
use UN (x0) from Definition 11.2(ii) in (OCPN). However, when doing so we have to make
sure that the constraints in (OCPN) can be satisfied for all j, i.e., that we do not optimize
over an empty set because UN (x0) = ∅. This is formalized in the following definition.

Definition 11.3 (i) An initial condition x0 ∈ X is called feasible for (OCPN) if the cons-
traints imposed in (OCPN) can be satisfied, i.e, if UN (x0) 6= ∅.
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(ii) A MPC algorithm 11.1 is called recursively feasible on a set A ⊆ X if each x ∈ A is
feasible for (OCPN) and x ∈ A implies f(x, µN (x)) ∈ A (implying that f(x, µN (x)) is again
feasible).

One easily sees that recursive feasibility implies that xµN (j) is feasible for all j ∈ N if
xµN (0) ∈ A. In order to ensure recursive feasibility of A = X for Algorithm 11.1, we need
the following assumption.

Assumption 11.4 [Viability] For each x ∈ X there exists u ∈ U(x) such that f(x, u) ∈ X
holds.

The property defined in this assumption is called viability or weak (or controlled) forward
invariance of X. It excludes the situation that there are states x ∈ X from which the
trajectory leaves the set X for all admissible control values. Hence, it ensures UN (x0) 6= ∅
for all x0 ∈ X and all N ∈ N∞. Thus, it ensures that any x0 ∈ X is feasible for (OCPN)
and hence ensures that µN (x) is well defined for each x ∈ X. We will see after the next
example that viability of X also implies recursive feasibility and admissibility of the closed
loop. Furthermore, a straightforward induction shows that under Assumption 11.4 any
finite admissible control sequence u(·) ∈ UN (x0) can be extended to an infinite admissible
control sequence ũ(·) ∈ U∞(x0) with u(k) = ũ(k) for all k = 0, . . . , N − 1.

In order to see that the construction of a constraint set X meeting Assumption 11.4 is
usually a nontrivial task, we consider the following Example.

Example 11.5 Consider

x+ = f(x, u) =

(
x1 + x2 + u/2
x2 + u

)
,

which can be seen as a sampled-data model for a car on a one-dimensional road with
position x1, speed x2 and piecewise constant acceleration u. Assume we want to constrain
all variables, i.e., the position x1, the velocity x2 and the acceleration u to the interval
[−1, 1]. For this purpose one could define X = [−1, 1]2 and U(x) = U = [−1, 1]. Then,
however, for x = (1, 1)>, one immediately obtains

x+
1 = x1 + x2 + u/2 = 2 + u/2 ≥ 3/2

for all u, hence x+ /∈ X for all u ∈ U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint on
u to U = [−2, 2] the viability of X = [−1, 1]2 is guaranteed, because then by elementary
computations one sees that for each x ∈ X the control value

u =


0, x1 + x2 ∈ [−1, 1]
2− 2x1 − 2x2, x1 + x2 > 1
−2− 2x1 − 2x2, x1 + x2 < −1

is in U and satisfies f(x, u) ∈ X. A way to achieve viability without changing U is by
tightening the constraint on x2 by defining

X = {(x1, x2)T ∈ R2 | x1 ∈ [−1, 1], x2 ∈ [−1, 1] ∩ [−3/2− x1, 3/2− x1]}, (11.3)
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Abbildung 11.1: Illustration of the set X from (11.3)

see Fig. 11.5. Again, elementary computations show that for each x ∈ X and

u =


1, x2 < −1/2
−2x2, x2 ∈ [−1/2, 1/2]
−1, x2 > 1/2

the desired properties u ∈ U and f(x, u) ∈ X hold.

This example shows that finding viable constraint sets X (and the corresponding U or
U(x)) is a tricky task already for very simple systems. Still, Assumption 11.4 significantly
simplifies the subsequent analysis, cf. Theorem 11.6, below. For this reason we will impose
this condition in our theoretical investigations for schemes without stabilizing terminal
conditions. The assumption can be avoided if suitable terminal constraints are employed.
We will discuss this extension of the scheme in Section 11.3.

The following theorem shows that the viability assumption ensures recursive feasibility of
Algorithm 11.1 and that the resulting MPC closed loop satisfies the desired constraints.

Theorem 11.6 [Recursive Feasibility and Admissibility] Consider Algorithm 11.1 using
UN (x0) from Def. 11.2(ii) in the optimal control problem (OCPN) for constraint sets X ⊂ X,
U(x) ⊂ U , x ∈ X, satisfying Assumption 11.4. Consider the MPC closed loop system (11.2).
Then the MPC algorithm is recursively feasible on A = X and for any xµN (0) ∈ X the
constraints are satisfied along the solution of (11.2), i.e.,

(xµN (n), µN (xµN (n))) ∈ Y (11.4)

for all n ∈ N. Thus, the MPC-feedback µN is admissible in the sense of Definition 11.2(iv).

Proof: First, recall from the discussion after Assumption 11.4 that under this assumption
the optimal control problem (OCPN) is feasible for each x ∈ X, hence µN (x) is well defined
for each x ∈ X.

We now show that xµN (n) ∈ X implies µN (xµN (n)) ∈ U(xµN (n)) and xµN (n + 1) ∈ X.
This implies recursive feasibility of A = X, and admissibility follows by induction from
xµn(0) ∈ X.
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The viability of X from Assumption 11.4 ensures that whenever xµN (n) ∈ X holds in Algo-
rithm 11.1 then x0 ∈ X is feasible for the respective optimal control problem (OCPN).
Since the optimization is performed with respect to admissible control sequences on-
ly, also the optimal control sequence u?(·) is admissible for x0 = xµN (n). This implies
µN (xµN (n)) = u?(0) ∈ U1(xµN (n)) ⊆ U(xµN (n)) and thus also

xµN (n+ 1) = f(xµN (n), µN (xµN (n))) = f(x0, u
?(0)) ∈ X,

i.e., xµN (n+ 1) ∈ X.

In the underlying optimization algorithms for solving (OCPN), usually the constraints
cannot be specified via sets X and U(x). Rather, one uses so-called equality and inequality
constraints in order to specify X and U(x) according to the following definition.

Definition 11.7 Given functions GSi : X × U → R, i ∈ ES = {1, . . . , pg} and HS
i :

X × U → R, i ∈ IS = {pg + 1, . . . , pg + ph} with pg, ph ∈ N0, we define the constraint sets
X and U(x) via

X :=

{
x ∈ X

∣∣∣∣ there exists u ∈ U with GSi (x, u) = 0 for all i ∈ ES
and HS

i (x, u) ≥ 0 for all i ∈ IS
}

and, for x ∈ X

U(x) :=

{
u ∈ U

∣∣∣∣ GSi (x, u) = 0 for all i ∈ ES and
HS
i (x, u) ≥ 0 for all i ∈ IS

}
Here, the functions GSi and HS

i do not need to depend on both arguments. The functions
GSi , HS

i not depending on u are called pure state constraints, the functions GSi , HS
i not

depending on x are called pure control constraints and the functions GSi , HS
i depending

on both x and u are called mixed constraints.

Observe that if we do not have mixed constraints then U(x) is independent of x.

The reason for defining X and U(x) via these (in)equality constraints is purely algorithmic:
the plain information “xu(k, x0) /∈ X” does not yield any information for the optimizati-
on algorithm in order to figure out how to find an admissible u(·), i.e., a u(·) for which
“xu(k, x0) ∈ X” holds. In contrast to that, an information of the form “HS

i (xu(k, x0), u(k)) <
0” together with additional knowledge about HS

i (provided, e.g., by the derivative of HS
i )

enables the algorithm to compute a “direction” in which u(·) needs to be modified in order
to reach an admissible u(·).
In our theoretical investigations we will use the notationally more convenient set charac-
terization of the constraints via X and U(x) or UN (x). In the practical implementation of
our MPC method, however, we will use their characterization via the inequality constraints
from Definition 11.7.

11.3 The MPC algorithm with terminal conditions

In this section we discuss an important variant of the basic MPC Algorithm 11.1. This al-
gorithm adds a constraint on the terminal state xu(N, x0) of the trajectory over which we
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optimize in (OCPN), as well as a weight on this term. This combination of constraint and
weight on the terminal state is called terminal conditions. As we will see, under suitable
assumptions on the terminal conditions, the behavior of the MPC closed-loop can signifi-
cantly improve. The main disadvantage of terminal condition is that a rigorous derivation
of a constraint and a weight meeting these assumptions can be very difficult for complex
control systems.

The terminal constraint is of the form

xu(N, x0) ∈ X0 for a terminal constraint set X0 ⊆ X. (11.5)

Of course, in the practical implementation the constraint set X0 is again expressed via
(in)equalities of the form given in Definition 11.7.

When using terminal constraints, the MPC-feedback law is only defined for those states
x0 for which the optimization problem within the MPC algorithm is feasible also for these
additional constraints, i.e., for which there exists an admissible control sequence with cor-
responding trajectory starting in x0 and ending in the terminal constraint set. Such initial
values are again called feasible and the set of all feasible initial values form the feasible set.
This set along with the corresponding admissible control sequences is formally defined as
follows.

Definition 11.8 [Feasible set and admissible control sequences]
For X0 from (11.5) we define the feasible set for horizon N ∈ N by

XN := {x0 ∈ X | there exists u(·) ∈ UN (x0) with xu(N, x0) ∈ X0}

and for each x0 ∈ XN we define the set of admissible control sequences by

UNX0
(x0) := {u(·) ∈ UN (x0) | xu(N, x0) ∈ X0}.

Note that XN = X and UNX0
(x) = UN (x) holds if X0 = X, i.e., if no additional terminal

constraints are imposed.

The additional weight on the terminal state xu(N) is formalized by means of a terminal
cost of the form F (xu(N, x0)) with F : X0 → R in the optimization objective.

Together this leads to the following MPC algorithms extending the basic Algorithms 11.1.
Note that compared to these basic algorithms only the optimal control problems are diffe-
rent, i.e., the part in the boxes in Step (2).

Algorithm 11.9 (MPC algorithm with terminal conditions)

At each time instant j = 0, 1, 2 . . .:

(1) Measure the state x(j) ∈ X of the system.
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(2) Set x0 := x(j), solve the optimal control problem

minimize JN (x0, u(·)) :=
N−1∑
k=0

`(xu(k, x0), u(k)) + F (xu(N, x0))

with respect to u(·) ∈ UNX0
(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCPN,e)

and denote the obtained optimal control sequence by u?(·) ∈ UNX0
(x0).

(3) Define the MPC-feedback value µN (x(j)) := u?(0) ∈ U and use this control value in
the next sampling period.

We end this section with three useful results on the sets of admissible control sequences
from Definition 11.8.

Lemma 11.10 Let x0 ∈ XN , N ∈ N and K ∈ {0, . . . , N} be given.

(i) For each u(·) ∈ UNX0
(x0) we have xu(K,x0) ∈ XN−K .

(ii) For each u(·) ∈ UNX0
(x0) the control sequences u1 ∈ UK and u2 ∈ UN−K uniquely

defined by the relation

u(k) =

{
u1(k), k = 0, . . . ,K − 1

u2(k −K), k = K, . . . , N − 1
(11.6)

satisfy u1 ∈ UKXN−K (x0) and u2 ∈ UN−KX0
(xu1(K,x0)).

(iii) For each u1(·) ∈ UKXN−K (x0) there exists u2(·) ∈ UN−KX0
(xu1(K,x0)) such that u(·) from

(11.6) satisfies u ∈ UNX0
(x0).

Proof: (i) Using (8.4) we obtain the identity

xu(K+·)(N −K,xu(K,x0))) = xu(N, x0) ∈ X0,

which together with the definition of XN−K implies the assertion.

(ii) The relation (11.6) together with (8.4) implies

xu(k, x0) =

{
xu1(k, x0), k = 0, . . . ,K

xu2(k −K,xu1(K,x0)), k = K, . . . , N
(11.7)

For k = 0, . . . ,K − 1 this identity and (11.6) yield

u1(k) = u(k) ∈ U(xu(k, x0)) = U(xu1(k, x0))
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and for k = 0, . . . , N −K − 1 we obtain

u2(k) = u(k +K) ∈ U(xu(k +K,x0)) = U(xu2(k, xu1(K,x0))),

implying u1 ∈ UK(x0) and u2 ∈ UN−K(xu1(K,x0)). Furthermore, (11.7) implies the equa-
tion xu2(N−K,xu1(K,x0)) = xu(N, x0) ∈ X0 which proves u2 ∈ UN−KX0

(n+K,xu1(K,x0)).

This, in turn, implies that UN−KX0
(n+K,xu1(K,x0)) is nonempty, hence xu1(K,x0) ∈ XN−K

and consequently u1 ∈ UKXN−K (n, x0) follows.

(iii) By definition, for each x ∈ XN−K(n+K) there exists u2 ∈ UN−KX0
(n+K,x). Choosing

such a u2 for x = xu1(K,x0) ∈ XN−K(n+K) and defining u via (11.6), similar arguments
as in Part (ii), above, show the claim u ∈ UNX0

(n, x0).

A straightforward corollary of this lemma is the following.

Corollary 11.11 For each x ∈ XN the MPC-feedback law µN obtained from Algorithm
11.9 satisfies

f(x, µN (x)) ∈ XN−1.

Proof: Since µN (x) is the first element u?(0) of the optimal control sequence u? ∈ UNX0
(x)

we get f(x, µN (x)) = xu?(1, x). Now Lemma 11.10(i) yields the assertion.

The final result shows that with terminal conditions we can obtain Theorem 11.6 without
having to assume viability of X — if in exchange we assume viability of the terminal
constraint set X0.

Theorem 11.12 [Recursive Feasibility and Admissibility] Consider Algorithm 11.9 for
constraint sets X ⊂ X, U(x) ⊂ U , x ∈ X, and a terminal constraint set X0 which satisfies
Assumption 11.4. Consider the MPC closed loop system (11.2). Then the MPC algorithm
is recursively feasible on A = XN and for xµN (0) ∈ XN the constraints are satisfied along
the solution of (11.2), i.e.,

(xµN (n), µN (xµN (n))) ∈ Y (11.8)

for all n ∈ N. Thus, the MPC-feedback µN is admissible in the sense of Definition 11.2(iv).

Proof: We show that under the viability assumption on X0 the inclusion XN−1 ⊆ XN
holds. Then recursive feasibility follows from Corollary 11.11 and admissibility follows as
in the proof of Theorem 11.6.

In order to show the inclusion XN−1 ⊆ XN , consider x ∈ XN−1. Then there is an admissible
control u ∈ UN−1

X0
(x), implying xu(N − 1, x) ∈ X0. Viability of X0 implies the existence of

a control value ũ ∈ U(xu(N − 1, x)) with f(xu(N − 1, x), ũ) ∈ X0. This implies that the
control sequence

û = (u(0), . . . , u(N − 1), ũ) (11.9)

is admissible and satisfies xû(N, x) = f(xu(N − 1, x), ũ) ∈ X0. This implies x ∈ XN and
thus the desired inclusion.
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Kapitel 12

Dynamic programming

This chapter repeats and extends some of the results from Section 6.1. As we will see,
dynamic programming is not only important for deriving the Riccati equation but also as
a basis for analyzing MPC schemes in the next chapters. We first consider finite horizon
problems and then discuss infinite horizon problems.

12.1 Finite horizon problems

In this section we provide one of the classical tools in optimal control, the dynamic pro-
gramming principle. We will formulate and prove the results in this section for (OCPN,e),
since all other optimal control problems introduced above can be obtained as special cases
of this problem. We will first formulate the principle for the open loop control sequences
in (OCPN,e) and then derive consequences for the MPC-feedback law µN . The dynamic
programming principle is often used as a basis for numerical algorithms. In contrast to this,
here we will exclusively use the principle for analyzing the behavior of MPC closed loop
systems. The reason for this is that the numerical effort of solving (OCPN,e) via dynamic
programming usually grows exponentially with the dimension of the state of the system.
In contrast to this, the computational effort of solving a single problem of type (OCPN) or
(OCPN,e) scales much more moderately with the space dimension.

We start by defining some objects we need in the sequel.

Definition 12.1 Consider the optimal control problem (OCPN,e) with initial value x0 ∈ X
and optimization horizon N ∈ N0.

(i) The function

VN (x0) := inf
u(·)∈UNX0 (x0)

JN (x0, u(·))

is called optimal value function.

(ii) A control sequence u?(·) ∈ UNX0
(x0) is called optimal control sequence for x0, if

VN (x0) = JN (x0, u
?(·))

119
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holds. The corresponding trajectory xu?(·, x0) is called optimal trajectory .

In our MPC Algorithms 11.1 and 11.9 we have assumed that an optimal control sequence
u?(·) exists, cf. the comment after Algorithms 11.1. In general, this is not necessarily the
case but under reasonable continuity and compactness conditions the existence of u?(·)
can be rigorously shown. Examples of such theorems for a general infinite-dimensional
state space can be found in Keerthi and Gilbert [9] or Doležal [3]. While for formulating
and proving the dynamic programming principle we will not need the existence of u?(·),
for all subsequent results we will assume that u?(·) exists, in particular when we derive
properties of the MPC-feedback law µN . While we conjecture that most of the subsequent
results in this lecture notes can be generalized to the case when µN is defined via an
approximately minimizing control sequence, we decided to use the existence assumption
because it considerably simplifies the presentation of the results in these lecture notes.

The following theorem introduces the dynamic programming principle. It gives an equation
which relates the optimal value functions for different optimization horizons N and for
different points in space.

Theorem 12.2 [Dynamic programming principle] Consider the optimal control problem
(OCPN,e) with x0 ∈ XN and N ∈ N0. Then for all N ∈ N and all K = 1, . . . , N the
equation

VN (x0) = inf
u(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ VN−K(xu(K,x0))

} (12.1)

holds. If, in addition, an optimal control sequence u?(·) ∈ UNX0
(x0) exists for x0, then we

get the equation

VN (x0) =

K−1∑
k=0

`(xu?(k, x0), u?(k)) + VN−K(xu?(K,x0)). (12.2)

In particular, in this case the “inf” in (12.1) is a “min”.

Proof: First observe that from the definition of JN for u(·) ∈ UNX0
(x0) we immediately

obtain

JN (x0, u(·)) =

K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K)).

(12.3)

Since u(·+K) equals u2(·) from Lemma 11.10(ii) we obtain u(·+K) ∈ UN−KX0
(xu(K,x0)).
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We now prove (12.1) by proving “≥” and “≤” separately. From (12.3) we obtain

JN (x0, u(·)) =
K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K))

≥
K−1∑
k=0

`(xu(k, x0), u(k)) + VN−K(xu(K,x0)).

Since this inequality holds for all u(·) ∈ UNX0
(x0), it also holds when taking the infimum on

both sides. Hence we get

VN (x0) = inf
u(·)∈UNX0 (x0)

JN (x0, u(·))

≥ inf
u(·)∈UNX0 (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ VN−K(xu(K,x0))

}

= inf
u1(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu1(k, x0), u(k))

+ VN−K(xu1(K,x0))

}
,

i.e., (12.1) with “≥”. Here in the last step we used the fact that by Lemma 11.10(ii) the
control sequence u1 consisting of the first K elements of u(·) ∈ UNX0

(x0) lies in UKXN−K (x0)

and, conversely, by Lemma 11.10(iii) each control sequence in u1(·) ∈ UKXN−K (x0) can be

extended to a sequence in u(·) ∈ UNX0
(x0). Thus, since the expression in braces does not

depend on u(K), . . . , u(N − 1), the infima coincide.

In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control sequence
for the right hand side of (12.3), i.e.,

K−1∑
k=0

`(xuε(k, x0), uε(k)) + JN−K(xuε(K,x0), uε(·+K))

≤ inf
u(·)∈UNX0 (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K))

}
+ ε.

Now we use the decomposition (11.6) of u(·) into u1 ∈ UKXN−K (x0) and u2 ∈ UN−KX0
(xu1(K,x0))
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from Lemma 11.10(ii). This way we can proceed

inf
u(·)∈UNX0 (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ JN−K(xu(K,x0), u(·+K))

}

= inf
u1(·)∈UKXN−K

(x0)

u2(·)∈U
N−K
X0

(xu1 (K,x0))

{
K−1∑
k=0

`(xu1(k, x0), u1(k))

+ JN−K(xu1(K,x0), u2(·))
}

= inf
u1(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu1(k, x0), u1(k))

+ VN−K(xu1(K,x0))

}
Now (12.3) yields

VN (x0) ≤ J(x0, u
ε(·))

=
K−1∑
k=0

`(xuε(k, x0), uε(k)) + JN−K(xuε(K,x0), uε(·+K))

≤ inf
u(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k))

+ VN−K(xu(K,x0))

}
+ ε.

Since the first and the last term in this inequality chain are independent of ε and since
ε > 0 was arbitrary, this shows (12.1) with “≤” and thus (12.1).

In order to prove (12.2) we use (12.3) with u(·) = u?(·). This yields

VN (x0) = J(x0, u
?(·))

=

K−1∑
k=0

`(xu?(k, x0), u?(k)) + JN−K(xu?(K,x0), u?(·+K))

≥
K−1∑
k=0

`(xu?(k, x0), u?(k)) + VN−K(xu?(K,x0))

≥ inf
u(·)∈UKXN−K (x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + VN−K(xu(K,x0))

}
= VN (x0),



12.1. FINITE HORIZON PROBLEMS 123

where we used the (already proven) equality (12.1) in the last step. Hence, the two “≥” in
this chain are actually “=” which implies (12.2).

The following corollary states an immediate consequence of the dynamic programming prin-
ciple. It shows that tails of optimal control sequences are again optimal control sequences
for suitably adjusted optimization horizon, time instant and initial value.

Corollary 12.3 If u?(·) is an optimal control sequence for initial value x0 ∈ XN and
optimization horizon N ≥ 2, then for each K = 1, . . . , N−1 the sequence u?K(·) = u?(·+K),
i.e.,

u?K(k) = u?(K + k), k = 0, . . . , N −K − 1

is an optimal control sequence for initial value xu?(K,x0), time instant K and optimization
horizon N −K.

Proof: Inserting VN (x0) = JN (x0, u
?(·)) and the definition of u?k(·) into (12.3) we obtain

VN (x0) =

K−1∑
k=0

`(xu?(k, x0), u?(k)) + JN−K(xu?(K,x0), u?K(·))

Subtracting (12.2) from this equation yields

0 = JN−K(xu?(K,x0), u?K(·))− VN−K(xu?(K,x0))

which shows the assertion.

The next theorem relates the MPC-feedback law µN defined in the MPC Algorithms 11.1
and 11.9 to the dynamic programming principle. Here we use the argmin operator in the
following sense: for a map a : U → R, a nonempty subset Ũ ⊆ U and a value u? ∈ Ũ we
write

u? = argmin
u∈Ũ

a(u) (12.4)

if and only if a(u?) = inf
u∈Ũ a(u) holds. Whenever (12.4) holds the existence of the mini-

mum min
u∈Ũ a(u) follows. However, we do not require uniqueness of the minimizer u?. In

case of uniqueness equation (12.4) can be understood as an assignment, otherwise it is just
a convenient way of writing “u? minimizes a(u)”.

Theorem 12.4 [Dynamic programming and MPC] Consider the optimal control problem
(OCPN,e) with x0 ∈ XN and N ∈ N0 and an admissible feedback law µ : X → U in the
sense of Definition 11.2(iv). Then µ satisfies

µ(x0) = argmin
u∈U1

XN−1
(x0)

{`(x0, u) + VN−1(f(x0, u))} (12.5)

if and only if µ satisfies

VN (x0) = `(x0, µ(x0)) + VN−1(f(x0, µ(x0))), (12.6)

where in (12.5) we interpret U1
XN−1

(x0) as a subset of U , i.e., we identify the one element

sequence u = u(·) with its only element u = u(0). Moreover, if an optimal control sequence
u? exists then the MPC-feedback law µ(x0) = µN (x0) = u∗(0) satisfies both (12.5) and
(12.6).
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Proof: Equation (12.6) follows from (12.5) by using (12.1) for K = 1 and the minimizing
property of µ.

Conversely, assume (12.6). Inserting xu(1, x0) = f(x0, u) into the dynamic programming
principle (12.1) for K = 1 we obtain

VN (x0) = inf
u∈U1

XN−1
(x0)
{`(x0, u) + VN−1(1, f(x0, u))} . (12.7)

This implies that the right hand sides of (12.6) and (12.7) coincide. Thus, the definition of
argmin in (12.4) with a(u) = `(x0, u) +VN−1(1, f(x0, u)) and Ũ = U1

XN−1
(x0) yields (12.5).

Finally, if u? exists, then (12.6) (and thus also (12.5)) follows for µ = µn from the existence
by inserting u?(0) = µN (x0) and xu?(1, x0) = f(x0, µN (x0)) into (12.2) for K = 1.

Our final corollary in this section shows that we can reconstruct the whole optimal control
sequence u?(·) using the feedback from (12.5).

Corollary 12.5 Consider the optimal control problem (OCPN,e) with x0 ∈ X and N ∈ N0

and consider admissible feedback laws µN−k : X → U , k = 0, . . . , N − 1, in the sense of
Definition 11.2(iv). Denote the solution of the closed loop system

x(0) = x0, x(k + 1) = f(x(k), µN−k(x(k))), k = 0, . . . , N − 1 (12.8)

by xµ(·) and assume that the µN−k satisfy (12.5) with horizon N − k instead of N and
initial value x0 = xµ(k) for k = 0, . . . , N − 1. Then

u?(k) = µN−k(xµ(k)), k = 0, . . . , N − 1 (12.9)

is an optimal control sequence for initial value x0 and the solution of the closed loop system
(12.8) is a corresponding optimal trajectory.

Proof: Applying the control (12.9) to the dynamics (12.8) we immediately obtain

xu?(k) = xµ(k), k = 0, . . . , N − 1.

Hence, we need to show that

VN (x0) = JN (x0, u
?) =

N−1∑
k=0

`(xµ(k), u?(k)) + F (x(N)).

Using (12.9) and (12.6) for N − k instead of N and x0 = xµ(k) we get

VN−k(xµ(k)) = `(xµ(k), u?(k)) + VN−k−1(xµ(k + 1))

for k = 0, . . . , N − 1. Summing these equalities for k = 0, . . . , N − 1 and eliminating the
identical terms VN−k(xµ(k)), k = 1, . . . , N − 1 on both sides we obtain

VN (x0) =

N−1∑
k=0

`(xµ(k), u?(k)) + V0(x(N))

Since by definition of J0 we have V0(x) = F (x), this shows the assertion.
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12.2 Infinite horizon problems

In this section we present the counterparts of the result from the previous section for infi-
nite horizon problems. These are defined by as follows.

minimize J∞(x0, u(·)) :=
∞∑
k=0

`(xu(k, x0), u(k))

with respect to u(·) ∈ U∞(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCP∞)

Similar to Definition 12.1 we define the optimal value function and optimal trajectories.

Definition 12.6 Consider the optimal control problem (OCP∞) with initial value x0 ∈ X.

(i) The function

V∞(x0) := inf
u(·)∈U∞(x0)

J∞(x0, u(·))

is called optimal value function.

(ii) If V∞(x0) attains a finite value, then a control sequence u?(·) ∈ U∞(x0) is called
optimal control sequence for x0 if

V∞(x0) = J∞(x0, u
?(·))

holds. The corresponding trajectory xu?(·, x0) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears in the defi-
nition of J∞, it is no longer straightforward that V∞ is finite. In fact, it is not even clear
that the limit “hidden” in the infinite sum

∞∑
k=0

`(xu(k, x0), u(k)) = lim
K→∞

K−1∑
k=0

`(xu(k, x0), u(k))

in the definition of J∞ exists. All the results in the subsequent sections hold true if we
simply assume that this limit exists and V∞ is finite. Yet, in order to illustrate that one
can ensure existence of the limit and finiteness of V∞ by imposing conditions to the optimal
control problem, in the remainder of this section we present such results. We start with a
condition that ensures that the limit exists and that J∞ cannot attain the value −∞.

To this end, we assume that the optimal control problem is strictly dissipative according
to the following definition
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Definition 12.7 Consider an optimal control problem with stage cost ` : Y→ R. We call
the optimal control problem strictly dissipative on Y at an equilibrium pair (xe, ue) ∈ Y,
if there exists a storage function λ : X → R that satisfes λ(xe) = 0 and is bounded from
below, and a ρ ∈ K∞, such that for all (x, u) ∈ Y with f(x, u) ∈ X the inequality

λ(f(x, u)) ≤ λ(x) + `(x, u)− `(xe, ue)− ρ(|x|xe) (12.10)

holds.

This definition requires that, unless the system is in the equilibrium xe, a certain amount
of “energy” must be dissipated in each time step. Here “energy” is in quotes since in an
optimal control context the quantity measured by λ may not be physical energy. We will
see later in Proposition 13.14 that under additional regularity properties strict dissipativity
implies that optimal trajectories that evolve in X stay near xe most of the time. This
phenomenon is known as the turnpike property. Observe that any optimal control problem
with stage cost satisfying `(x, u) ≥ ρ(|x|xe) and `(xe, ue) = 0 is strictly dissipative with
λ ≡ 0. This in particular applies to the quadratic cost from Definition ?? if (xe, ue) = (0, 0)
is an equilibrium pair.

Note that the requirement λ(xe) = 0 can be made without loss of generality, as inequality
(12.10) remains true when we add an arbitrary constant to λ. We further assume that
the storage function λ is continuous at xe. The following assumption gives a quantitative
formulation of this property.

Assumption 12.8 There are γλ ∈ K and ε > 0 such that λ(x) ≤ γλ(|x|xe) for all x ∈ X
with |x|xe ≤ ε.

Using the storage function λ from Definition 12.7 we define the modified or rotated stage
cost as

˜̀(x, u) := `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)), (12.11)

noting that strict dissipativity implies that ˜̀(x, u) ≥ ρ(|x|xe). The name “rotated cost”
stems from the fact that for linear f and λ and strictly convex ` the graph of ˜̀ is obtained
by rotating the graph of `. We denote the cost functional and the optimal value function
when ` is replaced by ˜̀ with J̃∞ and Ṽ∞, respectively. We note that ˜̀ is nonnegative and
satisfies ˜̀(xe, ue) = 0. Observe that dissipativity is satisfied with λ ≡ 0 and when ` is of
the form

`(x, u) = |x|2xe + ν|u|2ue , (12.12)

for some ν ≥ 0, i.e., when ` penalizes the distance of x to xe and, if ν > 0, the distance of
u to ue. In this case, we obtain ˜̀= `.

Using the optimal control problem with modified cost we can now show that for strictly
dissipative problems the infinite sum in the definition of J∞ either converges or diverges
to +∞.

Lemma 12.9 Assume that the optimal control problem is strictly dissipative at xe with
storage function λ satisfying Assumption 12.8 and that `(xe, ue) = 0. Then for any x0 ∈ X
and u ∈ U∞(x0) the sum

K−1∑
k=0

`(xu(k, x0), u(k))
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either converges to a finite limit or diverges to +∞ as K →∞ and it converges if and only
if the sum

∑K−1
k=0

˜̀(xu(k, x0), u(k)) converges. In case of convergence to a finite limit, the

convergence |xu(k, x0)|xe → 0 as k →∞ and the identity J∞(x0, u) = −λ(x0) + J̃∞(x0, u)
hold.

Proof: From the definition of ˜̀ and using `(xe, ue) = 0, we obtain the relation

K−1∑
k=0

`(xu(k, x0), u(k))

=
K−1∑
k=0

(
˜̀(xu(k, x0), u(k))− λ(xu(k, x0)) + λ(xu(k + 1, x0))

)
= −λ(x0) +

K−1∑
k=0

˜̀(xu(k, x0), u(k)) + λ(xu(K,x0)). (12.13)

Now we distinguish two cases:

(i) If
∑K−1

k=0
˜̀(xu(k, x0), u(k)) diverges to +∞ as K →∞, then, since by Definition 12.7 the

inequality λ(xu(K,x0)) ≥ λ holds, we obtain that
∑K−1

k=0 `(xu(k, x0), u(k)) also diverges to
+∞.

(ii) Otherwise, since ˜̀(x, u) ≥ ρ(|x|xe) ≥ 0,
∑K−1

k=0
˜̀(xu(k, x0), u(k)) converges to a finite

limit as K → ∞. This implies that ˜̀(xu(k, x0), u(k)) converges to 0 as k → ∞, implying
that |xu(k, x0)|xe → 0. Assumption 12.8 then implies that λ(xu(K,x0)) → 0 as K → ∞,
and consequently

∑K−1
k=0 `(xu(k, x0), u(k)) converges to −λ(x0) +

∑∞
k=0

˜̀(xu(k, x0), u(k))
as K →∞.

Remark 12.10 Under the assumptions of Lemma 12.9 the functionals J∞ and J̃∞ are
now well defined as the existence of the limit—possibly attaining the value +∞—is gua-
ranteed.

We now turn to a condition that ensures the existence of controls for which J∞ and J̃∞
attain finite values.

Definition 12.11 Consider the control system (8.2) and and equilibrium pair (xe, ue) ∈ Y.
We say that the system is asymptotically controllable to xe if there exists a function β ∈ KL
such that for each admissible initial value x0 ∈ X there exists an admissible control sequence
u ∈ U∞(x0) such that the inequality

|xu(n, x0)|xe ≤ β(|x0|xe , n) (12.14)

holds for all n ∈ N0. We say that this asymptotic controllability has the small control
property if u ∈ U∞(x0) can be chosen such that the inequality

|xu(n, x0)|xe + |u(n)|ue ≤ β(|x0|xe , n) (12.15)

holds for all n ∈ N0.
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Observe that asymptotic controllability is a necessary condition for feedback stabilization.
Indeed, if we assume asymptotic stability of the closed-loop system x+ = g(x) = f(x, µ(x)),
then we immediately get asymptotic controllability with control u(n) = µ(xµ(n, x0)). The
small control property, however, is not satisfied in general.

In order to use Definition 12.11 for deriving bounds on the optimal value function, we need
a result known as Sontag’s KL-Lemma [14, Proposition 7]. This proposition states that for
each KL-function β there exist functions γ1, γ2 ∈ K∞ such that the inequality

β(r, n) ≤ γ1(e−nγ2(r))

holds for all r, n ≥ 0 (in fact, the result holds for real n ≥ 0 but we only need it for integers
here). Using the functions γ1 and γ2 we now assume that the modified stage cost functions
˜̀ from (12.11) satisfies

˜̀(x, u) ≤γ−1
1 (|x|xe) + νγ−1

1 (|u|ue) (12.16)

for ν ≥ 0. We point out two special cases when this is true. The first case is that the system
is exponentially controllable, i.e., β is an exponential function. In this case, γ1 is a linear
function and the inequality (12.16) is satisfied whenever ˜̀ is Lipschitz, i.e., when ` and the
storage function λ from Definition 12.7 are Lipschitz. The second case is when ` penalizes
the distance to a desired equilibrium xe, i.e., when it is of the form (12.12).

The following theorem states that under Definition 12.11 this stage cost ensures (uniformly)
finite upper and positive lower bounds on V∞.

Theorem 12.12 [Bounds on V∞] Consider the optimal control problem (OCP∞) for the
control system (8.2). Assume that the optimal control problem is strictly dissipative at an
equilibrium (xe, ue) with storage function λ satisfying Assumption 12.8. If the system is
asymptotically controllable to xe and the modified cost ˜̀ satisfies (12.16) with ν = 0, then
there exists α1, α2 ∈ K∞ such that the optimal value function V∞ satisfies

α1(|x0|xe) ≤ Ṽ∞(x0) ≤ α2(|x0|xe) (12.17)

for all x0 ∈ X. In case that additionally `(xe, ue) = 0 holds, the optimal value function V∞
satisfies

α1(|x0|xe)− λ(x0) ≤ V∞(x0) ≤ α2(|x0|xe)− λ(x0) (12.18)

for all x0 ∈ X and the optimal solutions and controls for costs ` and ˜̀ coincide.

If, moreover, the asymptotic controllability has the small control property then the state-
ments also hold for ˜̀ satisfying (12.16) for arbitrary ν ≥ 0.

Proof: The lower bound in (12.17) follows from the inequality ˜̀(x, u) ≥ ρ(|x|xe) for all
x ∈ X and u ∈ U(x). For α1 = ρ this inequality implies J̃∞(x0, u) ≥ ˜̀(x0, u(0)) ≥ α1(|x0|xe)
for all u ∈ U∞(x0) and hence also for the infimum over all u, i.e., for Ṽ∞.

For proving the upper bound for Ṽ∞ in (12.17), we first consider the case ν = 0. For all
x0 ∈ X the control u ∈ U∞(x0) from Definition 12.11 yields

Ṽ∞(x0) ≤ J̃∞(x0, u)
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=

∞∑
k=0

˜̀(xu(k, x0), u(k)) ≤
∞∑
k=0

γ−1
1 (|xu(k, x0)|xe)

≤
∞∑
k=0

γ−1
1 (β(|x0|xe , k)) ≤

∞∑
k=0

e−kγ2(|x0|xe)

=
e

e− 1
γ2(|x0|xe),

i.e., the upper inequality from (12.17) with α2(r) = eγ2(r)/(e − 1). If the small control
property holds, then the upper bound for ν > 0 follows similarly with α2(r) = (1 +
ν)eγ2(r)/(e− 1).

The bounds on V∞ in (12.18) then follow immediately from Lemma 12.9, since (12.17)
implies that

∑K
k=0

˜̀(xu(k, x0), u(k)) converges for any approximately optimal control u.

In order to prove that the optimal solutions for ` and ˜̀ coincide, recall that Lemma 12.9
shows the identity J∞(x0, u) = −λ(x0) + J̃∞(x0, u) if all functionals are finite and that
J∞(x0, u) is finite if and only if J̃∞(x0, u) is finite. Since for all candidates u for optimal
controls for ` and ˜̀ the functionals J∞(x0, u) and J̃∞(x0, u) are finite, they differ only by
the value −λ(x0), which is independent of u. Hence, the optimal controls and the optimal
trajectories coincide.

Theorem 12.12 shows that under the stated conditions the optimal value function V∞
attains a finite value. It can thus in particular be used to define optimal controls according
to Definition 12.6(ii). However, we have excluded the case that `(xe, ue) 6= 0. The reason
is that in this case the proof of inequality (12.18) leads to the inequality

α1(|x0|xe)− λ(x0) ≤
∞∑
k=0

(
`(xu?(k, x0), u?(k))− `(xe, ue)

)
≤ α2(|x0|xe)− λ(x0), (12.19)

which implies that except for special cases V∞(x0) will assume unbounded values. This is
not an unrealistic situation in practical applications. Consider, for instance, that ` models
the energy needed to operate a certain device, then it is reasonable that over an infinite
horizon an infinite amount of energy is needed.

There are two ways to resolve this problem and both will be used in our analysis of NMPC
schemes later on in this book. The first is to subtract `(xe, ue) from the cost, i.e., to consider
the shifted cost

ˆ̀(x, u) := `(x, u)− `(xe, ue).
Then the corresponding optimal value function V̂∞ satisfies

V̂∞(x0) =
∞∑
k=0

(
`(xu?(k, x0), u?(k))− `(xe, ue)

)
and inequality (12.19) shows that it attains finite values.

The shifted cost causes the shifted optimal value function V̂∞ to measure the cost difference
compared to the infinite horizon cost of the particular solution xe with control ue from the
strict dissipativity property in Definition 12.7. From a practical point of view, this is a
reasonable solution if xe and ue are known. If this is not the case, then a solution that
avoids the shifting of the cost is to use the following notion of infinite horizon optimality.
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Definition 12.13 A trajectory x? with initial condition x?(0) = x0 and control u? ∈
U∞(x0) is called overtaking optimal if

lim sup
K→∞

(
JK(x0, u

?)− JK(x0, u)
)
≤ 0

holds for all admissible controls u ∈ U∞(x0).

In other terms, this definition demands that for each ε > 0 there is a time index Kε > 0
such that the accumulated cost of x? and u? on any horizon of length K ≥ Kε is at most ε
larger than the accumulated cost of xu and u. This notion hence compares infinitely long
solutions on arbitrarily long but finite time horizons, on which the sums are finite even if
they diverge for K →∞. It is not difficult to check that overtaking optimality is equivalent
to the usual optimality notion if the sums converge for K →∞.

We now turn to adapting the results from Section 12.1 to the infinite horizon case. We
begin with the dynamic programming principle for the infinite horizon problem (OCP∞).
Throughout this section we assume that V∞(x) is finite for all x ∈ X as ensured, e.g., by
Theorem 12.12.

Theorem 12.14 [Infinite-horizon dynamic programming principle] Consider the optimal
control problem (OCP∞) with x0 ∈ X. Then for all K ∈ N the equation

V∞(x0) = inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0))

}
(12.20)

holds. If, in addition, an optimal control sequence u?(·) exists for x0, then we get the
equation

V∞(x0) =
K−1∑
k=0

`(xu?(k, x0), u?(k)) + V∞(xu?(K,x0)). (12.21)

In particular, in this case the “inf” in (12.20) is a “min”.

Proof: From the definition of J∞ for u(·) ∈ U∞(x0) we immediately obtain

J∞(x0, u(·)) =

K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(xu(K,x0), u(·+K)), (12.22)

where u(· + K) denotes the shifted control sequence defined by u(· + K)(k) = u(k + K),
which is admissible for xu(K,x0).

We now prove (12.20) by showing “≥” and “≤” separately: From (12.22) we obtain

J∞(x0, u(·)) =

K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(xu(K,x0), u(·+K))

≥
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0)).
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Since this inequality holds for all u(·) ∈ U∞, it also holds when taking the infimum on both
sides. Hence we get

V∞(x0) = inf
u(·)∈U∞(x0)

J∞(x0, u(·))

≥ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0))

}
,

i.e., (12.20) with “≥”.

In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control sequence
for the right hand side of (12.22), i.e.,

K−1∑
k=0

`(xuε(k, x0), uε(k)) + J∞(xuε(K,x0), uε(·+K))

≤ inf
u(·)∈U∞(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(xu(K,x0), u(·+K))

}
+ ε.

Now we decompose u(·) ∈ U∞(x0) analogously to Lemma 11.10(ii) and (iii) into u1 ∈
UK(x0) and u2 ∈ U∞(xu1(K,x0)) via

u(k) =

{
u1(k), k = 0, . . . ,K − 1
u2(k −K), k ≥ K

This implies

inf
u(·)∈U∞(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + J∞(xu(K,x0), u(·+K))

}

= inf
u1(·)∈UK (x0)

u2(·)∈U∞(xu1 (K,x0))

{
K−1∑
k=0

`(xu1(k, x0), u1(k)) + J∞(xu1(K,x0), u2(·))
}

= inf
u1(·)∈UK(x0)

{
K−1∑
k=0

`(xu1(k, x0), u1(k)) + V∞(xu1(K,x0))

}
.

Now (12.22) yields

V∞(x0) ≤ J∞(x0, u
ε(·))

=
K−1∑
k=0

`(xuε(k, x0), uε(k)) + J∞(xuε(K,x0), uε(·+K))

≤ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0))

}
+ ε,

i.e.,

V∞(x0)

≤ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0))

}
+ ε.
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Since ε > 0 was arbitrary and the expressions in this inequality are independent of ε, this
inequality also holds for ε = 0, which shows (12.20) with “≤” and thus (12.20).

In order to prove (12.21) we use (12.22) with u(·) = u?(·). This yields

V∞(x0) = J∞(x0, u
?(·))

=
K−1∑
k=0

`(xu?(k, x0), u?(k)) + J∞(xu?(K,x0), u?(·+K))

≥
K−1∑
k=0

`(xu?(k, x0), u?(k)) + V∞(xu?(K,x0))

≥ inf
u(·)∈UK(x0)

{
K−1∑
k=0

`(xu(k, x0), u(k)) + V∞(xu(K,x0))

}
= V∞(x0),

where we used the (already proved) equality (12.20) in the last step. Hence, the two “≥”
in this chain are actually “=” which implies (12.21).

The following corollary states an immediate consequence from the dynamic programming
principle. It shows that tails of optimal control sequences are again optimal control se-
quences for suitably adjusted initial value.

Corollary 12.15 If u?(·) is an optimal control sequence for (OCP∞) with initial value x0,
then for each K ∈ N the sequence u?K(·) = u?(·+K), i.e.,

u?K(k) = u?(K + k), k = 0, 1, . . .

is an optimal control sequence for initial value xu?(K,x0).

Proof: Inserting V∞(x0) = J∞(x0, u
?(·)) and the definition of u?K(·) into (12.22) we obtain

V∞(x0) =

K−1∑
k=0

`(xu?(k, x0), u?(k)) + J∞(xu?(K,x0), u?K(·))

Subtracting (12.21) from this equation yields

0 = J∞(xu?(K,x0), u?K(·))− V∞(xu?(K,x0))

which shows the assertion.

The next two results are the analogues of Theorem 12.4 and Corollary 12.5 in the infinite
horizon setting.

Theorem 12.16 Consider the optimal control problem (OCP∞) with x0 ∈ X and assume
that an optimal control sequence u?(·) exists. Then the feedback law µ∞(x0) = u?(0)
satisfies

µ∞(x0) = argmin
u∈U1(x0)

{`(x0, u) + V∞(f(x0, u))} . (12.23)
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and
V∞(x0) = `(x0, µ∞(x0)) + V∞(f(x0, µ∞(x0))) (12.24)

where in (12.23)—as usual—we interpret U1(x0) as a subset of U , i.e., we identify the one
element sequence u = u(·) with its only element u = u(0).

Proof: The proof is identical to the finite horizon counterpart Theorem 12.4.

As in the finite horizon case, the following corollary shows that the feedback law (12.23)
can be used in order to construct the optimal control sequence.

Corollary 12.17 Consider the optimal control problem (OCP∞) with x0 ∈ X and consider
an admissible feedback law µ∞ : X → U in the sense of Definition 11.2(iv). Denote the
solution of the closed-loop system

x(0) = x0, x(k + 1) = f(x(k), µ∞(x(k)), k = 0, 1, . . . (12.25)

by xµ∞ and assume that µ∞ satisfies (12.23) for initial values x0 = xµ∞(k) for all k =
0, 1, . . . and that lim infK→∞ V∞(x(K)) ≥ 0. Then

u?(k) = µ∞(xµ∞(k, x0)), k = 0, 1, . . . (12.26)

is an optimal control sequence for initial value x0 and the solution of the closed-loop system
(12.25) is a corresponding optimal trajectory.

Proof: Abbreviate x(n) = xµ∞(n). We need to show that

J∞(x0, u
?) = V∞(x0),

where it is enough to show “≤” because the opposite inequality follows by definition of
V∞. From the definition of u? we immediately obtain

xu?(n, x0) = x(n), n = 0, 1, . . . .

Hence, using (12.26) and (12.24) we get

V∞(x(k)) = `(x(k), u?(k)) + V∞(x(k + 1))

for k = 0, 1, . . .. Summing these equalities for k = 0, . . . ,K − 1 for arbitrary K ∈ N and
eliminating the identical terms V∞(x0), k = 1, . . . ,K − 1 on the left and on the right we
obtain

V∞(x0) =
K−1∑
k=0

`(x(k), u?(k)) + V∞(x(K)). (12.27)

Now the assumption that lim infK→∞ V∞(x(K)) ≥ 0 implies that for any ε > 0 there is
Kε > 0 such that V∞(x(K)) ≥ −ε for all K ≥ Kε. This implies

V∞(x0) ≥
K−1∑
k=0

`(x(k), u?(k))− ε
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for all K ≥ Kε. This yields J∞(x0, u
?) ≤ V∞(x0) + ε for all ε > 0 and thus optimality of

u?.

Corollary 12.17 implies that infinite horizon optimal control is nothing but NMPC with
N = ∞: Formula (12.26) for k = 0 yields that if we replace the optimization problem
(OCPN) in Algorithm 11.1 by (OCP∞), then the feedback law resulting from this algorithm
equals µ∞.

Remark 12.18 The condition lim infK→∞ V∞(x(K)) ≥ 0 is in particular satisfied if strict
dissipativity holds with `(xe, ue) = 0 and the storage function satisfies Assumption 12.8:
By Lemma 12.9 we know that |x(k)|xe → 0 as k →∞. Thus inequality (12.18) implies that

|V∞(x(K)) + λ(x(K))| ≤ α2(|x(k)|xe)→ 0 as K →∞.
Since Assumption 12.8 implies λ(x(K)) ≤ γλ(|x(K)|xe)→ 0, we can conclude V∞(x(K))→
0 as K →∞.

12.3 Asymptotic Stability

The following proposition gives conditions under which the infinite horizon NMPC feedback
law yields an asymptotically stable closed loop.

Proposition 12.19 Consider the optimal control problem (OCP∞) for the control system
(8.2) and an equilibrium pair (xe, ue) ∈ Y. Assume that there exist α1, α2, α3 ∈ K∞ such
that the inequalities

α1(|x|xe) ≤ V∞(x) ≤ α2(|x|xe) and `(x, u) ≥ α3(|x|xe) (12.28)

hold for all x ∈ X and u ∈ U(x). Assume furthermore that an optimal feedback µ∞ exists,
i.e., an admissible feedback law µ∞ : X → U satisfying (12.23) for all x ∈ X. Then this
optimal feedback asymptotically stabilizes the closed-loop system

x+ = g(x) = f(x, µ∞(x))

on X in the sense of Definition 10.2.

Proof: For the closed-loop system, (12.24) and the last inequality in (12.28) yield

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

≥ α3(|x|xe) + V∞(f(x, µ∞(x))).

Together with the first two inequalities in (12.28) this shows that V∞ is a Lyapunov function
on X in the sense of Definition 10.4 with αV = α3. Thus, Theorem 10.5 yields asymptotic
stability on X.

By Theorem 12.12 the assumptions of this proposition are satisfied for ˜̀ and Ṽ∞, if the
asymptotic controllability condition from Definition 12.11 holds and ˜̀ satisfies (12.16) and
˜̀(x, u) ≥ α1(|x|xe). This implies that the infinite horizon optimal feedback law for the cost
˜̀ yields asymptotic stability of xe in the sense of Proposition 12.19. It may be somewhat
surprising that under the same conditions the same holds for the infinite horizon optimal
feedback law for the cost `. The following theorem shows that this is indeed the case.
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Theorem 12.20 [Asymptotic stability] Consider the optimal control problem (OCP∞)
for the control system (8.2) and assume it is strictly dissipative in the sense of Definition
12.7 at an equilibrium pair (xe, ue) ∈ Y and with storage function λ satisfying Assumption
12.8. Assume that the system is asymptotically controllable to xe and that a feedback µ∞
satisfying (12.23) exists for the cost function ` : X × U → R. Assume that ˜̀ from (12.11)
satisfies (12.16) with ν = 0 and that `(xe, ue) = 0. Then µ∞ is an infinite horizon optimal
feedback law, which asymptotically stabilizes the closed-loop system

x+ = g(x) = f(x, µ∞(x))

on X in the sense of Definition 10.2 at xe.

If, in addition, the asymptotic controllability has the small control property then the state-
ment also holds for arbitrary ν ≥ 0 in (12.16).

Proof: Theorem 12.12 yields

α1(|x0|xe) ≤ Ṽ∞(x0) ≤ α2(|x0|xe)

for suitable α1, α2 ∈ K∞. Hence, (12.28) holds and Proposition 12.19 yields asymptotic
stability on X for the optimally controlled system with cost ˜̀. Since we know from Theorem
12.12 that the optimal solutions for costs ` and ˜̀ coincide, we can conclude that the
optimally controlled system with cost ` has the same asymptotic stability property.

It remains to show that µ∞ satisfying (12.23) is an optimal feedback law for cost `. To
this end, it suffices to show that the solution x(·) generated by µ∞ satisfies V∞(x(K))→ 0
as K →∞, because then we can conclude optimality of µ∞ from Corollary 12.17. As this
convergence was already shown in Remark 12.18, µ∞ is indeed an optimal feedback law.

The last results show that infinite horizon optimal control can be used in order to derive a
stabilizing feedback law. Unfortunately, a direct solution of infinite horizon optimal control
problem is in general impossible, both analytically and numerically. Still, infinite horizon
optimal control plays an important role in our analysis since we will interpret the model
predictive control algorithm as an approximation of the infinite horizon optimal control
problem. Here the term “approximation” is not necessarily to be understood in the sense
of “being close to” (although this aspect is not excluded) but rather in the sense of ‘sharing
the important structural properties”.

12.4 Relaxed and approximate dynamic programming

Looking at the proof of Proposition 12.19 we see that the important property for stability
is the inequality

V∞(x) ≥ `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

which follows from the feedback version (12.24) of the dynamic programming principle.
Observe that although (12.24) yields equality, only this inequality is needed in the proof
of Proposition 12.19.
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This observation motivates a relaxed version of this dynamic programming inequality,
which on the one hand yields asymptotic stability and on the other hand provides a quan-
titative measure of the closed-loop performance of the system. This relaxed version will be
formulated in Theorem 12.22, below. In order to quantitatively measure the closed-loop
performance, we use the infinite horizon cost functional evaluated along the closed-loop
trajectory which we define as follows. In order to keep the presentation technically simple,
in this section we limit ourselves to nonnegative stage costs ` : X × U → R+

0 of the form
(12.12) for a reference trajectory xe. If desired, these results could be carried over to the
strictly dissipative situation with similar arguments as in the proof of Theorem 12.20, if
we impose the subsequent assumptions on ˜̀, J̃∞, and Ṽ∞.

Definition 12.21 [Infinite horizon cost] Let µ : X → U be an admissible feedback law.
For the trajectories xµ(n) of the closed-loop system x+ = f(x, µ(x)) with initial value
xµ(0) = x0 ∈ X and K ∈ N we define the finite and infinite horizon closed-loop cost as

JclK(x0, µ) :=

K−1∑
k=0

`(xµ(k), µ(xµ(k))) and Jcl∞(x0, µ) :=
∞∑
k=0

`(xµ(k), µ(xµ(k))).

Since in this section we limit ourselves to nonnegative `, either the infinite sum has a well
defined finite value or it diverges to infinity, in which case we write Jcl∞(x0, µ) =∞.

By Corollary 12.17 for the infinite horizon optimal feedback law µ∞ we obtain

Jcl∞(x0, µ∞) = V∞(x0)

while for all other admissible feedback laws µ we get

Jcl∞(x0, µ) ≥ V∞(x0).

In other words, V∞ is a lower bound for Jcl∞(x0, µ).

The following theorem now gives a relaxed dynamic programming condition from which
we can derive both asymptotic stability and an upper bound on the infinite horizon cost
Jcl∞(x0, µ) for an arbitrary admissible feedback law µ.

Theorem 12.22 [Asymptotic stability and suboptimality estimate] Consider a stage cost
` : X× U→ R+

0 and a function V : X→ R+
0 . Let µ : X→ U(x) be an admissible feedback

law and let S ⊆ X a forward invariant set for the closed-loop system

x+ = g(x) = f(x, µ(x)). (12.29)

Assume there exists α ∈ (0, 1] such that the relaxed dynamic programming inequality

V (x) ≥ α`(x, µ(x)) + V (f(x, µ(x))) (12.30)

holds for all x ∈ S. Then the suboptimality estimate

Jcl∞(x, µ) ≤ V (x)/α (12.31)
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holds for all x ∈ S.

If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1(|x|xe) ≤ V (x) ≤ α2(|x|xe) and `(x, u) ≥ α3(|x|xe)

hold for all x ∈ S, all u ∈ U, and an equilibrium xe ∈ X, then the closed-loop system
(12.29) is asymptotically stable at xe on S in the sense of Definition 10.2.

Proof: In order to prove (12.31) consider x ∈ S and the trajectory xµ(·) of (12.29) with
xµ(0) = x. By forward invariance of the sets S this trajectory satisfies xµ(k) ∈ S. Hence
from (12.30) for all k ∈ N0 we obtain

α`(xµ(k), µ(xµ(k)))

≤ V (xµ(k))− V (xµ(k + 1)).

Summing over k yields for all K ∈ N

α

K−1∑
k=0

`(xµ(k), µ(xµ(k))) ≤ V (xµ(0))− V (xµ(K)) ≤ V (x)

since V (xµ(K)) ≥ 0 and xµ(0) = x. Since the stage cost ` is nonnegative, the term on
the left is monotone increasing and bounded, hence for K →∞ it converges to αJcl∞(x, µ).
Since the right hand side is independent of K, this yields (12.31).

The stability assertion now immediately follows by observing that V satisfies all assump-
tions of Theorem 10.5 with αV = αα3.

The central condition in this result is the relaxed dynamic programming inequality (12.30),
which we can rewrite as

V (f(x, µ(x))) ≤ V (x)− `(x, µ(x)) + (1− α)`(x, µ(x)).

As we will see later, obtaining such an inequality is realistic in case ` is of the form (12.12),
but in the more general strictly dissipative setting it is in general too demanding. In this
setting, we will typically only be able to obtain an inequality of the form1

V (f(x, µ(x))) ≤ V (x)− `(x, µ(x)) + ε

for an error term ε > 0 that may not satisfy ε ≤ (1− α)`(x, µ(x)). The following theorem
shows how the statement of Theorem 12.22 changes under this weaker assumption.

Theorem 12.23 [Practical asymptotic stability and suboptimality estimate] Consider a
stage cost ` : Y → R satisfying (12.12) and a function V : X → R. Let µ : X → U be
an admissible feedback law and let Y ⊆ X, be a forward invariant set for the closed-loop
system

x+ = g(x) = f(x, µ(x)) (12.32)

1More precisely, we will obtain this inequality for ˜̀, but in order to keep the notation simple we omit
the tilde in this section.
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whose solutions are denoted by xµ. Assume there exists ε > 0 such that the relaxed dynamic
programming inequality

V (f(x, µ(x))) ≤ V (x)− `(x, µ(x)) + ε (12.33)

holds for all x ∈ Y . Then the performance estimate

JclK(x, µ) ≤ V (x) +Kε− V (xµ(K)) (12.34)

holds for all x ∈ Y .
If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1(|x|xe) ≤ V (x) ≤ α2(|x|xe) and `(x, u) ≥ α3(|x|xe) (12.35)

hold for all x ∈ Y , all u ∈ U, and an equilibrium xe ∈ X, then the closed-loop system
(12.32) is P -practically asymptotically stable at xe on Y in the sense of Definition 10.3
with P = V −1([0, α2(α−1

3 (2ε)) + ε]) ⊆ Bα−1
1 (α2(α−1

3 (2ε))+ε)(x
e).

Proof: Evaluating (12.33) at points xµ(k) on the closed-loop solution yields

`(xµ(k), µ(xµ(k))) ≤ V (xµ(k)) + ε− V (xµ(k + 1)).

Summing this inequalitiy from k = 0 to k = K − 1 then yields (12.34).
For proving the P -practical asymptotic stability statement, we prove that V is a Lyapunov
function for the closed-loop system on S = Y \P . Then the statement follows from Theorem
10.6. In order to prove the Lyapunov function property, it suffices to prove inequality (10.5)
with g(x) = f(x, µ(x)) and forward invariance of P , since the remaining assumptions on
V in Definition 10.4 follow immediately from the assumptions in this theorem.
For proving (10.5), observe that x 6∈ P implies that

α2(|x|xe) ≥ V (x) > α2(α−1
3 (2ε)) + ε.

From this inequality we obtain that α3(|x|xe) ≥ 2ε, implying that

−`(x) ≤ −α3(|x|xe) ≤ −2ε (12.36)

and thus
−`(x) + ε ≤ −`(x)/2 ≤ −α3(|x|xe)/2,

which together with (12.33) proves (10.5) with αV = α3/2.
For proving forward invariance of P we pick x ∈ P , which implies V (x) ≤ α2(α−1

3 (2ε)) + ε,
and distinguish two cases:
(i) V (x) ≥ α2(α−1

3 (ε)): Then, with analogous arguments as those leading to (12.36), we
obtain −`(x) ≤ −ε and hence (12.33) implies

V (f(x, µ(x)) ≤ V (x)− `(x, µ(x)) + ε ≤ V (x) ≤ α2(α−1
3 (2ε)) + ε

and thus f(x, µ(x)) ∈ P .
(ii) V (x) < α2(α−1

3 (ε)): Then, since ` ≥ 0, (12.33) implies

V (f(x, µ(x)) ≤ V (x)− `(x, µ(x)) + ε ≤ V (x) + ε

≤ α2(α−1
3 (ε)) + ε ≤ α2(α−1

3 (2ε)) + ε.

Hence, again f(x, µ(x)) ∈ P follows, which shows forward invariance of P .



Kapitel 13

Dissipativity-based analysis of
MPC schemes

13.1 Setting

In this chapter we will provide a comprehensive analysis of NMPC schemes with general
stage costs `. Our goal is to prove stability and near optimality properties of the NMPC
closed loop on long and infinite time horizons. However, it is in general too optimistic to
expect that this is possible without imposing any structural properties on the dynamics
f and the stage cost `. Intuitively speaking, the property that we will use here is that
the optimal solutions on sufficiently long finite time horizons and on the infinite time
horizon do not differ too much, which of course must be made precise. In order to obtain
such a property, it turns out that the strict dissipativity property, which was introduced in
Definition 12.7, along with the closely related turnpike property, which we will introduce
in this chapter, provides a suitable mathematical framework.

Example 13.1 An example, which will serve as an illustration for all results in this section,
is the 1d discrete-time system with dynamics and stage cost

x+ = 2x+ u and `(x, u) = u2

and state and control constraint sets X = [−2, 2] and U(x) = U = [−3, 3], i.e., Y =
[−2, 2]× [−3, 3].

The uncontrolled system is unstable, hence for initial values x0 6= 0 the solution will leave
the admissible set X if no control is used. Hence, control action is needed in order to keep
the system inside X. Interpreting the stage cost `(x, u) = u2 as the energy of the current
control action, the control objective can be formulated as “keep the state inside X with
minimal control effort”.

Using the storage function λ(x) = −x2/2, one sees that the problem is strictly dissipative
in the sense of Definition 12.7 at the equilibrium (xe, ue) = (0, 0): Clearly, λ is bounded
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from below on the compact interval X, and for any (x, u) ∈ Y we obtain

`(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) = u2 − 0− x2/2 + (2x+ u)2/2

= 3u2/2 + 3x2/2 + 2xu

= x2/2 + u2/2 + (x+ u)2 ≥ x2/2,

which shows inequality (12.10) with ρ(r) = r2/2.

In order to measure the performance of the NMPC closed loop, we evaluate the stage cost
function along the closed-loop trajectory (11.2). To this end, we recall the finite-horizon
closed-loop performance from Definition 12.21

JclK(x0, µ) :=

K−1∑
k=0

`(xµ(k), µ(xµ(k))). (13.1)

Only in exceptional cases the limit Jcl∞(x0, µ) of these quantities for K → ∞ will exist.
Hence, in order to measure infinite-horizon performance, we also consider the averaged
infinite horizon performance

J
cl
∞(x0, µ) := lim sup

K→∞

1

K
JclK(x0, µ).

In addition, we consider an approximate version of the overtaking optimality property
from Definition 12.13: For a horizon-dependent error term err(K), K ∈ N, we say that a
closed-loop solution is approximately overtaking optimal if

lim sup
K→∞

(
JclK(x0, µ)− JK(x0, u)− err(K)

)
≤ 0 (13.2)

holds for all admissible controls u ∈ U∞(x0).

Throughout this chapter, by (xe, ue) ∈ Y we denote an equilibrium of the system, i.e.,
f(xe, ue) = xe. Of particular interest are optimal equilibria according to the following
definition.

Definition 13.2 An equilibrium (xe, ue) ∈ Y is called an optimal equilibrium, if it yields
the lowest value of the cost function among all admissible equilibria, i.e.,

`(xe, ue) ≤ `(x, u) for all (x, u) ∈ Y with f(x, u) = x.

Example 13.3 In Example 13.1, the equilibria are of the form (x,−x) with cost `(x,−x) =
x2. Thus, the (unique) optimal equilibrium is given by (xe, ue) = (0, 0).

The following lemma shows that an optimal equilibrium always exists when f and ` are
continuous and Y is compact.
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Lemma 13.4 If the constraint set Y ⊂ X × U is compact and the maps ` : X × U → R
and f : X × U → X are continuous, then there exists an optimal equilibrium, i.e., a pair
xe ∈ X, ue ∈ U with f(xe, ue) = xe such that

`(xe, ue) = inf{`(x, u) | (x, u) ∈ Y, f(x, u) = x}.

Proof: Since preimages of closed sets under continuous mappings are closed, the set
{(x, u) ∈ Y | f(x, u) = x} is closed, hence compact and thus the continuous function `
attains a minimum.

13.2 Averaged Performance with Terminal Ingredients

In this and in the following three sections, we analyze NMPC schemes with terminal in-
gredients. To this end, we choose the optimal control problem (OCPN,e) in Algorithm 11.9
as

minimize J tiN (x0, u(·)) :=
N−1∑
k=0

`(xu(k, x0), u(k))

+ F (xu(N, x0))

with respect to u(·) ∈ UNX0
(x0) subject to

xu(0, x0) = x0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(13.3)

where UNX0
(x0) is defined in Definition 11.2(ii). We note that the terminal ingredients—i.e.,

the terminal cost F and the terminal constraint X0 ⊂ X—are only added to the open-
loop functional J tiN (x0, u) used in the NMPC Algorithm 11.9 but not to the closed-loop
performance index JclK(x, µ) from (13.1) or to the open-loop performance index JK(x, u) in
(13.2), which are still defined without terminal cost and constraints. In order to distinguish
these two different functionals, we have added the index “ti” (for “terminal ingredients”)
to J tiN in (13.3). The corresponding optimal value function is defined by

V ti
N (x) := inf

u(·)∈UNX0 (x)
J tiN (x, u(·))

and we assume the existence of an optimal control sequence for each feasible initial condition
x in order to synthesize the NMPC feedback law µN according to Algorithm 11.9.

The following assumption formulates the conditions on F and X0 that we will need for the
subsequent results on the NMPC Algorithm 11.9 with optimal control problem (OCPN,e) =
(13.3). The assumption requires the existence of an equilibrium, which will later be chosen
as an optimal equilibrium. For its formulation, recall the definition of the feasible sets XN
from Definition 11.8(i).
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Assumption 13.5 [Terminal ingredients] (a) The set X0 is bounded and there is an equi-
librium (xe, ue) ∈ Y with xe ∈ X0 and F (xe) = 0 such that for each x ∈ X0 there exists
ux ∈ U(x) with f(x, ux) ∈ X0 and

F (f(x, ux)) ≤ F (x)− `(x, ux) + `(xe, ue) (13.4)

(b) There exists N0 ∈ N and η > 0 such that XN0 contains the ball Bη(xe).

Observe that the requirement F (xe) = 0 in this assumption can be made without loss of
generality because inequality 13.4 is invariant with respect to addition of a constant to
F . Note also that (a) implies that X0 is viable, hence Theorem 11.12 implies recursive
feasibility of the MPC scheme.

A simple choice of X0 and F satisfying Assumption 13.5(a) is X0 = {xe} and F ≡ 0,
which is known as equilibrium terminal constraint. Part (b) of Assumption 13.5(a) then
requires exact controllability to xe from each point a neighborhood of xe in at most N0 time
steps. Besides the fact that exact controllability to xe may not hold, equilibrium terminal
constraints have the disadvantage that the feasible sets XN may be rather small and that
the optimal control problem (13.3) may be numerically difficult to solve. It can thus be
advantageous to choose an X0 that contains a larger region around xe, but then the design
of F satisfying inequality 13.4 is nontrivial.

Lemma 13.6 If Assumption 13.5(a) holds, then for each N ≥ 1 and each x0 ∈ XN−1 the
optimal value functions of Problem (13.3) satisfy

V ti
N (x0) ≤ V ti

N−1(x0) + `(xe, ue) (13.5)

Proof: We first show that for each uN−1 ∈ UN−1
X0

(x0) the control sequence uN := û ∈
UNX0

(x0) from (11.9) satisfies

J tiN (x0, uN ) ≤ J tiN−1(x0, uN−1) + `(xe, ue). (13.6)

To this end, recall from the proof of Theorem 11.12 that the trajectories xuN (·, x0) and
xuN−1(·, x0) satisfy

xuN (k, x0) = xuN−1(k, x0), k = 0, . . . , N − 1, xuN (N, x0) = f(x̂, ux̂),

where x̂ = xuN−1(N − 1, x0). Together with (13.4) this yields

J tiN (x0, uN ) =

N−1∑
k=0

`(xuN (k, x0), uN (k)) + F (xuN (N, x0))

=

N−2∑
k=0

`(xuN (k, x0), uN (k)) + `(xuN (N − 1, x0), uN (N − 1)) + F (xuN (N, x0))

=

N−2∑
k=0

`(xuN−1(k, x0), uN−1(k))︸ ︷︷ ︸
=JN−1(x0,uN−1)

+ `(x̂, ux̂) + F (f(x̂, ux̂))︸ ︷︷ ︸
≤F (x̂)+`(xe,ue)
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≤ J tiN−1(x0, uN−1) + `(xe, ue).

This shows (13.6). In order to prove (13.5), let ukN−1 ∈ UN−1
X0

(x0), k ∈ N, be a sequence of
control sequences such that

V ti
N−1(x0) = inf

u∈UN−1
X0

(x0)
J tiN−1(x0, u) = inf

k∈N
J tiN−1(x0, u

k
N−1)

holds. Then, we can find ukN ∈ UNX0
(x0) such that (13.6) holds for uN = ukN and uN−1 =

ukN−1. This implies

V ti
N (x0) = inf

u∈UNX0 (x0)
J tiN (x0, u) ≤ inf

k∈N
J tiN (x0, u

k
N )

≤ inf
k∈N

J tiN−1(x0, u
k
N−1) + `(xe, ue) = V ti

N−1(x0) + `(xe, ue)

and thus (13.5).

Now we are in the position to prove our first performance result, which gives a bound on
the infinite horizon average performance.

Theorem 13.7 Consider the NMPC Algorithm 11.9 with optimal control problem (OCPN,e)
= (13.3). Let Assumption 13.5(a) be satisfied, let N ≥ 2, and assume V ti

N is bounded from
below on XN . Then, for any N ≥ 2 and any x ∈ XN the averaged closed-loop performance
satisfies the inequality

J
cl
∞(x, µN ) ≤ `(xe, ue). (13.7)

Proof: Using (13.5) and the dynamic programming principle, we obtain

`(x, µN (x)) ≤ V ti
N (x)− V ti

N−1(f(x, µN (x))) ≤ V ti
N (x)− V ti

N (f(x, µN (x))) + `(xe, ue)

and we can conclude

JclK(x0, µN ) =

K−1∑
k=0

`(xµN (k), µN (xµN (k)))

≤
K−1∑
k=0

[
V ti
N (xµN (k))− V ti

N (xµN (k + 1)) + `(xe, ue)
]

= V ti
N (x0)− V ti

N (xµN (K)) +K`(xe, ue)

≤ V ti
N (x0)−M +K`(xe, ue),

where M ∈ R is a lower bound on V ti
N . This yields

J
cl
∞(x0, µN ) ≤ lim sup

K→∞

(
V ti
N (x0)

K
− M

K
+ `(xe, ue)

)
= `(xe, ue).
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We note that the boundedness assumption from below on VN is satisfied if ` and F are
bounded from below on Y or X, respectively. This is in particular the case if these functions
are continuous and Y and X are compact.

Clearly, the estimate from Theorem 13.7 is particularly powerful if `(xe, ue) is the best, i.e.,

the smallest possible value that J
cl
∞(x0, µN ) can attain. To this end, recall the Definition

12.7 of strict dissipativity. We have already observed in Example 13.1 that the optimal
control problem from this example is strictly dissipative with λ(x) = −x2/2 at (xe, ue) =
(0, 0). We also recall that a stage cost satisfying `(x, u) ≥ ρ(|x|xe) and `(xe, ue) = 0 is
strictly dissipative with λ ≡ 0.

The following proposition now shows that if the problem is dissipative, then `(xe, ue) is an
optimal equilibrium and a lower bound on the average cost.

Proposition 13.8 For an optimal control problem (OCPN) that is strictly dissipative at
(xe, ue), the point (xe, ue) is an optimal equilibrium and the inequality

lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k)) ≥ `(xe, ue) (13.8)

holds for all x ∈ X and all admissible control sequences u ∈ U∞(x).

Proof: Consider an arbitrary equilibrium (x, u) ∈ Y. Then the identity x = f(x, u) and
(12.10) together with ρ ≥ 0 imply

`(x, u)− `(xe, ue) = `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) ≥ 0,

which yields `(xe, ue) ≤ `(x, u), and thus (xe, ue) is an optimal equilibrium.

Moreover, using again (12.10) and ρ ≥ 0, and denoting by M a lower bound on λ we have

K−1∑
k=0

`(xu(k, x), u(k)) ≥
K−1∑
k=0

`(xe, ue)− λ(xu(k, x)) + λ(xu(k + 1, x))

= K`(xe, ue)− λ(x) + λ(xu(K,x))

≥ K`(xe, ue)− λ(x) +M.

for any u ∈ U∞(x). This yields

lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k)) ≥ lim sup
K→∞

(
`(xe, ue)− λ(x)−M

K

)
= `(xe, ue).

The property expressed by inequality (13.8) is known as optimal operation at steady state.
It has been shown in [12] that under a controllability condition on the system, the converse
of Proposition 13.8 is also true, i.e., that optimal operation at a steady state implies
dissipativity.

An immediate consequence of Proposition 13.8 is the following corollary.



13.3. ASYMPTOTIC STABILITY WITH TERMINAL INGREDIENTS 145

Corollary 13.9 Consider the NMPC Algorithm 11.9 with dissipative optimal control pro-
blem (OCPN,e)=(13.3). Then for all x ∈ XN

J
cl
∞(x, µN ) = inf

u∈U∞(x)
lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k)).

Hence, if strict dissipativity holds, then Theorem 13.7 ensures infinite horizon averaged
optimality of the NMPC closed loop.

Example 13.10 Since Example 13.1 is dissipative, the NMPC closed loop must be infinite
horizon averaged optimal. Indeed, as Fig. 13.1 shows, the closed-loop solution converges
to the optimal equilibrium. Since the control (not shown in the figure) does the same,

`(xµN (k), µN (xµN (k))) → 0 as k → ∞ follows. This implies J
cl
∞(x, µN ) = 0, which is

clearly optimal since ` ≥ 0.
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Abbildung 13.1: NMPC closed-loop solution (solid) and open-loop predictions (dashed) for
Example 13.1 with terminal constraint X0 = {0} and horizon N = 3. The solid line at
x = 2 indicates the upper bound of the admissible set X

13.3 Asymptotic Stability with Terminal Ingredients

One might conjecture that optimal operation at the steady state (xe, ue) implies that closed-
loop solutions satisfying (13.7) must also converge to xe. However, under the assumptions
imposed in Theorem 13.7 and Proposition 13.8 this is not necessarily the case. To see this, it
suffices to consider an optimal control problem with ` ≡ 0. Such a problem clearly satisfies
all assumptions (with terminal cost F ≡ 0 and storage function λ ≡ 0), yet every trajectory
is an optimal trajectory and thus optimal trajectories obviously need not converge to xe.
In order to achieve this—and, in fact, even asymptotic stability of xe—we need to assume
strict dissipativity.
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We establish asymptotic stability by proving the existence of a Lyapunov function. It will
turn out that the optimal value function of the auxiliary optimal control problem using
the modified or rotated cost

˜̀(x, u) := `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u))

introduced in (12.11) provides this Lyapunov function. Since our optimal control problem
(13.3) now has a terminal cost F , we also need to modify this cost, which we do by defining

F̃ (x) := F (x) + λ(x).

The corresponding functional is given by

J̃ tiN (x0, u(·)) =
N−1∑
k=0

˜̀(xu(k, x0), u(k)) + F̃ (xu(N, x0))

and the optimal value function by

Ṽ ti
N (x0) := inf

u(·)∈UNX0 (x0)
J̃ tiN (x0, u(·)).

It is an easy exercise to check that the equalities ˜̀(xe, ue) = 0 and F̃ (xe) = 0 and—under
Assumption 13.5(a)—that the inequality

F̃ (f(x, u)) ≤ F̃ (x)− ˜̀(x, u) (13.9)

holds for each x ∈ X0 and the control u from Assumption 13.5(a). Moreover, for any x ∈ XN
and u ∈ UNX0

(x), one easily verifies the identity

J̃ tiN (x, u) = J tiN (x, u) + λ(x)−N`(xe, ue). (13.10)

Since the last two terms in (13.10) are independent of u, this implies that the optimal
trajectories for JN and J̃N coincide and that the optimal value functions satisfy

Ṽ ti
N (x) = V ti

N (x) + λ(x)−N`(xe, ue). (13.11)

If the optimal control problem is strictly dissipative, ˜̀ satisfies ˜̀(x, u) ≥ ρ(|x|xe) for all
(x, u) ∈ Y and ˜̀(xe, ue) = 0. This immediately implies

Ṽ ti
N (xe) = 0 and thus V ti

N (xe) = N`(xe, ue) (13.12)

using (13.11) and λ(xe) = 0.

The optimal value function Ṽ ti
N is now our candidate for a Lyapunov function. Using this

function, we first obtain asymptotic stability for the NMPC closed loop with modified costs,
but since the optimal solutions with original and modified costs coincide, this immediately
yields asymptotic stability for the original NMPC scheme. For the formal proof, we need
the following technical properties.
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Assumption 13.11 [Continuity of F , λ and VN at xe] There exists γF , γλ, and γV ∈ K∞
such that the following properties hold.
(a) For all x ∈ X0 it holds that

|F (x)− F (xe)| ≤ γF (|x|xe).

(b) For all x ∈ X it holds that

|λ(x)− λ(xe)| ≤ γλ(|x|xe).

(c) For each N ∈ N and each x ∈ XN it holds that

|V ti
N (x)− V ti

N (xe)| ≤ γV (|x|xe).

Note that γV in (c) is independent of N . We will comment at the end of this section on
conditions under which (c) can be ensured. Moreover, since we made the convention that
λ(xe) = 0, (b) is equivalent to |λ(x)| ≤ γλ(|x|xe), i.e., to Assumption 12.8.

Theorem 13.12 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPN,e)=(13.3). Let Assumptions 13.5(a) and 13.11 be satisfied. Then
the optimal equilibrium xe is asymptotically stable for the NMPC closed loop on XN .

Proof: We show that the modified optimal value function Ṽ ti
N is a Lyapunov function for

the closed-loop system in the sense of Theorem 12.22 for xref(n) ≡ xe. To this end, we first
check inequality (12.30) with V = Ṽ ti

N , ` = ˜̀ and α = 1. As in the proof of Theorem 13.7,
from Assumption 13.5(a) we obtain `(x, µN (x)) ≤ V ti

N (x) − V ti
N (f(x, µN (x))) + `(xe, ue),

which we can rewrite as

V ti
N (x) ≥ `(x, µN (x)) + V ti

N (f(x, µN (x)))− `(xe, ue). (13.13)

Using (13.11) this implies

Ṽ ti
N (x) = V ti

N (x) + λ(x)−N`(xe, ue)
≥ `(x, µN (x)) + V ti

N (f(x, µN (x)))− `(xe, ue) + λ(x)−N`(xe, ue)
= `(x, µN (x)) + Ṽ ti

N (f(x, µN (x)))− λ(f(x, µN (x)))− `(xe, ue) + λ(x)

= ˜̀(x, µN (x)) + Ṽ ti
N (f(x, µN (x))),

i.e., the desired inequality (12.30).

It remains to establish the inequalities

α1(|x|xe) ≤ Ṽ ti
N (x) ≤ α2(|x|xe) and ˜̀(x, u) ≥ α3(|x|xe) (13.14)

for α1, α2, α3 ∈ K∞. The third inequality follows immediately from the definition of ˜̀ and
strict dissipativity for α3 = ρ from Definition 12.7. For the inequalities involving α1 and
α2, we first need to establish a lower bound for F̃ .
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To this end, for each x ∈ X0 we denote the control u from (13.9) by µ0(x). Then (13.9)
and strict dissipativity implies

F̃ (f(x, µ0(x))) ≤ F̃ (x)− ˜̀(x, µ0(x)) ≤ F̃ (x)− ρ(|x|xe).

By induction along the closed-loop solution for the feedback law µ0, we obtain

F̃ (xµ0(K,x)) ≤ F̃ (x)−
K−1∑
k=0

ρ(|xµ0(k, x)|xe).

This implies that xµ0(K,x) → xe as K → ∞, because otherwise the sum on the right-

hand side of this inequality grows unboundedly, which implies F̃ (xµ0(K,x)) → −∞ and
contradicts Assumption 13.11(a) and (b) since xµ0(K,x) is contained in the bounded set

X0. Again by Assumption 13.11(a) and (b), this implies F̃ (xµ0(K,x)) → F̃ (xe) = 0 as
K →∞ from which we can finally conclude

F̃ (x) ≥ lim
K→∞

K−1∑
k=0

ρ(|xµ0(k, x)|xe) ≥ ρ(|x|xe) ≥ 0.

From this, the definitions of J̃ tiN and Ṽ ti
N immediately imply Ṽ ti

N (x) ≥ ˜̀(x, µN (x)) ≥ ρ(|x|xe),
and thus the inequality for α1 in (13.14) with α1 = ρ.

Finally, since J̃ tiN (xe, ue) = 0, we obtain Ṽ ti
N (xe) = 0 and the second inequality in (13.14)

follows from (13.11) and Assumption 13.11(b) and (c) with α2 = γλ + γV .

We end this section by discussing sufficient conditions for the bound on V ti
N required in

Assumption 13.11(c). In the case of equilibrium terminal constraints, i.e., X0 = {xe} and
F ≡ 0, this property can be ensured by the condition that xe is reachable from every x ∈ XN
with suitable bounded costs. In case ` and f are continuous, it is sufficient to assume that
the control sequence steering x to xe is sufficiently close to the constant control with value
ue. For details we refer to [1], particularly to part 2 of Assumption 2 in [1].

In case X0 contains a neighborhood of xe, using (13.5) inductively starting from V ti
0 (x) =

F (x) yields for all x ∈ X0 the inequality

V ti
N (x) ≤ F (x) +N`(xe, ue) (13.15)

while from (13.11) and Ṽ ti
N ≥ 0 we obtain

V ti
N (x) ≥ −λ(x) +N`(xe, ue).

Since from (13.12) we moreover know V ti
N (xe) = N`(xe, ue), this implies Assumption

13.11(c) for x ∈ X0 provided Assumption 13.11(a) and (b) hold. For x ∈ XN \ X0 the
inequality can be extended using that V ti

N is bounded from above on XN .

Example 13.13 As observed in Example 13.1, the optimal control problem from this
example is strictly dissipative. Moreover, one easily verifies that xe is reachable in two steps
from each x ∈ X with cost 4x2, which implies the upper bound on VN for the terminal
constraint set X0 = {0}. Hence, we expect the NMPC closed loop to be asymptotically
stable, which was already illustrated in Fig. 13.1.
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13.4 Non-averaged and Transient Performance with Termi-
nal Ingredients

The averaged performance result from Theorem 13.7 provides a useful estimate for large
times k. However, it also has two significant weaknesses. First, it does not provide an
advantage over a stabilizing NMPC algorithm. Indeed, for any combination of a continuous
stage cost and a terminal ingredients for which the NMPC closed-loop solution converges to
xe and the corresponding control sequence converges to ue, the value `(xµN (k), µN (xµN (k)))

converges to `(xe, ue) from which J
cl
∞(x, µN ) = `(xe, ue) follows. Hence, Theorem 13.7

states that the economic NMPC scheme does not perform worse than a stabilizing one.
Second, the averaged estimate does not allow any statement about the finite time behavior
of the closed-loop trajectory. Indeed, on any finite time interval of arbitrary length, the
closed-loop trajectory could behave arbitrarily bad as long as eventually it converges to
the equilibrium, cf. Remark 13.20 for a concrete example. Clearly, this is not what we
would expect an NMPC closed-loop trajectory to do and it is also not consistent with
what we see in numerical simulations, e.g., in Fig. 13.1. Hence in this section, we derive
estimates for the non-averaged finite horizon performance JclK(x, µN ), as well es for its
limit as K → ∞ in the overtaking sense of (13.2). As we already know that—under the
conditions of Theorem 13.12—the equilibrium xe is asymptotically stable, the finite horizon
value JclK(x, µN ) measures the performance of the solution during the transient phase, i.e.,
until it reaches a small neighborhood of xe. This is why we also call this value transient
performance.

We recall that the value JclK(x, µN ) does not involve any terminal constraints or costs, while
in the NMPC scheme we solve problem (13.3) with terminal ingredients in each step. As
before, we distinguish between the these problems by indicating the cost functional and
optimal value function with terminal ingredients by J tiN and V ti

N , respectively. We emphasize
that all functional use the same stage cost `. This implies that if one of the problems is
strictly dissipative, then all problems are. If this is the case, we also consider (OCPN)
for the rotated cost ˜̀ from (12.11) and denote the corresponding functional by J̃N . A
straightforward computation reveals that JN and J̃N are related by the identity

J̃N (x, u) = JN (x, u) + λ(x)− λ(xu(N, x))−N`(xe, ue). (13.16)

Observe that compared to (13.10), the additional term λ(xu(N, x)) appears here due to
the absence of the terminal ingredients.

In order to establish our theorems on transient performance, we will need a few preparatory
results. The first statement shows that the finite horizon optimal trajectories most of the
time stay close to the optimal equilibrium xe.

Proposition 13.14 Assume that the optimal control problem (OCPN) is strictly dissipa-
tive with storage function λ satisfying Assumption 13.11(ii) with γλ ∈ K∞, and ρ ∈ K∞.
Then for each δ > 0 and ∆ > 0 each there exists σ = σδ,∆ ∈ L such that for all
N,P ∈ N, x ∈ X with |x|xe ≤ ∆ and u ∈ UN (x) with JN (x, u) ≤ N`(xe, ue) + δ, the
set Q(x, u, P,N) := {k ∈ {0, . . . , N − 1} | |xu(k, x)|xe ≥ σ(P )} has at most P elements.
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Proof: We fix δ,∆ > 0 and claim that the assertion holds with σ(P ) := ρ−1((M +γλ(∆)+
δ)/P ) where −M is a lower bound on λ. To prove this claim, assume that there are N ,
P , x and u such that JN (x, u) ≤ N`(xe, ue) + δ but Q(x, u, P,N) contains at least P + 1
elements. Then from (13.16) we can estimate

J̃N (x, u) ≤ JN (x, u) + λ(x) +M −N`(xe, ue) ≤M + γλ(∆) + δ.

On the other hand, (12.10), (12.11), and the fact that Q(x, u, P,N) contains at least P + 1
elements imply

J̃N (x, u) ≥
N−1∑
k=0

˜̀(xu(k, x), u(k)) ≥
N−1∑
k=0

ρ(|xu(k, x)|xe) ≥
∑

k∈{0,...,N−1}
|xu(k,x)|xe>σδ(P )

ρ(σδ(P ))

≥ (P + 1)ρ(σδ(P )) ≥ (P + 1)
M + γλ(∆) + δ

P
> M + γλ(∆) + δ,

which is a contradiction.

Elements of Q(x, u, P,N)

Nk

σδ(P )

σδ(P )

xu(k, x)

xe

Abbildung 13.2: Illustration of the set Q(x, u, P,N) defined in Proposition 13.14

We refer to the property described by Proposition 13.14 as the turnpike property. For
an illustration, we refer to Fig. 13.2. In fact, there are various variants of the turnpike
property known in optimal control, of which the one described by Proposition 13.14 is just
a particular version.

We note that if X is bounded then there is ∆ > 0 with |x|xe ≤ ∆ for all x ∈ X. This implies
that we can find σ ∈ L for which the turnpike inequality in Proposition 13.14 is valid for
all x ∈ X.

Example 13.15 Since Example 13.1 is strictly dissipative with continuous storage functi-
on, we expect the system to have the turnpike property. The numerical optimal trajectories
depicted in Fig. 13.3 support this claim.

Next we derive upper and lower bounds for V∞ under the assumption that `(xe, ue) = 0. We
note that these bounds are similar to (12.18), but are obtained under different assumptions
on the problem.

Lemma 13.16 Assume that the optimal control problem (OCPN) is strictly dissipative
with storage function λ, that `(xe, ue) = 0 and that Assumptions 13.5(a) and 13.11 hold.
Then there is C > 0 such that the inequalities

−C − λ(x) ≤ V∞(x) ≤ γV (|x|xe) (13.17)
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Open loop optimal trajectories for N = 2, . . . , 30

Abbildung 13.3: Open loop optimal trajectories (without terminal ingredients) for Example
13.1 with different optimization horizons N . The turnpike property is clearly visible

hold for all x ∈ ⋃N∈NXN with γV from Assumption 13.11(c).

Proof: For x ∈ XN , using the control sequence u(k) = µN (xµN (k, x)) induced by the closed
loop, from (13.13) with `(xe, ue) = 0 for any K > 0 we obtain

JK(x, u) =

K−1∑
k=0

`(xu(k, x), uk(x)) ≤ V ti
N (x)− V ti

N (xu(K,x)).

By asymptotic stability of xe for this solution we obtain xu(K,x) → xe, and thus, since
V ti
N (xe) = N`(xe, ue) = 0 by (13.12), Assumption 13.11(c) yields V ti

N (xu(K,x)) → 0 as
K →∞. Using Assumption 13.11(c) and V ti

N (xe) = 0, this implies

V∞(x) ≤ lim sup
K→∞

JK(x, u) ≤ V ti
N (x) ≤ γV (|x|xe).

On the other hand, the fact that J̃N (x, u) ≥ 0 and that λ is bounded from below, (13.16)
implies JN (x, u) ≥ −C−λ(x), where −C is a lower bound on λ. Since this inequality holds
for all N ∈ N and all admissible u, it also holds for V∞(x).

Using the inequality ensured by this lemma, we can prove an infinite horizon version of the
turnpike property from Proposition 13.14.

Proposition 13.17 Assume that the optimal control problem (OCPN) is strictly dissipa-
tive with storage function λ satisfying Assumption 13.11(ii), `(xe, ue) = 0, and the inequa-
lities (13.17) hold for all x ∈ ⋃N∈N0

XN . Then for each ∆ > 0 there exists σ∞ = σ∞,∆ ∈ L
such that for all P ∈ N, x ∈ X with |x|xe ≤ ∆, and u ∈ U∞(x) with J∞(x, u) ≤ V∞(x) + 1,
the set Q(x, u, P,∞) := {k ∈ N0 | |xu(k, x)|xe ≥ σ∞(P )} has at most P elements.

Proof: First note that by Lemma 13.16 and the assumption, we get

J∞(x, u) ≤ sup
x∈
⋃
N∈N XN ,|x|xe≤∆

V∞(x) + 1 ≤ γV (∆) + 1 =: δ.

Now we can proceed as in the proof of Proposition 13.14: denoting by M an upper bound
on λ, from (13.16) and `(xe, ue) = 0 we obtain

J̃∞(x, u) = lim sup
K→∞

J̃K(x, u) ≤ lim sup
K→∞

JK(x, u) +M + γλ(∆) ≤ δ +M + γλ(∆).
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Setting σ∞(K) := ρ−1((M + γλ(∆) + δ)/K), the assumption that Q(x, u, P,∞) contains
more than P elements again yields a contradiction to this inequality.

We note that this theorem implies xu(k, x)→ xe as k →∞, because otherwiseQ(x, u, P,∞)
would contain infinitely many elements for sufficiently large P ∈ N. Using this fact, we can
improve the lower bound on V∞ from Lemma 13.16.

Lemma 13.18 Under the assumptions of Proposition 13.17, the inequality V∞(x) ≥ −λ(x)
holds for all x ∈ ⋃N∈N0

XN .

Proof: Let u ∈ U∞(x) be such that J∞(x, u) ≤ V∞(x) + ε for an ε ∈ (0, 1). As explained
above, Proposition 13.17 implies that xu(k, x) → xe as k → ∞. The definition of V∞ and
(13.16) then imply that

V∞(x) + ε ≥ lim sup
K→∞

JK(x, u)

= lim sup
K→∞

(
− λ(x) + J̃K(x, u)︸ ︷︷ ︸

≥0

+λ(xu(K,x)︸ ︷︷ ︸
→λ(xe)=0

)
≥ −λ(x) + λ(xe).

This implies the assertion since ε ∈ (0, 1) was arbitrary.

We now have all the tools to prove the first main theorem of this section. It gives an
upper bound for the non-averaged infinite horizon performance of the NMPC closed-loop
trajectory. In the general case we formulate the performance estimate in the approximate
overtaking form (13.2). In the special case of `(xe, ue) = 0 we can reformulate this estimate
in an estimate involving the optimal value function V∞. In both cases, the theorem shows
that MPC delivers an approximately (non-averaged) infinite horizon optimal closed-loop
solution for which the approximation error tends to 0 as the horizon N tends to infinity.

Theorem 13.19 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPN,e)=(13.3). Assume that Assumptions 13.5 and 13.11 hold. Then
for each bounded subset Xb ⊆ X, there exists δ1 ∈ L such that the inequality

lim sup
K→∞

(
JclK(x, µN )− JK(x, u)− δ1(N)

)
≤ 0 (13.18)

holds and, in case that `(xe, ue) = 0, the inequality

lim
K→∞

JclK(x, µN ) ≤ V ti
N (x) ≤ V∞(x) + δ1(N) (13.19)

holds, both for all x ∈ XN ∩ Xb.

Proof: First observe that the optimal control problem with shifted cost ˆ̀(x, u) = `(x, u)−
`(xe, ue) satisfies all assumptions of the theorem that we imposed for the original problem
and yields the same NMPC closed-loop solutions. Now assume that (13.19) holds for the
shifted problem, i.e., that lim supK→∞ Ĵ

cl
K(x, µN ) ≤ V̂∞(x) + δ1(N) is true for the corre-

sponding functionals. In the following,we use ĴclK(x, µN ) = JclK(x, µN )−K`(xe, ue) and the

same relation for ĴK and JK , as well as the fact that by Lemma 12.9 the limit (and hence
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the lower limit) of ĴK(x, u) for K → ∞ either exists or ĴK(x, u) diverges to ∞, which
likewise holds for ĴclK(x, µN ). We then obtain

lim sup
K→∞

(
JclK(x, µN )− JK(x, u)− δ1(N)

)
= lim sup

K→∞

(
ĴclK(x, µN )− ĴK(x, u)− δ1(N)

)
= lim

K→∞
ĴclK(x, µN )− lim

K→∞
ĴK(x, u)− δ1(N)

≤ V̂∞(x)− lim inf
K→∞

ĴK(x, u)

= V̂∞(x)− Ĵ∞(x, u) ≤ 0,

proving (13.18). It is thus sufficient to show (13.19) in case `(xe, ue) = 0.

In order to prove the first inequality in (13.19), from (13.13) we obtain `(x, µN (x)) ≤
V ti
N (x)− V ti

N (f(x, µN (x))). This implies for any K ∈ N

JclK(x, µN ) =

K−1∑
k=0

`(xµN (k, x), µN (xµN (k, x))) ≤ V ti
N (x)− V ti

N (xµN (K,x)). (13.20)

Now from Theorem 13.12 we know that |xµN (k, x)|xe ≤ β(|x|xe , k) ≤ β(M,k) =: ν(k),
where M := supx,y∈Xb d(x, y). Note that ν ∈ L. Moreover, by (13.12) we have V ti

N (xe) =
N`(xe, ue) = 0 and from Assumption 13.11(c) we know the existence of γV ∈ K with
|V ti
N (x)| = |V ti

N (x)− V ti
N (xe)| ≤ γV (|x|xe) for all x ∈ XN . Together this yields

|V ti
N (xµN (K,x))| ≤ γV (ν(K)).

Since γV (ν(K)) → 0 for K → ∞, this inequality together with (13.20) yields the first
inequality by letting K →∞.

For the second inequality in (13.19), we note that it is sufficient to prove the inequality for
all sufficiently large N , because by boundedness of V ti

N and V∞ on Xb (which follows from
Assumption 13.11(c) for V ti

N and from Lemma 13.16 together with Assumption 13.11(b)
for V∞), for small N the inequality can always be satisfied by choosing δ1(N) sufficiently
large without violating the requirement δ1 ∈ L. Consider σ∞ from Proposition 13.17, pick
N0 and η from Assumption 13.5(b), choose N1 such that σ∞(N1) < η, fix 0 < ε < 1 and
choose an admissible control uε satisfying J∞(x, uε) ≤ V∞(x) + ε. Then for N ≥ 2N1, we
use Proposition 13.17 with P = bN/2c. We thus obtain the existence of k ∈ {0, . . . , P − 1}
such that |xuε(k, x)|xe < σ∞(P ) ≤ σ∞(N1) < η, implying xu(k, x) ∈ XN1 ⊆ XN2 and
thus uε ∈ UkXN2

(x) for all N2 ≥ N1. Particularly, this holds for N2 = N − k, implying

uε ∈ UkXN−k(x). Now from Assumption 13.11(c) applied to V ti
N−k, we can conclude (again

using V ti
N (xe) = 0)

|V ti
N−k(xuε(k, x))| ≤ γV (σ∞(P )).

Moreover, Lemma 13.18 and the bound on λ from Assumption 13.11(b) yield

V∞(x) + ε ≥ J∞(x, uε) ≥ Jk(x, uε) + V∞(xuε(k, x)))

≥ Jk(x, uε)− λ(xuε(k, x)) ≥ Jk(x, uε)− γλ(σ∞(P )).

Together with the dynamic programming principle (12.1) these inequalities imply

V ti
N (x) = inf

u∈UkXN−k (x)
{Jk(x, u) + V ti

N−k(xu(k, x))} ≤ Jk(x, uε) + V ti
N−k(xuε(k, x))

≤ V∞(x) + γV (σ∞(P )) + γλ(σ∞(P )) + ε.



154 KAPITEL 13. DISSIPATIVITY-BASED ANALYSIS OF MPC SCHEMES

Since ε > 0 was arbitrary, this proves the assertion for δ1(N) = γV (σ∞(bN/2c)) +
γλ(σ∞(bN/2c)).

Remark 13.20 The difference between the performance estimates (13.7) and (13.18) are
subtle, hence we illustrate them by a small example. Assume that `(xe, ue) = 1 and consider
two solutions xu1(k, xe) and xu2(k, xe) starting in xe. The first solution satisfies

`(xu1(k, xe), u1(k)) = 1 for all k ≥ 0,

while the second yields the stage cost values

`(xu1(k, xe), u1(k)) =

{
10, for all 0 ≤ k < 100,
1, for all k ≥ 100.

One easily checks that both solutions satisfy J∞(x, ui) ≤ `(xe, ue), i.e., (13.7). However,
for all K ≥ 100 we obtain

JclK(x, u2)− JclK(x, u1) ≥ 1000,

meaning that due to the “excursion” from the optimal value during the time period k =
0, . . . , 99, the solution controlled by u2 will never be able to satisfy (13.18) for small δ1(N).
In other words, (13.18) excludes that the NMPC closed-loop makes large non-optimal
excursions from the optimal path, while (13.7) is satisfied for all solutions that eventually
reach the optimal equilibrium value, no matter how late this happens.

The results in the remainder of this section were not presented in the lecture.

However, what (13.18) does not tell us is how large K must be such that we can ensure
JclK(x, µ) ≈ JK(x, u). In order to shed light on this question, we provide another perfor-
mance theorem, which explicitly makes use of asymptotic stability of the NMPC closed
loop. It evaluates the optimal value of the problem with control functions u that steer a
given initial value x ∈ X to the closed ball Bκ(xe) with radius κ > 0 around xe. In order
to simplify the notation, we briefly write

UKκ (x) := UKBκ(xe)
(x) (13.21)

using the notation from Definition 11.8 with Bκ(xe) in place of X0. We remark that Theorem
13.12 yields the existence of a β ∈ KL such that for all x ∈ XN and all K with β(|x|xe ,K) ≤
κ the control u obtained from the NMPC feedback law via u(k) = µN (xµN (k, x)) is con-
tained in UKκ (x). This, in particular, shows that this set is nonempty for sufficiently large
K.

The next lemma shows that the infimum of JK(x, u) over u ∈ UKκ (x) and the corresponding
approximately optimal trajectories behave similar to those of the infinite horizon problem.
More precisely, part (a) of the following lemma is similar to Lemma 13.16, part (b) to
Lemma 13.18 and part (c) to Proposition 13.17. Note that since we only consider finite
horizon problems here, we do not need to assume `(xe, ue) = 0.
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Lemma 13.21 Assume that the optimal control problem (OCPN) is strictly dissipative
and that Assumptions 13.5(a) and 13.11 hold. Fix κ0 > 0 and let β be a KL-function
characterizing the asymptotic stability of the closed loop, whose existence is guaranteed by
Theorem 13.12. Then for any κ ∈ (0, κ0], any x ∈ ⋃N∈N0

XN , and K0 ∈ N minimal with
β(|x|xe ,K0) ≤ κ, the following holds.

(a) For all K ≥ K0 the inequality

inf
u∈UKκ (x)

JK(x, u)−K`(xe, ue) ≤ γV (|x|xe) + γV (κ)

holds with γV ∈ K∞ from Assumption 13.11(c).

(b) For all K ∈ N with UKκ (x) 6= ∅ the inequality

−γλ(|x|xe)− γλ(κ) ≤ inf
u∈UKκ (x)

JK(x, u)−K`(xe, ue)

holds with γλ from Assumption 13.11(b).

(c) For all ∆ > 0 there exists σ = σ∆ ∈ L such that for all K ≥ K0, all P ∈ N, all
x ∈ X with |x|xe ≤ ∆, and any u ∈ UKκ (x) with JK(x, u) ≤ infu∈UKκ (x) JK(x, u) + 1 there is
k ≤ min{P,K − 1} such that |xu(k, x)|xe < σ(min{P,K − 1}).

Proof: (a) The proof of this inequality works similarly to the first part of the proof of
Lemma 13.16. For x ∈ XN , we choose the control u obtained from the NMPC feedback
law via u(k) = µN (xµN (k, x)). By Theorem 13.12 and the choice of K0, this control lies in
UKκ (x). As in the proof of Lemma 13.16, from (13.13)—now with `(xe, ue) 6= 0—for this u
we get

JK(x, u) ≤ VN (x)− VN (xu(K,x)) +K`(xe, ue)

and from Assumption 13.11(c) and |xu(K,x)|xe < κ, we obtain the assertion.

(b) Let ε > 0 and take a control uε ∈ UKκ (x) with infu∈UKκ (x) JK(x, u)+ε ≥ JK(x, uε). Then

by (13.16), Assumption 13.11(b), and recalling that strict dissipativity implies J̃K(x, uε) ≥
0 we get

inf
u∈UKκ (x)

JK(x, u) + ε ≥ JK(x, uε)

= −λ(x)︸ ︷︷ ︸
≥−γλ(|x|xe )−λ(xe)

+ J̃K(x, uε)︸ ︷︷ ︸
≥0

+ λ(xuε(K,x))︸ ︷︷ ︸
≥−γλ(κ)+λ(xe)

+K`(xe, ue)

≥ −γλ(|x|xe)− γλ(κ) +K`(xe, ue).

This implies (b) since ε > 0 was arbitrary.

(c) The assumptions and (a) imply that Proposition 13.14 can be applied with δ =
supx∈X γ(|x|xe) + γ(κ0) + 1 for all x ∈ X and all κ ∈ (0, κ0]. We set σ = σδ,∆ from this
proposition. Since the set Q(x, u,min{P,K − 1},K) has at most min{P,K − 1} elements,
there exists at least one k ∈ {0, . . . ,min{P,K − 1}} with k 6∈ Q(x, u,min{P,K − 1},K),
which thus satisfies |xu(k, x)|xe ≤ σ(min{P,K − 1}).
Since xe is asymptotically stable for the NMPC closed-loop trajectories, the closed-loop
solutions converge toward xe as k →∞. More precisely, given a time K, by Theorem 13.12
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the solutions are guaranteed to satisfy xµN (k, x) ∈ Bκ(xe) for all k ≥ K and κ = β(|x|xe ,K)
for β from Theorem 13.12. We denote the time span {0, . . . ,K−1} during which the system
is (possibly) outside Bκ(xe) as transient time and the related finite horizon functional
JucK (x, u) as transient performance. The next theorem then shows that among all possible
trajectories from x to Bκ(xe), the NMPC closed loop has the best transient performance up
to error terms vanishing as K →∞ and N →∞. Again, in order to simplify the notation,
we use UKκ (x) from (13.21). We remark that unlike the previous theorem, here we do not
need to assume `(xe, ue) = 0.

Theorem 13.22 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPN,e)=(13.3). Assume that Assumptions 13.5 and 13.11 hold. Then
for any bounded set Xb ⊆ X, there exist δ1, δ2 ∈ L such that for all x ∈ XN ∩ Xb the
inequality

JclK(x, µN ) ≤ inf
u∈UKκ (x)

JK(x, u) + δ1(N) + δ2(K)

holds with UKκ (x) from (13.21), κ = β(|x|xe ,K), and β ∈ KL characterizing the asymptotic
stability of the closed loop guaranteed by Theorem 13.12.

Proof: We can without loss of generality assume `(xe, ue) = 0, because the claimed inequa-
lity is invariant under adding constants to `. Moreover, similar to the proof of inequality
(13.19) in the proof of Theorem 13.19, it is sufficient to prove the inequality for all suffi-
ciently large K and N , because by boundedness of all functions involved on Xb, for small
N and K the inequality can always be achieved by choosing δ1(N) and δ2(K) sufficiently
large. As in the proof of the first inequality in (13.19) in the proof of Theorem 13.19, we
obtain |V ti

N (xµN (K,x))| ≤ γV (ν(K)). It is thus sufficient to show the existence of δ1, δ̃2 ∈ L
with

V ti
N (x) ≤ inf

u∈UKκ (x)
JK(x) + δ1(N) + δ̃2(K) (13.22)

for all x ∈ XN because then the assertion follows from (13.20) with δ2 = γV ◦ ν + δ̃2.

In order to prove (13.22), consider σ from Lemma 13.21(c), which we apply with P =
bN/2c and pick uε ∈ UKκ (x) with JK(x, uε) ≤ infu∈UKκ (x) J

uc
K (x, u) + ε with an arbitrary

but fixed ε ∈ (0, 1). This yields the existence of k ∈ {0, . . . , bN/2c}, k ≤ K − 1 with
|xuε(k, x)|xe ≤ σ(min{P,K−1}). Since uε steers x to Bκ(xe), the shifted sequence uε(k+ ·)
lies in UK−kκ (xuε(k, x)), implying that this set is nonempty. Hence, we can apply Lemma
13.21(b) in order to conclude JucK−k(xuε(k, x), uε(k+ ·)) ≥ −γλ(σ(min{N,K−1}))−γλ(κ).
This implies

inf
u∈UKκ (x)

JK(x, u) + ε ≥ JK(x, uε) = Jk(x, uε) + JK−k(xuε(k, x), uε(k + ·))

≥ Jk(x, uε)− γλ(σ(min{N,K − 1}))− γλ(κ)

Moreover, by choosing N and K sufficiently large we can ensure σ(min{P,K − 1}) < η for
η from Assumption 13.5(b), implying uε ∈ UkXQ(x) for all Q ≥ N0 and N0 from Assumption

13.5(b). Particularly, choosing N ≥ 2N0 implies N − k ≥ N0 and thus uε ∈ UkXN−k(x).



13.5. AVERAGED OPTIMALITY WITHOUT TERMINAL INGREDIENTS 157

N
2 3 4 5 6 7 8 9 10

J
cl 30
(1
.9
,
µ
N
)

10.8

10.82

10.84

10.86

10.88

10.9

10.92

10.94

10.96

10.98

11

Abbildung 13.4: Value of JclK(x, µN ) for K = 30, x = 1.9 and varying N with terminal
constraint X = {0}

Using this relation, the inequality derived above, the dynamic programming principle (12.1)
and Assumption 13.11(c) for V ti

N−k we obtain

V ti
N (x) = inf

u∈UkXN−k (x)
{Jk(x, u) + V ti

N−k(xu(k, x))} ≤ Jk(x, uε) + V ti
N−k(xuε(k, x))

≤ inf
u∈UKκ (x)

JK(x, u) + γλ(σ(min{P,K − 1})) + γλ(κ) + ε

+ γV (σ(min{P,K − 1})).

This shows the desired inequality (13.22) for

δ1(N) = γV (σ(bN/2c)) + γλ(σ(bN/2c)),

and using the choice of κ,

δ̃2(K) = γV (σ(K − 1)) + γλ(σ(K − 1)) + γλ(β(M,K))

with M = supx,y∈Xb d(x, y) and β ∈ KL characterizing the asymptotic stability of the closed
loop.

Note that the K-dependent term δ2(K) essentially depends on how fast the closed-loop
solution reaches a small neighborhood of the equilibrium xe. Hence, the closer xµN (K,x)
is to xe, the smaller the K-dependent error term will be.

Example 13.23 Figure 13.4 illustrates how JclK(x, µN ) depends on N for Example 13.1.
The value K = 30 is so large that the effect of the term δ2(K) is negligible and not visible
in the figure, hence JclK(x, µN ) converges to infu∈UKκ (x) J

uc
K (x, u) for increasing N .

13.5 Averaged Optimality Without Terminal Ingredients

In this and in the subsequent sections, we discuss the case in which we do not impose
terminal ingredients on the problem, i.e., we consider the NMPC Algorithm with optimal
control problem (OCPN). The corresponding functionals and optimal value functions will,
as usual, be denoted by JN and VN and their infinite horizon counterparts by J∞ and
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V∞. The results are presented in parallel to Sects. 13.2–13.4. Throughout this and the the
following sections we assume viability of X, which ensures recursive feasibility of the MPC
scheme by Theorem 11.6.

Since we do not impose any terminal ingredients, we do not need Assumptions 13.5 and
13.11(a) anymore. However, we still need Part (b) and (a relaxed version of) Part (c)
of Assumption 13.11, where the latter now refers to the optimal value function of the
unconstrained problem (OCPN).

Assumption 13.24 [Continuity of λ and VN at xe] There exist γλ and γV ∈ K∞ and
ω ∈ L such that the following properties hold.
(a) For all x ∈ X it holds that

|λ(x)− λ(xe)| ≤ γλ(|x|xe).

(b) For each N ∈ N and each x ∈ X it holds that

|VN (x)− VN (xe)| ≤ γV (|x|xe) + ω(N).

We start our analysis with proving averaged optimality without imposing terminal ingre-
dients. Based on Propositions 13.14 and 13.17, we can prove the following two auxiliary
results, which lead to the main result of this section. In what follows, we denote by u?∞ and
u?N the optimal control sequences for (OCP∞) and (OCPN), respectively, for initial value
x ∈ X.

Lemma 13.25 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation

VN (x) = JM (x, u?N ) + VN−M (xe) +R1(x,M,N) (13.23)

holds with |R1(x,M,N)| ≤ γV (σδ,∆(P )) + ω(N −M) for all x ∈ X, all N ∈ N, all P ∈ N
and all M 6∈ Q(x, u?N , P,N), with σδ,∆ from Proposition 13.14 with δ = γV (|x|xe) + ω(N)
and ∆ = |x|xe .

Proof: Using that the control u ≡ ue yields JN (xe, u) = N`(xe, ue), we can estimate
VN (xe) ≤ N`(xe, ue). Thus, using Assumption 13.24 we get JN (x, u?N ) ≤ N`(xe, ue) +
γV (|x|xe) + ω(N), hence Proposition 13.14 applies to the optimal trajectory with δ =
γV (|x|xe) +ω(N) and ∆ = |x|xe . This in particular ensures |xu?N (M,x)|xe ≤ σδ,∆(P ) for all
M 6∈ Q(x, u?N , P,N).

Now the dynamic programming principle (12.2) yields

VN (x) = JM (x, u?N ) + VN−M (xu?N (M,x)).

Hence, (13.23) holds with R1(x,M,N) = VN−M (xu?N (M,x)) − VN−M (xe). Then for any
P ∈ N and any M 6∈ Q(x, u?N , P,N), this implies |R1(x,M,N)| ≤ γV (|xu?N (M,x)|xe) +
ω(N −M) ≤ γV (σδ,∆(P )) + ω(N −M) and thus the assertion.
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Lemma 13.26 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation

VN (x) = VN−1(x) + `(xe, ue) +R2(x,N)

holds with R2(x,N) ≤ ν2(|x|xe , N) = 2γV (σδ,∆(bN/2c)) + 2ω(bN/2c − 1) for all x ∈ X, all
N ∈ N, and σδ,∆ from Proposition 13.14 with δ = γV (|x|xe) + ω(N − 1) and ∆ = |x|xe .

Proof: Given x ∈ X, consider the optimal control u?N−1 for horizon length N − 1 and σδ,∆
from Proposition 13.14 with δ and ∆ from the lemma. Then Lemma 13.25 applied with
N − 1 in place of N and P = bN/2c implies the existence of M ∈ {0, . . . , bN/2c − 1} with

VN−1(x) = JM (x, u?N−1) + VN−M−1(xe) +R1(x,M,N − 1)

with |R1(x,M,N − 1)| ≤ γV (σδ,∆(bN/2c)) + ω(bN/2c − 1). The construction in the proof
of Lemma 13.25 moreover yields |xu?N−1

(M,x)|xe ≤ σδ,∆(bN/2c). Using u(k) = u?N−1(k)

for k = 0, . . . ,M − 1 and u(M + k) = u?N−M (k) with the optimal control u?N−M for initial
value xu?N−1

(M,x) and horizon N −M for k = 0, . . . , N −M − 1, yields

JN (x, u) = JM (x, u?N−1)+VN−M (xu?N−1
(M,x)) = JM (x, u?N−1)+VN−M (xe)+ R̂1(x,M,N)

with |R̂1(x,M,N)| ≤ γV (σδ,∆(bN/2c))+ω(bN/2c). Since for initial value xe we can always
stay at the equilibrium for one step and use the optimal control for initial value xe for the
remaining horizon, we obtain the inequality VN−M (xe) ≤ `(xe, ue)+VN−M−1(xe). Together
this yields

VN (x) ≤ JN (x, u) = JM (x, u?N−1) + VN−M (xe) + R̂1(x,M,N)

≤ JM (x, u?N−1) + `(xe, ue) + VN−M−1(xe) + R̂1(x,M,N)

= VN−1(x) + `(xe, ue)−R1(x,M,N − 1) + R̂1(x,M,N),

and thus the claim with R2(x,N) ≤ R̂1(x,M,N)−R1(x,M,N − 1).

Now we can state the theorem on the infinite horizon average performance.

Theorem 13.27 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPN). Let Assumption 13.24 hold and assume VN is bounded from
below on X. Then, for any N ≥ 2 and for any x ∈ X for which the NMPC scheme yields a
bounded closed-loop solution xµN (k, x), the averaged closed-loop performance satisfies the
inequality

J
cl
∞(x, µN ) ≤ `(xe, ue) + δ1(N) (13.24)

with δ1(N) ≤ 2γV (σδ,∆(bN/2c)) + 2ω(bN/2c − 1) for σδ,∆ from Proposition 13.14 with
δ = maxk∈N γV (|xµN (k, x)|xe) + ω(N − 1), ∆ = maxk∈N |xµN (k, x)|xe and γV and ω from
Assumption 13.24.

Proof: Abbreviate xµN (k) = xµN (k, x) and ν(k,N) := ν2(|xµN (k + 1)|xe , N) for ν2 from
Lemma 13.26. Then, from this lemma applied with x = xµN (k + 1) and the dynamic
programming principle (12.2) we obtain

`(xµN (k), µN (xµN (k))) = VN (xµN (k))− VN−1(xµN (k + 1))

≤ VN (xµN (k))− VN (xµN (k + 1)) + `(xe, ue) + ν(k,N).
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Abbildung 13.5: Value of J
cl
∞(x, µN ) for x = 1.9 without terminal ingredients depending

on N

Thus we obtain

J
cl
∞(x, µN ) = lim sup

K→∞

1

K

K−1∑
k=0

`(xµN (k), µN (xµN (k)))

≤ lim sup
K→∞

1

K

K−1∑
k=0

(
VN (xµN (k))− VN (xµN (k + 1)) + `(xe, ue) + ν(k,N)

)
≤ `(xe, ue) + max

k∈N
ν(k,N) + lim sup

K→∞

VN (x)− VN (xµN (K))

K

≤ `(xe, ue) + max
k∈N

ν(k,N) + lim sup
K→∞

VN (x) +M

K

= `(xe, ue) + max
k∈N

ν(k,N)

where−M is a lower bound on VN on X. This shows the claim with δ1(N) = maxk∈N ν(k,N).

The difference between this and the corresponding result with terminal ingredients is that
we get the error term δ1(N) on the right-hand side of the estimate, which does, however,
tend to 0 as N →∞.

Example 13.28 Figure 13.5 shows J
cl
∞(x, µN ) for Example 13.1 depending on N . The plot

in the logarithmic scale shows that the value converges to the optimal value `(0, 0) = 0
exponentially fast, hence the error δ1(N) also vanishes exponentially fast. This is actually
not a coincidence. However, an analysis of the rate of convergence is beyond the scope of
this chapter. We refer to [6] for details.

13.6 Semiglobal Practical Asymptotic Stability Without Ter-
minal Ingredients

Now we turn to analyzing the stability properties of the NMPC closed-loop solutions wi-
thout terminal ingredients. As in the case with terminal ingredients, our goal is to assume
strict dissipativity and to use the optimal value function for the modified stage cost ˜̀ from
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(12.11) as a Lyapunov function, but now without imposing terminal ingredients. The cru-
cial difference is that while for the NMPC closed-loop with modified stage cost ˜̀ we could
still prove asymptotic stability, without terminal ingredients the optimal trajectories of the
original and the modified problem no longer coincide.

In order to see why, we refer to the optimal control problem (OCPN) with stage cost ˜̀ as

(ÕCPN) and, as before, denote the corresponding functional and the optimal value function
by J̃N and ṼN . Due to the fact that we no longer impose terminal ingredients, the relations
between VN and ṼN are not the same as in Sect. 13.3. For JN and J̃N , instead of (13.10)
we now have

J̃N (x, u) = JN (x, u) + λ(x)− λ(xu(N, x))−N`(xe, ue). (13.16)

Unfortunately, in contrast to (13.10), this equation does not allow for an easy derivation of
a relation between the optimal value functions of the form (13.11), because of the additional
u-dependent term λ(xu(N, x)) on the right-hand side of (13.16). A first consequence of this
fact is that the continuity Assumption 13.24(b) on VN does not immediately carry over to
ṼN . Hence, we need to introduce this as an independent assumption.

Assumption 13.29 [Continuity of ṼN at xe] There exist γ
Ṽ
∈ K∞ such that for each

N ∈ N and each x ∈ X it holds that

|ṼN (x)− ṼN (xe)| ≤ γ
Ṽ

(|x|xe).

In case strict dissipativity holds, ˜̀ is positive definite w.r.t. the equilibrium xe, hence we
obtain ṼN (xe) = 0 and ṼN (x) ≥ 0 for all x ∈ X. Thus, the inequality in Assumption 13.29
is equivalent to ṼN (x) ≤ γ

Ṽ
(|x|xe).

Unlike continuity, a straightforward check of Definition 12.7 (with storage function λ ≡ 0)

shows that strict dissipativity carries over from (OCPN) to (ÕCPN), even with the same
ρ. Thus, in particular, all the previous lemmas that apply to (OCPN) in case of strict

dissipativity also apply to (ÕCPN). As a general rule, we denote all parameters, sets, etc.,

referring to (ÕCPN) with a tilde, e.g., the set Q(x, u,N, P ) from Proposition 13.14 will be

denoted by Q̃(x, u,N, P ) when this proposition is applied to (ÕCPN).

As already mentioned above, from the definition we cannot directly deduce a simple relation
like (13.11) between VN and ṼN . The reason why we can still use ṼN as an—at least
practical—Lyapunov function lies in the fact that we can establish an approximate version
of (13.11). To this end, we first need the following preparatory lemma.

Lemma 13.30 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation

VN (xe) = M`(xe, ue) + VN−M (xe)−R3(xe, P,N)

holds with 0 ≤ R3(xe, P,N) ≤ γV (σδ,∆(P )) + ω(N −M) + γλ(σδ,∆(P )) for all N,P ∈ N
and for all M 6∈ Q(xe, u?N , N, P ), where u?N ∈ UN (xe) is the optimal control of (OCPN) for
initial value xe and σδ,∆ is from Proposition 13.14 with δ = ω(N) and ∆ = 0.
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Proof: The inequality VN (xe) ≤ M`(xe, ue) + VN−M (xe) follows from the dynamic pro-
gramming principle (12.1) using the control u ≡ ue. For the opposite inequality, consider
the optimal control u?N ∈ UN (xe) for initial value xe. As in the proof of Lemma 13.25, we
can apply Proposition 13.14 with δ = γV (|xe|xe) + ω(N) = ω(N) and ∆ = |xe|xe = 0 in
order to conclude that for each M 6∈ Q(x, u?N , N, P ) we have

VN (xe) =
M−1∑
k=0

`(xu?N (k), u?N (k)) + VN−M (xu?N (M))

= −λ(xe) + λ(xu?N (M)) +M`(xe, ue) +
M−1∑
k=0

˜̀(xu?N (k), u?N (k))︸ ︷︷ ︸
≥0

+VN−M (xu?N (M))

≥ M`(xe, ue) + VN−M (xe) +
[
VN−M (xu?N (M))− VN−M (xe)

]
+
[
λ(xu?N (M))− λ(xe)

]
≥ M`(xe, ue) + VN−M (xe)− γV (σδ,∆(P ))− ω(N −M)− γλ(σδ,∆(P )),

which shows the claim.

Now we can prove the approximate relation of the form (13.11) between ṼN and VN .

Lemma 13.31 If Assumptions 13.24 and 13.29 as well as the assumptions of Proposition
13.14 hold, then for all x ∈ X the equation

ṼN (x) = VN (x) + λ(x)− VN (xe) +R4(x,N)

holds with |R4(x,N)| ≤ ν4(|x|xe , N) with

ν4(|x|xe , N) = max{γV (σ̃δ̃,∆(bN/3c)) + γV (σδ,∆(bN/3c)) + γ
Ṽ

(σ̃δ̃,∆(bN/3c))
+ γλ(σδ,∆(bN/3c)) + γλ(σ̃δ̃,∆(bN/3c)) + 3ω(bN/3c) ,

γ
Ṽ

(σδ,∆(bN/3c)) + γV (σδ,∆(bN/3c)) + γλ(σδ,∆(bN/3c))
+2ω(bN/3c)}

with σδ,∆ and σ̃δ̃,∆ from Proposition 13.14 applied to (OCPN) and (ÕCPN), respectively,

with δ = γV (|x|xe) + ω(N), δ̃ = γ
Ṽ

(|x|xe), and ∆ = |x|xe .

Proof: Fix x ∈ X and let u?N and ũ?N ∈ UN (x) denote the optimal control minimizing

JN (x, u) and J̃N (x, u), respectively. We note that if (OCPN) is strictly dissipative then

(ÕCPN) is strictly dissipative, too, with bounded storage function λ ≡ 0 and same ρ ∈ K∞.
Moreover, VN (x) ≤ N`(xe, ue) + γV (|x|xe) + ω(N) and ṼN (x) ≤ N ˜̀(xe, ue) + γ

Ṽ
(|x|xe),

since VN (xe) ≤ N`(xe, ue) and ṼN (xe) = 0. Hence, Proposition 13.14 applies to the optimal
trajectories for both problems, yielding σδ,∆ ∈ L and Q(x, u?N , P,N) for (OCPN) and σ̃δ̃,∆

and Q̃(x, ũ?N , P,N) for (ÕCPN). For all M 6∈ Q̃(x, ũ?N , P,N), we can estimate

VN (x) ≤ JM (x, ũ?N ) + VN−M (xũ?N (M))

≤ JM (x, ũ?N ) + VN−M (xe) + γV (σ̃δ̃,∆(P )) + ω(N −M)

≤ J̃M (x, ũ?N )− λ(x) + λ(xe) +M`(xe, ue) + VN−M (xe) + γV (σ̃δ̃,∆(P ))

+ γλ(σ̃δ̃,∆(P )) + ω(N −M)

≤ ṼN (x)− R̃1(x, P,N)− λ(x)

+ VN (xe) +R3(x, P,N) + γV (σ̃δ̃,∆(P )) + γλ(σ̃δ̃,∆(P )) + ω(N −M),
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where we have applied the dynamic programming principle (12.1) in the first inequality,

Proposition 13.14 for (ÕCPN) and Assumption 13.24(b), respectively, Assumption 13.24(a)

and (13.16) in the second and third inequality and Lemma 13.25 (applied to (ÕCPN), hence
with remainder term denoted by R̃1) and Lemma 13.30 (applied to (OCPN)) in the last
step. Moreover, λ(xe) = 0 and ṼN (xe) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities as above,
we get

ṼN (x) ≤ VN (x)−R1(x, P,N) + λ(x)− VN (xe) + γṼ (σδ,∆(P )) + γλ(σδ,∆(P ))

+ ω(N −M)

for all M 6∈ Q(x, u?N , P,N). Here we can omit the negative −R3-term. Now, choosing
P = bN/3c, the union Q(x, ũ?N , P,N) ∪ Q(x, u?N , P,N) has at most 2N/3 elements, hence
there exists M ≤ 2N/3 for which both inequalities hold. This yields N −M ≥ bN/3c and
thus

|R1(x, P,N)| ≤ γV (σδ,∆(bN/3c)) + ω(bN/3c),
|R̃1(x, P,N)| ≤ γ

Ṽ
(σ̃δ̃,∆(bN/3c)) + ω(bN/3c) and

R3(x, P,N) ≤ γV (σδ,∆(bN/3c)) + ω(bN/3c) + γλ(σδ,∆(bN/3c)),

which shows the claim.

We now define the stability property that we will prove in the remainder of this section.

Definition 13.32 Consider the NMPC Algorithm 11.1 and the resulting nominal closed-
loop system (11.2) with feedback law µN and solutions xµN (k, x).

We call the equilibrium xe semiglobally practically asymptotically stable with respect to the
optimization horizon N for the closed-loop system (11.2) if there exists β ∈ KL such that
the following property holds: for each δ > 0 and ∆ > δ there exists Nδ,∆ ∈ N, such that
for all N ≥ Nδ,∆ and all x ∈ A∆ the inequality

|xµN (k, x)|xe ≤ max{β(|x|xe , k), δ}

holds for all k ∈ N0.

Semiglobal asymptotic stability relaxes the asymptotic stability condition by requiring
asymptotic stability only for the set of initial values x ∈ X with |x|xe ≤ ∆. Although ∆
can be chosen arbitrarily large by suitably adjusting the optimization horizon N , for each
finite N it will in general be a finite value.

Semiglobal practical asymptotic stability additionally relaxes the requirement that the
solution exactly tends to the equilibrium xe by only requiring that the solution behaves
like an asymptotically stable solution until it reaches a δ-neighborhood of xe. Similar to
the value of ∆, the size δ of this neighborhood can be arbitrarily tuned by adjusting the
optimization horizon N , but for each finite N it will in general be a positive value.

Semiglobal and semiglobal practical asymptotic stability can be expressed via the stability
properties introduced in Chap. 10. This is made precise in the following lemma.
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Lemma 13.33 The equilibrium xe is semiglobally practically asymptotically stable with
respect to the optimization horizon N if for each δ > 0 and ∆ > δ there exists Nδ,∆ > 0
such that for all N ≥ Nδ,∆ there exist forward invariant sets Y and P with B∆(xe) ⊆ Y ⊆ X
and P ⊆ Bδ(xe) such that the system is P -practically asymptotically stable on Y in the
sense of Definition 10.3.

Proof: The claimed stability property follows from the fact that according to Definition
10.3 for each k ∈ N0 either |xµN (k, x)|xe ≤ β(|x|xe , k) or xµN (k, x) ∈ P holds. Since the
latter implies |xµN (k, x)|xe ≤ δ we obtain the assertion.

The following proposition shows in which sense ṼN is a Lyapunov function for the sy-
stem. This will be used in the subsequent theorem in order to prove semiglobal practical
asymptotic stability of the closed loop.

Proposition 13.34 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPN) with storage function λ and ρ ∈ K∞, and let Assumptions 13.24
and 13.29 hold. Then for each Θ > 0 there exists NΘ ∈ N such that for all N ≥ NΘ and all
x ∈ X with ṼN (x) ≤ Θ the optimal value function ṼN of (ÕCPN) satisfies the inequalities

ṼN (f(x, µN (x))) ≤ ṼN (x)− ˜̀(x, µN (x)) + ν(N) (13.25)

and
α1(|x|xe) ≤ ṼN (x) ≤ α2(|x|xe) (13.26)

with α1 = ρ, α2 = γ
Ṽ

, and ν ∈ L defined in the proof.

Proof: The lower bound in (13.26) follows with α1 = ρ because strict dissipativity implies
˜̀(x, u) ≥ ρ(|x|xe) and thus

ṼN (x) = inf
u∈UN (x)

N−1∑
k=0

˜̀(xu(k, x), u(k)) ≥ inf
u∈UN (x)

N−1∑
k=0

ρ(|xu(k, x)|xe) ≥ ρ(|x|xe).

The upper bound in (13.26) follows from Assumption 13.29 and ṼN (xe) = 0 with α2 = γ
Ṽ

,

observing that Y ⊆ X holds, because for x 6∈ X we have that ṼN (x) =∞.

In order to obtain inequality (13.25), we abbreviate x+ = f(x, µN (x)). Now, for all x ∈ S
we obtain ṼN (x) ≤ Θ, which implies |x|xe ≤ ρ−1(Θ) and thus Y ⊂ Bρ−1(Θ)(x

e) for all
N . In order to obtain a similar estimate for |x+|xe , we observe that using Assumption
13.24(b), ṼN (x) ≤ Θ implies VN (x) ≤ VN (xe) + γV (ρ−1(Θ)) + ω(1). Abbreviating MΘ =
γV (ρ−1(Θ)) + ω(1) and using VN (xe) ≤ N`(xe, ue), Theorem 12.4 and strict dissipativity
yield

VN−1(x+) = VN (x)− `(x, µN (x)) ≤ VN (x) + λ(x)− λ(x+)− `(xe, ue)
≤ MΘ − λ(x+) +Mλ + (N − 1)`(xe, ue),

where Mλ is a bound on λ on Bρ−1(Θ)(x
e). This implies

ṼN−1(x+) ≤ VN−1(x+) + λ(x+) +Mλ − (N − 1)`(xe, ue) ≤MΘ +Mλ +Mλ =: M
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with Mλ being a lower bound on λ on X. We can conclude that |x+|xe ≤ ρ−1(M). Hence,
using first Lemma 13.26 and then Eq. (12.6) we obtain

VN (x+) = VN−1(x+) + `(xe, ue) +R2(x+, N)

= VN (x) + `(x, µN (x)) + `(xe, ue) +R2(x+, N) (13.27)

with R2(x+, N) ≤ ν2(ρ−1(M), N) from Lemma 13.26. Using this we can compute

ṼN (x+) = VN (x+) + λ(x+)− VN (xe) +R4(x+, N)

= VN−1(x+) + `(xe, ue) + λ(x+)− VN (xe) +R2(x+, N) +R4(x+, N)

= VN (x)− `(x, µN (x)) + `(xe, ue) + λ(x+)− VN (xe)

+ R2(x+, N) +R4(x+, N)

= ṼN (x)−`(x, µN (x)) + `(xe, ue) + λ(x+)− λ(x)︸ ︷︷ ︸
=−˜̀(x,µN (x))

+ R2(x+, N) +R4(x+, N)−R4(x,N).

where we used Lemma 13.31 for x = x+ for the first equality, Lemma 13.26 for the second,
Eq. (12.6) for the third and Lemma 13.31 in the last step, all with with ∆ = ρ−1(M).
Defining ν(N) = ν2(ρ−1(M), N)+2ν4(ρ−1(M), N) with ν2 and ν4 from Lemmas 13.26 and
13.31, respectively, we thus obtain

ṼN (x+) ≤ ṼN (x)− ˜̀(x, µN (x)) + ν(N),

i.e. (13.25).

The final theorem on semiglobal practical asymptotic stability is now a consequence of
Proposition 13.34 and Theorem 12.23. To this end, recall the notion of semiglobal practical
stability from Definition 13.32(ii).

Theorem 13.35 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPN) with a storage function λ that is bounded on bounded sets and
ρ ∈ K∞, and let Assumptions 13.24 and 13.29 hold. Then the equilibrium xe is semiglobally
practically asymptotically stable on X with respect to the optimization horizon N .

Proof: Choose ∆ > δ > 0. We apply Proposition 13.34 with Θ = α2(∆). This implies
that B∆(xe) ∩ X ⊆ S := Ṽ −1

N ([0,Θ]). One checks that V = ṼN satisfies all assump-

tions of Theorem 12.23 with α3 = ρ, ε = ν(N), and ˜̀ in place of `. Hence, we ob-
tain P -practical asymptotic stability on S with P = Ṽ −1

N ([0, α2(α−1
3 (2ν(N))) + ν(N)]) ⊆

Bα−1
1 (α2(α−1

3 (2ν(N)))+ν(N))(x
e). The assertion the follows from Lemma 13.33 by choosing

Nδ,∆ ≥ NΘ so large that the inequality α−1
1 (α2(α−1

3 (2ν(Nδ,∆))) + ν(Nδ,∆)) ≤ δ holds.

Example 13.36 Figure 13.6 shows the trajectories (open-loop dashed, NMPC closed-loop
solid) of Example 13.1 without terminal ingredients for N = 5 and N = 10. One clearly
sees the practical asymptotic stability of the closed loop and the turnpike phenomenon for
the open-loop trajectories.
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Abbildung 13.6: NMPC closed-loop solution (solid) and open-loop predictions (dashed) for
Example 13.1 without terminal ingredients and horizon N = 5 (left) and N = 10 (right).
The solid line at x = 2 indicates the upper bound of the admissible set X

13.7 Non-averaged and Transient Performance Without Ter-
minal Ingredients

Our final results in this chapter concern the adaptation of the results from Sect. 13.4 to the
case without terminal ingredients. In order to formulate the conditions for the adaptation
of Theorem 13.19, we need an auxiliary optimal control problem. To this end, we recall the
shifted stage cost

ˆ̀(x, u) := `(x, u)− `(xe, ue),

which we already used in the proof of Theorem 13.19. We denote the corresponding finite
and infinite-horizon functional with ĴN and Ĵ∞, respectively, and the optimal value func-
tions with V̂N and V̂∞. It is easy to see that V̂N = VN −N`(xe, ue). If strict dissipativity
holds and ˜̀ satisfies (12.16), then inequality (12.17) from Theorem 12.12 applies to V̂∞
and thus V̂∞ assumes finite values. The assumption that we need in addition is now that
V̂∞ is continuous in xe.

Assumption 13.37 [Continuity of V̂∞ at xe] There exists γ
V̂∞
∈ K∞ such that for each

x ∈ X it holds that

|V̂∞(x)− V̂∞(xe)| ≤ γ
V̂∞

(|x|xe).

Lemma 13.38 If Assumption 13.37 and the assumptions of Proposition 13.17 hold for the
problem with shifted stage cost ˆ̀, then the equation

V̂∞(x) = ĴM (x, û?∞) + V̂∞(xe) +R5(x,M) (13.28)

holds with |R5(x,M)| ≤ γ
V̂∞

(σ∞,∆(P )) for all x ∈ X, all P ∈ N and allM 6∈ Q(x, u?∞, P,∞),
where û?∞ ∈ U∞(x) denotes the infinite horizon optimal control for the problem with shifted
cost and initial value x and σ∞,∆ is from Proposition 13.17 with ∆ = |x|xe .
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Proof: The dynamic programming principle (12.21) yields

V̂∞(x) = ĴM (x, û?∞) + V̂∞(xû?∞(M,x)).

Hence, (13.28) holds with R5(x,M) = V̂∞(xû?∞(M,x))− V̂∞(xe). Then for any P ∈ N and
M 6∈ Q(x, û?∞, P,∞) we obtain |R5(x,M)| ≤ γ

V̂∞
(‖xû?∞(M,x)−xe‖) ≤ γ

V̂∞
(σ∞,∆(P )) and

thus the assertion.

Lemma 13.39 If Assumptions 13.24 and 13.37 and the assumptions of Propositions 13.14
and 13.17 hold for the problem with shifted stage cost ˆ̀, then the equation

JM (x, û?∞) = JM (x, u?N ) +R6(x,M,N) (13.29)

holds with |R6(x,M,N)| ≤ max{γV (σδ,∆(P ))+γV (σ∞,∆(P ))+2ω(N−M), γ
V̂∞

(σ∞,∆(P ))+
γ
V̂∞

(σδ,∆(P ))} for all P ∈ N, all x ∈ X and all M ∈ {0, . . . , N} \ (Q(x, u?N , P,N) ∪
Q(x, û?∞, P,∞)), with σ∞,∆ from Proposition 13.17, σδ,∆ from Proposition 13.14 with δ =
γV (|x|xe) + ω(N), ∆ = |x|xe , and û?∞ being the infinite horizon optimal control for the
problem with shifted cost and initial value x.

Proof: The finite horizon dynamic programming principle (12.1), (12.2) implies that u =
u?N minimizes the expression JM (x, u) + VN−M (xu(M,x)). Together with the error term

R1 from Lemma 13.25 and R̂1(x,M,N) = VN−M (xû?∞(M,x))− V̂N−M (xe) this yields

JM (x, u?N ) + VN−M (xe) = JM (x, u?N ) + VN−M (xu?N (M,x))−R1(x,M,N)

≤ JM (x, û?∞) + VN−M (xû?∞(M,x))−R1(x,M,N)

= JM (x, û?∞) + VN−M (xe)−R1(x,M,N) + R̂1(x,M,N).

Similar to the proof of Lemma 13.25 one sees that |R̂1(x,M,N)| ≤ γV (σ∞,∆(P ))+ω(N−M)
for all M 6∈ Q(x, û?∞, P,∞).

Conversely, the infinite horizon dynamic programming principle (12.21) implies that û?∞
minimizes the expression ĴM (x, û?∞) + V̂∞(xû?∞(M,x)). Using the error terms R5 from

Lemma 13.38 and R̂5(x,M,N) = V̂∞(xu?N (M,x))− V̂∞(xe) we obtain

ĴM (x, û?∞) + V̂∞(xe) = ĴM (x, û?∞) + V̂∞(xû?∞(M,x))−R5(x,M)

≤ ĴM (x, u?N ) + V̂∞(xu?N (M,x))−R5(x,M)

= ĴM (x, u?N ) + V̂∞(xe)−R5(x,M) + R̂5(x,M,N)

and subtracting M`(xe, ue) and V̂∞(xe) on both sides yields

JM (x, û?∞) = JM (x, u?N )−R5(x,M) + R̂5(x,M,N).

As in the proof of Lemma 13.25 one sees that Proposition 13.14 applies to xu?N (·, x) with

δ = γV (|x|xe). Hence, similar to the proof of Lemma 13.38 one obtains |R̂5(x,M,N)| ≤
γ
V̂∞

(σδ,∆(P )) for all M 6∈ Q(x, u?N , P,N). Together with the estimates for R1 and R5 from
Lemmas 13.25 and 13.38 this yields

|R6(x,M,N)| = |JM (x, û?∞)− JM (x, u?N )|
≤ max{|R1(x,M,N)|+ |R̂1(x,M,N)|, |R5(x,M)|+ |R̂5(x,M,N)|}
≤ max{γV (σδ,∆(P )) + γV (σ∞,∆(P )) + 2ω(N −M), γ

V̂∞
(σ∞,∆(P )) + γ

V̂∞
(σδ,∆(P ))}
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and thus the claim.

Now we can establish a version of Theorem 13.19 for NMPC without terminal ingredients.
We will discuss after the proof how Theorem 13.40 relates to Theorem 13.19.

Theorem 13.40 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPN) and storage function λ and let Assumptions 13.24 and 13.37
hold. Then for each bounded subset Xb ⊆ X there exists δ1 ∈ L such that for all sufficiently
large N ∈ N the inequality

lim sup
K→∞

(
JclK(x, µN )− JK(x, u)−Kδ1(N)

)
≤ 0 (13.30)

holds and, in case that `(xe, ue) = 0, there are δ2, δ3 ∈ L such that the inequality

JclK(x, µN ) ≤ V∞(x) +Kδ1(N) + δ2(N) + δ3(K) (13.31)

holds for all K ∈ N and x ∈ X ∩ Xb.

Proof: First observe that for proving (13.30) we can assume `(xe, ue) = 0 without loss of
generality, since the inequality is invariant under additions of constants to `. For `(xe, ue) =
0, however, (13.30) follows from (13.31), so it suffices to prove (13.31). We also assume
λ(xe) = 0 without loss of generality.

As the assumptions from Theorem 13.35 are satisfied and Xb is bounded, there is β ∈ KL
such that for each ε > 0 there is Nε ∈ N with |xµN (k, x)|xe ≤ max{β(|x|xe , k), ε} for all N ≥
Nε and all x ∈ Xb. This in particular implies |xµN (k, x)|xe ≤ supx∈Xb β(|x|xe , 0) =: ∆ for all
x ∈ Xb and all k ∈ N, which in turn implies VN (xµN (k, x)) ≤ N`(xe, ue) + γV (∆) + ω(N),
implying the inequality from the assumptions of Proposition 13.14 with δ = γV (∆) +ω(1).
Since for Nε → ∞ the achievable ε tends to 0, we can find a function φ ∈ L such that
ε ≤ φ(N), implying |xµN (k, x)‖ ≤ max{β(|x|xe , k), φ(N)} ≤ max{β(C, k), φ(N)} for C :=
supx∈Xb |x|xe .
We now consider an arbitrary point of the form xµN (k, x) for x ∈ Xb and all k ∈ N and, in
order to simplify notation, we denote it again by x. We abbreviate x+ := f(x, µN (x)). For
the corresponding optimal control u?N , Corollary 12.3 yields that u?N (· + 1) is an optimal
control for initial value x+ and horizon N − 1. Hence, for each M ∈ {1, . . . , N} we obtain

`(x, µN (x)) = VN (x)− VN−1(x+) = JN (x, u?N )− JN−1(x+, u?N (·+ 1))

= JM (x, u?N )− JM−1(x+, u?N (·+ 1)),

where the last equality follows from the fact that the omitted terms in the sums defining
JM (x, u?N ) and JM−1(x+, u?N (·+ 1)) coincide. Using Lemma 13.38 for N , x and M and for
N − 1, x+ and M − 1, respectively, yields

V∞(x)− V∞(x+) = JM (x, u?∞) + V∞(xe) +R5(x,M)

− JM−1(x+, u?∞(·+ 1))− V∞(xe)−R5(x+,M − 1)

= JM (x, u?∞)− JM−1(x+, u?∞(·+ 1)) +R5(x,M)−R5(x+,M − 1).
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Putting the two equations together and using Lemma 13.39 yields

`(x, µN (x)) = V∞(x)− V∞(x+) +R7(x,M,N). (13.32)

with

R7(x,M,N) = −R6(x,M,N) +R6(x+,M − 1, N − 1)−R5(x,M) +R5(x+,M − 1).

From Lemmas 13.38 and 13.39, we obtain the bound

|R7(x,M,N)| ≤ 2γV (σδ(P )) + 2γV (σ∞(P )) + 2γ
V̂∞

(σδ(P )) + 4γ
V̂∞

(σ∞(P ))

+4ω(N −M)

provided we choose M ∈ {1, . . . , N} with M 6∈ Q(x, u?N , P,N)∪Q(x, u?∞, P,∞) and M−1 6∈
Q(x+, u?N (·+ 1), P,N − 1)∪Q(x+, u?∞(·+ 1), P,∞). Since each of the four Q sets contains
at most P elements, their union contains at most 4P elements and hence if N > 8P then
there is at least one such M with M ≤ N/2.

Thus, choosing P = b(N − 1)/8c yields the existence of M ≤ N/2 such that

|R7(x,M,N)| ≤ δ1(N), (13.33)

where

δ1(N) := 2γV (σδ(b(N − 1)/8c)) + 2γV (σ∞(b(N − 1)/8c))
+ 2γ

V̂∞
(σδ,∆(b(N − 1)/8c)) + 4γ

V̂∞
(σ∞,∆(b(N − 1)/8c)) + 4ω(bN/2c).

Applying (13.32), (13.33) for x = xµN (k, x), k = 0, . . . ,K − 1, we can conclude

JclK(x, µN ) =
K−1∑
k=0

`(xµN (k, x), µN (xµN (k, x)))

≤
K−1∑
k=0

(
V∞(xµN (k, x))− V∞(xµN (k + 1, x)) + δ1(N)

)
≤ V∞(x)− V∞(xµN (K,x)) +Kδ1(N).

Since V∞(xe) = λ(xe) = 0 by (12.18), Assumption 13.37 yields

−V∞(xµN (K,x)) ≤ −V∞(xe) + γ
V̂∞

(max{β(C,K), φ(N)})
= max{γ

V̂∞
(β(C,K)), γ

V̂∞
(φ(N))} ≤ γ

V̂∞
(β(C,K)) + γ

V̂∞
(φ(N))}

this proves (13.31) with δ2(N) = γ
V̂∞

(φ(N)) and δ3(K) = γ
V̂∞

(β(C,K)).

Comparing (13.30) and (13.31) with (13.18) and (13.19), respectively, one sees that the
absence of terminal ingredients yields potentially larger error terms. On the other hand,
this way we do not need to design terminal ingredients satisfying Assumption 13.5. One
might be concerned about the factor K in front of δ1 in (13.30) and (13.31), since this
implies that the error grows linearly in K and thus unboundedly as K → ∞. However,
except for the particular case that `(xe, ue) = 0, the accumulated costs JK(x, u) also grow
linearly in K, hence the relative error is constant in K.

Finally, we formulate and prove the counterpart of Theorem 13.22 for the case without
terminal ingredients. To this end, recall the definition of UKκ (x) from (13.21).
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Theorem 13.41 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPN), let Xb ⊆ X be a bounded set and let Assumptions 13.24 and
13.29 hold. Then there exist δ1, δ2, δ3 ∈ L such that for all x ∈ X ∩ Xb the inequality

JclK(x, µN ) ≤ inf
u∈UKκ (x)

JK(x, u) +Kδ1(N) + δ2(N) + δ3(K)

holds with κ = max{β(|x|xe ,K), φ(N)}. Here β is from Definition 13.32(ii), which is gua-
ranteed to hold by Theorem 13.35, N is at least as large that Xb ⊂ B∆(xe) for ∆ in
Definition 13.32(ii), and φ is the L-function constructed in the proof of Theorem 13.35.

Proof: We may again assume `(xe, ue) = 0 without loss of generality. Consider a control
u1 ∈ UKκ (x) and let x1 = xu(K,x). Then by Assumption 13.29 the optimal control u?1 ∈
U∞(x1) satisfies J∞(x1, u2) ≤ γ

V̂
(κ). Then the concatenation of u1 and u1?, denoted by

u, satisfies

V∞(x) ≤ J∞(x, u) ≤ JK(x, u1) + γ
V̂

(κ).

Since u1 was arbitrary in UKκ (x), it follows that

V∞(x) ≤ inf
u∈UKκ (x)

JK(x, u) + γ
V̂

(κ).

Hence, inequality (13.31) from Theorem 13.40 yields (renaming δ1, δ2, δ3 to δ̃1, δ̃2, δ̃3)

JclK(x, µN ) ≤ V∞(x) +Kδ̃1(N) + δ̃2(N) + δ̃3(K)

≤ JK(x, u1) +Kδ̃1(N) + δ̃2(N) + δ̃3(K) + γ
V̂∞

(κ).

Since we can estimate

γ
V̂∞

(κ) ≤ γ
V̂∞

(
sup
x∈Xb

β(|x|xe ,K)

)
+ γ

V̂∞
(φ(N)),

we obtain the assertion by defining δ1 := δ̃1, δ2 := δ̃2 + γ
V̂∞

(φ(·)) and δ3 := δ̃3 +

γ
V̂∞

(supx∈Xb β(|x|xe , ·)).
We note that it follows from Theorem 13.35 that the choice of κ ensures that the control
generated by µN lies in UKκ (x). Thus, Theorem 13.41 shows that NMPC yields an ap-
proximately optimal control in UKκ (x), i.e., the NMPC controller steers x to Bκ(xe) in an
approximately optimal way.

Example 13.42 As our final example we slightly modify Example 13.1 by setting `(x, u) =
u2 + 1. This allows us to illustrate the results for the typical case that `(xe, ue) 6= 0. Note
that the open- and closed-loop trajectories as well as the strict dissipativity property are
not affected by the addition of a constant to ` and that the change thus yields `(xe, ue) =
`(0, 0) = 1.

(i) Figure 13.7 illustrates how JclK(x, µN ) depends on N . As in Fig. 13.4, the value K = 30
is so large that the effect of the term δ2(K) is negligible and not visible in the figure, hence
JclK(x, µN ) converges to infu∈UKκ (x) J

uc
K (x, u) for increasing N .
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Abbildung 13.7: Value of JclK(x, µN ) for K = 30, x = 1.9 and varying N without terminal
ingredients
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Abbildung 13.8: Value of JclK(x, µN ) for K = 30, x = 1.9 and varying N without terminal
ingredients for X = [−2, 2] on the left and X = [−3, 3] on the right

(ii) We note that the error estimate depends on the bound on the storage function λ which
enters in several of the previous estimates. This dependence is actually visible when compu-
ting JclK(x, µN ) via numerical simulations. In Example 13.1, the bound on λ increases with
increasing X. Figure 13.8 shows that increasing the state constraint set from X = [−2, 2] to
X = [−3, 3] indeed considerably increases the error, although the optimal trajectories and
thus the limiting values for JclK(x, µN ) for N →∞ are independent of the choice of X.

(iii) Finally, we observe that the main structural difference between Theorems 13.22 and
13.41 lies in the factor K in the error estimate in Theorem 13.41 without terminal ingre-
dients. This predicts a deterioration of the value JclK(x, µN ) for fixed N and growing K
in the case without terminal ingredients, which should not appear if terminal ingredients
are used. This effect can again be seen in numerical simulations, see Fig. 13.9. Both values
increase with K (as expected, since `(xe, ue) > 0), but the closed-loop cost without termi-
nal ingredients increases faster, with the gap becoming smaller for increasing N . Fig. 13.9
nicely illustrates that while the absolute difference between the scheme with and without
terminal ingredients increases with K, the relative difference is bounded and proportional
to δ1(N).
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Abbildung 13.9: Value of JclK(x, µN ) for varying K, x = 1.9 and N = 5 on the left and
N = 10 on the right, both with and without terminal ingredients X0 = {0} and F ≡ 0



Kapitel 14

Analysis of stabilizing MPC
schemes

In this chapter we look at the particular — but practically very relevant — special case in
which the stage cost ` penalizes the distance from a desired equilibrium. More precisely,
we consider stage costs satisfying the conditions

`(x∗, u∗) = 0 and `(x, u) ≥ α3(|x|x∗) (14.1)

for all x ∈ X and a K∞-function α3. In normed spaces X and U , the simplest choice for
such a function is

`(x, u) = ‖x− x∗‖+ λ‖u− u∗‖
for a control penalization parameter λ ≥ 0.

As we have already observed, problems of this kind are always strictly dissipative (with
storage function λ ≡ 0). Hence, all results of the previous chapter apply and — under the
stated conditions — we can conclude asymptotic stability for the scheme with terminal
conditions and semiglobal practical asymptotic stability without terminal conditions. In
practice, however, one often observes “real” asymptotic stability also in the case without
terminal conditions. Also, schemes without terminal conditions are often preferred in prac-
tice, because for complex systems the design of terminal conditions satisfying Assumption
13.5 is very difficult if not impossible. Hence, in this chapter we will analyze stabilizing
MPC schemes without terminal conditions.

The basis for the considerations in this chapter is Theorem 12.22. We want to establish
inequality (12.30) for V = VN and µ = µN .

14.1 Bounds on VN

The central assumption we will use in order to ensure asymptotic stability and performan-
ce bounds imposes upper bounds on the optimal value functions VN . These bounds are
formulated relative to the stage cost `. To this end, we define

`∗(x) := inf
u∈U

`(x, u). (14.2)

173
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With this notation, we can formulate our central assumption.

Assumption 14.1 [Bound on VN ] Consider the optimal control problem (OCPN). We
assume that there exist functions BK ∈ K∞, K ∈ N such that for each x ∈ X the inequality

VK(x) ≤ BK(`∗(x)) (14.3)

holds for all K ∈ N.

We observe that VK(x) ≥ `(x, u?(0)) ≥ `∗(x) implies BK(r) ≥ r.
Assumption 14.1 is satisfied for instance if for each x ∈ X and each N ∈ N there exists an
admissible control sequence ux ∈ UN (x) satisfying

`(xux(n, x), ux(n)) ≤ β(`∗(x), n) (14.4)

for all n ∈ {0, . . . , N − 1}. We refer to this property as cost controllability. It is easily seen
that it implies Assumption 14.1 with BK(r) =

∑K−1
k=0 β(r, k).

An important special case for β ∈ KL is

β(r, n) = Cσnr (14.5)

for real constants C ≥ 1 and σ ∈ (0, 1), i.e., exponential controllability . In this case we
obtain

BK(r) = C
1− σK
1− σ r.

It is easily seen that if the state trajectories itself are exponentially controllable to some
equilibrium x∗ then exponential controllability, i.e., (14.4) with β from (14.5), holds if
` has polynomial growth. In particular, this covers the usual linear-quadratic setting for
stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential controlla-
bility in the sense of (14.4) can be achieved by proper choice of `, as the following example
shows.

Example 14.2 Consider the control system

x+ = x+ ux3

with X = [−1, 1] and U = [−1, 1]. The system is controllable to x∗ = 0, which can be seen
by choosing u = −1. This results in the system x+ = x − x3 whose solutions approach
x∗ = 0 monotonically for x0 ∈ X.

However, the system it is not exponentially controllable to 0: exponential controllability
would mean that there exist constants C > 0, σ ∈ (0, 1) such that for each x ∈ X there is
ux ∈ U∞(x) with

|xux(n, x)| ≤ Cσn|x|.
This implies that by choosing n∗ > 0 so large such that Cσn

∗ ≤ 1/2 holds the inequality

|xux(n∗, x)| ≤ |x|/2 (14.6)
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must hold for each x ∈ X. However, for each x ≥ 0 the restriction u ∈ [−1, 1] implies
x+ ≥ x− x3 = (1− x2)x which by induction yields

xu(n∗, x) ≥ (1− x2)n
∗
x

for all u ∈ U∞(x) which contradicts (14.6) for x < 1− 2−1/n∗ .

On the other hand, since |x| ≤ 1 we obtain (1− x2)2(2x2 + 1) = 1 + 2x6 − 3x4 ≤ 1 which
implies

1

(1− x2)2
≥ 2x2 + 1 ⇒ − 1

2x2(1− x2)2
≤ −2x2 + 1

2x2
= −1− 1

2x2
.

Hence, choosing

`(x, u) = `(x) = e−
1

2x2 ,

for u ≡ −1 we obtain

`(x+) = `(x− x3) = e
− 1

2x2(1−x2)2 = e
− 1

2x2(1−x2)2 ≤ e−1e−
1

2x2 = e−1`(x).

By induction this implies (14.4) with β from (14.5) with C = 1 and σ = e−1.

14.2 Implications of the bounds on VN

In this section we will use the bound on the VN from Assumption 14.1 in order to establish
two lemmas which yield bounds for optimal value functions and functionals along pieces
of optimal trajectories. In the subsequent section, these bounds will then be used for the
calculation of α in (12.30).

In order to be able to calculate α in (12.30), we will need an upper bound for VN (f(x, µN (x))).
To this end, recall from Step (3) of Algorithm 11.1 that µN (x0) is the first element of
the optimal control sequence u?(·) for (OCPN) with initial value x0. In particular, this
implies f(x0, µN (x0)) = xu?(1, x0). Hence, if we want to derive an upper bound for
VN (f(x0, µN (x0))) then we can alternatively derive an upper bound for VN (xu?(1, x0)).
This will be done in the following lemma.

Lemma 14.3 Suppose Assumption 14.1 holds and consider x0 ∈ X and an optimal control
u? ∈ UN (x0) for (OCPN). Then for each j = 0, . . . , N − 2 the inequality

VN (xu?(1, x0)) ≤ Jj(xu?(1, x0)), u?(1 + ·)) +BN−j(`
∗(xu?(1 + j, x0)))

holds for BK from (14.3).

Proof: We define the control sequence

ũ(n) =

{
u?(1 + n), n ∈ {0, . . . , j − 1}
ux(n− j), n ∈ {j, . . . , N − 1},
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where ux is an optimal control for initial value x = xu?(1 + j, x0) and N = N − j. By
construction, this control sequence is admissible for xu?(1, x0) and we obtain

VN (xu?(1, x0)) ≤ J(xu?(1, x0), ũ)

= Jj(xu?(1, x0), u?(1 + ·)) + JN−j(xu?(1 + j, x0), ux)

≤ Jj(xu?(1, x0), u?(1 + ·)) +BN−j(`
∗(xu?(1 + j, x0)))

where we used JN−j(xu?(1 + j, x0), ux) = VN−j(xu?(1 + j, x0)) and Assumption 14.1 in the
last step. This is the desired inequality.

In words, the idea of this proof is as follows. The upper bound for each j ∈ {0, . . . , N − 2}
is obtained from a specific trajectory. We follow the optimal trajectory for initial value x0

and horizon N for j steps and for the point x reached this way we use the optimal control
sequence for initial value x and horizon N − j for another N − j steps.

In the next lemma we derive upper bounds for the Jk-terms along tails of the optimal
trajectory xu? , which will later be used in order to bound the right hand side of the
inequality from Lemma 14.3. To this end we use that these tails are optimal trajectories
themselves.

Lemma 14.4 Suppose Assumption 14.1 holds and consider x0 ∈ X and an optimal control
u? ∈ UN (x0) for (OCPN). Then for each k = 0, . . . , N − 1 the inequality

JN−k(xu?(k, x0), u?(k + ·)) ≤ BN−k(`∗(xu?(k, x0)))

holds for BK from (14.3).

Proof: Corollary 12.3 implies JN−k(xu?(k, x0), u?(k + ·)) = VN−k(xu?(k, x0)). Hence the
assertion follows immediately from Assumption 14.1.

14.3 Computation of α and stability results

We will now use the inequalities derived in the previous section in order to compute α for
which (12.30) with V = VN and µ = µN , i.e.,

VN (x) ≥ α`(x, µN (x)) + V (f(x, µN (x))) (12.30’)

holds for all x ∈ X. When trying to put together these inequalities in order to bound
VN (xu?(1, x0)) from above, one notices that the functionals in Lemma 14.3 and 14.4 are
not exactly the same. Hence, in order to combine these results into a closed form which is
suitable for computing α we need to look at the single terms of the stage cost ` contained
in these functionals.

To this end, let u? be an optimal control for (OCPN) with initial value x0 = x. Then from
the definition of VN and µN it follows that (12.30) is equivalent to

N−1∑
k=0

`(xu?(k, x), u?(k)) ≥ α`(x, u?(0)) + VN (xu?(1, x)). (14.7)
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Thus, in order to compute α for which (12.30) holds for all x ∈ X we can equivalently
compute α for which (14.7) holds for all optimal trajectories xu?(·, x) with initial values
x ∈ X.

For this purpose we now consider arbitrary real values λ0, . . . , λN−1, ν ≥ 0 and start by
deriving necessary conditions which hold if these values coincide with the cost along an
optimal trajectory `(xu?(k, x), u?(k)) and an optimal value VN (xu?(1, x)), respectively.

Proposition 14.5 Suppose Assumption 14.1 holds and consider N ≥ 1, values λn ≥ 0,
n = 0, . . . , N − 1, and a value ν ≥ 0. Consider x ∈ X and assume that there exists an
optimal control sequence u? ∈ UN (x) for (OCPN) such that

λk = `(xu?(k, x), u?(k)), k = 0, . . . , N − 1

holds. Then
N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (14.8)

holds. If, furthermore,
ν = VN (xu?(1, x))

holds then

ν ≤
j−1∑
n=0

λn+1 +BN−j(λj+1), j = 0, . . . , N − 2 (14.9)

holds.

Proof: If the stated conditions hold, then λn and ν must meet the inequalities given in
Lemmas 14.3 and 14.4, which is exactly (14.9) and (14.8).

Using this proposition we can give a sufficient condition for (14.7) and thus for (12.30).
The idea behind the following proposition is to express the terms in inequality (14.7) using
the values λ0, . . . , λN−1 and ν introduced above.

Proposition 14.6 Consider N ≥ 1 and BK ∈ K∞, K = 2, . . . , N and assume that all
values λn ≥ 0, n = 0, . . . , N − 1 and ν ≥ 0 fulfilling (14.8) and (14.9) satisfy the inequality

N−1∑
n=0

λn − ν ≥ αλ0 (14.10)

for some α ∈ (0, 1]. Then for this α and each optimal control problem (OCPN) satisfying
Assumption 14.1 inequality (12.30) holds for µN from Algorithm 11.1 and all x ∈ X.

Proof: Consider a control system satisfying Assumption 14.1 and an optimal control se-
quence u? ∈ UN (x) for initial value x ∈ X. Then by Proposition 14.5 the values λk =
`(xu?(k, x), u?(k)) and ν = VN (xu?(1, x)) satisfy (14.8) and (14.9), hence by assumption
also (14.10). Thus, using `(x, u?(0)) = `(xu?(0, x), u?(0)) = λ0 we obtain

VN (xu?(1, x)) + α`(x, u?(0)) = ν + αλ0 ≤
N−1∑
k=0

λk =
N−1∑
k=0

`(xu?(k, x), u?(k)).
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This proves (14.7) and thus also (12.30’).

Proposition 14.6 is the basis for computing α as specified in the following theorem.

Theorem 14.7 [Abstract optimization problem] Consider N ≥ 1 and BK ∈ K∞, K =
2, . . . , N and assume that the optimization problem

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν

λ0

subject to the constraints (14.8), (14.9), and

λ0 > 0, λ1, . . . , λN−1, ν ≥ 0

(14.11)

has an optimal value α ∈ (0, 1]. Then for this α and each optimal control problem (OCPN)
satisfying Assumption 14.1 inequality (12.30’) holds for µN from Algorithm 11.1 and all
x ∈ X.

In particular, Jcl∞(x, µN ) ≤ VN (x)/α ≤ V∞(x)/α holds and if there are α1, α3 ∈ K∞ with
α3(|x|x∗) ≤ `∗(x) ≤ α4(|x|x∗) then the MPC closed-loop system is asymptotically stable at
x∗ on X.

Proof: Consider arbitrary values λ0, . . . , λN−1, ν ≥ 0 satisfying (14.8) and (14.9).

If λ0 > 0 then the definition of Problem (14.11) immediately implies (14.10).

If λ0 = 0, then inequality (14.8) for k = 0 together with BK(0) = 0 implies λ1, . . . , λN−1 =
0. Thus, (14.9) for j = 1 yields ν = 0 and again (14.10) holds.

Hence, (14.10) holds in both cases and Proposition 14.6 yields the assertion.

The additional statements then follow from Theorem 12.22, observing that the inequalities
on `∗ imply

α1(|x|x∗) := α3(|x|x∗) ≤ `∗(x) ≤ VN (x) ≤ BN (`∗(x)) ≤ BN (α4(|x|x∗)) =: α2(|x|x∗).

The following lemma shows that the optimization problem (14.11) specializes to a linear
program if the functions BK(r) are linear in r.

Lemma 14.8 If the functions BK(r) from (14.3) in the constraints (14.8), (14.9) are linear
in r, then α from Problem (14.11) coincides with

α := min
λ0,...,λN−1,ν

N−1∑
n=0

λn − ν

subject to the (now linear) constraints (14.8), (14.9), and

λ0 = 1, λ1, . . . , λN−1, ν ≥ 0.

(14.12)

In particular, this holds if (14.4) holds with functions β(r, t) being linear in r.
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Proof: Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄ satisfying the constraints in
(14.11) can be written as γλ0, . . . , γλN−1, γν for some λ0, . . . , λN−1, ν satisfying the cons-
traints in (14.12), where γ = λ̄0. Since∑N−1

n=0 λ̄n − ν̄
λ̄0

=

∑N−1
n=0 γλn − γν

γλ0
=

∑N−1
n=0 λn − ν

λ0
=

N−1∑
n=0

λn − ν,

the values α in Problems (14.11) and (14.12) coincide.

The next result gives an explicit bound for Problem (14.12) and thus also (14.11) if the
functions BK are linear.

Proposition 14.9 If the functions BK(r) from (14.3) in the constraints (14.8), (14.9) are
linear in r, then the solution of Problems (14.11) and (14.12) satisfies the inequality

α ≥ α̃N (14.13)

for

α̃N := 1− (γ2 − 1)(γN − 1)
N−1∏
k=2

(
γk − 1

γk

)
with γk = Bk(r)/r. (14.14)

Proof: We prove the theorem by showing the inequality

λN−1 ≤ (γN − 1)
N−1∏
k=2

(
γk − 1

γk

)
λ0 (14.15)

for all feasible λ0, . . . , λN−1. From this (14.13) follows since (14.9) with j = N − 2 implies

ν ≤
N−2∑
n=1

λn + γ2λN−1

and thus (14.15), γ2 ≥ 1 and λ0 = 1 yield

N−1∑
n=0

λn − ν ≥ λ0 + (1− γ2)λN−1 ≥ λ0 − (γ2 − 1)(γN − 1)

N−1∏
k=2

(
γk − 1

γk

)
λ0 = α̃N

for all feasible λ1, . . . , λN−1 and ν, which yields α ≥ α̃N .

In order to prove (14.15), we start by observing that (14.8) with j = p implies

N−1∑
k=p+1

λk ≤ (γN−p − 1)λp (14.16)

for p = 0, . . . , N − 2. From this we can conclude

λp +
N−1∑
k=p+1

λk ≥
∑N−1

k=p+1 λk

γN−p − 1
+

N−1∑
k=p+1

λk =
γN−p

γN−p − 1

N−1∑
k=p+1

λk.
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Using this inequality inductively for p = 1, . . . , N − 2 yields

N−1∑
k=1

λk ≥
N−2∏
k=1

(
γN−k

γN−k − 1

)
λN−1 =

N−1∏
k=2

(
γk

γk − 1

)
λN−1.

Using (14.16) for p = 0 we then obtain

(γN − 1)λ0 ≥
N−1∑
k=1

λk ≥
N−1∏
k=2

(
γk

γk − 1

)
λN−1

which implies (14.15).

A much more complicated proof (see [5, Proposition 6.18]) shows that the optimal αN is
given by

αN := 1−
(γN − 1)

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏
k=2

(γk − 1)

with γk = Bk(r)/r, (14.17)

A comparison of the two formulas (14.17) and (14.13) can be found in Remark 14.10, below.

Remark 14.10 Let us compare the two different bounds on α given by α̃N from (14.13)
and αN from (14.17). In order to illustrate that the criterion α̃N > 0 is more conservative
than the criterion αN > 0, we consider the case where γk = γ for all k, i.e., the γk are
independent of k, and compute the minimal N for which α̃N > 0 and αN > 0, respectively,
hold. For γk = γ the expressions simplify to

α̃N = 1− (γ − 1)N

γN−2
and αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
.

Thus, an optimization horizon N for which α̃N > 0 must satisfy

N > 2 + 2
ln γ

ln γ − ln(γ − 1)

while the same condition for α̃N > 0 is given by

N > 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
.

This means that the estimate for the minimal stabilizing horizon based on α̃N is about
twice as large as the estimate based on αN .

In this context, it is interesting to look at the asymptotic behavior of the bounds on N for
γ →∞. For large γ the denominator is approximately 1/γ. This implies that asymptotically
for γ →∞ the first estimate for N behaves like 2γ ln γ while the second behaves like γ ln γ.
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Example 14.11 We reconsider Example 14.2, i.e.,

x+ = x+ ux3 with `(x, u) = e−
1

2x2 .

As shown in Example 14.2, inequality (14.4) holds with β(r, k) = Cσkr with C = 1 and
σ = e−1. The bounds in Assumption 14.1 resulting from this β are

BK(r) = C
1− σK
1− σ r =

1− e−K
1− e−1

r,

thus Theorem 14.7 is applicable and we obtain α ≥ αN with αN from Formula (14.17).
The γk in Formula (14.17) are given by

γk =
1− e−k
1− e−1

.

A straightforward computation reveals that for these values Formula (14.17) simplifies to

1−
(γN − 1)

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏
k=2

(γk − 1)

= 1− e−N .

Hence, for N = 2 we obtain α = 1− e−2 ≈ 0.865 and for N = 3 we get α ≥ 1− e−3 ≈ 0.95.
Hence, Theorem thm:optprob1 ensures asymptotic stability for all N ≥ 2 and — since
1/0.95 ≈ 1.053 — for N = 3 the performance of the MPC controller is at most about 5.3%
worse than the infinite horizon controller.

While in this simple example the computation of α via Formula (14.17) is possible, in many
practical examples this will not be the case. However, Formula (14.17) can still be used to
obtain valuable information for the design of MPC schemes. This aspect will be discussed
at the end of this section.

Although the main benefit of the approach developed in this chapter compared to other
approaches is that we can get rather precise quantitative estimates, it is nevertheless good
to know that our approach also guarantees asymptotic stability for sufficiently large opti-
mization horizons N under suitable assumptions. This is the statement of our final stability
result.

Theorem 14.12 [Stability for sufficiently large N ] Consider the MPC Algorithm 11.1
with optimization horizon N ∈ N and stage cost ` satisfying α3(|x|x∗) ≤ `∗(x) ≤ α4(|x|x∗)
for suitable α3, α4 ∈ K∞. Suppose that Assumption 14.1 holds for linear BK ∈ K∞ of the
form BK(r) = γKr with γ∞ := supk∈N γk <∞.

Then the MPC closed loop system (11.2) with MPC-feedback law µN is asymptotically
stable at x∗ on X provided N is sufficiently large.

Furthermore, for each C > 1 there exists NC > 0 such that

Jcl∞(x, µN ) ≤ CVN (x) ≤ CV∞(x)

holds for each x ∈ X and each N ≥ NC .
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Proof: The assertion follows immediately from Theorem 14.7 if we show that α̃N → 1
holds in (14.13) as N →∞. Since all factors in (14.13) are monotone increasing in γk and
the product has a negative sign, we obtain

α̃N ≥ 1− (γ∞ − 1)2

(
γ∞ − 1

γ∞

)N−2

.

Since (γ∞ − 1)/γ∞ < 1 we obtain that(
γ∞ − 1

γ∞

)N−2

→ 0

as N →∞ and thus α̃N → 1.

Theorem 14.12 justifies what is often done in practice: we set up an MPC scheme using a
reasonable stage cost ` and increase N until the closed loop system becomes stable.

Of course, Theorem 14.12 immediately leads to the question how large the optimization ho-
rizon N needs to be for achieving stability or a certain performance. As the computational
cost grows with the length of a horizon, this is also important for the practical implemen-
tability of the MPC scheme. We investigate this question for the case that the asymptotic
controllability inequality (14.4) holds with the exponential functions β(r, n) = CσNr from
(14.5). To this end, we look at the minimal horizon N for which αN is larger than a certain
threshold depending on the parameters C and σ. This dependence is illustrated in Figure
14.3 for thresholds 0 and 0.5.
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Abbildung 14.1: Suboptimality regions for different optimization horizons N depending on
C and σ in (14.5) for αN > 0 (left) and αN > 0.5 (right)

As we see, the two parameters C and σ play a very different role. While for fixed σ > 0 it
is always possible to reduce the necessary horizon to N = 2, i.e., to the shortest possible
horizon, by making C smaller, this is not possible for fixed C by reducing σ. Hence, the
constant C plays a more important role for obtaining stability and performance with small
optimization horizon N . Particularly, any tuning of the stage cost ` which leads to a
reduction of C is likely also to reduce the necessary optimization horizon.
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[2] F. Colonius, Einführung in die Steuerungstheorie. Vorlesungsskript, Universität
Augsburg, 1992, eine aktuelle Version ist erhältlich unter dem Link “Lehre” auf
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