Mathematische Kontrolltheorie I: Lineare Systeme

Lars Grüne
Mathematisches Institut
Fakultät für Mathematik und Physik
Universität Bayreuth
95440 Bayreuth
lars.gruene@uni-bayreuth.de
www.math.uni-bayreuth.de/~lgruene/

 $\label{eq:constraint} Vorlesungsskript$ Wintersemester 2008/2009

Vorwort

Dieses Skript ist im Rahmen einer gleichnamigen Vorlesung entstanden, die ich als ersten Teil eines zweisemestrigen Zyklus im Wintersemester 2008/2009 an der Universität Bayreuth gehalten habe. Es ist die vollständig überarbeitete zweite Auflage eines gleichnamigen Skripts aus dem Wintersemester 2005/2006, in der einige Tippfehler verbessert wurden, Kapitel 5 ergänzt und Kapitel 6 vollständig neu geschrieben wurde.

Teile des Skriptes wurden auf Basis des Skripts [2] und des Lehrbuchs [4] erstellt, die auch ohne explizite Erwähnung intensiv genutzt wurden. Herzlich bedanken möchte ich mich bei allen aufmerksamen StudentInnen, die mich auf Fehler und Ungenauigkeiten hingewiesen haben.

Eine elektronische Version dieses Skripts sowie die zu dieser Vorlesung gehörigen Übungsaufgaben finden sich im WWW unter dem Link "Lehrveranstaltungen" auf der Seite http://www.math.uni-bayreuth.de/~lgruene/.

Bayreuth, Februar 2009

Lars Grüne

Inhaltsverzeichnis

V	orwo	rt	i
1	Gru	ındbegriffe	1
	1.1	Lineare Kontrollsysteme	1
	1.2	Existenz und Eindeutigkeit	4
2	Koı	ntrollierbarkeit	11
	2.1	Definitionen	11
	2.2	Analyse von Kontrollierbarkeitseigenschaften	12
3	Sta	bilität und Stabilisierung	19
	3.1	Definitionen	19
	3.2	Eigenwertkriterien	20
	3.3	Ljapunov Funktionen	23
	3.4	Das Stabilisierungsproblem für lineare Kontrollsysteme	27
	3.5	Lösung mit eindimensionaler Kontrolle	29
	3.6	Lösung mit mehrdimensionaler Kontrolle	33
4	Bec	bachtbarkeit und Beobachter	37
	4.1	Beobachtbarkeit und Dualität	37
	4.2	Asymptotische Beobachtbarkeit	42
	4.3	Dynamische Beobachter	43
	4.4	Lösung des Stabilisierungsproblems mit Ausgang	45
5	Opt	timale Stabilisierung	47
	5.1	Grundlagen der optimalen Steuerung	47
	5.2	Das linear-quadratische Problem	53
	5.3	Linear-quadratische Ausgangsregelung	61

6	B Der Kalman Filter			
	6.1	Zustandsschätzung auf unendlichem Zeithorizont	67	
	6.2	Der Kalman-Filter als Beobachter	71	
Literaturverzeichnis		73		
Ιn	\mathbf{dex}		74	

Kapitel 1

Grundbegriffe

Kontrollsysteme sind dynamische Systeme in kontinuierlicher oder diskreter Zeit, die von einem Parameter $u \in \mathbb{R}^m$ abhängen, der sich — abhängig von der Zeit und/oder vom Zustand des Systems — verändern kann. Dieser Parameter kann verschieden interpretiert werden. Er kann entweder als Steuergröße verstanden werden, also als Größe, die von außen aktiv beeinflusst werden kann (z.B. die Beschleunigung bei einem Fahrzeug, die Investitionen in einem Unternehmen) oder auch als Störung, die auf das System wirkt (z.B. Straßenunebenheiten bei einem Auto, Kursschwankungen bei Wechselkursen). Für das mathematische Fachgebiet, das sich mit der Analyse dieser Systeme beschäftigt, hat sich im deutschen Sprachgebrauch der Begriff "Kontrolltheorie" etabliert, wenngleich er eine etwas missverständliche Übersetzung des englischen Ausdrucks "control theory" darstellt, da es hier nicht um Kontrolle im Sinne von Überwachung sondern im Sinne von Einflussnahme von außen geht. Statt von Kontrolle spricht man auch von Steuerung, wenn die Parameter u lediglich von der Zeit abhängen und von Regelung, wenn die Parameter u vom aktuellen Zustand abhängen.

1.1 Lineare Kontrollsysteme

Wir werden uns in dieser Vorlesung mit Kontrollsystemen beschäftigen, die in kontinuierlicher Zeit definiert sind und durch gewöhnliche Differentialgleichungen beschrieben werden. Allgemein sind solche Systeme durch Differentialgleichungen der Form

$$\dot{x}(t) = f(t, x(t), u(t)) \tag{1.1}$$

beschrieben. Die Variable $t \in \mathbb{R}$ werden wir hierbei stets als Zeit interpretieren und die Notation $\dot{x}(t)$ steht kurz für die zeitliche Ableitung $d/dt\,x(t)$. Die Größe $x(t) \in \mathbb{R}^n$ heißt der Zustand und $u(t) \in \mathbb{R}^m$ heißt die Kontrolle oder der Kontrollwert, jeweils zur Zeit t.

Die Abbildung $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ heißt *Vektorfeld*. Sowohl f als auch die Funktion $u: \mathbb{R} \to \mathbb{R}^m$ müssen gewisse Regularitätseigenschaften erfüllen, damit die Lösungen von (1.1) existieren und eindeutig sind. Wir wollen uns mit diesem allgemeinen Problem hier aber nicht weiter beschäftigen, sondern gleich zu einem Spezialfall von Kontrollsystemen übergehen, mit dem wir uns in dieser Vorlesung beschäftigen wollen.

Definition 1.1 Ein *lineares zeitinvariantes* Kontrollsystem ist gegeben durch die Differentialgleichung

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1.2}$$

mit $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$.

Diese Klasse von Kontrollsystemen ist besonders einfach, da das Vektorfeld linear in x und u ist und zudem nicht explizit von der Zeit t abhängt. Trotzdem ist sie bereits so reichhaltig, dass man mit ihr eine große Anzahl realer Prozesse z.B. für technische Anwendungen brauchbar beschreiben kann. Tatsächlich werden in der technischen Praxis auch heute noch viele lineare Modelle eingesetzt, wenn auch nicht immer in der einfachen Form (1.2) (wir werden später in der Vorlesung noch eine wichtige Erweiterung kennen lernen).

Um zu veranschaulichen, warum die Klasse (1.2) oft eine brauchbare Modellierung ermöglicht, betrachten wir ein Modell aus der Mechanik, und zwar ein auf einem Wagen befestigtes umgedrehtes starres Pendel, vgl. Abb. 1.1.

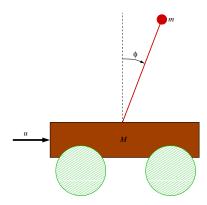


Abbildung 1.1: Schematische Darstellung des Pendels auf einem Wagen

Die Kontrolle u ist hierbei die Beschleunigung des Wagens. Mittels physikalischer Gesetze kann ein "exaktes" ¹ Differentialgleichungsmodell hergeleitet werden.

$$\begin{vmatrix}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= -kx_2(t) + g\sin x_1(t) + u(t)\cos x_1(t) \\
\dot{x}_3(t) &= x_4(t) \\
\dot{x}_4(t) &= u
\end{vmatrix} =: f(x(t), u(t)) \tag{1.3}$$

Hierbei besteht der Zustandsvektor $x \in \mathbb{R}^4$ aus 4 Komponenten: x_1 entspricht dem Winkel ϕ des Pendels (vg. Abb. 1.1), der entgegen dem Uhrzeigersinn zunimmt, wobei $x_1 = 0$ dem aufgerichteten Pendel entspricht. x_2 ist die Winkelgeschwindigkeit, x_3 die Position des Wagens und x_4 dessen Geschwindigkeit. Die Konstante k beschreibt die Reibung des Pendels

¹Das Modell (1.3) ist nicht ganz exakt, da es bereits etwas vereinfacht ist: es wurde angenommen, dass das Pendel so leicht ist, dass es keinen Einfluss auf die Bewegung des Wagens hat. Zudem wurde eine Reihe von Konstanten so gewählt, dass sie sich gegeneinander aufheben.

(je größer k desto mehr Reibung) und die Konstante $g \approx 9.81 m/s^2$ ist die Erdbeschleunigung.

Sicherlich ist (1.3) von der Form (1.1). Es ist aber nicht von der Form (1.2), da sich die nichtlinearen Funktionen sin und cos nicht mittels der Matrizen A und B darstellen lassen (beachte, dass in A und B nur konstante Koeffizienten stehen dürfen, die Matrizen dürfen also nicht von x abhängen).

Trotzdem kann ein lineares Modell der Form (1.2) verwendet werden, um (1.3) in der Nähe gewisser Punkte zu approximieren. Diese Prozedur, die man Linearisierung nennt, ist möglich in der Nähe von Punkten $(x^*, u^*) \in \mathbb{R}^n \times \mathbb{R}^m$, in denen $f(x^*, u^*) = 0$ gilt. O.B.d.A. können wir dabei annehmen, dass $(x^*, u^*) = (0, 0)$ gilt, da man dies ansonsten mittels der Koordinatentransformation $x \leadsto x - x^*$, $u \leadsto u - u^*$ und $f(x, u) \leadsto f(x + x^*, u + u^*)$ erzielen kann. In unserem Beispiel (1.3) ist eine solche Transformation nicht nötig, denn es gilt bereits f(0,0) = 0. Beachte, dass dieser Punkt im Modell dem aufrecht stehenden Pendel mit still stehendem und unbeschleunigtem Wagen entspricht.

Gilt nun f(0,0) = 0 so erhalten wir ein System der Form (1.2), indem wir A und B definieren als

$$A:=\frac{\partial f}{\partial x}(0,0) \quad \text{ und } \quad B:=\frac{\partial f}{\partial u}(0,0).$$

Wenn f stetig differenzierbar ist gilt

$$f(x, u) = Ax + Bu + o(||x|| + ||u||),$$

d.h., für $x \approx 0$ und $u \approx 0$ stimmen f(x, u) und Ax + Bu gut überein. Man kann nun beweisen, dass sich diese Näherung auf die Lösungen der Differentialgleichungen (1.1) und (1.2) überträgt.²

Für unser Beispiel ergibt sich aus der obigen Rechnung ein System der Form (1.2) mit

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ g & -k & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 (1.4)

Abbildung 1.1 zeigt einen Vergleich der Lösungen von (1.3) (durchgezogen) mit den Lösungen von (1.2, 1.4) (gestrichelt), jeweils für $u\equiv 0$ und mit $k=0.1,\ g=9.81,$ in zwei verschiedenen Umgebungen um die 0. Dargestellt sind hier für jede der zwei Gleichungen jeweils 4 Lösungskurven der Form

$$\left\{ \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right) \middle| t \in [-10, 10] \right\} \subset \mathbb{R}^2.$$

Während im linken Bildausschnitt mit bloßem Auge kein Unterschied zu erkennen ist, weichen die Lösungen im rechten Ausschnitt deutlich voneinander ab.

²Eine mathematisch exakte Formulierung dieser Eigenschaft für unkontrollierte Differentialgleichungen findet sich z.B. als Satz 7.2 in [3].

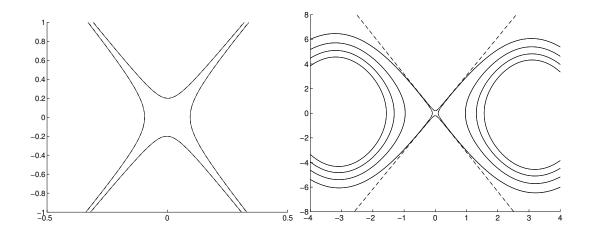


Abbildung 1.2: Vergleich der Lösungen von (1.3) (durchgezogen) mit (1.2, 1.4) (gestrichelt)

1.2 Existenz und Eindeutigkeit

Wann immer man sich mit Differentialgleichungen beschäftigt, muss man zunächst die Existenz und die Eindeutigkeit der Lösungen klären. Wir wollen dies zunächst für das lineare Kontrollsystem (1.2) mit $u \equiv 0$ machen.

Hierzu benötigen wir zunächst etwas Notation.

Für eine Matrix $A \in \mathbb{R}^{n \times n}$ bezeichnen wir im Folgenden mit $[A]_{ij} \in \mathbb{R}$ den Eintrag in der *i*-ten Zeile und *j*-ten Spalte. Für $A \in \mathbb{R}^{n \times n}$ und $t \in \mathbb{R}$ bezeichnen wir mit At die komponentenweise Multiplikation, also $[At]_{i,j} = [A]_{ij}t$. Für $k \in \mathbb{N}_0$ ist die Matrix-Potenz A^k induktiv mittels $A^0 = \text{Id}$ und $A^{k+1} = AA^k$ definiert.

Zudem benötigen wir die folgende Definition.

Definition 1.2 Für eine Matrix $A \in \mathbb{R}^{n \times n}$ und eine reelle Zahl $t \in \mathbb{R}$ ist die Matrix-Exponentialfunktion gegeben durch

$$e^{At} := \sum_{k=0}^{\infty} A^k \frac{t^k}{k!}.$$

Die Konvergenz der unendlichen Reihe in dieser Definition ist dabei als komponentenweise Konvergenz, also als

$$[e^{At}]_{ij} = \sum_{k=0}^{\infty} [A^k \frac{t^k}{k!}]_{ij}, \quad n \in \mathbb{N}_0$$

zu verstehen. Dass die Komponenten dieser Reihe tatsächlich konvergieren folgt aus dem Majorantenkriterium, denn mit der Zeilensummennorm

$$\alpha = ||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |[A]_{ij}|$$

gilt $|[A^k]_{ij}| \le ||A^k||_{\infty} \le ||A||_{\infty}^k = \alpha^k$, also

$$\left| \left[A^k \frac{t^k}{k!} \right]_{ij} \right| = \left| \left[A^k \right]_{ij} \right| \left| \frac{t^k}{k!} \right| \le \alpha^k \left| \frac{t^k}{k!} \right| = \frac{(\alpha|t|)^k}{k!}$$

und damit

$$[e^{At}]_{ij} \le e^{\alpha|t|},$$

wobei hier auf die rechten Seite die (übliche) skalare Exponentialfunktion steht.

Beachte, dass im Allgemeinen

$$[e^{At}]_{ij} \neq e^{[At]_{ij}}$$

gilt, wobei $e^{[At]_{ij}}$ die (komponentenweise angewandte) skalare Exponentialfunktion ist.

Aus der Definition der Matrix-Exponentialfunktion folgen sofort die Eigenschaften

(i)
$$e^{A0} = \text{Id} \quad \text{und} \quad \text{(ii)} \quad Ae^{At} = e^{At}A$$
 (1.5)

Das folgende Lemma liefert eine weitere wichtige Eigenschaft der Matrix-Exponentialfunktion.

Lemma 1.3 Für beliebiges $A \in \mathbb{R}^{n \times n}$ ist die Funktion $t \mapsto e^{At}$ differenzierbar und es gilt

$$\frac{d}{dt}e^{At} = Ae^{At}$$

für jedes $t \in \mathbb{R}$.

Beweis: Übungsaufgabe.

Satz 1.4 Betrachte die lineare Differentialgleichung

$$\dot{x}(t) = Ax(t) \tag{1.6}$$

mit $x: \mathbb{R} \to \mathbb{R}^n$ und einer gegebenen Matrix $A \in \mathbb{R}^{n \times n}$.

Dann gilt: Für jede Anfangsbedingung der Form

$$x(t_0) = x_0 \tag{1.7}$$

mit $t_0 \in \mathbb{R}$ und $x_0 \in \mathbb{R}^n$ existiert genau eine Lösung $x : \mathbb{R} \to \mathbb{R}^n$ von (1.6), die (1.7) erfüllt und die wir mit $x(t;t_0,x_0)$ bezeichnen. Für diese Lösung gilt

$$x(t;t_0,x_0) = e^{A(t-t_0)}x_0. (1.8)$$

Beweis: Wir zeigen zunächst, dass die in (1.8) angegebene Funktion $x(t) = e^{A(t-t_0)}x_0$ sowohl die Differentialgleichung (1.6) als auch die Anfangsbedingung (1.7) erfüllt. Aus Lemma 1.3 folgt

$$\frac{d}{dt}x(t) = \frac{d}{dt}e^{A(t-t_0)}x_0 = Ae^{A(t-t_0)}x_0 = Ax(t),$$

also (1.6). Wegen (1.5)(i) gilt zudem

$$x(t_0) = e^{A(t_0 - t_0)} x_0 = e^{A0} x_0 = \text{Id} x_0 = x_0,$$

also (1.7).

Da wir damit (1.8) als Lösung verifiziert haben, folgt insbesondere die Existenz.

Es bleibt die Eindeutigkeit zu zeigen. Hierzu zeigen wir zunächst, dass die Matrix e^{At} invertierbar ist mit

$$(e^{At})^{-1} = e^{-At}. (1.9)$$

Für jedes $y_0 \in \mathbb{R}^n$ löst $y(t) = e^{-At}y_0$ die Differentialgleichung $\dot{y}(t) = -Ay(t)$. Nach Produktregel gilt dann

$$\frac{d}{dt}(e^{-At}e^{At}x_0) = \frac{d}{dt}e^{-At}(e^{At}x_0) + e^{-At}\frac{d}{dt}e^{At}x_0 = -Ae^{-At}e^{At}x_0 + e^{-At}Ae^{At}x_0 = 0,$$

wobei wir im letzten Schritt (1.5)(ii) ausgenutzt haben. Also ist $e^{-At}e^{At}x_0$ konstant in t. Damit gilt für alle $t \in \mathbb{R}$ und alle $x_0 \in \mathbb{R}^n$

$$e^{-At}e^{At}x_0 = e^{-A0}e^{A0}x_0 = \operatorname{Id}\operatorname{Id}x_0 = x_0,$$

und folglich

$$e^{-At}e^{At} = \operatorname{Id} \implies e^{-At} = (e^{At})^{-1}.$$

Mit (1.9) können wir nun die Eindeutigkeit zeigen. Es sei x(t) eine beliebige Lösung von (1.6), (1.7). Dann gilt

$$\frac{d}{dt}(e^{-A(t-t_0)}x(t)) = \frac{d}{dt}e^{-A(t-t_0)}(x(t)) + e^{-A(t-t_0)}\dot{x}(t)
= -Ae^{-A(t-t_0)}x(t) + e^{-A(t-t_0)}Ax(t) = 0,$$

wobei wir wiederum (1.5)(ii) ausgenutzt haben. Also ist $e^{-A(t-t_0)}x(t)$ konstant in t, woraus für alle $t \in \mathbb{R}$

$$e^{-A(t-t_0)}x(t) = e^{-A(t_0-t_0)}x(t_0) = \operatorname{Id}x(t_0) = x_0$$

folgt. Multiplizieren wir nun beide Seiten dieser Gleichung mit $e^{A(t-t_0)}$ und verwenden (1.9), so ergibt sich

$$x(t) = e^{A(t-t_0)}x_0.$$

Da x(t) eine beliebige Lösung war, folgt daraus die Eindeutigkeit.

Eine nützliche Folgerung aus diesem Satz ist das folgende Korollar.

Korollar 1.5 Die Matrix-Exponentialfunktion e^{At} ist die eindeutige Lösung der Matrix-Differentialgleichung

$$\dot{X}(t) = AX(t) \tag{1.10}$$

mit $X: \mathbb{R} \to \mathbb{R}^{n \times n}$ und Anfangsbedingung

$$X(0) = \mathrm{Id.} \tag{1.11}$$

Beweis: Es bezeichne e_j den j-ten Einheitsvektor im \mathbb{R}^n . Eine einfache Rechnung zeigt, dass eine matrixwertige Funktion X(t) genau dann eine Lösung von (1.10), (1.11) ist, wenn $X(t)e_j$ eine Lösung von (1.6), (1.7) mit $t_0 = 0$ und $x_0 = e_j$ ist. Mit dieser Beobachtung folgt die Behauptung sofort aus Satz 1.4.

Das folgende Lemma fasst weitere Eigenschaften der Matrix-Exponentialfunktion zusammen.

Lemma 1.6 Für $A, A_1, A_2 \in \mathbb{R}^{n \times n}$ und $s, t \in \mathbb{R}$ gilt:

- (i) $(e^{At})^{-1} = e^{-At}$
- (ii) $e^{At}e^{As} = e^{A(t+s)}$
- (iii) $e^{A_1 t} e^{A_2 t} = e^{(A_1 + A_2)t}$ falls $A_1 A_2 = A_2 A_1$
- (iv) Für eine invertierbare Matrix $T \in \mathbb{R}^{n \times n}$ gilt

$$e^{T^{-1}ATt} = T^{-1}e^{At}T$$

Beweis: (i) Wurde im Beweis von Satz 1.4 gezeigt.

- (ii) Mit Hilfe von (i) ergibt sich, dass sowohl $e^{At}e^{As}e^{-As}$ als auch $e^{A(t+s)}e^{-As}$ das Matrix-Anfangswertproblem (1.10), (1.11) erfüllen. Da dessen Lösung nach Korollar 1.5 eindeutig ist und e^{-As} invertierbar ist, folgt die behauptete Gleichheit.
- (iii) Unter der angegebenen Bedingung $A_1A_2 = A_2A_1$ rechnet man nach, dass beide Ausdrücke das Matrix-Anfangswertproblem (1.10), (1.11) mit $A = A_1 + A_2$ erfüllen. Also müssen die Ausdrücke wegen der Eindeutigkeit nach Korollar 1.5 übereinstimmen.
- (iv) Man rechnet nach, dass beide Ausdrücke das Matrix-Anfangswertproblem (1.10), (1.11) mit $T^{-1}AT$ an Stelle von A erfüllen. Wiederum folgt daraus die Gleichheit wegen der Eindeutigkeit der Lösungen nach Korollar 1.5.

Nach diesen Vorbereitungen kehren wir nun zum linearen Kontrollsystem (1.2) zurück. Zur Formulierung eines Existenz- und Eindeutigkeitssatzes müssen wir einen geeigneten Funktionenraum \mathcal{U} für die Kontrollfunktion $u(\cdot)$ definieren. Sicherlich wären stetige Funktionen geeignet, diese Wahl ist aber zu einschränkend, da wir im Verlauf dieser Vorlesung öfter einmal Kokatenationen von Kontrollfunktionen gemäß der folgenden Definition benötigen werden.

Definition 1.7 Für zwei Funktionen $u_1, u_2 : \mathbb{R} \to \mathbb{R}^m$ und $s \in \mathbb{R}$ definieren wir die Konkatenation zur Zeit s als

$$u_1 \&_s u_2(t) := \begin{cases} u_1(t), & t < s \\ u_2(t), & t \ge s \end{cases}$$

Selbst wenn u_1 und u_2 stetig sind, wird $u_1\&_su_2$ im Allgemeinen nicht stetig sein. Wir benötigen also einen Funktionenraum, der abgeschlossen bezüglich der Konkatenation ist. Hier gibt es verschiedene Möglichkeiten, die einfachste ist die folgende.

Definition 1.8 Eine Funktion $u: \mathbb{R} \to \mathbb{R}^m$ heißt *stückweise stetig*, falls für jedes kompakte Intervall $[t_1, t_2]$ eine endliche Folge von Zeiten $t_1 = \tau_1 < \tau_2 < \ldots < \tau_k = t_2$ existiert, so dass $u|_{(\tau_i, \tau_{i+1})}$ beschränkt und stetig ist für alle $i = 1, \ldots, k-1$. Wir definieren \mathcal{U} als den Raum der stückweise stetigen Funktionen von \mathbb{R} nach \mathbb{R}^m .

Sicherlich ist \mathcal{U} abgeschlossen unter Konkatenation, aber auch unter Addition und Multiplikation (wobei wir $(u_1 + u_2)(t) := u_1(t) + u_2(t)$ und $(u_1 \cdot u_2)(t) := u_1(t) \cdot u_2(t)$ definieren). Zudem — und dies ist für unsere Zwecke wichtig — existiert das Riemann-Integral

$$\int_{t_1}^{t_2} u(t)dt$$

über Funktionen $u \in \mathcal{U}$, da es in jedem kompakten Integrationsintervall nur endlich viele Unstetigkeitsstellen gibt.³

Mit diesem Funktionenraum können wir nun das entsprechende Resultat formulieren.

Satz 1.9 Betrachte das lineare Kontrollsystem (1.2)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

mit $x: \mathbb{R} \to \mathbb{R}^n$ und gegebenen Matrizen $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

Dann gilt: Für jede Anfangsbedingung der Form (1.7)

$$x(t_0) = x_0$$

mit $t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$ und jede stückweise stetige Kontrollfunktion $u \in \mathcal{U}$ existiert genau eine stetige Funktion $x : \mathbb{R} \to \mathbb{R}^n$, die (1.7) erfüllt und deren Ableitung für jedes t, in dem u stetig ist, existiert und (1.2) erfüllt. Diese eindeutige Funktion nennen wir die Lösung von (1.2), (1.7) und bezeichnen sie mit $x(t; t_0, x_0, u)$. Für diese Lösung gilt

$$x(t;t_0,x_0,u) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}Bu(s)ds.$$
(1.12)

Beweis: Wir rechnen zunächst nach, dass (1.12) tatsächlich eine Lösung im angegeben Sinne ist. In den Stetigkeitsetellen von u gilt

$$\frac{d}{dt}e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}Bu(s)ds
= \frac{d}{dt}e^{A(t-t_0)}x_0 + \frac{d}{dt}\int_{t_0}^t e^{A(t-s)}Bu(s)ds
= Ae^{A(t-t_0)}x_0 + \underbrace{e^{A(t-s)}Bu(s)|_{s=t}}_{=Bu(t)} + \int_{t_0}^t Ae^{A(t-s)}Bu(s)ds
= A\left(e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}Bu(s)ds\right) + Bu(t),$$

³Eine Alternative zu den stückweise stetigen Funktionen bietet der Raum der Lebesgue-messbaren Funktionen, wobei das Integral dann als das Lebesgue-Integral gewählt wird. Hauptvorteil unseres einfacheren Ansatzes ist die Vermeidung der Lebesgue-Maßtheorie.

also (1.2). Zudem gilt

$$\underbrace{e^{A(t_0 - t_0)}}_{= \text{Id}} x_0 + \underbrace{\int_{t_0}^{t_0} e^{A(t_0 - s)} Bu(s) ds}_{=0} = x_0,$$

also (1.7).

Es bleibt die Eindeutigkeit zu zeigen. Dazu betrachten wir zwei beliebige Lösungen x(t), y(t) von (1.2), (1.7) im Sinne des Satzes. Dann gilt zunächst

$$\dot{z}(t) = \dot{x}(t) - \dot{y}(t) = Ax(t) + Bu(t) - Ay(t) - Bu(t) = A(x(t) - y(t)) = Az(t)$$

für alle Punkte in denen u stetig ist. Da z selbst stetig ist, kann \dot{z} in den Unstetigkeitsstellen τ_i von u durch $\dot{z}(\tau_i) = \lim_{t \to \tau_i} Az(t)$ wohldefiniert stetig fortgesetzt werden. Wir erhalten damit eine Funktion, die die Differentialgleichung $\dot{z}(t) = Az(t)$ für alle $t \in \mathbb{R}$ löst. Da zudem

$$z(t_0) = x(t_0) - y(t_0) = x_0 - x_0 = 0$$

gilt, erfüllt z ein Anfangswertproblem der Form (1.6), (1.7), dessen nach Satz 1.4 eindeutige Lösung durch $z(t) = e^{At}0 = 0$ gegeben ist. Also ist x(t) = y(t) für alle $t \in \mathbb{R}$, womit die Eindeutigkeit folgt.

Eine Folgerung aus diesem Satz ist das folgende Korollar.

Korollar 1.10 Für die Lösungen von (1.2), (1.7) gelten für alle $t, s \in \mathbb{R}$ die Gleichungen

$$x(t; t_0, x_0, u) = x(t; s, x(s; t_0, x_0, u), u)$$

und

$$x(t; t_0, x_0, u) = x(t - s; t_0 - s, x_0, u(s + \cdot)),$$

wobei die Funktion $u(s+\cdot) \in \mathcal{U}$ mittels $u(s+\cdot)(t) = u(s+t)$ definiert ist.

Beweis: Folgt sofort aus der Darstellung (1.12).

Bemerkung 1.11 Da wir uns in den folgenden Kapiteln in vielen Fällen auf die Betrachtung von Lösungen mit der speziellen Anfangszeit $t_0 = 0$ beschränken, schreiben wir für $t_0 = 0$ oft kurz $x(t; x_0, u) = x(t; 0, x_0, u)$.

Kapitel 2

Kontrollierbarkeit

2.1 Definitionen

Ein wichtiger Aspekt in der Analyse lineare Kontrollsysteme der Form (1.2) ist die Frage der Kontrollierbarkeit. In der allgemeinsten Formulierung ist dies die Frage, für welche Punkte $x_0, x_1 \in \mathbb{R}^n$ und Zeiten t_1 eine Kontrollfunktion $u \in \mathcal{U}$ gefunden werden kann, so dass $x(t_1; x_0, u) = x_1$ gilt, d.h., so dass die zwei Punkte durch eine Lösungstrajektorie verbunden werden. Formal definieren wir dies wie folgt.

Definition 2.1 Betrachte ein lineares Kontrollsystem (1.2).

Ein Zustand $x_0 \in \mathbb{R}^n$ heißt kontrollierbar (oder auch steuerbar) zu einem Zustand $x_1 \in \mathbb{R}^n$ zur Zeit $t_1 > 0$, falls ein $u \in \mathcal{U}$ existiert mit

$$x_1 = x(t_1; x_0, u).$$

Der Punkt x_1 heißt dann *erreichbar* von x_0 zur Zeit t_1 .

Das folgende Lemma zeigt, dass man den Fall beliebiger $x_0 \in \mathbb{R}^n$ auf $x_0 = 0$ zurückführen kann.

Lemma 2.2 Ein Zustand $x_0 \in \mathbb{R}^n$ ist genau dann kontrollierbar zu einem Zustand $x_1 \in \mathbb{R}^n$ zur Zeit $t_1 > 0$, falls der Zustand $\tilde{x}_0 = 0$ kontrollierbar zu dem Zustand $\tilde{x}_1 = x_1 - x(t_1; x_0, 0)$ zur Zeit t_1 ist.

Beweis: Übungsaufgabe.

Diese Tatsache motiviert, im Weiteren die Kontrollierbarkeit bzw. Erreichbarkeit der 0 speziell zu betrachten.

Definition 2.3 Betrachte ein lineares Kontrollsystem (1.2).

(i) Die Erreichbarkeitsmenge (reachable set) von $x_0 = 0$ zur Zeit $t \ge 0$ ist gegeben durch

$$\mathcal{R}(t) = \{x(t; 0, u) \mid u \in \mathcal{U}\}.$$

(ii) Die Kontrollierbarkeitsmenge (controllable set) nach $x_1 = 0$ zur Zeit $t \ge 0$ ist gegeben durch

$$C(t) = \{x_0 \in \mathbb{R}^n \mid \text{es existiert } u \in \mathcal{U} \text{ mit } x(t; x_0, u) = 0\}.$$

Die Beziehung zwischen diesen beiden Mengen klärt das folgende Lemma.

Lemma 2.4 Die Erreichbarkeitsmenge $\mathcal{R}(t)$ für (1.2) ist gerade gleich der Kontrollierbarkeitsmenge $\mathcal{C}(t)$ für das zeitumgekehrte System

$$\dot{z}(t) = -Az(t) - Bu(t). \tag{2.1}$$

Beweis: Durch Überprüfen des Anfangswertproblems sieht man, dass zwischen den Lösungen von (1.2) und (2.1) für alle $t, s \in \mathbb{R}$ die Beziehung

$$x(s, 0, u) = z(t - s, x(t, 0, u), u(t - \cdot)).$$

Wenn also $x_1 \in \mathcal{R}(t)$ für (1.2) ist und x(s,0,u) die zugehörige Lösung, so folgt

$$z(0, x(t, 0, u), u(t - \cdot)) = x(t, 0, u) = x_1 \text{ und } z(t, x(t, 0, u), u(t - \cdot)) = x(0, 0, u) = 0,$$

womit $x_1 \in \mathcal{C}(t)$ folgt. Umgekehrt argumentiert man genauso.

2.2 Analyse von Kontrollierbarkeitseigenschaften

Wir wollen nun die Struktur dieser Mengen klären. Wir leiten die technischen Zwischenresultate dabei für $\mathcal{R}(t)$ her und formulieren nur die Hauptresultate auch für $\mathcal{C}(t)$.

Lemma 2.5 (i) $\mathcal{R}(t)$ ist für alle $t \geq 0$ ein Untervektorraum des \mathbb{R}^n .

(ii) $\mathcal{R}(t) = \mathcal{R}(s)$ für alle s, t > 0.

Beweis: (i) Zu zeigen ist, dass für $x_1, x_2 \in \mathcal{R}(t)$ und $\alpha \in \mathbb{R}$ auch $\alpha(x_1 + x_2) \in \mathcal{R}(t)$ ist. Für x_1, x_2 in $\mathcal{R}(t)$ existieren Kontrollfunktionen $u_1, u_2 \in \mathcal{U}$ mit

$$x_i = x(t; 0, u_i) = \int_0^t e^{A(t-s)} Bu_i(s) ds.$$

Also gilt für $u = \alpha(u_1 + u_2)$ die Gleichung

$$x(t;0,u) = \int_0^t e^{A(t-s)} Bu(s) ds = \int_0^t e^{A(t-s)} B\alpha(u_1(s) + u_2(s)) ds$$
$$= \alpha \left(\int_0^t e^{A(t-s)} Bu_1(s) ds + \int_0^t e^{A(t-s)} Bu_2(s) ds \right) = \alpha(x_1 + x_2),$$

woraus $\alpha(x_1 + x_2) \in \mathcal{R}(t)$ folgt. Dies beweist (i).

(ii) Wir geben hier einen direkten Beweis, die Aussage folgt aber unabhängig davon auch aus Satz 2.12.

Wir zeigen zuerst die Hilfsaussage

$$\mathcal{R}(t_1) \subseteq \mathcal{R}(t_2) \tag{2.2}$$

für $0 < t_1 < t_2$: Falls $y \in \mathcal{R}(t_1)$ existiert ein $u \in \mathcal{U}$ mit

$$x(t_1; 0, u) = y.$$

Mit der neuen Kontrolle $\tilde{u} = 0 \&_{t_2-t_1} u(t_1-t_2+\cdot)$ und Korollar 1.10 ergibt sich so

$$x(t_2; 0, \tilde{u}) = x(t_2; t_2 - t_1, \underbrace{x(t_2 - t_1; 0, 0)}_{=0}, \tilde{u}) = x(t_2; t_2 - t_1, 0, \tilde{u}) = x(t_1; 0, u) = y,$$

weswegen $y \in \mathcal{R}(t_2)$ gilt.

Als nächstes zeigen wir, dass für beliebige $0 < t_1 < t_2$ aus der Gleichheit $\mathcal{R}(t_1) = \mathcal{R}(t_2)$ bereits die Gleichheit $\mathcal{R}(t_1) = \mathcal{R}(t)$ für alle $t \geq t_1$ folgt. Um dies zu zeigen sei $x \in \mathcal{R}(2t_2 - t_1)$, es existiere also ein $u \in \mathcal{U}$ mit $x = x(2t_2 - t_1, 0, u)$.

Da $x(t_2, 0, u) \in \mathcal{R}(t_2)$ und $\mathcal{R}(t_2) = \mathcal{R}(t_1)$, existiert ein $v \in \mathcal{U}$ mit $x(t_1, 0, v) = x(t_2, 0, u)$. Definieren wir nun eine Kontrollfunktion $w = v \&_{t_1} u(t_2 - t_1 + \cdot)$, so gilt mit Korollar 1.10

$$x(t_{2},0,w) = x(t_{2},t_{1},\underbrace{x(t_{1},0,v)}_{=x(t_{2},0,u)},w)$$

$$= x(t_{2}+t_{2}-t_{1},t_{1}+t_{2}-t_{1},x(t_{2},0,u),\underbrace{w(t_{1}-t_{2}+\cdot)}_{=u(\cdot)})$$

$$= x(2t_{2}-t_{1},0,u) = x.$$

Damit gilt also $x \in \mathcal{R}(t_2)$ und folglich $\mathcal{R}(t_1) = \mathcal{R}(t_2) = \mathcal{R}(2t_2 - t_1) = \mathcal{R}(2(t_2 - t_1) + t_1)$. Induktive Wiederholung dieser Konstruktion liefert $\mathcal{R}(t_1) = \mathcal{R}(2^k(t_2 - t_1) + t_1)$ für alle $k \in \mathbb{N}$ und damit wegen (2.2) die Behauptung $\mathcal{R}(t_1) = \mathcal{R}(t)$ für alle $t \geq t_1$.

Nun zeigen wir die Behauptung (ii): Sei dazu s > 0 beliebig und sei $0 < s_0 < \ldots < s_{n+1} = s$ eine aufsteigende Folge von Zeiten. Dann ist $\mathcal{R}(s_0), \ldots, \mathcal{R}(s_{n+1})$ nach (2.2) eine aufsteigende Folge von n+2 Unterräumen des \mathbb{R}^n . Aus $\mathcal{R}(s_{k+1}) \neq \mathcal{R}(s_k)$ folgt daher dim $\mathcal{R}(s_{k+1}) \geq \dim \mathcal{R}(s_k) + 1$. Wären also die $\mathcal{R}(s_k)$ paarweise verschieden, so müsste dim $\mathcal{R}(s_{n+1}) \geq n+1$ gelten, was ein Widerspruch zu $\mathcal{R}(s_{n+1}) \subseteq \mathbb{R}^n$ ist, weswegen mindestens zwei der $\mathcal{R}(s_k)$ übereinstimmen müssen. Nach der vorhergehenden Überlegung folgt daraus $\mathcal{R}(t) = \mathcal{R}(s)$ für alle $t \geq s$ und da s > 0 beliebig war, folgt die Behauptung.

Bemerkung 2.6 Da die Menge $\mathcal{R}(t)$ also nicht von t abhängt, schreiben wir im Folgenden oft einfach \mathcal{R} .

Bemerkung 2.7 Die Verbindung von Lemma 2.2 und Lemma 2.5 zeigt also, dass die Menge der von einem Punkt $x_1 \in \mathbb{R}^n$ in einer Zeit t > 0 erreichbaren Zustände der affine Unterraum

$$x(t; x_0, 0) + \mathcal{R}$$

ist, dessen Dimension gerade gleich der von \mathcal{R} ist. Beachte, dass diese Menge i.A. nicht unabhängig von t ist, es sei denn dass $\mathcal{R} = \mathbb{R}^n$ gilt, da dann auch $x(t; x_0, 0) + \mathcal{R} = \mathbb{R}^n$ gilt. In diesem Fall ist jeder Zustand x_0 zu jedem anderen Zustand x_1 kontrollierbar, weswegen wir das System für $\mathcal{R} = \mathbb{R}^n$ vollständig kontrollierbar nennen.

Wie auf dem zweiten Übungsblatt zu sehen war, kann es bereits für recht einfache Kontrollsysteme ziemlich schwierig sein, die Mengen \mathcal{R} und \mathcal{C} direkt auszurechnen. Wir wollen daher jetzt eine einfache Charakterisierung dieser Mengen herleiten. Hierzu benötigen wir etwas lineare Algebra.

Definition 2.8 (i) Ein Unterraum $U \subseteq \mathbb{R}^n$ heißt A-invariant für eine Matrix $A \in \mathbb{R}^{n \times n}$, falls $Av \in U$ für alle $v \in U$ (oder kurz $AU \subseteq U$) gilt.

(ii) Für einen Unterraum $V \subseteq \mathbb{R}^n$ und $A \in \mathbb{R}^{n \times n}$ bezeichne

$$\langle A | V \rangle$$

den kleinsten A-invarianten Unterraum von \mathbb{R}^n , der V enthält.

Beachte, dass $\langle A | V \rangle$ existiert: Einerseits existiert mit dem \mathbb{R}^n selbst ein A-invarianter Unterraum, der V enthält. Andererseits ist der Schnitt zweier A-invarianter Unterräume, die V enthälten, wieder ein A-invarianter Unterraum, der V enthält.

Lemma 2.9 Für einen Unterraum $V \subseteq \mathbb{R}^n$ und $A \in \mathbb{R}^{n \times n}$ gilt

$$\langle A | V \rangle = V + AV + \ldots + A^{n-1}V.$$

Beweis: " \supseteq ": Wegen der A-Invarianz von $\langle A | V \rangle$ und $V \subseteq \langle A | V \rangle$ gilt

$$A^k V \subset \langle A \mid V \rangle$$

für alle $k \in \mathbb{N}_0$ und damit $\langle A | V \rangle \supseteq V + AV + \ldots + A^{n-1}V$.

"⊆": Es genügt zu zeigen, dass $V+AV+\ldots+A^{n-1}V$ A-invariant ist, da dann wegen $V\subseteq V+AV+\ldots+A^{n-1}V$ sofort $\langle A\,|\,V\rangle\subseteq V+AV+\ldots+A^{n-1}V$ folgt.

Zum Beweis der A-Invarianz betrachte das charakteristische Polynom von A

$$\chi_A(z) = \det(z \operatorname{Id} - A) = z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0.$$

Für dieses gilt nach dem Satz von Cayley-Hamilton

$$\chi_A(A) = A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0 \mathrm{Id} = 0,$$

woraus

$$A^n = -a_{n-1}A^{n-1} - \dots - a_1A - a_0\text{Id}$$

folgt. Sei also $v \in V + AV + \ldots + A^{n-1}V$. Dann lässt sich v darstellen als $v = v_0 + Av_1 + \ldots + A^{n-1}v_{n-1}$ für $v_0, \ldots, v_{n-1} \in V$. Damit folgt

$$Av = Av_0 + A^2v_1 + \dots + A^nv_{n-1}$$

= $Av_0 + A^2v_1 - a_{n-1}A^{n-1}v_{n-1} - \dots - a_1Av_{n-1} - a_0v_{n-1}$
= $\tilde{v}_0 + A\tilde{v}_1 + \dots + A^{n-1}\tilde{v}_{n-1}$

für geeignete $\tilde{v}_0, \dots, \tilde{v}_{n-1} \in V$. Damit folgt $Av \in V + AV + \dots + A^{n-1}V$, also die A-Invarianz.

Wir werden nun den Spezialfall betrachten, dass $V = \operatorname{im} B$ das Bild der Matrix B ist. In diesem Fall sagt Lemma 2.9, dass

$$\langle A | \text{im } B \rangle = \{ Bx_0 + ABx_1 + \ldots + A^{n-1}x_{n-1} | x_0, \ldots, x_{n-1} \in \mathbb{R}^m \} = \text{im } (BAB \ldots A^{n-1}B),$$

wobei $(BAB \ldots A^{n-1}B) \in \mathbb{R}^{n \times (m \cdot n)}$ ist.

Definition 2.10 Die Matrix $(BAB \dots A^{n-1}B) \in \mathbb{R}^{n \times (m \cdot n)}$ heißt *Erreichbarkeitsmatrix* des Systems (1.2).

Im Folgenden verwenden wir für $t \in \mathbb{R}$ die Notation

$$W_t := \int_0^t e^{A\tau} B B^T (e^{A\tau})^T d\tau.$$

Beachte, dass $W_t \in \mathbb{R}^{n \times n}$ gilt und W_t damit ein linearer Operator auf dem \mathbb{R}^n ist. W_t ist symmetrisch und positiv semidefinit, denn es gilt

$$x^{T}W_{t}x = \int_{0}^{t} \underbrace{x^{T}e^{A\tau}BB^{T}(e^{A\tau})^{T}x}_{=\|B^{T}(e^{A\tau})^{T}x\|^{2}} d\tau \ge 0.$$

Für das Bild im W_t dieses Operators gilt das folgende Lemma.

Lemma 2.11 Für alle t > 0 gilt $\langle A | \operatorname{im} B \rangle = \operatorname{im} W_t$.

Beweis: Wir zeigen $\langle A | \operatorname{im} B \rangle^{\perp} = (\operatorname{im} W_t)^{\perp}$.

"
⊆": Sei $x \in \langle A | \operatorname{im} B \rangle^{\perp}$, also $x^T A^k B = 0$ für alle $k \in \mathbb{N}_0$. Dann gilt

$$x^{T}e^{At}B = \sum_{k=0}^{\infty} \frac{t^{k}x^{T}A^{k}B}{k!} = 0$$

und damit $x^T W_t = 0$, also $x \in (\operatorname{im} W_t)^{\perp}$.

"
_": Sei $x \in (\operatorname{im} W_t)^{\perp}$ für ein t > 0. Dann gilt

$$0 = x^T W_t x = \int_0^t \|B^T (e^{A\tau})^T x\|^2 d\tau,$$

woraus wegen der Stetigkeit des Integranden $x^T e^{A\tau} B = (B^T (e^{A\tau})^T x)^T = 0$ folgt.

Sukzessives Differenzieren von $x^T B e^{A\tau}$ nach τ liefert

$$x^T A^k e^{A\tau} B = 0$$

für alle $k \in \mathbb{N}_0$. Für $\tau = 0$ folgt $x^T A^k B = 0$, also $x \in (\operatorname{im} A^k B)^{\perp}$ für alle $k \in \mathbb{N}_0$ und damit auch $x \in [\operatorname{im} (B A B \dots A^{n-1} B)]^{\perp} = \langle A | \operatorname{im} B \rangle^{\perp}$.

Der folgende Satz ist das Hauptresultat über die Struktur der Erreichbarkeits- und Kontrollierbarkeitsmengen.

Satz 2.12 Für das System (1.2) gilt für alle t > 0

$$\mathcal{R}(t) = \mathcal{C}(t) = \langle A \mid \text{im } B \rangle = \text{im } (B A B \dots A^{n-1} B).$$

Beweis: Die Gleichheit $\langle A \mid \text{im } B \rangle = \text{im } (B A B \dots A^{n-1} B)$ wurde bereits in der Rechnung vor Definition 2.10 gezeigt. Wir zeigen $\mathcal{R}(t) = \langle A \mid \text{im } B \rangle$ (woraus insbesondere wiederum die Unabhängigkeit von $\mathcal{R}(t)$ von t folgt). Die Aussage für $\mathcal{C}(t)$ folgt dann mit Lemma 2.4, denn es gilt $\langle A \mid \text{im } B \rangle = \langle -A \mid \text{im } -B \rangle$.

" \subseteq ": Sei $x = x(t; 0, u) \in \mathcal{R}(t)$. Nach der allgemeinen Lösungsformel ist

$$x = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau.$$

Nun gilt für all $\tau \in [0, t]$ nach Definition von $\langle A | \text{im } B \rangle$

$$e^{A(t-\tau)}Bu(\tau) = \sum_{k=0}^{\infty} \frac{(t-\tau)^k}{k!} A^k Bu(\tau) \in \langle A \mid \text{im } B \rangle$$

und damit auch $x \in \langle A | \text{im } B \rangle$, da die Integration über Elemente eines Unterraums wieder ein Element dieses Unterraums ergibt.

"
]": Sei $x \in \langle A | \text{im } B \rangle$ und t > 0 beliebig. Dann existiert nach Lemma 2.11 ein ein $z \in \mathbb{R}^n$ mit $x = W_t z$. Definieren wir nun $u \in \mathcal{U}$ durch $u(\tau) := B^T (e^{A(t-\tau)})^T z$ für $\tau \in [0, t]$, so gilt

$$x(t;0,u) = \int_0^t e^{A(t-\tau)} BB^T (e^{A(t-\tau)})^T z d\tau = W_t z = x,$$

und damit $x \in \mathcal{R}(t)$.

Korollar 2.13 (Kalman-Kriterium)

Das System (1.2) ist genau dann vollständig kontrollierbar, wenn

$$\operatorname{rg}(BAB \dots A^{n-1}B) = n$$

ist. In diesem Fall nennen wir das Matrizenpaar (A, B) kontrollierbar.

Wenn (A.B) nicht kontrollierbar ist, kann man den Zustandsraum \mathbb{R}^n wie folgt aufteilen, um das Paar (A,B) in seinen kontrollierbaren und unkontrollierbaren Anteil zu zerlegen.

Lemma 2.14 Sei (A, B) nicht kontrollierbar, d.h., $r := \dim \langle A | \operatorname{im} B \rangle < n$. Dann existiert ein invertierbares $T \in \mathbb{R}^{n \times n}$, so dass $\widetilde{A} = T^{-1}AT$ und $\widetilde{B} = T^{-1}B$ die Form

$$\widetilde{A} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \quad \widetilde{B} = \begin{pmatrix} B_1 \\ 0 \end{pmatrix}$$

mit $A_1 \in \mathbb{R}^{r \times r}$, $A_2 \in \mathbb{R}^{r \times (n-r)}$, $A_3 \in \mathbb{R}^{(n-r) \times (n-r)}$, $B_1 \in \mathbb{R}^{r \times m}$ besitzen, wobei das Paar (A_1, B_1) kontrollierbar ist. Insbesondere hat das System nach Koordinatentransformation mit T also die Form

$$\dot{z}_1(t) = A_1 z_1(t) + A_2 z_2(t) + B_1 u(t)
\dot{z}_2(t) = A_3 z_2(t)$$

mit $z_1(t) \in \mathbb{R}^r$ und $z_2(t) \in \mathbb{R}^{n-r}$.

Beweis: Übungsaufgabe.

Beachte, dass sich das charakteristische Polynom einer Matrix bei Koordinatentransformationen nicht verändert. Es gilt also

$$\chi_A(z) = \det(z\operatorname{Id} - A) = \det(z\operatorname{Id} - \widetilde{A}) = \det(z\operatorname{Id} - A_1) \cdot \det(z\operatorname{Id} - A_3) = \chi_{A_1}(z) \cdot \chi_{A_3}(z).$$

Dies motiviert die folgende Definition.

Definition 2.15 Wir nennen χ_{A_1} den kontrollierbaren und χ_{A_3} den unkontrollierbaren Anteil des charakteristischen Polynoms χ_A .

Der folgende Satz liefert alternative Definitionen der Kontrollierbarkeit, die ohne die Berechnung der Kontrollierbarkeitsmatrix auskommen. Hierbei bezeichnet $(\lambda \mathrm{Id} - A \mid B) \in \mathbb{R}^{n \times (n+m)}$ die Matrix, die durch Nebeneinanderschreiben der Matrizen $\lambda \mathrm{Id} - A$ und B entsteht.

Satz 2.16 (Hautus-Kriterium)

Die folgenden Bedingungen sind äquivalent:

- (i) (A, B) ist kontrollierbar
- (ii) $\operatorname{rg}(\lambda \operatorname{Id} A \mid B) = n \text{ für alle } \lambda \in \mathbb{C}$
- (iii) $\operatorname{rg}(\lambda \operatorname{Id} A \mid B) = n$ für alle Eigenwerte $\lambda \in \mathbb{C}$ von A

Beweis: Wir beweisen zuerst "(ii) \Leftrightarrow (iii)" und dann "(i) \Leftrightarrow (ii)".

- "(ii) \Rightarrow (iii)": klar
- "(ii) \Leftarrow (iii)": Es sei $\lambda \in \mathbb{C}$ kein Eigenwert von A. Dann gilt $\det(\lambda \operatorname{Id} A) \neq 0$, woraus $\operatorname{rg}(\lambda \operatorname{Id} A) = n$ folgt. Hieraus folgt (ii) wegen $\operatorname{rg}(\lambda \operatorname{Id} A \mid B) \geq \operatorname{rg}(\lambda \operatorname{Id} A)$.

"(i) \Rightarrow (ii)": Wir nehmen an, dass (i) gilt und (ii) nicht gilt und führen dies zu einem Widerspruch.

Wenn (ii) nicht gilt, existiert ein $\lambda \in \mathbb{C}$ mit $\operatorname{rg}(\lambda \operatorname{Id} - A \mid B) < n$. Also existiert ein $p \in \mathbb{R}^n$, $p \neq 0$ mit $p^T(\lambda \operatorname{Id} - A \mid B) = 0$, also

$$p^T A = \lambda p^T \text{ und } p^T B = 0.$$

Aus der ersten Gleichheit folgt $p^T A^k = \lambda^k p^T$ und damit insgesamt

$$p^T A^k B = \lambda^k p^T B = 0$$

für k = 0, ..., n-1. Also gilt $p^T(BAB...A^{n-1}B) = 0$, womit $\operatorname{rg}(BAB...A^{n-1}B) < n$ sein muss. Dies ist ein Widerspruch zur Kontrollierbarkeit von (A, B).

"(i) \Leftarrow (ii)": Wir nehmen an, dass (ii) gilt und (i) nicht gilt und führen dies zu einem Widerspruch.

Nehmen wir also an, dass (A, B) nicht kontrollierbar ist. Dann existiert die Zerlegung

$$\widetilde{A} = T^{-1}AT = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \quad \widetilde{B} = T^{-1}B = \begin{pmatrix} B_1 \\ 0 \end{pmatrix}$$

gemäß Lemma 2.14 mit Koordinatentransformationsmatrix T.

Sei nun $\lambda \in \mathbb{C}$ ein Eigenwert von A_3^T zum Eigenvektor v. Dann gilt $v^T(\lambda \mathrm{Id} - A_3) = 0$. Damit gilt für $w^T = (0, v^T)$

$$w^{T}(\lambda \operatorname{Id} - \widetilde{A}) = \begin{pmatrix} 0^{T}(\lambda \operatorname{Id} - A_{1}) & 0^{T}(-A_{2}) \\ v^{T}0 & v^{T}(\lambda \operatorname{Id} - A_{3}) \end{pmatrix} = 0 \text{ und } w^{T}\widetilde{B} = \begin{pmatrix} 0^{T}(B_{1}) \\ v^{T}0 \end{pmatrix} = 0.$$

Mit $p^T = w^T T^{-1} \neq 0$ folgt dann

$$p^{T}(\lambda \operatorname{Id} - A \mid B) = w^{T}T^{-1}(\lambda \operatorname{Id} - A \mid B) = (w^{T}(\lambda \operatorname{Id} - \widetilde{A})T^{-1} \mid w^{T}\widetilde{B}) = 0,$$

was im Widerspruch zu (ii) steht.

Kapitel 3

Stabilität und Stabilisierung

In diesem Kapitel werden wir uns mit dem Problem der Stabilisierung linearer Kontrollsysteme beschäftigen. Bevor wir dieses Problem angehen, müssen wir zunächst klären, was wir unter Stabilität verstehen.

3.1 Definitionen

In diesem und den folgenden zwei Abschnitten werden wir wichtige Resultate der Stabilitätstheorie linearer zeitinvarianter Differentialgleichungen (1.6)

$$\dot{x}(t) = Ax(t)$$

einführen. Die Darstellung wird dabei relativ knapp gehalten; für eine ausführlichere Behandlung dieses Themas siehe z.B. das Skript "Stabilität und Stabilisierung linearer Systeme" [3]. Wir beschränken uns hier auf die Stabilität von Gleichgewichten.

Definition 3.1 Eine Punkt $x^* \in \mathbb{R}^n$ heißt Gleichgewicht (auch Ruhelage oder Equilibrium) einer gewöhnlichen Differentialgleichung, falls für die zugehörige Lösung

$$x(t; x^*) = x^*$$
 für alle $t \in \mathbb{R}$

gilt.

Gleichgewichte haben wir bereits ohne formale Definition im einführenden Kapitel betrachtet. Man rechnet leicht nach, dass ein Punkt x^* genau dann ein Gleichgewicht einer allgemeinen zeitinvarianten Differentialgleichung $\dot{x}(t) = f(x(t))$ ist, wenn $f(x^*) = 0$ ist. Für die lineare Differentialgleichung (1.6) ist daher der Punkt $x^* = 0$ immer ein Gleichgewicht. Dieses Gleichgewicht $x^* = 0$ wollen wir in der folgenden Analyse näher betrachten.

Definition 3.2 Sei $x^* = 0$ das Gleichgewicht der linearen Differentialgleichung (1.6).

(i) Das Gleichgewicht $x^*=0$ heißt stabil, falls für jedes $\varepsilon>0$ ein $\delta>0$ existiert, so dass die Ungleichung

$$||x(t;x_0)|| \le \varepsilon$$
 für alle $t \ge 0$

für alle Anfangswerte $x_0 \in \mathbb{R}^n$ mit $||x_0|| \leq \delta$ erfüllt ist.

(ii) Das Gleichgweicht $x^* = 0$ heißt lokal asymptotisch stabil, falls es stabil ist und darüberhinaus

$$\lim_{t \to \infty} x(t; x_0) = 0$$

gilt für alle Anfangswerte x_0 aus einer offenen Umgebung U von $x^* = 0$.

- (iii) Das Gleichgewicht $x^* = 0$ heißt global asymptotisch stabil, falls (ii) mit $U = \mathbb{R}^n$ erfüllt ist.
- (iv) Das Gleichgewicht $x^* = 0$ heißt lokal bzw. global exponentiell stabil, falls Konstanten $c, \sigma > 0$ existieren, so dass die Ungleichung

$$||x(t;x_0)|| \le ce^{-\sigma t} ||x_0||$$
 für alle $t \ge 0$

für alle x_0 aus einer Umgebung U von $x^* = 0$ (mit $U = \mathbb{R}^n$ im globalen Fall) erfüllt ist.

Bemerkung 3.3 Die Stabilität aus (i) wird auch "Stabilität im Sinne von Ljapunov" genannt, da dieses Konzept Ende des 19. Jahrhunderts vom russischen Mathematiker Alexander M. Ljapunov eingeführt wurde. Beachte, dass aus den Definitionen die Implikationen

(lokal/global) exponentiell stabil \Rightarrow (lokal/global) asymptotisch stabil \Rightarrow stabil

folgen. Die zweite Implikation ergibt sich direkt aus der Definition. Dass aus exponentieller Stabilität die asymptotische Stabilität folgt, sieht man folgendermaßen:

Für ein gegebenes ε folgt (i) mit $\delta = \varepsilon/c$, denn damit gilt für $||x_0|| \le \delta$ die Ungleichung $||x(t;x_0)|| \le ce^{-\sigma t}||x_0|| \le c||x_0|| \le \varepsilon$. Die in (ii) geforderte Konvergenz ist offensichtlich.

3.2 Eigenwertkriterien

Der folgende Satz gibt ein Kriterium an die Matrix A, mit dem man Stabilität leicht überprüfen kann.

- Satz 3.4 Betrachte die lineare zeintinvariante Differentialgleichung (1.6) für eine Matrix $A \in \mathbb{R}^{n \times n}$. Seien $\lambda_1, \ldots, \lambda_d \in \mathbb{C}$, $\lambda_l = a_l + ib_l$, die Eigenwerte der Matrix A, die hier so angeordnet seien, dass jedem Eigenwert λ_l ein Jordan-Block J_l in der Jordan'schen Normalform entspricht. Dann gilt:
- (i) Das Gleichgewicht $x^* = 0$ ist stabil genau dann, wenn alle Eigenwerte λ_l nichtpositiven Realteil $a_l \leq 0$ besitzen und für alle Eigenwerte mit Realteil $a_l = 0$ der entsprechende Jordan-Block J_l eindimensional ist.
- (ii) Das Gleichgewicht $x^* = 0$ ist lokal asymptotisch stabil genau dann, wenn alle Eigenwerte λ_l negativen Realteil $a_l < 0$ besitzen.

Beweisskizze: Zunächst überlegt man sich, dass alle Stabilitätseigenschaften unter linearen Koordinatentransformationen mit invertierbarer Transformationsmatrix $T \in \mathbb{R}^{n \times n}$ erhalten bleiben, da die Lösungen $y(t; y_0)$ des transformierten Systems mittels

$$y(t; y_0) = T^{-1}x(t; Ty_0)$$

ineinander umgerechnet werden können.

Es reicht also, die Stabilitätseigenschaften für die Jordan'sche Normalform

$$J = \begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \dots & 0 & J_d \end{pmatrix}$$

mit den Jordan-Blöcken der Form

$$J_{l} = \begin{pmatrix} \lambda_{l} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{l} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda_{l} & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_{l} \end{pmatrix}, \tag{3.1}$$

 $j=1,\ldots,d,$ der Matrix A zu beweisen. Wir bezeichnen die zu $\dot{x}(t)=Jx(t)$ gehörigen Lösungen wiederum mit $x(t;x_0)$.

Aus den Eigenschaften der Matrix-Exponentialfunktion folgt nun, dass die allgemeine Lösung

$$x(t;x_0) = e^{Jt}x_0$$

für J die Form

$$x(t;x_0) = \begin{pmatrix} e^{J_1 t} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \dots & 0 & e^{J_d t} \end{pmatrix} x_0$$

besitzt. Weiter rechnet man nach, dass

$$e^{J_l t} = e^{\lambda_l t} \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{m-1}}{(m-1)!} \\ 0 & 1 & t & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{t^2}{2!} \\ \vdots & \ddots & \ddots & 1 & t \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

ist, wobei $e^{\lambda_l t}$ die (übliche) skalare Exponentialfunktion ist, für die

$$|e^{\lambda_l t}| = e^{a_l t}$$

$$\begin{cases} \rightarrow 0, & a_l < 0 \\ \equiv 1, & a_l = 0 \\ \rightarrow \infty, & a_l > 0 \end{cases}$$

für $t \to \infty$ gilt.

Die Einträge von $e^{J_l t}$ sind also genau dann beschränkt, wenn die Bedingung aus (i) erfüllt ist. Weil zudem für jedes $k \in \mathbb{N}$ und jedes $\varepsilon > 0$ ein c > 0 existiert mit

$$e^{a_l t} t^k \le c e^{(a_l + \varepsilon)t},\tag{3.2}$$

konvergieren die Einträge von $e^{J_l t}$ genau dann gegen 0, wenn (ii) erfüllt ist.

Dieses Verhalten der Matrix-Einträge überträgt sich bei der Matrix-Vektor-Multiplikation $e^{Jt}x_0$ auf die Lösungen, weswegen es äquivalent zur Stabilität bzw. asymptotischen Stabilität ist.

Der Beweis von (iii) zeigt tatsächlich globale exponentielle Stabilität, da die Einträge in (3.2) exponentiell gegen 0 konvergieren. Die Konsequenz dieser Tatsache formulieren wir explizit in dem folgenden Satz.

Satz 3.5 Betrachte die lineare zeintinvariante Differentialgleichung (1.6) für eine Matrix $A \in \mathbb{R}^{n \times n}$. Seien $\lambda_1, \ldots, \lambda_d \in \mathbb{C}$, $\lambda_l = a_l + ib_l$, die Eigenwerte der Matrix A. Dann sind die folgenden drei Eigenschaften äquivalent.

- (i) Alle Eigenwerte λ_l besitzen negativen Realteil $a_l < 0$.
- (ii) Das Gleichgewicht $x^* = 0$ ist lokal asymptotisch stabil.
- (iii) Das Gleichgewicht $x^* = 0$ ist global exponentiell stabil, wobei die Konstante $\sigma > 0$ aus Definition 3.2(iv) beliebig aus dem Intervall $(0, -\max_{l=1,\dots,d} a_l)$ gewählt werden kann.
- (iv) Die Norm der Matrix-Exponentialfunktion erfüllt $||e^{At}|| \le ce^{-\sigma t}$ für σ aus (iii) und eine von σ abhängige Konstante c>0.

Beweis: (iii) \Rightarrow (ii) folgt mit Bemerkung 3.3, (ii) \Rightarrow (i) folgt aus Satz 3.4(iii) und (i) \Rightarrow (iii) wurde im Beweis von Satz 3.4(iii) gezeigt. Schließlich folgt (iii) \Leftrightarrow (iv) sofort aus der Definition der induzierten Matrix-Norm (und gilt dann für alle Normen auf $\mathbb{R}^{n \times n}$, weil diese äquivalent sind).

Beispiel 3.6 Wir betrachten das Pendelmodell aus Kapitel 1 für $u \equiv 0$ und ohne Berücksichtigung der Bewegung des Wagens. Die Linearisierung im unteren (= herunterhängenden) Gleichgewicht liefert

$$A = \left(\begin{array}{cc} 0 & 1\\ -g & -k \end{array}\right)$$

mit Eigenwerten

$$\lambda_{1/2} = -\frac{1}{2}k \pm \frac{1}{2}\sqrt{k^2 - 4g}.$$

Hierbei ist $\sqrt{k^2 - 4g}$ entweder komplex oder < k, weswegen man in jedem Fall Re $\lambda_{1/2} < 0$ und damit exponentielle Stabilität erhält.

Die Linearisierung im oberen (= aufgerichteten) Gleichgewicht lautet

$$A = \left(\begin{array}{cc} 0 & 1\\ g & -k \end{array}\right)$$

liefert. Hier erhält man die Eigenwerte

$$\lambda_{1/2} = -\frac{1}{2}k \pm \frac{1}{2}\sqrt{k^2 + 4g},$$

deren größerer wegen $\sqrt{k^2+4g}>k$ immer positiv ist. Man erhält also keine Stabilität.

3.3 Ljapunov Funktionen

In diesem Kapitel werden wir ein wichtiges Hilfsmittel zur Untersuchung asymptotisch stabiler Differentialgleichungen behandeln, nämlich die sogenannten Ljapunov Funktionen. Asymptotische (und auch exponentielle Stabilität) verlangen nur, dass die Norm ||x(t)|| einer Lösung für $t \to \infty$ abnimmt. Für viele Anwendungen wäre es aber viel einfacher, wenn die Norm streng monoton in t fallen würde. Dies ist natürlich im Allgemeinen nicht zu erwarten. Wir können die strenge Monotonie aber erhalten, wenn wir die euklidische Norm ||x(t)|| durch eine allgemeinere Funktion, nämlich gerade die Ljapunov Funktion, ersetzen.

Für lineare Systeme können wir uns auf sogenannte quadratische Ljapunov Funktionen beschränken, wie sie durch die folgende Definition gegeben sind.

Definition 3.7 Sei $A \in \mathbb{R}^{n \times n}$. Eine stetig differenzierbare Funktion $V : \mathbb{R}^n \to \mathbb{R}_0^+$ heißt (quadratische) Ljapunov Funktion für A, falls positive reelle Konstanten $c_1, c_2, c_3 > 0$ existieren, so dass die Ungleichungen

$$c_1||x||^2 \le V(x) \le c_2||x||^2$$

und

$$DV(x) \cdot Ax \le -c_3 ||x||^2$$

für alle $x \in \mathbb{R}^n$ gelten.

Der folgende Satz zeigt, dass die Existenz einer Ljapunov Funktion exponentielle Stabilität der zugehörigen Differentialgleichung impliziert.

Satz 3.8 Seien $A \in \mathbb{R}^{n \times n}$ eine Matrix und $x(t; x_0)$ die Lösungen des zugehörigen linearen Anfangswertproblems (1.6), (1.7). Dann gilt: Falls eine quadratische Ljapunov Funktion mit Konstanten $c_1, c_2, c_3 > 0$ existiert, so erfüllen alle Lösungen die Abschätzung

$$||x(t;x_0)|| \le ce^{-\sigma t}||x_0||$$

für $\sigma = c_3/2c_2$ und $c = \sqrt{c_2/c_1}$, d.h. die Matrix A ist exponentiell stabil.

Beweis: Aus der Ableitungsbedingung für $x = x(\tau, x_0)$ folgt

$$\frac{d}{dt}\Big|_{t=\tau} V(x(t;x_0)) = DV(x(\tau;x_0)) \cdot \dot{x}(\tau;x_0) = DV(x(\tau;x_0)) \cdot Ax(\tau;x_0) \le -c_3 \|x(\tau;x_0)\|^2$$

Wegen $-\|x\|^2 \le -V(x)/c_2$ folgt damit für $\lambda = c_3/c_2$ die Ungleichung

$$\frac{d}{dt}V(x(t;x_0)) \le -\lambda V(x(t;x_0)).$$

Aus dieser Differentialungleichung folgt die Ungleichung

$$V(x(t;x_0)) \le e^{-\lambda t} V(x_0),$$

(siehe z.B. den Beweis von Satz 6.2 in [3]). Mit den Abschätzungen für V(x) erhalten wir daraus

$$||x(t;x_0)||^2 \le \frac{1}{c_1} e^{-\lambda t} V(x_0) \le \frac{c_2}{c_1} e^{-\lambda t} ||x_0||^2$$

und damit durch Ziehen der Quadratwurzel auf beiden Seiten die Ungleichung

$$||x(t;x_0)|| \le ce^{-\sigma t} ||x_0||$$

für
$$c = \sqrt{c_2/c_1}$$
 und $\sigma = \lambda/2$.

Wir wollen uns nun mit einer speziellen Klasse von Ljapunov Funktionen beschäftigen, bei denen V durch eine Bilinearform der Form $x^T P x$ dargestellt wird, wobei $P \in \mathbb{R}^{n \times n}$.

Wir erinnern daran, dass eine Matrix $P \in \mathbb{R}^{n \times n}$ positiv definit heißt, falls $x^T P x > 0$ ist für alle $x \in \mathbb{R}^n$ mit $x \neq 0$. Das folgende Lemma fasst zwei Eigenschaften bilinearer Abbildungen zusammen.

Lemma 3.9 Sei $P \in \mathbb{R}^{n \times n}$. Dann gilt: (i) Es existiert eine Konstante $c_2 > 0$, so dass

$$-c_2||x||^2 \le x^T Px \le c_2||x||^2$$
 für alle $x \in \mathbb{R}^n$.

(ii) P ist positiv definit genau dann, wenn eine Konstante $c_1 > 0$ existiert mit

$$c_1 ||x||^2 \le x^T P x$$
 für alle $x \in \mathbb{R}^n$.

Beweis: Aus der Bilinearität folgt für alle $x \in \mathbb{R}^n$ mit $x \neq 0$ und $y = x/\|x\|$ die Gleichung

$$x^{T}Px = ||x||^{2}y^{T}Py. (3.3)$$

Da $y^T P y$ eine stetige Abbildung in $y \in \mathbb{R}^n$ ist, nimmt sie auf der kompakten Menge $\{y \in \mathbb{R}^n \mid ||y|| = 1\}$ ein Maximum c_{max} und ein Minimum c_{min} an.

- (i) Die Ungleichung (i) folgt nun aus (3.3) mit $c_2 = \max\{c_{\max}, -c_{\min}\}$.
- (ii) Falls P positiv definit ist, ist $c_{\min} > 0$, und (ii) folgt mit $c_1 = c_{\min}$. Andererseits folgt die positive Definitheit von P sofort aus (ii), also erhalten wir die behauptete Äquivalenz.

Hiremit erhalten wir die folgende Aussage.

Lemma 3.10 Seien $A, P \in \mathbb{R}^{n \times n}$ und $c_3 > 0$ so, dass die Funktion $V(x) = x^T P x$ die Ungleichung

$$DV(x) \cdot Ax \le -c_3 ||x||^2$$

für alle $x \in \mathbb{R}^n$ erfüllt. Dann gilt: P ist genau dann positiv definit ist, wenn A exponentiell stabil ist. In diesem Fall ist V eine quadratische Ljapunov Funktion.

Beweis: Falls P positiv definit ist, folgt aus Lemma 3.9(ii) sofort, dass V eine quadratische Ljapunov Funktion ist, womit A exponentiell stabil ist.

Falls P nicht positiv definit ist, gibt es ein $x_0 \in \mathbb{R}^n$ mit $x_0 \neq 0$ und $V(x_0) \leq 0$. Weil sich verschiedene Lösungen der Differentialgleichung nicht schneiden können, kann die Lösung $x(t;x_0)$ mit $x_0 \neq 0$ niemals 0 werden kann. Daher folgt aus der Ableitungebedingung, dass $V(x(t;x_0))$ für alle $t \geq 0$ streng monoton fällt. Insbesondere gibt es also ein c > 0, so dass $V(x(t;x_0)) \leq -c$ für alle $t \geq 1$. Mit der ersten Abschätzung aus Lemma 3.9(i) folgt dann

$$||x(t;x_0)||^2 \ge c/c_2 > 0$$
 für alle $t \ge 1$.

Also konvergiert $x(t; x_0)$ nicht gegen den Nullpunkt, weswegen A nicht exponentiell stabil ist.

Wir können das Ableitungskriterium vereinfachen, indem wir die bilineare Form der Ljapunov Funktion ausnutzen.

Lemma 3.11 Für eine bilineare Ljapunov Funktion $V(x) = x^T P x$ sind äquivalent:

- (i) $DV(x) \cdot Ax \leq -c_3 ||x||^2$ für alle $x \in \mathbb{R}^n$ und eine Konstante $c_3 > 0$
- (ii) Die Matrix $C = -A^T P PA$ ist positiv definit.

Beweis: Wegen $x^T P x = (P^T x)^T x$ gilt nach Produktregel

$$DV(x) \cdot Ax = (P^T Ax)^T x + (P^T x)^T Ax = x^T A^T P x + x^T P A x = x^T (A^T P + P A) x = -x^T C x.$$

Bedingung (i) ist also äquivalent zu

$$x^T C x \ge c_3 ||x||^2$$
 für alle $x \in \mathbb{R}^n$.

Wegen Lemma 3.9 (ii) ist diese Bedingung genau dann für ein $c_3 > 0$ erfüllt, wenn C positiv definit ist.

Die Gleichung in Lemma 3.11 (iii) wird auch *Ljapunov Gleichung* genannt. Es liegt nun nahe, diese Gleichung zur Konstruktion von Ljapunov Funktionen zu verwenden. Die Frage ist, wann kann man zu einer gegebenen Matrix A und einer gegebenen positiv definiten Matrix C eine Matrix P finden, so dass $A^TP + PA = -C$ gilt? Das folgende Lemma beantwortet diese Frage.

Lemma 3.12 Für eine Matrix $A \in \mathbb{R}^{n \times n}$ und eine positiv definite Matrix $C \in \mathbb{R}^{n \times n}$ hat die Ljapunov Gleichung

$$A^T P + PA = -C (3.4)$$

genau dann eine (sogar eindeutige) positiv definite Lösung $P \in \mathbb{R}^{n \times n}$, wenn A exponentiell stabil ist, d.h., falls die Realteile aller Eigenwerte λ_i von A negativ sind.

Beweis: Falls eine positiv definite Lösung P von (3.4) existiert, ist die Funktion $V(x) = x^T P x$ wegen den Lemmas 3.11 und 3.10 eine quadratische Lyapunov Funktion, womit A exponentiell stabil ist.

Sei umgekehrt A exponentiell stabil und C positiv definit. Wir zeigen zunächst, dass (3.4) lösbar ist. O.B.d.A. können wir annehmen, dass A in Jordan'scher Normalform vorliegt, denn für $\widetilde{A} = TAT^{-1}$ sieht man leicht, dass P (3.4) genau dann löst, wenn $\widetilde{P} = (T^{-1})^T P T^{-1}$ die Gleichung

$$\widetilde{A}^T \widetilde{P} + \widetilde{P} \widetilde{A} = -(T^{-1})^T C T^{-1}$$

löst. Wir können also annehmen, dass A von der Form

$$A = \begin{pmatrix} \alpha_1 & \beta_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \beta_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \alpha_{n-1} & \beta_{n-1} \\ 0 & \cdots & \cdots & 0 & \alpha_n \end{pmatrix}$$
(3.5)

ist, wobei die α_i gerade Eigenwerte von A sind und die β_i entweder 0 oder 1 sind. Schreibt man die Spalten von P untereinander in einen Spaltenvektor $p \in \mathbb{R}^{n^2}$, und macht das gleiche für die Matrix C und einen Vektor c, so ist (3.4) äquivalent zu einem Gleichungssystem

$$\overline{A}p = -c$$
,

mit einer geeigneten Matrix $\overline{A} \in \mathbb{C}^{n^2 \times n^2}$. Falls A in der Form (3.5) ist, sieht man durch Nachrechnen der Koeffizienten, dass \overline{A} eine untere Dreiecksmatrix ist, d.h.

$$\overline{A} = \begin{pmatrix} \bar{\alpha}_1 & 0 & 0 & \cdots & 0 \\ * & \bar{\alpha}_2 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \bar{\alpha}_{n^2 - 1} & 0 \\ * & \cdots & \cdots & * & \bar{\alpha}_{n^2} \end{pmatrix},$$

wobei * beliebige Werte bezeichnet, und die $\bar{\alpha}_i$ von der Form $\bar{\alpha}_i = \lambda_j + \lambda_k$ für Eigenwerte der Matrix A sind. Aus der linearen Algebra ist bekannt, dass

- (i) bei einer Dreiecksmatrix die Elemente auf der Diagonalen gerade die Eigenwerte sind
- (ii) eine Matrix genau dann invertierbar ist, wenn alle Eigenwerte ungleich Null sind.

Da alle λ_i negativen Realteil haben, sind die \bar{a}_i alle ungleich Null, also ist die Matrix \overline{A} wegen (i) und (ii) invertierbar. Demnach gibt es genau eine Lösung des Gleichungssystems $\overline{A}p = c$ und damit genau eine Lösung B der Ljapunov Gleichung (3.4).

Es bleibt zu zeigen, dass diese Lösung P positiv definit ist. Wegen Lemma 3.11 erfüllt P alle Voraussetzungen von Lemma 3.10. Da A exponentiell stabil ist, muss P also nach Lemma 3.10 positiv definit sein.

Der folgende Satz fasst das Hauptresultat dieses Kapitels zusammen.

Satz 3.13 Für $A \in \mathbb{R}^{n \times n}$ gilt: Eine quadratische Ljapunov Funktion für die lineare Differentialgleichung (1.6) existiert genau dann, wenn die Matrix A exponentiell stabil ist.

Beweis: Sei eine quadratische Ljapunov Funktion V gegeben. Dann ist A nach Satz 3.8 exponentiell stabil.

Sei A umgekehrt exponentiell stabil. Dann existiert nach Lemma 3.12 eine positiv definite Matrix P, die die Ljapunov Gleichung (3.4) für eine positiv definite Matrix C löst. Wegen Lemma 3.11 und Lemma 3.10 ist $V(x) = x^T P x$ dann eine quadratische Ljapunov Funktion.

Die Existenz einer quadratischen Ljapunov Funktion ist also eine notwendige und hinreichende Bedingung für die exponentielle Stabilität von A und liefert damit eine Charakterisierung, die äquivalent zu der Eigenwertbedingung aus Satz 3.5 ist.

Beispiel 3.14 Für das im unteren Gleichgewicht linearisierte Pendelmodell mit

$$A = \left(\begin{array}{cc} 0 & 1\\ -g & -k \end{array}\right)$$

ist die bilineare Ljapunov Funktion zu $C=\mathrm{Id}$ gegeben durch die Matrix

$$P = \begin{pmatrix} \frac{k^2 + g^2 + g}{2gk} & \frac{1}{2g} \\ \frac{1}{2g} & \frac{g+1}{2gk} \end{pmatrix}.$$

3.4 Das Stabilisierungsproblem für lineare Kontrollsysteme

Wir haben nun das technische Werkzeug, um uns wieder den linearen Kontrollsystemen zu widmen. In Aufgabe 2 des 4. Ubungsblatt haben wir gesehen, dass die Vorausberechnung einer Kontrollfunktion u(t) auf großen Zeithorizonten i.A. nicht funktioniert, um ein System in einen gegebenen Punkt (o.B.d.A. 0) zu steuern und dort zu halten - selbst die geringen Fehler einer genauen numerischen Simulation reichten dort aus, um die Lösung weit von dem gewünschten Punkt zu entfernen.

Wir machen daher einen nun einen anderen Ansatz. Statt die Kontrolle als Steuerung – abhängig von t – anzusetzen, wählen wir nun eine Regelung, in der wir die Kontrollfunktion in jedem Zeitpunkt zustandsabhängig als u(t) = F(x(t)) für eine zu bestimmende Funktion $F:\mathbb{R}^n\to\mathbb{R}^m$ ansetzen. Eine solche Funktion, die jedem Zustand einen Kontrollwert zuordnet, nennt man Feedback. Da unser System linear ist, liegt es nahe, die Feedback-Funktion F linear zu wählen, also u = Fx für ein $F \in \mathbb{R}^{m \times n}$. Dies hat den Vorteil, dass das entstehende System

$$\dot{x}(t) = Ax(t) + BFx(t) = (A + BF)x(t)$$

eine lineare zeitinvariante Differentialgleichung wird, auf die wir die Theorie der vorhergehenden Abschnitte anwenden können.

Um nun einen Zustand nach 0 zu steuern und ihn dort zu halten, können wir das folgende Stabilisierungsproblem lösen.

Definition 3.15 Gegeben sei ein lineares Kontrollsystem (1.2)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

mit Matrizen $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$. Das (Feedback-) Stabilisierungsproblem für (1.2) besteht darin, eine lineare Abbildung $F : \mathbb{R}^m \to \mathbb{R}^n$ (bzw. die dazugehörige Matrix $F \in \mathbb{R}^{m \times n}$) zu finden, so dass die lineare gewöhnliche Differentialgleichung

$$\dot{x}(t) = (A + BF)x(t)$$

asymptotisch stabil ist. Diese Gleichung wird als geschlossener Regelkreis oder closed loop System bezeichnet.

Aus unseren Kriterien für asymptotische Stabilität kann man leicht das folgende Lemma ableiten.

Lemma 3.16 Gegeben seien zwei Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$. Dann löst die Matrix $F \in \mathbb{R}^{m \times n}$ das Stabilisierungsproblem, falls alle Eigenwerte der Matrix $A + BF \in \mathbb{R}^{n \times n}$ negativen Realteil haben.

Wir werden uns im weiteren Verlauf mit der Frage beschäftigen, wann - zu gegebenen Matrizen A und B - eine solche Matrix F existiert und wie man sie berechnen kann.

Beispiel 3.17 Als einfaches und intuitiv lösbares Beispiel für ein Stabilisierungsproblem betrachten wir ein (sehr einfaches) Modell für eine Heizungsregelung. Nehmen wir an, dass wir wir die Temperatur x_1 in einem Raum an einem festgelegten Messpunkt regeln wollen. Der Einfachheit halber sei die gewünschte Temperatur auf $x_1^* = 0$ normiert. In dem Raum befindet sich ein Heizkörper mit Temperatur x_2 , auf die wir mit der Kontrolle u Einfluss nehmen können. Die Veränderung von x_2 sei durch die Differentialgleichung $\dot{x}_2(t) = u(t)$ beschrieben, d.h. die Kontrolle u regelt die Zunahme (falls u > 0) bzw. Abnahme (falls u < 0) der Temperatur. Für die Temperatur x_1 im Messpunkt nehmen wir an, dass sie der Differentialgleichung $\dot{x}_1(t) = -x_1(t) + x_2(t)$ genügt, d.h. für konstante Heiztemperatur x_2 ergibt sich

$$x_1(t) = e^{-t}x_1(0) + (1 - e^{-t})x_2.$$

Mit anderen Worten nehmen wir an, dass die Raumtemperatur x_1 im Messpunkt exponentiell gegen die Temperatur des Heizkörpers konvergiert.

Aus diesem Modell erhalten wir das Kontrollsystem

$$\dot{x}(t) = \left(\begin{array}{cc} -1 & 1 \\ 0 & 0 \end{array} \right) x(t) + \left(\begin{array}{c} 0 \\ 1 \end{array} \right) u(t).$$

Eine naheliegende Regelstrategie ergibt sich nun wie folgt: Falls $x_1 > x_1^* = 0$ ist, so vermindern wir die Temperatur in x_2 , d.h., wir wählen u < 0. Im umgekehrten Fall, d.h. falls $x_1 < x_1^* = 0$ ist, erhöhen wir die Temperatur und setzen u > 0. Da unser Feedback linear sein soll, lässt sich dies durch die Wahl $F(x) = -\lambda x_1$ für ein $\lambda > 0$ erreichen, oder, in

Matrix-Schreibweise $F = (-\lambda, 0)$ (beachte, dass hier n = 2 und m = 1 ist, F also eine 1×2 -Matrix bzw. ein 2-dimensionaler Zeilenvektor ist). Damit erhalten wir das rückgekoppelte System

$$\dot{x}(t) = \begin{pmatrix} -1 & 1 \\ -\lambda & 0 \end{pmatrix} x(t).$$

Berechnet man die Eigenwerte für $\lambda > 0$, so sieht man, dass alle Realteile negativ sind. Wir haben also (ohne es zu wollen) das Stabilisierungsproblem gelöst und folglich konvergieren $x_1(t)$ und $x_2(t)$ für alle beliebige Anfangswerte exponentiell schnell gegen 0, insbesondere konvergiert x_1 exponentiell schnell gegen die gewünschte Temperatur $x_1^* = 0$. Damit haben wir bewiesen, dass unser von Hand konstruierter Regler tatsächlich das gewünschte Ergebnis erzielt.

Falls wir die Temperatur x_2 am Heizkörper messen können, so können wir auch $F(x) = -\lambda x_2$, bzw. in Matrix-Schreibweise $F = (0, -\lambda)$ setzen. Wiederum sieht man durch Betrachtung der Eigenwerte, dass das rückgekoppelte System für alle $\lambda > 0$ exponentiell stabil ist und damit das gewünschte Verhalten erzielt wird. Das Verhalten dieses Systems mit den zwei verschiedenen Feedbacks ist allerdings recht unterschiedlich. Wir werden dies in den Übungen genauer untersuchen.

Bemerkung 3.18 In der Praxis ist der Zustand x(t) eines Systems oft nicht vollständig messbar, stattdessen hat man nur Zugriff auf einen $Ausgangsvektor\ y = Cx$ für eine Matrix $C \in \mathbb{R}^{d \times n}$. In diesem Fall kann ein Feedback F nur vom Ausgangsvektor y abhängen, man spricht von einem Ausgangsfeedback.

Tatsächlich haben wir im obigen Beispiel so etwas Ähnliches gemacht, indem wir zur Konstruktion von F nur die "Information" aus der Variablen x_1 bzw. x_2 verwendet haben. Wir werden im Folgenden zunächst annehmen, dass alle Zustände messbar sind und den allgemeinen Fall in Kapitel 4 behandeln.

3.5 Lösung des Stabilisierungsproblems mit eindimensionaler Kontrolle

In diesem Abschnitt werden wir Bedingungen untersuchen, unter denen wir eine Lösung für das Stabilisierungsproblems aus Definition 3.15 mit eindimensionaler Kontrolle finden können. Insbesondere werden wir eine hinreichende und notwendige Bedingung an die Matrizen A und B in (1.2) angeben, unter der das Problem lösbar ist. Die einzelnen Schritte der Herleitung liefern dabei ein konstruktives Verfahren zur Berechnung eines stabilisierenden Feedbacks.

Bei der Herleitung werden wieder einmal Koordinatentransformationen eine wichtige Rolle spielen. Für eine Transformationsmatrix $T \in \mathbb{R}^{n \times n}$ ist das zu

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{3.6}$$

gehörige transformierte System

$$\dot{x}(t) = \widetilde{A}x(t) + \widetilde{B}u(t) \tag{3.7}$$

durch $\widetilde{A} = T^{-1}AT$ und $\widetilde{B} = T^{-1}B$ gegeben. Ein Feedback F für (3.6) wird mittels $\widetilde{F} = FT$ in eines für (3.7) transformiert; dies folgt sofort aus der Bedingung $T^{-1}(A+BF)T = \widetilde{A} + \widetilde{B}\widetilde{F}$.

Wir haben in Lemma 2.14 bereits gesehen, dass man Paare (A, B) mittels einer geeigneten Koordinatentransformation in die Form

$$\widetilde{A} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \quad \widetilde{B} = \begin{pmatrix} B_1 \\ 0 \end{pmatrix},$$

d.h. in ein kontrollierbares Paar (A_1, B_1) und einen unkontrollierbaren Rest zerlegen kann.

Wir benötigen hier noch eine zweite Koordinatentransformation, die für kontrollierbare Systeme gilt, bei denen u eindimensional ist. In diesem Fall haben wir m=1, also $B \in \mathbb{R}^{n \times 1}$, d.h. die Matrix B ist ein n-dimensionaler Spaltenvektor.

Lemma 3.19 Sei $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times 1}$. Dann gilt: Das Paar (A, B) ist kontrollierbar genau dann, wenn es eine Koordinatentransformation S gibt, so dass

$$\widetilde{A} = S^{-1}AS = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} \quad \text{und } \widetilde{B} = S^{-1}B = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

ist, wobei die Werte $\alpha_i \in \mathbb{R}$ gerade die Koeffizienten des charakteristischen Polynoms von A sind, d.h. $\chi_A(z) = z^n - \alpha_n z^{n-1} - \cdots - \alpha_2 z - \alpha_1$.

Beweis: Wir zeigen zunächst, dass für Matrizen \widetilde{A} der angegebenen Form die α_i gerade die Koeffizienten des charakteristischen Polynoms sind. Dies folgt durch Induktion über n: Für n=1 ist die Behauptung sofort klar. Für den Induktionsschritt sei $A_n \in \mathbb{R}^{n \times n}$ von der Form des Satzes und $A_{n+1} \in \mathbb{R}^{n \times n}$ gegeben durch

$$A_{n+1} = \left(\begin{array}{ccc} 0 & 1 & \cdots & 0 \\ 0 & & & \\ \vdots & & A_n & \\ \alpha_0 & & & \end{array}\right).$$

Entwickeln wir nun $\det(z \operatorname{Id}_{\mathbb{R}^{n+1}} - A_{n+1})$ nach der ersten Spalte, so ergibt sich

$$\chi_{A_{n+1}} = z\chi_{A_n}(z) - \alpha_0 = z^n - \alpha_{n-1}z^{n-1} - \dots - \alpha_1z - \alpha_0,$$

also nach Umnummerierung der α_i gerade der gewünschte Ausdruck.

Nehmen wir nun an, dass S existiert. Durch Nachrechnen sieht man leicht, dass

$$\widetilde{R} = (\widetilde{B} \, \widetilde{A} \widetilde{B} \, \dots \, \widetilde{A}^{n-1} \widetilde{B}) = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & \ddots & * \\ 0 & 1 & * & * \\ 1 & * & \cdots & * \end{pmatrix}$$
(3.8)

gilt, wobei * beliebige Werte bezeichnet. Diese Matrix hat vollen Rang, denn durch Umordnung der Zeilen (dies ändert den Rang nicht) erhalten wir eine obere Dreiecksmatrix mit lauter Einsen auf der Diagonalen, welche offenbar invertierbar ist, also vollen Rang besitzt. Daher ist $(\widetilde{A}, \widetilde{B})$ kontrollierbar und da Kontrollierbarkeit unter Koordinatentransformationen erhalten bleibt, ist auch das Paar (A, B) kontrollierbar.

Sei umgekehrt (A, B) kontrollierbar. Dann ist die Matrix $R = (BAB \dots A^{n-1}B)$ invertierbar, folglich existiert R^{-1} . Wir zeigen nun zunächst, dass $R^{-1}AR = \widetilde{A}^T$ ist. Dazu reicht es zu zeigen, dass $AR = R\widetilde{A}^T$ ist. Dies folgt (unter Verwendung des Satzes von Cayley-Hamilton) aus der Rechnung

$$AR = A(BAB \dots A^{n-1}B) = (ABA^2B \dots A^{n-1}B A^nB)$$

$$= (ABA^2B \dots A^{n-1}B \alpha_n A^{n-1}B + \dots + \alpha_1 B)$$

$$= (BAB \dots A^{n-1}B) \begin{pmatrix} 0 & \dots & 0 & \alpha_1 \\ 1 & \dots & 0 & \alpha_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & \alpha_n \end{pmatrix} = R\widetilde{A}^T$$

Mit \widetilde{R} aus (3.8) folgt mit analoger Rechnung die Gleichung $\widetilde{R}^{-1}\widetilde{A}\widetilde{R}=\widetilde{A}^T$ und damit

$$\widetilde{A} = \widetilde{R}\widetilde{A}^T\widetilde{R}^{-1} = \widetilde{R}R^{-1}AR\widetilde{R}^{-1}.$$

Aus den Definitionen von R und \widetilde{R} folgt $R(1,0,\ldots,0)^T=B$ und $\widetilde{R}(1,0,\ldots,0)^T=\widetilde{B}$, also $R\widetilde{R}^{-1}\widetilde{B}=B$. Damit ergibt sich $S=R\widetilde{R}^{-1}$ als die gesuchte Transformation.

Die durch Lemma 3.19 gegebene Form der Matrizen A und B wird auch Regelungsnormal-form genannt. Beachte, dass sich die Koordinatentransformation S allein durch Kenntnis von A, B und den Koeffizienten des charakteristischen Polynoms von A berechnen lässt.

Mit Hilfe der Regelungsnormalform können wir nun die Lösung des Stabilisierungsproblems für $u \in \mathbb{R}$ angehen.

Zunächst drücken wir das Stabilisierungsproblem mit Hilfe des charakteristischen Polynoms aus. Dies können wir für beliebige Kontrolldimensionen machen.

Definition 3.20 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$. Ein Polynom χ heißt vorgebbar für das Kontrollsystem, falls ein lineares Feedback $F \in \mathbb{R}^{m \times n}$ existiert, so dass $\chi = \chi_{A+BF}$ ist für das charakteristische Polynom χ_{A+BF} der Matrix A + BF.

Da wir wissen, dass die Nullstellen des charakteristischen Polynoms gerade die Eigenwerte der zugehörigen Matrix sind, erhalten wir aus Lemma 3.16 sofort die folgende Charakterisierung.

Lemma 3.21 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$. Dann gilt: Das Stabilisierungsproblem ist genau dann lösbar, falls ein vorgebbares Polynom existiert, dessen Nullstellen über \mathbb{C} alle negativen Realteil haben.

Der folgende Satz zeigt die Beziehung zwischen der Kontrollierbarkeit von (A, B) und der Vorgebbarkeit von Polynomen.

Satz 3.22 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times 1}$, d.h. mit eindimensionaler Kontrolle. Dann sind die folgenden zwei Eigenschaften äquivalent.

(i) Das Paar (A, B) ist kontrollierbar.

(ii) Jedes Polynom der Form $\chi(z) = z^n - \beta_n z^{n-1} - \dots - \beta_2 z - \beta_1$ mit $\beta_1, \dots, \beta_n \in \mathbb{R}$ ist vorgebbar.

Beweis: (i) \Rightarrow (ii): Sei (A, B) kontrollierbar und sei S die Koordinatentransformation aus Lemma 3.19. Wir setzen

$$\widetilde{F} = (\beta_1 - \alpha_1 \ \beta_2 - \alpha_2 \ \dots \ \beta_n - \alpha_n) \in \mathbb{R}^{1 \times n}.$$

Dann gilt

$$\widetilde{A} + \widetilde{B}\widetilde{F} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} (\beta_1 - \alpha_1 & \beta_2 - \alpha_2 & \cdots & \beta_n - \alpha_n)$$

$$= \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} + \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 \\ \beta_1 - \alpha_1 & \beta_2 - \alpha_2 & \cdots & \beta_n - \alpha_n \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix}.$$

Aus der zweiten Aussage von Lemma 3.19 folgt, dass $\chi_{\widetilde{A}+\widetilde{B}\widetilde{F}}=\chi$ ist. Also ist, nach Rücktransformation, $F=\widetilde{F}S^{-1}$ die gesuchte Feedback Matrix, da das charakteristische Polynom einer Matrix invariant unter Koordinatentransformationen ist.

(ii) \Rightarrow (i): Wir zeigen die Implikation "nicht (i) \Rightarrow nicht (ii)":

Sei (A,B) nicht kontrollierbar. Sei T die Koordinatentransformation aus Lemma 2.14. Dann ergibt sich für jedes beliebige Feedback $\widetilde{F}=(F_1\ F_2)$

$$\widetilde{A} + \widetilde{B}\widetilde{F} = \begin{pmatrix} A_1 + B_1F_1 & A_2 + B_1F_2 \\ 0 & A_3 \end{pmatrix} =: \widetilde{D}.$$

Für das charakteristische Polynom dieser Matrix gilt

$$\chi_{\widetilde{D}} = \chi_{A_1 + B_1 F_1} \chi_{A_3},$$

daher sind (beachte, dass (A_1, B_1) kontrollierbar ist) die vorgebbaren Polynome gerade von der Form $\chi = \chi_k \chi_u$, wobei χ_k ein beliebiges normiertes Polynom vom Grad d ist und

 $\chi_u = \chi_{A_3}$ ist. Dies sind sicherlich weniger als die in (ii) angegebenen Polynome, weshalb (ii) nicht gelten kann.

Natürlich ist es zur Stabilisierung nicht notwendig, dass jedes Polynom vorgebbar ist, wir brauchen lediglich eines zu finden, dessen Nullstellen nur negative Realteile haben. Der Beweis von Satz 3.22 lässt bereits erahnen, wann dies möglich ist.

Satz 3.23 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times 1}$, d.h. mit eindimensionaler Kontrolle. Seien $A_1 \in \mathbb{R}^{d \times d}$, $A_2 \in \mathbb{R}^{d \times (n-d)}$, $A_3 \in \mathbb{R}^{(n-d) \times (n-d)}$ und $B_1 \in \mathbb{R}^{d \times 1}$ die Matrizen aus Lemma 2.14 mit der Konvention, dass $A_1 = A$ und $B_1 = B$ ist, falls (A, B) kontrollierbar ist.

Dann sind die vorgebbaren Polynome von (1.2) gerade die Polynome der Form $\chi = \chi_k \chi_{A_3}$, wobei χ_k ein beliebiges normiertes Polynom vom Grad d und χ_{A_3} das charakteristische Polynom der Matrix A_3 , also gerade der unkontrollierbare Anteil des charakteristischen Polynoms χ_A ist, vgl. Definition 2.15. Hierbei machen wir die Konvention $\chi_{A_3} = 1$ falls d = n.

Insbesondere gilt: Das Stabilisierungsproblem ist genau dann lösbar, wenn alle Eigenwerte von A_3 negativen Realteil haben. In diesem Fall nennen wir das Paar (A, B) stabilisierbar.

Beweis: Die erste Behauptung folgt sofort aus dem zweiten Teil des Beweises von Satz 3.22. Die Aussage über das Stabilisierungsproblem folgt dann sofort aus Lemma 3.21.

3.6 Lösung des Stabilisierungsproblems mit mehrdimensionaler Kontrolle

Die Resultate für mehrdimensionale Kontrolle m>1 sind völlig analog zu denen für eindimensionale Kontrolle. Bei einer direkten Herangehensweise sind allerdings die Beweise etwas aufwändiger, da wir nicht direkt auf Lemma 3.19 zurückgreifen können. Wir werden den mehrdimensionalen Fall deswegen auf den Fall m=1 zurückführen, indem wir das folgende Lemma verwenden, das als $Heymanns\ Lemma$ bezeichnet wird.

Lemma 3.24 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$. Das Paar (A, B) sei kontrollierbar. Sei $v \in \mathbb{R}^m$ ein Vektor mit $\overline{B} = Bv \neq 0$. Dann gibt es eine Matrix $\overline{F} \in \mathbb{R}^{m \times n}$, so dass das Kontrollsystem

$$\dot{x}(t) = (A + B\overline{F})x(t) + \overline{B}\overline{u}(t)$$

mit eindimensionaler Kontrolle $\bar{u}(t)$ kontrollierbar ist.

Beweis: Mittels einer rekursiven Vorschrift konstruieren wir uns zunächst linear unabhängige Vektoren $x_1, \ldots, x_n \in \mathbb{R}^n$ mit der folgenden Eigenschaft: Für alle $l \in \{1, \ldots, n\}$ gilt

$$Ax_i \in V_l \text{ für } i = 1, \dots, l-1 \text{ mit } V_l = \langle x_1, \dots, x_l \rangle.$$
 (3.9)

Setze $x_1 = \overline{B}$ (wir können die $n \times 1$ Matrix \overline{B} als Spaltenvektor auffassen) und beachte, dass die Eigenschaft (3.9) für l = 1 und jedes $x_1 \neq 0$ trivialerweise erfüllt ist.

Für $k \in 1, ..., n-1$ und gegebene linear unabhängige Vektoren $x_1, ..., x_k$, die (3.9) für $l \in \{1, ..., k\}$ erfüllen, konstruieren wir nun wie folgt einen Vektor x_{k+1} , so dass $x_1, ..., x_k, x_{k+1}$ linear unabhängig sind und (3.9) für $l \in \{1, ..., k+1\}$ erfüllen:

1. Fall: $Ax_k \notin V_k$: Setze $u_k := 0 \in \mathbb{R}^m$ und $x_{k+1} = Ax_k$.

2. $Fall: Ax_k \in V_k$: Wegen (3.9) folgt dann, dass V_k A-invariant ist. Aus Kapitel 2 wissen wir, dass $\langle A \mid \text{im } B \rangle = \text{im } R$ für die Erreichbarkeitsmatrix $R = (B AB \dots A^{n-1}B)$ der kleinste A-invariante Unterraum ist, der das Bild von B enthält. Da (A, B) kontrollierbar ist, ist $\langle A \mid \text{im } B \rangle = \mathbb{R}^n$. Weil V_k nun ein A-invarianter Unterraum mit $\dim V_k = k < n$ ist, kann dieser das Bild von B also nicht enthalten. Folglich gibt es ein $u_k \in \mathbb{R}^m$ mit $Ax_k + Bu_k \notin V_k$ und wir setzen $x_{k+1} = Ax_k + Bu_k$.

Wir konstruieren nun die gesuchte Abbildung \overline{F} aus den Vektoren x_1, \ldots, x_n . Da die x_i linear unabhängig sind, ist die Matrix $X=(x_1,\ldots,x_n)$ invertierbar, und wir können $\overline{F}:=UX^{-1}$ für $U=(u_1,\ldots,u_n)\in\mathbb{R}^{m\times n}$ definieren, wobei die u_i für $i=1,\ldots,n-1$ die in der obigen Rekursion verwendeten Kontrollvektoren sind und wir $u_n:=0\in\mathbb{R}^m$ setzen. Damit gilt $\overline{F}x_i=u_i$ und deswegen $(A+B\overline{F})x_i=x_{i+1}$ für $i=1,\ldots,n-1$. Wegen $\overline{B}=x_1$ folgt somit

$$(\overline{B} (A + B\overline{F})\overline{B} \dots (A + B\overline{F})^{n-1}\overline{B}) = X,$$

also hat $(\overline{B}\ (A+B\overline{F})\overline{B}\ \dots\ (A+B\overline{F})^{n-1}\overline{B})$ den Rang n, weswegen das Paar $(A+B\overline{F},\overline{B})$ kontrollierbar ist.

Mit diesem Resultat lassen sich nun die Sätze 3.22 and 3.23 leicht auf beliebige Kontroll-dimensionen verallgemeinern.

Satz 3.25 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$. Dann sind die folgenden zwei Eigenschaften äquivalent.

- (i) Das Paar (A, B) ist kontrollierbar.
- (ii) Jedes Polynom der Form $\chi(z)=z^n-\beta_nz^{n-1}-\cdots-\beta_2z-\beta_1$ mit $\beta_1,\ldots,\beta_n\in\mathbb{R}$ ist vorgebbar.

Beweis: (i) \Rightarrow (ii): Sei (A,B) kontrollierbar und χ gegeben. Seien $\overline{F} \in \mathbb{R}^{n \times m}$ und $\overline{B} \in \mathbb{R}^{n \times 1}$ die Matrizen aus Lemma 3.24 für ein $v \in \mathbb{R}^m$ mit $Bv \neq 0$ (beachte, dass solch ein $v \in \mathbb{R}^n$ existiert, da (A,B) kontrollierbar ist, also $B \neq 0$ ist). Dann ist das Paar $(A+B\overline{F},\overline{B})$ kontrollierbar und aus Satz 3.22 folgt die Existenz eines Feedbacks $F_1 \in \mathbb{R}^{1 \times n}$, so dass

$$\chi_{A+B\overline{F}+\overline{B}F_1} = \chi$$

ist. Wegen

$$A + B\overline{F} + \overline{B}F_1 = A + B\overline{F} + BvF_1 = A + B(\overline{F} + vF_1)$$

ist also $F = \overline{F} + vF_1$ das gesuchte Feedback.

(ii) \Rightarrow (i): Völlig analog zum Beweis von Satz 3.22.

Satz 3.26 Betrachte ein Kontrollsystem (1.2) mit Matrizen $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times m}$. Seien $A_1 \in \mathbb{R}^{d \times d}$, $A_2 \in \mathbb{R}^{d \times (n-d)}$, $A_3 \in \mathbb{R}^{(n-d) \times (n-d)}$ und $B_1 \in \mathbb{R}^{d \times m}$ die Matrizen aus Lemma 2.14 mit der Konvention, dass $A_1 = A$ und $B_1 = B$ ist, falls (A, B) kontrollierbar ist.

Dann sind die vorgebbaren Polynome von (1.2) gerade die Polynome der Form $\chi = \chi_k \chi_u$, wobei χ_k ein beliebiges normiertes Polynom vom Grad d und χ_u das charakteristische Polynom der Matrix A_3 ist, mit der Konvention $\chi_u = 1$ falls d = n.

Insbesondere gilt: Das Stabilisierungsproblem ist genau dann lösbar, wenn alle Eigenwerte von A_3 negativen Realteil haben. In diesem Fall nennen wir das Paar (A, B) stabilisierbar.

Beweis: Völlig analog zum Beweis von Satz 3.23.

Bemerkung 3.27 Satz 3.26 wird oft als *Polverschiebungssatz* bezeichnet, da die Nullstellen des charakteristischen Polynoms in der Regelungstechnik als "Pole" bezeichnet werden (dies hat seine Wurzeln in alternativen Darstellungen linearer Kontrollsystems über sogenannte Übertragungsfunktionen im Frequenzbereich) und dieser Satz gerade angibt wie man diese Nullstellen durch geeignete Wahl des Feedbacks "verschieben" kann.

Wir können die wesentlichen Ergebnisse über das Stabilisierungsproblem wie folgt schematisch darstellen:

(A, B) ist kontrollierbar

↑ (Satz 3.25)

Jedes normierte Polynom vom Grad n ist vorgebbar

 \Downarrow

Es gibt ein vorgebbares Polynom, dessen Nullstellen alle negativen Realteil haben

 \Leftrightarrow (Lemma 3.21)

(A, B) ist stabilisierbar

\$\psi\$ (Satz 3.26)

(A, B) ist kontrollierbar oder

(A, B) ist nicht kontrollierbar und A_3 aus Lemma 2.14 hat nur Eigenwerte mit negativem Realteil

Kapitel 4

Beobachtbarkeit und Beobachter

Die im letzten Kapitel vorgestellte Lösung des Stabilisierungsproblems geht davon aus, dass der gesamte Vektor x(t) zur Verfügung steht, um den Kontrollwert u(t) = Fx(t) zu berechnen. Dies ist in der Praxis im Allgemeinen nicht der Fall. Dort kann man nur davon ausgehen, gewisse von x(t) abhängige Werte $y(t) = C(x(t)) \in \mathbb{R}^k$ zu kennen, aus denen u(t) dann berechnet werden muss. Da wir uns in dieser Vorlesung mit linearen Systemen beschäftigen, nehmen wir wieder an, dass die Funktion $C : \mathbb{R}^n \to \mathbb{R}^k$ linear ist, also durch eine Matrix $C \in \mathbb{R}^{k \times n}$ gegeben ist.

Definition 4.1 Ein *lineares Kontrollsystem mit Ausgang* ist gegeben durch die Gleichungen

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t) \tag{4.1}$$

$$\text{mit } A \in \mathbb{R}^{n \times n}, \, B \in \mathbb{R}^{n \times m} \text{ und } C \in \mathbb{R}^{k \times n}.$$

In diesem Kapitel werden wir Bedingungen herleiten, unter denen das Stabilisierungsproblem für (4.1) lösbar ist und zeigen, wie man den Feedback-Regler in diesem Fall konstruieren muss.

4.1 Beobachtbarkeit und Dualität

Die wichtigste Frage bei der Analyse von (4.1) ist, wie viel "Information" in dem Ausgang y(t) = Cx(t) enthalten ist. Dies wird durch die folgenden Definitionen formalisiert.

Definition 4.2 (i) Zwei Zustände $x_1, x_2 \in \mathbb{R}^n$ heißen unterscheidbar, falls ein $u \in \mathcal{U}$ und ein $t \geq 0$ existiert mit

$$Cx(t, x_1, u) \neq Cx(t, x_2, u).$$

(ii) Das System (4.1) heißt beobachtbar, falls alle Zustände $x_1, x_2 \in \mathbb{R}^n$ mit $x_1 \neq x_2$ unterscheidbar sind.

Das folgende Lemma zeigt, dass die Unterscheidbarkeit wegen der Linearität des Systems einfacher ausgedrückt werden kann.

Lemma 4.3 Zwei Zustände $x_1, x_2 \in \mathbb{R}^n$ sind genau dann unterscheidbar, wenn ein $t \geq 0$ existiert mit

$$Cx(t, x_1 - x_2, 0) \neq 0.$$

Beweis: Aus der allgemeinen Form der Lösung folgt die Gleichung

$$x(t, x_1, u) - x(t, x_2, u) = x(t, x_1 - x_2, 0),$$

woraus wegen der Linearität von C sofort die Behauptung folgt.

Aus diesem Lemma folgt, dass die Beobachtbarkeit von (4.1) nicht von u und damit nicht von B abhängt. Falls das System (4.1) beobachtbar ist, nennen wir daher das Paar (A, C) beobachtbar.

Zudem motiviert das Lemma die folgende Definition.

Definition 4.4 (i) Wir nennen $x_0 \in \mathbb{R}^n$ beobachtbar, falls ein $t \geq 0$ existiert mit

$$Cx(t, x_0, 0) \neq 0$$

und unbeobachtbar auf [0, t], falls

$$Cx(s, x_0, 0) = 0$$

für alle $s \in [0, t]$.

(ii) Wir definieren die Mengen der unbeobachtbaren Zustände auf [0,t] für t>0 durch

$$\mathcal{N}(t) := \{x_0 \in \mathbb{R}^n \mid Cx(s, x_0, 0) = 0 \text{ für alle } s \in [0, t] \}$$

und die Menge der unbeobachtbaren Zustände durch

$$\mathcal{N} := \bigcap_{t>0} \mathcal{N}(t).$$

Das folgende Lemma zeigt die Struktur dieser Mengen auf.

Lemma 4.5 Für alle t > 0 gilt

$$\mathcal{N} = \mathcal{N}(t) = \bigcap_{i=0}^{n-1} \ker(CA^i).$$

Insbesondere ist \mathcal{N} also ein linearer Unterraum, der zudem A-invariant ist, also $A\mathcal{N}\subseteq\mathcal{N}$ erfüllt.

Beweis: Ein Zustand $x_0 \in \mathbb{R}^n$ liegt genau dann in $\mathcal{N}(t)$, wenn gilt

$$0 = Cx(s, x_0, 0) = Ce^{As}x_0 \text{ für alle } s \in [0, t]. \tag{4.2}$$

Sei nun $x_0 \in \bigcap_{i=0}^{n-1} \ker(CA^i)$. Dann gilt mit dem Satz von Cayley-Hamilton $CA^i x_0 = 0$ für alle $i \in \mathbb{N}_0$. Aus der Reihendarstellung von e^{As} folgt damit $Ce^{As} x_0 = 0$ für alle $s \geq 0$ und daher (4.2), also $x_0 \in \mathcal{N}(t)$.

Sei umgekehrt $x_0 \in \mathcal{N}(t)$. Dann gilt nach (4.2) $Ce^{As}x_0 = 0$. Durch *i*-maliges Ableiten dieses Ausdrucks in s = 0 folgt

$$CA^ix_0=0, i\in\mathbb{N}_0$$

und damit insbesondere $x_0 \in \ker CA^i$, i = 0, ..., n-1. Also folgt $x_0 \in \mathcal{N}(t)$.

Die A-Invarianz folgt mit dem Satz von Cayley-Hamilton aus der Darstellung von \mathcal{N} .

Offenbar gibt es hier eine gewisse Ähnlichkeit mit der Kontrollierbarkeit, speziell mit den Mengen $\mathcal{R}(t)$ und \mathcal{R} . Wir zeigen nun, dass dies mehr als eine oberflächliche Ähnlichkeit ist, wenn wir ein geeignetet definiertes duales System einführen.

Definition 4.6 Zu einem durch (A, B, C) gegebenen Kontrollsystem (4.1) definieren wir das duale System durch die Matrizen (A^T, C^T, B^T) . Ausgeschrieben lautet das duale System zu

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t), \qquad x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m, \ y(t) \in \mathbb{R}^k$$

also

$$\dot{x}(t) = A^T x(t) + C^T u(t), \quad y(t) = B^T x(t), \qquad x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^k, \ y(t) \in \mathbb{R}^m.$$

In Worten ausgedrückt erhält man das duale System also durch Transponieren und Vertauschen von B und C, also von Eingangs- und Ausgangsmatrix.

Satz 4.7 Für ein durch (A, B, C) gegebenen Kontrollsystem (4.1) und das zugehörige durch (A^T, C^T, B^T) gegebene duale System definiere

$$\mathcal{R} = \langle A | \operatorname{im} B \rangle \qquad \mathcal{N} = \bigcap_{i=0}^{n-1} \ker(CA^i)$$

$$\mathcal{R}^T = \langle A^T | \operatorname{im} C^T \rangle \quad \mathcal{N}^T = \bigcap_{i=0}^{n-1} \ker(B^T(A^T)^i).$$

Dann gilt

$$\mathcal{R}^T = \mathcal{N}^\perp \quad \text{und} \quad \mathcal{N}^T = \mathcal{R}^\perp.$$

Insbesondere gilt

$$(A, B, C)$$
 kontrollierbar \iff (A^T, C^T, B^T) beobachtbar (A, B, C) beobachtbar \iff (A^T, C^T, B^T) kontrollierbar.

Beweis: Betrachte die Matrix

$$M = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} \in \mathbb{R}^{(n \cdot k) \times n}.$$

Für diese Matrix gilt mit Lemma 4.5 offenbar

$$\mathcal{N} = \ker M$$
.

Andererseits ist

$$M^T = (C^T A^T C^T \dots (A^T)^{n-1} C^T) \in \mathbb{R}^{n \times (n \cdot k)}$$

gerade die Erreichbarkeitsmatrix des dualen Systems, vgl. Definition 2.10, weswegen $\mathcal{R} = \operatorname{im} M^T$ gilt. Aus der linearen Algebra ist bekannt:

$$\operatorname{im} M^T = (\ker M)^{\perp}.$$

Hieraus folgt die erste Behauptung wegen

$$\mathcal{R}^T = \operatorname{im} M^T = (\ker M)^{\perp} = \mathcal{N}^{\perp}.$$

Durch Vertauschen der beiden Systeme folgt analog $\mathcal{R}=(\mathcal{N}^T)^{\perp}$, woraus die zweite Aussage wegen

$$\mathcal{R}^{\perp} = \left((\mathcal{N}^T)^{\perp} \right)^{\perp} = \mathcal{N}^T$$

 \Box

Wir können damit alle Aussagen zur Kontrollierbarkeit auf die Beobachtbarkeit übertragen und formulieren dies explizit für Korollar 2.13 und Lemma 2.14.

Definition 4.8 Die Matrix $(C^T, A^TC^T \dots (A^T)^{n-1}C^T) \in \mathbb{R}^{n \times (k \cdot n)}$ heißt Beobachtbarkeitsmatrix des Systems (1.2).

Korollar 4.9 Das System (4.1) ist genau dann beobachtbar, wenn

$$rg(C^T, A^T C^T \dots (A^T)^{n-1} C^T) = n$$

ist.

Beweis: Folgt aus Korollar 2.13 angewendet auf das duale System.

Wir formulieren nun noch das Analogon zu der Zerlegung

$$\widetilde{A} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \quad \widetilde{B} = \begin{pmatrix} B_1 \\ 0 \end{pmatrix}$$

aus Lemma 2.14.

Lemma 4.10 Sei (A, C) nicht beobachtbar, d.h., dim $\mathcal{N} = l > 0$. Dann existiert ein invertierbares $T \in \mathbb{R}^{n \times n}$, so dass $\widetilde{A} = T^{-1}AT$, $\widetilde{B} = T^{-1}B$ und $\widetilde{C} = CT$ die Form

$$\widetilde{A} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \quad \widetilde{B} = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, \quad \widetilde{C} = \begin{pmatrix} 0 & C_2 \end{pmatrix}$$

mit $A_1 \in \mathbb{R}^{l \times l}$, $A_2 \in \mathbb{R}^{l \times (n-l)}$, $A_3 \in \mathbb{R}^{(n-l) \times (n-l)}$, $B_1 \in \mathbb{R}^{l \times m}$, $B_2 \in \mathbb{R}^{(n-l) \times m}$ und $C_2 \in \mathbb{R}^{k \times (n-l)}$ besitzen, wobei das Paar (A_3, C_2) beobachtbar ist.

Beweis: Lemma 2.14 angewendet auf das duale System (A^T, C^T) liefert \widehat{T} mit

$$\widehat{T}^{-1}A^T\widehat{T} = \begin{pmatrix} \widehat{A}_1 & \widehat{A}_2 \\ 0 & \widehat{A}_3 \end{pmatrix}, \quad \widehat{T}^{-1}C^T = \begin{pmatrix} \widehat{C}_1 \\ 0 \end{pmatrix}.$$

Also folgt mit $S = (T^T)^{-1}$

$$S^{-1}AS = \begin{pmatrix} \widehat{A}_1^T & 0 \\ \widehat{A}_2^T & \widehat{A}_3^T \end{pmatrix}, \quad \widehat{C}S = \begin{pmatrix} \widehat{C}_1^T & 0 \end{pmatrix}.$$

Durch eine weitere Koordinatentransformation

$$Q = \left(\begin{array}{cc} 0 & \mathrm{Id}_{\mathbb{R}^{n-l}} \\ \mathrm{Id}_{\mathbb{R}^l} & 0 \end{array}\right)$$

folgt die behauptete Zerlegung mit T = SQ und

$$A_1 = \widehat{A}_3^T, \, A_2 = \widehat{A}_2^T, \, A_3 = \widehat{A}_1^T, \, C_2 = \widehat{C}_1^T.$$

Als Alternative hier noch ein direkter Beweis, der ohne Lemma 2.14 auskommt:

Es sei v_1, \ldots, v_l eine Basis von \mathcal{N} , also $\mathcal{N} = \langle v_1, \ldots, v_l \rangle$, die wir durch w_1, \ldots, w_{n-l} zu einer Basis des \mathbb{R}^n ergänzen. Definiere nun $T := (v_1, \ldots, v_l, w_1, \ldots, w_{n-l})$. Bezeichnen wir mit e_i wie üblich den i-ten Einheitsvektor im \mathbb{R}^n , so gilt $Te_i = v_i$, $i = 1, \ldots, l$, $Te_i = w_{i-l}$, $i = l+1, \ldots, n$, $T^{-1}v_i = e_i$, $i = 1, \ldots, l$ und $T^{-1}w_i = e_{i+l}$, $i = 1, \ldots, n-l$.

Wir zeigen zunächst die Struktur von \widetilde{A} . Angenommen, ein Eintrag im 0-Block von \widetilde{A} ist ungleich Null. Dann gilt

$$\widetilde{A}e_i \notin \langle e_1, \dots, e_l \rangle = T^{-1}\mathcal{N}$$

für ein $i \in \{1, ..., l\}$. Andererseits folgt aus der A-Invarianz von \mathcal{N}

$$\widetilde{A}e_i = T^{-1}ATe_i = T^{-1}Av_i \in T^{-1}\mathcal{N},$$

was ein Widerspruch ist.

Die Struktur von \tilde{C} folgt aus

$$\mathcal{N} = \bigcap_{i=0}^{n-1} \ker(CA^i) \subseteq \ker C.$$

Es muss also $v_i \in \ker C$ gelten und damit $\widetilde{C}e_i = CTe_i = Cv_i = 0$. Also müssen die ersten l Spalten von \widetilde{C} gleich 0 sein.

Es bleibt, die Beobachtbarkeit von (A_3, C_2) zu zeigen. Für jedes $\tilde{x} \in \mathbb{R}^{n-l}$, $\tilde{x} \neq 0$ gilt

$$C_2 A_3^i \tilde{x} = \widetilde{C} \widetilde{A}^i \begin{pmatrix} 0 \\ \tilde{x} \end{pmatrix} = C A^i T \begin{pmatrix} 0 \\ \tilde{x} \end{pmatrix},$$

wobei wir in der ersten Gleichung die Struktur von \widetilde{A} und \widetilde{C} ausgenutzt haben. Wegen

$$w := T \left(\begin{array}{c} 0 \\ \tilde{x} \end{array} \right) \notin \mathcal{N}$$

existiert nun ein $i \in \{0, ..., n-1\}$ mit $CA^iw \neq 0$ und damit $C_2A_3^i\tilde{x} \neq 0$. Da $\tilde{x} \neq 0$ beliebig war, folgt

$$\bigcap_{i=0}^{n-1} \ker(C_2 A_3^i) = \{0\},\,$$

also die Beobachtbarkeit von (A_3, C_2)

4.2 Asymptotische Beobachtbarkeit

Wir haben gesehen, dass vollständige Kontrollierbarkeit zwar hinreichend, nicht jedoch notwendig zur Lösung des Stabilisierungsproblems ist. Notwendig ist nur, dass das Paar (A,B) stabilisierbar ist, was nach Satz 3.26 genau dann der Fall ist, wenn alle Eigenwerte des unkontrollierbaren Anteils A_3 der Matrix A negative Realteile besitzen.

Ähnlich verhält es sich mit der Beobachtbarkeit. Um das Stabilisierungsproblem für das System (4.1) zu lösen, braucht man die Beobachtbarkeit nicht. Es reicht eine schwächere Bedingung, die durch die folgende Definition gegeben ist.

Definition 4.11 Das System (4.1) heißt asymptotisch beobachtbar (oder auch entdeckbar), falls

$$\lim_{t \to \infty} x(t, x_0, 0) = 0 \quad \text{für alle } x_0 \in \mathcal{N}.$$

Dies bedeutet, dass die Lösungen für unbeobachtbare Anfangswerte und $u \equiv 0$ bereits gegen 0 konvergieren. Anschaulich gesprochen wird die Information über diese Anfangswerte für das Stabilisierungsproblem nicht benötigt, da die zugehörigen Lösungen ja bereits gegen 0 konvergieren, also asymptotisch (und damit auch exponentiell) stabil sind.

Das folgende Lemma charakterisiert die asymptotische Beobachtbarkeit für die Zerlegung aus Lemma 4.10.

Lemma 4.12 System (4.1) ist genau dann asymptotisch beobachtbar, wenn die Matrix A_1 aus Lemma 4.10 exponentiell stabil ist, also nur Eigenwerte mit negativem Realteil besitzt.

Beweis: Beachte zunächst, dass die asymptotische Beobachtbarkeit unter Koordinatenwechseln erhalten bleibt, wir können also alle Rechnungen in der Basis von Lemma 4.10 durchführen.

In der Basis von Lemma 4.10 ist \mathcal{N} gerade durch

$$\mathcal{N} = \left\{ x_0 \in \mathbb{R}^n \mid x_0 = \begin{pmatrix} x_0^1 \\ 0 \end{pmatrix}, \ x_0^1 \in \mathbb{R}^l \right\}$$

gegeben. Aus der Form der Matrix \widetilde{A} folgt damit, dass alle Lösungen zu Anfangswerten $x_0 \in \mathcal{N}$ als

$$x(t, x_0, 0) = e^{\widetilde{A}t} x_0 = \begin{pmatrix} e^{A_1 t} x_0^1 \\ 0 \end{pmatrix}$$

geschrieben werden können.

Aus der asymptotischen Beobachtbarkeit folgt nun $x(t, x_0, 0) \to 0$ für alle $x \in \mathcal{N}$, also $e^{A_1 t} x_0^1 \to 0$ für alle $x_0^1 \in \mathbb{R}^l$. Dies ist nur möglich, wenn A_1 exponentiell stabil ist.

Umgekehrt folgt aus der exponentiellen Stabilität von A_1 die Konvergenz $e^{A_1t}x_0^1 \to 0$ für alle $x_0^1 \in \mathbb{R}^l$, also $x(t, x_0, 0) \to 0$ für alle $x \in \mathcal{N}$ und damit die asymptotische Beobachtbarkeit.

Der folgende Satz zeigt, dass die asymptotische Beobachtbarkeit gerade die duale Eigenschaft zur Stabilisierbarkeit ist.

Satz 4.13 (A, C) ist asymptotisch beobachtbar genau dann, wenn (A^T, C^T) stabilisierbar ist.

Beweis: Wir bezeichnen die Komponenten der Zerlegung aus Lemma 4.10 angewendet auf (A,C) mit A_1,A_2,A_3,C_2 und die Komponenten der Zerlegung aus Lemma 2.14 angewendet auf (A^T,C^T) mit $\widehat{A}_1,\widehat{A}_2,\widehat{A}_3,\widehat{C}_1$. Aus dem Beweis von Lemma 4.10 folgt mit dieser Notation gerade $A_1=\widehat{A}_3^T$.

Nach Lemma 4.12 folgt, dass asymptotische Beobachtbarkeit von (A,C) gerade äquivalent zur exponentiellen Stabilität von A_1 ist. Andererseits folgt aus Satz 3.26, dass (A^T,C^T) genau dann stabilisierbar ist, wenn \widehat{A}_3 exponentiell stabil ist. Da die Eigenwerte von \widehat{A}_3 und $\widehat{A}_3^T = A_1$ übereinstimmen, folgt die behauptete Äquivalenz.

4.3 Dynamische Beobachter

Ein naheliegender Ansatz zur Lösung des Stabilisierungsproblems für (4.1) ist die Wahl u(t) = Fy(t). Dies kann funktionieren (vgl. Beispiel 3.17, wo wir $C = (0\ 1)$ und $C = (1\ 0)$ betrachtet haben), muss aber nicht, wie das kontrollierbare und beobachtbare System (4.1) mit

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ und } C = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

zeigt, vgl. Aufgabe 1, 8. Übungsblatt. Tatsächlich ist dieses System nicht einmal dann stabilisierbar, wenn F(y(t)) eine beliebige stetige Funktion $F: \mathbb{R} \to \mathbb{R}$ sein darf.

Wir wollen daher nun eine Methode zur Stabilisierung entwickeln, die immer funktioniert, wenn (4.1) stabilisierbar und asymptotisch beobachtbar ist. Die Methode funktioniert für ein durch die Matrizen (A,B,C) gegebenes System (4.1) wie folgt:

- (1) Entwerfe ein stabilisierendes lineares Feedback F für (A, B)
- (2) Entwerfe einen Algorithmus, der aus den gemessenen Ausgängen y(s), $s \in [0, t]$, einen Schätzwert $z(t) \approx x(t)$ ermittelt
- (3) Regle das System (4.1) mittels u(t) = Fz(t).

Schritt (1) können wir mit den Methoden aus Kapitel 3 bereits lösen. In diesem Abschnitt werden wir Schritt (2) betrachten und im folgenden Abschnitt dann beweisen, dass die Methode mit den Schritten (1)–(3) tatsächlich funktioniert.

Der "Algorithmus" in Schritt (2) besteht dabei aus einem geeignet formulierten Kontrollsystem für z(t), in dem neben der Kontrollfunktion u(t) der Ausgang y(t) von (4.1) eine weitere Eingangsfunktion bildet. Die folgende Definition formalisiert diese Idee.

Definition 4.14 Ein *dynamischer Beobachter* für (4.1) ist ein lineares Kontrollsystem der Form

$$\dot{z}(t) = Jz(t) + Ly(t) + Ku(t) \tag{4.3}$$

mit $J \in \mathbb{R}^{n \times n}$, $L \in \mathbb{R}^{k \times n}$, $K \in \mathbb{R}^{m \times n}$, so dass für alle Anfangswerte $x_0, z_0 \in \mathbb{R}^n$ und alle Kontrollfunktionen $u \in \mathcal{U}$ für die Lösungen $x(t, x_0, u)$ und $z(t, z_0, u, y)$ von (4.1), (4.3) mit $y(t) = Cx(t, x_0, u)$ die Abschätzung

$$||x(t, x_0, u) - z(t, z_0, u, y)|| \le ce^{-\sigma t} ||x_0 - z_0||$$

für geeignete Konstanten $c, \sigma > 0$ gilt.

In der Praxis kann System (4.3) z.B. numerisch gelöst werden, um die Werte z(t) zu bestimmen.

Der folgende Satz zeigt, wann ein dynamischer Beobachter existiert; im Beweis wird dieser explizit konstruiert.

Satz 4.15 Ein dynamischer Beobachter für (4.1) existiert genau dann, wenn das System asymptotisch beobachtbar ist.

Beweis: " \Leftarrow " Da (4.1) asymptotisch beobachtbar ist, ist (A^T, C^T) stabilisierbar. Wir können also ein lineares Feedback $\widehat{F} \in \mathbb{R}^{k \times n}$ finden, so dass $A^T + C^T \widehat{F}$ exponentiell stabil ist. Mit $G = \widehat{F}^T$ ist dann auch $A + GC = (A^T + C^T \widehat{F})^T$ exponentiell stabil.

Wir wählen nun in (4.3) J = A + GC, L = -G und K = B, also

$$\dot{z}(t) = (A + GC)z(t) - Gy(t) + Bu(t).$$

Schreiben wir kurz $x(t) = x(t, x_0, u), z(t) = z(t, z_0, u, y)$ und e(t) = z(t) - x(t), so gilt für e(t) die Differentialgleichung

$$\dot{e}(t) = \dot{z}(t) - \dot{x}(t)$$

$$= (A + GC)z(t) - Ly(t) + Bu(t) - Ax(t) - Bu(t)$$

$$= (A + GC)z(t) - LCx(t) - Ax(t)$$

$$= (A + GC)(z(t) - x(t)) = (A + GC)e(t)$$

Aus der exponentiellen Stabilität von A + GC folgt damit

$$||e(t)|| \le ce^{-\sigma t}||e(0)||$$

für geeignetes $c, \sigma > 0$, was wegen e(t) = z(t) - x(t) und $e(0) = z_0 - x_0$ gerade die gewünschte Abschätzung liefert.

" \Rightarrow " Sei $x_0 \in \mathcal{N}$, also $y(t) = Cx(t, x_0, 0) = 0$ für alle $t \geq 0$. Für $z_0 = 0$ gilt damit $z(t, z_0, 0, y) = z(t, 0, 0, 0) = 0$. Damit folgt aus der Eigenschaft des dynamischen Beobachters

$$||x(t, x_0, 0)|| = ||x(t, x_0, 0) - z(t, z_0, 0, y)|| \le ce^{-\sigma t} ||x_0 - z_0|| = ce^{-\sigma t} ||x_0|| \to 0$$

für $t \to \infty$. Also gilt $x(t, x_0, 0)$ und damit die asymptotische Beobachtbarkeit.

4.4 Lösung des Stabilisierungsproblems mit Ausgang

Wir wollen nun den Schritt (3) des im vorherigen Abschnitt angegebenen Vorgehens zur Stabilisierung analysieren und zeigen, dass dieses Vorgehen zum Erfolg führt, wenn man in Schritt (2) den dynamischen Beobachter (4.3) verwendet.

Aus den Schritten (1)–(3) unter Verwendung von (4.3) in Schritt (2) ergibt sich die Feedback-Gleichung

$$u(t) = Fz(t), \quad \dot{z}(t) = Jz(t) + Ly(t) + KFz(t).$$
 (4.4)

Diese Form von Feedback nennt man dynamisches Ausgangsfeedback, da u(t) aus dem Ausgang y(t) = Cx(t) berechnet wird und das Feedback eine "interne" Dynamik besitzt, die gerade durch die Differentialgleichung für z gegeben ist¹.

Definition 4.16 Ein dynamisches Ausgangsfeedback (4.4) löst das *Stabilisierungsproblem* mit Ausgang, wenn das durch Einsetzen von (4.4) entstehende System von Differentialgleichungen

$$\dot{x}(t) = Ax(t) + BFz(t)
\dot{z}(t) = Jz(t) + LCx(t) + KFz(t)$$

mit Lösungen $\left(\begin{smallmatrix} x(t) \\ z(t) \end{smallmatrix} \right) \in \mathbb{R}^{2n}$ exponentiell stabil ist.

Satz 4.17 Gegeben sei ein Kontrollsystem (4.1) mit Matrizen (A, B, C). Dann ist das Stabilisierungsproblem mit Ausgang genau dann im Sinne von Definition 4.16 lösbar, wenn (A, B) stabilisierbar und (A, C) asymptotisch beobachtbar ist.

In diesem Fall ist (4.4) mit dem im Beweis von Satz 4.15 konstruierten dynamischen Beobachter (4.3) und einem stabilisierendes Feedback $F \in \mathbb{R}^{m \times n}$ für (A, B) ein stabilisierendes dynamisches Feedback.

¹Im Gegensatz dazu nennt man das in Kapitel 3 behandelte Feedback u(t) = Fx(t) statisches Zustandsfeedback.

Beweis: " \Leftarrow ": Es sei (A,B) stabilisierbar und (A,C) asymptotisch beobachtbar. Es sei $F \in \mathbb{R}^{m \times n}$ ein stabilisierendes Feedback für (A,B) und (4.3) der im Beweis von Satz 4.15 konstruierte dynamischen Beobachter. Dann ergibt sich das mittels (4.4) geregelte System zu

$$\begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} A & BF \\ LC & J + KF \end{pmatrix} \begin{pmatrix} x(t) \\ z(t) \end{pmatrix}$$
$$= \begin{pmatrix} A & BF \\ -GC & A + GC + BF \end{pmatrix} \begin{pmatrix} x(t) \\ z(t) \end{pmatrix}$$
$$= T^{-1} \begin{pmatrix} A + BF & BF \\ 0 & A + GC \end{pmatrix} T \begin{pmatrix} x(t) \\ z(t) \end{pmatrix}.$$

mit

$$T = \begin{pmatrix} \operatorname{Id}_{\mathbb{R}^n} & 0 \\ -\operatorname{Id}_{\mathbb{R}^n} & \operatorname{Id}_{\mathbb{R}^n} \end{pmatrix}, \qquad T^{-1} = \begin{pmatrix} \operatorname{Id}_{\mathbb{R}^n} & 0 \\ \operatorname{Id}_{\mathbb{R}^n} & \operatorname{Id}_{\mathbb{R}^n} \end{pmatrix}$$

Da die exponentielle Stabilität unter Koordinatentransformationen erhalten bleibt, reicht es nun nachzuweisen, dass die Matrix in der letzten Zeile der Rechnung exponentiell stabil ist. Für Blockdreiecksmatrizen sind die Eigenwerte nun aber gerade gleich den Eigenwerten der Diagonalblöcke A+BF und A+GC. Da A+BF nach Wahl von F exponentiell stabil ist und A+GC nach Wahl von G im Beweis von Satz 4.15 ebenfalls exponentiell stabil ist, hat obige Matrix also nur Eigenwerte mit negativem Realteil und ist damit exponentiell stabil.

"⇒": Mit der Koordinatentransformation T aus Lemma 2.14 erhält man für das transformierte System die Gleichungen

$$\dot{x}^{1}(t) = A_{1}x^{1}(t) + A_{2}x^{2}(t) + B_{1}Fz(t)
\dot{x}^{2}(t) = A_{3}x^{2}(t)
\dot{z}(t) = Jz(t) + LCx(t) + KFz(t)$$

mit $x(t) = T\begin{pmatrix} x^1(t) \\ x^2(t) \end{pmatrix}$. Nehmen wir nun an, dass (A,B) nicht stabilisierbar ist. Dann besitzt A_3 Eigenwerte mit positivem Realteil, die Gleichung $\dot{x}^2(t) = A_3 x^2(t)$ ist also nicht asymptotisch stabil und es gibt daher einen Anfangswert x_0^2 mit $x^2(t,x_0^2) \not\to 0$. Wählen wir also

$$x_0 = T \begin{pmatrix} x_0^1 \\ x_0^2 \\ z_0 \end{pmatrix} \in \mathbb{R}^{2n}$$

mit x_0^1 , z_0 beliebig, so gilt $x(t, x_0, Fz) \neq 0$ für jede Wahl des dynamischen Feedbacks. Dies widerspricht der Tatsache, dass das Stabilisierungsproblem lösbar ist, das Paar (A, B) ist also stabilisierbar.

Die asymptotische Beobachtbarkeit von (A, C) folgt analog zum Beweis von " \Rightarrow " in Satz 4.15.

Kapitel 5

Optimale Stabilisierung

Die in Kapitel 3 vorgestellte Methode zur Berechnung stabilisierender Feedbacks hat den Nachteil, dass man zwar die Eigenwerte bestimmen kann, ansonsten aber relativ wenig Einflussmöglichkeiten auf die Dynamik des geregelten Systems hat. So ist es z.B. oft so, dass große Werte der Kontrollvariablen u nur mit großem Energieaufwand zu realisieren sind (wie im Pendelmodell, wo u gerade die Beschleunigung des Wagens ist), weswegen man große Werte vermeiden möchte. Im Heizungsmodell andererseits möchte man z.B. Überschwingen (d.h. starke Schwankungen bis zum Erreichen der gewünschten Temperatur) vermeiden.

Wir werden deshalb in diesem Kapitel einen Ansatz verfolgen, der — zumindest implizit — größeren Einfluss auf das Verhalten des geregelten Systems ermöglicht, indem wir Methoden der Optimierung zur Berechnung der Feedback-Matrix F verwenden. Wir nehmen dabei aus Vereinfachungsgründen wieder an, dass wie in Kapitel 3 der gesamte Zustandsvektor x für die Regelung zur Verfügung steht. Zudem betrachten wir hier ausführlich nur solche Optimierungsprobleme, die direkt mit dem Stabilisierungsproblem in Zusammenhang stehen und werden andere Probleme nur kurz streifen.

5.1 Grundlagen der optimalen Steuerung

In diesem Abschnitt werden wir einige Grundlagen der optimalen Steuerung herleiten, die zur Lösung unseres Problems nötig sind. Da es für die abstrakten Resultate keinen Unterschied macht, ob die Dynamik linear oder nichtlinear ist, betrachten wir hier allgemeine Kontrollsysteme der Form

$$\dot{x}(t) = f(x(t), u(t)), \tag{5.1}$$

unter der Annahme, dass $f:\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ stetig ist und für ein L>0 die Lipschitz-Bedingung

$$||f(x_1, u) - f(x_2, u)|| \le L||x_1 - x_2|| \tag{5.2}$$

für alle $x_1, x_2 \in \mathbb{R}^n$ und alle $u \in \mathbb{R}^m$ erfüllt. Unter dieser Bedingung kann man den aus der Theorie der gewöhnlichen Differentialgleichungen bekannten Existenz- und Eindeutigkeitssatz so modifizieren, dass er für jede stückweise stetige Kontrollfunktion $u \in \mathcal{U}$ und

jeden Anfangswert x_0 die Existenz einer eindeutige Lösung $x(t, x_0, u)$ mit $x(0, x_0, u) = x_0$ liefert.

Wir definieren nun das optimale Steuerungsproblem, mit dem wir uns im Folgenden beschäftigen wollen.

Definition 5.1 Für eine stetige nichtnegative Kostenfunktion $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}_0^+$ definieren wir das Funktional

$$J(x_0, u) := \int_0^\infty g(x(t, x_0, u), u(t))dt.$$

Das optimale Steuerungsproblem ist damit gegeben durch das Optimierungsproblem

Minimiere $J(x_0, u)$ über $u \in \mathcal{U}$ für jedes $x_0 \in \mathbb{R}^n$.

Die Funktion

$$V(x_0) := \inf_{u \in \mathcal{U}} J(x_0, u)$$

wird als optimale Wertefunktion dieses optimalen Steuerungsproblems bezeichnet. Ein Paar $(x^*, u^*) \in \mathbb{R}^n \times \mathcal{U}$ mit $J(x^*, u^*) = V(x^*)$ wird als optimales Paar bezeichnet.

Als Funktionenraum \mathcal{U} wählen wir hierbei wie bisher den Raum der stückweise stetigen Funktionen, und nehmen dabei zusätzlich an, dass jede Funktion u auf jedem kompakten Intervall beschränkt ist und dass die Funktionen u rechtsseitig stetig sind, d.h, dass für alle $t_0 \in \mathbb{R}$ die Bedingung $\lim_{t \searrow t_0} u(t) = u(t_0)$ gilt. Beachte dass wir die zweite Annahme o.B.d.A. machen können, da die Lösung nicht vom dem Wert von u in der Sprungstelle abhängt.

Beachte, dass das Funktional $J(x_0, u)$ nicht endlich sein muss. Ebenso muss das Infimum in der Definition von V kein Minimum sein.

Der erste Satz dieses Kapitels liefert eine Charakterisierung der Funktion V.

Satz 5.2 (Prinzip der dynamischen Programmierung oder Bellman'sches Optimalitätsprinzip)

(i) Für die optimale Wertefunktion gilt für jedes $\tau > 0$

$$V(x_0) = \inf_{u \in \mathcal{U}} \left\{ \int_0^{\tau} g(x(t, x_0, u), u(t)) dt + V(x(\tau, x_0, u)) \right\}.$$

(ii) Für ein optimales Paar (x^*, u^*) gilt für jedes $\tau > 0$

$$V(x^*) = \int_0^\tau g(x(t, x^*, u), u^*(t))dt + V(x(\tau, x^*, u^*)).$$

Beweis: (i) Wir zeigen zunächst

$$V(x_0) \le \int_0^{\tau} g(x(t, x_0, u), u(t)) dt + V(x(\tau, x_0, u))$$

für alle $u \in \mathcal{U}$ und alle $\tau > 0$. Sei dazu $x_{\tau} = x(\tau, x_0, u), \varepsilon > 0$ beliebig und $u_{\tau} \in \mathcal{U}$ so gewählt, dass

$$J(x_{\tau}, u_{\tau}) \le V(x_{\tau}) + \varepsilon$$

gilt. Sei $\tilde{u} = u \&_{\tau} u_{\tau}(\cdot - \tau)$ (vgl. Definition 1.7). Dann gilt

$$V(x_{0}) \leq \int_{0}^{\infty} g(x(t, x_{0}, \tilde{u}), \tilde{u}(t))dt$$

$$= \int_{0}^{\tau} g(x(t, x_{0}, \tilde{u}), \tilde{u}(t))dt + \int_{\tau}^{\infty} g(x(t, x_{0}, \tilde{u}), \tilde{u}(t))dt$$

$$= \int_{0}^{\tau} g(x(t, x_{0}, u), u(t))dt + \int_{\tau}^{\infty} g(\underbrace{x(t, x_{0}, \tilde{u})}_{=x(t-\tau, x_{\tau}, u_{\tau})}, u_{\tau}(t-\tau))dt$$

$$= \int_{0}^{\tau} g(x(t, x_{0}, u), u(t))dt + \int_{0}^{\infty} g(x(t, x_{\tau}, u_{\tau}), u_{\tau}(t))dt$$

$$= \int_{0}^{\tau} g(x(t, x_{0}, u), u(t))dt + J(x_{\tau}, u_{\tau}) \leq \int_{0}^{\tau} g(x(t, x_{0}, u), u(t))dt + V(x_{\tau}) + \varepsilon.$$

Da $\varepsilon > 0$ beliebig war, folgt die behauptete Ungleichung.

Als zweiten Schritt zeigen wir

$$V(x_0) \ge \inf_{u \in \mathcal{U}} \left\{ \int_0^{\tau} g(x(t, x_0, u), u(t)) dt + V(x(\tau, x_0, u)) \right\}.$$

Sei dazu wiederum $\varepsilon > 0$ beliebig. Wir wählen u_0 so, dass $V(x_0) \ge J(x_0, u_0) - \varepsilon$ gilt und schreiben $x_{\tau} = x(\tau, x_0, u_0)$. Damit folgt

$$\begin{split} V(x_0) & \geq & \int_0^\infty g(x(t,x_0,u_0),u_0(t))dt - \varepsilon \\ & = & \int_0^\tau g(x(t,x_0,u_0),u_0(t))dt + \int_\tau^\infty g(x(t,x_0,u_0),u_0(t))dt - \varepsilon \\ & = & \int_0^\tau g(x(t,x_0,u_0),u_0(t))dt + \int_0^\infty g(x(t,x(\tau,x_0,u_0),u_0(\cdot+\tau)),u_0(t+\tau))dt - \varepsilon \\ & = & \int_0^\tau g(x(t,x_0,u_0),u_0(t))dt + J(x(\tau,x_0,u_0),u_0(\cdot+\tau)) - \varepsilon \\ & \geq & \int_0^\tau g(x(t,x_0,u_0),u_0(t))dt + V(x(\tau,x_0,u_0)) - \varepsilon \\ & \geq & \inf_{u \in \mathcal{U}} \left\{ \int_0^\tau g(x(t,x_0,u),u(t))dt + V(x(\tau,x_0,u)) \right\} - \varepsilon \end{split}$$

woraus die Behauptung folgt, da $\varepsilon > 0$ beliebig war.

(ii) Aus (i) folgt sofort die Ungleichung

$$V(x^*) \le \int_0^\tau g(x(t, x^*, u^*), u^*(t))dt + V(x(\tau, x^*, u^*)).$$

Die umgekehrte Ungleichung folgt aus

$$\begin{split} V(x^*) &= \int_0^\infty g(x(t,x^*,u^*),u^*(t))dt \\ &= \int_0^\tau g(x(t,x^*,u^*),u^*(t))dt + \int_\tau^\infty g(x(t,x^*,u^*),u^*(t))dt \\ &= \int_0^\tau g(x(t,x^*,u^*),u^*(t))dt + \int_0^\infty g(x(t,x(\tau,x^*,u^*),u^*(\cdot+\tau)),u^*(t+\tau))dt \\ &= \int_0^\tau g(x(t,x^*,u^*),u^*(t))dt + J(x(\tau,x^*,u^*),u^*(\cdot+\tau)) \\ &\geq \int_0^\tau g(x(t,x^*,u^*),u^*(t))dt + V(x(\tau,x^*,u^*)) \end{split}$$

Eine Folgerung dieses Prinzips liefert das folgende Korollar.

Korollar 5.3 Sei (x^*, u^*) ein optimales Paar. Dann ist $(x(\tau, x^*, u^*), u^*(\cdot + \tau))$ für jedes $\tau > 0$ ein optimales Paar.

Beweis: Übungsaufgabe.

Anschaulich besagt Korollar 5.3, dass Endstücke optimaler Trajektorien selbst wieder optimale Trajektorien sind.

Durch einen geschickten Grenzübergang für $\tau \to 0$ können wir die Gleichung aus Satz 5.2 als (partielle) Differentialgleichung ausdrücken.

Satz 5.4 (Hamilton-Jacobi-Bellman Differentialgleichung)

Es sei g stetig in x und u. Zudem sei $O \subseteq \mathbb{R}^n$ offen und $V|_{O}$ endlich.

(i) Wenn V in $x_0 \in O$ stetig differenzierbar ist, so folgt

$$DV(x_0) \cdot f(x_0, u_0) + g(x_0, u_0) \ge 0$$

für alle $u_0 \in \mathbb{R}^m$.

(ii) Wenn (x^*, u^*) ein optimales Paar ist und V stetig differenzierbar in $x^* \in O$ ist, so folgt

$$\min_{u \in \mathbb{R}^m} \{ DV(x^*) \cdot f(x^*, u) + g(x^*, u) \} = 0, \tag{5.3}$$

wobei das Minimum in $u^*(0)$ angenommen wird. Gleichung (5.3) wird Hamilton-Jacobi-Bellman Gleichung genannt.

Beweis: Wir zeigen zunächst für alle $u \in \mathcal{U}$ die Hilfsbehauptung

$$\lim_{\tau \searrow 0} \frac{1}{\tau} \int_0^{\tau} g(x(t, x_0, u), u(t)) dt = g(x_0, u(0)).$$

Wegen der (rechtssitigen) Stetigkeit von x und u in t und der Stetigkeit von g in x existiert zu $\varepsilon > 0$ ein $t_1 > 0$ mit

$$|g(x(t, x_0, u), u(t)) - g(x_0, u(0))| \le \varepsilon$$

für alle $t \in [0, t_1)$. Damit folgt für $\tau \in (0, t_1]$

$$\left| \frac{1}{\tau} \int_{0}^{\tau} g(x(t, x_{0}, u), u(t)) dt - g(x_{0}, u(0)) \right| \leq \frac{1}{\tau} \int_{0}^{\tau} |g(x(t, x_{0}, u), u(t)) - g(x_{0}, u(0))| dt \\ \leq \frac{1}{\tau} \int_{0}^{\tau} 2\varepsilon = 2\varepsilon$$

und damit die Aussage für den Limes, da $\varepsilon > 0$ beliebig war.

Hiermit folgen nun beide Behauptungen:

(i) Aus Satz 5.2(i) folgt für $u(t) \equiv u_0 \in \mathbb{R}^m$

$$V(x_0) \le \int_0^{\tau} g(x(t, x_0, u), u(t))dt + V(x(\tau, x_0, u))$$

und damit

$$DV(x_0)f(x_0, u(0)) = \lim_{\tau \searrow 0} \frac{V(x(\tau, x_0, u)) - V(x_0)}{\tau}$$

$$\geq \lim_{\tau \searrow 0} -\frac{1}{\tau} \int_0^{\tau} g(x(t, x_0, u), u(t)) dt = -g(x_0, u(0)),$$

also die Behauptung.

(ii) Aus (i) folgt

$$\inf_{u \in \mathbb{R}^m} \{DV(x) \cdot f(x^*, u) + g(x^*, u)\} \ge 0.$$

Aus Satz 5.2(ii) folgt zudem

$$V(x^*) = \int_0^\tau g(x(t, x^*, u^*), u^*(t))dt + V(x(\tau, x^*, u^*)).$$

Damit gilt

$$DV(x^*)f(x^*, u^*(0)) = \lim_{\tau \searrow 0} \frac{V(x(\tau, x^*, u^*)) - V(x^*)}{\tau}$$
$$= \lim_{\tau \searrow 0} -\frac{1}{\tau} \int_0^{\tau} g(x(t, x^*, u^*), u^*(t)) dt = -g(x^*, u^*(0)),$$

woraus die Existenz des Minimums in $u = u^*(0)$ und die behauptete Gleichheit folgt.

Satz 5.4 gibt notwendige Optimalitätsbedingungen, d.h. Bedingungen die die optimale Wertefunktion bzw. ein optimales Paar erfüllen muss — vorausgesetzt die optimale Wertefunktion ist stetig differenzierbar. Im Allgemeinen folgt aus der Erfüllung der angegebenen notwendigen Bedingungen aber noch nicht, dass eine Funktion tatsächlich eine optimale Wertefunktion ist oder ein Paar ein optimales Paar. Hierzu braucht man hinreichende Optimalitätsbedingungen, die wir im Folgenden untersuchen.

Zur Herleitung der hinreichenden Bedingungen brauchen wir zusätzliche Annahmen, für deren genaue Ausgestaltung es verschiedene Möglichkeiten gibt. Da wir die optimale Steuerung auf das Stabilisierungsproblem anwenden wollen, verwenden wir dazu die folgende Definition.

Definition 5.5 Für das Kontrollsystem gelte f(0,0) = 0, d.h. der Nullpunkt ist ein Gleichgewicht für u = 0. Dann nennen wir das optimale Steuerungsproblem nullkontrollierend, falls die Implikation

$$J(x_0, u) < \infty \quad \Rightarrow \quad x(t, x_0, u) \to 0 \text{ für } t \to \infty$$

gilt.

Nun können wir die hinreichende Bedingung formulieren.

Satz 5.6 (Hinreichende Optimalitätsbedingung)

Betrachte ein nullkontrollierendes optimales Steuerungsproblem. Es sei $W: \mathbb{R}^n \to \mathbb{R}_0^+$ eine differenzierbare Funktion, die die Hamilton-Jacobi-Bellman Gleichung

$$\min_{u \in \mathbb{R}^m} \{ DW(x) f(x, u) + g(x, u) \} = 0$$

erfüllt und für die W(0) = 0 gilt.

Zu gegebenem $x^* \in \mathbb{R}^n$ sei $u^* \in \mathcal{U}$ eine Kontrollfunktion, so dass für die zugehörige Lösung $x(t, x^*, u^*)$ und alle $t \geq 0$ das Minimum in der obigen Gleichung für $x = x(t, x^*, u^*)$ in $u = u^*(t)$ angenommen wird.

Dann ist (x^*, u^*) ein optimales Paar und es gilt

$$V(x(t, x^*, u^*)) = W(x(t, x^*, u^*))$$

für alle $t \geq 0$.

Beweis: Es sei $u \in \mathcal{U}$ und $x(t) = x(t, x^*, u)$ die zugehörige Lösungsfunktion. Wir zeigen zunächst die Ungleichung

$$J(x^*, u) \ge W(x^*).$$

Im Falle $J(x^*, u) = \infty$ ist nichts zu zeigen, es reicht also den Fall $J(x^*, u) < \infty$ zu betrachten. Aus der Hamilton-Jacobi-Bellman Gleichung folgt

$$\frac{d}{dt}W(x(t)) = DW(x(t))f(x(t), u(t)) \ge -g(x(t), u(t)),$$

und damit mit dem Hauptsatz der Differential- und Integralrechnung

$$W(x(T)) - W(x^*) = \int_0^T \frac{d}{dt} W(x(t)) dt \ge - \int_0^T g(x(t), u(t)) dt.$$

Daraus folgt

$$J(x^*, u) \ge \int_0^T g(x(t), u(t))dt \ge W(x^*) - W(x(T)).$$

für alle T > 0. Da das Problem nullkontrollierend ist und $J(x^*, u) < \infty$ gilt, folgt $x(T) \to 0$ für $T \to \infty$ und damit wegen der Stetigkeit von W und W(0) = 0 auch $W(x(T)) \to 0$. Dies zeigt $J(x^*, u) \ge W(x^*)$.

Schließlich zeigen wir noch

$$J(x^*, u^*) \le W(x^*),$$

woraus sowohl die Optimalität von u^* als auch die Gleichung $V(x^*) = W(x^*)$ folgt. Für die Kontrolle u^* und die zugehörige Lösung $x^* = x(t, x^*, u^*)$ folgt aus der Hamilton-Jacobi-Bellman Gleichung

$$\frac{d}{dt}W(x^*(t)) = DW(x^*(t))f(x^*(t), u^*(t)) = -g(x^*(t), u^*(t)),$$

und analog zu oben

$$J(x^*, u) = \lim_{T \to \infty} \int_0^T g(x^*(t), u^*(t)) dt = \lim_{T \to \infty} (W(x^*) - W(x(T))) \le W(x^*),$$

wobei wir im letzten Schritt die Nichtnegativität von W verwendet haben.

Beachte, dass beide Sätze dieses Abschnitts nur anwendbar sind, wenn V bzw. W differenzierbar sind. Diese Annahme ist im allgemeinen nichtlinearen Fall sehr einschränkend¹. Zudem ist es im Allgemeinen sehr schwierig, die Funktion V mittels dieser Gleichung zu bestimmen, selbst wenn sie differenzierbar ist.

Im linearen Fall hingegen vereinfacht sich das Problem und die Hamilton-Jacobi-Bellman Gleichung so weit, dass eine explizite Lösung möglich ist, wie wir im folgenden Abschnitt sehen werden.

5.2 Das linear-quadratische Problem

Wir kommen nun zurück zu unserem linearen Kontrollsystem (1.2)

$$\dot{x}(t) = Ax(t) + Bu(t) =: f(x(t), u(t)).$$

Um eine schöne Lösungstheorie zu erhalten, müssen wir auch für die Kostenfunktion g(x, u) eine geeignete Struktur annehmen.

Definition 5.7 Eine quadratische Kostenfunktion $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_0^+$ ist gegeben durch

$$g(x, u) = (x^T u^T) \begin{pmatrix} M & R \\ R^T & N \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix}$$

mit $M \in \mathbb{R}^{n \times n}$, $R \in \mathbb{R}^{n \times m}$ und $N \in \mathbb{R}^{m \times m}$, so dass $G := \begin{pmatrix} M & R \\ R^T & N \end{pmatrix}$ symmetrisch und positiv definit ist.

 $^{^1}$ Die nichtlineare Theorie dieser Gleichungen verwendet den verallgemeinerten Lösungsbegriff der "Viskositätslösungen", der auch für nichtdifferenzierbare Funktionen V sinnvoll ist.

Hieraus ergibt sich der Name "linear-quadratisches" optimales Steuerungsproblem: die Dynamik ist linear und die Kostenfunktion ist quadratisch.

Wir zeigen zunächst, dass dieses Problem nullkontrollierend ist.

Lemma 5.8 Das linear-quadratische Problem ist nullkontrollierend im Sinne von Definition 5.5.

Beweis: Wir zeigen zunächst die Ungleichungen

$$g(x,u) \ge c_1 ||x||^2 \text{ und } g(x,u) \ge c_2 ||f(x,u)||^2$$
 (5.4)

für geeignete Konstanten $c_1, c_2 > 0$.

Da die Matrix G positiv definit ist, folgt aus Lemma Lemma 3.9 die Ungleichung

$$g(x,u) \ge c_1 \left\| \begin{pmatrix} x \\ u \end{pmatrix} \right\|^2 \ge c_1 \|x\|^2,$$
 (5.5)

also die erste Abschätzung in (5.4). Wegen

$$||f(x,u)||^2 = (x^T, u^T) \begin{pmatrix} A & A^T B \\ B^T A & B \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix}$$

folgt ebenfalls aus Lemma 3.9

$$||f(x,u)||^2 \le c_3 \left\| \left(\begin{array}{c} x \\ u \end{array} \right) \right\|^2$$

woraus wir mit (5.5) und $c_2 = c_1/c_3$ die zweite Abschätzung in (5.4) erhalten.

Es sei nun $u \in \mathcal{U}$ und $x(t) = x(t, x_0, u)$ die zugehörige Lösungsfunktion. Es gelte

$$J(x_0, u) < \infty$$
.

Zu zeigen ist also, dass

$$\lim_{t \to \infty} x(t) = 0$$

gilt. Dazu nehmen wir an, dass $x(t) \not\to 0$. Es existiert also ein $\varepsilon > 0$ und eine Folge $t_k \to \infty$, so dass $||x(t_k)|| \ge \varepsilon$ gilt. O.B.d.A. gelte $t_{k+1} - t_k \ge \varepsilon/2$. Nun wählen wir $\delta = \varepsilon/4$ und unterscheiden für jedes $k \in \mathbb{N}$ zwei Fälle:

1. Fall: $||x(t)|| \ge \varepsilon/2$ für alle $t \in [t_k, t_k + \delta]$. In diesem Fall erhalten wir aus (5.4) für diese t die Ungleichung $g(x(t), u(t)) \ge c_1 \varepsilon^2/4$ und es folgt

$$\int_{t_1}^{t_k+\delta} g(x(t), u(t))dt \ge c_1 \delta \varepsilon^2 / 4 = c_1 \varepsilon^3 / 16.$$

2. Fall: $||x(t)|| < \varepsilon/2$ für ein $t \in [t_k, t_k + \delta]$. In diesem Fall folgt

$$\left\| \int_{t_k}^t f(x(\tau), u(\tau)) d\tau \right\| = \|x(t) - x(t_k)\| \ge \|x(t)\| - \|x(t_k)\| \ge \varepsilon/2.$$

Aus der zweiten Abschätzung in (5.4) erhalten wir

$$g(x,u) \ge c_2 ||f(x,u)||^2 \ge \left\{ \begin{array}{ll} 0, & ||f(x,u)|| \le 1 \\ c_2 ||f(x,u)||, & ||f(x,u)|| > 1 \end{array} \right\} \ge c_2 (||f(x,u)|| - 1)$$

und damit

$$\int_{t_k}^{t_k+\delta} g(x(\tau), u(\tau)) d\tau \ge c_2 \int_{t_k}^t \|f(x(\tau), u(\tau))\| - 1 d\tau \ge c_2(\varepsilon/2 - \delta) \ge c_2\varepsilon/4.$$

Mit $\gamma = \min\{c_1 \varepsilon^3 / 16, c_2 \varepsilon / 4\} > 0$ ergibt sich

$$J(x_0,u) = \int_0^\infty g(x(t),u(t))dt \ge \sum_{k=1}^\infty \int_{t_k}^{t_k+\delta} g(x(t),u(t))dt \ge \sum_{k=1}^\infty \gamma = \infty,$$

ein Widerspruch.

Wir können also Satz 5.6 verwenden, um die Optimalität einer Lösung des linear-quadratischen Problems nachzuweisen.

Um eine Kandidatin für die optimale Wertefunktion zu finden, machen wir den Ansatz

$$W(x) = x^T Q x (5.6)$$

für eine symmetrische und positiv definite Matrix $Q \in \mathbb{R}^{n \times n}$.

A priori wissen wir nicht, ob dieser Ansatz gerechtfertigt ist – wir nehmen dies zunächst einfach an und untersuchen die Folgerungen dieser Annahme.

Lemma 5.9 Falls das linear-quadratische optimale Steuerungsproblem eine optimale Wertefunktion der Form (5.6) besitzt, so sind die optimalen Paare von der Form (x^*, u^*) mit

$$u^*(t) = Fx(t, x^*, F)$$

und $F \in \mathbb{R}^{m \times n}$ gegeben durch

$$F = -N^{-1}(B^TQ + R^T),$$

wobei $x(t, x^*, F)$ die Lösung des mittels F geregelten Systems

$$\dot{x}(t) = (A + BF)x(t)$$

mit Anfangsbedingung $x(0, x^*, F) = x^*$ bezeichnet.

Darüberhinaus ist das mittels F geregelte System exponentiell stabil.

Beweis: Die optimale Wertefunktion der Form (5.6) ist stetig differenzierbar und erfüllt W(0) = 0, weswegen sowohl Satz 5.4 als auch Satz 5.6 anwendbar ist.

Wenn W die optimale Wertefunktion ist, so folgt aus Satz 5.4(ii), dass die optimale Kontrolle $u = u^*(t)$ für $x = x(t, x^*, u^*)$ den Ausdruck

$$DW(x) \cdot f(x,u) + g(x,u)$$

minimiert. Umgekehrt folgt aus Satz 5.6, dass jede Kontrollfunktion, die diesen Ausdruck entlang der zugehörigen Trajektorie minimiert, ein optimales Paar erzeugt. Wir müssen also zeigen, dass das angegebene Feedback gerade solche Lösungen und Kontrollfunktionen erzeugt.

Der zu minimierende Ausdruck ist unter den gemachten Annahmen gerade gleich

$$DW(x) \cdot f(x, u) + g(x, u)$$
= $x^{T}Q(Ax + Bu) + (Ax + Bu)^{T}Qx + x^{T}Mx + x^{T}Ru + u^{T}R^{T}x + u^{T}Nu$
= $2x^{T}Q(Ax + Bu) + x^{T}Mx + 2x^{T}Ru + u^{T}Nu$ =: $h(u)$,

da Q und R symmetrisch sind. Da N wegen der positiven Definitheit von G ebenfalls positiv definit sein muss, ist die zweite Ableitung von h nach u positiv definit, die Funktion h ist also konvex in u. Folglich ist jede Nullstelle der Ableitung von h nach u ein globales Minimum. Diese Nullstellen sind gerade gegeben durch

$$\begin{array}{rcl} 0 & = & Dh(u) = 2x^TQB + 2x^TR + 2u^TN \\ \Leftrightarrow & -2u^TN & = & 2x^TQB + 2x^TR \\ \Leftrightarrow & -Nu & = & B^TQx + R^Tx \\ \Leftrightarrow & u & = & -N^{-1}(B^TQx + R^Tx) & = & Fx \end{array}$$

was die Behauptung zeigt.

Die exponentielle Stabilität des geregelten Systems folgt aus der Hamilton-Jacobi-Bellman Gleichung. Diese impliziert wegen der positiven Definitheit von g nach Lemma 3.9

$$DW(x) \cdot f(x, Fx) = -g(x, Fx) \le -c ||(x^T, (Fx)^T)^T||^2 \le -c ||x||^2$$

für ein geeignetes c > 0. Da Q zudem positiv definit ist, ist das System nach Lemma 3.10 exponentiell stabil mit Lyapunov Funktion W(x).

Wenn die optimale Wertefunktion also von der Form (5.6) ist, so erhalten wir eine besonders schöne Lösung: Nicht nur lassen sich die optimalen Kontrollen u^* explizit berechnen, sie liegen darüberhinaus auch in linearer Feedback-Form vor und liefern als (natürlich gewünschtes) Nebenprodukt ein stabilisierendes Feedback.

Wie müssen also untersuchen, wann V die Form (5.6) annehmen kann. Das nächste Lemma gibt eine hinreichende Bedingung dafür an, dass die optimale Wertefunktion diese Form besitzt. Zudem liefert es eine Möglichkeit, Q zu berechnen.

Lemma 5.10 Wenn die Matrix $Q \in \mathbb{R}^{n \times n}$ eine symmetrische und positiv definite Lösung der algebraischen Riccati-Gleichung²

$$QA + A^{T}Q + M - (QB + R)N^{-1}(B^{T}Q + R^{T}) = 0$$
(5.7)

ist, so ist die optimale Wertefunktion des Problems gegeben durch $V(x) = x^T Q x$.

Insbesondere existiert höchstens eine symmetrische und positiv definite Lösung Q von (5.7).

²benannt nach Jacopo Francesco Riccati, italienischer Mathematiker, 1676–1754

Beweis: Wir zeigen zunächst, dass die Funktion $W(x) = x^T Q x$ die Hamilton-Jacobi-Bellman Gleichung (5.3) löst.

Im Beweis von Lemma 5.9 wurde bereits die Identität

$$\min_{u \in U} \{DW(x) \cdot f(x, u) + g(x, u)\} = DW(x) \cdot f(x, Fx) + g(x, Fx)$$

für die Matrix $F = -N^{-1}(B^TQ + R^T)$ gezeigt. Mit

$$\begin{split} F^T B^T Q + F^T N F + F^T R^T \\ &= -(R + QB) N^{-1} B^T Q + (R + QB) N^{-1} N N^{-1} (B^T Q + R^T) - (R + QB) N^{-1} R^T = 0 \end{split}$$

ergibt sich

$$DW(x) \cdot f(x, Fx) + g(x, Fx)$$
= $x^{T}(Q(A + BF) + (A + BF)^{T}Q + M + RF + F^{T}R^{T} + F^{T}NF)x$
= $x^{T}(QA + A^{T}Q + M + (QB + R)F + \underbrace{F^{T}B^{T}Q + F^{T}NF + F^{T}R^{T}}_{=0})x$
= $x^{T}(QA + A^{T}Q + M + (QB + R)F)x$
= $x^{T}(QA + A^{T}Q + M - (QB + R)N^{-1}(B^{T}Q + R^{T}))x$.

Wenn die algebraische Riccati-Gleichung (5.7) erfüllt ist, so ist dieser Ausdruck gleich Null, womit die Hamilton-Jacobi-Bellman Gleichung erfüllt ist.

Um V(x) = W(x) zu zeigen weisen wir nun nach, dass die Voraussetzungen von Satz 5.6 erfüllt sind. Aus der positiven Definitheit von Q folgt $W(x) \ge 0$ und W(0) = 0. Wie oben gezeigt erfüllt $W(x) = x^T Q x$ die Hamilton-Jacobi-Bellman Gleichung, zudem wurde die in Lemma 5.9 mittels des Feedbacks F angegebene optimale Kontrolle u^* im Beweis gerade so konstruiert, dass sie die in Satz 5.6 and u^* geforderten Bedingungen erfüllt. Also folgt die Behauptung V(x) = W(x) aus Satz 5.6.

Die Eindeutigkeit der symmetrischen und positiv definiten Lösung Q folgt aus der Tatsache, dass jede solche Lösung die Gleichung $V(x) = x^T Q x$ für alle $x \in \mathbb{R}^n$ erfüllt, wodurch Q eindeutig bestimmt ist.

Bemerkung 5.11 Beachte, dass die Eindeutigkeitsaussage dieses Lemmas nur für die symmetrischen und positiv definiten Lösungen gilt. Die algebraische Riccati-Gleichung (5.7) kann durchaus mehrere Lösungen Q haben, von denen dann aber höchstens eine positiv definit sein kann.

Die Lemmata 5.9 und 5.10 legen die folgende Strategie zur Lösung des linear-quadratischen Problems nahe:

Finde eine positiv definite Lösung Q der algebraischen Riccati-Gleichung (5.7) und berechne daraus das optimale lineare Feedback F gemäß Lemma 5.9.

Dies liefert ein optimales lineares Feedback, das nach Lemma 5.9 zugleich das Stabilisierungsproblem löst.

Die wichtige Frage ist nun, unter welchen Voraussetzungen man die Existenz einer positiv definiten Lösung der algebraischen Riccati-Gleichung erwarten kann. Der folgende Satz zeigt, dass dieses Vorgehen unter der schwächsten denkbaren Bedingung an A und B funktioniert.

Satz 5.12 Für das linear-quadratische optimale Steuerungsproblem sind die folgenden Aussagen äquivalent:

- (i) Das Paar (A, B) ist stabilisierbar.
- (ii) Die algebraische Riccati-Gleichung (5.7) besitzt genau eine symmetrische und positiv definite Lösung Q.
- (iii) Die optimale Wertefunktion ist von der Form (5.6).
- (iv) Es existiert ein optimales lineares Feedback, welches das Kontrollsystem stabilisiert.

Beweis: "(i) ⇒ (ii)": Betrachte die Riccati-Differentialgleichung

$$\dot{Q}(t) = Q(t)A + A^{T}Q(t) + M - (Q(t)B + R)N^{-1}(B^{T}Q(t) + R^{T})$$

mit Matrix-wertiger Lösung Q(t), die die Anfangsbedingung Q(0) = 0 erfüllt. Aus der Theorie der gewöhnlichen Differentialgleichungen folgt, dass die Lösung Q(t) zumindest für t aus einem Intervall der Form $[0,t^*)$ existiert, wobei t^* maximal gewählt sei. Durch Nachrechnen sieht man, dass auch $Q(t)^T$ eine Lösung ist, die ebenfalls $Q(0)^T = 0$ erfüllt. Wegen der Eindeutigkeit muss also $Q(t) = Q(t)^T$ sein, d.h. die Lösung ist symmetrisch.

Wir wollen zunächst zeigen, dass diese Lösung für alle $t \geq 0$ existiert, dass also $t^* = \infty$ gilt. Wir nehmen dazu an, dass $t^* < \infty$ ist.

Mit analogen Rechnungen wie im Beweis von Lemma 5.9 rechnet man nach, dass die Funktion $P(t, t_1, x) := x^T Q(t_1 - t)x$ für alle $t_1 - t \in [0, t^*)$ und alle $u \in U$ die Ungleichung

$$\frac{d}{dt}P(t,t_{1},x) + \frac{d}{dx}P(t,t_{1},x) \cdot f(x,u) + g(x,u) \ge 0$$
 (5.8)

erfüllt. Für jede Lösung $x(t, x_0, u)$ des Kontrollsystems mit beliebigem $u \in \mathcal{U}$ folgt daraus

$$\frac{d}{dt}P(t, t_1, x(t, x_0, u)) = \frac{d}{dt}P(t, t_1, x) + \frac{d}{dx}P(t, t_1, x) \cdot f(x, u) \ge -g(x, u).$$

Der Hauptsatz der Differential- und Integralrechnung unter Ausnutzung von $P(t_1, t_1, x) = 0$ liefert nun

$$P(0, t_1, x_0) = -\int_0^{t_1} \frac{d}{dt} P(t, t_1, x) dt \le \int_0^{t_1} g(x(t, x_0, u), u(t)) dt$$
 (5.9)

für $t_1 \in [0, t^*)$. Ebenfalls analog zu Lemma 5.9 rechnet man nach, dass für $u = u^* = -N^{-1}(B^TQ(t) + R^T)x$ definierte Kontrollfunktion Gleichheit in (5.8) gilt, woraus mit analoger Rechnung für die durch $u^*(t) = -N^{-1}(B^TQ(t) + R^T)x(t, x_0, u^*)$ definierte Kontrollfunktion die Gleichung

$$P(0, t_1, x_0) = \int_0^{t_1} g(x(t, x_0, u^*), u^*(t))dt$$
 (5.10)

gilt. Da G positiv definit und die Lösungen $x(t, x_0, u^*)$ stetig sind, ist $P(0, t_1, x_0) > 0$ für $x_0 \neq 0$, weswegen $Q(t_1)$ positiv definit ist. Mit der speziellen Wahl $u \equiv 0$ folgt aus (5.9), dass $P(0, t_1, x_0) = x^T Q(t_1) x$ gleichmäßig beschränkt ist für alle $t_1 \in [0, t^*)$. Wegen der Symmetrie gilt für die Einträge von Q(t) die Gleichung

$$[Q(t)]_{ij} = e_i^T Q(t)e_j = \frac{1}{2}((e_i + e_j)^T Q(t)(e_i + e_j) - e_i^T Q(t)e_i - e_j^T Q(t)e_j),$$
 (5.11)

weswegen also auch diese für $t \in [0, t^*)$ gleichmäßig beschränkt sind. Nun weist man nach (für Details siehe z.B. das Buch von Aulbach [1], Beweis von Satz 2.5.1), dass wegen der Beschränkheit ein $\delta > 0$ existiert, so dass die Lösung der Riccati-DGL für jede Anfangsbedingung der Form $(t, Q(t)), t \in [0, t^*)$ auf dem Intervall $(t - \delta, t + \delta)$ existiert und eindeutig ist. Für t hinreichend nahe an t^* ist $t + \delta > t^*$, woraus folgt, dass die Lösung auf dem Intervall $[0, t + \delta)$ existiert, welches echt größer als das Interval $[0, t^*)$ ist. Dies widerspricht der Maximalität von t^* und daher der Annahme $t^* < \infty$.

Die Lösung Q(t) ist also eine für alle $t \geq 0$ definierte symmetrische und positiv definite matrixwertige Funktion. Zudem folgt aus (5.10) für alle $s \geq t$ und alle $x \in \mathbb{R}^n$ die Ungleichung

$$x^T Q(s) x \ge x^T Q(t) x.$$

Wir zeigen nun, dass $Q_{\infty} := \lim_{t \to \infty} Q(t)$ existiert. Dazu wählen wir ein stabilisierendes Feedback F für das Paar (A, B) und setzen $u_F(t) = Fx(t, x_0, F)$. Damit erhalten wir aus (5.9) und der Abschätzung

$$g(x, Fx) \le K ||x||^2$$

die Ungleichung

$$P(0, t_{1}, x_{0}) \leq \int_{0}^{t_{1}} g(x(\tau, x_{0}, F), u_{F}(\tau)) d\tau$$

$$\leq \int_{0}^{t_{1}} K(Ce^{-\sigma t} ||x_{0}||)^{2} dt$$

$$\leq \underbrace{\int_{0}^{\infty} KC^{2} e^{-2\sigma t} dt}_{=KC^{2}} ||x_{0}||^{2} \leq D||x_{0}||^{2}.$$

Daraus folgt $x^TQ(t)x \leq D\|x\|^2$ für alle $t \geq 0$, womit $x^TQ(t)x$ für jedes feste $x \in \mathbb{R}^n$ beschränkt und monoton ist und damit für $t \to \infty$ konvergiert. Mit e_j bezeichnen wir den j-tem Basisvektor. Definieren wir

$$l_{ij} = \lim_{t \to \infty} (e_i + e_j)^T Q(t) (e_i + e_j)$$
 und $l_j = \lim_{t \to \infty} e_j^T Q(t) e_j$.

so folgt aus (5.11)

$$\lim_{t \to \infty} [Q(t)]_{ij} = \frac{1}{2}(l_{ij} - l_i - l_j).$$

Dies zeigt, dass der Limes $Q_{\infty} := \lim_{t \to \infty} Q(t)$ existiert. Diese Matrix ist symmetrisch und wegen

 $x^TQ_{\infty}x \ge x^TQ(t)x > 0$ für alle $x \ne 0$ und beliebiges t > 0

positiv definit.

Wir zeigen schließlich, dass Q_{∞} die algebraische Riccati-Gleichung löst. Aus der qualitativen Theorie der gewöhnlichen Differentialgleichungen ist bekannt, dass aus $Q(t) \to Q_{\infty}$ folgt, dass Q_{∞} ein Gleichgewicht der Riccati-DGL sein muss.³ Daraus folgt sofort, dass Q_{∞} die algebraische Riccati-Gleichung erfüllt, was die Existenz einer symmetrischen und positiv definiten Lösung zeigt. Die Eindeutigkeit folgt aus Lemma 5.10.

- "(ii) \Rightarrow (iii)": Folgt aus Lemma 5.10
- "(iii) \Rightarrow (iv)": Folgt aus Lemma 5.9.
- "(iv) \Rightarrow (i)": Da ein stabilisierendes Feedback existiert, ist das Paar (A, B) stabilisierbar

Bemerkung 5.13 Die im Beweis von "(i) \Rightarrow (ii)" verwendete Hilfsfunktion $P(t_0, t_1)$ ist tatsächlich die optimale Wertefunktion des optimalen Steuerungsproblems

Minimiere
$$J(t_0, t_1, x_0, u) := \int_{t_0}^{t_1} g(x(t, t_0, x_0, u), u(t)) dt$$

auf endlichem Zeithorizont $[t_0, t_1]$, wobei $x(t, t_0, x_0, u)$ die Lösung des Kontrollsystems mit Anfangszeit t_0 und Anfangswert x_0 , also $x(t_0, t_0, x_0, u) = x_0$, bezeichnet.

Diese Beobachtung lässt sich sogar noch verallgemeinern, was wir (ohne Beweise) kurz skizzieren:

Für das linear quadratische Problem auf endlichem Zeithorizont mit Endkosten $l(x) = x^T L x$ für eine positiv definite Matrix $L \in \mathbb{R}^n \times n$, also

Minimiere
$$J(t_0, t_1, x_0, u) := \int_{t_0}^{t_1} g(x(t, t_0, x_0, u), u(t)) dt + l(x(t, t_1, x_0, u))$$

ergibt sich die optimale Wertefunktion als

$$P(t_0, t_1) = x^T Q(t_1 - t_0)x,$$

wobei $Q(\cdot)$ wie im obigen Beweis die Lösung der Riccati-Differentialgleichung ist, nun aber mit Anfangsbedingung Q(0) = L.

Das optimale Feedback ist dann analog zum unendlichen Horizont gegeben durch

$$F(t) = -N^{-1}(B^{T}Q(t_1 - t) + R^{T}),$$

hängt aber nun von der Zeit t ab. Das auf $[t_0, t_1]$ optimal geregelte System lautet also

$$\dot{x}(t) = (A + BF(t))x(t).$$

Beachte, dass F(t) für $t_1 \to \infty$ gegen F aus Lemma 5.9 konvergiert.

³siehe z.B. Satz 2.2 im Skript "Modellierung mit Differentialgleichungen", www.uni-bayreuth.de/departments/math/∼lgruene/modellierung05/

5.3 Linear-quadratische Ausgangsregelung

Wir haben im vorhergehenden Abschnitt stets vorausgesetzt, dass die Matrix G in der Definition von g(x,u) positiv definit ist. In den Übungsaufgaben haben wir gesehen, dass das LQ-Problem i.A. nicht nullkontrollierend ist und dass auch das Lösungsverfahren i.A. nicht funktioniert, wenn diese Bedingung verletzt ist.

Es gibt aber trotzdem Gründe, diese Bedingung abzuschwächen. Betrachten wir wie in Kapitel 4 ein Kontrollsystem mit Ausgang (4.1), also

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t),$$

so ist es sinnvoll, das Optimierungskriterium nur von y und nicht von x abhängig zu machen, d.h. eine Kostenfunktion der Form $\tilde{g}(y,u)$ zu betrachten. Formal wählt man dazu die Teilmatrizen M und R von G von der Form

$$M = C^T \widetilde{M} C, R = C^T \widetilde{R}$$

für positiv definite Matrizen \widetilde{M} und \widetilde{R} passender Dimension. Dann gilt

$$g(x,u) = (x^T u^T) \begin{pmatrix} M & R \\ R^T & N \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix} = (x^T u^T) \begin{pmatrix} C^T \widetilde{M} C & C^T \widetilde{R} \\ \widetilde{R}^T C & N \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix}$$
$$= (y^T u^T) \begin{pmatrix} \widetilde{M} & \widetilde{R} \\ \widetilde{R}^T & N \end{pmatrix} \begin{pmatrix} y \\ u \end{pmatrix} =: \tilde{g}(y,u). \tag{5.12}$$

Die Matrix G ist nun nicht mehr positiv definit. Trotzdem lassen sich die Resultate aus dem vorhergehenden Abschnitt auf dieses neue G übertragen. Dazu muss man betrachten, wo und wie die positive Definitheit in den Beweisen eingeht:

- (i) In Lemma 5.8 wird die positive Definitheit von G ausgenutzt, um zu zeigen, dass das Problem nullkontrollierend ist.
- (ii) In Lemma 5.9 wird die positive Definitheit der Teilmatrix N implizit ausgenutzt, da die Inverse N^{-1} verwendet wird.
- (iii) Im Beweis von Teil "(i) \Rightarrow (ii)" von Satz 5.12 wird die positive Definitheit von G verwendet um zu zeigen, dass Q(t) positiv definit ist.

Punkt (ii) ist hierbei unproblematisch, denn N ist weiterhin positiv definit. Punkt (i) und (iii) klären wir im Folgenden. Wesentlich dafür ist die Aussage des folgenden Lemmas.

Lemma 5.14 Das Paar (A, C) sei beobachtbar. Dann existiert für jedes $t_1 > 0$ ein c > 0, so dass für g aus (5.12) die Abschätzung

$$J(0, t_1, x_0, u) = \int_0^{t_1} g(x(t; x_0, u), u(t)) dt \ge c ||x_0||^2$$

für alle $x_0 \in \mathbb{R}^n$ und alle $u \in \mathcal{U}$ gilt.

Beweis: Aus der allgemeinen Lösungsformel

$$x(t; x_0, u) = e^{At}x_0 + \int_0^t e^{A(t-s)}Bu(s)ds = x(t; x_0, 0) + x(t; 0, u)$$

folgt für alle $\alpha > 0$ die Gleichung

$$x(t; \alpha x_0, \alpha u) = \alpha x(t; x_0, u).$$

Daraus folgt für $x_0 \neq 0$ und $\alpha = ||x_0||$

$$J(0, t_1, x_0, u) = \alpha^2 J(0, t_1, x_0/\alpha, u/\alpha) = ||x_0||^2 J(0, t_1, x_0/||x_0||, u/||x_0||).$$

Um die Behauptung zu zeigen reicht es also aus, die Existenz von c > 0 mit

$$J(0, t_1, x_0, u) \ge c$$
 für alle $x_0 \in \mathbb{R}^n$ mit $||x_0|| = 1$ und alle $u \in \mathcal{U}$ (5.13)

zu zeigen.

Um (5.13) zu zeigen, betrachten wir zunächst

$$J(0, t_1, x_0, 0) = \int_0^{t_1} x(t; x_0, 0)^T M x(t; x_0, 0) dt = \int_0^{t_1} y(t)^T \widetilde{M} y(t) dt.$$

Da (A, C) beobachtbar ist, gilt für $x_0 \neq 0$ nach Lemma 4.5 $y(\tau) \neq 0$ für ein $\tau \in [0, t_1]$. Da y(t) stetig ist, folgt $y(t) \neq 0$ auf einem Intervall um τ , woraus wegen der positiven Definitheit von \widetilde{M} die Ungleichung $J(0, t_1, x_0, 0) > 0$ folgt. Da $J(0, t_1, x_0, 0)$ stetig in x_0 ist, existiert auf der kompakten Menge $\{x_0 \in \mathbb{R}^n \mid ||x_0|| = 1\}$ das Minimum $c_0 > 0$, weswegen

$$J(0, t_1, x_0, 0) \ge c_0 \tag{5.14}$$

für alle $x_0 \in \mathbb{R}^n$ mit $||x_0|| = 1$ gilt.

Zur Abschätzung von $J(0, t_1, x_0, u)$ wählen wir nun ein beliebiges $x_0 \in \mathbb{R}^n$ mit $||x_0|| = 1$ sowie ein $\varepsilon > 0$. Für Kontrollen u mit

$$\int_{0}^{t_{1}} u(t)^{T} N u(t) dt > \varepsilon \tag{5.15}$$

folgt dann sofort

$$J(0, t_1, x_0, u) > \varepsilon > 0. (5.16)$$

Es bleibt also die Ungleichung zu zeigen für die Kontrollen $u \in \mathcal{U}$ mit

$$\int_0^{t_1} u(t)^T N u(t) dt \le \varepsilon. \tag{5.17}$$

Da N positiv definit ist, folgt

$$||u(t)||^2 \le c_1 u(t)^T N u(t)$$

für ein $c_1 > 0$ und damit

$$\int_0^{t_1} \|u(t)\|^2 dt \le c_1 \varepsilon.$$

Zudem gilt

$$||u(t)|| \le \begin{cases} \sqrt{\varepsilon}, & ||u(t)||^2 \le \varepsilon \\ ||u(t)||^2/\sqrt{\varepsilon}, & ||u(t)||^2 > \varepsilon. \end{cases}$$

Damit folgt

$$\int_0^{t_1} \|u(t)\| dt \le \int_0^{t_1} \max\{\sqrt{\varepsilon}, \|u(t)\|^2/\sqrt{\varepsilon}\} dt \le \int_0^{t_1} \sqrt{\varepsilon} + \|u(t)\|^2/\sqrt{\varepsilon} dt = (c_1 + t_1)\sqrt{\varepsilon}.$$

Aus der allgemeinen Lösungsformel folgt damit die Existenz einer Konstanten $c_2 > 0$, so dass

$$||x(t;0,u)|| \le c_2 \sqrt{\varepsilon} \tag{5.18}$$

für alle $t \in [0, t_1]$ gilt. Ebenso folgt aus der Lösungsformel

$$||x(t;x_0,0)|| \le c_3 ||x_0|| = c_3 \tag{5.19}$$

für eine geeignete Konstante $c_3 > 0$ und alle $t \in [0, t_1]$. Insbesondere folgt damit

$$||x(t;x_0,u)|| \le c_4 \tag{5.20}$$

für $c_4 = c_2 \sqrt{\varepsilon} + c_3$.

Für das Funktional gilt nun

$$J(0, t_1, x_0, u) \ge \int_0^{t_1} x(t; x_0, u)^T M x(t; x_0, u) dt + 2 \int_0^{t_1} x(t; x_0, u)^T R u(t) dt.$$

Für den zweiten Summanden gilt dabei wegen (5.20) die Abschätzung

$$2\int_0^{t_1} x(t;x_0,u)^T R u(t) dt \ge -2c_4 \|R\| \int_0^{t_1} \|u(t)\| dt \ge -2c_4 \|R\| (c_1+t_1) \sqrt{\varepsilon} =: -c_5 \sqrt{\varepsilon}.$$

Aus der Abschätzung

$$(x_1 + x_2)^T M(x_1 + x_2) = x_1^T M x_1 + x_2^T M x_2 + 2x_1^T M x_2 \ge x_1^T M x_1 + 2x_1^T M x_2$$

folgt für den ersten Summanden mit $x_1(t)=x(t;x_0,0),\,x_2(t)=x(t;0,u)$ und der Cauchy-Schwarz-Ungleichung

$$\int_{0}^{t_{1}} x(t; x_{0}, u)^{T} M x(t; x_{0}, u) dt \geq \int_{0}^{t_{1}} x_{1}(t)^{T} M x_{1}(t) + \int_{0}^{t_{1}} 2x_{1}(t)^{T} M x_{2}(t) dt \\
\geq c_{0} - 2 \|R\| \sqrt{\int_{0}^{t_{1}} \|x_{1}(t)\|^{2} dt} \sqrt{\int_{0}^{t_{1}} \|x_{2}(t)\|^{2} dt} \\
\geq c_{0} - 2 \|R\| c_{3} \sqrt{t_{1} c_{2}^{2} \varepsilon} =: c_{0} - c_{6} \sqrt{\varepsilon}.$$

Insgesamt ergibt sich damit mit $c_7 := c_5 + c_6$

$$J(0, t_1, x_0, u) \ge c_0 - c_7 \sqrt{\varepsilon}.$$

Wählen wir nun $\varepsilon = c_0^2/(2c_7)^2$ (womit $c_7\sqrt{\varepsilon} = c_0/2$ gilt), so folgt letztendlich im Fall (5.17) $J(0, t_1, x_0, u) > c_0/2$.

Zusammen der Abschätzung (5.16) für den Fall (5.15) erhalten wir also

$$J(0, t_1, x_0, u) \ge \max\{c_0/2, c_0^2/(4c_7)^2\} =: c$$

und folglich (5.13).

Nun können wir die Punkte (i) und (iii) in der obigen Aufstellung klären. Als erstes betrachten wir Punkt (i), d.h. wir verallgemeinern wir Lemma 5.8 auf die neue Kostenfunktion (5.12).

Lemma 5.15 Das Paar (A, C) sei beobachtbar. Dann ist das linear quadratische Problem mit g aus (5.12) nullkontrollierend.

Beweis: Wir beweisen

$$x(t; x_0, u) \not\to 0 \Rightarrow J(x_0, u) = \infty.$$

Gelte also $x(t; x_0, u) \not\to 0$. Dann existiert eine Folge von Zeiten $t_k \to \infty$ und ein $\varepsilon > 0$, so dass $||x(t_k; x_0, u)|| \ge \varepsilon$. O.B.d.A. gelte $t_{k+1} - t_k \ge 1$. Mit Lemma 5.14, $x_k = x(t_k; x_0, u)$ und $u_k(\cdot) = u(t_k + \cdot)$ folgt dann

$$\int_{t_k}^{t_k+1} g(x(t; x_0, u), u(t)) dt = \int_0^1 g(x(t; x_k, u_k), u_k(t)) dt = J(0, 1, x_k, u_k) \ge c\varepsilon^2.$$

Damit folgt

$$\begin{split} J(x_0,u) &= \int_0^\infty g(x(t;x_0,u),u(t))dt \\ &\geq \sum_{k=1}^\infty \int_{t_k}^{t_k+1} g(x(t;x_0,u),u(t))dt \geq \sum_{k=1}^\infty \varepsilon^2 &= \infty. \end{split}$$

Es bleibt Punkt (iii) nachzuweisen, also dass der Beweis "(i) \Rightarrow (ii)" von Satz 5.12 auch für g aus (5.12) gilt. Dies zeigt der folgende Satz.

Satz 5.16 Das Paar (A, C) sei beobachtbar. Dann gilt Satz 5.12 auch für das linear quadratische Problem mit g aus (5.12).

Beweis: Mit Lemma 5.15 an Stelle von Lemma 5.8 folgen alle Beweisteile bis auf "(i)⇒(ii)" ganz analog zu Satz 5.12.

Im Beweis von "(i) \Rightarrow (ii)" wird die positive Definitheit von G nur an einer Stelle benutzt, nämlich um zu zeigen dass

$$P(0, t_1, x_0) = \int_0^{t_1} g(x(t, x_0, u^*), u^*(t)) dt$$

in Gleichung (5.10) positiv ist für alle $x_0 \neq 0$. Dies folgt aber mit Lemma 5.14 und der Beobachtbarkeitsannahme ebenfalls für g aus (5.12). Damit lässt sich der Beweis unverändert übernehmen und die Aussage folgt.

Bemerkung 5.17 Die zugehörige Riccati-Gleichung lautet ausgeschrieben

$$QA + A^{T}Q + C^{T}\widetilde{M}C - (QB + C^{T}\widetilde{R})N^{-1}(B^{T}Q + \widetilde{R}^{T}C)$$

und das optimale Feedback

$$F = -N^{-1}(B^TQ + R^TC).$$

Beachte, dass sowohl $V(x) = x^T Q x$ als auch Fx i.A. nicht von der Form $y^T \widetilde{Q} y$ oder $\widetilde{F} y$ sind. Um F für ein Kontrollsystem der Form (4.1) in Abhängigkeit von y zu implementieren, benötigen wir also nach wie vor einen Beobachter.

Kapitel 6

Der Kalman Filter

Wir haben bereits in Kapitel 4 eine Möglichkeit gesehen, wie man aus dem gemessenen Ausgang y(t) = Cx(t) den Zustand x(t) eines Kontrollsystems mittels eines dynamischen Beobachters z(t) rekonstruieren kann. Allerdings stand bei den dortigen Überlegungen in erster Linie die asymptotische Stabilität des geregelten Systems im Vordergrund und nicht so sehr die Güte der Approximation $z(t) \approx x(t)$.

Mit Hilfe der im letzten Kapitel entwickelten linear quadratischen optimalen Steuerung wollen wir nun eine Methode entwickeln, mit der eine – in einem gewissen Sinne – optimale Zustandsschätzung $z(t) \approx x(t)$ erzielt werden kann.

Die Lösung dieses linear quadratischen Zustandsschätzproblems wird durch den sogenannten Kalman Filter (oder auch LQ-Schätzer) geliefert. Dieser Filter findet sich heutzutage – in der ein oder anderen Variante – in unzähligen technischen Anwendungen, vom Radargerät über den CD-Spieler bis zum Handy. Hier betrachten wir eine deterministische, zeitkontinuierliche Variante auf unendlichem Zeithorizont, weil wir für diese Version direkt auf den Ergebnissen des letzten Kapitels aufbauen können.

6.1 Zustandsschätzung auf unendlichem Zeithorizont

Wir betrachten zunächst das folgende, etwas anders formulierte Problem: Gegeben sei ein Kontrollsystem mit Ausgang (4.1) mit der etwas geänderten Notation B = D und u = v, also

$$\dot{x}(t) = Ax(t) + Dv(t), \qquad y(t) = Cx(t), \tag{6.1}$$

wobei (A, C) beobachtbar sei.

Gegeben sei weiterhin eine Funktion $y_m : \mathbb{R} \to \mathbb{R}^l$. Ziel ist es nun, mit Hilfe der Lösungen von (6.1) eine konstruktiv berechenbare Funktion $x^*(t)$ zu finden, so dass $y(t) = Cx^*(t)$ die Funktion $y_m(t)$ gut approximiert. Die Interpretation ist, dass $y_m(t) = Cx_m(t)$ gemessene Ausgangswerte einer Lösung x_m eines Kontrollsystems mit der gleichen Matrix A wie in (6.1) sind, aus denen der Zustand $x_m(t)$ möglichst gut geschätzt werden soll. Diese Anwendung werden wir im nachfolgenden Abschnitt noch genauer betrachten.

Der Kalman-Filter, den wir in den folgenden Schritten herleiten werden, löst dieses Problem optimal im Sinne einer "indirekten" kleinsten Quadrate-Approximation, die in zwei Schritten vorgeht:

Im ersten Schritt wählen wir symmetrische und positiv definite Matrizen \widetilde{M} und N passender Dimension und berechnen für jedes $\tau \geq 0$ und jeden Anfangswert x_0 zur Anfangszeit $t_0 = \tau$ eine Kontrollfunktion $v: (-\infty, \tau] \to \mathbb{R}^n$, so dass die zugehörige Lösung $x_{\tau}(t) = x(t; \tau, x_0, v)$ das Funktional

$$J_{\tau}(x_0, v) := \int_{-\infty}^{\tau} (Cx_{\tau}(t) - y_m(t))^T \widetilde{M}(Cx_{\tau}(t) - y_m(t)) + v(t)^T N v(t) dt$$
 (6.2)

minimiert. Wir nehmen dabei an, dass die optimale Wertefunktion

$$P_{\tau}(x_0) := \inf_{v \in \mathcal{U}} J_{\tau}(x_0, v)$$

endlich ist.

Im zweiten Schritt wählen wir dann $x^*(\tau)$ so, dass $P_{\tau}(x^*(\tau))$ minimal wird, d.h. dass

$$P_{\tau}(x^*(\tau)) = \min_{x_0 \in \mathbb{R}^n} P_{\tau}(x_0)$$

gilt.

Der Ansatz mag auf den ersten Blick etwas umständlich erscheinen. Er führt aber auf eine sehr einfach zu implementierende Lösung, die wir nun herleiten wollen.

Zunächst einmal transformieren wir die Zeit so, dass das Integral in (6.2) von 0 bis ∞ läuft, wie dies in unserem üblichen linear-quadratischen Problem der Fall ist.

Dazu setzen wir $x^{\tau}(t; x_0, v) := x(\tau - t; x_0, v)$ und $y_m^{\tau}(t) = y_m(\tau - t)$. Dann gilt mit der Abkürzung $x^{\tau}(t) = x^{\tau}(t; x_0, v)$ für

$$J_{\tau}^{-}(x_{0},v) := \int_{0}^{\infty} (Cx^{-}(t) - y_{m}^{-\tau}(t))^{T} \widetilde{M}(Cx(t) - y_{m}^{-\tau}(t)) + v(t)^{T} Nv(t) dt$$
 (6.3)

die Gleichheit $J_{\tau}^{-}(x_0, v) = J_{\tau}(x_0, v(-\tau - \cdot))$ und damit insbesondere

$$P_{\tau}^{-}(x_0) := \inf_{v \in \mathcal{U}} J_{\tau}^{-}(x_0, v) = P_{\tau}(x_0).$$

Beachte, dass $x^{\tau}(t;x_0,v)$ Lösung des Kontrollsystems

$$\dot{x}^{\tau}(t) = -Ax^{\tau}(t) - Dv(\tau - t)$$

ist. Mit einer weiteren Transformation können wir (6.3) nun (fast) auf die Form unseres linear quadratischen Ausgangsregelungsproblems gemäß Definition 5.1 mit g aus (5.12) bringen:

Dazu erweitern wir den Zustand $x \in \mathbb{R}^n$ des Systems um eine Komponente $x_{n+1}(t) \equiv const$, also $\dot{x}_{n+1}(t) \equiv 0$. Dies erreichen wir durch die Wahl

$$\bar{x} := \begin{pmatrix} x \\ x_{n+1} \end{pmatrix}, \ \overline{A} := \begin{pmatrix} -A & 0 \\ 0 & 0 \end{pmatrix} \text{ und } \overline{D} := \begin{pmatrix} -D \\ 0 \end{pmatrix}.$$

Definieren wir nun

$$\overline{M}_{\tau}(t) := \left(\begin{array}{cc} C^T \widetilde{M} C & -C^T \widetilde{M} y_m^{\tau}(t) \\ -y_m^{\tau}(t)^T \widetilde{M} C & y_m^{\tau}(t)^T \widetilde{M} y_m^{-\tau}(t) \end{array} \right)$$

und $g(t, \bar{x}, v) := \bar{x}^T \overline{M}_{\tau}(t) \bar{x} + v^T N v$ so folgt für $\bar{x}^T = (x^T, 1)$

$$g(t, \bar{x}, v) = (Cx - y_m^{-\tau}(t))^T \widetilde{M}(Cx - y_m^{-\tau}(t)) + v(t)^T N v(t) dt.$$

Folglich gilt für $\bar{x}_0^T = (x_0^T, 1)$

$$J_{\tau}^{-}(x_{0},v) = \int_{0}^{\infty} g(t,\bar{x}(t;x_{0},v),v(t))dt =: \overline{J}_{\tau}(\bar{x}_{0},v).$$

Mit \overline{P}_{τ} bezeichnen wir wie üblich die optimale Wertefunktion. Dieses Problem ist von der üblichen LQ-Form mit Ausnahme der Tatsache, dass g nun explizit von der Zeit abhängt. Tatsächlich sind aber die im Beweis von Satz 5.12 verwendeten Gleichungen weiterhin gültig, wenn wir die Zeit in $\overline{M}(t)$ passend berücksichtigen. Genauer gilt (was wir hier aus Zeitgründen nicht beweisen):

Betrachte für $t \in [0, \sigma]$ die Lösung der Riccati-Differentialgleichung

$$\dot{\overline{Q}}_{\tau,\sigma}(t) = \overline{Q}_{\tau,\sigma}(t)\overline{A} + \overline{A}^T \overline{Q}_{\tau}(t) + \overline{M}_{\tau}(\sigma - t) - \overline{Q}_{\tau,\sigma}(t)\overline{D}N^{-1}\overline{D}^T \overline{Q}_{\tau,\sigma}(t)$$
(6.4)

mit Anfangsbedingung $\overline{Q}_{\tau,\sigma}(0)=0$. Dann gilt die Konvergenz

$$P_{\tau}(\bar{x}) := \lim_{\sigma \to \infty} \bar{x}^T \overline{Q}_{\tau,\sigma}(\sigma) \bar{x}.$$

Nun zerlegen wir $\overline{Q}_{\tau,\sigma}(t)$ passend zur Definition von \overline{A} : Schreiben wir

$$\overline{Q}_{\tau,\sigma}(t) = \begin{pmatrix} Q_{\tau,\sigma}(t) & q_{\tau,\sigma}(t) \\ q_{\tau,\sigma}(t)^T & \alpha_{\tau,\sigma}(t) \end{pmatrix},$$

so folgt aus der Form der Matrizen \overline{A} und \overline{D} , dass $Q_{\tau,\sigma}(t)$ die Gleichung

$$\dot{Q}_{\tau,\sigma}(t) = -Q_{\tau,\sigma}(t)A - A^T Q_{\tau,\sigma}(t) + C^T \widetilde{M}C - Q_{\tau,\sigma}(t)DN^{-1}D^T Q_{\tau,\sigma}(t)$$

erfüllt. Dies ist aber genau die Riccati-Differentialgleichung aus dem Beweis von Satz 5.12. Zudem sind alle Daten und damit auch $Q_{\tau,\sigma}(t) = Q(t)$ unabhängig von τ und σ . Es folgt also

$$\lim_{\sigma \to \infty} Q(\sigma) = Q,$$

wobei Q die algebraische Riccati-Gleichung

$$-QA - A^{T}Q + C^{T}\widetilde{M}C - QDN^{-1}D^{T}Q = 0$$
(6.5)

löst.

Damit erhalten wir mit $\bar{x}_0^T = (x_0^T, 1)$ und $q_\tau = \lim_{\sigma \to \infty} q_{\tau, \sigma}(\sigma), \ \alpha_\tau = \lim_{\sigma \to \infty} \alpha_{\tau, \sigma}(\sigma)$

$$P_{\tau}(x_0) = \overline{P}_{\tau}(\bar{x}_0) = \lim_{\sigma \to \infty} \bar{x}_0^T \overline{Q}_{\tau,\sigma}(\sigma) \bar{x}_0 = x_0^T Q x_0 + 2x_0^T q_{\tau} + \alpha_{\tau}.$$

Der im zweiten Schritt des Ansatzes gesuchte Wert $x^*(\tau)$ ergibt sich damit (durch Ableiten des Ausdrucks und Umstellen nach x_0) zu

$$x^*(\tau) = -Q^{-1}q_{\tau} = -Sq_{\tau}.$$

für $S := Q^{-1}$. Durch Multiplikation von (6.5) mit S von links und rechts sowie mit -1 folgt, dass S die sogenannte duale Riccati-Gleichung

$$AS + SA^{T} - SC^{T}\widetilde{M}CS + DN^{-1}D^{T} = 0 {(6.6)}$$

löst.

Es bleibt q_{τ} zu berechnen. Aus der Riccati-Differentialgleichung (6.4) folgt für $q_{\tau,\sigma}(t)$ die Differentialgleichung

$$\dot{q}_{\tau,\sigma}(t) = -A^T q_{\tau,\sigma}(t) - Q(t)DN^{-1}D^T q_{\tau,\sigma}(t) - C^T \widetilde{M} y_m(\tau - \sigma + t)$$

mit Anfangsbedingung $q_{\tau,\sigma}(0) = 0$. Hieraus folgt

$$\dot{q}_{\tau+s,\sigma+s}(t) = \dot{q}_{\tau,\sigma}(t)$$

und da diese beiden Lösungen für t=0 übereinstimmen, folgt

$$q_{\tau+s,\sigma+s}(t) = q_{\tau,\sigma}(t).$$

Damit folgt

$$\frac{d}{ds}\Big|_{s=0} q_{\tau+s,\sigma+s}(\sigma+s) = \dot{q}_{\tau,\sigma}(\sigma)
= -A^T q_{\tau,\sigma}(\sigma) - Q(\sigma)DN^{-1}D^T q_{\tau,\sigma}(\sigma) - C^T \widetilde{M} y_m(\tau)$$

und folglich mit $\sigma \to \infty$

$$\frac{d}{d\tau}q_{\tau} = -A^T q_{\tau} - QDN^{-1}D^T q_{\tau} - C^T \widetilde{M} y_m(\tau).$$

Damit erhalten wir schließlich mit (6.6)

$$\begin{split} \dot{x}^*(\tau) &= -S \frac{d}{d\tau} q_{\tau} \\ &= SA^T q_{\tau} + DN^{-1} D^T q_{\tau} + SC^T \widetilde{M} y_m(\tau) \\ &= -SA^T S^{-1} x^*(\tau) - DN^{-1} D^T S^{-1} x^*(\tau) + SC^T \widetilde{M} y_m(\tau) \\ &= (-SA^T - DN^{-1} D^T) S^{-1} x^*(\tau) + SC^T \widetilde{M} y_m(\tau) \\ &= (AS - SC^T \widetilde{M} CS) S^{-1} x^*(\tau) + SC^T \widetilde{M} y_m(\tau) \\ &= Ax^*(\tau) - SC^T \widetilde{M} (Cx^*(\tau) - y_m(\tau)) \\ &= Ax^*(\tau) + L(Cx^*(\tau) - y_m(\tau)) \end{split}$$

$$mit L = -SC^T \widetilde{M}.$$

Diese Differentialgleichung ist der sogenannte Kalman-Filter. Seine Anwendung ist wie folgt: Ist $x^*(t)$ bekannt, so kann $x^*(s)$, s > t, durch Lösen der Differentialgleichung auf dem Intervall [t,s] (analytisch oder numerisch) aus den Daten $y_m|_{[t,s]}$ berechnet werden. Der Kalman-Filter eignet sich also zur rekursiven Online-Implementierung.

Zwei Eigenschaften des Kalman-Filters wollen wir hier noch explizit festhalten:

- (i) Die Matrix L hängt nicht von y_m ab. Um L zu berechnen, muss lediglich eine der beiden Riccati-Gleichungen (6.5) oder (6.6) gelöst werden.
- (ii) Die Matrix A + LC ist asymptotisch stabil. Die Matrix L^T ist nämlich das LQoptimale Feedback des zur dualen Riccati-Gleichung (6.6) gehörigen dualen optimalen
 Steuerungsproblems ist. Daher ist $A^T + C^T L^T$ asymptotisch stabil und folglich auch $A + LC = (A^T + C^T L^T)^T$, weil diese beiden Matrizen die gleichen Eigenwerte besitzen.

6.2 Der Kalman-Filter als Beobachter

Wir wollen den Kalman-Filter nun für das in der Einführung dieses Kapitels skizzierte Beobachterproblem anwenden.

Gegeben sei dazu ein Kontrollsystem mit Ausgang (4.1), also

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t),$$

mit beobachtbarem Paar (A,C). Gegeben seien weiterhin ein unbekannter Anfangswert x_0 sowie eine bekannte Kontrollfunktion u(t), $t \geq 0$, die zugehörigen Ausgangswerte $y(t) = Cx(t;x_0,u)$, $t \geq 0$, sowie eine Schätzung z_0 des Anfangswerts x_0 . Gesucht ist nun eine Kurve z(t), $t \geq 0$, mit $z(0) = z_0$, für die der Schätzfehler $z(t) \approx x(t)$ in einem geeigneten Sinne möglichst gut wird und so, dass z(t) nur von $y|_{[0,t]}$ abhängt (also aus den zur Zeit t bekannten Daten berechenbar ist).

Zur Lösung des Problems machen wir den Ansatz

$$\dot{z}(t) = Az(t) + Bu(t) + v(t), \tag{6.7}$$

wobei $v: \mathbb{R} \to \mathbb{R}^n$ so bestimmt werden soll, dass z(t) eine möglichst gute Schätzung ist. Um den Term Bu(t) aus der Gleichung zu eleminieren, definieren wir den Schätzfehler e(t) := z(t) - x(t). Dieser erfüllt die Gleichung

$$\dot{e}(t) = Ae(t) + v(t), \tag{6.8}$$

d.h. wir haben hier ein Kontrollsystem (6.1) mit D = Id und x = e. Die Größe y_m für e muss nun, damit die Probleme für z und e äquivalent sind, die Gleichung

$$Ce(t) - y_m(t) = Cz(t) - y(t) \Leftrightarrow y_m(t) = y(t) + Ce(t) - Cz(t)$$
 (6.9)

erfüllen, woraus $y_m(t) = Cx(t) + Ce(t) - Cz(t) = 0$ folgt.

Berechnen wir nun gemäß dem vorhergehenden Abschnitt das Feedback L für den Kalman-Filter für (6.8), so ergibt sich die Filtergleichung wegen $y_m \equiv 0$ zu

$$\dot{e}^*(t) = (A + LC)e^*(t).$$

Dies ist äquivalent zu

$$\dot{z}(t) = Az(t) + Bu(t) + L(Cz(t) - y(t)) \tag{6.10}$$

und liefert damit eine online implementierbare Beobachtergleichung (beachte die strukturelle Ähnlichkeit zum dynamischen Beobachter in Kapitel 4) zur Berechnung von z(t), die nur noch (analytisch oder numerisch) gelöst werden muss.

Nachdem wir hier keine Messwerte y(t) für t < 0 gegeben haben, können wir den optimalen Startwert $e^*(0)$ hier nicht wie im vorhergehenden Abschnitt berechnen. Aber selbst wenn wir es könnten, würde uns dies nichts nützen, denn für (6.10) müssten wir dann ja $z(0) = e^*(0) + x_0$ verwenden — der Wert x_0 ist aber unbekannt. Es liegt also nahe, in (6.10) den Schätzwert $z_0 \approx x_0$ als Anfangswert zu verwenden. Weil A - LC asymptotisch stabil ist, konvergiert der Schätzfehler $e^*(t)$ für $t \to \infty$ gegen 0, d.h. die Approximation $z(t) \approx x(t)$ wird mit wachsendem t immer besser. Da unserem Ansatz aber ein LQ-optimales Steuerungsproblem zu Grunde liegt, kann man erwarten, dass die Schätzung z(t) ausgehend von $z(0) = z_0$ in einem gewissen Sinne optimal ist.

Um zu sehen, welcher Art diese Optimalität ist, setzen wir y(t) für t < 0 so fort, dass sich $e^*(0) = z_0 - x_0$ und damit $z(0) = z_0$ als Lösung des Kalman-Filters ergibt. Dies ist gerade dann der Fall, wenn wir y(t) mittels

$$y(t) = \begin{cases} Cx(t; z_0, 0), & t < 0 \\ Cx(t; x_0, u), & t \ge 0 \end{cases}$$
(6.11)

aus der Vorwärtslösung von (4.1) für x_0 und u und der Rückwärtslösung für z_0 und $u \equiv 0$ zusammensetzen: Für $v \equiv 0$ gilt dann nämlich wegen der linken Gleichung in (6.9) und der Tatsache, dass (4.1) und (6.7) für u = v = 0 übereinstimmen

$$Ce(t; z_0 - x_0, 0) - y_m = Cz(t; z_0, 0, 0) - y(t) = Cx(t; z_0, 0) - y(t) = 0$$

für alle t < 0. Damit gilt $J_0(z_0 - x_0, 0) = 0$ für das Optimalitätskriterium (6.2), folglich auch $P_0(z_0 - x_0) = 0$ und wir erhalten $e^*(0) = z_0 - x_0$.

Der aus dem Anfangswert z_0 berechnete Approximationswert z(t) ist also gerade der Endwert derjenigen Lösung von (6.7), welche die zusammengesetzte Kurve (6.11) im Sinne von (6.2) am Besten approximiert.

Der große Vorteil des Kalman-Filters ist es, dass er auch bei ungenauen Daten $\tilde{y}(t) \approx y(t)$ gute Approximtionen liefert. Dies kann mit stochastischen Methoden mathematisch rigoros formuliert und bewiesen werden.

Literaturverzeichnis

- [1] B. Aulbach, Gewöhnliche Differenzialgleichungen, Elsevier-Spektrum Verlag, Heidelberg, 2. ed., 2004.
- [2] F. COLONIUS, *Einführung in die Steuerungstheorie*. Vorlesungsskript, Universität Augsburg, 1992, eine aktuelle Version ist erhältlich unter dem Link "Lehre" auf scicomp.math.uni-augsburg.de/~colonius/.
- [3] L. Grüne, Stabilität und Stabilisierung linearer Systeme. Vorlesungsskript, Universität Bayreuth, 2003, www.math.uni-bayreuth.de/~lgruene/linstab0203/.
- [4] E. D. Sontag, *Mathematical Control Theory*, Springer Verlag, New York, 2nd ed., 1998.

Index

A-invarianter Unterraum, 14 Anfangsbedingung, 5, 8 Ausgang, 37 Ausgangsfeedback, 29 dynamisch, 45 Ausgangsregelung, 61	Feedback, 27 dynamisch, 45 optimal, 58 Stabilisierung, 27, 45 statisch, 45 Funktional, 48
Bellman'sches Optimalitätsprinzip, 48	Gleichgewicht, 19
Beobachtbarkeit, 37	Hamilton-Jacobi-Bellman Gleichung, 50
asymptotische, 42	Hautus-Kriterium, 17
Dualität, 43	Heizungsregelung, 28
Eigenwertkriterium, 42	Heizungsregerung, 20
Dualität, 39	invertiertes Pendel, siehe Pendel
Beobachtbarkeitsmatrix, 40	,
Beobachter	Jordan'sche Normalform, 21
dynamischer, 44	IZ 1 - 1214 - 170
Existenz, 44	Kalman-Filter, 70
mittels Kalman-Filter, 71	Kalman-Kriterium, 16
Bilinearform, 24	Konkatenation, 7
aharaktaristisahas Palynam	Kontrolle, 1
charakteristisches Polynom kontrollierbarer Anteil, 17	Kontrollierbarkeit, 11
unkontrollierbarer Anteil, 17	Dualität, 39
unkontromerbarer Anten, 17	vollständige, 14 Kontrollierbarkeitsmenge, 12
duales System, 39	Struktur, 16
Dualität, 39	Kontrollsystem, 1
Kontrollierbarkeit und Beobachtbarkeit,	linear, 2
39	Kontrolltheorie, 1
Stabilisierbarkeit und asymptotische Be-	Kontrollwert, 1
obachtbarkeit, 43	Kostenfunktion, 48
dynamische Programmierung, 48	quadratisch, 53
Eigenwertkriterium für Stabilität, 20, 22	linear-quadratisches Problem, 54
Equilibrium, 19	Ausgangsregelung, 61
Erreichbarkeit, 11	Lösbarkeit, 58, 64
Erreichbarkeitsmatrix, 15	Lösungsansatz, 57
Erreichbarkeitsmenge, 11	Ljapunov Funktion
Struktur, 16	bilinear, 24
Existenz- und Eindeutigkeitssatz, 5, 8	hinreichendes Kriterium, 23

INDEX 75

hinreichendes und notwendiges Kriteri-	Stabilität, 19
um, 26	asymptotisch
quadratisch, 23	global, 20
Ljapunov Gleichung, 25	lokal, 20
	Eigenwertkriterium, 20, 22
Matrix-Differentialgleichung, 6	exponentiell, 20
Matrix-Exponential funktion, 4	im Sinne von Ljapunov, 20
nullkontrollierend, 52, 64	Ljapunov Funktions-Kriterium, 26
	Steuerbarkeit, 11
optimale Steuerung, 47	Steuerung, 1
optimale Wertefunktion, 48	stückweise stetig, 7
optimales Paar, 48	1 1 1 1 7 1 22
optimales Steuerungsproblem, 48	unbeobachtbare Zustände, 38
linear-quadratisch, 54	Struktur, 38
Ausgangsregelung, 61	Unterscheidbarkeit, 37
nullkontrollierend, 52, 64	Vektorfeld, 1
Optimalitätsbedingung	vorgebbares Polynom, 31
hinreichend, 52	Vorgebbarkeit und Stabilisierbarkeit, 32
notwendig, 51	
Optimalitätsprinzip, 48	Zustand, 1
	Zustandsfeedback
Pendel	statisch, 45
Darstellung der Lösungen, 3	Zustandsschätzung, 67
grafische Veranschaulichung, 2	
lineares Modell, 3	
Ljapunov Funktion, 27	
nichtlineares Modell, 2	
Stabilität, 22	
Polverschiebungssatz, 35	
Regelung, 1	
Regelungsnormalform, 31	
Riccati-Gleichung	
algebraisch, 56	
dual, 70	
Differentialgleichung, 58	
Rückkopplung, siehe Feedback	
Ruhelage, 19	
G. 1.11. 1 1 1 1 2 2 2 2 7	
Stabilisierbarkeit, 33, 35	
Dualität, 43	
Stabilisierungsproblem, 27	
Lösung, 33, 34	
mittels optimaler Steuerung, 58	
mit Ausgang, 45	
Lösung, 45	
schematische Darstellung, 35	