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Preface

These lecture notes were written for a course with the same name held in the winter
semester 2025/2026 at the University of Bayreuth, Germany. Chapters 1-7 deal with top-
ics from linear control theory, while Chapters 8-14 provide an introduction into Model
Predictive Control for nonlinear systems. This is the third edition of these lecture notes
written entirely in English. Compared to the second edition several corrections and addi-
tions were made. Most notably, the notion of strict dissipativity plays a more prominent
role than it did in the previous editions. Chapter 14 was shortened, as the original material
turned out to be too long for the lecture.

Parts of the first part of these notes were written on the basis of the lecture notes [2], the
textbooks [15] and [11], as well as the monograph [3], which were extensively used also
when they are not explicitly cited. The chapters on Model Predictive Control are edited
excerpts from the forthcoming 3rd edition of the monograph [5]. I would like to thank
Jonas Koziorek and Leander Boll as well as all other students who reported errors and
inaccuracies in these notes.

The most recent version of these lecture notes is always available via my home page (Google:
Lars Gruene).

Bayreuth, February 2026 LARS GRUNE
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Chapter 1

Basics

Control systems are dynamical systems in continuous or discrete time, which depend on
a parameter u € R™, which may change with time and/or depending on the state of the
system. This parameter has different interpretations. It can be considered as a control
input, i.e., as a value that can be actively controlled from the outside (e.g., acceleration of
a vehicle, investment into a firm) or as a perturbation that acts on a system (e.g., uneven
road surface, time-varying exchange rates). The mathematical area that studies these
systems is called control theory. Here, “control” is not to be understood in the sense of
supervision but rather in the sense of taking influence on a system from the outside. One
also talks about open-loop control if u only depends on time, and about closed-loop control
or requlation if u depends on the current state of the system. In addition to Mathematical
Control Theory one also uses the term Mathematical System Theory.

1.1 Linear Control Systems

In this lecture we will consider control systems in continuous and discrete time. In contin-
uous time, control systems are described by ordinary or partial differential equations. In
this lecture we mostly limit ourselves to ordinary differential equations. In this case, the
control system is given by the equation

:C(t) - f(t,x(t),u(t)). (1'1)

The variable ¢t € R in this equation will always be interpreted as time and the notation
#(t) is short for the derivative with respect to time d/dt z(¢). The quantity z(¢) € R" is
called the state of the equation at time ¢ and u(t) € R™ is called the control value or the
control input at time t. The map f : R x R™” x R™ — R" is called wvector field. Both f
and the control function u : R — R™ have to fulfil certain regularity properties in order
to guarantee that the solutions of (1.1) exist and are unique. We will not consider this
problem at this stage in full generality, because in the first part of the lecture we will only
look at a special case of control systems, which allow for a simpler treatment than the
general case.
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In discrete time the general model is given by the map
z(k+1) = f(k, z(k), u(k)). (1.2)

In this equation k € N is an abstract time index and f : N x R" x U — R" is called the
transition map. The abstract time index k usually stands for a real time ¢ € R, often
of the form t, = nT for a fixed T' > 0. A discrete-time control system can be obtained
from the behaviour of a continuous-time model at the discrete time instants t;, — this
procedure is called sampling and the resulting discrete-time system is called sampled-data
system.!. In this case there are different ways to choose U. For instance, u(k) could be
a constant control value from R™, which is applied to the continuous-time system during
the time interval [t,t541). In this case U = R™ is a set of (vector valued) control values.
The symbol u(k) could, however, also stand for a time-varying control function, which is
applied to the continuous-time system on the interval [tg,¢x+1). In this case U is a set of
functions.

Almost all results presented in this lecture hold for continuous-time and discrete-time
control systems alike. However, we will usually only provide the proof for one of the two
cases. In the first part of the lecture we will usually give the proofs for the continuous-time
case, while in the second part we will usually provide proofs for discrete-time systems.

In the first part of this lecture we will consider the following particular class of control
Systems.

Definition 1.1 A linear time invariant control system in continuous time is given by the
differential equation
z(t) = Ax(t) + Bu(t) (1.3)

with A € R™"™ and B € R™". In discrete time it is given by the equation
x(k+1) = Az(k) + Bu(k) (1.4)

with A € R™*"™ and a linear map B : U — R". o

This class of control systems is particularly simple, since the right hand side is linear in
x and v and, moreover, does not explicitly depend on t. Yet, it is already rich enough
to describe a large number of real processes, e.g., in technical applications. Indeed, in
engineering practice very often linear models are used, although not always in the form
(1.3) (we will see an important extension later on in this lecture).

In order to illustrate why the class (1.3) can yield a sufficiently accurate modelling, we
consider a model from mechanics, namely an inverted rigid pendulum fixed on a cart, cf.
Figure 1.1.

The control u here is the acceleration of the cart. By means of physical laws an “exact”?

! A formal definition of the sampled-data system is contained in Section 8.2.

2The model (1.5) is not really exact, since it is already simplified: We have assumed that the pendulum
is so light that it does not influence the motion of the cart. Moreover, a number of constants was chosen
such that they cancel each other.
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Figure 1.1: Schematic illustration of a pendulum on a cart

differential equation model can be derived .

z1(t) = x2(t)

To(t) = —kxo(t) + gsinzy(t) + u(t) cosx(t) ()

is(t) = z4(t) =: f(x(t), u(t)) (1.5)
T4(t) = w

In this model the state vector x € R* consists of 4 components: z; represents the angle ¢
of the pendulum (cf. Fig. 1.1), which increases in counterclockwise direction, where z; =0
corresponds to the upright pendulum. x» is the angular velocity, x3 the position of the cart
and x4 its velocity. The constant k is a measure for the friction in the model (the larger k
the more friction) and g ~ 9.81m/s? is the gravitational constant.

Obviously (1.5) is of the form (1.1). It is not of the form (1.3), though, since the nonlinear
functions sin and cos cannot be written using the matrices A and B (note that A And B
may only contain constant coefficients, i.e. the entries of these matrices may not depend
on ).

Nevertheless, a linear model of the form (1.3) can be used in order to approximate (1.5)
near certain points. This procedure, which is called linearisation, is possible near points
(x*,u*) € R™ x R™ in which f(z*,u*) = 0 holds. In these points we can obtain a system
of the form (1.3) by defining A and B as

_9f

A: %(x,u) and B.fau(x,u).

If f is continuously differentiable, we have
f@+ 2% u+u”) = Av + Bu+ of|Jx]| + [|ul),

i.e., for z ~ 0 and u ~ 0 the values of f(z 4+ z*,u+u*) and Ax + Bu are very similar. One
can now prove that this similarity of values implies a similarity of the solutions of (1.1)
and (1.3) (appropriately shifted), as long as they stay close to (z*,u*).3

3 A mathematically exact formulation of the statement can be found as Theorem 4.5 in [4].
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For our example we apply linearisation to the equilibrium (z*,u*) = (0,0), which corre-
sponds to the upright or inverted position of the pendulum. For this equilibrium, the above
computation yields a system if the form (1.3) with

0 1 00 0

g =k 00 11
A= 0 0 01 and B = 0 (1.6)

0 0 00 1

Figure 1.2: Comparison of the solutions of (1.5) (solid) with (1.3, 1.6) (dashed)

Figure 1.2 shows a comparison of the solutions of (1.5) (solid) with the solutions of (1.3,
1.6) (dashed), all for u = 0 and with & = 0.1, g = 9.81, in two different neighbourhoods of
0. Depicted are four solution curves of the form

((20)]se o) ce

for each of the two equations. While in the small neighbourhood on the left hand side of the
figure there is almost no visible difference between the curves, in the larger neighbourhood
on the right hand side the curves differ significantly.

1.2 Existence and Uniqueness

Whenever differential equations are considered, existence and uniqueness must be clari-
fied. We will first recall basic results for linear control systems (1.3) with v = 0, i.e., for
homogeneous linear differential equations.

To this end we introduce some notation.

For a matrix A € R"*" with [A];; € R we denote the entry in the i-th rowm and the j-th
column. For A € R™™ and ¢t € R with At we denote the componentwise multiplication,
ie., [At];; = [A);t. For k € Ny the power A* is inductively defined via A° := Id and
AR = A Ak,



1.2. EXISTENCE AND UNIQUENESS 5
Moreover, we need the following definition.
Definition 1.2 For a matrix A € R"*™ and a real number ¢ € R the matrix exponential

is defined by
At . k
k=0

The convergence of this infinite series is to be understood componentwise, i.e. as

o0

th
ZAkkl i n € Np.
k=0

Convergence of the components of this series — even absolutely, i.e., in modulus — follows
from the comparison with the row sum norm

n
0=l = max 37 |[A]y),
EARES) ]:1

since [[A¥];;] < |A*]loe < (A5, = o, also

k
s
!

_ (alt)*
Rl

t
= [[4¥];;] R

e

and thus
[e™]5] < el

where the expression on the right hand side denotes the usual scalar exponential function.

Note that in general
[eAt]ij 7£ e[At]z‘j’

[At)i; is the scalar exponential.

where e

From its definition, the matrix exponential satisfies

(i) e =1d and (i) Aet =eMA (1.7)
The following lemma yields another important property.

Lemma 1.3 For arbitrary A € R™ ™ the function t — et is differentiable with

%eAt — AeAt

for any t € R.

Proof: Exercise
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Theorem 1.4 Consider the linear differential equation
z(t) = Ax(t) (1.8)

with  : R — R™ and a given matrix A € R™"*".

Then for any initial condition of the form
z(to) = o (1.9)

with tp € R and zg € R™ there exists exactly one solution z : R — R™ of (1.8) that satisfies
(1.9). We will denote this solution by z(¢;to, o). It is given by

x(t; to, o) = eA0) g (1.10)

Proof: We first show that the function z(t) = eA(t~%)zq from (1.10) satisfies both the
differential equation (1.8) and the initial condition (1.9). Lemma 1.3 yields

d d
gx(t) = %eA(t_tO):L“o = AeAlt—t0) g, — Ax(t),

hence (1.8). Since (1.7)(i) we moreover obtain
x(ty) = eAlto—to) oo — A04 0 — Tdgo = 0,

ie., (1.9).
Since this shows that (1.10) is a solution, this in particular proves existence of a solution.

It remains to show its uniqueness. To this end we first show that e’ is invertible with

(el = A1, (1.11)

A

For each yp € R™ the function y(t) = e~ “yq solves the differential equation y(t) = —Ay(t).

By the product rule we then obtain

d, _ d _ _ar d _ -
*(6 AteAtZL‘o) — e At( At )+e At—eAtxgz —Ae At At AtAeAt

7 7 e 7 erygt+e zg =0,

—At eAt

where in the last step we used (1.7)(ii). Thus, e xo is constant in ¢. This implies for

all t € R and all ¢y € R™ the identity
e*AteAtxo = e*AOeAOxO =IdId zg = xg,

and consequently
e—AteAt —Id = e—At — (6At>_l.
Using (1.11) we can now show uniqueness. Let x(¢) be an arbitrary solution of (1.8), (1.9).
Then
d d

= (e~ Alt—to) — 4 —Alt—to) —A(t—to) -
dt(e (t)) 7° (z(t))+e i(t)

= —Ae A0 g(4) 4 A Az(t) = 0,
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where we again used (1.7)(ii). Hence, e~A(:=t0)z(t) is constant in ¢, which for all ¢ € R
implies
e_A(t_tU)x(t) = e_A(tO_tO)x(tg) = Idz(to) = =o.

Multiplying both sides of this identity with eA(*~*) and using (1.11) we get
z(t) = A1) g,

Since x(t) was an arbitrary solution, this shows uniqueness. U

A useful implication of this theorem is the following corollary.

Corollary 1.5 The matrix exponential e”? is the unique solution of the matrix differential
equation
X(t) = AX(t) (1.12)

with X : R — R™ " and initial condition
X(0) =1d. (1.13)

O

Proof: With e; we denote the j-th unit vector in R"”. A simple computation reveals that
a matrix valued function X (¢) is a solution of (1.12), (1.13) if and only iff X (t)e; is a
solution of (1.8), (1.9) with ¢ty = 0 and z¢ = e;. With this observation the assertion follows
immediately from Theorem 1.4. U

The following lemma summarises further properties of the matrix exponential.

Lemma 1.6 For A, A1, A; € R™™ and s,t € R the following identities hold:
(i) (eAt)—l — e—At

i A(t+s)

) eAteAs —e

(i
(iif) eArtedzt = (A4t if A Ay = Ax Ay
(iv) For an invertible matrix 7' € R"*" the equation

eT_lATt — T*leAtT
holds.

Proof: (i) This was shown in the proof of Theorem 1.4.

(ii) With (i) it follows that both e4’e4*e=4* and eA(*+9)e=45 solve the matrix valued
initial value problem (1.12), (1.13). Since its solution is unique by Corollary 1.5 and e~4*
is invertible, the claimed identity follows.

(iii) Using the assumption A; Ao = A A one checks that both expressions solve the matrix
initial value problem (1.12), (1.13) with A = A; + As. Hence the two expressions must
coincide because of the uniqueness of the solution provided by Corollary 1.5.
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(iv) One computes that both expressions solve the matrix initial value problem (1.12),
(1.13) with T~1AT in place of A. Then again the assertion follows from the uniqueness of
this solution established in Corollary 1.5. U

After these preparations we return to the linear control system (1.3). For the formulation
of an existence and uniqueness theorem we need to define a suitable function space U for
the control function u(-). Certainly continuous functions would lead to an existence and
uniqueness result, but this choice would be too restrictive, because throughout this lec-
ture we will frequently need concatenations of control functions according to the following
definition.

Definition 1.7 For two functions u1, us : R — R™ and s € R we define the concatenation

at time s as
ui(t), t<s

ul&su2(t> = { u2(t), t>s

Even if u; and ug are continuous, ui&sus will in general not be continuous. We thus need
a function space that is closed with respect to concatenation. There are several options for
this. The most simple one is the following.

Definition 1.8 A function u : R — R™ is called piecewise continuous, if for any compact

interval [tq,ts] there exists a finite sequence of times t; = 71 < 79 < ... < T} = tg, such
that u|(, -, ,) is bounded and continuous for every i = 1,...,k — 1. We define U as the
space of piecewise continuous functions from R to R™. o

Obviously, U is closed with respect to concatenation, but also with respect to addition and
multiplication (defining (u; + u2)(t) := u1(t) + u2(t) and (ug - u2)(t) := wi(t) - uz(t)). In
addition — and this is important for our purpose — the Riemann-Integral

/t * bt

exists for functions u € U, since in every compact interval there are at most finitely many
points of discontinuity.*

With this function space we can now formulate an existence and uniqueness result.

Theorem 1.9 Consider the linear control system (1.3)
z(t) = Az(t) + Bu(t)

with z : R — R” and given matrices A € R™*" B € R"*™,

4An alternative to the space of piecewise constant functions is the space of Lebesgue measurable func-
tions, where the integral is then chosen as the Lebesgue integral. This space will be used for nonlinear
control systems, cf. Chapter 8. For linear control systems the use of Lebesgue measurable control functions
does not carry any advantage.
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Then for any initial condition of the form (1.9)
l‘(to) = X0

with tg € R, 29 € R™ and any piecewise continuous control function u € U there exists
a unique continuous function x : R — R”™ that satisfies (1.9) and whose derivative exists
and satisfies (1.3) for each ¢, in which w is continuous. This unique function is called the
solution of (1.3), (1.9) and denoted by x(t; o, o, ). It is given by the formula

t
a(t; to, zo, u) = A1)z +/ A% Bu(s)ds. (1.14)
to

Proof: We first check that (1.14) is indeed a solution in the sense described in the theorem.
The map t — fti) g(s)ds is continuous for any Riemann-integrable function and differen-
tiable in all ¢ in which ¢ is continuous. Thus, x(¢; g, xg, u) is continuous in ¢ and in those
t where u is continuous we get

t
4 [eA(ttO)xg—F/ eA(tS)Bu(s)ds]
dt to

t
_ 4t 4 / A9 Buy(s)ds
dt dt J,,

t
= AeAtt)gg + A Bu(s) s + | A9 Bu(s)ds
~~ to

=DBu(t)
t
= A <6A(tt0)a:0+ / eA(tS)Bu(s)ds> + Bu(t),
to
i.e., (1.3). In addition we obtain
to
eAlto=to) oo 4 / eA(tO_S)Bu(s)ds = 19,

T t
=Id 0

=0
ie., (1.9).

It remains to show the uniqueness. To this end we consider two arbitrary solutions x(t),
y(t) of (1.3), (1.9) in the sense of the theorem. Then

5(t) = @(t) — () = Au(t) + Bu(t) — Ay(t) — Bu(t) = A(w(t) — y(t)) = A=(t)

for all ¢ in which u is continuous. Since z is continuous, Z can be extended continuously
in the points of non continuity 7; of u by 2(7;) = lim;_,,, Az(t). We thus obtain a function
that solves the differential equation Z(t) = Az(t) for all t € R. Since moreover

Z(to) = .%'(t()) — y(to) =g — Xy — 0

holds, z satisfies an initial value problem of the form (1.8), (1.9), whose unique solution
according to Theorem 1.4 is given by z(t) = e4'0 = 0. Thus, z(t) = y(t) for all t € R,
proving uniqueness. U

A consequence from this theorem is the following corollary.
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Corollary 1.10 The solutions of (1.3), (1.9) satisfy for all ¢,s € R the equations
z(t; to, 0, u) = x(t; s, 2(s; o, o, u), u)
and
x(t; to, xo, u) = x(t — s;tg — s, 20, u(s + +)).

Herein, u(s + -) € U is defined as u(s + -)(¢t) = u(s +t). From the combination of the two
formulas for tg = 0 we also get

x(t; o, u) = x(t — s;x(s; xo, u), u(s + -)).

Proof: Follows immediately from (1.14). U

Remark 1.11 Another immediate consequence from the solution formula (1.14) is the
identity

x(t; to, o, u) = x(t;to, 0, 0) + z(t; to, 0, u). (1.15)
This identity says that any solution is the superposition of an uncontrolled solution (i.e.

with control 0) and a solution without unforced dynamics (i.e. with initial value 0). It is
thus known as superposition principle. o

Remark 1.12 In the following chapters we often limit ourselves to the case t{g = 0. In
this case we use the shorter notation z(t; zg, u) = x(¢;0, zo, u). o

Remark 1.13 One may consider the times t,, = nT" and a continuous-time control system
with control functions that are constant with values up(k) on the intervals [tg,tx11). Then
from the solution formula (1.14) explicit formulas for the matrices Ay and By for the
corresponding sampled-data system

zp(k+1) = Apzp(k) + Brup(k)

can be derived. Details will be worked out in an exercise. O



Chapter 2

Controllability

2.1 Definitions

An important aspect in the analysis of linear control systems of the form (1.3) is the ques-
tion about its controllability. In its most general formulation, this concerns the question
for which states xg, £1 € R™ and times ¢; we can find a control function u € U for which
x(t1; o, u) = 1 holds. In other words: can we link the two states by a solution trajectory
on a given time interval? Formally we define this property as follows.

Definition 2.1 Consider a linear control system (1.3).

A state xg € R"™ is called controllable to a State x1 € R™ at time t; > 0, if there exists
u € U with
x1 = x(t1; 0, u).

In this case, the state z is called reachable from xq at time tq. a

The following lemma shows that it is sufficient to consider controllability for the case
o — 0.

Lemma 2.2 A state zg € R” is controllable to a state z1 € R™ at time ¢; > 0 if and only
if the state o = 0 is controllable to the state & = x1 — z(t1; x0,0) at time #;.

Proof: Exercise.

This fact allows us to restrict the following definition of controllability and reachability to
the case xg = 0.

Definition 2.3 Consider a linear control system (1.3).

(i) The reachable set (or attainable set) from a state xo = 0 at time ¢ > 0 is given by

R(t) = {z(t;0,u) |u € U}.

11
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(ii) The controllable set to a state 1 = 0 at time ¢ > 0 is given by

C(t) = {xo € R"™ | there exists u € U with z(t;zg,u) = 0}.

The relation between these sets is clarified by the following lemma.

Lemma 2.4 The reachable set R(t) for (1.3) equals the controllability set C(t) for the

time-reversed system
2(t) = —Az(t) — Bu(t). (2.1)

Proof: By verifying that the followiong expressions satisfy the initial value problem, which
has a unique solution, one sees that the solutions of (1.3) and (2.1) satisfy

x(s,0,u) = z(t — s, z(¢t,0,u),u(t — -))

for all ¢,s € R. Hence, if z1 € R(t) for (1.3) and z(s,0,u) is the corresponding solution,
we obtain

2(0,z(t,0,u),u(t —-)) = x(t,0,u) = z1 and z(¢t, z(t,0,u), u(t —-)) = x(0,0,u) = 0,

implying x1 € C(t). The converse direction follows with analogous arguments. U

2.2 Analysis of controllability properties

We now want to clarify the structure of these sets. In this analysis we derive the technical
auxiliary results for R(¢) and only state the main results for both R(¢) and C(t).

Lemma 2.5 (i) For all ¢ > 0 the set R(¢) is a subspace of R".
(ii) R(t) = R(s) for all s,t > 0.

Proof: (i) We have to show that for 1, 22 € R(t) and o € R the relation o(z1+22) € R(?)
holds. For z1, x9 in R(t) there exist control functions u;, ug € Y with

t
x; = x(t;0,u;) = / eA(t_S)Bui(s)ds.
0
Hence, for u = a(u; + u2) we obtain

t t
z(t;0,u) = / eA=9) Bu(s)ds = / A=) Ba(uy (s) + ua(s))ds
0 0

t t
= a(/ eA(ts)Bul(s)ds—i-/ eA(tS)BuQ(s)ds> = oz + z2),

0 0
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implying a(x1 + 22) € R(t). This proves (i).

(ii) We give a direct proof here. Independently of this proof the statement also follows
from Theorem 2.12.

We first show the auxiliary result

R(t1) C R(t2) (2.2)
for 0 < t1 < to: If y € R(t1), then there exists u € U with

x(t1;0,u) = y.
Then with the new control 4 = 0&;,_4, u(t; — ta + -) Corollary 1.10 yields

m(tQ;O,ﬁ) = x(tz;tg — tl,x(tg — tl;0,0),ﬂ,) = :Zi(tg;tg — tl,o,ﬁ) = a:(tl;O,u) =1,
N———

=0
which implies y € R(t2).

Next we show that for any 0 < ¢; < to the identity R(t1) = R(t2) implies the identity
R(t1) = R(t) for all t > t;. In order to prove this, let x € R(2ty — t1), i.e. we assume that
there is u € U with x = x(2ta — 1,0, u).

Since z(t2,0,u) € R(t2) and R(t2) = R(t1), there exists a v € U with z(t1,0,v) =
x(t2,0,u). Defining the control function w = v&y, u(ta — t; + -), Corollary 1.10 yields

x(t2,0,w) = x(ta,t1,2(t1,0,v),w)
—_——

:x(t2707u)

= x(ta+ta —t1,t1 +ta —t1,x(t2,0,u), w(ts —ta + -))
—————

=u(-)
= x(2ty —t1,0,u) = .

Hence, we obtain = € R(t2) and consequently R(t1) = R(t2) = R(2ta — t1) = R(2(t2 —
t1) +t1). Repeating this construction inductively yields R(t1) = R(2¥(ty — t1) +t1) for all
k € N and thus because of (2.2) the claimed assertion R(t;) = R(t) for all ¢ > ¢;.

Now we show the assertion (ii): For this purpose, let s > 0 be arbitrary and consider an
increasing sequence of times 0 < sy < ... < Sp4+1 = 8. Then according to (2.2) the sets
R(s0),--.,R(sp+1) form an increasing sequence of n + 2 subspaces of R™. In particular,
R(sg+1) # R(sk) implies dim R(sgy1) > dim R(sx)+ 1. Hence, if all the R(sy) are pairwise
different, we obtain dim R(sp+1) > n+ 1. This, however, contradicts R(s,+1) € R", which
means that at least two of the sets R(sx) must coincide. Then the previous considerations

imply R(t) = R(s) for all t > s and since s > 0 was arbitrary, this yields the assertion
(ii). g

Remark 2.6 Since we just proved that the sets R(¢) do not depend on ¢ for ¢t > 0, in the
sequel we usually write R instead of R(t). o
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Remark 2.7 The combination of Lemma 2.2 and Lemma 2.5 thus shows that the set of
states that are reachable from an arbitrary initial state x¢g € R™ at time ¢ > 0 is the affine
subspace

x(t;x0,0) + R,

whose dimension equals the dimension of R. Note that this set is in general not independent
of t. One exception is the case where R = R", since this implies x(¢; xo,0) + R = R™. In
this case every state xg can be controlled into every other state x;, which is why in this
case we call the system completely controllable or, short, simply controllable. O

As we saw in the exercises, even for relatively simple control systems the direct computation
of R and C by means of their definition can be challenging. As a remedy we will now derive
a simple characterization of these sets. To this end, we need some tools from linear algebra.

Definition 2.8 (i) A subspace U C R" is called A-invariant for a matrix A € R™"  if
Av € U for all v € U (or, briefly, AU C U).

(ii) For a subspace VC R™ and A € R™*", by
(Alv)
we denote the smallest (with respect to its dimension) A-invariant subspace of R™ that

contains V. o

Note that such a smallest subspace exists and is unique: on the one hand the space R itself
is an A-invariant subspace that contains V. Since the dimension is finite, this implies that
there also exists such a space with minimal dimension. On the other hand, assume there are
several different such subspaces with minimal dimension. Then one easily checks that their
intersection is again an A-invariant subspace that contains V. Since this intersection has a
lower dimension than the spaces that were intersected, this contradicts the minimality of
their dimension.

Lemma 2.9 For a subspace V' C R™ and A € R™" the identity
(AIVY)=V 4+ AV + ... + A"V

holds.

Proof: “O”: The A-invariance of (A|V') and the fact that V' C (A|V) imply
ANV C(A|V)

for all k € Ng and thus (A|V) DV + AV +...+ A" 1V,

“C”: It suffices to show that V + AV + ... 4+ A" 'V is A-invariant, since then V C
V + AV + ...+ A"V immediately implies (A|V) CV + AV + ...+ A"~ 1V,

In order to prove A-invariance, consider the characteristic polynomial of A

xA(z) =det(zld — A) = 2" + 12"+ ...+ a1z + ao.
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By the theorem of Cayley-Hamilton, x 4 satisfies
xa(A) =A™ +a, 1 A" £ 4 a1 A+ apld = 0,

implying
A" = —an_lAn_l i alA - aold.

Thus, any v € V + AV + ...+ A"V can be written as v = v+ Av; + ...+ A" v, _; for
Vg, -+, Up—1 € V. This implies

Av = Avg+ A%v1 4 ...+ A,
= Avyg+ AQUl — an_lAnfl’Un_l — ... —a1AVy_1 — agUp—1
= g+ A1+ ... —|—An_11~)n_1

for suitable @g,...,7n—1 € V. From this we obtain Av € V + AV + ...+ A"V, ie.,
A-invariance. O

We will now consider the special case in which V' = im B is the image of the matrix B. In
this case Lemma 2.9 says that

(Alim B) = {Bxo+ABx1+.. +A" "Bz, 1 |20,...,an1 €ER™} =im(BAB ... A" 'B),

where (BAB ... A""1B) ¢ R*(mn),

Definition 2.10 The matrix (B AB ... A" 'B) € R™ (™" is called controllability matriz
of the system (1.3). o

In the sequel for ¢ € R we use the notation
t
Wy = / e BBT (eA™) T dr.
0

Observe that W; € R™*™ and W; is thus a linear operator on R"™. The matrix W; is called
controllability Gramian and is symmetric and positive semidefinite, because

¢
T Wi = / zTeA"BBT (e 2z dr > 0.
0

=[IBT (eA7) T[>0

The image im W; of this operator is described by the following lemma.
Lemma 2.11 For all ¢ > 0 the identity (A|im B) = im W} holds.

Proof: We show (A |im B)t = (im W;)*.
“C”: Let € (A]im B)*, i.e. 27 A¥B = 0 for all k € Ny. Then
X 1k, T Ak
t'xt AFB
zTeMB = Z L2

k!
k=0
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and thus 27 W, = 0, hence = € (im W;)*.
“D7: Let « € (im W;)* for some t > 0. Then

t
0=al W= / | BT (eA) T z||2dr,
0
which because of the continuity of the integrand implies 27e4™ B = (BT (eA7)Tz)T = 0.
Successively computing the derivatives of 27 Be'™ with respect to 7 yields
T Ak B =0

for all k € Ng. For 7 = 0 this implies 27 A*B = 0, i.e. z € (im A*B)* for all k € Ny and
hence z € [im (BAB ... A" 'B)]* = (A|im B)*. 0

The following theorem is our main result on the structure of the reachable and controllable
sets.

Theorem 2.12 For the system (1.3) and all ¢ > 0 the identities
R(t) =C(t) = (A|im B) =im (B AB ... A" 'B)

hold.

Proof: The identity (A|im B) = im (B AB ... A" B) was already shown in the compu-
tation before Definition 2.10. We show R(t) = (A |im B) for each ¢ > 0 (which provides an
alternative proof for the fact that R(¢) is independent of t). The statement for C(¢) then
follows by time reversal with Lemma 2.4, since (A|im B) = (—A|im — B).

“C”: Let x = x(t;0,u) € R(t). Then the general solution formula states that
¢
x = / A7) Bu(r)dr.
0

Now for all 7 € [0, ¢] the definition of (A |im B) implies

e _ \k
AT Bu(r) =) (t va) A¥Bu(r) € (A]im B)
k=0 )

and hence also x € (A |im B), since integration over elements from a subspace yields again
an element from this subspace.

“D”: Let x € (A|im B) and t > 0 be arbitrary. Then by Lemma 2.11 there exists z € R"
with = = Wz, If we define u € U as u(7) := BT (A=) for T € [0,1], then we get

t
x(t;0,u) = / AT BB (AN 2dr = Wiz =
0

and thus z € R(t). U

Note that this proof is constructive: It provides an explicit formula for the control function
u that steers 0 to x.



2.2. ANALYSIS OF CONTROLLABILITY PROPERTIES 17

Corollary 2.13 (Kalman criterion) The system (1.3) is completely controllable if and
only if
rg(BAB ... A" 'B) = n.

In this case the matrix pair (A, B) is called controllable. a
If (A, B) is not controllable, then after suitable coordinate change of the state space R™ the

pair (A, B) can be decomposed into a controllable and a non-controllable part, according
to the following lemma.

Lemma 2.14 Let (A, B) be not controllable, i.e., 7 := dim(A|im B) < n. Then there

exists an invertible matrix 7' € R™*™, such that A = T~'AT and B = T~ B have the form

[ A1 A = _( B

NCEINEL
with A; € R™", Ay € R A3 ¢ R=1)x(=1) " B e R™™ and the pair (A1, By) is
controllable. In particular, after the coordinate change with T the system has the form

,é’l(t) = Alzl(t)+A222(t)+Blu(t)
732(15) = Agzg(t)

with z1(¢) € R", 29(t) € R"™" and the z;-subsystem is completely controllable.

Proof: Exercise.

Recall that the characteristic polynomial of a matrix does not change under coordinate
transformations. This implies

xA(z) = det(zld — A) = det(z1d — /T) = det(zId — A;) - det(zId — A3) = x4, (2) - x45(2)-

This motivates the following definition.

Definition 2.15 We call x4, the controllable and x4, the non-controllable part of the
characteristic polynomial x 4. a

The following theorem yields alternative characterizations of controllability, which do not
require the explicit computation of the controllability matrix. Therein (AMd — A|B) €
R™*("+m) denotes the matrix that results from writing the matrices \Id — A and B beside
each other.

Theorem 2.16 (Hautus criterion) The following conditions are equivalent:

(i) (A, B) is controllable
(ii) rgMld—A|B)=nforall A e C
(iii) rg(Ad — A| B) = n for all eigenvalues A € C of A
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Proof: We first prove “(ii) < (iii)” and then “(i) < (ii)”.
“(ii) = (iil)”: immediately clear

“(ii) < (iii)”: Consider a A € C that is not an eigenvalue of A. Then det(Ald — A) # 0,
implying rg(Ald — A) = n. This proves (ii), since rg(Ald — A | B) > rg(A\ld — A).

“(i) < (ii)”: We show this implication by contraposition, i.e. we prove “not (i) < not (ii)”.
“not (i) <= not (ii)”: If (ii) does not hold, then there is a A € C with rg(Ald — A|B) < n.
Hence there is p € R", p # 0 with p” (Ald — A| B) =0, i.e.,

pT A= X\p" and p" B = 0.
The first identity implies p” A¥ = A*p”" and thus

pTA*B = FpT'B =0

for K = 0,...,n — 1. Hence we obtain p”(BAB ... A""'B) = 0, from which we can
conclude rg(B AB ... A" 1B) < n. Thus, (A, B) is not controllable.
“not (i) = not (ii)”: If (A, B) is not controllable, then by Lemma 2.14 there exists the

transformation
~ A A ~ B
-1 1 2 1 1
A=T AT—(O 3), B=T B_<O)

with coordinate transformation matrix 7.
Now let A € C by an eigenvalue of A with eigenvector v. Then we get v (AId — A3) = 0,
which for w? = (0,v7) implies

wl(Ald — A) = (0T (A — A;) + 070, 07(—Az) + T (AId — 43)) = 0

and

Using p” = wTT~! # 0 we thus obtain
p'ANd—A|B)=w"T7'(AMd— A|B) = (w" (A\ld — A)T~' |w”B) = 0,
which shows that (ii) does not hold. U

Remark 2.17 For discrete time systems (1.4) with U = R™ the conditions for complete
controllability are completely identical. There is, however, one important difference: While
controllability in continuous time implies controllability in arbitrary short time, in discrete
time in the worst case one needs up to m time steps to reach a given state z;. As an
example consider the system

x(k+1):<8 é)x(k)—k(?)u(k)

0 1
10
complete controllability. Yet, in order to control the system from (0,0)” to (1,1)7 we need
at least two time steps. Thus, in discrete time Lemma 2.5 only holds for times s, > n.
u]

with 2 € R? and u € R. Here we have (B AB) = ( ), which has full rank, implying



Chapter 3

Stability and stabilisation

In this chapter we will consider the problem of stabilising linear control systems. Before
we address this problem, we have to clarify what we mean by stability.

3.1 Definitions

In this and in the following two sections we recall important results from the stability
theory of linear time-invariant differential equations (1.8)

i(t) = Ax(t).

The exposition is relatively short. A more comprehensive treatment can be found in most
textbooks on ordinary differential equations. We limit ourselves to the stability of equilib-
ria.

Definition 3.1 A state z* € R" is called equilibrium (also steady state or fized point) of
an ordinary differential equation, if the corresponding solution satisfies

xz(t;x*) = 2" for all t € R.

We have already used equilibria without formal definition in the introductory chapter. It
is easy to verify that a state x* is an equilibrium of a time-invariant differential equation
z(t) = f(x(t)) if and only if f(2*) = 0. Thus, for the linear differential equation (1.8)
the point x* = 0 is always an equilibrium. This equilibrium x* = 0 will be studied in the
following analysis.

Definition 3.2 Consider the equilibrium z* = 0 of the linear differential equation (1.8).

(1) The equilibrium z* = 0 is called stable, if for every € > 0 there exists a 6 > 0 such that
the inequality
|x(t; x0)|| < e forallt>0

19
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holds for all initial conditions xy € R™ with ||z| < 6.

(ii) The equilibrium z* = 0 is called locally asymptotically stable, if it is stable and moreover

tlgIolo z(t; o) =0

holds for all initial conditions zy from an open neighbourhood N of x* = 0.

(iii) The equilibrium z* = 0 is called globally asymptotically stable, if (ii) holds with N =
R™.

(iv) The equilibrium z* = 0 is called locally respectively globally exponentially stable, if
there exist constants ¢, 0 > 0 such that the inequality

|2 (t; 20) || < ce”7|xo]| for all t >0

holds for all zg from a neighbourhood N of z* = 0, with N = R"™ in the global case. o

Remark 3.3 The stability property from (i) is also called “stability in the sense of Lya-
punov”, since this concept was introduced at the end of the 19th century by the Russian
mathematician Alexander M. Lyapunov. Note that the definitions immediately lead to the
implications

(locally /globally) exponentially stable = (locally/globally) asymptotically stable = stable .

The second implication follows directly from the definitions. The fact that exponential
stability implies asymptotic stability can be seen as follows:

For a given € > 0 property (i) follows with § = £/¢, because for ||xg|| < 0 this implies the
inequality ||z(t;z0)|| < ce™|xo|| < ¢||lzo|| < e. The convergence required in (ii) follows
obviously from (iii). O

3.2 Eigenvalue criteria

The following theorem provides criteria for the matrix A which allow to check the stability
properties of the equilibrium z* = 0 (1.8) easily.

Theorem 3.4 Consider the linear time-invariant differential equation (1.8) for a matrix
AeR™™ Let A\,..., g € C, \; = a; + ib;, be the eigenvalues of A, which are numbered
such that each eigenvalue A; corresponds to a Jordan block J; in the Jordan canonical form.
Then:

(i) The equilibrium z* = 0 is stable if and only if all eigenvalues \; have non-positive real
part a; < 0 and for all eigenvalues with real part a; = 0 the corresponding Jordan block J;
is one-dimensional.

(ii) The equilibrium z* = 0 is locally asymptotically stable if and only if all eigenvalues \;
have negative real part a; < 0. In this case A is called a Hurwitz matriz or briefly Hurwitz.
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Sketch of the proof: First one verifies that all stability properties are invariant under
linear coordinate transformations 7' € R™*", since the solutions y(t;yo) of the transformed
system are given by

y(t;yo) = T a(t; Tyo).

It is thus sufficient to check the stability properties for the Jordan canonical form of A
given by

Ji 0 0
J_ 0 0
0 0
0 0 Jy
with Jordan blocks of the form
N1 0 0
0 XN 1
Jl = : 0 s (3.1)
. . . )\l 1
0 -+ - 0 N

with 7 = 1,...,d. We denote the solutions of 4(t) = Jz(t) again with z(¢; xo).

From the properties of the matrix exponential it follows that the solution

z(t; z0) = e’lxg
is of the form
eit 0
x(t;xo) = 0 R 0 o
0 - 0
0 0 elat
One further checks that
t2 tm—l
Lt 5 Tm=1)1
0 1 t
ev]lt — eAlt ﬁ ,
2!
: - . 1 t
0 -+ - 0 1

where et denotes the usual scalar exponential function, which satisfies

— 0, a; <0
]eAlt| = et =1, a;=0
— 00, a; >0

for t — oo.
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The entries of e/t are thus bounded if and only if the condition from (i) holds. Since,

moreover, for any £ € N and any € > 0 there is ¢ > 0 with

Utk < celatelt, (3.2)

Jit

the entries of e”t* converge to 0 if and only if the condition from (ii) holds.

Via the matrix-vector multiplication e’!x( this property of the matrix entries carries over
to the solution. Thus, the conditions in (i) and (ii) are equivalent to the respective stability
conditions. U

In fact, the proof of (ii) shows global exponential stability, since the entries in (3.2) converge
to 0 exponentially fast. The consequence of this fact is stated explicitly in the following
theorem.

Theorem 3.5 Consider the linear time-invariant differential equation (1.8) for a matrix
A e R™™ and let A\1,..., g € C, \j = a; +1ib;, be the eigenvalues of A. Then the following
four properties are equivalent.

(i) All eigenvalues A; have negative real part a; < 0, i.e. the matrix is Hurwitz.
(ii) The equilibrium z* = 0 is locally asymptotically stable.
(iii) The equilibrium z* = 0 is globally exponentially stable. Here the constant o > 0 from

Definition 3.2(iv) can be chosen arbitrarily from the interval (0, — max;—1 4 a;).

(e

(iv) The norm of the matrix exponential satisfies ||e4?|| < ce™* with o as in (iii) and a

constant ¢ > 0 depending on the choice of o.

Proof: (iii) = (ii) follows from Remark 3.3, (ii) = (i) follows from Theorem 3.4(ii) and (i)
= (iii) was shown in the proof of Theorem 3.4(ii). Finally, (iii) < (iv) follows immediately
from the definition of the induced matrix norm (and holds for all norms in R"*" because
they are all equivalent). U

Example 3.6 We consider the linear pendulum model from Chapter 1 for u = 0 and
neglecting the cart. The linearisation in the lower (= down hanging) equilibrium z* = 7

yields
0 1
4= ( —g —k )

1 1
A1/2 = _iki 5\/ k2 —4g

Here /k? — 4g is either complex or < k. In both cases we obtain ReA;/p < 0 and thus
exponential stability.

with eigenvalues

The linearisation in the upper (= upright or inverted) equilibrium z* = 0 reads

=(5 )
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Here one computes the eigenvalues

1 1 5—
)\1/2:—5145:'25 k2+4,

of which, because of \/k% + 4g > k, the larger is always positive. Thus, we do not obtain
stability. a

Remark 3.7 For discrete-time systems Theorem 3.5 remains essentially the same. How-
ever, in (i) the condition “real part a; < 0” changes to “modulus |A;| < 1”7 and in (iv) the
inequality ||e4?|| < ce™?* becomes ||A*|| < ce™@. A matrix for which all eigenvalues satisfy
the inequality |\;| < 1 is called Schur-stable. o

3.3 Lyapunov functions

In this section we will introduce an important tool for studying asymptotically stable differ-
ential equations, the so-called Lyapunov functions. Asymptotic and exponential stability
only demand that the norm ||z(¢)|| of the solution tends to 0 for ¢ — oco. For many an-
alytical purposes it would, however, be much more convenient if the norm was strictly
decreasing in ¢t. This is, of course, not true in general. However, we can obtain strict
monotonicity if we replace the norm ||z(t)|| by a more general function. This is precisely
the purpose of the Lyapunov function.

For linear systems we can restrict our consideration to so-called quadratic Lyapunov func-
tions, as given by the following definition.

Definition 3.8 Let A € R™*". A continuously differentiable function V : R" — ]Rar is
called a (quadratic) Lyapunov function for A, if there are positive real constants c1, ca, 3 >
0 such that the inequalities

allz|® < V(z) < eaflz)?

and
DV (x)Az < —03||a:H2

hold for all z € R™. o

The following theorem shows that the existence of a quadratic Lyapunov function implies
exponential stability of the corresponding differential equation.

Theorem 3.9 Let A € R™™ " be a matrix and z(¢; xo) the solutions of the corresponding
initial value problem (1.8), (1.9). Then, if there exists a quadratic Lyapunov function with
constants ¢y, co, cg > 0, then the solutions satisfy the estimate

o (t; o) | < ce™" |0

for 0 = ¢3/2cy and ¢ = \/ca/cq, i.e., the equilibrium z* = 0 is exponentially stable and the
Matrix A is Hurwitz.
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Proof: From the condition on the derivative DV we conclude for = = z(7, xo) that

d

p V(z(t;z0)) = DV (2(7;20)) i (75 20) = DV (2(7; 20)) Az (5 20) < —e3|2(75 20) ||

t=1
Since —||z||> < —V(x)/ca, for A\ = c3/ca this implies the inequality

%V(gg(t; x0)) < =AV(x(t; z0)).

This differential equation implies the inequality
V(x(t;x0)) < e MV (1),

(cf., e.g., the proof of [1, Satz 8.2]). Using the inequalities for V' (z) we thus obtain
2 1 €2 _xt 2
[@(t; x0)[|” < —e™ "V (xo) < —e ™o
C1 C1

and hence by taking the square root on both sides
o (t; o) || < ce™ |||

for c = /ca2/c1 and o = \/2. U
We will now look at the particular class of Lyapunov functions, in which V' is given by a
bilinear form z” Px with P € R™*",

We recall that a matrix P € R™*" is called positive definite if 7Pz > 0 holds for all
x € R™ with & # 0. The following lemma summarises two properties of bilinear forms.

Lemma 3.10 For P € R™*" it holds: (i) There exists a constant ca > 0 such that
—co||z]|? < 2T Pz < ¢o)|z||? for all z € R™.
(ii) P is positive definite if and only if there exists a constant ¢; > 0 with

c1l|z||* < 2T Pz for all z € R™.

Proof: The bilinearity implies for all z € R with z # 0 and y = z/||z|| the identity

T Pz = ||z|*y" Py. (3.3)
Since yTPy is continuous in y € R™, it assumes its minimum cpj, and maximum cpax on
the compact set {y € R" |||y = 1}.
(i) Inequality (i) now follows from (3.3) with co = max{cmax, —Cmin}-

(ii) If P is positive definite, it follows that c¢pmin > 0 and (ii) follows with ¢; = cpin.
Conversely, positive definiteness of P follows immediately from (ii), thus we obtain the
claimed equivalence. U

This leads us to the following conclusion.
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Lemma 3.11 Let A, P € R™" and c¢3 > 0 be such that the function V(z) = 27 Pz
satisfies the inequality
DV (z)Azx < —c3||z||?

for all z € R™. Then P is positive definite if and only if A is Hurwitz. In this case V is a
quadratic Lyapunov function.

Proof: If P is positive definite, Lemma 3.10(ii) immediately implies that V' is a quadratic
Lyapunov function, which by Theorem 3.9 yields that A is Hurwitz.

If P is not positive definite, then there exists z¢o € R™ with 2y # 0 and V(zy) < 0. Since
two different solutions of the differential equation cannot intersect, the solution z(t;z)
with zg # 0 can be 0. Thus the assumption on DV implies that V(x(t;z¢)) decreases
monotonically for all ¢ > 0. Particularly, there exists ¢ > 0 such that V(z(¢;20)) < —c for
all ¢ > 1. Using the first estimate from Lemma 3.10(i) we then obtain that

|2 (t; 20)||? > ¢/ca > 0 for all £ > 1.
Hence z(t; xo) does not converge to 0, thus * = 0 is not exponentially stable and conse-
quently A is not Hurwitz. U

We can rewrite the assumption on DV if we exploit the bilinear Form of the Lyapunov
function.

Lemma 3.12 For a bilinear function V(z) = 2! Pz the following two statements are
equivalent:

(i) DV (x)Az < —cs|x||? for all x € R™ and a constant c3 > 0
(ii) The matrix C = —ATP — PA is positive definite.

Proof: Since 27 Py = y"PTz, we get d%(xTPy)A$ = %(yTPT@Am = yT'PT Az =
2T AT Py. This implies by using the product rule

DV (x)Az = 2T AT Pz + 2" PAx = 2T (ATP + PA)x = —2"Cx.
Condition (i) is this equivalent to
tT'Cx > c3|z|? for all z € R™.
Because of Lemma 3.10 (ii) this condition is satisfied for some c¢3 > 0 if and only if C is
positive definite. U

The equation in Lemma 3.12 (ii) is known as Lyapunov equation. It is a natural idea to
use this equation for the construction of Lyapunov functions. The question thus is whether
for a given matrix A and a given positive definite matrix C' we can find a positive definite
matrix P that solves AT P + PA = —C. The following lemma answers this question.

Lemma 3.13 For any matrix A € R™"*™ and any positive definite matrix C' € R™*" the
Lyapunov equation
ATP+ PA=-C (3.4)

has a positive definite solution P € R™ " if and only if A is Hurwitz. In this case, the
solution P is unique.
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Proof: If a positive definite solution P of (3.4) exists, then by Lemma 3.12 and 3.11 the
function V(z) = 27 Pz is a quadratic Lyapunov Function. Thus, by Theorem 3.9 A is
Hurwitz.

Assume conversely that A is Hurwitz and C' is positive definite. We first show that (3.4)
has a solution. Without loss of generality we can assume that A is in Jordan canonical
form, since it is easily seen that P solves (3.4) if and only if P = (T—1)T PT~! solves

AP+ PA=—(T"HTcT™!

for A=TAT~'. We may thus assume that A is of the form

o B 0 0
0 a po
A=l o o | (35)
. : - Qp—1 P
0 - . 0 an

where the «; are the eigenvalues of A and the §; are either 0 or 1. Writing the columns of
P on top of each other into a large column vector p € R and does the same for C and a
vector ¢, equation (3.4) is equivalent to a linear system of equations

Ap=—c,

with A € C""*"*, If A is of the form (3.5), by computing the coefficients one sees that A
is a lower triangular matrix of the form

a0 0 0
* Q9 0
A= 0
O_én2_1 0
* * Q2

Here * denotes arbitrary values while the values a; are of the form a; = \j + Ag, with \;
being the eigenvalues of A. It is now known from linear algebra that

(i) the elements on the diagonal of a triangular matrix are its eigenvalues
(ii) a matrix is invertible if and only if none of its eigenvalues equals zero.

Since A is Hurwitz all \; have negative real part. Consequently, all the a; have negative
real part, too, and are thus non-zero. i.e. because of (i) and (ii) the matrix A is invertible.

Hence, there is exactly one solution of the equation Ap = ¢ and thus exactly one solution
P of the Lyapunov equation (3.4).

It remains to be shown that this solution P is positive definite. Because of Lemma 3.12
this matrix P satisfies all assumptions of Lemma 3.11. Since A is Hurwitz, by Lemma 3.11
P must be positive definite. U

The following theorem summarises the main result of this section.
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Theorem 3.14 Consider A € R™*™. Then a quadratic Lyapunov function for the linear
differential equation (1.8) exists if and only if z* = 0 is exponentially stable, i.e. if A is
Hurwitz.

Proof: Assume a quadratic Lyapunov function V exists. Then by Theorem 3.9 the matrix
A is Hurwitz.

Conversely, let A be Hurwitz. Then by Lemma 3.13 there exists a positive definite Matrix
P that solves the Lyapunov equation (3.4) for a positive definite matrix C. Then, because
of Lemma 3.12 and Lemma 3.11, V(z) = 27 Pz is a quadratic Lyapunov function. U

The existence of a quadratic Lyapunov function is thus a necessary and sufficient condition
for the exponential stability of the equilibrium z* = 0. It yields a characterization that is
equivalent to the eigenvalue condition from Theorem 3.5.

Example 3.15 For the linearisation of the pendulum model in the lower equilibrium with

A:<—09 —1k>

is the bilinear Lyapunov function for C' = Id given by the matrix

k2+g2+g L
29k 2
P= g 7.
1 g+1

2g 2gk
O
Remark 3.16 For discrete time systems the inequality in Definition 3.8 changes to
V(Az) — V(z) < —c3|z|?.
Due to this, the Lyapunov equation (3.4) becomes
ATpA—P=—C. (3.6)
With these changes, all results in this section remain valid. a

3.4 The stabilisation problem for linear control systems

We now have all the technical tools to tackle the stabilisation problem for linear control
systems. In the exercises we have seen that a pre-computed control function u(t) on a
large time horizon does in general not work reliably for steering the system into a desired
set point (for instance 0) and holding it there. Even the very small errors that occur in
an accurate numerical simulation were enough to drive the system away from the desired
point.

We therefore pursue a different approach. Instead of using an open-loop control that
depends on t, we use a closed-loop control which computes the control value from the
current state according to the formula u(t) = F(x(t)), for a function F' : R" — R™ that
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needs to be determined. Such a function, which assigns a control value to each state, is
called a feedback law (also state feedback law, (feedback) controller or regulator). Since our
system is linear. it appears natural to choose the feedback law also as a linear map, i.e.,
u = Fzx for a matrix F' € R™*". This has the advantage that the resulting closed-loop
system

z(t) = Ax(t) + BFz(t) = (A+ BF)z(t)

is a linear time-invariant differential equation, to which the theory from the previous sec-
tions applies. We denote the solutions of the closed-loop system by x(¢, zg, F').

To control the state of the system 0 and keep it there, we can solve the following stabilisation
problem.

Definition 3.17 Consider a linear control system (1.3)
z(t) = Az(t) + Bu(t)

with matrices A € R"*", B € R"*™. The (feedback) stabilisation problem for (1.3) consists
in finding a linear map F' : R” — R™ (or, equivalently, the corresponding matrix F €
R™*™) such that the equilibrium z* = 0 is asymptotically stable for the resulting closed-
loop system, i.e. for the linear ordinary differential equation

i(t) = (A+ BF)z(t).

The following lemma is an easy consequence of our criteria for asymptotic stability.

Lemma 3.18 Consider two matrices A € R™" and B € R™ ™. Then the matrix F' €
R™*"™ golves the stabilisation problem, if and only if all eigenvalues of the matrix A+ BF €
R™ ™ have negative real part.

Below we will investigate when — for given matrices A and B — such a matrix F' exists
and how it can be computed. Before this, we consider a simple example.

Example 3.19 As a simple and intuitively solvable example for a stabilisation problem
we consider a (very simple) model for the regulation of heating. Assume we want to control
the temperature x; at a fixed point in a room, where it can be measured. To simplify the
problem we shift the temperature scale such that the desired temperature is 2} = 0'. The
room contains a heating device with temperature xy, which we can control. More precisely,
we assume that the change of x5 depends on the flow rate of the hot water through the
heating device, which is controlled by w. This leads to the differential equation &2 (t) = u(t).
In other words, the control value u causes the temperature to increase (for u > 0) or to
decrease (if (u < 0). For the temperature z; in the fixed point we assume that it satisfies

1One should thus think of z; as the deviation from the desired temperature rather than of an absolute
value.



3.4. THE STABILISATION PROBLEM FOR LINEAR CONTROL SYSTEMS 29

the differential equation @1(t) = —x1(t) + x2(t). This means that for constant heating
temperature xo we obtain

z1(t) = e tz1(0) + (1 — e Hao(0),

i.e. the room temperature x; converges exponentially to the temperature xs of the heating
device.

This modelling leads to the control system

i(t) = ( e ):U(t)—l— ( ; >u(t).

A very intuitive regulation strategy is now the following: If 1 > 27 = 0, we reduce the
temperature in 2, i.e. we choose u < 0. In the opposite case, i.e. if z1 < 2] = 0, we increase
the temperature xo by choosing u > 0. Since our feedback law should be linear, this can
be achieved by setting F'(z) = —Az; for a A > 0, or, in matrix notation F' = (=X, 0)
(observe that here we have n = 2 and m = 1, implying that F' is a 1 x 2 matrix, i.e., a
two-dimensional row vector). This gives us the closed-loop system

i(t) = ( :i (1) >x(t).

Computing the eigenvalues of this matrix for A > 0 reveals that all real parts are negative.
Hence we have — inadvertently — solved the stabilization problem and consequently for
arbitrary initial values the temperatures x1(t) and z2(t) converge to 0 exponentially fast.
In particular, x; converges exponentially fast towards the desired temperature ] = 0.
This proves that our intuitively designed feedback controller achieves the desired result.

If we can measure the temperature zo at the heating device, then we could also choose
F(z) = —Aza, or, in matrix notation, F' = (0, —\) as feedback law. Again by computing
the eigenvalues one sees that the closed-loop system is exponentially stable for all A > 0.
The behaviour of the system for the two different feedback laws is quite different, though.
We will investigate this in the exercises. o

Remark 3.20 In practice, the state z(t) of a system can often not be measured completely.
Rather, one only has access to a vector y = Cz of output values, for a matrix C' € R¥". In
this case the feedback can only depend on the output vector y. The corresponding concept
is called an output feedback.

This is actually similar to what we did in the example above, because we only used infor-
mation from z(t) or xa(t), in the feedback law, but not both. In the rest of this chapter
we will assume that the entire vector x(t) is accessible and can be used in the feedback
law. The general case will then be addressed in Chapter 4. o
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3.5 Solution of the stabilisation problem with one-dimensional
control

In this section we investigate conditions under which we can find a solution for the stabil-
isation problem from Definition 3.17 with one-dimensional control. In particular we will
give a necessary and sufficient condition on the matrices A und B in (1.3), under which the
problem is solvable. The individual steps of this derivation provide a constructive method
for computing the desired stabilising feedback law F'.

In this derivation coordinate transformations will again play an important role. A coordi-
nate change with transformation matrix 7' € R™*" transforms the original control system

i(t) = Ax(t) + Bu(t) (3.7)
into the form
i(t) = Az(t) + Bu(t) (3.8)

with A = T~1AT and B =T 'B. A feedback law F for (3.7) can be transformed into a
feedback law for (3.8) via F' = FT; this follows immediately from the identity 7*(A +
BF)T = A+ BF that the transformed system needs to satisfy.

We already saw in Lemma 2.14 that a pair (A, B) can be transformed into the form

T A1 A2 o By
(v ) =)

with controllable pair (A4, B1) and non-controllable rest.

Here we need yet another coordinate change, which holds for controllable systems with
one-dimensional control w. In this case we have m = 1, i.e., B € R™!. This means that
the matrix B is an n-dimensional column vector.

Lemma 3.21 Consider A € R"*" and B € R™ . Then the pair (A, B) is controllable if
and only if there is a coordinate transformation S with

0 1 - 0 0
A=5tas=| + &+ - and B =SB =
a] Qg O 1

Moreover, for A in this form, the values a; € R are the coefficients of the characteristic

polynomial of A and hence of A, written in the form y4(z) = 2" — 2" ' - — oz — .

Proof: We start by proving that for matrices A in the form of the lemma the values a; are
indeed the coefficients of the characteristic polynomial. We prove this claim by induction
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over n: For n = 1 the claim is immediately clear. For the induction step let A,, € R™*™ by
of the form of the lemma and A, ;1 € R™*"™ be given by

@

If we compute det(zIdgn+1 — Ap41) according to the first row, we obtain

+1

XAn1 = 2XA,(2) =g = 2" — 2" — - — a1z — g,

which yields exactly the desired expression after renumbering the «;.

Let us now assume that S exists. Then by a direct computation one sees that

0

R=(BAB ... A" 'B) = : (3.9)

_ o O O

EE L N

*

where * denotes arbitrary values. This matrix has full rank, since by reordering the rows
(which does not change the rank of the matrix) we obtain an upper triangular matrix with
only ones on the diagonal. This is obviously invertible and thus has full rank. This implies
that (A, E) is controllable and since controllability persists under coordinate changes, the
pair (A, B) is controllable, too.

Conversely, assume that (A, B) is controllable. Then the matrix R = (BAB ... A" 'B) is
invertible and consequently R~! exists. We now first show that the equation R'AR = AT
holds. To this end, we show the equivalent identity AR = RA”. Using the theorem of

Cayley-Hamilton, this follows from the computation

AR = A(BAB ... A"'B)=(ABA?B ... A""'B A"B)
(ABA?B ... A" 'B 0, A" 'B+...+ a1 B)

0 - 0 o
1 - 0 a _
— (BAB...Av'B)| . ! | =RAT
0 - 1 ap

For R from (3.9) the analogous computation yields RAR = AT and thus

A=RATR™' = RRT'ARR™.
The definitions of R and R moreover imply R(1,0,..., 0)7 = B and ]?5(1, 0,...,007 = B,
hence RR™'B = B. Thus, S = RR™! is the desired transformation matrix. U

The form of the pair (g, E) achieved in 3.21 is called the controllable canonical form.
Observe that the coordinate transformation S can be computed based on the knowledge
of A, B and the coefficients of the characteristic polynomial of A.



32 CHAPTER 3. STABILITY AND STABILISATION

Using the controllable canonical form we can now proceed to solving the stabilisation
problem for u € R.

To this end, we first reformulate the stabilisation problem by means of characteristic poly-
nomials. This can be done for arbitrary dimensions of the control wu.

Definition 3.22 Consider a control system (1.3) with matrices A € R"*™ and B € R™*™.
A polynomial x is called assignable for the control system if there exists a linear feedback
law F' € R™*™ such that x = x4+ pr holds for the characteristic polynomial x 44 pr of the
matrix A+ BF. |

Since we know that the roots of the characteristic polynomial are exactly the eigenvalues of
the corresponding matrix, Lemma 3.18 immediately yields the following characterisation.

Lemma 3.23 Consider a control system (1.3) with matrices A € R™*™ and B € R™*™.
Then the stabilisation problem is solvable if and only if there exists an assignable polyno-
mial, for which all roots in C have negative real part.

The following theorem shows the relation between controllability of (A, B) and assignability
of polynomials.

Theorem 3.24 Consider a control system (1.3) with matrices A € R™" and B € R"*!,
i.e. with one-dimensional control. Then the following two properties are equivalent.

(i) The pair (A, B) is controllable.
(ii) Every polynomial of the form x(z) = 2" — 3,2" ! — - — Boz — By with f1,...,8, €R

is assignable.

Proof: (i) = (ii): Let (A4, B) be controllable and let S be the coordinate transformation
from Lemma 3.21. We define

F=Bi—a1 fr—as ... By—ay) € R

Then we obtain

0 1 0 0
IO S : 0
A+ BF = . . . : + . (51—0&1 ,82—042 Bn—ozn)
o o --- 1 :
ap Qg 7% 1
0 1 0 0 0
_ s S n : : : :
0o 0 --- 1 0 0
(oI I Br—oar Bo—az - Bn—ap
0 1 0
B 0 0 1
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Now the second assertion of Lemma 3.21 yields that x 3 +BF = X- Hence, after trans-

formation to original coordinates, F = FS~! is the desired feedback matrix, since the
characteristic polynomial of a matrix is invariant under coordinate transformations.

(ii) = (i): We show the implication “not (i) = not (ii)”:

Let (A, B) be not controllable. Let T' be the coordinate transformation from Lemma 2.14.
Then for any arbitrary feedback law F' = (F; F3) we obtain
A+ BF— A+ By A+ By \ 5
0 As

The characteristic polynomial of this matrix satisfies

Xf) = XA1+B1F1 XA;3-

Hence (recalling that (Aj, By) is controllable) the assignable polynomials are of the form
X = XkXu, Where Yy, is an arbitrary normed polynomial of degree d and x, = x4,. This is
a strictly smaller set of polynomials than specified in (ii). Thus, (ii) cannot hold. U

Obviously, for the purpose of stabilization we do not need that every polynomial is assignable.
We only need to find an assignable polynomial, whose roots all have negative real parts.
The proof of Theorem 3.24 already suggests when this is possible.

Theorem 3.25 Consider a control system (1.3) with matrices A € R™*"™ and B € R™*!
i.e. with one-dimensional control. Let A; € R4 A, € Rix(n=d)  A; ¢ Rv=d)x(n=d) 4pq
B € R%*! be the matrices from Lemma 2.14 with the convention that A; = A and B; = B
in case (A, B) is controllable.

Then the assignable polynomials (1.3) are of the form x = xxx4,, where xy is an arbitrary
normed polynomial of degree d and x4, is the characteristic polynomial of the matrix As,
i.e. the uncontrollable part of the characteristic polynomial x4, cf. Definition 2.15. Here
we use the convention x4, = 1 if d = n.

In particular, the stabilisation problem is solvable if and only if all eigenvalues of A3 have
negative real part (the eigenvalues of A3 are also called the "uncontrollable eigenvalues”).
In this case we call the pair (A, B) stabilisable.

Proof: The first statement follows immediately from the second part of the proof of
Theorem 3.24. The statement about the stabilisation problem then follows from Lemma
3.23. 0

Remark 3.26 All statements of this section also hold for discrete-time systems if the
condition “the real part of the eigenvalue is less than 0” is replaced by ”the modulus of
the eigenvalue is less than 1”. a



34 CHAPTER 3. STABILITY AND STABILISATION

3.6 Solution of the stabilisation problem with multidimen-
sional control

The results for multidimensional control m > 1 are completely analogous to those for one-
dimensional control. A direct proof is, however, very technical, because we cannot use
Lemma 3.21. We will thus reduce the multidimensional case to the one-dimensional case
by using the following lemma, which is known as Heymann’s Lemma.

Lemma 3.27 Consider a control system (1.3) with matrices A € R"*" and B € R™*"™.
Let the pair (A, B) be controllable and let v € R™ be a vector with B = Bv # 0. Then
there exists a matrix F € R™*" such that the control system

i(t) = (A + BF)x(t) + Bu(t)

with one-dimensional control u(t) is controllable.

Proof: By means of the recursive definition ;11 := Ax; + Bu; with appropriate u; we first
construct linearly independent vectors x1, ..., z, € R™ which for all I € {1,...,n} satisfy

Az; e Vifori=1,...,0 =1 with V; = (z1,..., 7). (3.10)

In order to construct these vectors, set x1 := B (we can interpret the n x 1 matrix B as
column vector). Observe, that the property (3.10) is trivially satisfied for [ = 1 and every

x1 # 0.

For k € 1,...,n—1 and given linearly independent vectors x1, ..., xj, which satisfy (3.10)
for I € {1,...,k}, we now construct a vector zj1, such that x1,...,zx, xx11 are linearly
independent and (3.10) holds for [ € {1,...,k + 1}:

Case 1: Az, & Vi set up := 0 € R™ and xgy1 := Axg.

Case 2: Az € Vj: Since (3.10) holds, we obtain that Vj is A-invariant. From Chapter 2
we know that (A|im B) = im R with controllability matrix R = (B AB ... A" !B) is the
smallest A-invariant subspace that contains the image of B. Since (A, B) is controllable,
we have (A |im B) = R™. Since Vj, is now an A-invariant subspace with dimVj = k < n, it
cannot contain the image of B. Hence, there is u; € R™ with Axy + Buy & Vi and we set
Tpt1 = Azxy, + Buy.

We now construct the desired map F from the vectors 1, ..., z,. Since the x; are linearly
independent, the matrix X = (v; ... x,) is invertible and we can define F := UX !
for U = (uq,...,uy) € R™*™. Here the uy,...,u,—1 denote the control vectors used in

the recursion defining the z;, above, and u, := 0 € R™. This yields Fz; = u; and thus
(A+ BF)x; = ;11 fori=1,...,n — 1. Since B = x1 we obtain

(B (A+BF)B ... (A+BF)"'B) =X,
hence (B (A+BF)B ... (A+BF)" !B) has rank n, implying that the pair (A+ BF, B)
is controllable. U

With this result, Theorems 3.24 and 3.25 are easily generalised to arbitrary control dimen-
sions.
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Theorem 3.28 Consider a control system (1.3) with matrices A € R"*™ and B € R"*"™.
Then the following two properties are equivalent.

(i) The pair (A, B) is controllable.

(ii) Every polynomial of the form x(z) = 2" — 2" ' — -+ — Boz — B mit B1,...,0, €R
is assignable.

Proof: (i) = (ii): Let (A, B) be controllable and x be given. Let F' € R™™ and
B € R™! be the matrices from Lemma 3.27 for some v € R™ with Bv # 0 (note that
such a v € R" exists since (A, B) is controllable, which implies B # 0). Then the pair
(A + BF, B) is controllable and Theorem 3.24 implies the existence of a feedback matrix
Fy € RY" with

XA+BF+BFR — X

Since
A+ BF 4+ BF, = A+ BF + BuFy = A+ B(F +vFy)

we can define the desired feedback law as F = F + vF}.
(ii) = (i): Completely identical to the proof of Theorem 3.24. U

Theorem 3.29 Consider a control system (1.3) with matrices A € R"*" and B € R™*™.
Let A; € R¥xd A, ¢ RIx(n=d) A, ¢ R(n—d)x(n—d) and B; € R¥™ be the matrices from
Lemma 2.14 with the convention that A; = A and By = B if (A4, B) is controllable.

Then the assignable polynomials (1.3) are of the form y = xxXu, where i is an arbitrary
normed polynomial of degree d and x, is the characteristic polynomial of the matrix As.
Here we use the convention x4, =1 if d = n.

In particular, the stabilisation problem is solvable if and only if all eigenvalues of A3 have
negative real part. In this case we call the pair (A, B) stabilisable.

Proof: Completely analogous to the proof of Theorem 3.25. 1l

Remark 3.30 Theorem 3.29 is called pole shifting theorem, because the roots of the char-
acteristic polynomial are often called “poles” in control engineering (the reason will be
explained later in Remark 5.15). This theorem describes how these roots can be shifted by
means of a suitable choice of the feedback. a

We can now illustrate the main results for the stabilisation problem in the following
schematic way:
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(A, B) is controllable

{ (Theorem 3.28)

Every normed polynomial of degree n is assignable

There i ignabl
ere is an assignable o (4, B) is

polynomial, whose roots all Lemma 3.23 i
have negative real part ( )| stabilisable

{ (Theorem 3.29)

(A, B) is controllable
or
(A, B) is not controllable and As from Lemma 2.14 has only
eigenvalues with negative real part

If one replaces “negative real part” everywhere by “modulus less than 17, then these
statements remain valid for discrete-time systems.

3.7 Local stabilisation of nonlinear systems

In this section we show that a linear stabilizing feedback law can be used for the local
stabilisation of a nonlinear control system. The basis for this fact is the following theorem
from the theory of ordinary differential equations.

Theorem 3.31 Consider the nonlinear differential equation
& = g(z) (3.11)

with equilibrium z* € R” and continuously differentiable vector field g : R® — R". Con-
sider moreover the linearisation

~ ~ d
y = Ay with A = %g(x*) (3.12)

Then the equilibrium z* is locally exponentially stable for equation (3.11) if and only if
the equilibrium y* = 0 is globally exponentially stable for equation (3.12).
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A proof can be found, e.g., in [4, Satz 8.8].
Consider now the nonlinear control system
T = f(z,u)
with equilibrium (z*, u*), i.e., f(z*,u*) = 0, and its linearisation
y = Ay + Bv WithA:aamf(x*,u*), B:aauf(az*,u*).
Recall from the introduction that f, A and B are related via f(z,u) =~ A(x—z*)+B(u—u*),

which implies that y and v are related to x and v via y =« — z* and v = v — u*.

Let F' be a stabilising feedback law for the linear control system. For the linear system this
generates the control value v = F'y, which implies that using the above relation between
x, y, w and v we obtain u = u* + F(z — z*). Inserting this expression into f we obtain
equation

&= f(z,u" + F(zx —2%)) =: g(z). (3.13)
The linearisation of this equation is given by
y = Ay
with
A= gy = L fo + Fla—o) = 20+ " 0P = A+ BE

r=x*
Since F' stabilises the linear system exponentially, the equlibrium y* = 0 is exponentially
stable for (3.12) and Theorem 3.31 implies that z* is a locally exponentially stable equi-
librium for the nonlinear system with linear feedback law (3.13). The stabilising linear
feedback law thus stabilises the nonlinear system locally in x*.

Example 3.32 Consider the nonlinear inverted pendulum (1.5)

i (t) = x2(t)
xo(t) = —kaxo(t) + gsinzi(t) + u(t) cos x1(t)
: =: fa(t), u(t))
a3(t) = xa(t)
ta(t) = u(t)
The linearisation in (z*,u*) = (0,0) reads
0 1 00 0
g =k 00 11
A= 00 0 1 and B = 0
0 0 0O 1

cf. (1.6). In the exercises we computed a stabilising linear feedback law F : R* — R for
this linear system. The corresponding matrix F € R1** is

g+ k> 4k E 4 1 k 4

Fe (-4 -2 m6-g, -5 -~ —4+k =, 5 +-)

g 9° g g9 9° g

Figure (3.1) shows that this feedback law stabilises the nonlinear pendulum. The figure

shows the components of the trajectory z(t,xq, F) for 2o = (1/2, 0, 0, 0)7.
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Figure 3.1: Solution of the nonlinear pendulum equation with stabilising linear feedback
law



Chapter 4

Observability and observers

The solution for the stabilisation problem that we derived in the last chapter assumes that
the whole state vector z(t) is accessible for evaluation the control value u(t) = Fx(t). In
practical problems, this is hardly ever the case. Typically one can only access certain values
y(t) = C(x(t)) € R*, delivered by sensors, from which u(¢) must then be computed. Since
in this part of this course we consider linear systems, we assume that the measurement
map C : R” — RF is also linear, i.e. given by a matrix C' € RF*",

Definition 4.1 A linear control system with output is given by' the equations
z(t) = Az(t) + Bu(t), y(t) = Cx(t) (4.1)
with A € R™" B € R™*™_ and C € RF*", o

In this chapter we will derive conditions under which the stabilisation problem is solvable
for (4.1) and show, how a feedback controller must be constructed in this case.

4.1 Observability and Duality

The most important question when analysing (4.1) is, how much “information” is contained
in the output y(t) = Cz(t). This is formalised by the following definitions.

Definition 4.2 (i) Two states x1,x2 € R™ are called distinguishable, if there are u € U
and ¢t > 0 with
Cux(t,z1,u) # Cx(t,x2,u).

(ii) The system (4.1) is called observable, if any two states x1,x2 € R™ with x; # zo are
distinguishable. a

The following lemma shows that by virtue of the linearity of the system, distinguishability
can be expressed in a simpler way.

!Sometimes the extended variant y(t) = Cxz(t) + Du(t) with D € R**™ is considered. The form we
consider is obtained from this extended form by setting D = 0.

39



40 CHAPTER 4. OBSERVABILITY AND OBSERVERS

Lemma 4.3 Two states x1,z9 € R™ are distinguishable if and only if there exists t > 0
with
Cz(t,xy — x2,0) # 0.

Proof: The superposition principle (1.15) implies the identity
x(t,xy,u) — x(t, vo,u) = z(t,x1 — 22,0),

which immediately implies the assertion since C is a linear map. U

This lemma implies that observability of (4.1) does not depend on u, and thus not on B.
If the system (4.1) is observable, then we call the pair (A, C) observable.

Moreover, the lemma motivates the following definition.

Definition 4.4 (i) We call zp € R™ observable if there is t > 0 with
Cx(t,x9,0) #0

and non-observable on [0, 1] if
Cx(s,20,0) =0
for all s € [0, ¢].
(ii) We define the sets of non-observable states on [0,t] for t > 0 as

N () :={zp € R"|Cx(s,x0,0) =0 for all s € [0,]}
and the set of non-observable states as

N = (N®).

t>0

The following lemma clarifies the structure of these sets.

Lemma 4.5 For all ¢ > 0 the identity

n—1
N =N(t) = [ ker(CAY)

1=0

holds. In particular, N is a linear subspace, which moreover is A-invariant, i.e. it holds

that AN C N.
Proof: A state zp € R™ is contained in N (¢) if and only if
0 = Cx(s,x0,0) = Ce®x for all 5 € [0,1]. (4.2)

Now let zg € ﬂ?:_ol ker(CA?). Then by the theorem of Cayley-Hamilton the identity
C Atz = 0 holds for all i € Ng. The series representation of 4% then implies Ce%z¢ = 0
for all s > 0 and thus (4.2), i.e., zg € N(t).
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Conversely, let zo € A(t). Then by (4.2) we obtain Ce?*zy = 0. The i-th derivative of
this expression in s = 0 then satisfies

CAlzo =0, i e Ny

and thus in particular zg € ker CA?, i = 0,...,n — 1. This implies zq € ﬂ?:_ol ker(C'A?).

The A-invariance then follows from the expression for N using the theorem of Cayley-
Hamilton. 1l

Obviously there is a certain similarity here with the controllability analysis, particularly
with the sets R(t) and R. We now show that this is more than just a superficial similarity.
To this end, we need an appropriately defined dual system.

Definition 4.6 For a control system (4.1) defined by the matrices (A, B,C) the dual
system is defined by the matrices (AT, CT, BT). The dual system to

x(t) = Az(t) + Bu(t), y(t) = Cx(t), z(t) € R, u(t) € R™, y(t) € R”
thus reads

i(t) = ATz(t) + CTu(t), yt)=BTz(t),  z(t) e R, u(t) e RF, y(t) e R™,

In words, the dual system is obtained by transposing all matrices and swapping B and C,
i.e., the input and the output matrix.

Theorem 4.7 For a control system (4.1) given by (A, B, C) and its dual system given by
(AT, 0T, BT) we define

R = (A|imB) N = 5 ker(CAY)

RT = (AT |imCT) NT

Ny ker(BT(AT)?).

Then the identities
RT =N+ and NT =R*

hold. In particular, we obtain the equivalences

(A, B,C) controllable <= (AT, 0T, BT) observable

(A, B,C) observable <= (AT, CT BT) controllable.

Proof: Consider the matrix

cAn!
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For this matrix Lemma 4.5 implies
N = ker M.

In addition,
MT _ (CT ATCT o (AT)n—lcT) c Rnx(nk)

is the reachability matrix of the dual systems, cf. Definition 2.10, which yields R” = im MT.
From linear algebra it is known that

im MT = (ker M)+,
This yields the first assertion since
RT =im M7 = (ker M)t = N1

By exchanging the two systems, the same derivation yields R = (NT)+, which implies the
second assertion, since

R = (W) = AT,
0

Thus, all statements for controllability can be carried over to observability. We do this
explicitly for Corollary 2.13 and Lemma 2.14.

Definition 4.8 The matrix (C7,ATCT ... (AT)»~1CT) € R™* (k") is called observability
matriz of the systems (1.3). o

Corollary 4.9 System (4.1) is observable if and only if

rg(CT, ATcT .. (ATY—10T) = n.

Proof: This follows from Corollary 2.13 applied to the dual system. U

We now formulate the analogue to the decomposition

e A1 A2 o By
(v ) =)

from Lemma 2.14.
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Lemma 4.10 Let (A,C) be not observable, i.e., dimAN = [ > 0. Then there exists an
invertible 7' € R™" such that A = T~'AT, B=T"'B and C = CT are of the form

~ (A A - (B -
A_<0 A3>’ B_<B2>, C=(0 Cy)

with 41 € R 4y € R0 43 ¢ R=Dx(n=0) B e R*m By € R(=Uxm anq
Cy € R¥*(=D Therein, the pair (A3, Cy) is observable.

Proof: Lemma 2.14 applied to the dual system (A7, CT) yields T with

ST A A ~ C
T lATT — 1 A2 T 1~T — 1 .
( 0 Ay ) ¢ 0

For § = (TT)~! this implies

AT 0 N
—1 T
S ASz(ﬁ 23T>, (JS:(C1 o).

By means of the additional coordinate transformation

_ 0 Ian—l
Q o < Ide 0 )

the claimed decomposition follows with T = 5@ and

A =AY Ay=AT As=AT cy=CT.

We additionally give an alternative proof, which is more direct and does not resort to Lemma 2.14:

Let vy, ..., v by a basis of N, i.e., N = (v1,...,v;). We pick wy,...,w,—; such that the v; and w;
together form a basis of R” and define T := (v1,...,v,w1,...,w,—;). With e; we denote the i-th
unit vector in R”. Then Te; =v;,i=1,...,1, Te; =w;_;,i=1+1,...,n, T v, =e;,i=1,...,1
and T lw; = ey, i=1,...,n—L

We first show that A has the desired structure. Suppose an entry in the 0-Block of A is not equal
to 0. Then on the one hand B
Ae; & (e1,...,e)) =T N

for some ¢ € {1,...,1}. On the other hand, A-invariance of N’
/Tei = T_IATGZ' = T_lA’Ui € T_1N7

which leads to a contradiction.
The structure of C follows from

n—1
N = () ker(CA") C ker C.

=0

This implies v; € ker C' and thus CN'ei = CTe; = Cv; = 0. Hence, the first [ columns of C must
equal 0.
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It remains to show observability of (A3, Cy). To this end, note that for every & € R"~, & # 0 it
holds that
@A@f—éﬁi< 0 ) —CAiT( 0 )
z z

where in the first equation we used the structure of A and C. Since

w;=T<2)¢N,

there exists i € {0,...,n — 1} with CA%w # 0 and thus CoALZ # 0. Since 7 # 0 was arbitrary,

n—1

() ker(C2A3) = {0}
i=0
follows, implying the observability of (A3, C3). U

Remark 4.11 All statements in this section remain valid for discrete-time systems. The
only result that changes is Lemma 4.5, which — analogous to controllability, cf. Remark
2.17 — only holds for t > n in discrete time. i

4.2 Detectability

We have seen that (complete) controllability is sufficient but not necessary for being able
to solve the stabilisation problem. The necessary and sufficient condition is stabilisability
of (A, B), which according to Theorem 3.29 is the case if and only if all eigenvalues of the
uncontrollable part As of the matrix A have negative real parts.

This is similar for observability. In order to be able to sove the stabilisation problem for
system (4.1) we do not need observability. It is sufficient to assume a weaker condition,
which is given in the following definition.

Definition 4.12 The system (4.1) is called detectable (or asymptotically observable), if

lim z(t,29,0) =0 for all zp € N.
t—o0

This means that solutions for non-observable initial conditions and u = 0 converge to
0. Intuitively spoken, the information about these initial conditions is not needed in the
stabilisation problem, because the corresponding solutions converge to 0 anyway, and are
thus asymptotically (and exponentially) stable.

The following lemma characterises detectability for the decomposition from Lemma 4.10.

Lemma 4.13 System (4.1) is detectable if and only if the matrix A; from Lemma 4.10 is
Hurwitz, i.e., if it has only eigenvalues with negative real part.
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Proof: First observe that detectability is preserved under coordinate changes. We can
thus perform all computations in the basis given by 4.10.

1
x0:<ﬂi)0>, $(1)€Rl}.

From the form of the matrix A it then follows that all solutions corresponding to initial
values g € N can be written as

~ Aqt,.1
z(t, zg,0) = eltay = < ¢ O‘TO ) .

From detectability it now follows that z(¢,29,0) — 0 for all x € N, i.e. eAttz} — 0 for all
x§ € R!. This is only possible if A; is Hurwitz.

In this basis, A is given by

N:{xoeRn

Conversely, A; being Hurwitz implies the convergence eAlt:r(l) — 0 for all {E(l) e R ie

x(t,x0,0) — 0 for all z € N and thus detectability. U
The following theorem shows that detectability is dual to stabilisability.

Theorem 4.14 (A, C) is detectable if and only if (AT, CT) is stabilisable.

Proof: We denote the components of the decomposition from Lemma 4.10 applied to
(A,C) by A1, Ay, A3, Cs. Likewise, we denote the components of the decomposition from
Lemma 2.14 applied to (AT, CT) by Al, Ag, A3, Cl The proof of Lemma 4.10 then implies
A = AT

By Lemma 4.13 detectability of (A, C) is equivalent to A; _being Hurwitz. Likewise, by
Theorem 3.29 stabilisability of (AT, CT) is equivalent to As being Hurwitz. Since the
eigenvalues of A3 and A3 = A; coincide, this yields the claimed equivalence. 1l

Remark 4.15 In order to adapt these statements to discrete time, it suffices to change
the eigenvalue conditions from “negative” to “modulus less than 17. a

4.3 Dynamic observers

A natural approach to solving the stabilisation problem for (4.1) is the choice u(t) =
Fy(t). This may work (cf. Example 3.19, where we considered C' = (0 1) and C' = (1 0)).
However, this approach may also fail, as the controllable and observable system (4.1) with

A:<8 é) B:(?), and C = (1 0)

shows, cf. the exercises. In fact, this system is not even stabilisable if we allow F'(y(t)) to
be an arbitrary continuous function ' : R — R.

For this reason we will now develop a method for stabilisation that always works if (4.1) is
stabilisable and detectable. The method works as follows for a system (4.1) with matrices
(A,B,C):
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(1) Design a stabilising linear feedback law for (A, B)

(2) Design an algorithm that computes an estimation z(¢) ~ x(t) from the measured
output values y(s), s € [0, ]

(3) Control the system (4.1) via u(t) = Fz(t).

Step (1) can be solved using the methods from Chapter 3. In this section we will consider
Step (2) and in the following section we will then prove that for the proposed algorithm
the method in Steps (1)-(3) indeed works.

The reason why the example above cannot be stabilized lies in the fact that observability
does not require Czg # 0 for xg # 0. Rather, it is only required that Cx(t;tg,x0,0) # 0
for t > 0. Thus, in order to recognize that the estimate should attain a value z(t) # 0
(to which the feedback law can react), the algorithm in Step (2) must use the output
over a certain time span, not merely its current value. We will achieve this by defining
the estimate z(t) as the solution of a suitably formulated control system, in which — in
addition to the control function — the output y(¢) of (4.1) acts as a second input. The
following definition formalises this idea.

Definition 4.16 A dynamic observer (also called Luenberger-observer) for (4.1) is a linear
control system of the form

#(t) = Jz(t) + Ly(t) + Ku(t) (4.3)

with J € R™" [ € R"F K € R™™, such that for all initial values zg, zo € R™ and
all control functions u € U the solutions z(t,zo,u) and z(t, 29, u,y) of (4.1), (4.3) with
y(t) = Cx(t, xo,u) satisfy the estimate

Jo(t, w0, u) — (¢, 20, u, )| < ce~ o — o]

for suitable constants ¢, o > 0. O

In practice, the system (4.3) can be solved numerically in order to determine the values
z(t).

The following theorem clarifies when a dynamic observer exists. Its proof provides an
explicit construction of the observer.

Theorem 4.17 A dynamic observer for system (4.1) exists if and only if the system is
detectable.

Proof: “«<” Since (4.1) is detectable, (ATA7 CT) is stabilisable. We can thus find a linear
feedback law ' € RF*" such that AT +CTF is Hurwitz. For G = FT the matrix A+GC =
(AT + CTF)T is then Hurwitz, too.

We now specify the matrices in (4.3) as J = A+ GC, L = -G and K = B, i.e.,

A1) = (A + GC)z(t) — Gy(t) + Bul(t).
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Abbreviating z(t) = x(t, xo,u), 2(t) = z(t, z0,u,y) and e(t) = z(t) —x(t), for e(t) we obtain
the differential equation

= (A+GC)z(t) — Gy(t) + Bu(t) — Ax(t) — Bu(t)
= (A+GO)z(t) — GCx(t) — Ax(t)
= (A+GC)(z(t) —z(t)) = (A+GC)e(t)

Since A + GC is Hurwitz, we thus obtain
le@)|] < ce™[|e(0)]]

for suitable ¢, o > 0 and since e(t) = z(t) — z(t) and e(0) = zg — xo this implies the desired
estimate.

“=” Let g € N and y(t) = Cx(t,z9,0) = 0 for all ¢ > 0. Setting zp = 0 then yields
z(t,20,0,y) = 2(¢,0,0,0) = 0. Then the estimate from the definition of the dynamic
observer yields

(¢, 0, 0)[| = [l(t, z0, 0) — 2(t, 20,0, y) || < ce™[|wo — 20| = ce™"[lawol| — 0

for ¢t — oo. Tt follows that x(¢,zo,0) — 0, implying detectability. 1l

4.4 Solution of the stabilisation problem with output

We will now analyse the method for stabilisation from the last section and prove that it
works successfully if we use the dynamic observer (4.3) in Step (2).

From the Steps (1)—(3) with (4.3) in Step (2) we obtain the feedback equation
u(t) = Fz(t), 2(t)=Jz(t)+ Ly(t) + KFz(t). (4.4)

This form of a feedback controller is called a dynamic output feedback law?®. This is because
u(t) is computed from the output y(t) = Cz(t) and the feedback controller has an “internal”
dynamic, given by the differential equations for z.

2In contrast to this the feedback law u(t) = Fz(t) constructed in Chapter 3 is called static state feedback
law.
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Definition 4.18 A dynamic output feedback law (4.4) solves the stabilisation problem
with output, if the overall system of differential equations that is obtained by inserting
(4.4) into (4.1), i.e.

z(t) = Axz(t)+ BFz(t)
2(t) = Jz(t)+ LCx(t) + KFz(t)

with solutions (jgg) € R?" is exponentially stable. O

Theorem 4.19 Consider a control system (4.1) with matrices (4, B,C). Then the stabil-
isation problem with output is solvable in the sense of Definition 4.18 if and only if (A, B)
is stabilisable and (A, C) is detectable.

In this case (4.4) together with the dynamic observer constructed in the proof of Theorem
4.17 and a stabilising feedback law F' € R™*" for (A, B) yields a stabilising dynamic
feedback law.

Proof: “<”: Let (A, B) be stabilisable and (A, C) be detectable. Further, let F' € R™*"
be a stabilising feedback law for (A, B) and (4.3) be the dynamic observer constructed in
the proof of Theorem 4.17. Then the system controlled by (4.4) becomes

(%) = (e o ) (20)
- <—éc A+GBCF+BF>(ng)

() ()

Idg- 0 1 Idg- O
T= T = :
< —Idgn  Idgn >’ ( Idgr Idg~
Since exponential stability persists under coordinate transformations, it suffices to check
that the matrix in the last line of this computation is Hurwitz. This is a block-triangular
matrix, whose eigenvalues ar thus given by the eigenvalues of the blocks on the diagonal,
ie., of A+ BF and A+ GC. Since A 4+ BF is Hurwitz by choice of F' and A + GC' is

Hurwitz by choice of G (in the proof of Theorem 4.17), we obtain only eigenvalues with
negative real part. This yields the assertion.

with

“=": Using the coordinate transformation 7' from Lemma 2.14 the system becomes
#t(t) = Apzt(t) + Axx®(t) + B1Fz(t)
i2(t) = Azz’(t)
2(t) = Jz(t)+ LCx(t) + KFz(t)
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withz(t) =T (2;8 ) Assume now that (A, B) is not stabilisable. Then As has eigenvalues
with positive real parts, the origin is thus not asymptotically stable for the equation #2(t) =

Asz?(t) and consequently there is an initial value 23 with 22(t, 22) /4 0. Thus, if we choose
70
zo=T| z3 | €R™
20

with arbitrary z{, 20, then x(t,z9, Fz) 4 0 for any choice of the dynamic feedback law.
This contradicts the solvability of the stabilisation problem. Consequently, (A, B) must be
stabilisable.

Detectability of (A, C) follows as in the proof of “=" in Theorem 4.17. 1l

Remark 4.20 The constructions and statements in this and in the preceding section hold
analogously with the obvious modifications for discrete-time systems. a
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Chapter 5

Analysis in frequency domain

A considerable part of modern control and systems theory developed out of electrical engi-
neering, where the behaviour of electrical circuits with input and output signals is studied.
An example for this may be an amplifier, which receives an input signal (from a microphone,
a mobile phone etc.) and converts it into an output signal that is sent to a loudspeaker.
Another example is an (analog) radio, in which the input signal (electromagnetic waves) are
converted into an acoustic output signal. If we represent these devices by control systems,
we can denote the input signal by v and the output signal by y. The changes the interpre-
tation of these functions compared to the previous chapters: u(t) is now an external signal
(instead of a control function that we can determine) and y(¢) is an output signal that is
supposed to satisfy certain properties (instead of the result of a measurement). Yet, this
new interpretation does not change the mathematical description of the relation between
u and y via the system (4.1). In these kind of applications, the initial condition is usually
chosen as x¢p = 0. The interpretation of this choice is that until time ¢t = 0 the system is
at rest, and only afterwards it is influenced by the input signal u(t), ¢t > 0.

The two application example already indicate that frequencies play an important role in
this interpretation. For this reason, in these applications v and y are usually not considered
as functions of time but as functions depending on the frequency. To this end, we start by
introducing the Laplace-Transformation.

5.1 Laplace transformation

Let K = R or C and R} = [0,00). By L. (R}, K™) we denote the space of all functions

loc
u Rar — K™ that are Lebesgue integrable on any compact interval in Rg and with
LY R, K™) we denote the space of functions u : Rf — K™, that are Lebesgue integrable
on the whole half line Rf. For v € L} (R,K™) and a € R define u, : R — K™ via
ua(t) == u(t)e~*. Then we define the space of a-exponentially integrable functions as

Ea(K™) := {u € LL.(RY, K™) |uq € L (RS, K™)}.

o1
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t

is continuous and is thus contained in Li (RJ,R).

Example 5.1 The function u(t) = e
However, since

t
/erT:et—1—>oo
0

for t — oo, it is not contained in L*(RJ,R). For a > 1 we obtain

t t 1 1
/0 uq(T)dT = /0 ee” Tdr = T o a(e(l_a)t -1)— P

for t — oo. Thus, the infinite Riemann integral exists and since us(t) > 0 this implies

that the infinite Lebesgue integral also exists. Consequently, u(t) = e’ lies in £, (R) for all
a > 1. O

Definition 5.2 The functions in &,(K™) are called Laplace-transformable. For all s €
Cq :={s € C|Re(s) > a} the (one-sided) Laplace transform of u € £,(K™) is defined as

u(s) == (Lu)(s) == /000 u(t)e 5tdt.

The Laplace transform 4 = Lu is thus a function from C, to C™. o

Example 5.3 Laplace transforms of some functions from ]R(J)r to R with a € C, w € R,
m € Np:

(@) u()=1 S afs) = é for Re(s) > 0
(b) u(t) = sin(wt) = a(s) = %4—32 for Re(s) > 0
(¢) u(t) = cos(wt) = d(s) = %HQ for Re(s) > 0
(d) ult) = et = i(s)=- ! - for Re(s) > Re(a)
() u(t)=esin(wt) =  a(s)= m for Re(s) > Re(a)
(f) ut) =ecos(wt) =  a(s)= % for Re(s) > Re(a)
(9) u(t) = %e“t S a(s) = (Mi)m“ for Re(s) > Re(a)

Remark 5.4 Although the integral in the definition of the Laplace transform is only
defined for the values of Re(s) indicated in this table, the resulting expession for the
transform may be defined for a larger set of values. For instance, in (d) the expression for
@(s) is defined for all s # a. In the following we will admit all arguments s € C of @ for
which the computed expression is well defined. O
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The inverse of the Laplace transform is given by

-1 1 prieo st eﬁt > iwt .
(L7 a)(t) - e*u(s)ds = e u(f +iw)dw.

“ i )y o)
More precisely, for all u € £,(K™) and every 3 > « the identity £~'Lu(t) = u(t) holds
for almost all t € Rg . If u is continuous then it even holds for all £ € R, cf. [8, Theorem

A.3.19).

Below we list some important rules for computing the Laplace transform, for a,a;,as € R
and u, uy, ug € E,(K™). Further assumptions are indicated below the table.

(1)  Larug + ague)(s) = art1(s) + agtia(s)
(i) Lu(a))(s) = 2u (2), fora>0
(7i7) Lu(-—a))(s) = e *u(s), fora>0
(1v) L(e*u)(s) = u(s—a)

(v) L(i)(s) = si(s) —u(0)

ki
(vil) LCwGs) = (M)
(viii) L(ug *ug)(s) = a1(s)ia(s)
) A = s

In (7i7) we assume that u is defined on [—a,00) with u(t) = 0 for all ¢ € [—a,0]. In (v)
we assume that u is defined on (—¢,00) for some ¢ > 0 and that u is differentiable in s.
If w in (v) is discontinuous in 0, then u(0) must be replaced by lim; o ¢<ou(t). In (viii),
uy *x ug(t) = fot u1(t — 7)ua(7)dr denotes the convolution.

5.2 The transfer function

The transfer function allows to express the input-output behaviour of a control system by
means of the Laplace transform. Here the input-output behaviour denotes the map u — y
with y(t) = Cx(t,0,u), i.e., the function that assigns to the input function u the output of
the solution of the control system with initial value xg = 0.

We now investigate how this map looks for the Laplace transformed signals. To this end,
we again consider the system (4.1), i.e.,

#(t) = Az(t) + Bu(t), y(t) = Cx(t)

with A € R™", B € R™™ and C € RF*".
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Theorem 5.5 Consider the control system (4.1) and let u € U N EL(R™) and y(t) =
Cx(t,0,u). Then y is Laplace-transformable with

§(s) = G(s)a(s),
where G(s) = C(sld — A)~!B.

Proof: According to (1.14) it holds that
t
y(t) = C/ A7) Bu(r)dr.
0

Since u € E,(R™), u is exponentially bounded. Moreover, ||e4?|| is exponentially bounded
by el4lt. Hence, the integrand is exponentially bounded, thus also the integral and since
x and y are continuous as results of an integration, we obtain = € £,(R"), y € £,(R¥) for
suitable (sufficiently large) o > 0.

Applying the Laplace transform to (4.1), using the formulas () and (v) as well as g = 0
we obtain
si(s) = Az(s) + Bu(s), y(s) = Cz(s)

for all s € C with Re(s) > a. The first equation is equivalent to
st(s) — Az(s) = Bu(s) <« (sld — A)z(s) = Bu(s).

For all s € C that are not eigenvalues of A (i.e. in particular for all s with sufficiently large
real part), the matrix on the left hand side of this equation is invertible and it follows that

i(s) = (sld — A)7'Ba(s) = (s) = Ci(s) = C(sld — A) "' Bii(s) = G(s)i(x).

0

Definition 5.6 The function G : C — CF*™ from Theorem 5.5 is called transfer func-
tion. |

Remark 5.7 (i) From the representation

(sId — A)~1 adj(sId — A)

1
 det(sId — A)
with the adjugate matrix adj(sId — A) it follows that G': C — CF*™ is a matrix valued
function with rational entries, i.e. with entries of the form
_ Pij(8)

gz-j(s) = qz-j(s) (5.1)

with polynomials p;;, g;; of degree! degp;; < degq;j < n.

'For outputs of the form y(t) = Cz(t) + Du(t) it holds that G(s) = D + C(sId — A) "' B and degp;; <
deggqi; < n.



5.2. THE TRANSFER FUNCTION 95

(ii) The so-called realisation theory deals with the question whether for a given function
G : C — CF*™ there exists a control system (4.1) such that G is its transfer function. One
can show that for each proper? rational matrix function this is indeed the case. However,
in general A, B, C are not unique.

(iii) Defining g(t) := CeA B, the solution formula yields

t t
Mﬂ-—/)C@W_ﬂBu@ﬁmr—/hﬂt—TﬁKﬂdT—g*u@)

0 0
With the computation rule (viii) of the Laplace transform we thus obtain

§(s) = L(g*u)(s) = g(s)u(s).

Hence, the transfer function satisfies G = ¢ (if we generalise the definition of the Laplace
transform in the obvious way to matrix valued functions). O

Example 5.8 We consider the down-hanging and the inverted linearised pendulum, both
without the variables of the cart, i.e.

and, respectively,
0 1 0
(5 5) #=(V)
In both cases we set C' = (1 0). This means that the output measures the position of the
Pendulum.
For the down-hanging pendulum we thus obtain

s -1 \ ' pass e
(SId o A)—l — < stk > _ ks+fg+g ks—i—z +g
9 ks+s2+g  ks+s2+g

and hence .
G(s)=C(sld— A)"'B = [P
Analogously, for the inverted pendulum we get
Gls) = C(sld— A)'B=— 1
ks+s2—g

2Proper means that degp;; < deggq;; for all 4, 5.
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5.3 Input-output stability

We now introduce a stability notion that fits the input-output perspective of the transfer
function G.

Definition 5.9 A control system is called input-output-stable (briefly i/o-stable) if there
exists a constant K > 0 such that for any function u € U that is bounded on R(J)r the
corresponding output

t
y(t) = C/ A7) Bu(r)dr
0

with initial value z¢ = 0 satisfies the inequality ||y|lco < Kl|t||oo- o

Remark 5.10 (i) One can show that i/o stability is equivalent to the implication “||u|/s <
00 = [|Yy|loo < 07, the so-called bounded input-bounded output (BIBO) stability. In this
form i/o stability is defined in many textbooks. The proof of this equivalence, however,
needs several technical estimates that we avoid here for brevity of exposition. For our
purposes the formulation from Definition 5.9 is better suited.

(ii) In order to distinguish the stability notion used in the previous chapters (A or the
closed-loop system is exponentially stable, i.e. all eigenvalues of A or A+ BF', respectively,
have negative real part) from the notion of i/o stability, we also denote the “old” stability
notion as state stability. o

A first necessary and sufficient condition for io stability is given by the following lemma.

Lemma 5.11 A system (4.1) is i/o-stable if and only if g(t) = Ce! B satisfies the inequal-
ity

G = /0 gt < oo. (5.2)

Proof: “=": Let the system by i/o-stable. We prove that

/0 T )t < K (5.3)

for all component functions v;;,i=1,...,k,j=1,...,mof g = (Vj)i=1,... k,j=1,....m, Which
implies (5.2).

In order to prove (5.3), for given ¢ > 0 let u be given by u(r) := sgn(y;;(t — 7))e; for
7 € [0,t]. Then we obtain [g(t — 7)u(7)]; = |vij(t — 7)|. Defining u(r) = 0 for 7 > t, we
obtain ||u|lcc = 1 and thus for the corresponding output ||y||.c < K, and consequently also
lyi(t)] < K for all t > 0. This implies

K ) - || To(t — Yu(r)udr = [ huste=niar= [ y(lar

t
=| [ te = rlar

Since this holds for all ¢ > 0, (5.3) follows.
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“<": Let gmax < 0o and let u be an input signal with ||u||cc < co. Then for all ¢ > 0 the
inequality

IIy(t)H:H/O g(t = 7)u(r)dr S/O Hg(t—T)HIIU(T)HdTS/O lg(t=)lld7[ullcc = gmaxlulloo

holds. Thus, the system is i/o-stable with K = gpax- U
Corollary 5.12 If (4.1) is state stable, i.e., if A is Hurwitz, then (4.1) is also i/o-stable.

Proof: If (4.1) is state stable, then A is Hurwitz. Hence, by Theorem 3.5 the inequality
e < ce™°* holds for constants ¢, o > 0 and all t > 0. This yields ||g(t)|| < ||C|lce=*||B|

and thus . N .
[ st < [ e pa = AMEL o

U

The converse of this result is obviously false. A simple counterexample is obtained by
setting C' = 0. Then, because of y(t) = 0 for all u € U, the system is trivially i/o-stable
with K = 0, regardless of whether A is Hurwitz or not.

Verifying the criterion (5.2) is in general difficult, since an infinite integral must be es-
timated. If, however, the transfer function G is known, then the criterion can be easily
checked. To this end we say that s* € C is a pole of a rational (matrix) function G if s*
is a pole for at least one of its component functions. This, in turn, means that there are
7.k € Ny with 7 < k such that s* is a k-fold zero of the denominator polynomial and a
j-fold zero of the enumerator polynomial (here 7 = 0 means that s* is not a zero). Note
that s* is a pole of G if and only if ||G(s)|| is unbounded in each neighbourhood of s*.

Theorem 5.13 Consider a control system (4.1) with transfer function G. Then the system
is i/o-stable if and only if all poles s* of G lie in the open left complex half plane C~ =
{z € C|Re(z) < 0}, i.e. if they satisfy Re(s*) < 0.

Proof: “=7: If the system is i/o-stable, then from Lemma 5.11 we know that gmax =
Jo- lg(®)||dt < oo. Then for all s € C with Re(s) > 0 we obtain

6o = [ e i < [T la@1 < [Tl = g

<1

which means that G cannot have poles outside C™.

“<": Let 7;;(t) denote the components of the function g(t) = Ce*B. From Remark 5.7
it follows that the entries of G are given by g;; = 4;;. Now the series representation of the
matrix exponential implies that the v;;(¢) are of the form

a A ttkp
Vi) =D ppe’® Pk
p=1 p

m}
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where the \; are eigenvalues of A. From Example 5.3(¢g) we can thus conclude

9ij(8) = i (s) = Zﬂp(s_;p)kﬁl-

p=1

This yields that the poles of G are given by \,. The assumption on the poles then implies
that all A, lie in C~. This, in turn, implies that the integral fooo 7ij (t)dt is finite for all 4, j,
hence also [ [|g(¢)||dt < co. Hence by Lemma 5.11 the system is i/o-stable. U

Example 5.14 For the pendulum this criterion allows to check easily that the down-
hanging pendulum is i/o-stable, because the poles (i.e. the zeros of the denominator)
are given by —k/2 + y/k? —4g/2. These numbers all have real part. Analogously for
the inverted pendulum one sees that the poles are —k/2 + \/k? + 4g/2. As one of these
numbers has a positive real part, the inverted pendulum is not i/o-stable. ]

Remark 5.15 (i) The proof shows that all poles of G are eigenvalues of A. This explains
the name pole shifting theorem for Theorem 3.29.

(ii) In general not all eigenvalues of A are poles of G. On the one hand, each eigenvalue for
which the corresponding eigenspace lies in V' is missing, because the correponding solutions
cannot be observed. On the other hand, the eigenvalues corresponding to eigenspaces that
cannot be reached from zg = 0 are missing. These are the eigenspaces that are not
contained in the reachable set R.

If the system is controllable and observable, then all eigenvalues of A are poles of G. This
can be confirmed comparing Example 5.14 with Example 3.6. If the system is stabilisable
and detectable, then all unstable eigenvalues (i.e. those with positive real part) are poles
of G. In this case, state stability is equivalent to i/o-stability. o

5.4 Feedback laws in frequency domain

In order to formulate a feedback law in frequency domain, we first need to extend this
concept slightly. To this end we observe that both the static feedback law wu(t) = Fx(t)
and the dynamic feedback law with u(t) = Fz(t) and the differential equation 2(t) =
(J 4+ KF)z(t) + Ly(t) are easily Laplace-transformered. We obtain the transfer functions

K(s)=F or K(s)=F(sld—M)™'L, respectively,

where in the first case we assume C' = Id and in the second case we write M = J+ KF. A
closed loop can thus always be written as the coupling of two transfer functions G and K.
For being consistent with the i/o concept, it would be desirable that this coupling is again
a transfer function. This, however, requires an additional input for the closed-loop system,
that we did not have so far, because the original input is “occupied” with v = Fx or
u = F'z, respectively. As a remedy we introduce a new, additional input w(t), by replacing
Fx(t) or Ly(t) by F(z(t) + w(t)) or L(y(t) + w(t)), respectively.
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Theorem 5.16 Given two transfer functions G and K with appropriate dimensions, which
are coupled via g(s) = G(s)u(s) and u(s) = K(s)(9(s) + w(s)). Then

§(s) = (1d — G(s)K (5)) " G(s) K (s)i(s)

holds for all s € C for which Id — G(s) K (s) is invertible.

Proof: The two identities from the assumption imply
9(s) = G(s)u(s) = G(s)K(s)(9(s) + w(s)).
Rearranging the terms in this equation yields, that it is equivalent to
(1d - G() K (5))i(s) = G()K (s)id(s)

This immediately yields the assertion. 1l

The feedback stabilisation problem in frequency domain can now be defined as the problem
to find a transfer function K, such that (Id — G(s)K (s)) 1G(s)K (s) is i/o-stable, i.e., that
it only exhibits poles in C~. In the special case that u and y are one-dimensional, a
number of efficient computational techniques exists for this task. We will, however, not
discuss them in detail here.

We will rather briefly discuss the role of the new additional input signal in the system.
For this purpose we consider the simplest case of a stabilising static state feedback, i.e.,
u = Fxz and C' = Id. Then the solutions of closed-loop system with the additional input
are given by

¢
x(t) = e(A+BF)t$o —I—/ €(A+BF)(t_T)BFw(T)dT.
0

~~

=w(t)

(A+BF)t converges to 0 as t — 0o.

Exponential stability is now equivalent to the fact that e
This implies

l=(t) = v(®)]| < ce™ |z,

i.e. the solution converges to v(t). Stability thus ensures that the solution converges to a
well defined limit function v(t) that is independent of the initial value xg and only depends
on the new input w(t). This is a new interpretation of stability, which is equivalent to i/o
stability and is thus also implied by the stability notions in the sense of Chapters 3 and 4.
In the case w = 0 the limit function satisfies v = 0 and we are thus back in the situation
of these chapters.

5.5 Graphical analysis

In this section we present two graphical representations of control systems that are very
common in control engineering. These apply to systems with one-dimensional input and
output, i.e., for m = k = 1. Observe that in this case the transfer function G is a scalar
function. Systems of this kind are called SISO systems (Single Input Single Output).
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The Bode diagram

The Bode diagram?® provides a graphical illustration of the relation between u and y. In
particular, this representation explains why the consideration of the Laplace transform is
called “analysis in frequency domain”. As a preparation we need the following theorem.

Theorem 5.17 Consider the transfer function G : C — C for an i/o-stable SISO system of
the form (4.1). Then the output signal y(¢) corresponding to the input signal u(t) = sin(wt)
converges for ¢ — oo to the function

Yoo(t) = |G (iw)| sin(wt + p(w)),

where ¢ is an argument function* of w — G(wi).

Proof: See [3, Proposition 2.3.22].

The values of the transfer function G on the imaginary axis {R — the so-called frequency
response of G — thus has a very concrete meaning for the behaviour of the output y(t)
for sinusoidal inputs u(t): The output signal is obtained by amplifying the input signal by
|G (iw)| and shifting its phase by p(w).

Figure 5.5 illustrates this for the model of the (down-hanging) pendulum with k£ = 0.1 and
g = 9.81. Here we plot the numerically simulated output (red solid) for input u(t) = sin(wt)
(black dashed) for w = 4. One sees that the output signal has an amplitude of about 0.16
and its phase is shifted by about 7 compared to the input signal; the pendulum thus
oscillates oppositely compared to the cart and with lower amplitude. The corresponding
transfer function satisfies |G(i4)| = 0.1612 and arg(G(i4)) = —3.077, which confirms this
observation.

\
L /
08 \ ;
o6
\

o4f | | \

02!

—02F
-04r \ h
-06F

—08fF

Figure 5.1: Input (black dashed) with frequency w = 4 and corresponding output (red) for
the down-hanging pendulum

3Hendrik Wade Bode (1905-1982), US-American electrical engineer
‘Let I be an interval. A continuous function ¢ : I — R is called argument function of a function
v T — C\ {0}, if v(t) = |y(t)[e**® holds for all ¢t € I. We then write briefly ¢ = arg~y.
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This direct relation between the transfer function and the output signal means that, con-
versely, by measuring the amplitude and the phase shift of the output for sinusoidal input,
we can reconstruct the values G (iw) = |G(iw)[e®“). The transfer function on the imaginary
axis iR can thus be obtained experimentally from measurements.

This fact is particularly important because of a theorem from complex analysis: One can
prove that the function G is uniquely determined by its values G(iw) on iR. More precisely,
for i/o-stable systems (4.1) Cauchy’s integral formula yields the expression

G(s)—l/oo de

21 J_ o tw — S

for all s € C with Re(s) > 0 (note that the absense of “Du(t)” in the expression for y(t)
in (4.1) is important here; otherwise the formula has to be modified). Since, moreover,
G(iw) — 0 holds for all w — +o0, the above integral can be approximated by an integral
with compact integration interval. Consequently, fo an i/o-stabe system the transfer func-
tion can be entirely reconstructed from measurement values for sinusoidal input signals,

cf, [11, Abschnitt 6.5.3].

Graphically, these measurement values are depicted in the so-called Bode diagram, where
logarithmic scales are used for the frequency and for the modulus |G(iw)|. Figure 5.2 shows
this diagram for the down-hanging pendulum, again with £ = 0.1 and g = 9.81.

Amplitudenverstiarkung IG(iw)! Phasenverschiebung arg(G(iw))
07 ‘ ‘ ‘ ‘ ‘
10°4 10-2 10°! 10° 10! 10% 103
(0]

107!
10-2 -
10°3

-4
10 )
1073

103 102 107! 10° 10! 102 10° 3] l
(0]

Figure 5.2: Bode diagram for the down-hanging pendulum

The left diagram says that the input signal is first weakly amplified and then, with increas-
ing frequency up to about w = 3, the amplification increases and then decresase again for
larger value of w. Die phase remains almost unchanged for small values of w, while after
approximately w = 3 it is abruptly shifted by about —x. This behaviour is confirmed by
the numerical simulations of the pendulum in Figure 5.3.
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Figure 5.3: Input (black dashed) and output (red) for the down-hanging pendulum with
w = 2,3,4 from left to right

The Nyquist diagram

The Nyquist diagram® serves for checking whether a closed-loop system is i/o-stable. Just

like the Bode diagram the graph can be obtained entirely from measurement values and
thus stability can be verified experimentally.

By Theorem 5.16, in the SISO case the transfer function is given by

_ G()K(s)
Cd =TGR ()

by Theorem 5.13 is is i/o-stable if and only if there are no poles in the closed right half
plane of C. A sufficient condition for this is that F(s) := 1 — G(s)K(s) has no zeros in
the closed right half plane, which is the case if and only if Go(s) := —G(s)K (s) does not
attain the value —1 in the right half plane.

The Nyquist diagram® now depicts the values of Go(wi) graphically for w € (—o0, c0). In
practice, this is realised approximately by plotting the values from —R to R for a large
R € R in place of +oo. Since G(s)K(s) is the transfer function of the coupling of the
feedback law and the system, the values of this product can be determined experimentally.

Figure 5.4 shows these figures for the inverted pendulum with G(s) = 1/(ks + s? — g) for
k =0.1 and g = 9.81, and the static feedback law K = —1 (left) and K = —10 (right).

The consideration of the polynomials in the enumerator and the denominator of Gy now
yields the following stability criterion.

Nyquist criterion: Let n™ € N denote the number of poles of Gy with positive real part.
Moreover, we assume that Gy does not have poles with real part equal to 0. Then the
closed-loop system with transfer function G is i/o-stable if and only if the curve in the
Nyquist diagram (called the frequency response locus) G(wi) for w = —00...,00 winds
around the point —1 = —1 + 0i € C exactly n™ times in counterclockwise direction. In
case nt = 0 stability holds if and only if the the frequency response locus does not wind
around the point —1 in clockwise direction.

In our example from Figure 5.4, since K = const the transfer function Gy has the same poles
as (G; hence there is a pole with positive real part and none with real part 0. Consequently,

SHarry Nyquist (1889-1976), US-American electrical engineer
SHere we only present the variant for D = 0. See, e.g., [11, Section 8.5] for the general case.
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Figure 5.4: Nyquist diagram for the inverted pendulum with K = —1 (left) and K = —10
(right)

the frequency response locus must wind around —1 exactly once in counterclockwise di-
rection. This is obviously not the case in the left figure for K = —1. Yet, ths condition is
satisfied in the right figure for K = —10 (of course, the winding direction cannot be seen in
this graph, but one can verify that it runs in counterclockwise direction, as required). The
analysis in time domain yields that the corresponding closed-loop matrices for K = —1
and K = —10 are given by

0o 1 0 1 0o 1
A(g—K —k><8.81 —0.1) b A<—0.19 —0.1)'

The computation of the eigenvalues of this matrix confirms instability for K = —1 and
stability K = —10. In fact, the threshold between instability and stability lies at K =
—9.81.

Remark 5.18 For discrete time-systems a consideration in frequency domain is also pos-
sible. Instead of the Laplace transform in discrete time one uses the so-called z-transform,
which we will not discuss here in detail. a
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Chapter 6

Optimal stabilisation

The method for the computation of stabilising feedback laws proposed in Chapter 3 has the
disadvantage that — except for the eigenvalues — the dynamics of the closed-loop system
cannot be influenced. For instance, it is often the case that large control values u require to
spend a lot of energy (as in the pendulum model where u represents the acceleration of the
cart), which one would like to avoid. The heating model, is another example. Here large
overshoots, i.e., oscillations until the desired temperature is reached, should be avoided.

In this chapter we will therefore present an approach that allows to exert more influence
on the behavior of the closed-loop system. This will be achieved by using optimisation
techniques, in which the desired behaviour can be determined via the choice of the cost
function. As in Chapter 3 we will assume that the whole state vector x is accessible for
evaluating F'z. If this is not the case, a dynamic observer as described in Chapter 4 can
be used. We restrict ourselves to optimal control problems that are linked to stabilisation
problems. More general problems will be addressed in the context of model predictive
control later in this course.

6.1 Foundations of optimal control

In this section we will derive basic results in optimal control that we will need for solving
the optimal feedback stabilisation problem. Since the derivation of these results is the same
for linear and nonlinear systems, we will present it in the more general nonlinear setting.
This means, we consider nonlinear control systems of the form

&(t) = f(x(t), u(d). (6.1)

We assume that f : R™ x R™ — R" is continuous and that for each R > 0 there exists
Lr > 0 such that the Lipschitz condition

[f (@1, u) = fz2, u)|| < Lrlley — o (6.2)

holds for all z1, x2 € R™ and all u € R™ with ||z1]|, [|z2]|, ||u|]| < R. Under this assumption
the well-known existence and uniqueness theorem for ordinary differential equations can be
modified in such a way that for each piecewise continuous control function u € U and each

65
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initial value z¢ it yields the existence of a unique solution x(t, xg, u) with x(0, zg,u) = zg
(see also Theorem 8.1, below).

We now define the optimal control problem we want to consider in the following.

Definition 6.1 For a continuous and non-negative cost function g : R™ x R™ — Rg we
define the cost functional

J(xo,u) = /Ooog(a:(t, xo, u), u(t))dt.

The optimal control problem is then given by the optimisation problem
minimise J(xg, u) with respect to u € U for each zy € R".

o f e}

is called the optimal value function of this optimal control problem. A pair (z*,u*) € R" xU
with J(z*,u*) = V(z*) is called optimal pair. o

As function space U as before we use the space of piecewise continuous functions. In
addition, we assume that v is bounded on each compact interval and that the functions u
are continuous on the right, i.e. that for all ¢y € R the condition limy\ 4, u(t) = u(tp) holds.
Observe that the second assumption can be made without loss of generality, because the
solution does not depend on the value of u in the points of discontinuity.

Remark 6.2 In discrete time with dynamics
z(k+1) = f(z(k),u(k))

and initial condition x(0) = z¢ the cost functional reads

J(x07 u) = Zg(:v(k, Zo, u)a u(k))
k=0

Note that the functional J(xg, u) need not be finite. Moreover, the infimum in the definition
of V' need not be a minimum.

The first theorem in this chapter now gives a characterisation of the optimal value function
V.
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Theorem 6.3 (Dynamic Programming Principle or Bellman’s principle of opti-
mality)
(i) For each 7 > 0 the optimal value function satisfies

V(zo) = inf {/()Tg(x(t,xo,u),u(t))dt +V(a(r xo,u))} .

uel

(ii) For each 7 > 0 and an optimal pair (z*,u*) it holds that

V(z*) = /OT g(z(t, 2™, u™),u"(t))dt + V(z(r, x*,u")).

Proof: (i) We first show

Vi) < /0 " gt 30, w), u(t))dt + V(@ (r, 0, 1))

for all w € U and all 7 > 0. To this end, let x; = z(7, zg,u), € > 0 be arbitrary and u, € U
be such that

J(xr,ur) <V(zr)+e

holds. Let 4@ = u&,u,(- — 7) (cf. Definition 1.7). Then

V(zg) < /OOO g(x(t,x0,0), u(t))dt
= /Tg(m(t,xo,ﬁ),ﬁ(t))dt + /00 g(x(t,xo,w), u(t))dt
0 T
= / g(w(t,xo,u),u(t))dt—i—/ g( x(t,zo,u) ,ur(t—7))dt
0 T

= /OTg(:U(t,$o,u),u(t))dt+ ; g(z(t,zryur), ur(t))dt

= /Tg(a:(t, zo,u), u(t))dt + J(zr,ur) < /T g(x(t,zo,u),u(t))dt + V(z;) + €.
0 0

Since € > 0 was arbitrary, the claimed inequality follows.

As the second step we show

V(zg) > inf {/OTg(x(t,azo,u),u(t))dt +V (el xo,u))}.

ueU

To this end, consider again an arbitrary e > 0. We choose ug such that V (xzg) > J(zg, ug)—¢e
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holds and abbreviate z, = x(7, zg, up). Then

V(zg) > /000 g(x(t, xo,up), ug(t))dt — e
- /Tg(m(t,xo,uo),uo(t))dt + /OO g (t, 20, o), uo(t))dt — ¢
0 T
= / g(x(t, xo,ug), up(t))dt + / g(x(t, z(T, 20, uo), uo(- + 7)), ug(t + 7))dt — &
0 0

= /OTg(:z:(t, xo,u), uo(t))dt + J(x (7, 2o, u0), uo(- + 7)) — €

Y

/OTg(a:(t, xo,up), uo(t))dt + V(x(1, 20, u0)) — €

ueU

> inf {/OTg(a:(t,xo,u),u(t))dt + V(x(r, :z:o,u))} —€

which shows the claim, since € > 0 was arbitrary.

(ii) From (i) we immediately get the inequality
V(z*) < /OTg(x(t,x*,u*),u*(t))dt + V(z(r, 2%, u")).
The converse inequality follows from
V(et) = /Ooog(m(t,x*,u*),u*(t))dt
= /OT g(x(t,x™, u*),u*(t))dt + /OO g(x(t,x™, u™),u*(t))dt
= /OT g(x(t,x™, u*),u*(t))dt + /000 g(x(t,x(r,x*,u*),u" (- + 7)), u*(t + 7))dt
= /OT g(z(t,z*, u*),u*(t))dt + J(x(r, 2", u*),u* (- + 7))

> /0 g(x(t,x™, u*),u*(t))dt + V(x(r,x*,u")).

A consequence of this principle is the following corollary.

Corollary 6.4 Let (z*,u*) be an optimal pair. Then (z(r,z*,u*),u*(- + 7)) is also an
optimal pair for each 7 > 0. o

Proof: Exercise.

In words, Corollary 6.4 states that final pieces of optimal trajectories are optimal trajec-
tories themselves.

All statements made so far also hold in discrete time (with analogous proofs). In discrete
time the dynamic programming principle reads for all K € N

K—1
V(xzo) = inf {Z g(x(k,xo,u),u(k)) + V(z(K, xo,u))} (6.3)

cu
b k=0
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and the optimal pairs (z*, u*) satisfy

K—

,_.

g(x(k, 2" u),u" (k) + V(x(K,z",u")).
k=0

The next statement derives a partial differential equation for V from Theorem 6.3, by
means of a clever limit process for 7 — 0. This statement does not have a discrete-time
counterpart.

Theorem 6.5 (Hamilton-Jacobi-Bellman differential equation)
Let g be continuous in x and u. Moreover, let O C R"™ be open and such that V| is finite.

(i) If V is continuously differentiable in zy € O, then
DV (xo) - f(wo, uo) + g(wo, uo) > 0
holds for all ug € R™.

(ii) If (z*,w*) is an optimal pair and V' is continuously differentiable in z¢ € O, then

min {DV (z*) - f(z*,u) + g(z*,u)} =0 (6.4)

ueR™
and the minimum is attained in u*(0). Equation (6.4) is called Hamilton-Jacobi-Bellman

equation.

Proof: We first show the auxiliary identity

T

1{%1 [ (a0, ), u(®)dt = g(z0,u(0))

for each u € U. Because of continuity of  and u (on the right) in ¢ and since g is continuous,
for any € > 0 there is t; > 0 with

|9z (t, o, w), u(t)) = g(x0,u(0))] < &
for all £ € [0,t1). For 7 € (0, ;] this yields

2 [ statean . utonat  gteo )| < 2 [ latatt . ue) - gteo u)at

-
17‘

§/E:€
T Jo

and thus the statement for the limit, since ¢ > 0 was arbitrary.

Now both assertions follow:

(i) For u(t) = ug € R™ Theorem 6.3(i) implies

V(zg) < /OT g(x(t, xo,u),u(t))dt + V(x(1, 20, u))
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and thus
V(x(r,z0,u)) — V(xo)

DV (z9) f(zo,u(0)) = lim

T\O T
1 T
> 1 —_— = —_
> l{% . /0 g(z(t, w0, u), u(t))dt g(z0,u(0)),

i.e., the first assertion.
(ii) From (i) we get
inf {DV(z*)- f(z*,u) + g(z™,u)} > 0.

ueR™

Theorem 6.3(ii) moreover implies

Viz*) = /OTg(m(t,x*,u*),u*(t))dt + V(x(r, ™, u")).

This yields

DV (z*)f(z*,u*(0)) = lim

N0 T
1 T
~ /0 ool 2* u) (D)t = —g(a*,u(0)),
which implies the existence of the minimum in v = «*(0) and the claimed identity. U

Theorem 6.5 provides necessary optimality conditions, i.e., conditions that must be satisfied
for the optimal value function or for an optimal pair, respectively — provided the optimal
value function is continuously differentiable. In general, however, the necessary condition
does not imply that a function is indeed an optimal value function or that a pair is an
optimal pair. To this end, sufficient optimality conditions are needed. We will derive them
in the following.

For this derivation we need additional assumptions, which can be formulated in different
ways. Since we want to apply the theory to stabilisation problems, the following assumption
is suitable for our purposes.

Definition 6.6 Assume that f satisfies f(0,0) = 0, i.e. the origin is an equilibrium of the
control system for v = 0. Then we call the optimal control problem null controlling, if the
implication

J(zo,u) <oco = x(t,zo,u) — 0 for t — oo

holds. O
Now we can formulate the sufficient condition.

Theorem 6.7 (sufficient optimality condition)

Consider a null controlling optimal control problem. Let W : R" — Rar be a continu-
ously differentiable function with W(0) = 0, which satisfies the Hamilton-Jacobi-Bellman
equation

min {DW () f(z,0) + gz, )} = 0.



6.1. FOUNDATIONS OF OPTIMAL CONTROL 71

For given z* € R" let u* € U be a control function, such that for the corresponding solution
z(t,z*,u*) and all ¢ > 0 the minimum in this equation for x = z(t,z*, u*) is attained in
u=u*(t).

Then (z*,u*) is an optimal pair and
V(z(t, 2", u*)) = W(z(t, 2", u"))

holds for all ¢ > 0.

Proof: We prove the assertion for ¢ = 0. Fiir ¢ > 0 it follows by applying the proof to
(x(t,z*,u*),u*(t + -)). Consider u € U and let z(t) = x(t,z*,u) be the corresponding
solution. We start by showing the inequality

J(x* u) > W(z").
In case J(z*,u) = oo there is nothing to show. It thus suffices to consider the case
J(x*,u) < co. From the Hamilton-Jacobi-Bellman equation we can conclude

d

W (@(t) = DW(2()) f(2(t), u(t)) = —g(x(t), u(?)),

and hence the fundamental theorem of calculus yields

. T d T
WD) - W) = [ Gwt)i> - /0 g(a(t), u(t))dt.
This implies
T
J(x*,u) = Jim ; g(x(t), u(t))dt > Jim (W(x*) = W(z(T))) = W(z").

for all T > 0. Here the last identity follows since the problem is null controlling and
J(xz*,u) < oo. This implies z(T") — 0 for T" — oo and thus by continuity of W and
W(0) = 0 we obtain W (z(T")) — 0.

Observe that this inequality in particular implies V(z*) = inf,cy J(z*,u) > W(z*). To
conclude the proof it is thus sufficient to show

J(x*u*) =W(z").

For the control u* and the corresponding solution z* = x(¢,z*, u*) the Hamilton-Jacobi-
Bellman equation implies

%W(ﬂf*(t)) = DW (2 (1)) f (2" (1), u™(t)) = —g(z™(t),u" (1)),
and analogously to above we get
T
J(z*u*) = Tlggo ; g(z*(t),u*(t))dt = Tlgrolo (W(x*) — W(x(T))) = W(z").
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Observe that both theorems in this section apply only if V' or W, respectively, are differen-
tiable. In the general nonlinear case, this assumption is relatively restrictive!. Moreover, it
is in general quite difficult to compute V' by solving this equation, even if V' is differentiable.

In the linear case, however, the problem and the Hamilton-Jacobi-Bellman equation sim-
plify considerably, such that an explicit solution is possible, as we will see in the following
section.

6.2 The linear-quadratic problem

Now we return to the linear control system (1.3)
#(t) = Az(t) + Bu(t) =: f(z(t),u(t)).

In order to obtain an applicable solution theory, we also need to impose a suitable structure
for the cost function g(x,u).

Definition 6.8 A quadratic cost function g : R” x R" — Ra“ is given by

e =) (R ()

with Q € R™*", N € R™™ and R € R™*™, such that G := ( ]\?T ]]\%[ > is symmetric

and positive definite (briefly: spd). o

This is the reason for the name “linear-quadratic” optimal control problem: the dynamics
is linear and the cost function is quadratic.

We first show that this problem is null-controlling.

Lemma 6.9 The linear-quadratic problem is null-controlling in the sense of Definition 6.6.

Proof: We first show the inequalities
gla,u) > eil|z|? and g(z,u) > eo f (2, w)|® (6.5)

for suitable constants c1,co > 0.

Since the matrix G is spd, Lemma 3.10 implies the inequality

x

u

!The nonlinear theory of these equations uses the notion of “viscosity solutions”, a generalised solution
concept that is also meaningful if V' is not differentiable.

2

9(x,u) = > erl2]?, (6.6)
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i.e., the first estimate in (6.5). Since

| £ ()l = (@7, uT) < . ) ( y )

Lemma 3.10 moreover yields
x
u

which together with (6.6) and ca = ¢1/c3 yields the second estimate in (6.5).

2
1 (@, )|* < es

9

Consider now xg € R™ and u € U with
J(xg,u) < 0o
and denote by x(t) = z(t, o, u) the corresponding solution. We have to show that

lim z(t) = 0.

t—o00

To this end, assume that z(¢) 4 0. This means that there exists ¢ > 0 and a sequence
t — oo such that ||z(tg)]| > e. Without loss of generality we can assume tg1 — g > /2.
Now we set § = £/4 and distinguish two cases for k € N:

Case 1: ||z(t)]] > &/2 for all t € [tg,tx + 6]. In this case for these ¢ from (6.5) we get the
inequality g(x(t),u(t)) > c1e2/4 and consequently

)
/ g(z(t), u(t))dt > c166? /4 = c16%/16.

tr

Case 2: [|z(t)]| < /2 for a t € [tg,tr + 0]. In this case we get

From the second estimate in (6.5) we obtain

' Fa(r), ulr))dr

tk

= [lz(te) — 2@ = [l = =) = £/2.

0 £ <1
oz alfe ol = { 0 o = el -

and hence

t,+0 ty+6
/ 9(z(7), u(r))dr > 62/ [f(z(7), u(r))|| = 1dT = c2(e/2 = 0) = coe /4.

tg tg

Setting v = min{c13/16, c2e/4} > 0 we obtain

9] t+6 00
O RRFCTORTOITED SEEES

k=1"tk k=1

J(0,u) = /O " gl (), u(t))dt >

and thus a contradiction. |
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We can thus use Theorem 6.7 for verifying the optimality of a solution of the linear-qua-
dratic problem.

In order to find a candidate for the optimal value function, we make the ansatz
W(z) = 2T Pz (6.7)

for an spd matrix P € R™*",

A priori we do not know whether this ansatz is justified — for now we simply assume is
and investigate the consequences.

Lemma 6.10 If the linear-quadratic optimal control problem has an optimal value func-
tion of the form (6.7), then all optimal pairs (z*,u*) are of the form

u*(t) = Fx(t,z*, F)
where F' € R™*" is given by
F=-RYBTP+N7T),
and z(t, x*, F') is the solution of the closed-loop system with feedback law F', i.e.,
z(t) = (A+ BF)z(t) = Ax(t) + Bu*(t)

with initial condition z(0, z*, F') = z*.

Moreover, the origin is exponentially stable for the closed-loop system with feedback law
F.

Proof: The optimal value function of the form (6.7) is continuously differentiable and
satisfies W (0) = 0. This implies that both Theorem 6.5 and Theorem 6.7 are applicable.

If W is the optimal value function, then Theorem 6.5(ii) implies that the optimal control
u = u*(t) for x = (¢, 2*,w*) minimises the expression

DW(z) - f(z,u) + g(z,u). (6.8)

Conversely, Theorem 6.7 yields that any control function, which minimises (6.8) along the
corresponding solution trajectory generates an optimal pair. We thus have to show that
the feedback law F' generates such solutions and control functions and that the u* specified
in the theorem is the only control function that minimises (6.8).

For the linear-quadratic problem under consideration, the expression (6.8) to be minimised
equals

= 2" P(Az + Bu) + (Az + Bu)" Pr + 27 Qx + 2" Nu + " NTz + «" Ru
= 227 P(Az + Bu) + 27Qx + 22" Nu+ v Ru =: h(u),

since P is symmetric. Since G is spd, R must be spd, too, and thus the second derivative
of h with respect to u is spd. Thus, the function A is strictly convex in u. Thus, any zero



6.2. THE LINEAR-QUADRATIC PROBLEM 75

of the derivative of h with respect to u is a global minimum. These derivatives are given
by
0 = Dh(u) =22"PB+2:"N +2u"R
& 'R = 22TPB+2:TN
& —Ru = BTPz+ NTx
& v = —RYBTPr+ NTz) = Fu,
which shows the claim.

Exponential stability of the closed-loop system follows from the Hamilton-Jacobi-Bellman
equation. Because G is spd, by Lemma 3.10 we obtain

DW (z) - f(z, Fz) = —g(z, Fz) < —c|/(a”, (Fx)")T||* < —cl|z||?
for a suitable ¢ > 0. Since, moreover, P is positive definite, W (x) is a Lyapunov function
and according to Lemma 3.11 exponential stability of the origin follows. U

If the optimal value function is of the form (6.7), then we obtain a particularly nice solution:
We can not only compute the optimal control functions u* explicitly, they are, moreover,
given in feedback form and, as an (obviously intended) side effect the optimal feedback law
stabilises the system.

We thus have to investigate when V' can assume the form (6.7). The next lemma gives a
sufficient condition for this fact, as well as a possibility for computing P.

Lemma 6.11 If the matrix P € R™ " is an spd solution of the algebraic Riccati equation?

PA+ATP4+Q— (PB+N)RYB'P+NT) =0, (6.9)
then the optimal value function of the problem is given by V(z) = z” Px.

In particular, there exists at most one spd solution P of (6.9).

Proof: We start by showing that W (z) = 27 Pz solves the Hamilton-Jacobi-Bellman
equation (6.4).

In the proof of Lemma 6.10 we already established the identity

for the matrix F = —R™Y(BTP + N7T). Using
FTBTP + FTRF + FTNT
= —(N+PB)R'B'"P+ (N +PB)R'RRY(BTP+N")—(N+PB)R !N =0
we obtain
DW (z) - f(z, Fz) + g(z, Fx)
= 27 (P(A+ BF)+ (A+BF)'P+Q+ NF+F'NT + FTRF)z
= 2 (PA+ATP+Q+ (PB+ N)F+ F'BTP + FTRF + FTNT)x
=0

= 2" (PA+ATP+Q+ (PB+ N)F)x
= 2T (PA+ATP+Q— (PB+N)R"YBTP+ NT))z.

Znamed after Jacopo Francesco Riccati, Italian mathematician, 1676-1754
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If the algebraic Riccati equation (6.9) is satisfied, then this expression equals zero and the
Hamilton-Jacobi-Bellman equation is satisfied.

In order to prove V(zx) = W(z), we now show that the assumptions of Theorem 6.7
are satisfied. Positive definiteness of P implies W (z) > 0 and W(0) = 0. As shown
above, W(z) = 2T Pz solves the Hamilton-Jacobi-Bellman equation. Moreover, from the
construction of u* via the feedback law F' in Lemma 6.10 it follows that it satisfies the
assumptions on u* in Theorem 6.7. Thus, V(z) = W(z) follows from Theorem 6.7.

The uniqueness of the spd solution P follows from the fact that the proof of V(z) = W (x)
applies to any such solution. This implies V(z) = 27 Pz for all € R™, by which P is
uniquely determined. U

Remark 6.12 Note that the uniqueness statement of this lemma only holds for spd, i.e.,
symmetric and positive definite solution matrices P. In general, the algebraic Riccati
equation has more than one solution. However, at most one of these can be spd. |

Lemma 6.10 and 6.11 suggest the following strategy for solving the linear-quadratic prob-
lem:

Find an spd solution P of the algebraic Riccati equation (6.9) and compute
from this the optimal linear feedback law F' according to Lemma 6.10.

This yields an optimal linear feedback law, which according Lemma 6.10 also solves the
stabilisation problem.

The important question thus is: Under which assumptions can we prove the existence of
a spd solution of the algebraic Riccati equation? The following theorem shows that this
approach works under the weakest possible assumption on A and B.

Theorem 6.13 For the linear-quadratic optimal control problem the following statements
are equivalent:

(i) The pair (A, B) is stabilisable.

(ii) The algebraic Riccati equation (6.9) has a unique spd solution P.
(iii) The optimal value function is of the form (6.7).

)

(iv) There exists an optimal linear feedback law, which stabilises the control system.
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Proof: “(i) = (ii)”: Consider the Riccati differential equation
P(t) = P()A+ ATP(t) + Q — (P(t)B + N)R"Y(BTP(t) + NT)

with matrix-valued solution P(t) that satisfies the initial condition P(0) = 0. From the
theory of ordinary differential equations we know that this solution P(t) exists for all ¢
from a maximal existence interval [0,¢*), i.e., t* is chosen maximally. A direct computation
shows that P(t)7 is also a solution of this equation that satisfies P(0)7 = 0. Because of
the uniqueness of the solution we obtain P(t) = P(t)7, i.e. the solution is symmetric.

As the first step of the proof we show that this solution exists for all ¢ > 0, i.e. that t* = oo.
To this end we assume that t* < oo.

With analogous computations as in the proof of Lemma 6.10 one sees, that for all ¢t} — ¢ €
[0,t*) and all u € U the function W (t,t1, ) := 2T P(t; — t)x satisfies the inequality

%W(t,tl, x) + %W(t,tl,x) - f(z,u) + g(x,u) > 0. (6.10)

For any solution x(t) = x(t, zo, u) of the control system with arbitrary u € U this implies

LWt 11,2(0) = SW 1 0(0)) + W (010, 2(0)) - £, ) > —glalt), (D).

The fundamental theorem of calculus together with W (t1,t1,2) = 0 then yields

t1 t1
W(0,t1,z0) = —/ %W(t, t1,z)dt < / g(x(t, xo,u), u(t))dt (6.11)
0 0

for all t; € [0,t*). Again analogously to the proof of Lemma 6.10 one checks that for
the control value defined by u = v* = —R™Y(BTP(t) + NT)z one obtains equality in
(6.10). With a similar derivation as above one sees that with the control function u*(t) =
—R7YBTP(t) + NT)x(t, 0, u*) we get

W0, 1, 0) /Otl a2 (t, 30, u*), u* (£) )dt. (6.12)

Since G is spd and the solutions x(t, zg,u*) are continuous, we get W(0,t1,x9) > 0 for
xo # 0, implying that P(¢1) is spd. With the particular choice v = 0 inequality (6.11)
implies that W (0,t1,20) = 27 P(t1)z is uniformly bounded for all ¢; € [0,¢*). Now the
symmetry of P(t) implies that its entries satisfy

P = eF Plt)es = 3 ((ei + &) P(t)(ei +e) — T Pt)es — f Plt)ey). (6.13)

Hence, the entries of P(t) are also uniformly bounded for ¢ € [0,¢*). From the theory of
ordinary differential equations it is known that if the right hand side of the equation is
globally defined (which is the case for our equation, since the right hand side is defined for
all P € R™ ™) and t* < oo, then the norm of the solution must tend to infinity as ¢ * t*.
This, however, is only possible if at least one entry of P(t) grows unboundedly. Since here,
however, all entries are bounded, t* < oo is not possible.
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The solution P(t) is thus an spd matrix valued function for all ¢ > 0. Moreover, (6.12)
implies for all s > ¢ and all z € R” the inequality

2T P(s)x > zT P(t)x.

We now show that P, := limy_, P(t) exists. To this end we pick a stabilising feedback
law F' for the pair (A, B) and set up(t) = Fx(t, zo, F'). Then from (6.11) and the estimate

9(z, Fa) < K||z||?
we obtain the inequality

W(0,t1,z0) < /Olg<$(T,x0,F),UF(T)>dT

t1

K(Ce % |xol])?dt

IN

o
< / KC2%2dt a2 < Dllol|.
0

Vv
_KC2_.
=5 =:D<oo

This implies 27 P(t)z < D||z||? for all ¢ > 0, thus for any fixed + € R" the expression
2T P(t)x is bounded and monotone increasing. This implies that it converges for ¢t — co.
Denoting the j-th basis vector as e; and defining

lij = lim (e; + e;)TP(t)(ei +e;) and 1 = lim e] P(t)e;,

t—00

from (6.13) we can conclude

lim [P(t)];; = %(lij — i —1).

t—o00

This implies that the limit Ps := lim;_,o P(t) exists. This matrix is symmetric and since
2T Pz > 2T P(t)z >0 forall £ # 0 and all t > 0

it is also positive definite.

We finally show that this P, solves the algebraic Riccati equation. From the qualitative
theory of ordinary differential equations it is known that P(t) — P implies that P, is an
equilibrium of the Riccati ODE.? This immediately implies that P, solves the algebraic
Riccati equation, from which the existence of an spd solution follows. Uniqueness then
follows from Lemma 6.11.

“(ii) = (iii)”: Follows from Lemma 6.11
“(iii) = (iv)”: Follows from Lemma 6.10.

“(iv) = (i)”: Since a stabilising feedback law exists, the pair (A, B) is stabilisable. U

3see, e.g., Lemma 7.2 in [4]
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Remark 6.14 The auxiliary function W (to,¢1) used in the proof of “(i)=-(ii)” is actually
the optimal value function of the optimal control problem

t1
minimise J(to, t1, zo, u) ::/ g(x(t,to, zo, ), u(t))dt
to
on the finite time horizon [tg,¢;]. Here x(t,to, xo,u) denotes the solution of the control

problem with initial time ¢y and initial value x, i.e., x(to, to, o, u) = xo. o

This observation can even be further generalised, as we briefly sketch (without proofs):

For the linear-quadratic problem on finite time horizon with terminal cost [(z) = 2T Lz for
an spd matrix L € R” x n, i.e.

t1
minimise J (o, t1, o, u) :—/ g(x(t, to, xo, w), u(t))dt + l(x(t1, to, xo, u))
to

the optimal value function is given by
W (to, t1) = 2" P(ty — to),

where P(-) solves the Riccati differential equation (as in the proof above), but now with
initial condition P(0) = L.

Analogously to the infinite horizon problem, the optimal feedback law is given by
F(t)=—-RY(BTP(t; —t) + NT),
but now it depends on the time ¢. The optimally controlled system on [tg,¢;] thus reads
&(t) = (A+ BF(t))z(t).
Observe that for ¢t; — oo and ¢ fixed, the time varying feedback law F'(t) converges to F'

from Lemma 6.10.

Remark 6.15 For discrete-time systems analogous results to the results in this chapter
can be obtained. These result do not build upon the Hamilton-Jacobi-Bellman equation
but rather on the optimality principle (6.3) for K = 1. This leads to the discrete-time
algebraic Riccati equation

ATPA—P— (A"PB+ N)(B"PB+R) Y (B'PA+N")+Q=0.

The formula for the optimal feedback law changes to F' = (BTPB + R)~Y(BTPA +
NT). o
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6.3 Linear-quadratic output regulation

In the previous section we always assumed that the matrix G in the definition of the cost
function g(x,u) is positive definite. In the exercises we have seen that in general the
LQ problem is not null-controlling and that the proposed solution may not work if this
condition is violated.

Nevertheless, there are reasons to relax this condition. If we consider a control system with
output (4.1) (cf. Chapter 4), i.e.

x(t) = Ax(t) + Bu(t), y(t) = Cx(t),

then it makes sense that the optimisation objective depends only on y and not on x.
This means that we consider a cost function of the form g(y,w). This can be achieved by
choosing the submatrices @) and N of G of the form

Q=C"QC, N=C'N

for matrices @ and N of appropriate dimension. Then we get

o = e (&8 () = e (G ST)(5)

= (yTuT) < N?T ‘Z) < Z) =: g(y,u). (6.14)

Here we choose @ and N such that G is spd. The matrix G is now no longer positive
definite. Nevertheless the results from the previous sections can be carried over to this new
G. To this end we must check where positive definiteness entered in the proofs:

(i) In Lemma 6.9 positive definiteness of G is used in order to show that the problem is
null-controlling.

(ii) In Lemma 6.10 positive definiteness of the submatrix R is exploited implicitly, because
the R™! is used.

(iii) In the proof of the implication “(i)=-(ii)” in Theorem 6.13 positive definiteness of G
is exploited to prove that P(t) is positive definite.

Item (ii) is not an issue here, because R is still assumed to be positive definite. Items (i)
and (iii) will be clarified in the sequel. The following lemma is essential for this.

Lemma 6.16 Let the pair (A, C) be observable. Then for any t; > 0 there is ¢ > 0, such
that for g from (6.14) the estimate

t1
7(0, 1, 70, 1) = / g(a(t; 0, ), u(t))dt > claol?
0

holds for all zgp € R™ and all u € Y.
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Proof: From the general solution formula
t
z(t; 20, u) = etag + / A% Bu(s)ds = x(t; 0, 0) + (£ 0, u)
0

we can conclude that for all a > 0
x(t; g, au) = ax(t; xo, u)
holds. This implies for xp # 0 and « = ||z]| the identity
J(0,t1,0,u) = o J(0,t1, x0 /v, u/a) = |[xol[*J (0, t1, xo/||oll, u/||xol])-
In order to show the assertion it thus suffices to prove the existence of ¢ > 0 with

J(0,t1,x0,u) > ¢ for all zg € R"™ with ||zo]| =1 and all u € U. (6.15)

In order to prove (6.15) we first consider

t1 i1 ~
J(Ovtlvx()vo) = /0 x(tvl‘OaO)TQl‘(ta:L‘an)dt = /0 y(t)TQy(t)dt

Since (A, C) is observable, Lemma 4.5 implies that for all zy # 0 there is 7 € [0,¢;] with
y(T) # 0. Since y(t) is continuous, we can conclude y(¢) # 0 on an interval around 7,
which by means of the positive definiteness of @ implies the inequality J(0,t1,x9,0) > 0.
Since J(0,t1,x0,0) is continuous in g, it attains a minimum ¢y > 0 on the compact set
{0 € B" ||| = 1}, implying

J(0,t1,20,0) > co (6.16)
for all g € R™ with ||zo|| = 1.
For estimating J(0, 1, x0,u) we now choose an arbitrary zp € R™ with [jzg]| = 1 and an
e > 0. For control functions u with
t1
/ w(t)T Ru(t)dt > (6.17)
0

we then obtain fgl u(t)Tu(t)dt > kie, where k; = 1/||R||. Consequently, positive definite-
ness of G implies

J(0,t1, 20, u) = /Ot1 (y(t)Tu(t)T)C~;<y(t;> dt > kikse >0 (6.18)

k| (40) || 2R w12

with ky = 1/][G™Y||. It thus remains to show the inequality for control functions u € U
with .
1
/ u(t)T Ru(t)dt < e. (6.19)
0

Since R is positive definite, we get

lu(®)]* < eru(t)” Ru(?)
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for some ¢; > 0 and thus
t1
/ u()[2dt < cre.
0

In addition we get

Ve, lu(@)|* < e

Ju(t)]| <
lu@®)[2/vE, |u®)]? > e.

This implies

[ o< [ maxtvE @l VEvie < [ VE+ ol Ve = e+ Ve
From the general solution formula we thus obtain the existence of a constant cy > 0 with
o (t; 0,0 < ez (6.20)
for all ¢t € [0, ¢1]. Similarly, the solution formula implies
|2(t; 20, 0)|| < csllwol| = c3 (6.21)
for a suitable constant c3 > 0 and all ¢ € [0,¢;]. In particular, this implies
lz(t; 2o, w)|| < ca (6.22)

for ¢y = cav/e + cs.

For the functional we thus obtain
t1 t1
J(0,t1, 0, u) 2/ x(t; xo,u)TQx(t;xo,u)dt—t—Q/ z(t; zo, u)T Nu(t)dt.
0 0

Because of (6.22), the second term satisfies the inequality
t1 t1
2/ o(t: 20, u)T Nu(t)dt > —2C4HNH/ u()ldt > —2eal|N (1 + t1)VE = —cav/z.
0 0

From the estimate
(1 + xg)TQ(zl + x9) = mlTle + ;EQTQxQ + 23{{@:@ > mlTQ:L'l + Qx{ng

for the first term, using x1(t) = x(¢;20,0), z2(t) = x(£;0,u) and the Cauchy-Schwarz
inequality we can conclude

t1

/tl z(t; zo, u) T Qu(t; zo, u)dt > /tl 21 ()T Qu (1) —i—/ 221 (t)T Qua(t)dt
0 0

0
t1 t1
> 2N / o2 ()2 / Jea(8)2dt
0 0
> o —2||N|esy/ticde =: co — cev/e.
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Together this yields
J(0,t1,20,u) > co — cv/e

with ¢7 1= ¢5 + ¢. Setting ¢ = ¢3/(2¢7)? (implying c7v/€ = ¢o/2), in the case (6.19) we
finally arrive at
J(Oatlax07u) > 00/2'

Together with the inequality (6.18) for the case (6.17) we thus obtain
J(0,t1, 0, u) > max{co/2, kikaci/(4cr)?} =: ¢

and consequently (6.15). U

Now we can clarify the items (i) and (iii) in the list above. We first look at item (i),i.e. we
generalise Lemma 6.9 to the new cost function (6.14).

Lemma 6.17 Let the pair (A, C) be observable. Then the linear-quadratic problem with
g from (6.14) is null-controlling.

Proof: We prove
x(t;xo,u) A0 = J(xg,u) = o0.

Thus, consider a solution with x(¢;xg,u) 4 0. Then there exists a sequence of times
tr — oo and an € > 0 with ||z (tg; xo,u)|| > €. Without loss of generality we may assume
ti+1 — tx > 1. Using Lemma 6.16, z; = x(tx; 2o, u) and ug(-) = u(ty + -) it then follows
that

tp+1 1
/ g(x(t; zo,u), u(t))dt = / 9(@(t; 2, we), u(t)dt = J(0,1, 2k, ug) > ce*.
tr 0
This implies

J(xou) = /Owg@(t;:co,u),u(t»dt

v

> tp+1 .
Z/ g(a(tzo, ) u®)dt > 3 &2 = oo,
k=1

k=1"tk
0

It remains to address item (iii), i.e. to show that the proof of “(i)=-(ii)” in Theorem 6.13
also works for g from (6.14). This is shown by the following theorem

Theorem 6.18 Let the pair (A, C) be observable. Then Theorem 6.13 also holds for the
linear-quadratic problem with g from (6.14).

Proof: Using Lemma 6.17 in place of Lemma 6.9 we obtain all parts of the proof analo-
gously to Theorem 6.13, except for “(i)=-(ii)”.

For proving “(i)=-(ii)” the positive definiteness of G is used only in one place, i.e. for
proving that

W(0,t1,z0) = /0 1g(;c(t,gno,u*),u*(t))dt
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in equation (6.12) is positive for all g # 0. This, however, follows from Lemma 6.16 also
for g from (6.14) provided (A, C) is observable. Thus, the proof remains valid and the
assertion follows. 1

Remark 6.19 The corresponding Riccati equation reads
PA+ATP+CTQC — (PB+CTN)RY(B"P+ NTC)
and the optimal feedback law is given by
F=—R Y (B"P+NT0).

Observe that both V(z) = 27 Pz and Fz are in general not of the form yT]Sy or ﬁy. In
order to implement F' for a control system of the form (4.1) in dependence of y, we still
need an observer. o



Chapter 7

The Kalman Filter

Already in Chapter 4 we saw a possibility to compute the state z(t) of a control system
from the measured output y(t) = Cz(t) via the dynamic observer z(t). The focus of this
considerations in this chapter was mainly asymptotic stability of the closed loop system,
rather than the quality of the approximation z(t) ~ x(t).

By means of the linear-quadratic optimal control from the last section we now want to
develop a method that yields an — in an appropriate sense — optimal state estimation
2(t) =~ z(t).

The solution of this linear-quadratic state estimation problem is given by the so-called
Kalman Filter (also called LQ estimator). This filter is nowadays contained in numerous
technical devices, from the radar device via satellites to the smartphone. Here we consider
the deterministic, continuous-time version of the Kalman filter on infinite time horizons,
which builds on the results from the last chapter.

7.1 State estimation on infinite time horizon

We first consider the following, slightly differently formulated problem: Assume we are
given a control system (4.1) with the modified notation B = D and u = v, i.e.,

#(t) = Az(t) + Do(t), y(t) = Cx(t), (7.1)
where (A, C) is observable.

Let, moreover, ¥, : R — R! be a given function. The goal now is to use the solutions of
(7.1) in order to find a constructively computable function z*(t), such that y(t) = Cx*(t)
approximates the function y,,(t). The interpretation of this problem setting is that y,,(t) =
Czy,(t) represents measured output values generated by the solution z,, of a differential
equation &, = Az, with identical system matrix A as in (7.1). From these values the
solution the state x,,(t) shall be estimated as good as possible. We will explain in the next
section, how this setting can be extended if %,, is generated by a control system that also
includes a control function wu.

The Kalman Filter, which we derive in the following, solves this problem optimally in the
sense of an “indirect” least-squares approximation that proceeds in two steps.

85
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In the first step we choose spd matrices @ and R of suitable dimension and compute
for every 7 > 0 and every initial value xy with initial time t5 = 7 a control function
v : (—o0, 7] = R™, such that the solution x,(t) = z(t; 7, xo, v) minimises the functional

Jr(xo,v) = /T (Cxr(t) — ym ()T Q(Cr(t) — ym(t)) + v(t)T Ru(t)dt. (7.2)

We assume that the corresponding optimal value function

T = inf J; 5
W (o) ;21,{{] (z0,v)

is finite. In the second step we then choose z*(7) such that W, (z*(7)) becomes minimal,
i.e. such that
W (2*(7)) = min W (xg)

rgER™
holds.

This approach may at the first glance appear a little cambersome. It leads, however, to a
solution that is very easy to implement and that we will derive now.

First of all we transform the time in such a way, that the integration (7.2) is carried out
from 0 to oo, as in the linear quadratic problem from the last section.

To this end we set z7(t;z9,v) := (T — t;z9,v) and y], (t) = ym (7 — t). Then, using the
abbreviation 27 (t) = z7 (t; xg, v), for

J7 (w0, v) = /OOO(CZL‘T(t) — Y ()7 Q(C™(t) =y, (1) + o)) Ro(t)dt  (7.3)
we obtain the identity J (xo,v) = J-(zo,v(7 — -)). This implies in particular
W (o) = Inf J- (20, v) = Wr(zo).
Observe that 7 (¢; xo,v) solves the control system
7 (t) = —Ax" (t) — Dv(T — t).

Using a second transformation we can then bring (7.3) (almost) into the form of the known
linear-quadratic output-regulation problem from Definition 6.1 with g from (6.14):

For this purpose we extend the state z € R™ of the system by a component x,,11(t) = const,
i.e., &p4+1(t) = 0. This is achieved by setting

(= - (A 0 - (=D
x.-(xn+1>,A.—< 0 O> andD.—( 0 >
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If we define

<l

(t) - CTQVC~ —CT@y:n(t)
T —ynTQC Y5, ()T Qur, (t)

and g(t,Z,v) = 21 Q. (t)Z + v Rv, then for 7 = < T > it follows that

9(t,7,v) = (Cx — i, () Q(Cx =y, (1)) + v(H) Ru(t)dt.

x7 (t, xo,v)

Consequently for Zy = ( 51310 > and Z7(t, Zg,v) = < 1

) we obtain

J- (zo,v) = /000 g(t, 7 (t; o, v),v(t))dt =: J-(Zo,v).

As usual, with W, we denote the optimal value function. The problem is now of the
usual linear-quadratic form with the exception that g depends explicitly on time. Yet, the
equations that were used in the proof of Theorem 6.13 are still valid, if the time dependence
is M(t) is taken care of appropriately. More precisely (for sake of brevity we state this
without a proof), the following holds.

Consider for ¢ € [0, 0] the solution of the Riccati differential equation

Pro(t) = Prot)A+A P.(t)+Q.(0c —t) — Pro(t)DR™'D’ P, ,(t) (7.4)
with initial condition P;,(0) = 0. Then the convergence

W, (2) := lim 27 P, ,(0)Z

o—00

holds. Now we decompose W, ,(t) according to the definition of A: Writing

o Pol) prolt)
Pry(t) = < S peatd) )

the shape of the matrices A and D implies that P +(t) solves the equation
Py o(t) = —Pro(t)A — ATP ,(t) + CTQC — P, ,(t) DR DT P, ().

This, however, is exactly the Riccati differential equation from the proof of Theorem 6.13.
Moreover all the data and thus also P ,(t) = P(t) are independent of 7 and 0. We can
thus conclude

lim P(o) =P,

T—00

where P solves the algebraic Riccati equation

—PA-ATP+CTQC - PDR'DTP =0. (7.5)

Thus, with Q‘:OT = (;UOT, 1) and p; = liMy—s00 Pro(0), @y = limy_s00 a7 o (0) We get

W, (x9) = W, (Zg) = ali_)ngo J_:EFTJ(U):EO = J:gpmg + 21:ng + 0.
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The value z*(7) that we looked for in the second step of the method is thus (by differenti-
ating this expression and solving for xg) given by

2*(r) = —P~'p, = —Sp,

for S := P~!. By multiplication of (7.5) with S from the left and the right and with —1 it
follows that .S solves the so-called dual Riccati equation

AS + SAT — scTQCS + DR'DT = . (7.6)

It remains to compute p,. From the Riccati differential equation (7.4) for p,,(t) we can
deduce the differential equation

pTv”(t) = _ATpT,U(t) - P(t)DR_lDTpT’U(t) - CT@ym(T — 0+ t)
with initial condition ¢, »(0) = 0. This implies

pT—l—s,U—l—s (t) = ﬁT,U (t)

and since these two solutions coincide in ¢ = 0, they must coincide everywhere, i.e.,

Prs,ots(t) = pro(t).
hence we get

d

df pT+s,U+s(U+5) = ﬁr,a(U)
S s=0

= —ATp, ,(0) = P(0)DR DT p, ; () — CTQyp(T)
and consequently with ¢ — oo

da. _
dTpT -

Finally, with (7.6) we obtain

—ATp, — PDR™'D"p, — CT Qyp(7).

d
%pr

= SATp, + DR'D"p, + SCT Qypm(7)

—SATS (1) — DR DTS ¥ (1) + SCT Qypm (7)
(—SAT — DR'DTYS 2% () + SCT Qum (7)

(AS — SCTQCS)S™ a* (1) + SCT Qym(7)

Az* (1) = SCTQ(Cz* (1) — ym(7))

= Ax*(7) 4+ L(Cz*(T) — ym(7))

i(r) = -

with L = —SCTQ.
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This differential equation is the so-called Kalman filter. Its application works as follows:
When x*(t) is known, then z*(s) for s > t can be computed by solving the differential
equation on the interval [t,s] (analytically or numerically) from the data ylj . The
Kalman filter can thus be evaluated online in a recursive fashion.

Two properties of the Kalman filter are worth to be noted explicitly:

(i) The matrix L does not depend on y,,. For computing L one only needs to solve one
of the two Riccati equations (7.5) or (7.6).

(i) The matrix A + LC is Hurwitz. This is because L is the LQ-optimal feedback law
of the optimal control problem that corresponds to the dual Riccati equation (7.6).
Thus, AT + CTL"T is Hurwitz and consequently also A + LC = (AT + CTL™TT, as
these matrices have identical eigenvalues.

7.2 The Kalman filter as observer

We now show how the Kalman filter can be used as an observer for the state of a general
control system (4.1), i.e.,

&(t) = Az(t) + Bu(t), y(t) = Cx(t),

with (A, C) being controllable. We assume that the initial value z is unknown while the
control function u(t), t > 0, the output values y(t) = Cx(t; xg,u), t > 0, and an estimation
2o of the initial value xo are known. We now look for the curve z(t), t > 0, with z(0) = 2
in R"™, such that the estimation error Cz(t) — y(t) becomes as small as possible in an
appropriate sense and such that z(t) only depends on y|g (i.e. it can be computed from
the data that is known at time ¢). The output y(¢) thus plays the role of the measurement
Ym(t) in the Kalman filter.

For solving the problem we make the ansatz
2(t) = Az(t) + Bu(t) + v(t), (7.7)

where now v : R — R™ shall be determined in such a way that z(¢) becomes a good
estimate. In order to eliminate the term Bu(t) from the equation, we define the estimation
error e(t) := z(t) — xz(t). This satisfies the equation

é(t) = Ae(t) + v(t), (7.8)

i.e. it is determined by a control system (7.1) with D = Id and = = e. The error e hence
plays the role of x in (7.1).

We now need to compute the counterpart of the measurement y,, for the e-system. We
denote this quantity by e,,. In Section 7.1 we have minimized (in the notation of this
section) the quantity Ce(t) — e, (t), here we want to minimize the quantity Cz(t) — y(t).
Hence, we require

Ce(t) — em(t) = C2(t) — y(t) (7.9)
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which leads to

em(t) =y(t) + Ce(t) — Cz(t) = y(t) + Cz(t) — Cx(t) —Cz(t) = 0.
=y(t)

The measurement values for the e-equation are thus constantly equal to zero. This is
indeed reasonable, since the measured quantity y,,(t) = y(t) = Cx(t) has already been
incorporated into the equation for e via the definition of e.

If we now compute the feedback law L for the Kalman filter for (7.8) according to the
previous section, because of e, = 0 the filter equation becomes

€*(t) = (A+ LC)e*(t).
This is equivalent to
2(t) = Az(t) + Bu(t) + L(Cz(t) — y(t)) (7.10)

and thus yields an online implementable observer equation (note the structural similarity
with the dynamic observer from Chapter 4) for computing z(t), which can be solved an-
alytically or numerically. Observe that the optimal estimate e* for e and the estimator z
for x, respectively, are connected via e*(t) = z(t) — z(t). Thus, while we have derived the
Kalman observer by applying the Kalman filter to the equation for e (7.8), for comput-
ing the estimate z(t) we use the z-equation (7.10), because otherwise we would need the
unknown state x(t) in order to compute z(t) from e*(t).

Since we do not have measurement values y(t) for ¢ < 0, we cannot compute the optimal
initial value e*(0) as in the previous section. Moreover, even if we could compute it, it would
not be of much use, since for (7.10) we would have to use the initial value z(0) = e*(0)4+z9 —
but xg is unknown. We thus use the estimate zp &~ x as initial value in (7.10). Since A—LC
is Hurwitz, the estimation error e*(¢) converges to 0 for ¢ — oo, i.e. the approximation
z(t) = z(t) becomes better and better with increasing ¢. Since our approach is based on
an LQ optimal control problem, we would, however, expect not only convergence but also
that the estimate z(¢) starting in z(0) = 2¢ is optimal in a suitable sense.

In order to see in which sense optimality holds, we extend y(t) for t < 0 in such a way that
e*(0) = z9 — xp and thus z(0) = zp becomes the solution of the Kalman filter. In other
words, we generate “artificial” measurements for which the Kalman filter yields exactly
the estimate zg at time ¢ = 0. This is precisely the case if we synthesize y(t) via

— O.T(t7 2070)7 t<O0
W= { Cx(t;zo,u), t>0 (7.11)

from the forward solution of (4.1) for zy and u and the backward solution for zy and u = 0.
For v = 0 and e(0) = 0, from e,, = 0 we then obtain

Ce(t) —en =0

for all ¢ < 0. This yields Jy(0,0) = 0 for the objective (7.2), hence also Wy(0) = 0 and
thus €*(0) = 0. Consequently, it follows that z(0) = zg — e*(0) = zo.
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The estimated value z(t) computed using the initial estimation zg is thus exactly the
terminal value of the solution of (7.7) that approximates the curve (7.11) in the best
possible way in the sense of (7.2).

An important property of the Kalman filter is that is also yields good estimates in case of
imprecise data §(t) ~ y(t). This can be proved rigorously with stochastic methods.

The Kalman filter also exists in discrete time. In this case the differential equation (7.10)
becomes a difference equation

z(k+1) = Az(k) + Bu(k) + L(Cz(k) — y(k)).

Since this is easier to implement than the differential equation (7.10) (which has to be
solved numerically or analytically before the solution can be evaluated) and moreover
requires only discrete-time measurements y(k) (which are easier to acquire in practice than
continuous-time measurements y(t)), in practical applications the discrete-time Kalman
filter is often preferred.
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Chapter 8

Nonlinear control systems

In this and in the subsequent chapters we will consider nonlinear control systems in con-
tinuous time

2(t) = f(x(t), u(t)) (8.1)

and, respectively, in discrete time
a(k+1) = f(x(k), u(k)), (8.2)

written briefly as ™ = f(x,u). An example for a nonlinear control system in continuous
time is the nonlinear pendulum that we already introduced in (1.5). While for continuous-
time systems we chose the state and control space as R™ and R™, respectively, for discrete-
time systems it does not significantly complicate the setting to allow for arbitrary metric
spaces X and U for state and control.

In the following sections we briefly summarise some foundations about the solutions of such
systems.

8.1 Continuous-time systems

In continuous time we consider control functions with values in U C R™. The function
f :R"x U — R" then is a parameter dependent continuous vector field. The space of
control functions is again denoted as U, but we will allow for a larger space than in the
previous sections. More precisely, we use control functions from L>°(R,U). Existence and
uniqueness is then delivered by the following Theorem of Carathéodory.

Theorem 8.1 (Theorem of Carathéodory) Consider a control system with the follow-
ing properties:

i) The space of control functions is given by

U=L®R,U) :={u:R — U|u is measurable and essentially bounded!}.

!i.e., bounded outside a set of Lebesgue measure 0
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ii) The vector field f : R™ x U — R" is continuous.

iii) For any R > 0 there exists a constant Lr > 0, such that the estimate

| f(@1,u) — f(z2,w)|| < Lr|lz1 — 22

holds for all z1,z9 € R™ and all uw € U with ||z1||, ||z2|], ||u| < R.

Then for any initial value g € R”, any initial time 3 € R and any control function u € U
there exists a (maximal) open interval I with ¢y € I and a unique absolutely continuous?
function z(t), which solves the integral equation

x(t) = zp + t flz(r),u(r))dr

for all t € I.

Definition 8.2 We denote the unique function x(¢) from Theorem 8.1 with x,(t; ¢, zo)
and call it the solution of (8.1) with initial value zo € R™ and control function u € U. In
case tg = 0 we briefly write (¢, zo) = x(; 0, xo). o

The following observation justifies this definition: Since x,,(t, o) is absolutely continuous,
it is differentiable with respect to t for almost all ¢ € I. In particular, Theorem 8.1 and
the fundamental theorem of calculus imply that x, (¢, zo) satisfies the differential equation
(8.1) for almost all ¢t € I, i.e.

.’,E(t, X, U) = f(.%'(t, Zo, U), u(t))
holds for almost all ¢t € I.

Remark 8.3 In the following we always suppose that the assumptions (i)—(iii) of Theorem
8.1 are satisfied, but we will only mention this explicitly in important theorems. o

The proof of Theorem 8.1 (which we omit for sake of brevity) is similar to the proof of the
respective theorem for continuous ordinary differential equations. It uses Banach’s Fixed
Point Theorem applied on a suitable function space. Together with an introduction into
the necessary foundations of Lebesgue measure theory it can be found, e.g., in the book
Mathematical Control Theory by E.D. Sontag [15, Appendix C].

Just as for continuous differential equations, uniqueness of solutions implies for all ¢, s € R
the relations

X (t5 10, o) = x40 (t5 8, T4 (85 t0, T0)) (8.3)
(the so-called cocycle property) and
Ty (t;t0, T0) = Tu(s4) (t — S5t0 — 8, T0),

which we already formulated for linear systems in Corollary 1.10. Setting s = tg, the
second equation in particular implies

a:u(t; t(), xo) = xu(t0+,)(t — to, .%'0). (8.4)

2A function is called absolutely continuous if it can be written as an integral of an L* function.
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8.2 Sampled-data systems

As already mentioned in the first chapter, to every continuous time control system that sat-
isfies the assumptions of Carathéodory’s Theorem we can assign a corresponding discrete-
time system, the so-called sampled-data system. This is obtained simply by looking at the
state of the continuous-time system only at times kT, for k& € N and a fixed sampling time?
T > 0. If we denote the continuous-time solution by (¢, zo), then the states z(k) of the
sampled-data system are given by

2(k) = &4 (KT, o).
Using (8.3) and (8.4) it follows that
x(k+1) = 24((k + V)T kT, 24(KT, x0)) = Ta((k + 1)T5 kT, 2(k)) = Tagr) (T, 2(k)).
If for the control function 4(-) we define the functions w(k) : [0,7] — R via
u(k)(t) == a(kT +1t), t€[0,T]

then we obtain
r(k+1) = Tyx) (T, z(k)) = f(z(k), u(k)), (8.5)

which defines the discrete-time sampled-data system. In general, here the functions u(k)
satisfy u(k) € L*>([0,T],U). Yet, as already mentioned in Chapter 1, it is possible (and
common engineering practice) to choose u(k) from a smaller set of functions. A very
common choice is to define u(k) as a constant function. The corresponding continuous-
time control function @ is then piecewise constant. Sometimes the functions u(k) are
chosen as polynomials. In this case @ is a piecewise polynomial function (but in general
discontinuous at the boundary points kT of the sampling intervals).

In the remainder of this course we will work with discrete-time control systems, since for
this class of systems model predictive control, which is the method on which we focus
in the sequel, is easier to formulate and to analyse. Nevertheless, we will mention the
particularities of sampled-data systems whenever appropriate.

3German: sampling = Abtastung, sampling time = Abtastzeit, sampled-data system = Abtastsystem
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Chapter 9

Introduction to Model Predictive
Control

In this introduction, we present the basics of Model Predictive Control (henceforth abbre-
viated as MPC) in an informal way. In particular, we introduce the central idea of iterative
optimal control on a moving finite horizon.

MPC is a method for obtaining an approximately optimal feedback control for an optimal
control problem on an infinite or indefinite time horizon. Feedback here means that the
control at time k is of the form u(k) = pu(x(k)) for amap p : X — U. We have already seen
how linear quadratic optimal control leads to an optimal feedback control. The decisive
property that makes the approach via the Riccati equation computationally feasible is that
the optimal value function V is of quadratic form V(z) = 27 Pz. This means that we only
have to determine the coefficients of the matrix P, whose number is of the order O(n?).
However, as soon as the cost is nonquadratic, the dynamics is nonlinear or state and/or
control constraints are introduced into the problem, the function V' is no longer quadratic.
This means that an exact representation by finitely many coefficients is in general no
longer possible. The same holds for the optimal feedback law, which is in general a rather
complicated function in = for which already the storage poses challenging problems, known
as the “curse of dimensionality”. This implies that the direct computation and storage of
an approximately optimal feedback law is computationally intractable even for problems
in moderate space dimensions, say 5—10.

In contrast to this, nowadays there exist powerful optimization algorithms which can com-
pute single optimal trajectories in very short time, even for high dimensional systems like
accurately discretized PDEs. The key idea of MPC is now to use this computational
approach for obtaining a feedback law which is near optimal for infinite horizon problems.

In order to describe the idea of MPC, consider the discrete time model
v = f(,u) (9.1)

where f : X x U — X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state ™ at the next time instant and X and
U are metric spaces. Starting from the current state z(j), for any given control sequence
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w(0),...,u(N—1) with horizon length N > 2, we can now iterate (9.1) in order to construct
a prediction trajectory z, defined by

2,(0) = 2(j), xu(k+1) = f(ay(k),u(k)), k=0,...,N—1. (9.2)

Proceeding this way, we obtain predictions x,, (k) for the state of the system z(j + k) for k
time steps into the future, depending on the chosen control sequence u(0), ..., u(N —1).

Now we use optimal control in order to determine w(0),...,u(N —1). To this end, we fix
a cost function ¢(x,u). This function may be very general. In the simplest case, X and U
are vector spaces with norms and ¢ penalizes the distance of x to some “reference state”
T4; for simplicity we assume x, = 0. Typically, one does not penalize the deviation of the
state from the reference but also—if desired—the distance of the control values u(k) to a
reference control u,, which here we also choose as u, = 0. A common and popular choice
for such a function is the quadratic function

Uz (k) uk)) = llza(k)]* + Alu(k)|%,

where || - | denotes the norms! of the spaces X and U and A > 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired. The
purpose of MPC with a stage cost penalizing the distance to an equilibrium is that the
optimal control should drive the system towards the reference state z, = 0, in order to
stabilize the system at this state, just as in the linear quadratic case. MPC with such
stage costs is thus called stabilizing MPC. In contrast to this, MPC with more general cost
function is often called economic MPC.

Regardless which cost function is used, the optimal control problem now reads

N-1
minimize  Jy(z(j),u(-)) = (xy(k), u(k))
k=0
with respect to all admissible? control sequences u(0),...,u(N — 1) with x,, generated by

(9.2).

Let us assume that this optimal control problem has a solution which is given by the
minimizing control sequence u*(0),...,u*(N — 1), i.e.,

—

N
“(0),.TziLI(1N—1) In(@(5),ul)) = -~ Uy (k),u*(k)).

In order to get the desired feedback value p(x(j)), we now set u(z(j)) := u*(0), i.e., we
apply the first element of the optimal control sequence. This procedure is sketched in
Fig. 9.1.

We now apply this feedback law, i.e., the first element of u*, on the time interval from j
to j + 1. Thus we obtain

z(j +1) = f(z(), u(x(4))) (9:3)

1For simplicity of notation we use the same symbol for the in gereral different norms on X and U.
2The meaning of “admissible” will be defined in Sect. 11.2.
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Figure 9.1: Illustration of the MPC step at time j

System (9.3) is called the MPC closed-loop system.

At the following time instants j + 1,7 + 2,... we repeat the procedure with the new
measurements z(j+1), z(j+2), ... in order to derive the feedback values p(z(j+1)), p(xz(j+
2)),.... In other words, we obtain the feedback law p by an iterative online optimization
over the predictions generated by our model (9.1). This is the first key feature of model
predictive control.

From the prediction horizon point of view, proceeding this iterative way the trajectories
xy(k), k=0,...,N provide a prediction on the discrete interval j,...,j+ N at time j, on
the interval j4+1,...,5+ N 41 at time 5 + 1, on the interval 7 +2,...,5 4+ N + 2 at time
7 -+ 2, and so on. Hence, the prediction horizon is moving and this moving horizon is the
second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model predictive
control is receding horizon control. While the former expression stresses the use of model
based predictions, the latter emphasizes the moving horizon idea. Despite these slightly
different literal meanings, we prefer and follow the common practice to use these names
synonymously. In addition, one often uses the term Nonlinear Model Predictive Control
(NMPC) if one wants to indicate that our model (9.1) need not be a linear map.

9.1 Motivating examples

In this section we present three motivating examples (the corresponding numerical sim-
ulations and experiments will only be presented in the lectures), which show different
phenomema which can be observed when using MPC.

The first example is the classical inverted pendulum, which is available as a real experiment
at the Chair of Applied Mathematics. The cost function ¢ here penalizes the distance to the
upright equilibrium. The ordinary differential equation system (which is similar to (1.5)
but a little more complex in order to take into account the motor dynamics) is sampled
with sampling time T = 50ms. The video shows that this time is enough to solve the
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optimal control problem numerically in each sampling interval?.

The second example is a very simple economic problem of optimal investment. Let x > 0
be the amount of capital invested in a company. The invested capital x yields a return
of Az® — z in one time unit (e.g., a year), i.e., after one time step the amount of capital
is Ax®. The control u describes the amount of capital which is invested again in the
next time step. Hence, the amount of money to be consumed is Az® — u. The utility
of consumption is measured by a classical logarithmic utility function In(Axz® — u). We
want to maximize this utility over several time steps, hence we want to minimize the cost
function ¢(z,u) = —In(Az® — u). We note that this cost function is not of the form of
a function which penalizes the distance from a reference point z,. Numerical simulations
for A =5 and o = 0.34 and state constraint set X = [0,10] show that the finite horizon
optimal solutions always end up at x = 0, i.e., at the end of the optimization horizon all
money is spent (which is natural). However, for longer horizons the solutions spend quite
some time in the vicinity of the point ¢ ~ 2.2344 and the MPC closed-loop (9.3) converges
to an equilibrium near this point. Further tests reveal that the limit point of the MPC
closed-loop itself converges as N — oo.

There are many questions which arise from this behaviour: Why does the MPC closed-loop
converge to a point far away from the endpoint of the finite horizon optimal trajectories?
How do we characterize this point and its limit for N — oo? Is the MPC closed-loop
trajectory approximately optimal in some sense? And how can we check whether an optimal
control problem has such a behavior?

The third example is a simple partial differential equation control system governed by the
1d heat equation on € = (0, L). We consider the equation either with distributed control

ye(z,t) = Ypa(x,t) + py(z,t) + a(x,t) on Q x (0,00)
y(0,t) = y(L,t) = 0 on (0, 00)
y(z,0) = yo(z) on

or with boundary control.

ye(z,t) = Ypa(x,t) + py(z,t) on 2 x (0,00)
y(0,t) = 0, y(L,t) = u(t) on (0, 00)
y(z,0) = yo(x) on

We set = 15, which implies that y = 0 is an unstable equilibrium for v = 0. In order to
stabilize this equilibrium, we consider the cost functions ((y, u) = ||y[|3o+Al|ul/* (“L?-cost”)
and £(y,u) = |lyz|25 + Alul|? (“V-cost”). As usual in MPC, it depends on the length of
the horizon N whether the equilibrium y = 0 is indeed stable. The simulations — all with
sampling time 7" = 0.01 — show that depending on the parameters L and A\ as well as on
the type of the cost the minimal horizon length needed for stabilization differs significantly.
This immediately leads to the question how we can estimate this minimal horizon length
and whether we can tune, e.g., the stage cost £ such that this horizon becomes small.

3In practice, the state 2(7) must be computed from sensor data using a suitable observed, as, e.g., the
Kalman filter or variants thereof. Also, in practice the MPC problem is initialized with the state z(j — 1)
such that the time span until time j can be fully used in order to solve the optimal control problem. Both
aspects will be neglected in the analysis of MPC schemes we will present in this lecture.
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As we will see later, in all these examples we can prove that MPC yields approximately
optimal infinite horizon trajectories. Hence, the problem on (rather short) finite horizons
already contains enough information to compute near optimal solutions on an infinite hori-
zon, a property that can be seen as a complexity reduction technique in time. In the
subsequent analysis, we will in particular investigate the mechanisms behind this complex-
ity reduction.
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Chapter 10

Stability of discrete time nonlinear
systems

10.1 Stability definitions

In the introduction, we already specified one of the goals of model predictive control,
namely to control the state z(n) of the system toward a reference point x, and then keep it
close to this point. In this section we formalize what we mean by “toward” and “close to”
using concepts from stability theory of nonlinear systems. These concepts will also turn
out to be useful for the analysis of MPC schemes in which ¢ does not penalize the distance
to an equilibrium z..

We assume that the states z(k) are generated by a difference equation of the form
vt = g(z) (10.1)

for a not necessarily continuous map g : X — X via the usual iteration z(k+1) = g(z(k)).
Similar to before, we write x(k,zo) for the trajectory satisfying the initial condition
x(0,z9) = xg € X. Allowing g to be discontinuous is important for our MPC application,
because g will later represent the MPC closed-loop system (9.3), i.e., g(z) = f(x, u(x)).
Since p is obtained as an outcome of an optimization algorithm, in general we cannot
expect u to be continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called comparison func-
tions which were first introduced by Hahn in 1967 [7] and popularized in nonlinear control
theory during the 1990s by Sontag, particularly in the context of input-to-state stability
[13]. Although we mainly deal with discrete time systems, we stick to the usual continuous
time definition of these functions using the notation RY = [0, c0).

Definition 10.1 [Comparison functions] We define the following classes of comparison
functions.

K :={a: R — R{ | is continuous & strictly increasing with «/(0) = 0}
Koo :={a:R{ = R} |a € K, a is unbounded}
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L:={6: R — R |4 is continuous & strictly decreasing with lim 4(t) = 0}

—00

KL:={B:Rf xR{ — Ry | B is continuous, B(-,t) € KVt >0, B(r,-) € LVr > 0}.

Using this function, we can now introduce the concept of asymptotic stability. Here, for
arbitrary z1,z9 € X we denote the distance from z; to xo by

‘$1’$2 = dX(xh .Z'Q).
Furthermore, we use the ball
By(.) i= {w € X |fola. <)
and we say that a set Y C X is forward invariant for (10.1) if g(x) € Y holds forall z € Y.
Definition 10.2 [Asymptotic stability] Let z,. € X be an equilibrium for (10.1), i.e.,

g(z+) = x,. Then we say that . is locally asymptotically stable if there exist n > 0 and a
function 8 € KL such that the inequality

e < 6(|$0 m*an) (102)

| (n, o)

holds for all zg € B,)(z«) and all n € No.

We say that x, is asymptotically stable on a forward invariant set Y with x, € Y if there
exists # € ICL such that (10.2) holds for all g € Y and all n € Ny and we say that x, is
globally asymptotically stable if x, is asymptotically stable on Y = X.

If one of these properties holds then 8 is called attraction rate. O

Note that asymptotic stability on a forward invariant set Y implies local asymptotic sta-
bility if ¥ contains a ball B, (z.). However, we do not necessarily require this property.

Asymptotic stability thus defined consists of two main ingredients:

(i) The smaller the initial distance from xy to x, is, the smaller the distance from z(n)
to x, becomes for all future n, or formally: for each € > 0 there exists § > 0 such that
|z(n, 20)|z, < € holds for all n € Ny and all zg € Y (or xg € By(x4)) with |zg|,, < 9.

This fact is easily seen by choosing ¢ so small that 3(d,0) < e holds, which is possible
since B(-,0) € K. Since [ is decreasing in its second argument, for |zg|,, < 0 from
(10.2) we obtain

2, 20) e, < B(Z0ler ) < Bllols.,0) < B(6,0) <.

(ii) As the system evolves, the distance from z(n, zg) to x, becomes arbitrarily small, or
formally: for each € > 0 and each R > 0 there exists N > 0 such that |z(n, zo)|s, <€
holds for all n > N and all g € Y (or zg € By(x4)) with |zo|,, < R. This property
easily follows from (10.2) by choosing N > 0 with S(R, N) < ¢ and exploiting the
monotonicity properties of 3.




10.1. STABILITY DEFINITIONS 105

These two properties are known as (i) stability (in the sense of Lyapunov) and (ii) attrac-
tion. In the literature, asymptotic stability is often defined via these two properties. In
fact, for continuous time (and continuous) systems (i) and (ii) are known to be equivalent
to the continuous time counterpart of Definition 10.2, cf. [10, Sect. 3]. We conjecture that
the arguments in this reference can be modified in order to prove that equivalence also
holds for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the MPC closed loop described
earlier: whenever we are already close to the reference equilibrium we want to stay close;
otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop solution
to the equilibrium z, becomes arbitrarily small. Occasionally, this may be too demanding.
For instance, we will see that in general we cannot expect this behavior for stage costs
£ which do not penalize the distance to z,. In this case, one can relax the asymptotic
stability definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y.

Definition 10.3 [P-practically asymptotic stability| Let Y be a forward invariant set and
let P C Y be asubset of Y. Then we say that a point x, € Y is P-practically asymptotically
stable on Y if there exists 8 € ICL such that (10.2) holds for all zp € Y and all n € Ny
with x(n,zo) & P. o

Fig. 10.1 illustrates practical asymptotic stability (on the right) as opposed to “usual”
asymptotic stability (on the left).

Xo X(n,Xo) X0 X(Nn,Xo)

Figure 10.1: Sketch of asymptotic stability (left) as opposed to practical asymptotic sta-
bility (right)

This definition is typically used with P contained in a small ball around the equilibrium,
i.e., P C Bs(x,) for some small § > 0. In this case one obtains the estimate

(1, o)z, < max{S(|zols.,n), } (10.3)

for all xy € Y and all n € Ny, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bs(x,). Note that z, does not need to be an equilibrium
in Definition 10.3.



106 CHAPTER 10. STABILITY OF DISCRETE TIME NONLINEAR SYSTEMS

10.2 Lyapunov functions

In order to verify that our MPC controller achieves asymptotic stability we will utilize the
concept of Lyapunov functions.

Definition 10.4 [Lyapunov function] Consider a system (10.1), a point z, € X and let
S C X be a subset of the state space. A function V : S — Rg is called a Lyapunov
function on S if the following conditions are satisfied:

(i) There exist functions o, as € Ko such that
ar(|zle,) < V() < aa(|z]e.) (10.4)

holds for all z € S.

(ii) There exists a function ay € K such that

Vig(z)) < V() — ay(|zl.) (10.5)

holds for all z € S with g(x) € S.

The following theorem shows that the existence of a Lyapunov function ensures asymptotic
stability.

Theorem 10.5 [Asymptotic stability using Lyapunov functions] Let z, be an equilibrium
of (10.1) and assume there exists a Lyapunov function V on S. If S contains a ball
By, (z.) with g(x) € S for all x € B,(x,) then x, is locally asymptotically stable with
n=a;'oai(v). If S =Y holds for some forward invariant set ¥ C X containing x. then

T4 is asymptotically stable on Y. If S = X holds then x, is globally asymptotically stable.

Proof: The idea of the proof lies in showing that by (10.5) the function V(z(n,x)) is
strictly decreasing in n and converges to 0. Then by (10.4) we can conclude that x(n, zg)
converges to x4. The function 8 from Definition 10.2 will be constructed from «y, as and

ay. In order to simplify the notation, throughout the proof we write |z| instead of ||, .

First, if S is not forward invariant, define the value v := a3(v) and the set S = {z €
S|V (z) <~} Then from (10.4) we get

relS=a(z]) <Ve)<y=lz|<arl(y) =v =z e B,(x),

observing that each o € Ky is invertible with o' € Kx.

Hence, for each z € S inequality (10.5) applies and consequently V(g(z)) < Viz) <~
implying g(z) € S. If S = Y for some forward invariant set ¥ C X we define S := S.
With these definitions, in both cases the set S becomes forward invariant.
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Now we define of, := ay o a; 1. Note that concatenations of K-functions are again in K,
hence o}, € K. Since |z| > a; ' (V(x)), using monotonicity of ey this definition implies

av(|z]) = ay o ay (V(2)) = ay (V(2)).
Hence, along a trajectory z(n, zo) with zo € S, from (10.5) we get the inequality

V(z(n+1,20)) < V(z(n,x0)) — ay(|z(n,x)|) < V(z(n,x0)) — ay (V(z(n,z0))). (10.6)

For the construction of 8 we need the last expression in (10.6) to be strictly increasing in
V(z(n,x0)). To this end we define

ay(r) = Sren[(i)g]{a@(s) + (r—s)/2}.

Straightforward computations show that this function satisfies ro — @y (r2) > 11 —ay (r1) >
0 for all 7 > r; > 0 and min{e},(1/2),7/4} < ay(r) < o4, (r) for all r > 0. In particular,
(10.6) remains valid and we get the desired monotonicity when o, is replaced by ay.

We inductively define a function i : R x Ng — ]R(J)r via

Bi(r,0) :=r, pBi(r,n+1) = pi(r,n) — ay(Bi(r,n)). (10.7)

By induction over n using the properties of ay (r) and Inequality (10.6) one easily verifies
the following inequalities:

Bi(ra,m) > B1(r1,m) >0 for all ro > r; > 0 and all n € Ny (10.8)
Bi(r,ny) > B1(r,nz) > 0 for all ng >ny >0 and all » > 0 (10.9)
V(z(n,x0)) < B1(V(xg),n) for all n € Ny and all zg € S (10.10)

From (10.9) it follows that 3 (r,n) is monotone decreasing in n and by (10.8) it is bounded
from below by 0. Hence, for each » > 0 the limit 5{°(r) = lim, o B1(r, 1) exists. We claim
that 57°(r) = 0 holds for all r. Indeed, convergence implies 3i(r,n) — f1(r,n+ 1) — 0 as
n — oo which together with (10.7) yields &y (51(r,n)) — 0. On the other hand, since ay
is continuous, we get &y (B1(r,n)) — ay(57°(r)). This implies

ay(B7°(r)) =0

which because of &y (r) > min{ay (r/2),r/4} and ay € K is only possible if 52°(r) = 0.

Consequently, 51 (r,n) has all properties of a L function except that it is only defined for
n € Ny. Defining the linear interpolation

Bo(r,t) :==(n+1—1t)B1(r,n) + (t —n)B1(r,n + 1)

for t € [n,n+ 1) and n € Ny, we obtain a function 8y € KL which coincides with /3y for
t = n € Ny. Finally, setting

B(r,t) = afl o fBa(aa(r),1)
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we can use (10.10) in order to obtain

‘.Z'(TL, 1’0)‘ < al_l(v(x(n7 .’L'())) < 041_1 ° ﬂl(V(x[)), n)
= ay'oBa(V(wo),n) < ait o Ba(as(wol,n) = B(lol,n),
for all zy € S and all n € Np. This is the desired inequality (10.2). If S =S =Y this
shows the claimed asymptotic stability on Y and global asymptotic stability if Y = X. If

S # S, then in order to satisfy the local version of Definition 10.2 it remains to show that
x € By(z,) implies z € S. Since by definition of 7 and v we have n = a; ' (7), we get

z e By(r.) = |z| <n=a;'(y) = V(z) <a(z]) <y=z€b.

This finishes the proof. []

Likewise, P-practical asymptotic stability can be ensured by a suitable Lyapunov function
condition provided the set P is forward invariant.

Theorem 10.6 [P-practical asymptotic stability]
Consider forward invariant sets ¥ and P C Y and a point x, € P. If there exists a
Lyapunov function V on S =Y \ P then z, is P-practically asymptotically stable on Y.

Proof: The same construction of 5 as in the proof of Theorem 10.5 yields

|z(n, 20|z, < B(|2]2.,n) (10.2)

for all n =0,...,n* — 1, where n* € Ny is minimal with xz(n*,x9) € P. This follows with
the same arguments as in the proof of Theorem 10.5 by restricting the times considered in
(10.6) and (10.10) ton =0,...,n* =2 and n =0,...,n* — 1, respectively.

Since forward invariance of P ensures z(n,xo) € P for all n > n*, the times n for which
x(n,xo) € P holds are exactly n = 0,...,n* —1. Since these are exactly the times at which
(10.2) is required, this yields the desired P-practical asymptotic stability. [

For continuous time systems & = g(z) all the concepts introduced in this section can be
carried over directly. Particularly, the definitions of asymptotic and P-practical asymptotic
stability are identical. In the definition of Lyapunov functions, condition (10.4) stays the
same while condition (10.5) becomes

V@@%DSV@w—AGWWWMMJ

This is equivalent to

V@@ﬂ?_vwdg_iAaﬂ@@%MJ

and if V is continuously differentiable, then by letting ¢ — 0 one obtains the equivalent
characterization
DV (x0)g(z0) < —av(|zolz.)- (10.11)

Now it is obvious that this concept generalizes Definition 3.8, which we used in the linear
case. With this definition of a Lyapunov function, all results in this section remain valid
in the continuous time case.



Chapter 11

Model predictive control schemes

11.1 The MPC algorithm without terminal conditions

We start this chapter by formulating the basic MPC algorithm already sketched in Chap-
ter 9 in a more rigorous way. Here, the stage cost £: X x U — R is a general function. In
the case of sampled data systems we can take the continuous time nature of the underly-
ing model into account by defining the stage cost £ as an integral over a continuous time
running cost function L : X x U — Ra' on a sampling interval. Using the continuous time
solution & from (8.5), we can define

T
Uz, u) ::/0 L(z(t,x,u),u(t))dt. (11.1)

Defining ¢ this way, we can incorporate the intersampling behavior of the sampled data
system, i.e., the behavior of the continuous time solution between two sampling times g
and tx41, explicitly into our optimal control problem.

Given such a cost function ¢ and a prediction horizon length N > 2, we can now formulate
the basic MPC scheme as an algorithm. In the optimal control problem (OCPy) within this
algorithm we introduce a set of control sequences UV (z¢) € U over which we optimize.
This set may include constraints depending on the initial value xy. Details about how
this set should be chosen will be discussed in Sect. 11.2. For the moment we simply set
UN(z0) := UN for all 2o € X.

Algorithm 11.1 (Basic MPC algorithm)
At each time instant 7 =0,1,2.. .

(1) Measure the state z(j) € X of the system

(2) Set zg := x(j), solve the optimal control problem
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i

minimize  Jy(zo, u(-)) := U(xy(ky o), u(k))
0

B
I

(OCPy)
with respect to wu(-) € UN(z), subject to

xu(O,ﬂJo) = 20, xu(k + 17x0) = f(zu(k?,l‘o), u(k))

and denote the obtained optimal control sequence by u*(-) € UY (zq).

(3) Define the MPC-feedback value uy(z(j)) := u*(0) € U and use this control value in
the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence u*(+)
exists. Sufficient conditions for this existence are briefly discussed after Definition 12.1,
below.

The MPC closed loop system resulting from Algorithm 11.1 is given by (9.3) with state
feedback law p = py, i.e.,
o = (@, (o). (11.2)

The trajectories of this system will be denoted by z,, (n) or, if we want to emphasize the
initial value xo = 2, (0), by z,y (n, zo).

During our theoretical investigations we will neglect the fact that computing the solution
of (OCPy) in Step (2) of the algorithm usually needs some computation time 7. which —
in the case when 7, is relatively large compared to the sampling period 7" — may not be
negligible in a real time implementation.

In our abstract formulations of the MPC Algorithm 11.1 only the first element u*(0) of
the respective minimizing control sequence is used in each step, the remaining entries
u*(1),...,u*(IN —1) are discarded. In the practical implementation, however, these entries
play an important role because numerical optimization algorithms for solving (OCPy) (or
its variants) usually work iteratively: starting from an initial guess u°(-) an optimization
algorithm computes iterates u’(-), i = 1,2, ... converging to the minimizer u*(-) and a good
choice of u°(-) is crucial in order to obtain fast convergence of this iteration, or even to
ensure convergence, at all. Here, the minimizing sequence from the previous time step can
be efficiently used in order to construct such a good initial guess. Ways to implement this
idea will be discussed in the excercises.

11.2 Constraints

One of the main reasons for the success of MPC (and MPC in general) is its ability to
explicitly take constraints into account. Here, we consider constraints both on the control
as well as on the state. To this end, we introduce a nonempty state constraint set X C X
and for each z € X we introduce a nonempty control constraint set U(x) C U. Of course,
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U may also be chosen independent of x. The idea behind introducing these sets is that we
want the trajectories to lie in X and the corresponding control values to lie in U(z). This
is made precise in the following definition.

Definition 11.2 [Admissibility] Consider a control system (8.2) and the state and control
constraint sets X C X and U(z) C U.

(i) The states x € X are called admissible states and the control values u € U(z) are called
admissible control values for . The elements of the set Y := {(z,u) € X x U |z € X;u €
U(x)} are called admissible pairs.

(ii) For N € N and an initial value 2o € X we call a control sequence v € U™ and the
corresponding trajectory x,(k, o) admissible for xo up to time N, if

(zy(k,x0),u(k)) €Y forall k=0,...,N—1 and x,(N,x0) € X

holds. We denote the set of admissible control sequences for zg up to time N by UN (zg).

(iii) A control sequence u € U and the corresponding trajectory x,(k,xo) are called
admissible for xq if they are admissible for zg up to every time N € N. We denote the set
of admissible control sequences for z¢ by U>(z).

(iv) A feedback law p: X — U is called admissible if u(x) € U'(x) holds for all = € X.

Whenever the reference to x or xg is clear from the context we will omit the additional
“for 2”7 or “for xq”. a

Since we can (and will) identify control sequences with only one element with the respective
control value, we can consider U'(zg) as a subset of U, which we already implicitly did in
the definition of admissibility for the feedback law u, above. However, in general U!(zq)
does not coincide with U(zg) C U because using z,(1,2) = f(z,u) and the definition of
UN (20) we get Ul(z) := {u € U(x) | f(x,u) € X}. With this subtle difference in mind, one
sees that our admissibility condition (iv) on p ensures both p(z) € U(x) and f(z, u(z)) € X
whenever z € X.

Furthermore, our definition of UV () implies that even if U(x) = U is independent of x
the set UV (z) may depend on z for some or all N € N..

Often, in order to be suitable for optimization purposes these sets are assumed to be
compact and convex. For our theoretical investigations, however, we do not need any
regularity requirements of this type except that these sets are nonempty.

MPC is well suited to handle constraints because these can directly be inserted into Algo-
rithm 11.1. In fact, since we already formulated the corresponding optimization problem
(OCPy) with state dependent control value sets, the constraints are readily included if we
use UN (zg) from Definition 11.2(ii) in (OCPy). However, when doing so we have to make
sure that the constraints in (OCPy) can be satisfied for all j, i.e., that we do not optimize
over an empty set because UV (zg) = (). This is formalized in the following definition.

Definition 11.3 (i) An initial condition z¢ € X is called feasible for (OCPy) if the con-
straints imposed in (OCPy) can be satisfied, i.e, if UV (xq) # 0.
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(i) A MPC algorithm 11.1 is called recursively feasible on a set A C X if each z € A is
feasible for (OCPy) and = € A implies f(z, un(x)) € A (implying that f(z, un(x)) is again
feasible). o

One easily sees that recursive feasibility implies that x,, (j) is feasible for all j € N if
2,y (0) € A. In order to ensure recursive feasibility of A = X for Algorithm 11.1, we need
the following assumption.

Assumption 11.4 [Viability] For each x € X there exists u € U(z) such that f(z,u) € X
holds. O

The property defined in this assumption is called wviability or weak (or controlled) forward
invariance of X. It excludes the situation that there are states x € X from which the
trajectory leaves the set X for all admissible control values. Hence, it ensures UM (zq) # ()
for all zgp € X and all N € Ny,. Thus, it ensures that any xg € X is feasible for (OCPy)
and hence ensures that puy(z) is well defined for each x € X. We will see after the next
example that viability of X also implies recursive feasibility and admissibility of the closed
loop. Furthermore, a straightforward induction shows that under Assumption 11.4 any
finite admissible control sequence u(-) € UM (xg) can be extended to an infinite admissible
control sequence u(-) € U*(xg) with u(k) = a(k) for all k =0,..., N — 1.

In order to see that the construction of a constraint set X meeting Assumption 11.4 is
usually a nontrivial task, we consider the following Example.

Example 11.5 Consider
x+ :f(x,u) _ < $1+x2+U/2 ) :

To +Uu

which can be seen as a sampled-data model for a car on a one-dimensional road with
position z1, speed x5 and piecewise constant acceleration u. Assume we want to constrain
all variables, i.e., the position x1, the velocity x2 and the acceleration w to the interval
[~1,1]. For this purpose one could define X = [~1,1]? and U(z) = U = [~1,1]. Then,
however, for = (1,1)T, one immediately obtains

i =2 + a9 +u/2=2+u/2>3/2

for all u, hence #* ¢ X for all u € U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint on
u to U = [-2,2] the viability of X = [~1,1]? is guaranteed, because then by elementary
computations one sees that for each z € X the control value

0, r1+ X2 € [—1, 1]
u = 2 —2x1 — 229, 1 +x9 > 1
—2 — 2z — 29, T+ a9 < —1

is in U and satisfies f(z,u) € X. A way to achieve viability without changing U is by
tightening the constraint on x2 by defining

X ={(z1,22)7 €R? | 2y € [-1,1],29 € [-1,1] N [-3/2 — 21, 3/2 — 1]}, (11.3)
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Figure 11.1: Tllustration of the set X from (11.3)

see Fig. 11.5. Again, elementary computations show that for each z € X and

1, 2y < —1/2
u=14 —2m9, x2€[—1/2,1/2]
~1,  zy>1/2
the desired properties u € U and f(z,u) € X hold. a

This example shows that finding viable constraint sets X (and the corresponding U or
U(x)) is a tricky task already for very simple systems. Still, Assumption 11.4 significantly
simplifies the subsequent analysis, cf. Theorem 11.6, below. For this reason we will impose
this condition in our theoretical investigations for schemes without stabilizing terminal
conditions. The assumption can be avoided if suitable terminal constraints are employed.
We will discuss this extension of the scheme in Section 11.3.

The following theorem shows that the viability assumption ensures recursive feasibility of
Algorithm 11.1 and that the resulting MPC closed loop satisfies the desired constraints.

Theorem 11.6 [Recursive Feasibility and Admissibility] Consider Algorithm 11.1 using
UN(z0) from Def. 11.2(ii) in the optimal control problem (OCPy) for constraint sets X C X,
U(z) C U, x € X, satisfying Assumption 11.4. Consider the MPC closed loop system
(11.2). Then the MPC algorithm is recursively feasible on A = X and for any z,,(0) € X
the constraints are satisfied along the solution of (11.2), i.e.,

(@ (), v (2 () €Y (11.4)

for all n € N. Thus, the MPC-feedback py is admissible in the sense of Definition 11.2(iv).

Proof: First, recall from the discussion after Assumption 11.4 that under this assumption
the optimal control problem (OCPy) is feasible for each z € X, hence uy(z) is well defined
for each = € X.

We now show that z,,(n) € X implies pn(z,y(n)) € U(zuy(n)) and z,,(n +1) € X
This implies recursive feasibility of A = X, and admissibility follows by induction from
2y, (0) € X,
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The viability of X from Assumption 11.4 ensures that whenever z,, (n) € X holds in Al-
gorithm 11.1 then zp € X is feasible for the respective optimal control problem (OCPy).
Since the optimization is performed with respect to admissible control sequences only,
also the optimal control sequence u*(-) is admissible for z9 = z,,(n). This implies
pn (2 (n)) = u*(0) € Uz, (n)) € U(x,uy (n)) and thus also

Tuy (N4 1) = f(@uy (n), uv (2y () = f (20, u™(0)) € X,
Le, z,,(n+1)eX. O

In the underlying optimization algorithms for solving (OCPy), usually the constraints
cannot be specified via sets X and U(x). Rather, one uses so-called equality and inequality
constraints in order to specify X and U(z) according to the following definition.

Definition 11.7 Given functions GY : X x U — R, i € &% = {1,...,pg} and HY .
XxU—=R,ieI%= {pg+1,...,pg + pn} with pg, pr, € Ny, we define the constraint sets
X and U(z) via

X::{:L‘GX

there exists u € U with G¥(z,u) = 0 for all i € £
and HP (z,u) > 0 for all i € Z°

and, for x € X

U(~T)1={ueU Gy (x,u) =0 for all i € £ and}

H?(z,u) >0 for all i € 79

Here, the functions Gf and HZS do not need to depend on both arguments. The functions
GZ-S , HZS not depending on u are called pure state constraints, the functions Gf , HZS not
S

depending on z are called pure control constraints and the functions G?, Hf depending

on both x and w are called mized constraints. O

Observe that if we do not have mixed constraints then U(z) is independent of z.

The reason for defining X and U(x) via these (in)equality constraints is purely algorithmic:
the plain information “z,(k,z¢) ¢ X” does not yield any information for the optimiza-
tion algorithm in order to figure out how to find an admissible u(-), i.e., a u(-) for which
“ry(k, 7o) € X" holds. In contrast to that, an information of the form “H? (z,(k, 7o), u(k)) <
0” together with additional knowledge about HZS (provided, e.g., by the derivative of H ZS )
enables the algorithm to compute a “direction” in which u(-) needs to be modified in order
to reach an admissible u(-).

In our theoretical investigations we will use the notationally more convenient set charac-
terization of the constraints via X and U(x) or UV (x). In the practical implementation of
our MPC method, however, we will use their characterization via the inequality constraints
from Definition 11.7.

11.3 The MPC algorithm with terminal conditions

In this section we discuss an important variant of the basic MPC Algorithm 11.1. This
algorithm adds a constraint on the terminal state x, (N, zg) of the trajectory over which
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we optimize in (OCPy), as well as a weight on this term. This combination of constraint
and weight on the terminal state is called terminal conditions. As we will see, under
suitable assumptions on the terminal conditions, the behavior of the MPC closed-loop
can significantly improve. The main disadvantage of terminal condition is that a rigorous
derivation of a constraint and a weight meeting these assumptions can be very difficult for
complex control systems.

The terminal constraint is of the form
(N, xo) € Xp for a terminal constraint set Xo C X. (11.5)
Of course, in the practical implementation the constraint set Xg is again expressed via

(in)equalities of the form given in Definition 11.7.

When using terminal constraints, the MPC-feedback law is only defined for those states
x¢ for which the optimization problem within the MPC algorithm is feasible also for these
additional constraints, i.e., for which there exists an admissible control sequence with
corresponding trajectory starting in xy and ending in the terminal constraint set. Such
initial values are again called feasible and the set of all feasible initial values form the
feasible set. This set along with the corresponding admissible control sequences is formally
defined as follows.

Definition 11.8 [Feasible set and admissible control sequences]
For Xy from (11.5) we define the feasible set for horizon N € N by

Xy = {xg € X | there exists u(-) € UV (x¢) with z, (N, z0) € Xo}
and for each zg € Xy we define the set of admissible control sequences by

Ugo(xo) ={u(-) € UN(J}()) | 2o (N, z9) € Xo}.

Note that Xy = X and Ugo () = UN(x) holds if Xg = X, i.e., if no additional terminal
constraints are imposed.

The additional weight on the terminal state z,(N) is formalized by means of a terminal
cost of the form F(z,(N,zp)) with F': X9 — R in the optimization objective.

Together this leads to the following MPC algorithms extending the basic Algorithms 11.1.
Note that compared to these basic algorithms only the optimal control problems are dif-
ferent, i.e., the part in the boxes in Step (2).

Algorithm 11.9 (MPC algorithm with terminal conditions)
At each time instant 7 =0,1,2.. .

(1) Measure the state z(j) € X of the system.
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(2) Set zg := x(j), solve the optimal control problem

N-1
minimize  Jy(xo,u(-)) := Uxy(kyxo),u(k)) + F(zu(N,z0))
k=0
with respect to u(-) € Ugﬂ (xo), subject to (OCPy.e)

fEu(O?xO) = 20, xu(k + on) = f(:Eu(k,ajo), u(k))

and denote the obtained optimal control sequence by u*(:) € Ugo (o).

(3) Define the MPC-feedback value pn(x(j)) := u*(0) € U and use this control value in
the next sampling period.

We end this section with three useful results on the sets of admissible control sequences
from Definition 11.8.

Lemma 11.10 Let 29 € Xy, N € Nand K € {0,..., N} be given.
(i) For each u(-) € Ugo (xzg) we have x, (K, zg) € Xy_k.

(ii) For each u(-) € Ugo (7o) the control sequences u; € UX and uy € UN~X uniquely
defined by the relation

u(k):{ up (k), ::0,...'.',1(—1 (11.6)

satisfy uj € [UQN_K(:UO) and ug € Ug{;K(mul (K, xzp)).
(iii) For each uy(-) € UgN_K(l‘o) there exists ug(+) € UgofK (xy, (K, x0)) such that u(-) from
(11.6) satisfies u € Ugo (x0)-
Proof: (i) Using (8.4) we obtain the identity
xu(K-i—)(N - K, :BU(K? iC()))) = :EU(Nv .CC(]) € Xo,
which together with the definition of Xy_x implies the assertion.

(ii) The relation (11.6) together with (8.4) implies

_ :UU1(kaxO); kZO,,K
.’L’u(k7x0) - { xug(k . K, xu1(K’ xo))7 k - (117)

For k =0,..., K — 1 this identity and (11.6) yield

ui (k) = u(k) € U(zy(k,z0)) = U(xy, (k,x0))
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and for k =0,...,N — K — 1 we obtain
ug(k) =u(k+ K) € U(zy(k + K, x0)) = U(zy, (K, 24, (K, 20))),

implying u1 € UX(z0) and up € UN =K (2, (K, 70)). Furthermore, (11.7) implies the equa-
tion Xy, (N — K, 2y, (K, x0)) = x, (N, z9) € X which proves ug € UgO_K(n—I—K, T, (K, 20)).
This, in turn, implies that IUQO—K (n+K, z,, (K, z9)) is nonempty, hence z,, (K, xo) € Xy_x
and consequently u; € [UgNiK(n, x0) follows.

(iii) By definition, for each = € Xy _g(n+ K) there exists us € UQO_K(TL—I—K, x). Choosing
such a ug for v =z, (K, z9) € Xny_g(n+ K) and defining u via (11.6), similar arguments
as in Part (ii), above, show the claim u € Ugo (n,zo). [

A straightforward corollary of this lemma is the following.

Corollary 11.11 For each x € Xy the MPC-feedback law pn obtained from Algorithm
11.9 satisfies

flz,un(x)) € Xn_1.

m}

Proof: Since puy(x) is the first element u*(0) of the optimal control sequence u* € [Ugo (x)
we get f(x,un(x)) = zy+(1,2). Now Lemma 11.10(i) yields the assertion. [I

The final result shows that with terminal conditions we can obtain Theorem 11.6 without
having to assume viability of X — if in exchange we assume viability of the terminal
constraint set Xg.

Theorem 11.12 [Recursive Feasibility and Admissibility] Consider Algorithm 11.9 for
constraint sets X C X, U(z) C U, z € X, and a terminal constraint set Xy which satisfies
Assumption 11.4. Consider the MPC closed loop system (11.2). Then the MPC algorithm
is recursively feasible on A = Xy and for z,,(0) € Xy the constraints are satisfied along
the solution of (11.2), i.e.,

(2 (1), v (@ () € ¥ (11.5)

for all n € N. Thus, the MPC-feedback py is admissible in the sense of Definition 11.2(iv).

Proof: We show that under the viability assumption on Xy the inclusion Xy_1; C Xy
holds. Then recursive feasibility follows from Corollary 11.11 and admissibility follows as
in the proof of Theorem 11.6.

In order to show the inclusion Xy_1 € Xy, consider x € Xy_1. Then there is an admissible
control u € Ugo_l(m), implying z, (N — 1,z) € Xy. Viability of Xy implies the existence of
a control value @ € U(z,(N — 1,z)) with f(z,(N — 1,z),a) € Xg. This implies that the
control sequence

@ = (u(0),...,u(N —1),a) (11.9)

is admissible and satisfies 24(N,z) = f(z(N — 1,2),u) € Xg. This implies x € Xy and
thus the desired inclusion. [J
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Chapter 12
Dynamic programming

This chapter repeats and extends some of the results from Section 6.1. As we will see,
dynamic programming is not only important for deriving the Riccati equation but also as
a basis for analyzing MPC schemes in the next chapters. We first consider finite horizon
problems and then discuss infinite horizon problems.

12.1 Finite horizon problems

In this section we provide one of the classical tools in optimal control, the dynamic
programming principle. We will formulate and prove the results in this section for (OCPy ),
since all other optimal control problems introduced above can be obtained as special cases
of this problem. We will first formulate the principle for the open loop control sequences
in (OCPy,) and then derive consequences for the MPC-feedback law py. The dynamic
programming principle is often used as a basis for numerical algorithms. In contrast to this,
here we will exclusively use the principle for analyzing the behavior of MPC closed loop
systems. The reason for this is that the numerical effort of solving (OCPy ) via dynamic
programming usually grows exponentially with the dimension of the state of the system.
In contrast to this, the computational effort of solving a single problem of type (OCPy) or
(OCPy ) scales much more moderately with the space dimension.

We start by defining some objects we need in the sequel.

Definition 12.1 Consider the optimal control problem (OCPy ) with initial value 2y € X
and optimization horizon N € Nj.

(i) The function
VN(iL'()) = inf JN(anu('))

u(-)EUL (wo)
is called optimal value function.

(ii) A control sequence u*(-) € Ugo (z9) is called optimal control sequence for xg, if

Vn(z0) = In (2o, u*(+))

119
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holds. The corresponding trajectory (-, xo) is called optimal trajectory.

In our MPC Algorithms 11.1 and 11.9 we have assumed that an optimal control sequence
u*(+) exists, cf. the comment after Algorithms 11.1. In general, this is not necessarily the
case but under reasonable continuity and compactness conditions the existence of u*(-)
can be rigorously shown. Examples of such theorems for a general infinite-dimensional
state space can be found in Keerthi and Gilbert [9] or Dolezal [3]. While for formulating
and proving the dynamic programming principle we will not need the existence of u*(-),
for all subsequent results we will assume that u*(-) exists, in particular when we derive
properties of the MPC-feedback law pp. While we conjecture that most of the subsequent
results in this lecture notes can be generalized to the case when uy is defined via an
approximately minimizing control sequence, we decided to use the existence assumption
because it considerably simplifies the presentation of the results in these lecture notes.

The following theorem introduces the dynamic programming principle. It gives an equation
which relates the optimal value functions for different optimization horizons N and for
different points in space.

Theorem 12.2 [Dynamic programming principle] Consider the optimal control problem
(OCPy,e) with 29 € Xy and N € Ny. Then for all N € N and all K = 1,..., N the
equation

K—1
Vi (xo) = inf Uxy(k,x0),u(k))
u(~)EU§'§N_K z0) kZ:O

(12.1)
+ VNfK(-Tu(K, $0))}

holds. If, in addition, an optimal control sequence u*(:) € Ugo (xo) exists for xp, then we
get the equation

K-1
f k) .iL'o (k‘)) + VN_K(a:u* (K, 1’0)) (12.2)
k=0

In particular, in this case the “inf” in (12.1) is a “min”.

Proof: First observe that from the definition of Jy for u(:) € [Ugo (x0) we immediately

obtain
K—

In(zo,u(-) = Y Uwu(k,x0), u(k)) (12.3)
k=0
+ In-k(Tu(K; w0), ul- + K)).

)_l

Since u(- + K) equals ua(-) from Lemma 11.10(ii) we obtain u(- + K) € [UgofK(xu(K, x0)).



12.1. FINITE HORIZON PROBLEMS 121

We now prove (12.1) by proving “>” and “<” separately. From (12.3) we obtain

K—
In(xo,u(r)) = (zy(k, xo), u(k))
k=

,_.

o

+ JN,K(xu(K, 330), u( + K))

Y
0

Uxy(k,x0),u(k)) + Vo (24 (K, 20)).

i
=)

Since this inequality holds for all u(-) € Ugo (x0), it also holds when taking the infimum on
both sides. Hence we get

V = inf J ,u(
N (o) u(_)elélN o) N (o, u(-))

K-1
inf (xy(k,x0), u(k
()EUN xo){ Z o), ulk)

=0

+ VNfK(xu(K7 .To))}

K-1
= mf Uy, (kyxo), u(k

XNK =0

+ VN—K(xm (K7 xo))},

i.e., (12.1) with “>”. Here in the last step we used the fact that by Lemma 11.10(ii) the
control sequence u; consisting of the first K elements of u(-) € [Ugo (x0) lies in UgN_K(xo)

and, conversely, by Lemma 11.10(iii) each control sequence in u(-) € UXN (o) can be

extended to a sequence in u(-) € [Ugo (z9). Thus, since the expression in braces does not
depend on u(K),...,u(N — 1), the infima coincide.

In order to prove “<”, fix £ > 0 and let u*(+) be an approximately optimal control sequence
for the right hand side of (12.3), i.e

K—

,_.

Uxye (k, x0),u" (k) + IN—k (24 (K, 20),u" (- + K))
k=0

IN

K-1
inf { Z Uy (K, o), u(k))

( )E]UN xo) -0

+ In—k (2o (K, x0),u(- + K))} +e

Now we use the decomposition (11.6) of u(-) into u; € UgN_K (o) and ug € Ug{;K(mul (K, xp))
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from Lemma 11.10(ii). This way we can proceed

()e%ljg {Zmu k,xo), u(k))

+ JIn—g(zu (K, x0),u(- + K))}

K-1
inf o {Zﬁ(xul(k,xo),ul(k))

NenK
Oy k=0
up ()UK (wuy (K.w0))

+ JN—K($u1(K7$O)7u2('))}

;_x

K-
= mf 02y, (ky o), ur (k))
ur(1)ely (@) | 1o

+ Vn_k (@ (K, l‘o))}

Now (12.3) yields

= Uy (ky o), u (k) + IN—K (ye (K, 20),u" (- + K))

+ Vn_r(zu (K, xo))} +e.

Since the first and the last term in this inequality chain are independent of £ and since
e > 0 was arbitrary, this shows (12.1) with “<” and thus (12.1).

In order to prove (12.2) we use (12.3) with u(-) = u*(-). This yields

V(o) = J(wo,u"("))

K-1

= Uy (kyxo), u* (k) + In— kg (zux (K, z0), v (- + K))
o

> Uy (kyz0), u* (k) + Vv—k (zur (K, 20))
k=0

>

K-1
inf {Z Uk, w0), u(k)) + Viv_i (zu (K, xo))}
=0

u() €U,

N— K(I‘O)
— VN(-TO)a
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where we used the (already proven) equality (12.1) in the last step. Hence, the two “>”
in this chain are actually “=" which implies (12.2). U

The following corollary states an immediate consequence of the dynamic programming prin-
ciple. It shows that tails of optimal control sequences are again optimal control sequences
for suitably adjusted optimization horizon, time instant and initial value.

Corollary 12.3 If u*(-) is an optimal control sequence for initial value zp € Xy and
optimization horizon N > 2, then for each K = 1,..., N —1 the sequence u}(-) = uv*(-+K),
ie.,

ug(k)=u(K+k), k=0,....N—-K-1
is an optimal control sequence for initial value (K, x¢), time instant K and optimization
horizon N — K. O

Proof: Inserting Vi (xo) = Jn(xo,u*(-)) and the definition of uj(-) into (12.3) we obtain

0) = 3 Uaye (ko) wt (k) + In— i (e (K, o), wie ()

Subtracting (12.2) from this equation yields
0= JIN—k (@ur (K, 20), uk () = VN—k (2u (K, 20))

which shows the assertion. [l

The next theorem relates the MPC-feedback law py defined in the MPC Algorithms 11.1
and 11.9 to the dynamic programming principle. Here we use the argmin operator in the
following sense: for a map a : U — R, a nonempty subset U C U and a value u* € U we
write

u* = argmin a(u) (12.4)

uelU

if and only if a(u*) = inf _5a(u) holds. Whenever (12.4) holds the existence of the
minimum min 5 a(u) follows. However, we do not require uniqueness of the minimizer
u*. In case of uniqueness equation (12.4) can be understood as an assignment, otherwise
it is just a convenient way of writing “u* minimizes a(u)”.

Theorem 12.4 [Dynamic programming and MPC] Consider the optimal control problem
(OCPy,) with g € Xy and N € Ny and an admissible feedback law p : X — U in the
sense of Definition 11.2(iv). Then pu satisfies

w(zg) = argmi? ){E(xo, u) + Vv-1(f(zo,u))} (12.5)
ueU}lgN—l ts)

if and only if p satisfies

V(o) = l(zo, u(x0)) + V-1(f (w0, u(0))), (12.6)

where in (12.5) we interpret U%N_l(xo) as a subset of U, i.e., we identify the one element
sequence u = u(-) with its only element u = u(0). Moreover, if an optimal control sequence
u* exists then the MPC-feedback law p(xg) = pun(xo) = u*(0) satisfies both (12.5) and
(12.6).
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Proof: Equation (12.6) follows from (12.5) by using (12.1) for K = 1 and the minimizing
property of pu.
Conversely, assume (12.6). Inserting x,(1,x9) = f(zo,u) into the dynamic programming

principle (12.1) for K =1 we obtain

Vn(z0) = ueUlinf (o) {0, u) + Vv-1(1, f(wo,u))} - (12.7)

This implies that the right hand sides of (12.6) and (12.7) coincide. Thus, the definition of
argmin in (12.4) with a(u) = (zg,u) + Vn_1(1, f(xg,u)) and U = U%gN_l(ﬂj‘o) yields (12.5).

Finally, if u* exists, then (12.6) (and thus also (12.5)) follows for ;1 = p,, from the existence
by inserting u*(0) = pn(zo) and xux (1, z0) = f(zo, un(x0)) into (12.2) for K = 1. U

Our final corollary in this section shows that we can reconstruct the whole optimal control
sequence u*(+) using the feedback from (12.5).

Corollary 12.5 Consider the optimal control problem (OCPy ) with zp € X and N € Nj
and consider admissible feedback laws puy_x : X — U, £k = 0,..., N — 1, in the sense of
Definition 11.2(iv). Denote the solution of the closed loop system

z(0) =x0, xz(k+1)= f(z(k), un—r(z(k))), k=0,...,N —1 (12.8)

by x,(-) and assume that the py_j satisfy (12.5) with horizon N — k instead of N and
initial value xy = x, (k) for Kk =0,...,N — 1. Then

u (k) = pn—i(zu(k)), k=0,...,N—1 (12.9)

is an optimal control sequence for initial value xg and the solution of the closed loop system
(12.8) is a corresponding optimal trajectory. O

Proof: Applying the control (12.9) to the dynamics (12.8) we immediately obtain
xur (k) =x,(k), k=0,...,N -1

Hence, we need to show that

N—
Vi (z9) = Iy (20, u”) = Uz, (Kk),u*(k)) + F(x(N)).
k=0

Using (12.9) and (12.6) for N — k instead of N and z¢ = z,(k) we get

VN -i(wu(k)) = L(zu(k), u (k) + V_p—1(zu(k + 1))

[y

for k=0,...,N — 1. Summing these equalities for k = 0,..., N — 1 and eliminating the
identical terms Vy_g(z,(k)), Kk =1,..., N — 1 on both sides we obtain

=z

Vn(zo) = ) zu(k),u*(k)) + Vo(z(N))

i
)

Since by definition of Jy we have Vp(z) = F(x), this shows the assertion. 0
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12.2 Infinite horizon problems

In this section we present the counterparts of the result from the previous section for infi-
nite horizon problems. These are defined by as follows.

minimize  Joo(xo,u(")) = Zf(xu(k,xo),u(k))
k=0

P
with respect to u(-) € U®(zg), subject to (OCP)

xu(oa xo) = Zo, ‘Tu(k +1, ZC()) = f(.ivu(k,l'o), u(k))

Similar to Definition 12.1 we define the optimal value function and optimal trajectories.

Definition 12.6 Consider the optimal control problem (OCP,) with initial value z¢ € X.

(i) The function
Voo (o) 1= inf Joo (20, u(-
( O) u(-)eU> (zg) ( 0 ())

is called optimal value function.

(i) If Voo(xo) attains a finite value, then a control sequence u*(-) € U™(xg) is called
optimal control sequence for x if

Voo(.f()) = Joo(x()? U*())

holds. The corresponding trajectory x,»(-,xo) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears in the defi-
nition of Ju, it is no longer straightforward that V is finite. In fact, it is not even clear
that the limit “hidden” in the infinite sum

K-1

Zﬁ(a:u(k,xo),u(k)) = Klgnoo U(zu(k, z0), u(k))
k=0 k=0

in the definition of J exists. All the results in the subsequent sections hold true if we
simply assume that this limit exists and V. is finite. Yet, in order to illustrate that one
can ensure existence of the limit and finiteness of V, by imposing conditions to the optimal
control problem, in the remainder of this section we present such results. We start with a
condition that ensures that the limit exists and that .J,, cannot attain the value —oo.

To this end, we assume that the optimal control problem is strictly dissipative according
to the following definition
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Definition 12.7 Consider an optimal control problem with stage cost £: Y — R. We call
the optimal control problem strictly dissipative on Y at an equilibrium pair (z€ u¢) € Y,
if there exists a storage function A : X — R that satisfes A(z¢) = 0 and is bounded from
below, and a p € K, such that for all (z,u) € Y with f(x,u) € X the inequality

A(f(@,u)) < Ma) + (@, u) — £z, u®) — p(|]ee) (12.10)
holds. ]

This definition requires that, unless the system is in the equilibrium z€, a certain amount
of “energy” must be dissipated in each time step. Here “energy” is in quotes since in an
optimal control context the quantity measured by A may not be physical energy. We will
see later in Proposition 13.14 that under additional regularity properties strict dissipativity
implies that optimal trajectories that evolve in X stay near x® most of the time. This
phenomenon is known as the turnpike property. Observe that any optimal control problem
with stage cost satisfying £(z,u) > p(|z|ze) and £(z¢ u®) = 0 is strictly dissipative with
A = 0. This in particular applies to the quadratic cost from Definition 6.8 if (z¢, u¢) = (0, 0)
is an equilibrium pair.

Note that the requirement A(z€) = 0 can be made without loss of generality, as inequality
(12.10) remains true when we add an arbitrary constant to A. We further assume that
the storage function A is continuous at x€. The following assumption gives a quantitative
formulation of this property.

Assumption 12.8 There are ) € K and ¢ > 0 such that A(z) < y\(|z|ge) for all z € X
with |z]ze <e. o

Using the storage function A\ from Definition 12.7 we define the modified or rotated stage

cost as
Uz, u) =z, u) — 0z, u®) + Mz) — M f(z,u)), (12.11)

noting that strict dissipativity implies that f(z,u) > p(|z|s<). The name “rotated cost”
stems from the fact that for linear f and A and strictly convex ¢ the graph of { is obtained
by rotating the graph of £. We denote the cost functional and the optimal value function
when ¢ is replaced by { with JOO and Voo, respectively. We note that lis nonnegative and
satisfies £(2¢,u¢) = 0. Observe that dissipativity is satisfied with A = 0 and when £ is of
the form

Uz, u) = |z + v|u|?, (12.12)

for some v > 0, i.e., when £ penalizes the distance of x to z¢ and, if v > 0, the distance of
u to uf. In this case, we obtain £ = /.

Using the optimal control problem with modified cost we can now show that for strictly
dissipative problems the infinite sum in the definition of J, either converges or diverges
to +oo.

Lemma 12.9 Assume that the optimal control problem is strictly dissipative at z¢ with
storage function A satisfying Assumption 12.8 and that ¢(x¢,u®) = 0. Then for any zy € X

and u € U*(xp) the sum
K-

H

Uz (k, o), u(k))
k=0
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either converges to a finite limit or diverges to +00 as K — oo and it converges if and only
if the sum ZkK:_Ol O(xy(k, x0),u(k)) converges. In case of convergence to a finite limit, the
convergence |z, (k,zo)|ze — 0 as k — oo and the identity Joo(xo,u) = —A(z0) + Joo(x0, u)
hold.

Proof: From the definition of £ and using ¢(x¢, u¢) = 0, we obtain the relation

K-1

(ko). u(k))
k=0

K-1
= 3 (Uwulk.x0), ulk) = Awulk,20)) + Mau(k + 1,20)))

e K-1 _

)+ Y Uk, x0), ulk)) + Mau(K, 20)). (12.13)
k=0

Now we distinguish two cases:

(i) If Zf:_ol Uy (K, z0),u(k)) diverges to 400 as K — oo, then, since by Definition 12.7 the
inequality A(z,(K,x0)) > A holds, we obtain that Y1 ! 0(xy(k, x0),u(k)) also diverges to
~+00.

(ii) Otherwise, since £(z,u) > p(|z|ze) > 0, Zf:iol U(xy(k, o), u(k)) converges to a finite
limit as K — oco. This implies that g(acu(k:,:co), u(k)) converges to 0 as k — oo, implying
that |2y (k, zo)|ze — 0. Assumption 12.8 then implies that A(z,(K, o)) — 0 as K — oo,
and consequently S ot (zy(k, o), u(k)) converges to —A(zo) + Yoo g £(u(k, z0), u(k))
as K — oo. U

Remark 12.10 Under the assumptions of Lemma 12.9 the functionals J,, and joo are
now well defined as the existence of the limit—possibly attaining the value +o0o—is guar-
anteed. -

We now turn to a condition that ensures the existence of controls for which J,, and joo
attain finite values.

Definition 12.11 Consider the control system (8.2) and and equilibrium pair (z¢, u¢) € Y.
We say that the system is asymptotically controllable to x€ if there exists a function g € KL
such that for each admissible initial value zg € X there exists an admissible control sequence
u € U(zp) such that the inequality

2w (1, 20)]ze < B(|20lze, 1) (12.14)

holds for all n € Ng. We say that this asymptotic controllability has the small control
property if u € U*(xp) can be chosen such that the inequality

[T (1, 20)|ze + [u(n)|ue < B(|T0|ze,n) (12.15)

holds for all n € Nj. a
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Observe that asymptotic controllability is a necessary condition for feedback stabilization.
Indeed, if we assume asymptotic stability of the closed-loop system ™ = g(z) = f(z, u(x)),
then we immediately get asymptotic controllability with control u(n) = pu(z,(n,zg)). The
small control property, however, is not satisfied in general.

In order to use Definition 12.11 for deriving bounds on the optimal value function, we need
a result known as Sontag’s KL-Lemma [14, Proposition 7]. This proposition states that
for each KL-function S there exist functions 71, v € Ko such that the inequality

B(r,n) < yi(e "ya(r))

holds for all 7,n > 0 (in fact, the result holds for real n > 0 but we only need it for integers
here). Using the functions v; and 2 we now assume that the modified stage cost functions
¢ from (12.11) satisfies .

Uz, u) <yt (|12lee) + 07 (Ul ue) (12.16)

for v > 0. We point out two special cases when this is true. The first case is that the
system is exponentially controllable, i.e., 8 is an exponential function. In this case, v is a
linear function and the inequality (12.16) is satisfied whenever { is Lipschitz, i.e., when ¢
and the storage function A from Definition 12.7 are Lipschitz. The second case is when ¢
penalizes the distance to a desired equilibrium z¢, i.e., when it is of the form (12.12).

The following theorem states that under Definition 12.11 this stage cost ensures (uniformly)
finite upper and positive lower bounds on V.

Theorem 12.12 [Bounds on V] Consider the optimal control problem (OCP,) for the
control system (8.2). Assume that the optimal control problem is strictly dissipative at an
equilibrium (z¢, u¢) with storage function A satisfying Assumption 12.8. If the system is
asymptotically controllable to 2¢ and the modified cost £ satisfies (12.16) with v = 0, then
there exists aq, as € Ko such that the optimal value function V., satisfies

a1(|zolze) < Vio(2o) < aa(|zolse) (12.17)

for all zp € X. In case that additionally ¢(x¢, u¢) = 0 holds, the optimal value function V
satisfies
Oé1(|l'0‘xe) — )\({B()) S Voo(l'()) S a2(|x0\xe) — )\($0) (1218)

for all g € X and the optimal solutions and controls for costs ¢ and ¢ coincide.

If, moreover, the asymptotic controllability has the small control property then the state-
ments also hold for ¢ satisfying (12.16) for arbitrary v > 0.

Proof: The lower bound in (12.17) follows from the inequality g(:r,u) > p(|z|ze) for all
r € Xand u € U(x). For ay = p this inequality implies Joo (w0, u) > £(29,u(0)) > a1 (|wo|ze)
for all uw € U*(xp) and hence also for the infimum over all u, i.e., for V.

For proving the upper bound for ‘700 in (12.17), we first consider the case v = 0. For all
zo € X the control u € U*(xg) from Definition 12.11 yields

VOO(I'O) < Joo(l'07 u)
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M

Uzulk,zo),u(k) < Y21 (Jwulk, 20)lae)
k=0

i
o

ol

v Bllwolae k) <D e (|wolae)
k= k=0

[Q )

= ——y(lzole),
i.e., the upper inequality from (12.17) with ao(r) = eva(r)/(e — 1). If the small control
property holds, then the upper bound for v > 0 follows similarly with as(r) = (1 +

v)eya(r)/(e —1).
The bounds on Vi in (12.18) then follow immediately from Lemma 12.9, since (12.17)
implies that Zszo 0(xy(k, o), u(k)) converges for any approximately optimal control w.

In order to prove that the optimal solutions for £ and / coincide, recall that Lemma 12.9
shows the identity Je(w0,u) = —A(20) + Joo(wo, u) if all functionals are finite and that
Joo (20, u) is finite if and only if Jo (20, w) is finite. Since for all candidates u for optimal
controls for £ and £ the functionals J (2o, u) and joo(:no, u) are finite, they differ only by
the value —A(x¢), which is independent of u. Hence, the optimal controls and the optimal
trajectories coincide. U

Theorem 12.12 shows that under the stated conditions the optimal value function Vi
attains a finite value. It can thus in particular be used to define optimal controls according
to Definition 12.6(ii). However, we have excluded the case that ¢(z¢, u¢) # 0. The reason
is that in this case the proof of inequality (12.18) leads to the inequality

it (Joles) = Awo) < D (Uar O w0), u* () = £, ) ) < as(|olae) = Alwo), (12.19)
k=0

which implies that except for special cases Voo (xg) will assume unbounded values. This is
not an unrealistic situation in practical applications. Consider, for instance, that ¢ models
the energy needed to operate a certain device, then it is reasonable that over an infinite
horizon an infinite amount of energy is needed.

There are two ways to resolve this problem and both will be used in our analysis of NMPC
schemes later on in this book. The first is to subtract ¢(x® u¢) from the cost, i.e., to
consider the shifted cost

A~

Uz,u) = l(z,u) — 0(x u).

Then the corresponding optimal value function XA/OO satisfies

Vao(wo) = 3 (Ul (k, o), u* (k) — €(af,u) )
k=0

and inequality (12.19) shows that it attains finite values.

The shifted cost causes the shifted optimal value function 1700 to measure the cost difference
compared to the infinite horizon cost of the particular solution z¢ with control u¢ from the
strict dissipativity property in Definition 12.7. From a practical point of view, this is a
reasonable solution if x¢ and u® are known. If this is not the case, then a solution that
avoids the shifting of the cost is to use the following notion of infinite horizon optimality.



130 CHAPTER 12. DYNAMIC PROGRAMMING

Definition 12.13 A trajectory z* with initial condition z*(0) = x¢ and control u* €
U (x0) is called overtaking optimal if

lim sup (JK($07U*) - JK(CCO,U)) <0

K—oo

holds for all admissible controls v € U (zg). u]

In other terms, this definition demands that for each ¢ > 0 there is a time index K, > 0
such that the accumulated cost of * and w* on any horizon of length K > K, is at most ¢
larger than the accumulated cost of x, and w. This notion hence compares infinitely long
solutions on arbitrarily long but finite time horizons, on which the sums are finite even if
they diverge for K — oco. It is not difficult to check that overtaking optimality is equivalent
to the usual optimality notion if the sums converge for K — oc.

We now turn to adapting the results from Section 12.1 to the infinite horizon case. We
begin with the dynamic programming principle for the infinite horizon problem (OCP).
Throughout this section we assume that Vo (x) is finite for all € X as ensured, e.g., by
Theorem 12.12.

Theorem 12.14 [Infinite-horizon dynamic programming principle] Consider the optimal
control problem (OCP4) with g € X. Then for all K € N the equation

Voo(xzg) = inf {Z Uy (K, o), u(k)) + Voo(xu (K, xg))} (12.20)

u(-)EUK (z0)

holds. If, in addition, an optimal control sequence u*(-) exists for xp, then we get the

equation
K-1

f k‘ Io (k)) + Voo(:cu* (K, xo)) (12.21)
k=0

In particular, in this case the “inf” in (12.20) is a “min”.

Proof: From the definition of J, for u(:) € U*(z() we immediately obtain

K-1
Joo(x0,u(+)) = U xy(kyx0), u(k)) + Joo(xy (K, x0), u(- + K)), (12.22)
k=0

where u(- + K) denotes the shifted control sequence defined by u(- + K)(k) = u(k + K),
which is admissible for z, (K, x¢).

We now prove (12.20) by showing “>” and “<” separately: From (12.22) we obtain

K—1
Joo(@o, u()) = D U(wu(k; 20), u(k)) + Joo (2u (K, x0), u(- + K))

T
LL

> Uy (k,z0), w(k)) + Voo (zu (K, x0)).

iy
o
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Since this inequality holds for all u(-) € U>, it also holds when taking the infimum on both
sides. Hence we get

00 - inf Joo ) '
% (xo) = () 1m (z0) (:1?0 u( ))
f e ’LL k k u 9 )
IIIK ) { E l‘ x[) )) + Voo(gc (K 1‘0))}

i.e., (12.20) with “>".

In order to prove “<”, fix £ > 0 and let u°() be an approximately optimal control sequence
for the right hand side of (12.22), i.e
K-1

Uxye (k, x0),u" (k) + Joo(zus (K, z0), v (- + K))
k=0

K—1
< inf {Z xy(kyxo), u(k)) + Joo(zy (K, xo), ul- —i—K))} +e€
k=0

EUOO xo

Now we decompose u(-) € U>(zg) analogously to Lemma 11.10(ii) and (iii) into u; €
U (29) and ug € U (zy, (K, z0)) via

M_{uﬂ@, k=0,..., K -1

u( w(k—K), k>K

This implies

GUOO :L‘Q)

inf {ZE xy(k, z0), k))+Joo(xu(K7$0)7U('+K)>}

uq (-)€UK (zq)
ug (1) EU® (zuq (K,z0))

— inf {Z g(:L‘ul (k, l’o),ul(k)) + Joo(iﬁul (K, iL'()), UQ(>)}

= inf {Z (2, (kyxo), ur(k)) + Voo (2, (K, xo))} .

EUK :L‘()
Now (12.22) yields
Voo(xO < Joo(x0>u5('))

K-1
= e(xu‘f(kvl:(]))ua(k))+Joo(xu5(Ka xO)aUE('+K))

k=0
< e1urj11f< o) {Z Uy (k, o), u(k)) + Voo(xu (K, xo))} + ¢,
VOO(ZL‘())
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Since € > 0 was arbitrary and the expressions in this inequality are independent of ¢, this
inequality also holds for ¢ = 0, which shows (12.20) with “<” and thus (12.20).

In order to prove (12.21) we use (12.22) with u(-) = w*(-). This yields

Voo(z0) = Joo(z0,u* ("))
K-1

= g(l'u*(k>x0)7U*(k))+Joo(xu*(K¢$0)aU*('+K))
b

> Uy (ky 20), u* (k) + Voo (2 (K, 20))

B
Il
o

> inf {Z Uy (K, z0), u(k)) + Voo(zy(K, fUO))}

G]UK xo
= Ve (ZL‘()),
where we used the (already proved) equality (12.20) in the last step. Hence, the two “>”
in this chain are actually “=" which implies (12.21). U

The following corollary states an immediate consequence from the dynamic programming
principle. It shows that tails of optimal control sequences are again optimal control se-
quences for suitably adjusted initial value.

Corollary 12.15 If u*(-) is an optimal control sequence for (OCP) with initial value zo,
then for each K € N the sequence uj(-) = u*(- + K), i

Wi (k) =u (K + k), k=0,1,...

is an optimal control sequence for initial value z,« (K, z). o

Proof: Inserting Vo (z0) = Joo (20, u*(+)) and the definition of uj(-) into (12.22) we obtain

K-1
f :L'u* k‘ .T() (k?)) +Joo(xu*(Ka J:O)vu;(())
k=0

Subtracting (12.21) from this equation yields
0 = Joo(zur (K, 20), ufc (+)) — Voo(wur (K, 20))

which shows the assertion. U

The next two results are the analogues of Theorem 12.4 and Corollary 12.5 in the infinite
horizon setting.

Theorem 12.16 Consider the optimal control problem (OCP;) with zy € X and assume
that an optimal control sequence u*(-) exists. Then the feedback law g (z9) = u*(0)
satisfies

too () = aer]lgjﬁlin) {l(xg,u) + Voo (f(x0,u))} . (12.23)
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and
Voo (20) = €(0, poo(20)) + Voo (f (@0, too(20))) (12.24)

where in (12.23)—as usual—we interpret U!(zg) as a subset of U, i.e., we identify the one
element sequence u = u(-) with its only element u = u(0).

Proof: The proof is identical to the finite horizon counterpart Theorem 12.4. 1l

As in the finite horizon case, the following corollary shows that the feedback law (12.23)
can be used in order to construct the optimal control sequence.

Corollary 12.17 Consider the optimal control problem (OCP ) with 2y € X and consider
an admissible feedback law p : X — U in the sense of Definition 11.2(iv). Denote the
solution of the closed-loop system

z(0) =x0, xz(k+1)= f(z(k), po(z(k)), k=0,1,... (12.25)

by z,. and assume that ., satisfies (12.23) for initial values xy = z,_ (k) for all £ =
0,1,... and that liminfx_, Voo (2z(K)) > 0. Then

u*(k) = poo(Tpo (k,z0)), k=0,1,... (12.26)

is an optimal control sequence for initial value ¢ and the solution of the closed-loop system
(12.25) is a corresponding optimal trajectory. O

Proof: Abbreviate z(n) = z,_(n). We need to show that
Joo (20, u™) = Vio (o),

where it is enough to show “<” because the opposite inequality follows by definition of
V. From the definition of u* we immediately obtain

Ty (ny20) = x(n), n=0,1,....
Hence, using (12.26) and (12.24) we get
Voo (z(k)) = (z(k),u* (k) + Voo (x(k + 1))

for k = 0,1,.... Summing these equalities for £k = 0,..., K — 1 for arbitrary K € N and
eliminating the identical terms Vi (z9), K = 1,..., K — 1 on the left and on the right we

obtain
K—

Vie(o) = 3 €(a(k), w* (k) + Vic ((K)). (12.27)
k=0

[y

Now the assumption that liminfx o Voo(2(K)) > 0 implies that for any € > 0 there is
K. > 0 such that Voo (x(K)) > —¢ for all K > K,.. This implies

K—1
Voo(zo) > Lx(k),u (k) —e
k=0
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for all K > K. This yields Joo (20, u*) < Vio(zg) + € for all £ > 0 and thus optimality of
u*. U
Corollary 12.17 implies that infinite horizon optimal control is nothing but NMPC with
N = oo: Formula (12.26) for k£ = 0 yields that if we replace the optimization problem
(OCPy) in Algorithm 11.1 by (OCP4,), then the feedback law resulting from this algorithm
equals fioo.

Remark 12.18 The condition liminfx o Voo(2(K)) > 0 is in particular satisfied if strict
dissipativity holds with ¢(x¢ u®) = 0 and the storage function satisfies Assumption 12.8:
By Lemma 12.9 we know that |z(k)|[ze — 0 as k — oo. Thus inequality (12.18) implies
that

Voo (2(K)) + Mx(K))| < aa(|z(k)|ge) =0 as K — oo.

Since Assumption 12.8 implies A(z(K)) < ya(|z(K)|ze) — 0, we can conclude Voo (2(K)) —
0 as K — oo. O

12.3 Asymptotic Stability

The following proposition gives conditions under which the infinite horizon NMPC feedback
law yields an asymptotically stable closed loop.

Proposition 12.19 Consider the optimal control problem (OCP,) for the control system
(8.2) and an equilibrium pair (z¢ u¢) € Y. Assume that there exist a1, ag, as € K such
that the inequalities

a1(|z)ze) € Voo(x) < ag(|zlze) and  £(x,u) > az(|x|ze) (12.28)

hold for all x € X and u € U(x). Assume furthermore that an optimal feedback fioo exists,
i.e., an admissible feedback law o : X — U satisfying (12.23) for all z € X. Then this
optimal feedback asymptotically stabilizes the closed-loop system

vt =g(2) = f(2, hoo(2))

on X in the sense of Definition 10.2. O

Proof: For the closed-loop system, (12.24) and the last inequality in (12.28) yield

Voo (@) = (2, poo () + Voo (f (z, oo (7))

Together with the first two inequalities in (12.28) this shows that V, is a Lyapunov function
on X in the sense of Definition 10.4 with ay = a3. Thus, Theorem 10.5 yields asymptotic
stability on X. 0

By Theorem 12.12 the assumptions of this proposition are satisﬁedeor ? and ‘700, if the
asymptotic controllability condition from Definition 12.11 holds and ¢ satisfies (12.16) and

{(x,u) > a1(|z|ze). This implies that the infinite horizon optimal feedback law for the cost
¢ yields asymptotic stability of ¢ in the sense of Proposition 12.19. It may be somewhat
surprising that under the same conditions the same holds for the infinite horizon optimal

feedback law for the cost £. The following theorem shows that this is indeed the case.
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Theorem 12.20 [Asymptotic stability] Consider the optimal control problem (OCPy)
for the control system (8.2) and assume it is strictly dissipative in the sense of Definition
12.7 at an equilibrium pair (z¢,u¢) € Y and with storage function A satisfying Assumption
12.8. Assume that the system is asymptotically controllable to ¢ and that a feedback fiso
satisfying (12.23) exists for the cost function £ : X x U — R. Assume that ¢ from (12.11)
satisfies (12.16) with v = 0 and that ¢(z¢,u®) = 0. Then puq is an infinite horizon optimal
feedback law, which asymptotically stabilizes the closed-loop system

ot =g(2) = f(2, hoo(2))

on X in the sense of Definition 10.2 at x€.

If, in addition, the asymptotic controllability has the small control property then the
statement also holds for arbitrary v > 0 in (12.16).

Proof: Theorem 12.12 yields

a1 (|z0lze) < Vio(zo) < ca(|zo|se )

for suitable a1, a0 € K. Hence, (12.28) holds and Proposition 12.19 yields asymptotic
stability on X for the optimally controlled system with cost {. Since we know from Theorem
12.12 that the optimal solutions for costs ¢ and { coincide, we can conclude that the
optimally controlled system with cost £ has the same asymptotic stability property.

It remains to show that ps satisfying (12.23) is an optimal feedback law for cost £. To
this end, it suffices to show that the solution z(-) generated by p satisfies Voo (2(K)) — 0
as K — oo, because then we can conclude optimality of o, from Corollary 12.17. As this
convergence was already shown in Remark 12.18; u is indeed an optimal feedback law.

0

The last results show that infinite horizon optimal control can be used in order to derive a
stabilizing feedback law. Unfortunately, a direct solution of infinite horizon optimal control
problem is in general impossible, both analytically and numerically. Still, infinite horizon
optimal control plays an important role in our analysis since we will interpret the model
predictive control algorithm as an approximation of the infinite horizon optimal control
problem. Here the term “approximation” is not necessarily to be understood in the sense
of “being close to” (although this aspect is not excluded) but rather in the sense of ‘sharing
the important structural properties”.

12.4 Relaxed and approximate dynamic programming

Looking at the proof of Proposition 12.19 we see that the important property for stability
is the inequality

Voo (@) 2 £(2; oo () + Voo (f (2, oo ()
which follows from the feedback version (12.24) of the dynamic programming principle.

Observe that although (12.24) yields equality, only this inequality is needed in the proof
of Proposition 12.19.
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This observation motivates a relaxed version of this dynamic programming inequality,
which on the one hand yields asymptotic stability and on the other hand provides a quan-
titative measure of the closed-loop performance of the system. This relaxed version will be
formulated in Theorem 12.22, below. In order to quantitatively measure the closed-loop
performance, we use the infinite horizon cost functional evaluated along the closed-loop
trajectory which we define as follows. In order to keep the presentation technically simple,
in this section we limit ourselves to nonnegative stage costs £ : X x U — Rg of the form
(12.12) for a reference trajectory x¢. If desired, these results could be carried over to the
strictly dissipative situation with similar arguments as in the proof of Theorem 12.20, if
we impose the subsequent assumptions on l7, Joo, and V.

Definition 12.21 [Infinite horizon cost] Let p : X — U be an admissible feedback law.
For the trajectories z,(n) of the closed-loop system a2t = f(x,u(x)) with initial value
2,(0) = o € X and K € N we define the finite and infinite horizon closed-loop cost as

Tt (o, u) =Y Uau(k), plau(k) and I (o, ) =Y Lau(k), plau(k))):
k=0

=

>
Il

0

O

Since in this section we limit ourselves to nonnegative ¢, either the infinite sum has a well
defined finite value or it diverges to infinity, in which case we write J (g, ) = oo.

By Corollary 12.17 for the infinite horizon optimal feedback law ., we obtain

Jgf)(an ,Uoo) = Voo(-TO)

while for all other admissible feedback laws p we get

Jgé(l’m /~L) > Voo(xO)‘

In other words, V. is a lower bound for J& (xg, u1).

The following theorem now gives a relaxed dynamic programming condition from which
we can derive both asymptotic stability and an upper bound on the infinite horizon cost
JS (xg, ) for an arbitrary admissible feedback law p.

Theorem 12.22 [Asymptotic stability and suboptimality estimate] Consider a stage cost
0:XxU— RJ and a function V : X — RJ. Let p: X — U(x) be an admissible feedback
law and let S C X a forward invariant set for the closed-loop system

2 = g(z) = f(a,p(x)). (12.29)
Assume there exists a € (0, 1] such that the relaxed dynamic programming inequality
V(@) > al(z, u(z)) + V(f (@, n(@))) (12.30)
holds for all x € S. Then the suboptimality estimate

JE (2, p0) < Vi(z)/o (12.31)
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holds for all z € S.

If, in addition, there exist a1, o, a3 € K such that the inequalities
ar(|zee) S V() < aa(lzfee) and  lz,u) > az(|2]ze)

hold for all z € S, all v € U, and an equilibrium z¢ € X, then the closed-loop system
(12.29) is asymptotically stable at ¢ on S in the sense of Definition 10.2.

Proof: In order to prove (12.31) consider x € S and the trajectory x,(-) of (12.29) with
x,(0) = z. By forward invariance of the sets S this trajectory satisfies x,(k) € S. Hence
from (12.30) for all £ € Ny we obtain

al(zu(k), p(xu(k)))
< V(zu(k)) = V(zu(k +1)).

Summing over k yields for all K € N

K-1
o 3" (k). plap(£))) < V(@(0) — V(@u(K)) < V(2)
k=0

since V(z,(K)) > 0 and x,(0) = x. Since the stage cost ¢ is nonnegative, the term on
the left is monotone increasing and bounded, hence for K — oo it converges to aJ< (x, u).
Since the right hand side is independent of K, this yields (12.31).

The stability assertion now immediately follows by observing that V' satisfies all assump-
tions of Theorem 10.5 with oy = a 3. U

The central condition in this result is the relaxed dynamic programming inequality (12.30),
which we can rewrite as

V([ w(x))) < V(z) =z, p(@)) + (1 = )bz, p(x)).

As we will see later, obtaining such an inequality is realistic in case ¢ is of the form (12.12),
but in the more general strictly dissipative setting it is in general too demanding. In this
setting, we will typically only be able to obtain an inequality of the form®

V(f(z,u(x))) < V(z) =z, u(x)) + €

for an error term ¢ > 0 that may not satisfy ¢ < (1 — a)l(x, u(x)). The following theorem
shows how the statement of Theorem 12.22 changes under this weaker assumption.

Theorem 12.23 [Practical asymptotic stability and suboptimality estimate] Consider a
stage cost £ : Y — R satisfying (12.12) and a function V' : X — R. Let p: X — U be
an admissible feedback law and let Y C X, be a forward invariant set for the closed-loop
system

2t = g(w) = f(z, n(x)) (12.32)

"More precisely, we will obtain this inequality for 7, but in order to keep the notation simple we omit
the tilde in this section.
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whose solutions are denoted by x,,. Assume there exists € > 0 such that the relazed dynamic
programming inequality

V(f (@, p(x))) < V(z) -z, u(x)) + & (12.33)
holds for all z € Y. Then the performance estimate
J(x,p) < V(z) + Ke — V(zu(K)) (12.34)
holds for all z € Y.
If, in addition, there exist ay, ag, as € Ko such that the inequalities

a1(|z|ee) < V(x) < ag(|zlze) and  O(x,u) > az(|x]ze) (12.35)

hold for all z € Y, all u € U, and an equilibrium z¢ € X, then the closed-loop system
(12.32) is P-practically asymptotically stable at 2 on Y in the sense of Definition 10.3
with P = V71([0, az(az ' (22)) +¢]) C B 1 (a5 20 10) (T):

Proof: Evaluating (12.33) at points x,(k) on the closed-loop solution yields
Uz (k), p(zu(k))) < V(zu(k)) +e = Vizu(k +1)).

Summing this inequalitiy from £ = 0 to k = K — 1 then yields (12.34).

For proving the P-practical asymptotic stability statement, we prove that V is a Lyapunov
function for the closed-loop system on S = Y\ P. Then the statement follows from Theorem
10.6. In order to prove the Lyapunov function property, it suffices to prove inequality (10.5)
with g(x) = f(z, u(x)) and forward invariance of P, since the remaining assumptions on
V' in Definition 10.4 follow immediately from the assumptions in this theorem.

For proving (10.5), observe that z ¢ P implies that

o (|7)ze) > V(z) > ag(agt(2e)) +e.
From this inequality we obtain that ag(|z|ze) > 2¢, implying that
—(x) < —az(|z|e) < —2¢ (12.36)

and thus
—l(x)+e < —l(x)/2 < —as(|z]we)/2,

which together with (12.33) proves (10.5) with ay = a3z/2.
For proving forward invariance of P we pick x € P, which implies V(z) < az(a3'(2¢)) +e,
and distinguish two cases:
(i) V(2) > az(az’()): Then, with analogous arguments as those leading to (12.36), we
obtain —¢(z) < —e and hence (12.33) implies
V(f(@ pz)) V(@) = U, p(x)) +e < V(@) < az(ag’(26)) +¢
and thus f(z,u(z)) € P.
(ii) V() < aa(az'(€)): Then, since £ > 0, (12.33) implies
V(f(z,u(x) <V(z) — lz, w(z) +e < V(z)+e
< az(azt(e)) + e < as(azt(26)) +e.

Hence, again f(z, u(x)) € P follows, which shows forward invariance of P. 0



Chapter 13

Dissipativity-based analysis of
MPC schemes

13.1 Setting

In this chapter we will provide a comprehensive analysis of NMPC schemes with general
stage costs . Our goal is to prove stability and near optimality properties of the NMPC
closed loop on long and infinite time horizons. However, it is in general too optimistic to
expect that this is possible without imposing any structural properties on the dynamics f
and the stage cost ¢. Intuitively speaking, the property that we will use here is that the
optimal solutions on sufficiently long finite time horizons and on the infinite time horizon
do not differ too much, which of course must be made precise. In order to obtain such
a property, it turns out that the strict dissipativity property, which was introduced in
Definition 12.7, along with the closely related turnpike property, which we will introduce
in this chapter, provides a suitable mathematical framework.

Example 13.1 An example, which will serve as an illustration for all results in this section,
is the 1d discrete-time system with dynamics and stage cost

et =2r+u and f(r,u) =u’

and state and control constraint sets X = [-2,2] and U(zx) = U = [-3,3], ie, Y =
[—2,2] x [-3,3].

The uncontrolled system is unstable, hence for initial values zy # 0 the solution will leave
the admissible set X if no control is used. Hence, control action is needed in order to keep
the system inside X. Interpreting the stage cost £(z,u) = u? as the energy of the current
control action, the control objective can be formulated as “keep the state inside X with
minimal control effort”.

Using the storage function A\(x) = —22/2, one sees that the problem is strictly dissipative
in the sense of Definition 12.7 at the equilibrium (z¢,u¢) = (0,0): Clearly, A is bounded

139
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from below on the compact interval X, and for any (z,u) € Y we obtain

Oz, u) — 0z, u’) + Mz) = M f(z,u) =u® — 0 —22/2+ (22 + u)?/2
=3u?/2 + 32%/2 + 2zu
=22/24+u%/2 + (z +u)? > 2%/2,

which shows inequality (12.10) with p(r) = r2/2. o

In order to measure the performance of the NMPC closed loop, we evaluate the stage cost
function along the closed-loop trajectory (11.2). To this end, we recall the finite-horizon
closed-loop performance from Definition 12.21

K-1

Th@o, ) = 3 U (k). pla(h))). (13.1)
k=0

Only in exceptional cases the limit J< (2o, ) of these quantities for K — oo will exist.
Hence, in order to measure infinite-horizon performance, we also consider the averaged
infinite horizon performance

—cl . 1
Tk o, 1) = limnsup - 5o, 1)

K—o0
In addition, we consider an approximate version of the overtaking optimality property
from Definition 12.13: For a horizon-dependent error term err(K), K € N, we say that a
closed-loop solution is approximately overtaking optimal if

lim sup (Jfé(wo,u) — Jg(zo,u) — err(K)) <0 (13.2)

K—o0

holds for all admissible controls v € U (zg).

Throughout this chapter, by (z¢,u®) € Y we denote an equilibrium of the system, i.e.,
f(xf u®) = z°. Of particular interest are optimal equilibria according to the following
definition.

Definition 13.2 An equilibrium (z¢ u¢) € Y is called an optimal equilibrium, if it yields
the lowest value of the cost function among all admissible equilibria, i.e.,

0z u®) < l(x,u) for all (z,u) € Y with f(z,u) = =.

Example 13.3 In Example 13.1, the equilibria are of the form (x, —x) with cost ¢(x, —x) =
22, Thus, the (unique) optimal equilibrium is given by (z¢,u¢) = (0,0). O

The following lemma shows that an optimal equilibrium always exists when f and £ are
continuous and Y is compact.
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Lemma 13.4 If the constraint set Y C X x U is compact and the maps £ : X x U — R
and f : X x U — X are continuous, then there exists an optimal equilibrium, i.e., a pair
z¢ € X, u® € U with f(2¢ u®) = x° such that

(2 u®) = inf{l(z,u) | (z,u) €Y, f(z,u) = z}.

Proof: Since preimages of closed sets under continuous mappings are closed, the set
{(z,u) € Y| f(x,u) = =z} is closed, hence compact and thus the continuous function ¢
attains a minimum. [J

13.2 Averaged Performance with Terminal Ingredients

In this and in the following three sections, we analyze NMPC schemes with terminal in-
gredients. To this end, we choose the optimal control problem (OCPy ) in Algorithm 11.9
as

N-1
minimize  Ji(xo,u Z Uxy(k,x0),u(k))

+ F(xy (N, xg
(2l 20)) .
with respect to u(:) € Ugo (xo) subject to

J,‘u(O, xU) = 20, xu(k +1, 1,‘()) = f(:cu(k,xo),u(k))

where Ugo (z0) is defined in Definition 11.2(ii). We note that the terminal ingredients—i.e.,
the terminal cost F' and the terminal constraint Xg C X—are only added to the open-
loop functional Ji(xo,u) used in the NMPC Algorithm 11.9 but not to the closed-loop
performance index J§ (z, 1) from (13.1) or to the open-loop performance index Jy (z,u) in
(13.2), which are still defined without terminal cost and constraints. In order to distinguish
these two different functionals, we have added the index “4” (for “terminal ingredients”)
to JL n in (13.3). The corresponding optimal value function is defined by

Vi(z):= inf  J¥(z,u(")
o u()evd @

and we assume the existence of an optimal control sequence for each feasible initial condition
z in order to synthesize the NMPC feedback law uy according to Algorithm 11.9.

The following assumption formulates the conditions on F' and X, that we will need for the
subsequent results on the NMPC Algorithm 11.9 with optimal control problem (OCPy )
= (13.3). The assumption requires the existence of an equilibrium, which will later be
chosen as an optimal equilibrium. For its formulation, recall the definition of the feasible
sets Xy from Definition 11.8(i).
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Assumption 13.5 [Terminal ingredients] (a) The set X is bounded and there is an equi-
librium (z¢,u®) € Y with 2¢ € Xy and F(z¢) = 0 such that for each z € Xy there exists
uy € U(x) with f(x,u,) € Xo and

F(f(x,uz)) < F(x) —l(x,uz) + 0(x° u) (13.4)

(b) There exists Nog € N and 7 > 0 such that Xy, contains the ball B, (z°). O

Observe that the requirement F'(z) = 0 in this assumption can be made without loss of
generality because inequality 13.4 is invariant with respect to addition of a constant to
F. Note also that (a) implies that X is viable, hence Theorem 11.12 implies recursive
feasibility of the MPC scheme.

A simple choice of Xy and F' satisfying Assumption 13.5(a) is Xg = {z¢} and F = 0,
which is known as equilibrium terminal constraint. Part (b) of Assumption 13.5(a) then
requires exact controllability to z¢ from each point a neighborhood of x¢ in at most Ny
time steps. Besides the fact that exact controllability to z¢ may not hold, equilibrium
terminal constraints have the disadvantage that the feasible sets X may be rather small
and that the optimal control problem (13.3) may be numerically difficult to solve. It can
thus be advantageous to choose an Xy that contains a larger region around z€, but then
the design of F' satisfying inequality 13.4 is nontrivial.

Lemma 13.6 If Assumption 13.5(a) holds, then for each N > 1 and each z¢ € Xy_; the
optimal value functions of Problem (13.3) satisfy

V]@i(acg) < Vﬁ_l(xo) + 0(x%, u®) (13.5)

Proof: We first show that for each uy_1 € [Ugo_l(xo) the control sequence uy = 4 €
[Ugo (z0) from (11.9) satisfies

th\é(xo,uN) < Jf\’},l(a:o,u]v_l) +€(a:€,ue). (13.6)

To this end, recall from the proof of Theorem 11.12 that the trajectories (-, zo) and
Tun_, (-, x0) satisfy

Tuy (k,20) = upy_, (kyxo), k=0,...,N =1, xy,(N,z0) = f(Z,uz),

where & =z, _,(N —1,z0). Together with (13.4) this yields

N—-1
J]t\i7<x07uN) = E(.%'UN(/{?,JJ()), UN(k)) + F<muN (Nv 330))
N
= E(xuN(k,xo), uN(k)) + g(xuN(N - 17 xo)auN(N - 1)) + F(xUN (Nv .%'0))
N
=D Mwuy_,(k,x0), un—1(k)) + (&, uz) + F(f (2, uz))
k=0

<F(Z)+£(xe,ue)

=Jn-1(zo,un—1)
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< JR_(zo,un—1) + €(x°,u).

This shows (13.6). In order to prove (13.5), let uk, | € Ugo_l(xo), k € N, be a sequence of
control sequences such that

Vﬁ—l(fvo) = }VT{fl J%—1($07U) = inf J%—l(%ﬂ’f\f—l)
uEUXO (zo) keN

holds. Then, we can find v € Ugo (z0) such that (13.6) holds for uy = u%; and uy_1 =

u’fV_l . This implies

Vi(zg) = inf  J(zo,u) < inf JE(z0, uf
N (o) B (o) N (@0, u) < fnf Jy(zo, uy)

S Iirellf\‘f Jf\z}—1(930»u§€v_1) + f(xe,ue) = V]l\?—l(‘ro) + ‘g(xe?ue)

and thus (13.5). U

Now we are in the position to prove our first performance result, which gives a bound on
the infinite horizon average performance.

Theorem 13.7 Consider the NMPC Algorithm 11.9 with optimal control problem (OCPy )
= (13.3). Let Assumption 13.5(a) be satisfied, let N > 2, and assume V} is bounded from
below on Xy . Then, for any N > 2 and any x € Xy the averaged closed-loop performance
satisfies the inequality

T (2, un) < 002, u®). (13.7)
Proof: Using (13.5) and the dynamic programming principle, we obtain

Uz, pn (@) < VN (@) = VN (F (@, un (2))) < VR (@) = VY (f (@, iy (@) + 02, uf)

and we can conclude

K-1
TR @oun) = Y Uy (), i (i (1))
< 3 VA @ () = Vi @ (R + 1)) + 0, )]
k=0

= V]{}i(xo) — Vﬁ(x#N(K)) + K0(x°u)
< Vﬁ(wo) — M+ K0(z°,u®),

where M € R is a lower bound on Vj{,i. This yields

—C Vt’i M
Jolo(x()vNN) < lim sup <N($0) _ =

K—o0

% K-I-E(x,u)):E(x,u).
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We note that the boundedness assumption from below on Vi is satisfied if £ and F are
bounded from below on Y or X, respectively. This is in particular the case if these functions
are continuous and Y and X are compact.

Clearly, the estimate from Theorem 13.7 is particularly powerful if (¢, u€) is the best, i.e.,
the smallest possible value that 7210 (o, ) can attain. To this end, recall the Definition
12.7 of strict dissipativity. We have already observed in Example 13.1 that the optimal
control problem from this example is strictly dissipative with A\(z) = —22/2 at (z¢,u¢) =
(0,0). We also recall that a stage cost satisfying ¢(x,u) > p(|z|ze) and £(z€ u®) = 0 is
strictly dissipative with A = 0.

The following proposition now shows that if the problem is dissipative, then £(z¢, u¢) is an
optimal equilibrium and a lower bound on the average cost.

Proposition 13.8 For an optimal control problem (OCPy) that is strictly dissipative at
(€, u®), the point (z¢ u°) is an optimal equilibrium and the inequality

K-1

1
lim sup — Z Uy (k, x), u(k)) > 0(z¢, u®) (13.8)
K—oo k 0
holds for all € X and all admissible control sequences u € U (z). O

Proof: Consider an arbitrary equilibrium (z,u) € Y. Then the identity = f(z,u) and
(12.10) together with p > 0 imply

Uzyu) — Lz u’) = L(z,u) — L(z%u’) + AN(x) — A(f(z,u)) >0,

which yields £(z¢, u®) < ¢(z,u), and thus (¢, u®) is an optimal equilibrium.
Moreover, using again (12.10) and p > 0, and denoting by M a lower bound on A we have

K-1 K-1
Uzy(k,x),u(k)) > Z 0(x%u’) — Mzy(k,z)) + May(k+1,2))
k=0 k=
= Kl(z%u) — MNx) + AMzy (K, x))
> Kl(z%u®) — Nx)+ M

for any u € U*°(x). This yields

K-1
1 - M
hmsup E Uy (k,x),u(k)) > limsup (Z(xe,ue) - A(x)) =l(x%, u®).
K=

K—00 K —o00 K
U
The property expressed by inequality (13.8) is known as optimal operation at steady state.
It has been shown in [12] that under a controllability condition on the system, the converse

of Proposition 13.8 is also true, i.e., that optimal operation at a steady state implies
dissipativity.

An immediate consequence of Proposition 13.8 is the following corollary.
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Corollary 13.9 Consider the NMPC Algorithm 11.9 with dissipative optimal control
problem (OCPy¢)=(13.3). Then for all z € Xy

jilo(a:,,uN) inf hmsup— Z Uy (k,x),u(k)).

uelU>®(z) Koo

Hence, if strict dissipativity holds, then Theorem 13.7 ensures infinite horizon averaged
optimality of the NMPC closed loop.

Example 13.10 Since Example 13.1 is dissipative, the NMPC closed loop must be infinite
horizon averaged optimal. Indeed, as Fig. 13.1 shows, the closed-loop solution converges
to the optimal equilibrium. Since the control (not shown in the figure) does the same,
Uxppy (k) pn(zuy (k) — 0 as k — oo follows. This implies jffo(x,uN) = 0, which is
clearly optimal since ¢ > 0.

2y (k) (solid) and z; (-) (dashed)

Figure 13.1: NMPC closed-loop solution (solid) and open-loop predictions (dashed) for
Example 13.1 with terminal constraint Xo = {0} and horizon N = 3. The solid line at
r = 2 indicates the upper bound of the admissible set X

13.3 Asymptotic Stability with Terminal Ingredients

One might conjecture that optimal operation at the steady state (¢, u¢) implies that closed-
loop solutions satisfying (13.7) must also converge to z¢. However, under the assumptions
imposed in Theorem 13.7 and Proposition 13.8 this is not necessarily the case. To see this, it
suffices to consider an optimal control problem with ¢ = 0. Such a problem clearly satisfies
all assumptions (with terminal cost F' = 0 and storage function A = 0), yet every trajectory
is an optimal trajectory and thus optimal trajectories obviously need not converge to x°.
In order to achieve this—and, in fact, even asymptotic stability of z—we need to assume
strict dissipativity.
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We establish asymptotic stability by proving the existence of a Lyapunov function. It will
turn out that the optimal value function of the auxiliary optimal control problem using
the modified or rotated cost

Uz, u) = bz, u) — 0(z°,u®) + Mz) — M f(z,u))

introduced in (12.11) provides this Lyapunov function. Since our optimal control problem
(13.3) now has a terminal cost F', we also need to modify this cost, which we do by defining

F(z) := F(z) + A(x).

The corresponding functional is given by

N-1

T (0, u Z (zu(k, z0), u(k)) + F(zu(N, z0))
k=0

and the optimal value function by

Vi(zo):=  inf  J&(zo,u(")).
N u(.)GUQO(a:O) N

It is an easy exercise to check that the equalities £(2¢, u¢) = 0 and F(2¢) = 0 and—under
Assumption 13.5(a)—that the inequality

F(f(z,u)) < F(x) - {(z,u) (13.9)

holds for each z € Xy and the control u from Assumption 13.5(a). Moreover, for any
x € Xy and u € [Ugo (x), one easily verifies the identity

Ji(z,u) = JE(z,u) + Ma) — NO(z°, u). (13.10)

Since the last two terms in (13.10) are independent of w, this implies that the optimal
trajectories for Jy and Jy coincide and that the optimal value functions satisfy

Vil(z) = Vi (2) + Az) — Ne(z°,u®). (13.11)

If the optimal control problem is strictly dissipative, ( satisfies 0(z,u) > p(|z|q) for all
(x,u) € Y and ¢(x°,u®) = 0. This immediately implies

Vi) =0 and thus V¥ (2°) = N£(2°, u®) (13.12)
using (13.11) and A(z€) =

The optimal value function 17]'{} is now our candidate for a Lyapunov function. Using this
function, we first obtain asymptotic stability for the NMPC closed loop with modified costs,
but since the optimal solutions with original and modified costs coincide, this immediately
yields asymptotic stability for the original NMPC scheme. For the formal proof, we need
the following technical properties.
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Assumption 13.11 [Continuity of F'; A and V at z¢] There exists yr, vz, and vy € Koo
such that the following properties hold.
(a) For all z € Xy it holds that

|F(z) — F(z°)] < yp(|z]ee)-
(b) For all x € X it holds that

[A(@) = M) < m(]afee).
c) For eac € N and each x € X 1t holds that
(c) F h N € N and h Xu it holds th

VN () = VN ()] < v (Jaloe).

Note that 4y in (c) is independent of N. We will comment at the end of this section on
conditions under which (c) can be ensured. Moreover, since we made the convention that
A(z€) =0, (b) is equivalent to |[A(x)| < ya(|x|ze), i.e., to Assumption 12.8.

Theorem 13.12 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPy )=(13.3). Let Assumptions 13.5(a) and 13.11 be satisfied. Then
the optimal equilibrium z€ is asymptotically stable for the NMPC closed loop on Xy.

Proof: We show that the modified optimal value function ‘N/]'{,? is a Lyapunov function for
the closed-loop system in the sense of Theorem 12.22 for 2"f(n) = x¢. To this end, we first
check inequality (12.30) with V' = Vi ¢ =7and o = 1. As in the proof of Theorem 13.7,
from Assumption 13.5(a) we obtain ((z, un(z)) < Vi (z) — VE(f(z, un(2))) + 0(2°,u),
which we can rewrite as

Vi (@) 2 £z, pn (@) + VR (f (2, av () — €2, uf). (13.13)

Using (13.11) this implies

Vi(z) = VE(z)+ A=x) — No(a€,u®)
> Uz, pn(z)) + yftvi(f(w, pn(x))) — (2%, u) + A(x) — NO(2°, u®)
= {(x,pun(7)) + ‘jﬁ(f(:c, pn () = A(f (2, pn (7)) — (2, u®) + A(z)
= Uz, un (@) + VE(f (@, pn (2))),

i.e., the desired inequality (12.30).

It remains to establish the inequalities

a1 (|z]ee) < VE(2) < ag(|@]ee)  and  I(z,u) > as(|z]ze) (13.14)

for a1, aa, a3 € Koo. The third inequality follows immediately from the definition of ¢ and
strict dissipativity for a3 = p from Definition 12.7. For the inequalities involving oy and
a9, we first need to establish a lower bound for F'.
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To this end, for each x € Xy we denote the control u from (13.9) by puo(z). Then (13.9)
and strict dissipativity implies

F(f(2, po(x))) < F(x) = Uz, po(x)) < F(2) = pl|]e)-
By induction along the closed-loop solution for the feedback law g, we obtain

K-1

Fay (K. @) < F(x) = Y pllaug (k, @)]ze)-
k=0

This implies that z,,(K,z) — z¢ as K — oo, because otherwise the sum on the right-
hand side of this inequality grows unboundedly, which implies ﬁ(xMO(K ,x)) — —oo and
contradicts Assumption 13.11(a) and (b) since x,, (K, x) is contained in the bounded set
Xp. Again by Assumption 13.11(a) and (b), this implies ﬁ(xuo (K,z)) = F(2°) = 0 as
K — oo from which we can finally conclude

K-1
P2 Jim, 3 ol )le) 2 pllle) 20
From this, the definitions of j]t\} and ‘7]1\5} immediately imply 17]’{} (z) > Uz, pn(x) > p(|x]ze),
and thus the inequality for oy in (13.14) with oy = p.

Finally, since jf\z}(me,ue) = 0, we obtain 17]7{,’(:136) = 0 and the second inequality in (13.14)
follows from (13.11) and Assumption 13.11(b) and (c¢) with as =\ +~v. U

We end this section by discussing sufficient conditions for the bound on ij,i required in
Assumption 13.11(c). In the case of equilibrium terminal constraints, i.e., Xo = {z¢} and
F = 0, this property can be ensured by the condition that x¢ is reachable from every
x € Xy with suitable bounded costs. In case ¢ and f are continuous, it is sufficient to
assume that the control sequence steering x to x¢ is sufficiently close to the constant control
with value u®. For details we refer to [1], particularly to part 2 of Assumption 2 in [1].

In case Xq contains a neighborhood of z¢, using (13.5) inductively starting from V{*(z) =
F(z) yields for all z € X the inequality

Vi (2) < F(x) + N£(2°,u°) (13.15)
while from (13.11) and 17]'{} > 0 we obtain
Vi (z) > —\zx) + NO(z°, u).

Since from (13.12) we moreover know Vif(z¢) = N€(z¢ u¢), this implies Assumption
13.11(c) for z € Xy provided Assumption 13.11(a) and (b) hold. For x € Xy \ Xy the
inequality can be extended using that V]’{f is bounded from above on Xy.

Example 13.13 As observed in Example 13.1, the optimal control problem from this
example is strictly dissipative. Moreover, one easily verifies that z¢ is reachable in two
steps from each z € X with cost 422, which implies the upper bound on Vy for the terminal
constraint set Xg = {0}. Hence, we expect the NMPC closed loop to be asymptotically
stable, which was already illustrated in Fig. 13.1. o
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13.4 Non-averaged and Transient Performance with Termi-
nal Ingredients

The averaged performance result from Theorem 13.7 provides a useful estimate for large
times k. However, it also has two significant weaknesses. First, it does not provide an
advantage over a stabilizing NMPC algorithm. Indeed, for any combination of a continuous
stage cost and a terminal ingredients for which the NMPC closed-loop solution converges to
x¢ and the corresponding control sequence converges to u¢, the value £(x,, (k), un (2. (K)))

converges to f(z¢ u®) from which jzlo(:c,u]v) = {(z° u®) follows. Hence, Theorem 13.7
states that the economic NMPC scheme does not perform worse than a stabilizing one.
Second, the averaged estimate does not allow any statement about the finite time behavior
of the closed-loop trajectory. Indeed, on any finite time interval of arbitrary length, the
closed-loop trajectory could behave arbitrarily bad as long as eventually it converges to
the equilibrium, cf. Remark 13.20 for a concrete example. Clearly, this is not what we
would expect an NMPC closed-loop trajectory to do and it is also not consistent with
what we see in numerical simulations, e.g., in Fig. 13.1. Hence in this section, we derive
estimates for the non-averaged finite horizon performance Jfé(:v,u]v), as well es for its
limit as K — oo in the overtaking sense of (13.2). As we already know that—under the
conditions of Theorem 13.12—the equilibrium z° is asymptotically stable, the finite horizon
value Jf(l(a:, ) measures the performance of the solution during the transient phase, i.e.,
until it reaches a small neighborhood of z¢. This is why we also call this value transient
performance.

We recall that the value J[C(l(x, pn) does not involve any terminal constraints or costs,
while in the NMPC scheme we solve problem (13.3) with terminal ingredients in each step.
As before, we distinguish between the these problems by indicating the cost functional
and optimal value function with terminal ingredients by JJt\Z} and V, respectively. We
emphasize that all functional use the same stage cost £. This implies that if one of the
problems is strictly dissipative, then all problems are. If this is the case, we also consider
(OCPy) for the rotated cost { from (12.11) and denote the corresponding functional by
Jn. A straightforward computation reveals that Jy and Jy are related by the identity

In(z,u) = Jn(z,u) + Az) — Mzu(N, z)) — N(z°, u®). (13.16)

Observe that compared to (13.10), the additional term A(x,(N,x)) appears here due to
the absence of the terminal ingredients.

In order to establish our theorems on transient performance, we will need a few preparatory
results. The first statement shows that the finite horizon optimal trajectories most of the
time stay close to the optimal equilibrium z°.

Proposition 13.14 Assume that the optimal control problem (OCPy) is strictly dissipa-
tive with storage function A satisfying Assumption 13.11(ii) with vy € K&, and p € K.
Then for each 6 > 0 and A > 0 each there exists 0 = osa € £ such that for all
N,P € N, v € X with |z|;e < A and u € UV (z) with Jy(z,u) < N€(2¢ u®) + 6, the
set Q(z,u, P,N) :={k € {0,...,N — 1} ||zy(k,2)|ze > o(P)} has at most P elements.

o
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Proof: We fix 6, A > 0 and claim that the assertion holds with o(P) := p~1((M +~y\(A) +
9)/P) where —M is a lower bound on A. To prove this claim, assume that there are N,
P, z and u such that Jy(z,u) < Nl(2¢,u®) + 0 but Q(z,u, P, N) contains at least P + 1
elements. Then from (13.16) we can estimate

In(z,u) < In(z,u) + Ma) + M — N6z, u®) < M + yx(A) + 0.
On the other hand, (12.10), (12.11), and the fact that Q(x, u, P, N) contains at least P+ 1

elements imply

N— N-—

In(z,u) > U(zy (K, ) > p(|xy(k, z)|ge) > Z p(os(P))

k=0 k=0 ke{0,....,N—1}
|z (k)| pe>05(P)

H
)_l

> (P+Dplos(P)) = (P+1)

M A 1)
+7>§ )+ > M+ (A) + 0,

which is a contradiction. [

Figure 13.2: Tllustration of the set Q(xz,u, P, N) defined in Proposition 13.14

We refer to the property described by Proposition 13.14 as the turnpike property. For
an illustration, we refer to Fig. 13.2. In fact, there are various variants of the turnpike
property known in optimal control, of which the one described by Proposition 13.14 is just
a particular version.

We note that if X is bounded then there is A > 0 with |z|ze < A for all z € X. This
implies that we can find o € £ for which the turnpike inequality in Proposition 13.14 is
valid for all z € X.

Example 13.15 Since Example 13.1 is strictly dissipative with continuous storage func-
tion, we expect the system to have the turnpike property. The numerical optimal trajec-
tories depicted in Fig. 13.3 support this claim. o

Next we derive upper and lower bounds for V, under the assumption that £(xz¢, u¢) = 0. We
note that these bounds are similar to (12.18), but are obtained under different assumptions
on the problem.

Lemma 13.16 Assume that the optimal control problem (OCPy) is strictly dissipative
with storage function A, that ¢(z¢,u®) = 0 and that Assumptions 13.5(a) and 13.11 hold.
Then there is C' > 0 such that the inequalities

—C = AN#) < Voo(®) < (|2]ae) (13.17)
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(k,2)

Figure 13.3: Open loop optimal trajectories (without terminal ingredients) for Example
13.1 with different optimization horizons N. The turnpike property is clearly visible

hold for all z € |y ey Xy with 4y from Assumption 13.11(c).

Proof: For x € Xy, using the control sequence u(k) = pn(x,y(k,2)) induced by the
closed loop, from (13.13) with ¢(z¢,u®) = 0 for any K > 0 we obtain

K-1
Te@u) = 3 faalk,a) ul@) < V(@) - Vi @K, ).
k=0

By asymptotic stability of ¢ for this solution we obtain x,(K,z) — z¢, and thus, since
Vi(z®) = Nl(z°,u®) = 0 by (13.12), Assumption 13.11(c) yields V¥ (z,(K,z)) — 0 as
K — 0o. Using Assumption 13.11(c) and V¥(z¢) = 0, this implies
Vio(@) < limsup J (2, u) < Vi (2) < v (|2]oe).
K—oo
On the other hand, the fact that Jy(z,u) > 0 and that X is bounded from below, (13.16)

implies Jy(x,u) > —C — A(x), where —C' is a lower bound on A. Since this inequality
holds for all N € N and all admissible u, it also holds for Vy(z). [

Using the inequality ensured by this lemma, we can prove an infinite horizon version of the
turnpike property from Proposition 13.14.

Proposition 13.17 Assume that the optimal control problem (OCPy) is strictly dissipa-
tive with storage function A satisfying Assumption 13.11(ii), ¢(z¢, u®) = 0, and the inequal-
ities (13.17) hold for all x € UNeNO Xpu. Then for each A > 0 there exists 0o = 00o,A € L
such that for all P € N, 2 € X with |z|,e < A, and v € U®(z) with Joo(z,u) < V() + 1,
the set Q(z,u, P,oo) := {k € Ng | |xy(k, Z)|ze > 0o (P)} has at most P elements. O

Proof: First note that by Lemma 13.16 and the assumption, we get

Joo(,u) < sup Vo(z) +1 <Ay (A)+1=:0.
IEUNENXN7|w‘:CESA

Now we can proceed as in the proof of Proposition 13.14: denoting by M an upper bound
on A, from (13.16) and ¢(z°,u®) = 0 we obtain

joo(:x,u) = lim sup jK(:L‘,u) <limsup Jx(x,u) + M + 7\ (A) <6+ M + 7\ (A).

K—oo K—o0
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Setting oo (K) = p 1 ((M + yA(A) + §)/K), the assumption that Q(x,u, P, c0) contains
more than P elements again yields a contradiction to this inequality. [J

We note that this theorem implies z,,(k, ) — ¢ as k — oo, because otherwise Q(z, u, P, o)
would contain infinitely many elements for sufficiently large P € N. Using this fact, we
can improve the lower bound on V, from Lemma 13.16.

Lemma 13.18 Under the assumptions of Proposition 13.17, the inequality Vio(z) >
—A() holds for all x € Jyey, Xn-

Proof: Let u € U*(z) be such that Joo(x,u) < Vio(z) + € for an € € (0,1). As explained
above, Proposition 13.17 implies that x,(k,z) — z¢ as k — 0o. The definition of V, and
(13.16) then imply that

Voo(z) + 2 > limsup Jx(z,u)
K—oo

= limsup ( — Ma) + Jx (2, u) + Mz (K, x)) > —Ax) + A(z).
fmee >0 A(z€)=0
—A(x€)=

This implies the assertion since € € (0,1) was arbitrary. [

We now have all the tools to prove the first main theorem of this section. It gives an
upper bound for the non-averaged infinite horizon performance of the NMPC closed-loop
trajectory. In the general case we formulate the performance estimate in the approximate
overtaking form (13.2). In the special case of £(z¢, u) = 0 we can reformulate this estimate
in an estimate involving the optimal value function V4. In both cases, the theorem shows
that MPC delivers an approximately (non-averaged) infinite horizon optimal closed-loop
solution for which the approximation error tends to 0 as the horizon N tends to infinity.

Theorem 13.19 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPy)=(13.3). Assume that Assumptions 13.5 and 13.11 hold. Then
for each bounded subset X? C X, there exists §; € £ such that the inequality

lim sup (J;é(a:,uN) — Jg(z,u) — & (N)) <0 (13.18)

K—oo

holds and, in case that £(x¢, u¢) = 0, the inequality

Jim T (2, pv) < VR () < Voo () + 01(N) (13.19)
— 00
holds, both for all z € Xy N X°.

Proof: First observe that the optimal control problem with shifted cost #(x, u) = £(z, u) —
0(x°, u) satisfies all assumptions of the theorem that we imposed for the original problem
and yields the same NMPC closed-loop solutions. Now assume that (13.19) holds for
the shifted problem, i.e., that limsupg_,. j%l(:n,mv) < Vao(®) 4 61(N) is true for the
corresponding functionals. In the following,we use j\%(aj,m\/) = J¢(z, py) — K(2¢,u)
and the same relation for jK and Jg, as well as the fact that by Lemma 12.9 the limit
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(and hence the lower limit) of jK(a:,u) for K — oo either exists or jK(a:,u) diverges to
00, which likewise holds for J¢ (z, n). We then obtain

lim sup (Jf(l(x,,uN) — Ji(z,u) — 51(N)) = lim sup (jfé(:z;, UN) — jK(a:,u) — 51(N))

K—oo K—o00
= lim jf(l(x,,uN) — lim jK(:c,u) —61(N)
K—oo K—oo
< 1700(33) — liminf jK(x, u)
K—o0
= Vio(2) — Joo(z,u) <0,
proving (13.18). It is thus sufficient to show (13.19) in case ¢(z¢, u¢) = 0.

In order to prove the first inequality in (13.19), from (13.13) we obtain ¢(z, un(z)) <
Vi(z) — VE(f(z,un(z))). This implies for any K € N

K-1
ché(xqu) = Z E(x,uN(k?‘T)vMN(xuN (kvx))) < Vlj\bll(x) - Vlffi(xllz\f (K,l‘)) (13‘20)
k=0

Now from Theorem 13.12 we know that |z, (k, )|z < B(|x|ze, k) < B(M, k) =: v(k),
where M := sup, ,ex» d(x,y). Note that v € L. Moreover, by (13.12) we have Vi(z¢) =
N{(z¢,u®) = 0 and from Assumption 13.11(c) we know the existence of vy € K with
|Vi(z)| = |Vi(x) — VE(2¢)] < v (|z|ze) for all z € X. Together this yields

VN (@ (K, 2))] < v (v(K)).
Since vy (v(K)) — 0 for K — oo, this inequality together with (13.20) yields the first
inequality by letting K — oo.

For the second inequality in (13.19), we note that it is sufficient to prove the inequality for
all sufficiently large N, because by boundedness of V¥ and Vs on X® (which follows from
Assumption 13.11(c) for V¥ and from Lemma 13.16 together with Assumption 13.11(b)
for V), for small N the inequality can always be satisfied by choosing d; (V) sufficiently
large without violating the requirement §; € £. Consider o, from Proposition 13.17, pick
Ny and 7 from Assumption 13.5(b), choose N; such that oo(N1) <7, fix 0 < e < 1 and
choose an admissible control u. satisfying Joo(z,ue) < Voo(z) + . Then for N > 2Ny, we
use Proposition 13.17 with P = | N/2]. We thus obtain the existence of k € {0,...,P—1}
such that |z, (k,2)|ze < 000(P) < 05(N1) < m, implying z,(k,z) € Xy, C Xy, and
thus u. € U§§N2 (z) for all Ny > Nj. Particularly, this holds for Ny = N — k, implying
Ug € U%N_k(x). Now from Assumption 13.11(c) applied to V¢ ,, we can conclude (again
using V¥ (z¢) = 0)
VA (@, ()] < (00 (P).

Moreover, Lemma 13.18 and the bound on A from Assumption 13.11(b) yield
Vo) + € > Jo(zyus) > Ji(z,ue) + Voo, (K, )))
> (@ ue) = Mo (k@) > T2, ue) — ya(000(P)).
Together with the dynamic programming principle (12.1) these inequalities imply

Vﬁ(.%’) = eUkinf ){Jk(x7u) + V]%/Z—k(xu(kvx))} < Jk(xv u€) + V]%fi—k(xus(hx))
uely (@

< Voo(#) + W (000 (P)) + Mm(000(P)) + €.
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Since € > 0 was arbitrary, this proves the assertion for 6;(N) = v (0a([N/2])) +
Mo (IN/2])). U

Remark 13.20 The difference between the performance estimates (13.7) and (13.18) are
subtle, hence we illustrate them by a small example. Assume that ¢(z¢ u¢) = 1 and
consider two solutions z,, (k, z¢) and x,,(k,z¢) starting in 2. The first solution satisfies

02y, (k,x%),ui(k)) =1 for all k > 0,
while the second yields the stage cost values

. 10, for all 0 < k < 100,
H@un (b, 2%), (k) = { 1,  for all k> 100.

One easily checks that both solutions satisfy Joo(z,u;) < £(z¢ u®), i.e., (13.7). However,
for all K > 100 we obtain

Tz, ug) — J& (2, u1) > 1000,

meaning that due to the “excursion” from the optimal value during the time period k =
0,...,99, the solution controlled by ug will never be able to satisfy (13.18) for small 0 (V).
In other words, (13.18) excludes that the NMPC closed-loop makes large non-optimal
excursions from the optimal path, while (13.7) is satisfied for all solutions that eventually
reach the optimal equilibrium value, no matter how late this happens. o

The results in the remainder of this section were not presented in the lecture.

However, what (13.18) does not tell us is how large K must be such that we can ensure
J(z, 1) ~ Ji(x,u). In order to shed light on this question, we provide another perfor-
mance theorem, which explicitly makes use of asymptotic stability of the NMPC closed
loop. It evaluates the optimal value of the problem with control functions u that steer a
given initial value z € X to the closed ball B, (z¢) with radius x > 0 around z¢. In order
to simplify the notation, we briefly write

UK (z) .= Ugﬁ(xe)(x) (13.21)
using the notation from Definition 11.8 with B (z¢) in place of Xy3. We remark that
Theorem 13.12 yields the existence of a § € KL such that for all x € Xy and all K
with B(|x|ze, K) < K the control u obtained from the NMPC feedback law via u(k) =
pn (2 (k, x)) is contained in UK (z). This, in particular, shows that this set is nonempty
for sufficiently large K.

The next lemma shows that the infimum of Jx (x,u) over u € UX () and the corresponding
approximately optimal trajectories behave similar to those of the infinite horizon problem.
More precisely, part (a) of the following lemma is similar to Lemma 13.16, part (b) to
Lemma 13.18 and part (c) to Proposition 13.17. Note that since we only consider finite
horizon problems here, we do not need to assume £(z¢, u®) = 0.
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Lemma 13.21 Assume that the optimal control problem (OCPy) is strictly dissipative
and that Assumptions 13.5(a) and 13.11 hold. Fix kg > 0 and let 8 be a KC-function
characterizing the asymptotic stability of the closed loop, whose existence is guaranteed by
Theorem 13.12. Then for any x € (0, ko], any = € UNeNO Xy, and Ko € N minimal with
B(|x|ze, Ko) < K, the following holds.

(a) For all K > K the inequality

inf Jxe(w,u) = KUa®,u) < v (olee) + v (s)
uelUE (z)

holds with vy € Ko from Assumption 13.11(c).
(b) For all K € N with UX () # ) the inequality

- o) — < inf Jg(r,u) — K(z€,u
(lelee) = aR) < nE ) — K )

holds with vy from Assumption 13.11(b).
(c) For all A > 0 there exists 0 = oa € L such that for all K > K, all P € N, all

r € X with |z]ze <A, and any u € UE (z) with Jx (7, u) < inf,cux (z) Ji (@, u) +1 there is
k < min{P, K — 1} such that |z, (k,2)|zc < o(min{P, K — 1}).

Proof: (a) The proof of this inequality works similarly to the first part of the proof of
Lemma 13.16. For z € Xy, we choose the control u obtained from the NMPC feedback
law via w(k) = pn(2uy (K, 7)). By Theorem 13.12 and the choice of K, this control lies in
UK (x). As in the proof of Lemma 13.16, from (13.13)—now with £(z¢,u¢) # 0—for this u
we get

Jr(x,u) < Vy(z) — Vi(zy (K, x)) + K(z€,u)

and from Assumption 13.11(c) and |z, (K, x)|ze < K, we obtain the assertion.

(b) Let € > 0 and take a control u. € UX (z) with inf,cyx (o) JKx (2, u)+e > Jr(z,u:). Then

by (13.16), Assumption 13.11(b), and recalling that strict dissipativity implies Jx (z, uz) >
0 we get

i f J 9 +6 2 J y e
= M) F T, ue) + Mz, (K, 2)) +K0(z¢, uf)
N—— e e
>—x(je]ze) A (@) >0 > (R)+A(2¢)

> ([zlee) = a (k) + KLl(€, uf).

This implies (b) since € > 0 was arbitrary.

(¢) The assumptions and (a) imply that Proposition 13.14 can be applied with § =
supgex Y(|xlze) + 7(ko) + 1 for all z € X and all k € (0,k0]. We set 0 = o5 from this
proposition. Since the set Q(z,u, min{P, K — 1}, K) has at most min{ P, K — 1} elements,
there exists at least one k € {0,...,min{P, K — 1}} with k£ ¢ Q(x,u,min{P, K — 1}, K),
which thus satisfies |z, (k, 7)|ze < o(min{P, K —1}). [

Since x¢ is asymptotically stable for the NMPC closed-loop trajectories, the closed-loop
solutions converge toward z¢ as k — oo. More precisely, given a time K, by Theorem 13.12
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the solutions are guaranteed to satisfy z,, (k,x) € Bg(z¢) for all k > K and r = B(|z|ze, K)
for B from Theorem 13.12. We denote the time span {0, ..., K —1} during which the system
is (possibly) outside By(x¢) as transient time and the related finite horizon functional
J¥(x,u) as transient performance. The next theorem then shows that among all possible
trajectories from x to B, (z¢), the NMPC closed loop has the best transient performance
up to error terms vanishing as K — oo and N — oo. Again, in order to simplify the
notation, we use UX (z) from (13.21). We remark that unlike the previous theorem, here
we do not need to assume £(z¢,u®) = 0.

Theorem 13.22 Consider the NMPC Algorithm 11.9 with strictly dissipative optimal
control problem (OCPy)=(13.3). Assume that Assumptions 13.5 and 13.11 hold. Then
for any bounded set Xb C X, there exist 61,02 € £ such that for all z € Xy N X® the
inequality

Jfé(x,uN) < inf  Jg(x,u) 4+ 61(N) + 52(K)
ueUK (x)

holds with UX (z) from (13.21), x = B(|z|4, K), and 8 € KL characterizing the asymptotic
stability of the closed loop guaranteed by Theorem 13.12.

Proof: We can without loss of generality assume ¢(z¢ u®) = 0, because the claimed
inequality is invariant under adding constants to £. Moreover, similar to the proof of
inequality (13.19) in the proof of Theorem 13.19, it is sufficient to prove the inequality for
all sufficiently large K and N, because by boundedness of all functions involved on X?,
for small N and K the inequality can always be achieved by choosing d;(N) and d2(K)
sufficiently large. As in the proof of the first inequality in (13.19) in the proof of Theorem
13.19, we obtain |V¥(z,, (K, z))| < yv(v(K)). It is thus sufficient to show the existence
of 01,09 € £ with

Vi(z) < inf  Jg(z)+ 61 (N) + 6z(K) (13.22)

T ueUK (z)

for all 2 € X because then the assertion follows from (13.20) with do = vy ov + 5s.

In order to prove (13.22), consider o from Lemma 13.21(c), which we apply with P =
|N/2] and pick u. € UX(z) with Jg(z,u:) < inf,cux (z) JE° (2, u) + € with an arbitrary
but fixed ¢ € (0,1). This yields the existence of k € {0,...,|N/2]}, k < K — 1 with
|2y, (k, 7)|ze < o(min{P, K —1}). Since u. steers z to By (x¢), the shifted sequence u.(k+-)
lies in UX—*(z,_(k,x)), implying that this set is nonempty. Hence, we can apply Lemma
13.21(b) in order to conclude J3¢ (@, (k,x), us(k+-)) > —ya(o(min{N, K —1})) —ya(k).
This implies

iIle( )JK(.’];,U) E > J (.’L’,'LL ) _— Jk(x7u8) JK k:(xu (k7x)?u€(k+))
uelU (z — YK € +

Moreover, by choosing N and K sufficiently large we can ensure o(min{P, K — 1}) < n for
71 from Assumption 13.5(b), implying u. € U%Q (z) for all @ > Ny and Ny from Assumption

13.5(b). Particularly, choosing N > 2Nj implies N — k > Ny and thus u. € U%N_k(a:).
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N

Figure 13.4: Value of Jfé(x,uN) for K = 30, x = 1.9 and varying N with terminal
constraint X = {0}

Using this relation, the inequality derived above, the dynamic programming principle (12.1)
and Assumption 13.11(c) for V}_, we obtain

Vi (z) = L (){Jk(wvu)+vai_k(wu(k,x))} < il ue) + V(2. (k, @)
ue XN —k x
< nf el ) + (o min{P K = 11) + () + 2
ucUg (z

+ v (o(min{P, K — 1})).
This shows the desired inequality (13.22) for

01(N) =y (o (LN/2])) + (o (LN/2]))),

and using the choice of &,
2(K) = wlo(K —1))+n(o(K —1)) + n(B(M, K))

with M = sup, ,ex» d(@,y) and 8 € KL characterizing the asymptotic stability of the closed
loop. [

Note that the K-dependent term d2(K') essentially depends on how fast the closed-loop
solution reaches a small neighborhood of the equilibrium 2¢. Hence, the closer z,, (K, x)
is to x¢, the smaller the K-dependent error term will be.

Example 13.23 Figure 13.4 illustrates how J¢&(z, uy) depends on N for Example 13.1.
The value K = 30 is so large that the effect of the term d2(K) is negligible and not visible
in the figure, hence J&(z, uy) converges to inf,cyx (z) JE(z, u) for increasing N. o

13.5 Averaged Optimality Without Terminal Ingredients

In this and in the subsequent sections, we discuss the case in which we do not impose
terminal ingredients on the problem, i.e., we consider the NMPC Algorithm with optimal
control problem (OCPy). The corresponding functionals and optimal value functions will,
as usual, be denoted by Jy and V and their infinite horizon counterparts by J, and



158 CHAPTER 13. DISSIPATIVITY-BASED ANALYSIS OF MPC SCHEMES

V. The results are presented in parallel to Sects. 13.2-13.4. Throughout this and the the
following sections we assume viability of X, which ensures recursive feasibility of the MPC
scheme by Theorem 11.6.

Since we do not impose any terminal ingredients, we do not need Assumptions 13.5 and
13.11(a) anymore. However, we still need Part (b) and (a relaxed version of) Part (c)
of Assumption 13.11, where the latter now refers to the optimal value function of the
unconstrained problem (OCPy).

Assumption 13.24 [Continuity of A and Vx at x¢] There exist vy, and vy € K& and
w € L such that the following properties hold.
(a) For all z € X it holds that

[A(z) = A(@)| < m(l2lee)-
(b) For each N € N and each z € X it holds that

Vv (z) = Vv (2%)] <y (|]ze) + w(NV).

We start our analysis with proving averaged optimality without imposing terminal ingre-
dients. Based on Propositions 13.14 and 13.17, we can prove the following two auxiliary
results, which lead to the main result of this section. In what follows, we denote by uX,
and u} the optimal control sequences for (OCP4) and (OCPy), respectively, for initial
value z € X.

Lemma 13.25 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation
Vn(z) = Ju(z,un) + VN_nm(2) + Ri(z, M, N) (13.23)

holds with |Ry(z, M, N)| < vy (osa(P)) +w(N — M) forallz € X, all N e N, all P € N
and all M ¢ Q(x,u)y, P,N), with o5 A from Proposition 13.14 with § = vy (|z|ze) + w(IV)
and A = |xge.

Proof: Using that the control u = u® yields Jy(z¢ u) = Nl(x° u¢), we can estimate
Vn(z€) < Nl(z¢ u®). Thus, using Assumption 13.24 we get Jy(z,uy) < NO(z€ u®) +
YW (|Z|ge) + w(N), hence Proposition 13.14 applies to the optimal trajectory with § =
W (|2]ze) + w(N) and A = [z|;e. This in particular ensures |2,z (M, z)|ze < 05a(P) for
all M ¢ Q(x,uy, P,N).

Now the dynamic programming principle (12.2) yields
V() = Ju(z,ul) + V- pr (s, (M, x)).

Hence, (13.23) holds with Ry (z, M, N) = VN_p(@ux, (M, z)) — VN-_pn(2¢). Then for any
P € N and any M ¢ Q(x,u}, P, N), this implies [Ryi(x, M, N)| < yv(|zuy, (M, )|ze) +
w(N — M) <y (o5a(P)) +w(N — M) and thus the assertion. []
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Lemma 13.26 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation

VN(QJ> = VN_1(.Z') + 0(x°, ue) + RQ(.%’, N)
holds with Ra(z, N) < va(|x|ze, N) = 2yv (o5 (|N/2])) + 2w(|N/2] — 1) for all z € X, all
N €N, and o5 from Proposition 13.14 with 0 = vy (|2|ze) + w(IV — 1) and A = [z|ze.

Proof: Given z € X, consider the optimal control w};_; for horizon length N —1 and o5
from Proposition 13.14 with § and A from the lemma. Then Lemma 13.25 applied with
N —1in place of N and P = | N/2] implies the existence of M € {0,...,[N/2] — 1} with

VN_l(J}) = JM(x,u?V_l) + VN_M_l(.%'e) + R1<{L‘, M,N — 1)
with |Rq(x, M,N —1)| < yv(osa(|N/2])) +w(|IN/2] —1). The construction in the proof
of Lemma 13.25 moreover yields |z, (M, z)]ze < 05a([N/2]). Using u(k) = uy_;(k)

for k=0,...,M —1 and w(M + k) = u},_,,(k) with the optimal control u},_,, for initial
value xu}*v,l(M’x) and horizon N — M for k=0,...,N — M — 1, yields

In(z,w) = Jar(z, uly_ ) + Vs (@ay, (M, 7)) = Jag (2, wy 1)+ Vivon (2°) + Ry (2, M, N)

with |Ry(z, M, N)| < vy (o5.A(IN/2]))+w(|N/2]). Since for initial value z¢ we can always
stay at the equilibrium for one step and use the optimal control for initial value z¢ for the
remaining horizon, we obtain the inequality Vy_ps(2€) < £(2¢, u®)+Vn_pr—1(x€). Together
this yields

JN(J/‘, u) = JM('T7 u,J(V—l) + VN*M(‘/Ee) + El(xv M, N)

< JM(xau}(Vfl)+£(‘T67ue)+VN—M—1(‘T6)+§1(x7M7N)

= Vy_1(z)+ £(zf,u®) — Ry(x, M, N — 1) + Ry (z, M, N),

Vn(z)

IN

and thus the claim with Ry(z, N) < Ry(z, M,N) — Ry(z, M,N —1). [

Now we can state the theorem on the infinite horizon average performance.

Theorem 13.27 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy). Let Assumption 13.24 hold and assume Vy is bounded from
below on X. Then, for any N > 2 and for any = € X for which the NMPC scheme yields a
bounded closed-loop solution x,, (k, x), the averaged closed-loop performance satisfies the
inequality

T (2, i) < 002, u®) + 61 (N) (13.24)
with 01(N) < 29y (o5a(|N/2])) + 2w(|N/2| — 1) for o5 from Proposition 13.14 with
§ = maxgen W (|2 uy (kB 2)|ze) + wW(N — 1), A = maxpen [Ty (K, 2)|ze and yy and w from
Assumption 13.24.

Proof: Abbreviate z,, (k) = z,y (k,z) and v(k, N) := vo(|xuy (k + 1)|ze, N) for vp from
Lemma 13.26. Then, from this lemma applied with z = z,,(k + 1) and the dynamic
programming principle (12.2) we obtain

Uy (R), (@ () = Viv(ay (B)) = Vv @y (k 4+ 1))
< Vil (R)) = Vir(@py (k + 1)) + €2, u®) + w(k, V).
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(1.9, 1N
*

Figure 13.5: Value of 7210 (z, un) for z = 1.9 without terminal ingredients depending on N

Thus we obtain

K-1
—cl . 1
T () = msup > ey (K)o ()
K—oo k=0
| K-l
< limsup — (VN(xuN(k)) — Vn(zpy (kK +1)) +0(2f,u®) + y(k,N))
K—oo K k=0
. V() — VN (zuy (K))
< e e
< Mz ,u)—l—rlgleaglcy(k,N)—i—llIr(nj;lop I
M
< l(2%,u®) + maxv(k, N) + limsup V(@) + M
keN K—oo
= (2% u®) + maxv(k,N)
keN

where —M is a lower bound on Viy on X. This shows the claim with 6;(N) = maxgen v(k, N).

0

The difference between this and the corresponding result with terminal ingredients is that
we get the error term d1(/N) on the right-hand side of the estimate, which does, however,
tend to 0 as N — oo.

Example 13.28 Figure 13.5 shows jglo(;v,mv) for Example 13.1 depending on N. The
plot in the logarithmic scale shows that the value converges to the optimal value £(0,0) =0
exponentially fast, hence the error 61 (V) also vanishes exponentially fast. This is actually
not a coincidence. However, an analysis of the rate of convergence is beyond the scope of
this chapter. We refer to [0] for details. o

13.6 Semiglobal Practical Asymptotic Stability Without Ter-
minal Ingredients

Now we turn to analyzing the stability properties of the NMPC closed-loop solutions with-
out terminal ingredients. As in the case with terminal ingredients, our goal is to assume
strict dissipativity and to use the optimal value function for the modified stage cost £ from
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(12.11) as a Lyapunov function, but now without imposing terminal ingredients. The cru-
cial difference is that while for the NMPC closed-loop with modified stage cost ¢ we could
still prove asymptotic stability, without terminal ingredients the optimal trajectories of the
original and the modified problem no longer coincide.

In order to see why, we refer to the optimal control problem (OCPy) with stage cost { as
((ﬁN) and, as before, denote the corresponding functional and the optimal value function
by Jn and VN Due to the fact that we no longer impose terminal ingredients, the relations
between Vi and VN are not the same as in Sect. 13.3. For Jy and Jy, instead of (13.10)
we now have

In(z,u) = In(z,u) + ANz) — Mau (N, z)) — NO(z°,u®). (13.16)

Unfortunately, in contrast to (13.10), this equation does not allow for an easy derivation of
a relation between the optimal value functions of the form (13.11), because of the additional
u-dependent term A(z,(NV,x)) on the right-hand side of (13.16). A first consequence of
this fact is that the continuity Assumption 13.24(b) on Vx does not immediately carry
over to 171\/. Hence, we need to introduce this as an independent assumption.

Assumption 13.29 [Continuity of Vy at z¢] There exist 7y € Ko such that for each
N € N and each x € X it holds that

Vv (z) — Vv (29)] < v (|]ae)-

In case strict dissipativity holds, ¢ is positive definite w.r.t. the equilibrium z¢, hence we
obtain Vy (z¢) = 0 and Vn(x) > 0 for all z € X. Thus, the inequality in Assumption 13.29
is equivalent to Vi (x) < vy (|2[ze).

Unlike continuity, a straightforward check of Definition 12.7 (with storage function A\ = 0)
shows that strict dissipativity carries over from (OCPy) to (66?’1\1), even with the same
p. Thus, in particular, all the previous lemmas that apply to (OCPy) in case of strict
dissipativity also apply to (6(\]?1\1) As a general rule, we denote all parameters, sets, etc.,
referring to ((5(\]?’1\1) with a tilde, e.g., the set Q(x,u, N, P) from Proposition 13.14 will be
denoted by é(a:, u, N, P) when this proposition is applied to (6(\3?1\1)

As already mentioned above, from the definition we cannot directly deduce a simple relation
like (13.11) between Vy and Viy. The reason why we can still use Viy as an—at least
practical—Lyapunov function lies in the fact that we can establish an approximate version
of (13.11). To this end, we first need the following preparatory lemma.

Lemma 13.30 If Assumption 13.24 and the assumptions of Proposition 13.14 hold, then
the equation

VN(xe) = Mf(.re, ue) + VNfM(.re) - Rg(xe, P, N)
holds with 0 < R3(z®, P, N) < v (osa(P)) + w(N — M) + yr(o5a(P)) for all N,P € N
and for all M ¢ Q(z¢,u%;, N, P), where u%, € UV (2¢) is the optimal control of (OCPy) for
initial value ¢ and o5 is from Proposition 13.14 with § = w(/N) and A = 0.
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Proof: The inequality Vi (z¢) < M{(z¢ u®) + Vy_nr(x€) follows from the dynamic pro-
gramming principle (12.1) using the control u = u®. For the opposite inequality, consider
the optimal control u%, € UV (z¢) for initial value 2. As in the proof of Lemma 13.25, we
can apply Proposition 13.14 with § = vy (|2¢|ze) + W(N) = w(N) and A = |z¢[ze = 0 in
order to conclude that for each M ¢ Q(z,uy, N, P) we have

M-1
Vin(a®) = Y Uy (k) ul (k) + Vivoas (g, (M)
. M-1 ~
= —A@) + Awuy, (M) + MUz u®) + ) U(wuy, (k), un (k) +Vvpr (2ugy, (M)
k=0

> MU, u) + Vivoar (59) + [Vivoar (g, (M) = Vi (5] + [Moag, (M) = M)
> Me(z%u®) + VN_m(2°) — v (osa(P)) —w(N — M) —y(os5a(P)),
which shows the claim. [

Now we can prove the approximate relation of the form (13.11) between ‘7N and V.

Lemma 13.31 If Assumptions 13.24 and 13.29 as well as the assumptions of Proposition
13.14 hold, then for all € X the equation

Vn(z) = Vn(z) + A(z) — Vi (z°) + Ra(z, N)
holds with |R4(x, N)| < v4(|x|ze, N) with

va(|zlee, N) - = max{yv (a5 A ([N/3])) + v (05.a(LN/3])) + 7505 A (LN/3]))
+ (05,4 (LN/3]) + (05 A (LIN/3])) + 3w([N/3]),
V(05,4 (LN/3]) + v (a5.a(LN/3])) + (05,4 (LN/3]))

+2w([N/3])}

with o5 A and G5 o from Proposition 13.14 applied to (OCPy) and (6(\3?’1\1), respectively,
with & = Y (|2[ee) + w(N), 6 = 75 (|z[ee ), and A = |z]se.

Proof: Fix z € X and let w} and @4 € UY(z) denote the optimal control minimizing
Jn(z,u) and Jy(z,u), respectively. We note that if (OCPy) is strictly dissipative then
(6@?’1\1) is strictly dissipative, too, with bounded storage function A = 0 and same p € K.
Moreover, Vi (z) < NU(z¢ u®) + v (|7|ze) + w(N) and Vy(x) < N2 u®) + vy (|2]2e),
since Vi (2¢) < N£(2¢,u) and Viy(z¢) = 0. Hence, Proposition 13.14 applies to the optimal
trajectories for both problems, yielding o5 € £ and Q(x,u}, P, N) for (OCPy) and 557A

and é(m,ﬂ?v,P, N) for ((j(\}TDN) For all M ¢ @(x,ﬂjV,P, N), we can estimate

Vn(z) < Jum(z,ay) + V-m(zay, (M))
< Ju(, i) + Ve a(29) + v (65,4 (P) +w(N — M)
< Ju(x i) = Mx) + M) + MO, ) + V- (2°) + v (65 4 (P))
+ (G54 (P)) + w(N — M)
< Vn(z) = Ri(z,P,N) — A(z)

+ Vv (2%) + Rs(x, P, N) + v (05 A (P)) + 71(55 5 (P)) + w(N = M),



13.6. SEMIGLOBAL PRACTICAL ASYMPTOTIC STABILITY WITHOUT TERMINAL INGREDIENTS163

where we have applied the dynamic programming principle (12.1) in the first inequality,
Proposition 13.14 for (OCPy) and Assumption 13.24(b), respectively, Assumption 13.24(a)

and (13.16) in the second and third inequality and Lemma 13.25 (applied to (6(\3?’1\1), hence
with remainder term denoted by R;) and Lemma 13.30 (applied to (OCPy)) in the last
step. Moreover, A\(z¢) = 0 and Vy(2¢) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities as above,
we get

‘7]\[(1‘) < VN(x) — Rl(x, P, N) + )\(x) — VN(xe) + ’)/‘7(05,A(P)) + ’y)\(a(;,A(P))
+w(N - M)

for all M ¢ Q(z,u}, P,N). Here we can omit the negative —Rs-term. Now, choosing
P = |N/3], the union Q(x,uy, P, N)U Q(z,u), P, N) has at most 2N/3 elements, hence
there exists M < 2N/3 for which both inequalities hold. This yields N — M > [N/3] and
thus

[Ba(z, P N)| < qv(osa(lN/3]) +w(IN/3)),
[Ri(z, P,N)| < 33p(05 A(IN/3])) + w([N/3]) and
Ry(z, P,N) < qv(osa(lN/3])) +w(IN/3]) +m(o5a(IN/3])),

which shows the claim. [

We now define the stability property that we will prove in the remainder of this section.

Definition 13.32 Consider the NMPC Algorithm 11.1 and the resulting nominal closed-
loop system (11.2) with feedback law pn and solutions x, (k, x).

We call the equilibrium x¢ semziglobally practically asymptotically stable with respect to the
optimization horizon N for the closed-loop system (11.2) if there exists § € KL such that
the following property holds: for each ¢ > 0 and A > § there exists N5 € N, such that
for all N > Nsa and all € Ax the inequality

|y (Fs @) |e < max{B(|2|ze, k), 0}

holds for all £ € Ny. o

Semiglobal asymptotic stability relaxes the asymptotic stability condition by requiring
asymptotic stability only for the set of initial values = € X with |z|ze < A. Although A
can be chosen arbitrarily large by suitably adjusting the optimization horizon N, for each
finite N it will in general be a finite value.

Semiglobal practical asymptotic stability additionally relaxes the requirement that the
solution exactly tends to the equilibrium z¢ by only requiring that the solution behaves
like an asymptotically stable solution until it reaches a §-neighborhood of z¢. Similar to
the value of A, the size § of this neighborhood can be arbitrarily tuned by adjusting the
optimization horizon N, but for each finite N it will in general be a positive value.

Semiglobal and semiglobal practical asymptotic stability can be expressed via the stability
properties introduced in Chap. 10. This is made precise in the following lemma.
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Lemma 13.33 The equilibrium z¢ is semiglobally practically asymptotically stable with
respect to the optimization horizon N if for each 6 > 0 and A > ¢ there exists Nsa > 0
such that for all N > Nj A there exist forward invariant sets Y and P with BA(aﬁe) CYCX
and P C Bs(2¢) such that the system is P-practically asymptotically stable on Y in the
sense of Definition 10.3.

Proof: The claimed stability property follows from the fact that according to Definition
10.3 for each k € Ny either |z, (k,2)[ze < B(|x|ge, k) or x,,(k,2) € P holds. Since the
latter implies |z, (k,2)|ze < we obtain the assertion.

The following proposition shows in which sense 17]\; is a Lyapunov function for the sys-
tem. This will be used in the subsequent theorem in order to prove semiglobal practical
asymptotic stability of the closed loop.

Proposition 13.34 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy) with storage function A and p € Ko, and let Assumptions 13.24
and 13.29 hold. Then for each © > 0 there exists Ng € N such that for all N > Ng and all
x € X with Viy(z) < O the optimal value function Vy of (OCPy) satisfies the inequalities

Vv (f(2, un(2))) < Viv(e) — U, pn (@) + v(N) (13.25)

and B
a1(|z]ze) < V(@) < a(|z]se) (13.26)
with a; = p, ag = 7, and v € L defined in the proof. o

Proof: The lower bound in (13.26) follows with oy = p because strict dissipativity implies
(x,u) > p(|z|ze) and thus

i

V = inf Uzy(k,z),u(k inf Ty(k,x)|ze) = p(|x|ze).
e uemz )= st 5 ool aller) > plele)

f

The upper bound in (13.26) follows from Assumption 13.29 and ‘7N(:n€) = 0 with ag = ¢,
observing that ¥ C X holds, because for x ¢ X we have that \7}\7(3:) = 0.

In order to obtain inequality (13.25), we abbreviate 27 = f(x, uy(z)). Now, for all z € S
we obtain Vy(z) < ©, which implies |z|,c < p~1(©) and thus Y C B,-1@)(z¢) for all
N. In order to obtain a similar estimate for |z7|,e, we observe that using Assumption
13.24(b), Vi (z) < © implies Vi (z) < Vi (2¢) + v (p1(O)) + w(1). Abbreviating Mg =
w(p~HO)) + w(1) and using Viy(z¢) < N€(z¢ u¢), Theorem 12.4 and strict dissipativity
yield

V_1(zT) = Vy(x) =z, uy(z)) < Vn(z) + Mx) — Mzh) — 0(2°,u)
< Mo — Mat) 4+ My + (N — 1)£(z°, u®),

where M) is a bound on A on B,-1(g)(z¢). This implies

17N,1(33+) < VN,l(:L""') + )\(1:+) + M, —(N—-1)l(z°u) < Mo+ Mx+M,=M
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with M, being a lower bound on A on X. We can conclude that |z7 |, < p~1(M). Hence,
using first Lemma 13.26 and then Eq. (12.6) we obtain

VN(:U+) = VN,1($+) + 0(xf,u®) + RQ(£+, N)
= Vn(@) + Uz, un(x)) + (2%, u®) + Ra(zt, N) (13.27)

with Ro(zt, N) < va(p~ (M), N) from Lemma 13.26. Using this we can compute

VN(1'+) = VN($+) + )\(:L'+) — Vn(z) + R4({L‘+, N)
= Vn_i(@®) + 0% uf) + AMa) — Viv(2) + Ra(zT, N) + Ry(z™, N)
= Vn(x) = l(z, un(x)) + £(2¢,u®) + AzT) — Vi (z°)
+ RQ(SC+,N) + R4(£+,N)
= VUn(x) =Lz, pn(x)) + 02, u®) + AzT) — Az)

=—L(z,un ()
+ Ra(x™, N) + Ry(x", N) — Ry(z, N).

where we used Lemma, 13.31 for x = 2 for the first equality, Lemma 13.26 for the second,
Eq. (12.6) for the third and Lemma 13.31 in the last step, all with with A = p~}(M).
Defining v(N) = va(p~ (M), N) +2uv4(p~ 1 (M), N) with vy and v4 from Lemmas 13.26 and
13.31, respectively, we thus obtain

Vi (z™) < Viv(a) = Uz, pn () + v(N),

ie. (13.25). [

The final theorem on semiglobal practical asymptotic stability is now a consequence of
Proposition 13.34 and Theorem 12.23. To this end, recall the notion of semiglobal practical
stability from Definition 13.32(ii).

Theorem 13.35 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy) with a storage function A that is bounded on bounded sets and
p € Ko, and let Assumptions 13.24 and 13.29 hold. Then the equilibrium x¢ is semiglobally
practically asymptotically stable on X with respect to the optimization horizon N.

Proof: Choose A > § > 0. We apply Proposition 13.34 with © = as(A). This im-
plies that Ba(z®) N X C S := Vy'([0,0]). One checks that V = Vi satisfies all as-
sumptions of Theorem 12.23 with a3 = p, ¢ = v(N), and ¢ in place of . Hence, we

obtain P-practical asymptotic stability on S with P = Vi ([0, az(az ! (20(N))) +v(N)]) C
Eal—l(aQ(agl(2u(N)))+u(N))(xe)' The assertion the follows from Lemma 13.33 by choosing

Ns.a > Ne so large that the inequality o ' (aa(az ' (20(Nsa))) + v(Nsa)) < 6 holds. [

Example 13.36 Figure 13.6 shows the trajectories (open-loop dashed, NMPC closed-loop
solid) of Example 13.1 without terminal ingredients for N = 5 and N = 10. One clearly
sees the practical asymptotic stability of the closed loop and the turnpike phenomenon for
the open-loop trajectories. a
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Figure 13.6: NMPC closed-loop solution (solid) and open-loop predictions (dashed) for
Example 13.1 without terminal ingredients and horizon N =5 (left) and N = 10 (right).
The solid line at x = 2 indicates the upper bound of the admissible set X

13.7 Non-averaged and Transient Performance Without Ter-
minal Ingredients

Our final results in this chapter concern the adaptation of the results from Sect. 13.4 to the
case without terminal ingredients. In order to formulate the conditions for the adaptation
of Theorem 13.19, we need an auxiliary optimal control problem. To this end, we recall
the shifted stage cost

U, u) =z, u) — 0(z€,u®),
which we already used in the proof of Theorem 13.19. We denote the corresponding
finite and infinite-horizon functional with .J, n and joo, respectively, and the optimal value
functions with Y7N and 1700. It is easy to see that Y7N = VN—N{O(2¢,u). If strict dissipativity
holds and  satisfies (12.16), then inequality (12.17) from Theorem 12.12 applies to Vi and
thus ‘700 assumes finite values. The assumption that we need in addition is now that V.
is continuous in x€.

Assumption 13.37 [Continuity of Vio at x€] There exists V9., € Koo such that for each
x € X it holds that

Voo @) = Voo (2°)] < g, (J]e)-

Lemma 13.38 If Assumption 13.37 and the assumptions of Proposition 13.17 hold for the
problem with shifted stage cost ¢, then the equation

o~

Vio(z) = Jar(z, @) + Voo (2€) + Rs(x, M) (13.28)

holds with |R5(z, M)| < 7p_(00,a(P)) forallz € X, all P € Nand all M ¢ Q(z, uZ,, P, 00),
where 4%, € U™ (z) denotes the infinite horizon optimal control for the problem with shifted
cost and initial value x and oo A is from Proposition 13.17 with A = |z|e.
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Proof: The dynamic programming principle (12.21) yields
Veo(@) = Jar(w, %) + Veo(as, (M, ).
Hence, (13.28) holds with Rs(z, M) = Vio(z4:. (M, z)) — Vio(2¢). Then for any P € N and

Vo
M ¢ Q(x,u’,, P,oo) we obtain |Rs(z, M)| < Vo (|lzax, (M, z) —2°[]) < yﬁm(aoo,A(P)) and
thus the assertion. U

Lemma 13.39 If Assumptions 13.24 and 13.37 and the assumptions of Propositions 13.14
and 13.17 hold for the problem with shifted stage cost ¢, then the equation

In(z,al,) = Iy (z,un) + Re(x, M, N) (13.29)

holds with [Rg(z, M, N)| < max{yy (05 (P))+ (0cc,a(P))+2w(N—M), vy (0c0,a(P))+
. (ogA( ))} for all P € N, all x € X and all M € {0,...,N} \ (Q(z,uy,P,N) U
Q( x, Uk, P,00)), with 05 A from Proposition 13.17, o5 A from Proposition 13.14 with § =
W(|z|ze) + W(N), A = |x|ze, and &%, being the infinite horizon optimal control for the
problem with shifted cost and initial value x.

Proof: The finite horizon dynamic programming principle (12.1), (12.2) implies that u =
w) minimizes the expression Jys(z,u) + Vn_n(2y (M, x)). Together with the error term
Ry from Lemma 13.25 and Ry(z, M, N) = Vn_n(2ax (M, z)) — Vn_p(2°) this yields

Ju(z,uy) + Vv-m (2°) = Iy (2, uly) + Vv-m (zuy, (M, 2)) — Ra(z, M, N)
< Jy(z, ﬁgo) + VN_M(CUﬁéo (M,a:)) — Rl(m, M, N)
= Jula, @) + V_n(2°) — Ri(x, M, N) + Ry (z, M, N).
Similar to the proof of Lemma 13.25 one sees that | Ry (z, M, N)| < W(Ooo,a(P))+w(N—M)
for all M & Q(x,uk,, P, 00).

Conversely, the infinite horizon dynamlc programming principle (12.21) implies that @},
minimizes the expressmn T (2, 02,) + Vo (wgs, (M, x)). Using the error terms Rj from

Lemma 13.38 and Rs(x, M, N) = Voo( Tyx, (M, z)) — Vao(2€) we obtain

T (2, 05) + Vo (2) = Tar(,0%) + Vao(wax (M, x)) — Rs(z, M)
< Ju(@,uk) + Veo(zuy, (M, 7)) — Rs(x, M)
= jM(x,u )-i-/\ (x )—R5(CE,M)+§5($,M,N)

and subtracting M/(z°, u®) and Vao(2¢) on both sides yields
Tni (@, @) = Jur (@, uly) — Rs(x, M) + Rs(x, M, N).

As in the proof of Lemma 13.25 one sees that Proposition 13.14 applies to s (-, x) with
9 = y(|z|ze). Hence, similar to the proof of Lemma 13.38 one obtains |Rs(z, M, N)| <
Vo (o5A(P)) for all M & Q(x,uy, P, N). Together with the estimates for Ry and Rs from
Lemmas 13.25 and 13.38 this yields
IRG(m M,N)| = |Ju(z,05) = Ja(z, uy))|
< ma{[Ba(o My N)| 4 [P, M, M), [ R M) + oo M, N
< max{y (0.4 (P)) + 1 (000, (P)) + 20(N = M), 35, (000, (P)) + 75, (035(P))}
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and thus the claim. [

Now we can establish a version of Theorem 13.19 for NMPC without terminal ingredients.
We will discuss after the proof how Theorem 13.40 relates to Theorem 13.19.

Theorem 13.40 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy) and storage function A and let Assumptions 13.24 and 13.37 hold.
Then for each bounded subset X? C X there exists 6; € £ such that for all sufficiently large
N € N the inequality

lim sup (J]Cé(a:,uN) —Jr(z,u) — K51(N)> <0 (13.30)

K—oo

holds and, in case that ¢(z¢, u¢) = 0, there are d3,03 € £ such that the inequality
J(z, un) < Vio(x) + K61 (N) + 62(N) + 03(K) (13.31)

holds for all K € N and z € X N X°.

Proof: First observe that for proving (13.30) we can assume £(z¢, u) = 0 without loss of
generality, since the inequality is invariant under additions of constants to ¢. For ¢(z¢, u®) =
0, however, (13.30) follows from (13.31), so it suffices to prove (13.31). We also assume
A(z€) = 0 without loss of generality.

As the assumptions from Theorem 13.35 are satisfied and X’ is bounded, there is 8 € KL
such that for each € > 0 there is N. € N with |z, (k, 2)|ze < max{f(|z|ze,k),e} forall N >
N and all z € X°. This in particular implies |z, (k, 7)|ze < supyexe B(|2]ze,0) =: A for all
z € Xb and all k € N, which in turn implies Vi (2, (k, )) < N€(z2¢,u®) + vy (A) + w(N),
implying the inequality from the assumptions of Proposition 13.14 with § = vy (A) +w(1).
Since for N, — oo the achievable ¢ tends to 0, we can find a function ¢ € L such that
e < ¢(N), implying |z, (k, z)|| < max{S(|z|ze, k), #(N)} < max{B(C,k),p(N)} for C :=
SUPexh | ze -

We now consider an arbitrary point of the form z,,, (k,z) for z € X® and all k € N and, in
order to simplify notation, we denote it again by . We abbreviate 2 := f(z, un(z)). For
the corresponding optimal control u};, Corollary 12.3 yields that w}(- + 1) is an optimal
control for initial value z* and horizon N — 1. Hence, for each M € {1,..., N} we obtain

Uz, un(x) = Vn(z) = Vnoa(z®) = JIn(z,uy) — Ivoa(e un(- 4+ 1))
= JM(.%,U?\J — JM_1($+,U?V(' + 1)),

where the last equality follows from the fact that the omitted terms in the sums defining
Iy (z,uyy) and Jpy—q(zh, u (- +1)) coincide. Using Lemma 13.38 for N, x and M and for
N — 1, 2% and M — 1, respectively, yields

Vo) = Vo (2) = Jps(z,ul.) 4+ Vo (z°) + Rs(x, M)

A (4 1) — Vaola) — Re(art, M~ 1)
= Ju(z,ul) — Jy_1(at ul (- + 1)) + Rs(z, M) — Rs(zt, M — 1).
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Putting the two equations together and using Lemma 13.39 yields
Uz, un (7)) = Voo(x) — Vo (2) + Ry (z, M, N). (13.32)
with
R7(z,M,N) = —Rg(z,M,N) + Rg(zt,M —1,N — 1) — Rs(z, M) + Rs(z", M — 1).
From Lemmas 13.38 and 13.39, we obtain the bound
[Re(a, MUN)| < 299 (05(P)) + 200 (00 (P) + 275 (05(P)) + 475, (0 (P))
+4w(N — M)

provided we choose M € {1,..., N} with M & Q(z,u},, P, N)UQ(x, u},, P,00) and M —1 ¢
Ozt ,uy(-+1),P,N—-1)UQ(zT,ul (- +1), P,0o). Since each of the four Q sets contains
at most P elements, their union contains at most 4P elements and hence if N > 8P then
there is at least one such M with M < N/2.

Thus, choosing P = | (N — 1)/8] yields the existence of M < N/2 such that
|R7(x, M, N)| < 61(N), (13.33)
where

01 (N) = 2yv(os(L(N = 1)/8])) + 2w (0o (L(N = 1)/8]))
+ 277, (o5.a([(N = 1)/8])) + 475, _(000,a([(N —1)/8])) + dw([N/2]).
Applying (13.32), (13.33) for x =z, (k,z), k =0,..., K — 1, we can conclude

K-1
J%($7NN) = g(xuw(kvm)aﬂN(xﬂN(kﬂx)))
o
< 3 (Vaol (k) = Vao(a (k + 1,2)) + 51 (N)
k=0

< Voo (@) = Vio(2pp (K, 2)) + K61 (N).
Since Vao(2¢) = A(z¢) = 0 by (12.18), Assumption 13.37 yields
—Voo(zuy (K, 2)) < =Voo(2°) + g (max{B(C, K), 6(N)})
= max{vy_(8(C,K)),vp_(o(N))} <. (B(C, K)) +vp_(6(N))}
this proves (13.31) with 65(N) = 7p_(#(N)) and 63(K) = vp_(8(C, K)). O

Comparing (13.30) and (13.31) with (13.18) and (13.19), respectively, one sees that the
absence of terminal ingredients yields potentially larger error terms. On the other hand,
this way we do not need to design terminal ingredients satisfying Assumption 13.5. One
might be concerned about the factor K in front of d; in (13.30) and (13.31), since this
implies that the error grows linearly in K and thus unboundedly as K — oco. However,
except for the particular case that ¢(x¢, u¢) = 0, the accumulated costs Jg (z,u) also grow
linearly in K, hence the relative error is constant in K.

Finally, we formulate and prove the counterpart of Theorem 13.22 for the case without
terminal ingredients. To this end, recall the definition of UX () from (13.21).
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Theorem 13.41 Consider the NMPC Algorithm 11.1 with strictly dissipative optimal
control problem (OCPy), let X* C X be a bounded set and let Assumptions 13.24 and
13.29 hold. Then there exist 61, d2,83 € £ such that for all z € X N X® the inequality

J(x, py) < IiUr}(f( : Ji(z,u) + K61 (N) + 52(N) + 03(K)
ueUg (z
holds with x = max{3(|z|z, K),¢(N)}. Here § is from Definition 13.32(ii), which is
guaranteed to hold by Theorem 13.35, N is at least as large that X® C Ba(z€) for A in
Definition 13.32(ii), and ¢ is the £-function constructed in the proof of Theorem 13.35.

Proof: We may again assume ¢(z¢,u®) = 0 without loss of generality. Consider a control
u; € UX(2) and let 71 = 2,(K,z). Then by Assumption 13.29 the optimal control u} €
U (z1) satisfies Joo(71,u2) < v5(k). Then the concatenation of u; and uyx, denoted by
u, satisfies

Voo (7) < Joo(,u) < Tk (7,u1) + 75 (K)-

Since u1 was arbitrary in UX (z), it follows that

Voo(z) < ue%jrin(x) Ji (7, u) + 75 (k).

Hence, inequality (13.31) from Theorem 13.40 yields (renaming d1,d2, 3 to b1, 09, 53)

Jit (@, pn) < Vio(2) + K61(N) + 62(N) + 83(K)
< JK(ac,ul) + Kgl(N) + SQ(N) + gg(K) + ’7‘700(,%).

Since we can estimate

Yo, (K) < g, (sup 5(1’Ixe,K)> + 75, (@(N)),

zeXb

we obtain the assertion by defining §; := 61, 09 = 0y + vﬁw(é(-)) and 03 = 03 +
Vo (SWpgexe B(|[ee, ). U
We note that it follows from Theorem 13.35 that the choice of x ensures that the control
generated by py lies in UX(z). Thus, Theorem 13.41 shows that NMPC yields an ap-
proximately optimal control in UX(z), i.e., the NMPC controller steers x to B,(z¢) in an
approximately optimal way.

Example 13.42 As our final example we slightly modify Example 13.1 by setting ¢(z, u) =
u? + 1. This allows us to illustrate the results for the typical case that £(z¢,u¢) # 0. Note
that the open- and closed-loop trajectories as well as the strict dissipativity property are
not affected by the addition of a constant to ¢ and that the change thus yields ¢(z¢, u®) =
£(0,0) = 1.

(i) Figure 13.7 illustrates how J¢ (z, un) depends on N. As in Fig. 13.4, the value K = 30
is so large that the effect of the term d2(K) is negligible and not visible in the figure, hence
Jé(z, puy) converges to inf,cyx (z) JE (2, u) for increasing N.
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Figure 13.7: Value of J&(z,uy) for K =

30, z = 1.9 and varying N without terminal
ingredients
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Figure 13.8: Value of J¢(z,uy) for K = 30, z = 1.9 and varying N without terminal
ingredients for X = [—2, 2] on the left and X = [-3, 3] on the right

(ii) We note that the error estimate depends on the bound on the storage function A
which enters in several of the previous estimates.

This dependence is actually visible
when computing J]C(l(a:, ) via numerical simulations. In Example 13.1, the bound on A

increases with increasing X. Figure 13.8 shows that increasing the state constraint set from
X = [-2,2] to X = [-3, 3] indeed considerably increases the error, although the optimal
trajectories and thus the limiting values for J[C(l(a:, un) for N — oo are independent of the
choice of X.

(iii) Finally, we observe that the main structural difference between Theorems 13.22 and
13.41 lies in the factor K in the error estimate in Theorem 13.41 without terminal ingre-
dients. This predicts a deterioration of the value Jfé (z,puy) for fixed N and growing K in
the case without terminal ingredients, which should not appear if terminal ingredients are
used. This effect can again be seen in numerical simulations, see Fig. 13.9. Both values
increase with K (as expected, since £(z¢, u) > 0), but the closed-loop cost without termi-
nal ingredients increases faster, with the gap becoming smaller for increasing N. Fig. 13.9

nicely illustrates that while the absolute difference between the scheme with and without

terminal ingredients increases with K, the relative difference is bounded and proportional
to (51 (N )
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Figure 13.9: Value of Jf{l(:n,,uN) for varying K, x = 1.9 and N = 5 on the left and N = 10
on the right, both with and without terminal ingredients Xo = {0} and F' =0



Chapter 14

Analysis of stabilizing MPC
schemes

In this chapter we look at the particular — but practically very relevant — special case in
which the stage cost ¢ penalizes the distance from a desired equilibrium. More precisely,
we consider stage costs satisfying the conditions

Uzs,ux) =0 and fl(z,u) > as(|z

z.) (14.1)

for all x € X and a K-function as. In normed spaces X and U, the simplest choice for
such a function is
Uz, u) = (| =z + Mlu — u.|

for a control penalization parameter A > 0.

As we have already observed, problems of this kind are always strictly dissipative (with
storage function A = 0). Hence, all results of the previous chapter apply and — under the
stated conditions — we can conclude asymptotic stability for the scheme with terminal
conditions and semiglobal practical asymptotic stability without terminal conditions. In
practice, however, one often observes “real” asymptotic stability also in the case without
terminal conditions. Also, schemes without terminal conditions are often preferred in prac-
tice, because for complex systems the design of terminal conditions satisfying Assumption
13.5 is very difficult if not impossible. Hence, in this chapter we will analyze stabilizing
MPC schemes without terminal conditions.

The basis for the considerations in this chapter is Theorem 12.22. We want to establish
inequality (12.30) for V' = Vi and p = pun.

14.1 Bounds on Vjy

The central assumption we will use in order to ensure asymptotic stability and performance
bounds imposes upper bounds on the optimal value functions V. These bounds are
formulated relative to the stage cost £. To this end, we define

0" (x) := inlfjf(as,u). (14.2)

ue
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With this notation, we can formulate our central assumption.

Assumption 14.1 [Bound on V] Consider the optimal control problem (OCPy). We
assume that there exist functions Bx € K, K € N such that for each = € X the inequality

Vi (x) < Bg(£*(x)) (14.3)
holds for all K € N. o

We observe that Vi (z) > £(z,u*(0)) > ¢*(x) implies Bg(r) > r.

Assumption 14.1 is satisfied for instance if for each x € X and each IV € N there exists an
admissible control sequence u, € UN(z) satisfying

U, (n, @), ug(n)) < B (), n) (14.4)

for all n € {0,..., N —1}. We refer to this property as cost controllability. It is easily seen
that it implies Assumption 14.1 with By (r) = Zf;ol (r,k).

An important special case for 8 € KL is
B(r,n) = Co"r (14.5)

for real constants C' > 1 and o € (0,1), i.e., ezponential controllability. In this case we

obtain p
1 _
Br(r)=C—2

1—0

It is easily seen that if the state trajectories itself are exponentially controllable to some
equilibrium z, then exponential controllability, i.e., (14.4) with § from (14.5), holds if £
has polynomial growth. In particular, this covers the usual linear-quadratic setting for
stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential controlla-
bility in the sense of (14.4) can be achieved by proper choice of ¢, as the following example
shows.

Example 14.2 Consider the control system

T =2+ ua?
with X = [-1,1] and U = [—1,1]. The system is controllable to z, = 0, which can be seen
by choosing u = —1. This results in the system z+ = x — 2% whose solutions approach

x4 = 0 monotonically for g € X.

However, the system it is not exponentially controllable to 0: exponential controllability
would mean that there exist constants C' > 0, o € (0, 1) such that for each x € X there is
uy € U®(z) with

|y, (n,2)| < Co"|x|.

This implies that by choosing n* > 0 so large such that Co™ < 1/2 holds the inequality

|y, (n*, z)] < |x|/2 (14.6)
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must hold for each z € X. However, for each > 0 the restriction u € [—1, 1] implies
zt > 2 — 23 = (1 — 22?)x which by induction yields

*

To(n*,z) > (1—2%)" 2

for all u € U*°(x) which contradicts (14.6) for z < 1 —271/",
On the other hand, since |z| < 1 we obtain (1 — 22)?(222 + 1) = 1 + 22% — 32* < 1 which

implies
1 202 +1 1

——>2%%4+1 = - < - S
(1—22)2 — v 202(1 — 22)?2 — 212 212

Hence, choosing
(e, u) = f(x) = 727,
for u = —1 we obtain
1

1
(o) =l(x —a3) = e 220207 = ¢ 270292 < elem T = e ().

By induction this implies (14.4) with 3 from (14.5) with C =1 and ¢ = e~ 1. o

14.2 Implications of the bounds on Vy

In this section we will use the bound on the V from Assumption 14.1 in order to establish
two lemmas which yield bounds for optimal value functions and functionals along pieces
of optimal trajectories. In the subsequent section, these bounds will then be used for the
calculation of « in (12.30).

In order to be able to calculate « in (12.30), we will need an upper bound for Vi (f(z, un(x))).
To this end, recall from Step (3) of Algorithm 11.1 that un(zo) is the first element of
the optimal control sequence u*(-) for (OCPy) with initial value . In particular, this
implies f(zo, un(z0)) = zux(1,29). Hence, if we want to derive an upper bound for
VN (f(zo, un(x0))) then we can alternatively derive an upper bound for Vi (z.«(1,z0)).
This will be done in the following lemma.

Lemma 14.3 Suppose Assumption 14.1 holds and consider g € X and an optimal control
u* € UN(2¢) for (OCPy). Then for each j =0,..., N — 2 the inequality

Vi (2 (1, 20)) < Jj(@ur (1, 20)), " (1 4 ) + By—; (" (@ur (1 + j, 70)))

holds for By from (14.3).

Proof: We define the control sequence

uw(1+n), ne{0,...,j—1}
), mnef{j...,N—1},
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where u, is an optimal control for initial value x = zy+(1 + j,29) and N = N — j. By
construction, this control sequence is admissible for x,«(1, o) and we obtain

VN($U*(1,$0)) S J(:ﬁu*(l,xo),ﬂ)
= Jj(zu (1, 20), u* (1 + ) + In—j(zu (1 + 7, 20), Uz)
< Jj(zu (L, 20), u* (1 + ) + Bn—j (¢ (2w (1 + J,20)))

where we used Jy_j(y (144, 20), us) = VN—j(zur (147, 20)) and Assumption 14.1 in the
last step. This is the desired inequality. [

In words, the idea of this proof is as follows. The upper bound for each j € {0,..., N —2}
is obtained from a specific trajectory. We follow the optimal trajectory for initial value zq
and horizon N for j steps and for the point x reached this way we use the optimal control
sequence for initial value x and horizon N — j for another N — j steps.

In the next lemma we derive upper bounds for the Ji-terms along tails of the optimal
trajectory x,+, which will later be used in order to bound the right hand side of the
inequality from Lemma 14.3. To this end we use that these tails are optimal trajectories
themselves.

Lemma 14.4 Suppose Assumption 14.1 holds and consider g € X and an optimal control
u* € UN(x¢) for (OCPy). Then for each k= 0,..., N — 1 the inequality

IN k(@ (K, o), w” (k + ) < BNk (" (2ur (K, 0)))

holds for Bi from (14.3).

Proof: Corollary 12.3 implies Jy_g(xy (k, xo), u*(k + ) = VN_g(zy (k,20)). Hence the
assertion follows immediately from Assumption 14.1. [

14.3 Computation of a and stability results

We will now use the inequalities derived in the previous section in order to compute « for
which (12.30) with V = Viy and pu = py, ie.,

Vn(z) = al(z, pn(x)) + V(f (@, pv (2))) (12.30")

holds for all x € X. When trying to put together these inequalities in order to bound
VN (2 (1,20)) from above, one notices that the functionals in Lemma 14.3 and 14.4 are
not exactly the same. Hence, in order to combine these results into a closed form which is
suitable for computing a we need to look at the single terms of the stage cost £ contained
in these functionals.

To this end, let u* be an optimal control for (OCPy) with initial value o = z. Then from

the definition of Vy and uy it follows that (12.30) is equivalent to

N-1
Uz (kyx),u (k) > al(z,u*(0)) + Vi (zur (1, x)). (14.7)
k=0
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Thus, in order to compute « for which (12.30) holds for all x € X we can equivalently
compute « for which (14.7) holds for all optimal trajectories x,« (-, ) with initial values
z eX.

For this purpose we now consider arbitrary real values Ag,...,Ay_1,7 > 0 and start by
deriving necessary conditions which hold if these values coincide with the cost along an
optimal trajectory £(z,+(k,x),u*(k)) and an optimal value Vy(z,+(1,z)), respectively.

Proposition 14.5 Suppose Assumption 14.1 holds and consider N > 1, values A, > 0,
n=20,...,N —1, and a value v > 0. Consider z € X and assume that there exists an
optimal control sequence u* € UM (x) for (OCPy) such that

e = Uxys (kyx),u*(k)), k=0,...,.N—1

holds. Then
N-1
> A< Byvk(M), k=0,...,N—2 (14.8)
n=k
holds. If, furthermore,
v="Vn(zyu(1,2))
holds then
j—1
v <Y Anyr+ Byoj(Nj1), §=0,...,N—2 (14.9)
n=0
holds. a

Proof: If the stated conditions hold, then A, and v must meet the inequalities given in
Lemmas 14.3 and 14.4, which is exactly (14.9) and (14.8). U

Using this proposition we can give a sufficient condition for (14.7) and thus for (12.30).
The idea behind the following proposition is to express the terms in inequality (14.7) using
the values \g, ..., Any_1 and v introduced above.

Proposition 14.6 Consider N > 1 and Bg € K, K = 2,..., N and assume that all
values A\, > 0,n=0,...,N—1and v > 0 fulfilling (14.8) and (14.9) satisfy the inequality

N—-1
d d—v=ak (14.10)
n=0

for some a € (0,1]. Then for this @ and each optimal control problem (OCPy) satisfying
Assumption 14.1 inequality (12.30) holds for px from Algorithm 11.1 and all z € X. a

Proof: Consider a control system satisfying Assumption 14.1 and an optimal control
sequence u* € UM (z) for initial value € X. Then by Proposition 14.5 the values \; =
Uxy (k,x),u*(k)) and v = Viy(zyx (1, x)) satisfy (14.8) and (14.9), hence by assumption
also (14.10). Thus, using ¢(x,u*(0)) = £(xy» (0, 2),u*(0)) = Ag we obtain

N-1 N-1

Vn(zu (L,2) + ol(z,u(0) =v+ady < > =Y Lww(k,z),u*(k)).
k=0 k=0
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This proves (14.7) and thus also (12.30%). [

Proposition 14.6 is the basis for computing « as specified in the following theorem.

Theorem 14.7 [Abstract optimization problem| Consider N > 1 and Bx € K, K =

2,...,N and assume that the optimization problem
N-1
0 A —V
o= inf 20 An =V
A0y AN -1,V Ao

(14.11)
subject to the constraints (14.8), (14.9), and

A >0, .. AN,y >0

has an optimal value o € (0, 1]. Then for this o and each optimal control problem (OCPy)
satisfying Assumption 14.1 inequality (12.30") holds for py from Algorithm 11.1 and all
z € X,

In particular, J< (z, un) < Viv(z)/a < Vao(x)/a holds and if there are aj, a3 € Ko with
az(|z]z,) < 0*(z) < aa(|z|s, ) then the MPC closed-loop system is asymptotically stable at
Ty on X.

Proof: Consider arbitrary values Ag, ..., An_1,7 > 0 satisfying (14.8) and (14.9).
If Ao > 0 then the definition of Problem (14.11) immediately implies (14.10).

If Ao = 0, then inequality (14.8) for £ = 0 together with By (0) = 0 implies A1, ..., Ay_1 =
0. Thus, (14.9) for j = 1 yields v = 0 and again (14.10) holds.

Hence, (14.10) holds in both cases and Proposition 14.6 yields the assertion.

The additional statements then follow from Theorem 12.22, observing that the inequalities
on /* imply

ar(|zle.) = az(|z]s.) < £(z) < Vi(z) < By (€ (2)) < By(aa(|z]e.)) = a2(|]e.)-

0

The following lemma shows that the optimization problem (14.11) specializes to a linear
program if the functions By (r) are linear in r.

Lemma 14.8 If the functions Bg (r) from (14.3) in the constraints (14.8), (14.9) are linear
in r, then a from Problem (14.11) coincides with

N—-1
o= min E Ap — UV
A0see s AN -1,V
n=0

(14.12)
subject to the (now linear) constraints (14.8), (14.9), and

)\OZI,Al,...,)\N_l,VZO.

In particular, this holds if (14.4) holds with functions 3(r,t) being linear in 7.
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Proof: Due to the linearity, all sequences Ao, ..., An_1,7 satisfying the constraints in
(14.11) can be written as YA0; - -, YAN—1,7V for some Ao, ..., Any_1,V satistying the con-
straints in (14.12), where v = Xg. Since

Zg;()l j\n -V _ 27]:[;01 ’Y)‘n - _ 27];[;01 A” v _ NZ_:I b\
— = == — n — VU,

the values o in Problems (14.11) and (14.12) coincide. [

The next result gives an explicit bound for Problem (14.12) and thus also (14.11) if the
functions Bk are linear.

Proposition 14.9 If the functions Bg (r) from (14.3) in the constraints (14.8), (14.9) are
linear in 7, then the solution of Problems (14.11) and (14.12) satisfies the inequality

o> ay (14.13)
for
p Y — 1
ay=1-(-Dw-1]] ( . ) with v, = Bi(r)/r. (14.14)
k=2
(]

Proof: We prove the theorem by showing the inequality

N-1
o< o =D T (20 ) g (14.15)

k=2 \ Tk

for all feasible Ao, ..., An—_1. From this (14.13) follows since (14.9) with j = N — 2 implies

N—2
v < Z An + V2 AN—1

n=1

and thus (14.15), 72 > 1 and )\ = 1 yield

-« gy Ve —1
Z)\n—VZ)\o-i-(l—’yz))\N—l >X—(r2—1)0ON~—-1) H < o >>\0:dN
n=0 k=2

for all feasible A1,..., Ay—1 and v, which yields a > ay.

In order to prove (14.15), we start by observing that (14.8) with j = p implies

Z M < (Wvep — DAy (14.16)
k=p+1
forp=20,..., N — 2. From this we can conclude

N-1 N—1
e 3z T S e S,
k=p+1 k=p+1 TN-p k=p+1
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Using this inequality inductively for p =1,..., N — 2 yields

which implies (14.15). U

A much more complicated proof (see [5, Proposition 6.18]) shows that the optimal ay is
given by

(v —1) IJ_V[ (v —1)

ayi=1-— k;Q with v, = By(r)/r, (14.17)
[Tw—IT0w-1
k=2 k=2

A comparison of the two formulas (14.17) and (14.13) can be found in Remark 14.10, below.

Remark 14.10 Let us compare the two different bounds on « given by ay from (14.13)
and ay from (14.17). In order to illustrate that the criterion &y > 0 is more conservative
than the criterion ay > 0, we consider the case where v, = « for all k, i.e., the ~; are
independent of k, and compute the minimal N for which &y > 0 and ay > 0, respectively,
hold. For «; =« the expressions simplify to

. (v =D~

(y—1V
AN = 1—
AN-2

and ay=1- .
PN = (y =N

Thus, an optimization horizon N for which &y > 0 must satisfy

In~
N>2+2
ZeT Iny —1In(y—1)
while the same condition for ay > 0 is given by
In(y —1)
N >2 .
- +ln'y—ln(’y—1)

This means that the estimate for the minimal stabilizing horizon based on &y is about
twice as large as the estimate based on a.

In this context, it is interesting to look at the asymptotic behavior of the bounds on
N for v — oo. For large v the denominator is approximately 1/4. This implies that
asymptotically for v — oo the first estimate for N behaves like 2vIny while the second
behaves like ~In . O
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Example 14.11 We reconsider Example 14.2, i.e.,
1
T =z +ur® with f(z,u) =e 27,

As shown in Example 14.2, inequality (14.4) holds with §(r, k) = Co*r with C = 1 and
o = e~ !'. The bounds in Assumption 14.1 resulting from this 3 are
1—oK 11— e K

B = =
K(r) 01_07" e 1"

thus Theorem 14.7 is applicable and we obtain a > ay with ay from Formula (14.17).
The 7y, in Formula (14.17) are given by

1= ek
T T
A straightforward computation reveals that for these values Formula (14.17) simplifies to

N

(=1 TT(w—1)
1— h=2 —1—eV,
N N
IT%—II0w—1)
f—2 =2

Hence, for N = 2 we obtain a« = 1 —e2 ~ 0.865 and for N = 3 we get @ > 1— e 3~ 0.95.
Hence, Theorem thm:optprobl ensures asymptotic stability for all N > 2 and — since
1/0.95 ~ 1.053 — for N = 3 the performance of the MPC controller is at most about 5.3%
worse than the infinite horizon controller. a

While in this simple example the computation of o via Formula (14.17) is possible, in many
practical examples this will not be the case. However, Formula (14.17) can still be used to
obtain valuable information for the design of MPC schemes. This aspect will be discussed
at the end of this section.

Although the main benefit of the approach developed in this chapter compared to other
approaches is that we can get rather precise quantitative estimates, it is nevertheless good
to know that our approach also guarantees asymptotic stability for sufficiently large opti-
mization horizons N under suitable assumptions. This is the statement of our final stability
result.

Theorem 14.12 [Stability for sufficiently large N] Consider the MPC Algorithm 11.1
with optimization horizon N € N and stage cost ¢ satisfying as(|x|z,) < 0*(z) < as(|z|s,)
for suitable ag, ay € Ks. Suppose that Assumption 14.1 holds for linear Bx € K of the
form B (r) = yxr with 7o 1= Supgen 1 < 00.

Then the MPC closed loop system (11.2) with MPC-feedback law py is asymptotically
stable at x, on X provided N is sufficiently large.

Furthermore, for each C > 1 there exists N¢ > 0 such that
Js (@, i) < CVi (@) < CVio(2)
holds for each = € X and each N > N¢.
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Proof: The assertion follows immediately from Theorem 14.7 if we show that ay — 1
holds in (14.13) as N — oo. Since all factors in (14.13) are monotone increasing in -y, and
the product has a negative sign, we obtain

i 2 1 (0~ 12

Since (Yoo — 1)/700 < 1 we obtain that
N-2
(’yoo - 1) =0
Yoo

Theorem 14.12 justifies what is often done in practice: we set up an MPC scheme using a
reasonable stage cost £ and increase N until the closed loop system becomes stable.

as N — oo and thus ay — 1. [

Of course, Theorem 14.12 immediately leads to the question how large the optimization
horizon N needs to be for achieving stability or a certain performance. As the computa-
tional cost grows with the length of a horizon, this is also important for the practical imple-
mentability of the MPC scheme. We investigate this question for the case that the asymp-
totic controllability inequality (14.4) holds with the exponential functions B(r,n) = Co™Nr
from (14.5). To this end, we look at the minimal horizon N for which ay is larger than a
certain threshold depending on the parameters C' and o. This dependence is illustrated in
Figure 14.3 for thresholds 0 and 0.5.

8 81
7 7
6 6
N=16 a<0 o< 0.5
5 5
c C N=16
4 4
N=8
3 3 N
i N=4 i
2 2 Ned
N=2 N=2
1 T T T T N 1 T T T T 1
0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0
(2 (2

Figure 14.1: Suboptimality regions for different optimization horizons N depending on C'
and o in (14.5) for ay > 0 (left) and ay > 0.5 (right)

As we see, the two parameters C' and o play a very different role. While for fixed o > 0 it
is always possible to reduce the necessary horizon to N = 2, i.e., to the shortest possible
horizon, by making C' smaller, this is not possible for fixed C' by reducing ¢. Hence, the
constant C plays a more important role for obtaining stability and performance with small
optimization horizon N. Particularly, any tuning of the stage cost £ which leads to a
reduction of C' is likely also to reduce the necessary optimization horizon.
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