
Artificial Intelligence Methods in
Control

Lars Grüne
Chair of Applied Mathematics

Mathematical Institute
University of Bayreuth

95440 Bayreuth, Germany
lars.gruene@uni-bayreuth.de

https://num.math.uni-bayreuth.de/en/team/lars-gruene/

Lecture Notes

Summer Semester 2021

Preface

These Lecture Notes were written to accompany a Master Course in Applied Mathematics
that I gave in the Summer Semester 2021 at the University of Bayreuth, Germany. I would
like to thank all the students of the course for their valuable feedback, which considerably
helped to improve these notes. Apart from the literature that is cited throughout the
text, the books Reinforcement Learning: An Introduction by Andrew Barto and Richard
S. Sutton [1] and Neuro Dynamic Programming by Dimitri P. Bertsekas and John N.
Tsitsiklis [2] have been very valuable sources for writing these notes.

Since the course was given in a virtual format, all lectures are recorded and I’d be happy
to provide links to the respective recordings upon request.

Bayreuth, July 2021 Lars Grüne

i

Contents

Preface i

1 Introduction 1

2 Problem formulation 3

3 Dynamic Programming 9

3.1 Dynamic programming principle . 9

3.2 Value iteration . 13

3.3 The Hamilton-Jacobi-Bellman equation . 16

4 RL with finite state and action space 19

4.1 Q-learning . 19

4.2 Convergence analysis . 20

4.3 Choice of x and u in the algorithm . 25

5 Non-deterministic Reinforcement Learning 27

5.1 Definitions . 27

5.2 Dynamic programming . 29

5.3 Q-Learning . 33

5.4 Convergence analysis . 34

5.5 The case of known transition probabilities . 37

6 Deep Neural Networks 39

6.1 Definition of DNNs . 40

6.2 The universal approximation theorem . 42

6.3 Improved results for compositional functions 44

6.4 Training the DNN . 46

6.5 Deep reinforcement learning . 47

iii

iv CONTENTS

7 Compositional Lyapunov functions 49

7.1 Lyapunov functions . 49

7.2 Separable Lyapunov functions . 50

7.3 Approximation results . 54

7.4 Training the network . 55

7.5 Numerical examples . 57

References 62

Chapter 1

Introduction

In this lecture we will be concerned with nonlinear control systems, either in continuous
time

ẋ(t) = f(x(t), u(t)) (1.1)

or in discrete time

x(k + 1) = g(x(k), u(k)). (1.2)

Here f ∶ Rn × Rm → Rn is either a vector field in continuous time or g ∶ X × U → X is a
transition function in discrete time, where X and U are arbitrary sets. In order to unify
the notation, we define X = Rn and U = Rm in the continuous time case. As usual, x is
the state and u is the control input of the system. In RL u is also called the control action
and U is referred to as the action space. We denote the solution satisfying x(0) = x0 by

xu(t, x0) or xu(k, x0),

respectively. The set of control functions in continuous time and the set of control sequences
in discrete time are denoted by U . In continuous time we assume measurability of the
control functions in order to ensure solvability of (1.1) in the Caratheodory sense under
the usual conditions on f . In discrete time we sometimes write (1.2) briefly as x+ = f(x,u).
The topics in this lecture center around a method called “reinforcement learning” (RL).
In this method, a feedback control strategy is “learned” based on a so-called loss function
`(x,u), that assigns a loss to each state x and control u (the precise problem fornulation
will be given in the next chapter). The goal is then to minimise the loss. Conceptually, this
is nothing but an optimal control problem of a similar type as we have already discussed
it in the Mathematical Control Theory lecture. Indeed, RL can be used as an alternative
solution technique to the Riccati equation or to MPC. However, RL can also be used if f
and ` are not known exactly or not known, at all, but can only be evaluated by means of
measurements.

In the first half of this lecture we will discuss the foundations of RL for deterministic and
non-deterministic discrete time problems with finitely many states and control inputs. We
will in particular investigate conditions under which RL provably converges to the optimal
strategy.

1

2 CHAPTER 1. INTRODUCTION

In the second half we will turn to deep RL — i.e., RL with deep neural networks as ap-
proximators — for problems with high-dimensional state space. Here we will in particular
investigate the question when deep RL can overcome the so-called “curse of dimensional-
ity”, which describes the fact that typically the numerical effort grows exponentially with
the dimension of the state space.

Chapter 2

Problem formulation

July 21, 2021

In discrete time, our goal is to find a control strategy such that

J(x0, u(⋅)) =
∞

∑
k=0

γk`(xu(k, x0), u(k)) (2.1)

becomes minimal, where γ ∈ (0,1] is called the discount factor. In RL, “strategy” is
usually understood as a control in feedback form and the corresponding fedback law is
usually denoted by π. Hence, we are looking for a map π ∶ X → U , such that the solution
xπ(k, x0) of

x(k + 1) = g(x(k), π(x(k))), x(0) = x0 (2.2)

together with the corresponding control values u(k) = π(x(k)) minimises (2.1).

In continuous time, the problem is to find a control such that

J(x0, u(⋅)) = ∫
∞

0
e−δt`(xu(t, x0), u(t))dt (2.3)

becomes minimal, where δ ∈ (0,1] is called the discount rate. Again, one would usually like
to have the optimal strategy in feedback form. Again, we are looking for a map π ∶X → U ,
such that the solution xπ(k, x0) of

ẋ(t) = f(x(t), π(x(t))), x(0) = x0 (2.4)

together with the corresponding control values u(t) = π(x(t)) minimises (2.3). We note that
while equation (2.2) is always solvable without any additional conditions on π, equation
(2.4) is a differential equation whose right hand side x↦ f(x,π(x)) needs to satisfy certain
conditions in order to guarantee the existence and uniqueness of a solution. For this reason,
the continuous-time problem is more difficult from a mathematical point of view. This is
why in RL the discrete-time formulation is often preferred.

In order to avoid difficulties with the existence of the infinite sum and integral in (2.1) and
(2.3), we make the following standing assumption throughout this lecture.

3

4 CHAPTER 2. PROBLEM FORMULATION

Assumption 2.1 One of the following two properties holds:

(i) `(x,u) ≥ 0 for all x ∈X,u ∈ U

(ii) sup
x∈X,u∈U

∣`(x,u)∣ <∞ and γ < 1 in discrete time or δ > 0 in continuous time

This assumption implies that the infinite sum or integral always has a well defined value
(which may be infinite). In addition, the assumption implies certain estimates for the
optimal value function

V (x0) ∶= inf
u(⋅)∈U

J(x0, u(⋅)).

Lemma 2.2 Consider the optimal control problems of minimising (2.1) subject to (1.2)
or of minimising (2.3) subject to (1.1). Let Assumption 2.1 hold. Then for all u ∈ U the
limit

lim
K→∞

K

∑
k=0

γk`(xu(k, x0), u(k))

or

lim
T→∞

∫
T

0
e−δt`(xu(t, x0), u(t))dt

exists and has a finite value or diverges to +∞. Moreover, for each trajectory x(⋅) = xu(⋅, x0)
we have the inequality

lim inf
k→∞

γkV (x(k)) ≥ 0 or lim inf
t→∞

e−δtV (x(t)) ≥ 0.

In the particular case of Assumption 2.1(ii) we moreover have the inequalities

∣V (x0)∣ ≤
M

1 − γ and ∣J(x0, u)∣ ≤
M

1 − γ ,

or

∣V (x0)∣ ≤
M

δ
and ∣J(x0, u)∣ ≤

M

δ
,

respectively, for all x0 ∈X and any upper bound M for ∣`(x,u)∣.

Proof: We show the assertion in discrete time; the continuous-time case follows similarly.
If case (i) of Assumption (2.1) holds, then obviously

K

∑
k=0

γk`(xu(k, x0), u(k))

is nonnegative and strictly increasing in K. This shows the first claim and also implies
that V (x) ≥ 0 for all x ∈X, which implies the second claim.

If case (ii) of Assumption (2.1) holds, then an upper bound M ∈ R with ∣`(x,u)∣ ≤ M for
all x ∈ X, u ∈ U holds. This implies that ∣γk`(xu(k, x0), u(k))∣ ≤Mγk and thus ∑∞k=0Mγk

is a convergent majorant series, implying absolute convergence and thus the first claim.
Particularly, ∣J(x0, u)∣ ≤ M

1−γ follows, which implies ∣V (x)∣ ≤ M
1−γ and thus the second claim

since γk → 0 as k →∞.

We illustrate the definitions with three examples.

5

Example 2.3 Consider a system with six states as in Figure 2.1, denoted byX = {(i, j) ∣ i =
1,2, j = 1,2,3}.

−100

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

0

0

0 0

0 0

0

0

0

0 0

−100

Figure 2.1: Sketch of Example 2.3

From each state (i, j) ≠ (1,3) it is possible to move to each neighbouring state. This can
be formalised by setting U = {1,2,3,4} and defining

g((i, j), u) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i,min{j + 1,3}), if u = 1 (go right)
(min{i + 1,2}, j), if u = 2 (go down)
(i,max{j − 1,1}), if u = 3 (go left)
(max{i − 1,1}, j), if u = 4 (go up)

for all (i, j) ≠ (1,3). Once the system is in state (1,3), it cannot move anymore, i.e., we
set

g((1,3), u) ∶= (1,3) for all u ∈ U.
Such a state is called an absorbing state.

The goal is to move the system to the absorbing state (1,3). Hence we give a negative
cost (i.e., a reward) to the transition to (1,3) and a cost of 0 (i.e., no reward) to all other
transitions. To this end, we set

`(x,u) = { −100, if x ≠ (1,3) and g(x,u) = (1,3)
0, else

It is thus desirable to reach (1,3) and if we use a discount factor γ < 1, then it is also
desirable to do this as fast as possible, because the earlier `(x,u) = −100 occurs, the
smaller γk(−100) becomes.

Example 2.4 Consider the second order differential equation ẍ = u, which we can rewrite
as the first order system

ẋ1(t) = x2(t)
ẋ2(t) = u(t).

This can be seen as a model of a car on a one-dimensional track with position x1, velocity
x2 and acceleration u. A typical control task may be to bring the car to stop in a certain
position (e.g., in x = 0). The cost function could therefore be chosen as `(x,u) = ∥x∥2+λ∥u∥2

with a parameter λ ≥ 0. For λ > 0, this is a linear quadratic problem of the type we
considered in Mathematical Control Theory.

6 CHAPTER 2. PROBLEM FORMULATION

If we keep the acceleration constant on the interval [0,1], then we can explicitly calculate
the solution

xu(1, x) = (x1 + x2 + u/2
x2 + u

) .

The model

x+ = g(x,u) = (x1 + x2 + u/2
x2 + u

) , (2.5)

can thus be seen as a sampled-data model of the continuous-time model with sampling
time τ = 1. We can thus also define a discrete-time optimal control problem for this model.

Example 2.5 A classical model in control theory is the inverted pendulum on a cart, also
known as cart-pole system. This model consists of an inverted rigid pendulum fixed on a
cart, cf. Figure 2.5.

M

m

u

φ

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Figure 2.2: Schematic illustration of a pendulum on a cart

The control u here is the acceleration of the cart. By means of physical laws an “exact”1

differential equation model can be derived.

ẋ1(t) = x2(t)
ẋ2(t) = −kx2(t) + g sinx1(t) + u(t) cosx1(t)
ẋ3(t) = x4(t)
ẋ4(t) = u

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=∶ f(x(t), u(t)) (2.6)

In this model the state vector x ∈ R4 consists of 4 components: x1 represents the angle φ
of the pendulum (cf. Fig. 2.5), which increases in counterclockwise direction, where x1 = 0
corresponds to the upright pendulum. x2 is the angular velocity, x3 the position of the cart
and x4 its velocity. The constant k is a measure for the friction in the model (the larger k
the more friction) and g ≈ 9.81m/s2 is the gravitational constant.

1The model (2.6) is not really exact, since it is already simplified: We have assumed that the pendulum
is so light that it does not influence the motion of the cart. Moreover, a number of constants was chosen
such that they cancel each other.

7

We will use this model as a test problem in the exercises in the second half of this lec-
ture.

Optimal control problems often involve constraints on x and u. These constraints specify
sets of admissible values of x and u and demand that no values outside these sets are used
when minimising (2.1) or (2.3). In order to simplify the presentation we will not explicitly
consider constraints in this lecture, but always consider them implicitly, by encoding them
into the dynamics f or g or in the cost function `.

For instance, in Example 2.3 there is the implicit state constraint that the system does not
leave the rectangle depicted in Figure 2.1. This is realised by defining the dynamics g in
such a way that leaving the rectangle is simply not possible.

In Example 2.4, it may be desirable to restrict acceleration and speed to physically mean-
ingful quantities and it may also be desirable to restrict the position of the car. This can be
done by defining a so-called penalty function `p, which yields large values `p(x,u) whenever
the constraints are violated, and use ` + `p as new cost function. This procedure is known
as soft constraints. For instance, for a state constraint of the form x1 ∈ [−1,1], which may
occur in Example 2.4, a possible penalty function `p might be

`p(x,u) = µ
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x − 1)2, if x > 1
0, if x ∈ [−1,1]

(x + 1)2, if x < −1
,

where µ > 0 is a sufficiently large parameter. More generally, if control and state constraints
are given in the form

{(x,u) ∣ gi(x,u) ≤ 0 for all i = 1, . . . , q}

for functions g1, . . . , gq, then a penalty function could be defined as

`p(x,u) =
q

∑
i=1

µimax{gi(x,u), 0}2.

An alternative to penalty functions are barrier functions, whose value tends to ∞ as (x,u)
approach the boundary of the constraint set. A typical barrier function is the logarithmic
barrier

`b(x,u) =
q

∑
i=1

µi(− log(−gi(x,u))).

8 CHAPTER 2. PROBLEM FORMULATION

Chapter 3

Dynamic Programming

July 21, 2021
Dynamic Programming is the name for an algorithm for solving optimal control problems
that is very similar to RL. In fact, the basic principles behind dynamic programming, which
we will present in this chapter, are very important for formulating and understanding the
basic RL algorithm. We will present these in this chapter in the deterministic setting and
will extend them to non-deterministic problems in Chapter 5.

3.1 Dynamic programming principle

Definition 3.1 Consider the optimal control problem of minimising (2.1) or (2.3) with
initial value x0 ∈X

(i) The function
V (x0) ∶= inf

u(⋅)∈U
J(x0, u(⋅))

is called optimal value function.

(ii) A control sequence or function u⋆(⋅) ∈ U is called optimal for initial value x0 if

V (x0) = J(x0, u
⋆(⋅))

holds. The corresponding trajectory xu⋆(⋅, x0) is called optimal trajectory.

(iii) A strategy π⋆ ∶X → U is called optimal if

V (x0) = J(x0, π
⋆)

holds for all x0 ∈X, where, for an arbitrary feedback law π ∶X → U ,

J(x0, π) ∶=
∞

∑
k=0

γk`(xπ(k, x0), π(xπ(k, x0)))

in discrete time and

J(x0, π) ∶= ∫
∞

0
e−δt`(xπ(t, x0), π(xπ(t, x0)))dt

in continuous time, where xπ(⋅, x0) solves (2.2) or (2.4), respectively. As in (ii), the
corresponding trajectories xπ⋆(⋅, x0) are called optimal trajectories.

9

10 CHAPTER 3. DYNAMIC PROGRAMMING

We note that if π⋆ is an optimal feedback law, then u⋆(⋅) = π⋆(xπ⋆(⋅, x0)) is an optimal
control for initial value x0.

The first result we state is the dynamic programming principle in discrete time.

Theorem 3.2 [Dynamic programming principle] Consider the optimal control problem
(2.1) with x0 ∈X. Then for all K ∈ N the equation

V (x0) = inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(K,x0))} (3.1)

holds. If, in addition, an optimal control sequence u⋆(⋅) exists for x0, then we get the
equation

V (x0) =
K−1

∑
k=0

γk`(xu⋆(k, x0), u⋆(k)) + γKV (xu⋆(K,x0)). (3.2)

In particular, in this case the “inf” in (3.1) is a “min”.

Proof: From the definition of J for u(⋅) ∈ U we immediately obtain

J(x0, u(⋅)) =
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K)), (3.3)

where u(⋅ +K) denotes the shifted control sequence defined by u(⋅ +K)(k) = u(k +K).
We now prove (3.1) by showing “≥” and “≤” separately: From (3.3) we obtain

J(x0, u(⋅)) =
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K))

≥
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(K,x0)).

Since this inequality holds for all u(⋅) ∈ U , it also holds when taking the infimum on both
sides. Hence we get

V (x0) = inf
u(⋅)∈U

J(x0, u(⋅))

≥ inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(K,x0))} ,

i.e., (3.1) with “≥”.

In order to prove “≤”, fix ε > 0 and let uε(⋅) ∈ U be an approximately optimal control
sequence for the right hand side of (3.3), i.e.,

K−1

∑
k=0

γk`(xuε(k, x0), uε(k)) + γKJ(xuε(K,x0), uε(⋅ +K))

3.1. DYNAMIC PROGRAMMING PRINCIPLE 11

≤ inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K))} + ε.

Now, observing that the different terms either depend on u(0), . . . , u(k − 1) or on û(k) =
u(k +K), k ∈ N, we can rewrite this as

inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K))}

= inf
u(⋅)∈U
û(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKJ(xu(x0), û(⋅))}

= inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(x0))}

Now (3.3) yields

V (x0) ≤ J(x0, u
ε(⋅))

=
K−1

∑
k=0

γk`(xuε(k, x0), uε(k)) + γKJ(xuε(K,x0), uε(⋅ +K))

≤ inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(K,x0))} + ε,

i.e.,

V (x0) ≤ inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(K,x0))} + ε.

Since ε > 0 was arbitrary and the expressions in this inequality are independent of ε, this
inequality also holds for ε = 0, which shows (3.1) with “≤” and thus (3.1).

In order to prove (3.2) we use (3.3) with u(⋅) = u⋆(⋅). This yields

V (x0) = J(x0, u
⋆(⋅))

=
K−1

∑
k=0

γk`(xu⋆(k, x0), u⋆(k)) + γKJ(xu⋆(K,x0), u⋆(⋅ +K))

≥
K−1

∑
k=0

γk`(xu⋆(k, x0), u⋆(k)) + γKV (xu⋆(K,x0))

≥ inf
u(⋅)∈U

{
K−1

∑
k=0

γk`(xu(k, x0), u(k)) + γKV (xu(K,x0))} = V (x0),

where we used the (already proved) equality (3.1) in the last step. Hence, the two “≥” in
this chain are actually “=” which implies (3.2).

In the special case K = 1 the dynamic programming principle becomes

V (x0) = inf
u∈U

{`(x0, u) + γV (g(x0, u))} . (3.4)

12 CHAPTER 3. DYNAMIC PROGRAMMING

This equation is known as the Bellman equation. In RL, the term in braces on the right
hand side of (3.4) plays a particular important role, which is why it is commonly denoted
with its own symbol

Q(x,u) ∶= `(x,u) + γV (g(x,u)). (3.5)

Remark 3.3 In continuous time, an analogous proof shows that for all T > 0 the equation

V (x0) = inf
u(⋅)∈U

{∫
T

0
e−δt`(xu(t, x0), u(t))dt + e−δTV (xu(T,x0))} (3.6)

and, for any optimal control function, the equation

V (x0) = ∫
T

0
e−δt`(xu⋆(t, x0), u⋆(t))dt + e−δTV (xu⋆(T,x0)) (3.7)

hold.

The following corollary states an immediate consequence from the dynamic programming
principle. It shows that tails of optimal controls are again optimal controls for suitably
adjusted initial value and time.

Corollary 3.4 If u⋆(⋅) is an optimal control sequence minimising (2.1) with initial value
x0, then for each K ∈ N the sequence u⋆K(⋅) = u⋆(⋅ +K), i.e.,

u⋆K(k) = u⋆(k +K), k = 0,1, . . .

is an optimal control sequence for initial value xu⋆(K,x0).

Proof: Inserting V (x0) = J(x0, u
⋆(⋅)) and the definition of u⋆K(⋅) into (3.3) we obtain

V (x0) =
K−1

∑
k=0

γk`(xu⋆(k, x0), u⋆(k)) + γKJ(K,xu⋆(x0), u⋆K(⋅))

Subtracting (3.2) from this equation yields

0 = γKJ(xu⋆(K,x0), u⋆K(⋅)) − γKV (xu⋆(K,x0))

which shows the assertion.

Remark 3.5 Analogously, in continuous time the control function u⋆T (⋅) = u⋆(⋅ + T), i.e.,

u⋆T (t) = u⋆(t + T), t ≥ 0

is an optimal control sequence for initial value xu⋆(T,x0).

In the next theorem by “argmin” we denote the set of minimisers of an expression.

3.2. VALUE ITERATION 13

Theorem 3.6 Consider the optimal control problem of minimising (2.1) and let Assump-
tion 2.1 hold. Consider a feedback law π⋆ ∶X → U satisfying

π⋆(x) ∈ argmin
u∈U

{`(x,u) + γV (g(x,u))} = argmin
u∈U

Q(x,u) (3.8)

for all x ∈X. Then π⋆ is an optimal strategy in the sense of Definition 3.1(iii).

Proof: We pick an arbitrary x0 ∈ X and abbreviate x̂(k) = xπ⋆(k, x0) and û(k) =
π⋆(xπ⋆(k, x0)). Then J(x0, π

⋆) = J(x0, û) and we need to show that

J(x0, û) = V (x0),

where it is enough to show “≤” because the opposite inequality follows by definition of V .
Using (3.8) and (3.4) with x0 = x̂(k) we get

γkV (x̂(k)) = γk`(x̂(k), û(k)) + γk+1V (x̂(k + 1))

for k = 0,1, Summing these equalities for k = 0, . . . ,K − 1 for arbitrary K ∈ N and
eliminating the identical terms γkV (x̂(k)), k = 1, . . . ,K − 1 on the left and on the right we
obtain

V (x0) =
K−1

∑
k=0

γk`(x̂(k), û(k)) + γKV (x̂(K)).

Now Lemma 2.2 implies lim infK→∞ γ
KV (x̂(K)) ≥ 0. Hence we obtain for the limit

lim
K→∞

K−1

∑
k=0

γk`(x̂(k), û(k)) ≤ V (x0),

which implies

J(x0, û) =
∞

∑
k=0

γk`(x̂(k), û(k)) = lim
K→∞

K−1

∑
k=0

γk`(x̂(k), û(k)) ≤ V (x0),

i.e., the desired inequality.

3.2 Value iteration

Value iteration is a first simple algorithmic method for computing V or an approximation
thereof. We consider it here under case (ii) of Assumption 2.1, because in this setting its
convergence is easier to proof. We moreover limit ourselves to the discrete-time case. The
algorithm works as follows.

Algorithm 3.7 (Value iteration)

(0) Set V0 ∶≡ 0 and k ∶= 0

14 CHAPTER 3. DYNAMIC PROGRAMMING

(1) For k = 0,1,2, . . .:

set
Vk+1(x) ∶= inf

u∈U
Qk(x,u) for all x ∈X,

with Qk(x,u) ∶= `(x,u) + γVk(g(x,u))

Of course, there are many questions related to this algorithm: How do we store Vk on a
computer? How to compute the infimum over u for all x? These are exactly the questions
that we will have to deal with when making RL a practical algorithm. However, if for the
moment we simply assume that this is possible, then we can prove the following theorem.

Theorem 3.8 Consider the discrete-time problem of minimising (2.1) and let Assumption
2.1(ii) hold. Let M > 0 be a bound for ∣`∣. Then the inequality

sup
x∈X

∣Vk(x) − V (x)∣ ≤ Mγk

1 − γ

holds.

Proof: From (3.4) we know that

V (x) = inf
u∈U

{`(x,u) + γV (g(x,u))}.

Fix ε > 0, let x ∈X be arbitrary and let uε and uεk be control values satisfying

`(x,uε) + γV (g(x,uε)) ≤ inf
u∈U

{`(x,u) + γV (g(x,u))} + ε

and
`(x,uεk) + γVk(g(x,uεk)) ≤ inf

u∈U
{`(x,u) + γVk(g(x,u))} + ε.

Then we can estimate

V (x) − Vk+1(x) ≤ `(x,uεk) + γV (g(x,uεk)) − `(x,uεk) − γVk(g(x,uεk)) + ε
= γV (g(x,uεk)) − γVk(g(x,uεk)) + ε
≤ γ sup

x∈X
∣V (x) − Vk(x)∣ + ε

and

Vk+1(x) − V (x) ≤ `(x,uε) + γVk(g(x,uε)) − `(x,uε) − γV (g(x,uε)) + ε
= γVk(g(x,uε)) − γV (g(x,uε)) + ε
≤ γ sup

x∈X
∣V (x) − Vk(x)∣ + ε,

which yields
∣V (x) − Vk+1(x)∣ ≤ γ sup

x∈X
∣V (x) − Vk(x)∣ + ε.

3.2. VALUE ITERATION 15

Since this inequality holds for all ε > 0 and all x ∈X, it follows that

sup
x∈X

∣V (x) − Vk+1(x)∣ ≤ γ sup
x∈X

∣V (x) − Vk(x)∣.

By induction we thus obtain

sup
x∈X

∣V (x) − Vk(x)∣ ≤ γk sup
x∈X

∣V (x) − V0(x)∣.

Since V0 ≡ 0, Lemma 2.2 yields that

sup
x∈X

∣V (x) − V0(x)∣ = sup
x∈X

∣V (x)∣ ≤ M

1 − γ .

This shows the claim.

We illustrate Algorithm 3.7 with two examples.

Example 3.9 Consider Example 2.3. We depict the values of Vk in the algorithm for
γ = 0.9 schematically.

V0 ∶
0 0 0

0 0 0
V1 ∶

0 -100 0

0 0 -100
V2 ∶

-90 -100 0

0 -90 -100
V3 ∶

-90 -100 0

-81 -90 -100

After the third iteration the value function does not change anymore. This means that
Algorithm 3.7 converges in finitely many steps for this example.

The optimal strategy π can now easily be computed from Formula (3.8). For the states
x = (1,1), (1,2) and (2,2) it is optimal to move to the right, i.e, π⋆(x) = 2. For state
x = (2,3) it is optimal to move up, i.e., π⋆(x) = 1. For state x = (2,1) the argmin in
(3.8) contains two elements, namely 1 (“go up”) or 2 (“go right”), which means that both
π⋆(x) = 1 and π⋆(x) = 2 are possible. Finally for the absorbing state x = (1,3), all four
controls are optimal, because they all lead to the same behavior and involve the same
cost.

Example 3.10 As the second example we consider Example 2.4 in the discrete-time ver-
sion (2.5). For this example, the value iteration algorithm works even in the case that
γ = 1. This can be proved similarly to the existence of the solution of the algebraic Riccati
equation in Theorem 6.13 of Mathematical Control Theory. Here we carry out the first
three steps of the iteration with `(x,u) = x2

1 + x2
2 + u2 and γ = 1:

Starting with V0 ≡ 0, it is easy to see that V1(x) = ∥x∥2. This leads to

Q1(x,u) = 2x2
1 + 3x2

2 +
9

4
u2 + 2x1x2 + x1u + 3x2u.

Minimizing this expression with respect to u yields

V2(x) =
17

9
x2

1 + 2x2
2 +

4

3
x1x2.

From this we can compute

Q2(x,u) =
26

9
x2

1 +
19

3
x2

2 +
11

2
u2 + 46

9
x1x2 +

29

9
x1u +

26

3
x2u.

Minimizing this expression yields

V3(x) =
4307

1782
x2

1 +
289

99
x2

2 +
764

297
x1x2.

16 CHAPTER 3. DYNAMIC PROGRAMMING

3.3 The Hamilton-Jacobi-Bellman equation

While Theorem 3.2 and Corollary 3.4 have direct continuous-time counterparts — as ex-
plained in the subsequent remarks — there is no such counterpart to Theorem 3.6. This is
because while we can choose a minimal K > 0 in (3.1) in order to arrive at (3.4), we cannot
choose a minimal T > 0 in (3.6), because this identity holds for all real numbers T > 0 and
for the infimum T = 0 over all these T it becomes trivial.

The trick now lies in rewriting (3.6) before making T “minimal”. This leads to the following
theorem.

Theorem 3.11 (Hamilton-Jacobi-Bellman differential equation)
Let ` be continuous in x and u. Moreover, let O ⊆ Rn be open and such that V ∣O is finite.

(i) If V is continuously differentiable in x0 ∈ O, then

−δV (x0) +DV (x0) ⋅ f(x0, u0) + `(x0, u0) ≥ 0

holds for all u0 ∈ Rm.

(ii) If u∗ is an optimal control for initial value x0 ∈ O, which is continuous in t = 0, and V
is continuously differentiable in x0, then

−δV (x0) + min
u∈Rm

{DV (x0) ⋅ f(x0, u) + `(x0, u)} = 0 (3.9)

and the minimum is attained in u = u∗(0). Equation (3.9) is called Hamilton-Jacobi-
Bellman equation.

Proof: We first show the auxiliary identity

lim
τ↘0

1

τ
∫

τ

0
e−δτ `(x(t, x0, u), u(t))dt = `(x0, u(0))

for each u ∈ U that is continuous in t = 0. Because of continuity of x and u in t = 0 and
since ` is continuous, for any ε > 0 there is t1 > 0 with

∣e−δt`(xu(t, x0), u(t)) − `(x0, u(0))∣ ≤ ε

for all t ∈ [0, t1). For τ ∈ (0, t1] this yields

∣1
τ
∫

τ

0
e−δt`(xu(t, x0), u(t))dt − `(x0, u(0))∣ ≤ 1

τ
∫

τ

0
∣`(xu(t, x0), u(t)) − `(x0, u(0))∣dt

≤ 1

τ
∫

τ

0
ε = ε

and thus the statement for the limit, since ε > 0 was arbitrary.

Now both assertions follow:

(i) For u(t) ≡ u0 ∈ Rm, inequality (3.6) implies

V (x0) ≤ ∫
τ

0
e−δt`(xu(t, x0), u(t))dt + e−δτV (x(τ, x0, u))

3.3. THE HAMILTON-JACOBI-BELLMAN EQUATION 17

and thus

−δV (x0) +DV (x0)f(x0, u(0)) = d

dt
∣
t=0
e−δtV (xu(t, x0))

= lim
τ↘0

e−δτV (xu(τ, x0)) − V (x0)
τ

≥ lim
τ↘0

−1

τ
∫

τ

0
`(xu(t, x0), u(t))dt = −`(x0, u(0)),

i.e., the first assertion.

(ii) From (i) we get

−δV (x0) + inf
u∈Rm

{DV (x0) ⋅ f(x0, u) + g(x0, u)} ≥ 0.

Equation (3.7) moreover implies

V (x0) = ∫
τ

0
e−δt`(xu∗(t, x0), u∗(t))dt + V (xu∗(τ, x0)).

This yields

−δV (x0) +DV (x0)f(x0, u
∗(0)) = d

dt
∣
t=0
e−δtV (xu∗(t, x0))

= lim
τ↘0

e−δτV (xu∗(τ, x0)) − V (x0)
τ

= lim
τ↘0

−1

τ
∫

τ

0
`(xu∗(t, x0), u∗(t))dt = −`(x0, u

∗(0)),

which implies the existence of the minimum in u = u∗(0) and the claimed identity.

With the help of the Hamilton-Jacobi-Bellman equation we can now fornulate the coun-
terpart of Theorem 3.6.

Theorem 3.12 Let V be continuously differentiable and let π⋆ ∶X → U be a feedback law
satisfying

π⋆(x) ∈ argmin
u∈Rm

{DV (x) ⋅ f(x,u) + `(x,u)} (3.10)

for all x ∈ Rn and such that the solutions xπ⋆(t, x0) of (2.4) exist and are continuous. Then
π⋆ is an optimal strategy in the sense of Definition 3.1(iii)

Proof: We abbreviate x̂(t) = xπ⋆(t, x0) and û(t) = π(xπ⋆(t, x0)). Then we get that
J(x0, π

⋆) = J(x0, û) and equation (3.10) together with equation (3.9) evaluated in x0 = x̂(t)
yields

−δV (x̂(t)) +DV (x̂(t)) ⋅ f(x̂(t), û(t)) + `(x̂(t), û(t)) = 0

for all x ∈ Rn. Using

e−δt(− δV (x̂(t)) +DV (x̂(t)) ⋅ f(x̂(t), û(t))) = d

dt
e−δtV (x̂(t))

18 CHAPTER 3. DYNAMIC PROGRAMMING

yields

−∫
τ

0

d

dt
e−δtV (x̂(t))dt = ∫

τ

0
e−δt`(x̂(t), û(t))dt.

Applying the fundamental theorem of calculus we then obtain

V (x0) − e−δτV (x̂(τ)) = ∫
τ

0
e−δt`(x̂(t), û(t))dt.

As in the proof of Theorem 3.6, Lemma 2.2 yields lim infτ→∞ e
−δτV (x̂(τ)) ≥ 0. Thus, we

obtain

V (x0) ≥ lim
τ→∞

[V (x0) − e−δτV (x̂(τ))] = ∫
∞

0
`(x̂(t), û(t))dτ = J(x0, û).

This shows the claim since the converse inequality V (x0) ≤ J(x0, û) follows by definition
of V .

It should be noted that the assumptions for the continuous-time Theorem 3.12 are signif-
icantly more restrictive as those for its discrete-time counterpart Theorem 3.6. First of
all, there are many optimal control problems in which the optimal value function V is not
continuously differentiable. Fortunately, there is a remedy for this, because in this case, a
generalised solution concept — the so-called viscosity solutions — can be used. However,
then in general any feedback law π⋆ satisfying (3.10) is discontinuous, which makes the
assumption that (2.4) has a unique solution very difficult to check; in fact, this may not
even be true. All these difficulties motivate the fact that in RL often the discrete-time
formulation is preferred.

Chapter 4

Reinforcement learning with finite
state and action space

July 21, 2021
In this chapter we introduce the reinforcement learning algorithm and analyse its conver-
gence behaviour. We restrict ourselves to discrete time problems (1.2), (2.1) for which
the sets X and U are finite, i.e., they only contain finitely many elements. Obviously,
Example 2.3 falls into this class, but we may also convert Example 2.4 into a model that
satisfies this assumption. To this end, consider numbers x1,max, x2,max, umax ∈ N such that
umax ≥ 2x2,max. Define

X = {(x1, x2) ∈ R2 ∣2x1 ∈ Z, x2 ∈ Z, ∣x1∣ ≤ x1,max, ∣x2∣ ≤ x2,max}, U = {u ∈ Z ∣ ∣u∣ ≤ umax}.

Then the structure of X and U and the inequality umax ≥ 2x2,max implies that for each
x ∈ X there is u ∈ U with g(x,u) ∈ X. In what follows we assume that g(x,u) ∈ X for all
x ∈ X, u ∈ U . This can be achieved for this model by suitably modifying g for those x,u
for which this condition does not hold.

4.1 Q-learning

The basic reinforcement learning algorithm works as follows. The algorithm “learns” the
map Q ∶ X × U → R from (3.5) and is thus called Q-learning. Since X and u are finite,
Q can be represented by its finitely many values Q(x,u), x ∈ X, u ∈ U . If we number the
elements of X and U as x1, . . . , xN , u1, . . . , uM , then the map Q can be represented by the
N ×M -matrix (Qij) = (Q(xi, uj)).

Algorithm 4.1 (Q-learning)

(0) Set Q̃ ∶≡ 0, pick a state x ∈X

(1) Select u ∈ U , evaluate/observe x′ = g(x,u) ∈X and evaluate `(x,u)

(2) Set Q̃(x,u) ∶= `(x,u) + γminu′∈U Q̃(x′, u′)

(3) Set x ∶= x′ or select a new x ∈X and go to (1)

19

20 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

The choice between “set x ∶= x′” and ”select a new x ∈ X” depends on whether we have
the formulas for g at hand and can choose x freely, or whether we observe a real process,
where it may need additional effort to restart it with a different state than x′.

4.2 Convergence analysis

The following theorem gives a first convergence result for this algorithm.

Theorem 4.2 Consider the discrete-time problem of minimising (2.1) with finite X and U
and let Assumption 2.1(ii) hold. Denote by Q̃j the Q̃-function after Step (2) of Algorithm
4.1 has been executed j times. Assume that each pair (x,u) ∈ X × U appears infinitely
often in Step (1) of the algorithm. Then

lim
j→∞

Q̃j(x,u) = Q(x,u)

for all x ∈X, u ∈ U .

Proof: Observe that the definition of Q from (3.5) and the Bellman equation (3.4) imply

min
u∈U

Q(x,u) = min
u∈U

{`(x,u) + γV (g(x,u))} = V (x)

and thus Q satisfies the relation

Q(x,u) = `(x,u) + γV (g(x,u)) = `(x,u) + γmin
u′∈U

Q(g(x,u), u′). (4.1)

Moreover, from the inequality for ∣J(x,u)∣ in Lemma 2.2 we obtain that ∣Q(x,u)∣ ≤ M
1−γ for

M = maxx∈X,u∈U ∣`(x,u)∣.
Since every state-action pair (x,u) ∈ X × U appears infinitely often in Step (1), for each
j ∈ N there is p(j) ∈ N such that each pair (x,u) ∈X ×U appears at least once in Step (2)
of the algorithm during the executions j + 1, j + 2, . . . , p(j) in the algorithm. We define

∥Q̃j −Q∥∞ ∶= max
x∈X,u∈U

∣Q̃j(x,u) −Q(x,u)∣

and claim that

∥Q̃k −Q∥∞ ≤ γ∥Q̃j −Q∥∞ (4.2)

for all k ≥ p(j). This shows the claim because if we define p1(j) = p(j), pl+1(j) = p(pl(j)),
then applying (4.2) inductively implies that

∥Q̃k −Q∥∞ ≤ γl∥Q̃0 −Q∣∞ ≤ γl M
1 − γ

for all k ≥ pl(0), which proves the claim since γl → 0 as l →∞.

4.2. CONVERGENCE ANALYSIS 21

Now consider the j-th time that Step (2) of the algorithm is executed. Then, using the
definition of Q̃j and (4.1), for x and u from Step (2) we can compute

∣Q̃j(x,u) −Q(x,u)∣ = ∣(`(x,u) + γmin
u′∈U

Q̃j−1(x′, u′)) − (`(x,u) + γmin
u′∈U

Q(x′, u′))∣

= γ ∣min
u′∈U

Q̃j−1(x′, u′) −min
u′∈U

Q(x′, u′)∣

≤ γmaxu′ ∈ U ∣Q̃j−1(x′, u′) −Q(x′, u′)∣
≤ γ∥Q̃j−1 −Q∥∞.

For all other x ∈X and u ∈ U we obtain that

∣Q̃j(x,u) −Q(x,u)∣ = ∣Q̃j−1(x,u) −Q(x,u)∣.

These inequalities in particular imply

∥Q̃j −Q∥∞ ≤ ∥Q̃j−1 −Q∥∞

and thus
∥Q̃j′ −Q∥∞ ≤ ∥Q̃j −Q∥∞

for all j′ ≥ j. Now for any pair (x,u) denote by qx,u the largest iteration number in
{j + 1, j + 2, . . . , p(j)} for which x and u appear in Step (2) of the algorithm. Then we
obtain

∣Q̃p(j)(x,u) −Q(x,u)∣ ≤ ∣Q̃qx,u(x,u) −Q(x,u)∣ ≤ γ∥Q̃q(x,u)−1 −Q∥∞ ≤ γ∥Q̃j −Q∥∞

implying for each k ≥ p(j)

∥Q̃k −Q∥∞ ≤ ∥Q̃p(j) −Q∥∞ = max
x∈X,u∈U

∣Q̃p(j)(x,u) −Q(x,u)∣ ≤ γ∥Q̃j −Q∥∞

and thus (4.2).

We now turn to the analysis of part (i) of Assumption 2.1. Here, we will in particular look
at the case γ = 1, because in the case γ < 1 and with finite states and action sets part (i) of
Assumption 2.1 implies part (ii). Hence, this situation is readily covered by Theorem 4.2.

In order to prove convergence in this case, we need a preparatory lemma.

Lemma 4.3 Consider the discrete-time problem of minimising (2.1) with finite X and U
and γ = 1, and let Assumption 2.1(i) hold. Assume that the optimal value function V
satisfies V (x) <∞ for all x ∈X. Then for each control sequence u(⋅) the inequality

J(x,u) ≥ Q(x,u(0)) − lim sup
K→∞

Q(x(K), u(K))

holds.

Proof: We abbreviate x(k) = xu(k, x). Using (4.1) with γ = 1, x = x(k) and u = u(k), we
obtain

`(x(k), u(k)) = Q(x(k), u(k))−min
u′∈U

Q(x(k+1), u′) ≥ Q(x(k), u(k))+Q(x(k+1), u(k+1)).

22 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

This implies

K

∑
k=0

`(x(k), u(k)) ≥
K

∑
k=0

(Q(x(k), u(k)) −Q(x(k + 1), u(k + 1)))

= Q(x(0), u(0)) −Q(x(K + 1), u(K + 1)).

Taking the limit inferior on both sides and using that due to non-negativity of ` it coincides
with the (possible infinite) limit of the sum on the left side and that the identity lim inf −ak =
− lim supak holds on the right then shows the assertion.

Now we can prove the theorem in case Assumption 2.1(i) holds.

Theorem 4.4 Consider the discrete-time problem of minimising (2.1) with finite X and
U and γ = 1, let Assumption 2.1(i) hold and assume that the optimal value function V
satisfies V (x) <∞ for all x ∈X. Denote by Q̃j the Q-function after Step (2) of Algorithm
4.1 has been executed j times. Assume that each pair (x,u) ∈ X × U appears infinitely
often in Step (1) of the algorithm. Then for all sufficiently large j ∈ N we have that

Q̃j(x,u) = Q(x,u)

for all x ∈X, u ∈ U .

Proof: We first note that since ` ≥ 0 the values Q̃(x,u) during the algorithm are always
≥ 0. Next we prove that Q̃(x,u) ≤ Q(x,u) holds at each time during the execution of the
algorithm for all x and u. Clearly, since Q(x,u) ≥ 0 this holds at the start of the algorithm.
Now assume that this property holds before Step (2) of the algorithm. Then, using (4.1)
after Step (2) we obtain

Q̃(x,u) = `(x,u) +min
u′∈U

Q̃(x′, u′) ≤ `(x,u) +min
u′∈U

Q(x′, u′) = Q(x,u).

Hence, the inequality persists in each iteration of the algorithm and thus for all times.

Now we show that Q̃(x,u) is increasing when the algorithm proceeds. To this end, denote
again by Q̃j the function obtained after the j-th iteration. Clearly, since Q̃0 ≡ 0 and Q̃1 ≥ 0,
the statement is true in the first iteration. Now assume that Q̃0, . . . , Q̃j are increasing. Let
(x,u) be the state-action pair in the j+1-st iteration. Then either Q̃(x,u) was not updated
before, implying Q̃j(x,u) = 0, or it was updated before. In this case we let j′ ≤ j be the
last iteration where Q̃(x,u) was updated, implying that

Q̃j(x,u) = `(x,u) +min
u′∈U

Q̃j′−1(x′, u′).

Since Q is increasing until iteration j, we obtain Q̃j(x′, u′) ≥ Q̃j′−1(x′, u′). This implies

Q̃j+1 = `(x,u) +min
u′∈U

Q̃j(x′, u′) ≥ `(x,u) +min
u′∈U

Q̃j′−1(x′, u′).

Hence, Q̃0, . . . , Q̃j+1 are increasing and by induction we can conclude that Q̃j is increasing
for all j ∈ N.

4.2. CONVERGENCE ANALYSIS 23

From what we have shown wo far we can immediately conclude that if Q̃j(x,u) = Q(x,u)
for some j ∈ N, then Q̃j′(x,u) = Q(x,u) for all j′ > j. Moreover, we have the inequality

∑
x∈X,u∈U

Q̃j(x,u) ≤ ∑
x∈X,u∈U

Q(x,u),

in which “=” holds if and only if Q̃j = Q. Moreover, the expression ∑x∈X,u∈U Q̃j(x,u) is
increasing in j and can only attain finitely many different values, because ` can only attain
finitely many different values.

We now use these properties to show the claim. To this end, using p(j) as defined in the
proof of Theorem 4.2, we prove that unless Q̃j = Q, for at least one (x,u) ∈ X × U the
inequality Q̃p(j)(x,u) > Q̃j(x,u) holds. This shows that ∑x∈X,u∈U Q̃j(x,u) increases and
since this sum can only attain finitely many different values, after finitely many increases
it will coincide with ∑x∈X,u∈U Q(x,u). Then, Q̃j and Q also coincide.

In order to show Q̃p(j)(x,u) > Q̃j(x,u) for at least one (x,u) we proceed by contradiction.

We assume that Q̃j(x̂, û) ≠ Q(x̂, û) for at least one (x̂, û) ∈ X × U (implying Q̃j(x̂, û) <
Q(x̂, û)) and that Q̃j′(x,u) does not grow for any j′ ∈ {j+1, . . . , p(j)} and any (x,u) ∈X×U .
The latter implies that

Q̃j(x,u) = `(x,u) +min
u′∈U

Q̃j(x′, u′) (4.3)

holds for all (x,u) ∈X ×U .

Now for each x ∈X by ux ∈ U we denote denote the control value satisfying

Q̃j(x,ux) = min
u′∈U

Q̃j(x,u′).

Then we can inductively define a control sequence and a corresponding trajectory by setting
u(0) ∶= û, x(0) ∶= x̂ and

x(i + 1) ∶= g(x(i), u(i)), u(i + 1) ∶= ux(i+1).

Using (4.3) and the definition of ux, this yields

K

∑
k=0

`(x(k), u(k)) =
K

∑
k=0

(Q̃j(x(k), u(k)) − Q̃j(x(k + 1), u(k + 1)))

= Q̃j(x(0), u(0)) − Q̃j(x(K + 1), u(K + 1))

≤ Q̃j(x(0), u(0)) = Q̃j(x̂, û).

Since ` ≥ 0, this implies that the limit for K →∞ exists and we obtain

J(x̂, u) ≤ Q̃j(x̂, û) < Q(x̂, û). (4.4)

Since J(x̂, u) is finite, `(x(k), u(k)) must converge to 0. Since ` can only attain finitely
many values, this implies that there is k′ ∈ N with `(x(k), u(k)) = 0 for all k ≥ k′. This
implies that V (x(k)) = 0 for all k ≥ k′ and Q(x(k), u(k)) = 0 for all k ≥ k′. Hence, Lemma
4.3 yields

J(x̂, u) ≥ Q(x̂, u(0)) − lim sup
K→∞

Q(x(K), u(K)) = Q(x̂, u(0)) = Q(x̂, û),

24 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

which contradicts (4.4).

Once the Q-Learning algorithm has computed a sufficiently accurate approximation Q̃ ≈ Q,
a policy can be defined by choosing a policy satisfying

π̃(x) ∈ argmin
u∈U

Q̃(x,u). (4.5)

The following theorem shows that this is an approximately optimal policy. For brevity, we
only formulate and prove it for the case γ < 1.

Theorem 4.5 Let the assumptions of Theorem 4.2 and Assumption 2.1(ii) hold and as-
sume that

sup
x∈X,u∈U

∣Q(x,u) − Q̃(x,u)∣ ≤ ε

for some ε > 0. Then for all x ∈X the inequality

J(x, π̃) ≤ V (x) + 2ε

1 − γ

holds.

Proof: The assumption on Q̃ and the definition of π̃ implies that

Q(x, π̃(x)) ≤ Q̃(x, π̃(x)) + ε = min
u∈U

Q̃(x,u) + ε ≤ min
u∈U

Q(x,u) + 2ε = V (x) + 2ε.

This yields the inequality

`(x, π̃(x)) + γV (g(x, π̃(x))) = Q(x, π̃(x)) ≤ V (x) + 2ε

and thus, since xπ̃(k + 1, x0) = g(xπ̃(k, x0), π̃(xπ̃(k, x0))),

J(x0, π̃) =
∞

∑
k=0

γk`(xπ̃(k, x0), π̃(xπ̃(k, x0)))

≤
∞

∑
k=0

γk(V (xπ̃(k, x0)) − γV (xπ̃(k + 1, x0)) + 2ε)

=
∞

∑
k=0

γk2ε + V (x) − lim
K→∞

γkV (xπ̃(k, x0)).

By Lemma 2.2 the last term is ≥ 0 and since γ < 1 the sum over γk evaluates to 1/(1 − γ).
We can thus conclude the claimed inequality

J(x, π̃) ≤ V (x) + 2ε

1 − γ .

4.3. CHOICE OF X AND U IN THE ALGORITHM 25

4.3 Choice of x and u in the algorithm

Choice of x The possible choices of x in Step (3) of the algorithm depend on whether
we obtain the values of g(x,u) and `(x,u) by simulation or by experiment. In the second
case, it may be more efficient to use x = x′ in most cases, as using x ≠ x′ means that we
have to restart the experiment with a new initial value, which may be costly. On the other
hand, always using x = x′ may be inefficient, because then the algorithm only “sees” one
particular solution any fails to see those parts of the state space X that are not visited by
this solution. It is therefore common to reset x after a couple of steps. The time between
two resets is usually called episode in RL.

A method that is often effective is to store the values g(x,u) and `(x,u) of an episode and
reuse them. This can be done in the same order as they originally occured or in reverse
order. This can be particularly efficient if one step of the experiment to evaluate g(x,u)
and `(x,u) takes a long time.

In case that we know g(x,u) and `(x,u) and can efficiently evaluate them, many more
efficient algorithms are possible. For instance, in the setting of Assumption 2.1(i), it is
possible to order x and u “on the fly” in such a way that each value Q̃(x,u) can be
computed correctly in one shot, i.e., without the need of an iteration. This approach is
known as a Dijkstra-like algorithm. Even with the computational cost of the sorting taken
into account, the computational complexity with such an algorithm can be brought down
to NM log(N) which is much faster than the “brute force” trying of all x and u in a
random order. In the setting of Assumption 2.1, so-called policy iteration schemes can be
used, which also converge much faster in many situations.

Choice of u Clearly, if the set U is large, the number of iterations until all values Q(x,u)
are updated is very large and it will take a lot of time until the algorithm converges. Then,
however, not all controls are really needed to be considered in order to arrive at a good
solutions. It suffices to use the “good” controls, which actually realize the minimum of Q.
The trouble, however, is, that we do not know in advance which controls are “good”. In
order to use only relevant u in Step (1), several selection strategies have been proposed.

An obvious strategy would be to always use the u that minimises Q̃(x,u). However, when
the values of Q̃ are still far from those of Q, this can lead to non-optimal choices and, more
importantly, the algorithm will never be able to correct these non-optimal choices. Hence,
a good strategy should try other control values, too, but is is still a good idea to use those
that lead to a small value of Q̃(x,u) more often. This idea is realised by choosing a k ≥ 1
and assigning to each control the value

P (u) = k−Q̃(x,u)

∑u′∈U k−Q̃(x,u′)
.

Then the control u in Step (1) is chosen randomly with probability P (u). In order to see
how this works and how the choice of k affects the results, assume we have three controls
u1, u2, u2 with values Q̃(x,u1) = 1, Q̃(x,u2) = 2, and Q̃(x,u3) = 3. For k = 2, we then
obtain P (u1) = 4/7, P (u2) = 2/7, and P (u3) = 1/7. For k = 3 we obtain P (u1) = 9/13,
P (u2) = 3/13, and P (u3) = 1/13. In the opposite direction, for k = 1 we obtain P (u1) =
P (u2) = P (u3) = 1/3. This means, the larger k is, the more the control values with small Q̃

26 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

are favoured and the closer k is to one, the more the probabilities are equal. There are also
variants of the algorithm in which k is variied with the number of iterations, with k ≈ 1 in
the beginning (such that all control values are explored with equal probability) and larger
k as the iteration progresses.

Another method for choosing u is the so-called ε-greedy choice. Here one fixes a small ε > 0
and always uses the u that minimises Q̃(x,u) with probability 1 − ε. With probability ε,
an arbitrary u is chosen. This method is in particular interesting in the context of the so
called SARSA algorithm. This is a variant of Q-learning in which the update step (2) is
replaced by

(2’) Set Q̃(x,u) ∶= (1 − α)Q̃(x,u) + α (`(x,u) + γQ̃(x′, u′))
Here α ∈ (0,1] is a step size and u′ ∈ U a control value, which can be chosen by different
rules. If one chooses α = 1 and u′ as the minimiser of u ↦ Q̃(x′, u), then we obtain the
original Q-Learning algorithm. If we keep this choice of u but set α < 1, then one can
prove that the SARSA algorithm converges to the same Q and thus the same optimal
policy as Q-Learning. If, however, u′ is chosen according to the ε-greedy algorithm, then
the algorithm may converge to a different solution. While this solution is not the optimal
solution anymore, it may have other beneficial properties.

Chapter 5

Non-deterministic Reinforcement
Learning

July 21, 2021
So far we have assumed that for each pair of state x and control action u there is a unique
successor state g(x,u). This, however, is not true in many practically relevant situations:

• When we obtain the value x′ = g(x,u) from experiments, it is most very that the
measurements are subject to noise and thus if we use a pair (x,u) several times it
may be likely that we do not always get the same successor state.

• When we have an infinite state space, e.g., x ∈ Ω ⊂ R2, then a typical way to pass to a
finite state space X is by quantization. This means that each state x ∈X represents
a small region (e.g., e square or rectangle in R2). Even if the original dynamics is
deterministic, the image of a region in R2 under the dynamics will usually cover
several regions.

• Finally, RL has been used very successfully in games such as backgammon or chess,
in which the next state depends also on the other player’s action and, possibly, on
chance (like the rolling of a dice).

5.1 Definitions

For these reasons, we now extend the setting to non-deterministic models. As in the
previous chapter, we will stick to discrete time and finite state and control action sets X and
U . However, for each pair (x,u) the expression g(x,u) is now a random variable, which,
depending on chance, can yield different successor states x′ with different probabilities.
These probabilities are modeles by the map

p ∶X ×U ×X → [0,1]

with the convention that

∑
x′∈X

p(x,u, x′) = 1

for all (x,u) ∈X ×U . The interpretation of the map p is:

27

28 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

If we are in state x and use the control u, then p(x,u, x′) is the probability to
be in state x′ after one time step, i.e., the probability that g(x,u) = x′.

Such a is called a finite-state Markov chain. The deterministic setting of the last chapter
is then recovered by defining p(x,u, x′) = 1 if x′ = g(x,u) and p(x,u, x′) = 0 else.

Example 5.1 We reconsider Example 2.3, but now for each transition from one state to
another there is an uncertainly of 10% that the system moves to a different neighbouring
state than intended. Transitions that do not change the state remain unchanged. To this
end, we define, e.g.,

p((1,1),1, (1,2)) = 0.9

p((1,1),1, (2,1)) = 0.1

p((1,1),2, (1,2)) = 0.1

p((1,1),2, (2,1)) = 0.9

p((1,1),3, (1,1)) = 1.0

p((1,1),4, (1,1)) = 1.0,

p((1,2),1, (1,3)) = 0.9

p((1,2),1, (1,1)) = 0.1

p((1,2),2, (2,2)) = 0.1

p((1,2),2, (1,1)) = 0.9

p((1,2),3, (1,1)) = 0.9

p((1,2),3, (1,2)) = 0.1

p((1,2),4, (1,2)) = 1.0,

Here all values with p(x,u, x′) = 0 are omitted. Similarly, we can define p(x,u, x′) for all
other states x.

Due to the non-deterministic model, for each initial state x0 and each control sequence
u ∈ U there is not a single trajectory xu(k, x0) but many of them, each with its own
probability. In other words, xu(k, x0) is now a random variable. We express this by using
a capital “X” and by adding an additional argument Xu(k, x0, ω), ω ∈ Ω, where (Ω,Σ, P)
is a probability space. If we omit ω, the symbol Xu(k, x0) stands for the set if all possible
trajectories. Likewise, we write g(x,u,ω) and g(x,u). Note that for a control sequence
with u(0) = u0 we then obtain Xu(1, x0) = g(x0, u0).
The fact that there are now many trajectories raises the need to generalise the concept of
control sequences. For instance, in Example 5.1, the goal is to reach the state (1,3), as
quickly as possible, as this is the only action that gives us reward (= negative cost). If we
start in state (1,1), then the best control action is to use “1” and then again “1”, leading
us first to (1,2) with a probability of 90% and then further to the desired state (1,3) with
again 90%, so alltogether we reach (2,3) with a probability of 81%. However, we may also
reach the states (2,1), (2,2) or (1,1) with a total probability of 19%. If we end up in

5.2. DYNAMIC PROGRAMMING 29

(2,1) or (2,2), then we need to make sure that we go up again in one of the next steps,
while if we end up in (1,1) then we should keep on going right. The next control actions
should thus depend not only on time but also on the state we reached. In order to derive
a dynamic programming principle (which we will do in the next section), we actually need
even more flexibility in the choice of u. We allow that the value of u depends on time and
on the whole history of states X(0), . . . ,X(k). At each time k we thus use controls from
the set

Uk ∶= {uk ∶Xk+1 → U}

and the overall set of control functions is defined as the set of infinite sequences

P ∶= {u = (u0, u1, u2, . . .) ∣uk ∈ Uk}.

We refer to the elements of P as control processes. For each u ∈ P we then consider the
random solutions X(k) =Xu(k, x0), k ∈ N satisfying

X(0) = x0 and X(k + 1) = g(X(k), uk(X(0 ∶ k))),

where we assume that the random variables g(X(k), uk(X(0 ∶ k))) are stochastically inde-
pendent for different k, i.e., that the values X(0), . . . ,X(k), which are known at time k, do
not give any stochastic information about X(k + 1). Using the definition of p it moreover
follows that

P (X(k + 1) = x′ ∣X(j) = xj , j = 0, . . . , k)) = p(xk, uk(x0, . . . , xk), x′).

We note that X(1) only depends on u0(x0), but not on uk(x0, . . . , xk) for k ≥ 1. This
means that we only need to specify u0(x0) ∈ U in order define X(1) = g(x0, u0(x0)). We
also use the short notation

X(0 ∶ k) or Xu(0 ∶ k, x0)

for the arguments (X(0), . . . ,X(k)) or (Xu(0, x0), . . . ,Xu(k, x0)) of uk.

The optimisation criterion then takes the expected value of the cost along all these trajec-
tories, i.e.,

J(x0, u) = E (
∞

∑
k=0

γk`(Xu(k, x0), uk(Xu(0 ∶ k, x0)))) (5.1)

This non-deterministic optimal control problem is also called a Markov Decision Problem
(MDP).

5.2 Dynamic programming

In this section we derive counterparts to some of the results from Chapter 3. To this end,
we note that Definition 3.1 can be directly applied also in the non-deterministic setting
by using control processes instead of control sequences everywhere. The following theorem
then provides the counterpart of Theorem 3.2.

30 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

Theorem 5.2 Consider the optimal control problem of minimising (5.1) with respect to
all control processes. Then for all K ∈ N and all x0 ∈X the optimal value function satisfies

V (x0) = inf
u∈P

E {
K−1

∑
k=0

γk`(Xu(k, x0), uk(Xu(0 ∶ k, x0))) + γKV (Xu(K,x0))} . (5.2)

If, in addition, an optimal control process u⋆ ∈ P exists, then the equation

V (x0) = E {
K−1

∑
k=0

γt`(Xu⋆(k, x0), uk(Xu⋆(0 ∶ k, x0))) + γKV (Xu⋆(K,x0))} . (5.3)

holds and the “inf” in (5.2) is a “min”.

Proof: In the following proof we use properties of conditional expectations that may
not be common knowledge. We refer to [Stochastische Dynamische Optimierung] for an
explanation.

We first prove (5.2) for K = 1. Throughout the proof we abbreviate X(k) =Xu(k, x0) and
u0 = u0(x0).
“≥”: Let x0 ∈ Rn and u ∈ P arbitrary. Then, for X ′(k) = Xu′(k, x′0) with u′k(x′0, . . . , x′k) =
uk+1(x0, x

′
0, . . . , x

′
k) we get

J(x0, u) = E {
∞

∑
k=0

γk`(X(k), uk(X(0 ∶ k)))}

= E {`(x0, u0) +
∞

∑
k=1

γk`(X(k), uk(X(0 ∶ k)))}

= `(x0, u0) + γE {
∞

∑
k=0

γk`(X(k + 1), uk+1(X(0 ∶ k + 1)))}

= `(x0, u0) + γE {E (
∞

∑
k=0

γk`(X ′(k), u′(k,X ′(0 ∶ k)))∣X ′(0) =X(1))}

= `(x0, u0) + γE {J(X(1), u′)}
≥ E {`(x0, u0) + γV (X(1))}
≥ inf

u∈P
E {`(x0, u) + γV (X(1))} .

Since this inequality holds for all u ∈ P, it also holds for

V (x0) = inf
u∈P

J(x0, u),

which implies “≥”.

“≤”: Let ε > 0. For any x ∈X we choose a control process ūx ∈ P with

J(x, ūx) ≤ V (x) + ε

and abbreviate X(k) = Xūx0 (k, x0). Moreover, for each x ∈ X we choose a control value
ûx ∈ U with

E{`(x, ûx) + γV (g(x, ûx))} ≤ inf
u∈U

E{`(x,u) + γV (g(x,u))} + ε,

5.2. DYNAMIC PROGRAMMING 31

a define the control process ũ ∈ P as1

ũk(x0, . . . , xk) ∶= { ûx0 , k = 0
ūx1k−1(x1, . . . , xk), k ≥ 1.

The corresponding solution is denoted by X̃(k) = Xũ(k, x0). Then X(k) = X̃(k + 1) holds
if X(0) = X̃(1). With these definitions we obtain

V (x0) = inf
u∈P

J(x0, u)

= inf
u∈P

E {
∞

∑
k=0

γk`(X(k), uk(X(0 ∶ k)))}

= inf
u∈P

E {`(x0, u0) +
∞

∑
k=1

γk`(X(k), uk(X(0 ∶ k)))}

≤ E {`(x0, ũ0(x0)) + γ
∞

∑
k=0

γk`(X̃(k + 1), ũk+1(X̃(0 ∶ k + 1))}

= `(x0, ûx0) + γE {E (
∞

∑
k=0

γk`(X(k), ūX̃(1)k (X(0 ∶ k)))∣X(0) = X̃(1))}

≤ sup
u∈U

E {`(x0, u) + γV (X(1))} + 2ε

where in the last step we used the properties of ūx and ûx. Since ε > 0 was arbitrary, it
follows that

V∞(x0) ≤ inf
u∈U

E {`(x0, u) + γV (X(1))} ,

i.e., the desired inequality.

For K ≥ 2, equation (5.2) now follows by induction. For K = 1 there is nothing to show.
For K →K + 1 we obtain

V (x0) = inf
u∈P

E {
K−1

∑
k=0

γk`(X(t), uk(X(0 ∶ k)) + γKV (X(K))}

= inf
u∈P

E

⎧⎪⎪⎨⎪⎪⎩

K−1

∑
k=0

γk`(X(k), uk(X(0 ∶ k)))

+ γK inf
ũ∈P

E{`(X(K), ũ0(X(K))) + γV (X̃(1)) ∣ X̃(0) =X(K)}
⎫⎪⎪⎬⎪⎪⎭

= inf
u∈P

E

⎧⎪⎪⎨⎪⎪⎩

K−1

∑
k=0

γk`(X(k), uk(X(0 ∶ k)))

+ γK(`(X(K), uK(X(0 ∶K))) + γV (X(K + 1)))
⎫⎪⎪⎬⎪⎪⎭

= inf
u∈P

E {
K

∑
k=0

γt`(X(k), uk(X(0 ∶ k))) + βK+1V (X(K + 1))} ,

1The definition of ũ is the reason for allowing the control processes to depend on the whole history of
states x0, . . . , xk. This is because even if each ūxk only depended on xk, the newly defined ũk depends on
x1 for all k ≥ 1, because it uses ux1k−1.

32 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

where we used that we can set uK(X(0 ∶K)) ∶= ũ0(X(K)) in the second last step.

Equation (5.3) then follows as in proof of Theorem 3.2.

As in the deterministic setting, in the case K = 1 the dynamic programming principle yields
the Bellman equation

V (x0) = inf
u∈U

E {`(x0, u) + γV (g(x0, u))} . (5.4)

We again define the quantity

Q(x,u) ∶= E{`(x,u) + γV (g(x,u))}. (5.5)

The following theorem is the counterpart to Theorem 3.6. In the non-deterministic setting
we can, however, only prove it under Assumption 2.1(ii). This is because we do not have
a non-deterministic counterpart of Lemma 2.2.

Theorem 5.3 Consider the optimal control problem of minimising (5.1) with x0 ∈X and
let Assumption 2.1(ii) hold. Consider a feedback law π⋆ ∶X → U satisfying

π⋆(x) ∈ argmin
u∈U

E {`(x,u) + γV (g(x,u))} = argmin
u∈U

Q(x,u) (5.6)

for all x ∈X. Then π⋆ is an optimal strategy in the sense of Definition 3.1(iii).

Proof: We abbreviate X̂(k) =Xπ⋆(k, x0). Then we need to show that

V (x0) = J(x0, π
⋆).

Using (5.6) and (5.4) with x0 = X̂(k) we get

γkE{V (X̂(k))} = γkE{`(X̂(k), π⋆(X̂(k))) + γk+1V (X̂(k + 1))}

for k = 0,1, Summing these equalities for k = 0, . . . ,K − 1 for arbitrary K ∈ N and
eliminating the identical terms γkV (x̂(k)), k = 1, . . . ,K − 1 on the left and on the right we
obtain

V (x0) = E {
K−1

∑
k=0

γk`(X̂(k), π⋆(X̂(k))) + γKV (X̂(K))} .

Now Assumption 2.1(ii) implies that V is bounded, which yields limK→∞ γ
KE{V (X̂(K))} =

0 since γK → 0 as K →∞. Hence we obtain

V (x0) = E { lim
K→∞

K−1

∑
k=0

γk`(X̂(k), π⋆(X̂(k))) + γKV (X̂(K))} = E {
∞

∑
k=0

`(x̂(k), π⋆(X̂(k)))} .

Note that here we can take the limit under the expectation because the series is absolutely
convergent, as ` is bounded and γ < 1.

Theorem 5.3 has a surprising consequence: while in the minimisation problem we took the
minimum over all control processes, which may depend on time and on the whole history of
the states X(k), the optimal control can be expressed via strategies, which only depend on
the current state and neither on time nor on the past states. It may thus seem unnecessary
to introduce the complicate definition of control processes. However, without this detour it
would not have been possible to prove that optimal controls can always expressed in form
of strategies.

5.3. Q-LEARNING 33

5.3 Q-Learning

The Q-Learning algorithm for the non-deterministic setting is quite similar to the algorithm
in the deterministic setting, with two major changes.

First, the value x′ obtained in Step (1) is now non-deterministic, i.e., for one and the same
pair (x,u) different x′ may occur. In case the values x′ are obtained by observing a real
process, then this does not require any changes in the algorithm. However, in case the
evolution of the system is simulated, instead of evaluating x′ = g(x,u), we must perform
a stochastic simulation based on the information from p(x,u, x′) in order to obtain x′. In
the finite state case we discuss here, this can be done as follows.

Let (x,u) ∈X ×U be given. Let x′1, . . . , x
′
r be the states for which p(x,u, x′j) ≠ 0.

Define inductively

q0 ∶= 0, qj ∶= qj−1 + p(x,u, x′j) for j = 1, . . . , r.

Generate a uniformly distributed random number z ∈ [0,1] using a random
number generator, let j be the smallest index with z ∈ [qj−1, qj] and set x′ = x′j .

(5.7)

It should be noted that if the probabilities p are known, then there are more efficient ways
to modify Q-Learning than the one discussed in the following using the simulation (5.7).
The algorithm we present below is more suited for the case that we have a real process or
a simulation tool for evaluating g but no explicit knowledge of p. Algorithm 5.8 presents
a variant of Q-Learning that takes advantage of the knowledge of p.

The second change concerns the update of Q̃ in Step (2). In order to motivate that this
rule needs to be changed, consider the following very simple example.

Example 5.4 We consider a non-deterministic problem with exactly two states X =
{x1, x2} and only one control U = {u}. Regardless of in which state the system is, the
(only) control u1 always brings the system to x1 with probability 0.5 and to x2 with prob-
ability 0.5. This means that for both x = x1 and x = x2 the map p is defined as

p(x,u, x′) = { 0.5, if x′ = x
0.5, if x′ = x.

The cost is defined as `(x1, u) = 0 and `(x2, u) = 1.

It is easily seen that from time k = 1 on, the system is in state x1 and x2 with the same
probability of 0.5. If we use, e.g., the discount factor γ = 0.5, this leads to the average cost

Q(x1, u) = E {
∞

∑
k=0

γk`(x(k), u(k))} = 0 +E {
∞

∑
k=1

γk`(x(k), u(k))} =
∞

∑
k=1

0.5k0.5 = 0.5

and

Q(x2, u) = E {
∞

∑
k=0

γk`(x(k), u(k))} = 1 +E {
∞

∑
k=1

γk`(x(k), u(k))} = 1 +
∞

∑
k=1

0.5k0.5 = 1.5.

34 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

Now assume that the random generator draws a sequence in which every once in a while
x′ = x1 occurs twice in a row for two consecutive iterations j and j + 1 (which is very likely
to happen). Then, each time x′ = x1 appears for the second time, the update rule says that

Q̃j+1(x1, u) = `(x1, u) + γQ̃j(x1, u) = 0.5Q̃j(x1, u).

This means that Q̃j(x1, u) never converges, because it keeps changing its value (un-
less it converges to 0, but this would not be the correct limit). The same happens for
Q̃j(x2, u).

The behaviour in this example, which is typical for most other examples, shows that due
to the random nature of the x′ the Q̃-values do not converge but rather jump randomly
between different values if we use the update rule of the deterministicQ-Learning algorithm.
For this reason, the update rule must be modified as follows.

Algorithm 5.5 (non-deterministic Q-learning)

(0) Set Q̃ ∶≡ 0, fix a real sequence (αj)j∈N with αj ∈ [0,1], pick a state x ∈X, set j ∶= 0

(1) Select u ∈ U , evaluate/simulate x′ = g(x,u) ∈X and evaluate `(x,u)

(2) Set Q̃(x,u) ∶= (1 − αj)Q̃(x,u) + αj[`(x,u) + γminu′∈U Q̃(x′, u′)]

(3) Set x ∶= x′ or select a new x ∈X, set j ∶= j + 1 and go to (1)

The new feature of the update rule is that the new value of Q̃ is now a convex combination
of its old value and the update value `(x,u)+γminu′∈U Q̃(x′, u′). We recover the old update
rule if we choose αj = 1 for all j.

5.4 Convergence analysis

The trick is now to let αj tend to 0, such that the random jumps in the Q̃-values become
smaller and smaller as the iterations progress, but slowly enough such that the correct
value can be learned before the αj become too small. The following theorem shows how
this sequence must be chosen in order to achieve this goal. We note that, e.g., αj = 1/j
satifies (5.8), while αj = 1/j2 converges “too fast” and αj = 1/

√
j converges “too slow”.

Theorem 5.6 Consider the discrete-time problem of minimising (5.1) with finite X and
U and let Assumption 2.1(ii) hold. Denote by Q̃j+1 the Q̃-function after Step (2) of
Algorithm 4.1, with j being the iteration counter in the algorithm. Assume that each pair
(x,u) ∈X ×U appears infinitely often in Step (1) of the algorithm and let j(i, x, u) ≥ 1 be
the iteration number in which the pair (x,u) appears for the i-th time in Step (1). Assume
that for each (x,u) ∈X ×U the sequence (αj)j∈N satisfies

lim
j→∞

αj = 0,
∞

∑
i=1

αj(i,x,u) =∞, and
∞

∑
i=1

α2
j(i,x,u) <∞. (5.8)

5.4. CONVERGENCE ANALYSIS 35

Then
lim
j→∞

Q̃j(x,u) = Q(x,u)

for all x ∈X, u ∈ U with probability 1.

The proof of this theorem can be obtained by studying abstract iterations of the form

rj+1(z) ∶= (1 − αj)rj(z) + αj(Φ(rj)(z) +wj(z)), j = 0,1,2, . . . (5.9)

with the following ingredients of (5.9):

• For each j the term rj is a map from Z to R, where Z is a finite set. If we
number the elements of Z as z1, . . . , zS , then rj can be identified with the vector
(rj(z1), . . . , rj(zS))T ∈ RS .

• The wj(z) are random variables (possibly dependent on the current and past terms
in (5.9)) with E(wj(z)) = 0 and E(w2

j (z)) ≤ A+B∥rj∥2 for constants A,B. Here the
expected values are understood as conditioned on all information that is available in
the j-th iteration of (5.9).

• The map Φ ∶ RS → RS is a contraction2 for the ∞-norm, i.e. there is a constant
β ∈ [0,1) such that

∥Φ(r1) −Φ(r2)∥∞ ≤ β∥r1 − r2∥∞
holds for all r ∈ RS .

From Banach’s fixed point theorem one can then conclude that Φ has a unique fixed point
r∗ ∈ RS , i.e., a unique r∗ ∈ RS with Φ(r∗) = r∗.

Proposition 5.7 Under the assumptions just listed and (5.8), if each z appears infinitely
often in the iteration (5.9), then for each r0 the iteration (5.9) converges to r∗ with prob-
ability 1.

A complete proof of this proposition can be found as Proposition 4.4 in [2]. We will not
reproduce this proof here, but at least motivate why the condition (5.8) is needed.

To this end, let S = 1 and Φ(r) = 0, which is clearly a contraction with r∗ = 0. The result
of the iteration can then be written explicitly as

rj+1 =
j

∏
l=0

(1 − αl)r0 +
j

∑
k=0

αkwk

j

∏
l=k+1

(1 − αl).

Now the limit of this iteration should not depend on r0, because this would mean that
convergence would depend on the choice of the initial value. This means that

lim
j→∞

j

∏
l=0

(1 − αl) = 0

2The proof of Proposition 5.7 in the mentioned reference only requires Φ to be a pseudo contraction in
a more general norm, but the ∞-norm contraction condition given here is sufficient for this.

36 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

must hold. This is equivalent to

lim
j→∞

j

∑
l=0

log(1 − αl) = lim
j→∞

log
⎛
⎝

j

∏
l=0

(1 − αl)
⎞
⎠
= −∞.

From the Taylor series for the logarithm it follows that log(1 − αl) ≤ −αl, so the first
condition in (5.8) ensures this property.

Now consider the same setting with r0 = 0. The explicit result of the iteration then reads

rj+1 =
j

∑
k=0

αkwk

j

∏
l=k+1

(1 − αl).

This implies that the expected value satisfies E(rj+1) = 0. A necessary condition for
rj+1 → 0 with probability 1 is that the variance E(r2

j+1) also tends to 0. This is given by

E(r2
j+1) = E

⎛
⎜
⎝
⎛
⎝

j

∑
k=0

αkwk

j

∏
l=k+1

(1 − αj)
⎞
⎠

2⎞
⎟
⎠
.

Assuming that the wk are identically distributed and stochastically independent, we obtain
E(wkwl) = E(wk)E(wl) = 0 for k ≠ l and E(w2

k) = E(w2
0) for all k ≥ 0. Thus, the expression

simplifies to

E(r2
j+1) = E

⎛
⎝

j

∑
k=0

α2
kw

2
k

j

∏
l=k+1

(1 − αl)2⎞
⎠
= E(w2

0)
j

∑
k=0

α2
k

⎛
⎝

j

∏
l=k+1

(1 − αl)
⎞
⎠

2

.

Now, since ∏jl=k+1(1 − αl) → 0 as j → ∞, one sees that the second condition in (5.8), i.e.,

limj→∞∑jk=0 α
2
k < ∞, ensures that the variance of rk+1 convergence to 0. Of course, these

are only special cases, but they illustrate why the assumptions on the αj are reasonable.

Proof of Theorem 5.6: We define Z =X×U , z = (x,u), r(z) ∶= Q̃(x,u), and Φ ∶ RS → RS
as

Φ(Q̃)(z) = ∑
x′∈X

p(x,u, x′) (`(x,u) + γmin
u′∈U

Q̃(x′, u′)) .

Denoting by xj the value x′ from the j-th iteration of the algorithm, we can write the
Q-Learning iteration as

Q̃j+1(x,u) = (1 − αj)Q̃j(x,u) + αj(Φ(Q̃)(x,u) +wj(x,u)),

with

wj(x,u) = `(x,u) + γmin
u′∈U

Q̃j(xj , u′) − ∑
x′∈X

p(x,u, x′) (`(x,u) + γmin
u′∈U

Q̃j(x′, u′))

= γ (min
u′∈U

Q̃j(xj , u′) − ∑
x′∈X

p(x,u, x′)min
u′∈U

Q̃j(x′, u′)) .

Since xj is distributed according to the probability p, it is easily checked that the expec-
tation of wj satisfies E(wj(x)) = 0. Moreover,

E(wj(x)2) ≤K(1 + max
x∈X,u∈U

Q̃j(x,u)2)

5.5. THE CASE OF KNOWN TRANSITION PROBABILITIES 37

for a suitable constant K. The fact that Φ is a contraction follows immediately from the
fact that (using the hint from Exercise 1 in Sheet 2)

∣Φ(Q̃1)(x,u) −Φ(Q̃2)(x,u)∣ = ∑
x′∈X

p(x,u, x′)γ∣min
u′∈U

Q̃1(x′, u′) − γmin
u′∈U

Q̃2(x′, u′)∣

≤ ∑
x′∈X

p(x,u, x′)γmax
u′∈U

∣Q̃1(x′, u′) − Q̃2(x′, u′)∣

≤ γ∥Q̃1 − Q̃2∥∞.

Hence, the assertion follows from Proposition 5.7.

The choices of x and u in the algorithm discussed in Section 4.3 can be adapted to the
nondeterministic setting. Again for brevity we will not discuss details.

5.5 The case of known transition probabilities

We briefly state how one can improve Algorithm 5.5 if the probabilities p are known.

Algorithm 5.8 (non-deterministic Q-learning with known p)

(0) Set Q̃ ∶≡ 0, fix a real sequence (αj)j∈N with αj ∈ [0,1], pick a state x ∈X, set j ∶= 0

(1) Select u ∈ U and evaluate `(x,u)

(2) Set Q̃(x,u) ∶= `(x,u) + γmin
u′∈U

∑
x′∈X

p(x,u, x′)Q̃(x′, u′)

(3) Select a new x ∈X, set j ∶= j + 1 and go to (1)

Instead of simulating x′, this algorithm computes the exact expected value

E(Q̃(x′, u′)) = ∑
x′∈X

p(x,u, x′)Q̃(x′, u′)

in each step. Rather than “collecting” the stochastic information over many iterations, it
thus uses the exact information in each step. For this reason, vanishing step sizes are not
needed in this variant and convergence is typically much faster than for Algorithm 5.5.

In the RL-literature, the Q-Learning Algorithm 5.5 is called a model-free algorithm while
Algorithm 5.8 is called a model-based algorithm. We note that model-based algorithms
can also be also used when p is not known a priori. In this case, another learning scheme
computes the probabilities p from the evaluations of g during Q-Learning, in the simplest
case by using the empirical distribution, i.e., by counting the observed transitions and
dividing by the number of overall transitions. Depending on the problem, Algorithm 5.8
with such a “learned” p can be faster and more reliable than Algorithm 5.5.

38 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

Chapter 6

Deep Neural Networks

July 21, 2021
The Q-Learning algorithms proposed so far were formulated under the assumption that
the state and action space are finite. In practical problems this is most often not the case.

If X and U are compact subsets of Rd and Rm (which is a realistic assumption in many
applications), a standard way to overcome this problem is to replace X and U with finite
approximations by discretising the state and action space. For instance, for the unit cube

X = [0,1]d ⊂ Rd

one can select a step size h = 1/J , J ∈ N, and use the finite set

Xh ∶= {(hq1, . . . , hqd)T ∣ q = (q1, . . . , qd)T ∈ {0, . . . , J}d}.

Then, of course, the dynamics of the system on X must also be discretised in order to
obtain a dynamics on Xh. This can be done by different techniques that we will not
discuss in detail here; we just mention that quantization, which was briefly explained at
the beginning of the last chapter, is one of these methods.

Regardless of how the dynamics is converted, this procedure leads to the situation that
the exact function Q ∶ X × U → R is approximated by a function Qh ∶ Xh × Uh → R for all
x ∈Xh ×Uh. In order to obtain an aproximation that is defined on X ×U interpolation can
be used. Piecewise constant or piecewise linear interpolation are the simplest choices, but
much more sophisticated methods are possible.

Now, in order to be able to approximate Q by Qh with a certain accuracy, the step size
h > 0 must be sufficiently small, meaning that the value J must be sufficiently large. Then,
however, one immediately sees that the number of elements in Xh grows rapidly — more
precisely exponentially — when the dimension n grows. If in the above example we use
h = 1/9, i.e., J + 1 = 10 states per coordinate direction, then for a two dimensional problem
we need 100 states in Xh (which can be easily handled in a Q-Learning algorithm), but in
a ten dimensional problem we need 1010 = 10 billion (10 Milliarden) states, which already
needs a very powerful computer, even though 10 states per coordinate direction is still a
quite coarse discretization.

This phenomenon is known as the curse of dimensionality and leads to the fact that this
way of discretising the state space is not suitable for high-dimensional problems. Deep

39

40 CHAPTER 6. DEEP NEURAL NETWORKS

Neural Networks (DNNs) can bring a remedy here and we will discuss in this chapter
under which conditions this is provably true.

Generally, a DNN of the type we consider in this lecture can be seen as a function from a set
Y ⊂ Rd to R, which in addition depends on a vector of parameters θ = (θ1, . . . , θP)T ∈ RP .
This means, a DNN represents a function

W ∶ Y ×RP → R, or, if we fix a θ ∈ RP , W (⋅; θ) ∶ Y → R.

Now, given a function z ∶ Y → R, the goal is to find a parameter vector θ∗ ∈ RP such that

∥W (⋅; θ∗) − z(⋅)∥

is small in some norm ∥ ⋅ ∥. In Q-Learning, z would typically be the function Q from
(3.5), in which case d = n +m and W would be an approximation of Q. Alternatively, one
can define z to be the optimal value function V . Then d = n and `(x,u) + γW (g(x,u))
would be an approximation of Q. This approach has the advantage that the function to
be approximated depends on a lower dimensional argument, but the disadvantage that g
must be known and easy to evaluate in order to evaluate the approximation of Q.

Now, three questions need to be answered:

• What exactly is W and the underlying neural network?

• When is it possible to find θ∗ ∈ RP such that ∥W (⋅, θ∗) − z(⋅)∥ becomes small?

• How do we compute this θ∗.

These will be clarified in the following four sections.

6.1 Definition of DNNs

In this section we describe the type of neural networks that we use in this lecture. A deep
neural network is a computational architecture that has several inputs, which are processed
through ` ≥ 1 hidden layers of neurons. The values in the neurons of the layer with the
largest ` are used in order to compute the output of the network. In this lecture, we will
only consider feedforward networks, in which the input is processed consecutively through
the layers 1, 2, . . . , `. For our purpose of representing Q or V we will use networks with
the input vector x = (x1, . . . , xd)T ∈ Rd (where this x may contain x and u in case Q is
represented) and a scalar output W (x; θ) ∈ R. Here, the vector θ ∈ RP represents the free
parameters in the network that need to be tuned (or “learned”) in order to obtain the
desired output. Figure 6.1 shows generic neural networks with one and two hidden layers.

Here, the lowest layer is the input layer, followed by one or two hidden layers numbered
with `, and the output layer. The number `max determines the number of hidden layers,
here `max = 1 or 2. Each hidden layer consists of N` neurons and the overall number of
neurons in the hidden layers is denoted by N = ∑`max

`=1 N`. The neurons are indexed using

6.1. DEFINITION OF DNNS 41

output

inputx1 x2
xn

y11 y12 y1N1
ℓ = 1

W (x; θ)

output

inputx1 x2
xn

y21 y22 y2N2

y11 y12 y1N1
ℓ = 1

ℓ = 2

W (x; θ)

Figure 6.1: Neural network with 1 and 2 hidden layers

the number of their layer ` and their position in the layer k. Every neuron has a scalar value
y`k ∈ R and for each layer these values are collected in the vector y` = (y`1, . . . , y`N`)

T ∈ RN` .
The values of the neurons at the lowest level are given by the inputs, i.e., y0 = x ∈ Rd. The
values of the neurons in the hidden layers are determined by the formula

y`k = σ`(w`k ⋅ y`−1 + b`k),

for k = 1, . . .N`. Here x ⋅ y denotes the Euclidean scalar product between two vectors
x, y ∈ Rn, σ` ∶ R → R is a so called activation function and w`k ∈ RN`−1 , a`k, b

`
k ∈ R are the

42 CHAPTER 6. DEEP NEURAL NETWORKS

parameters of the layer. Popular activation functions include

σ(r) = r (linear)

σ(r) = 1

1 + e−x (sigmoid)

σ(r) = 2

1 + e−2x
− 1 (hyperbolic tangent)

σ(r) = max{0, r} (rectified linear unit, ReLU)

σ(r) = ln(er + 1) (softplus).

Among these functions, ReLU activation functions have become particularly popular for
time-critical applications, because the evaluation of the function x↦W (x; θ∗) can be im-
plemented very efficiently. In contrast, for analytic considerations it is sometimes desirable
that x↦W (x; θ∗) is differentiable, which excludes the non-smooth ReLU function.

In the output layer, the values from the topmost hidden layer ` = `max are affine-linearly
combined to deliver the output, i.e.,

W (x; θ) =
N`max

∑
k=1

aky
`max

k + c =
N`max

∑
k=1

akσ
`max(w`max

k ⋅ y`max−1 + b`max

k) + c. (6.1)

The vector θ collects all parameters ak, c, w
`
k, b

`
k of the network.

In case of one hidden layer, in which `max = 1 and thus y`max−1 = y0 = y, we obtain the
closed-form expression

W (x; θ) =
N1

∑
k=1

akσ
1(w1

k ⋅ x + b1k) + c.

For two hidden layers, the closed-form expression reads

W (x; θ) =
N2

∑
k=1

akσ
2
⎛
⎜
⎝
w2
k ⋅

⎛
⎜
⎝

σ1(w1
1 ⋅ x + b12)
⋮

σ1(w1
N1

⋅ x + b2N1
)

⎞
⎟
⎠
+ b1k

⎞
⎟
⎠
+ c.

6.2 The universal approximation theorem

The universal approximation theorem states that a neural network with one hidden layer
can approximate all smooth functions arbitrarily well. In its qualitative version, going back
to [3, 6], it states that the set of functions that can be approximated by neural networks
with one hidden layer is dense in the set of continuous functions. In Theorem 6.1, below,
we state a quantitative version, given as Theorem 1 in [10], which is a reformulation of
Theorem 2.1 in [9].

For its formulation consider compact sets Kd ⊂ Rd for which there exists a C > 0, cd ∈ Rd
satisfying

Kd ⊆ cd + [−C,C]d for all d ∈ N.

6.2. THE UNIVERSAL APPROXIMATION THEOREM 43

Note that C is assumed to be independent while cd may depend on d. On these sets we
want to perform our computation. For a continuous function z ∶ Kn → R we define the
infinity-norm over Kd as

∥z∥∞,Kd ∶= max
x∈Kd

∣z(x)∣.

We then define the set of functions

Wd
m ∶=

⎧⎪⎪⎨⎪⎪⎩
z ∈ Cm(Kd,R)

RRRRRRRRRRRR
∑

0≤∣α∣≤m

∥Dαz∥∞,Kd ≤ 1

⎫⎪⎪⎬⎪⎪⎭

where Cm(Kd,R) denoted the functions from Kd to R that are m-times continuously
differentiable, α are multiindices of length ∣α∣ with entries αi ∈ {1, . . . , d}, i = 1, . . . , ∣α∣ and

Dαz =
∂ ∣α∣z

∂xα1 . . . ∂xα∣α∣

denotes the m-th directional derivative with respect to α, with Dαz = z if ∣α∣ = 0.

Theorem 6.1 Let σ ∶ R→ R be infinitely differentiable and not a polynomial1. Then, for
any ε > 0, a neural network with one hidden layer provides an approximation

inf
θ∈RP

∥W (x; θ) − z(x)∥∞,Kd ≤ ε

for all z ∈Wd
m with a number N of neurons satisfying

N = O (ε−
d
m)

and this is the best possible.

Proof: See [10, Theorem 1] or [9, Theorem 2.1] for this result with Kd = [−1,1]d. The
extension to Kd ⊂ cd + [−C,C]d will be carried out in the exercises.

We note that if θ ∈ RP realizing the infimum in the inequality in Theorem 6.1 exists, then
in general it depends on g. Theorem 6.1 implies that one can readily use a network with
one hidden layer for approximating Lyapunov functions. However, in general the number
N of neurons needed for a fixed approximation accuracy ε > 0 grows exponentially in n,
and so does the number of parameters in θ. This means that the storage requirement as
well as the effort to determine θ easily exceeds all reasonable bounds already for moderate
dimensions n. Hence, just like the simple discretisation approach sketched at the beginning
of this chapter, this approach also suffers from the curse of dimensionality.

Remark 6.2 The differentiability requirement in Theorem 6.1 excludes the popular ReLU
activation functions, which are obviously not differentiable. However, there are analogous
results for ReLU activation functions, cf. [10, Section 4.1] and the references therein.

1Polynomials are excluded because in the proof of this theorem it is needed that the derivatives σ(k) for
all degrees k ∈ N do not vanish. See also the discussion after Theorem 1 in [10].

44 CHAPTER 6. DEEP NEURAL NETWORKS

6.3 Improved results for compositional functions

In this section we will exploit the particular structure of compositional functions in order to
obtain approximation results for DNNs with (asymptotically) much lower N . The following
definition and theorem are inspired by [10] but significantly reformulated.

Definition 6.3 A function z ∶ Rd → R is called a compositional function of degree K ∈ N
and level L ∈ N, if there are functions hlj ∶ RK → R, l = 1, . . . , L, j = 1, . . . , d, such that
z(y) = z(x1, . . . , xd) can be written in the form

z(x) =
d

∑
j=1

βjz
L
j ,

where the values zlj are recursively defined as

zlj = hlj(αlj1zl−1
ilj1
, . . . , αljKz

l−1
iljK

)

for l = 1, . . . , L, z0
i = xi, iljk ∈ {1, . . . , d} and αljk, βj ∈ R

An example for a compositional function of degree 2 and level 1 from R5 to R is

z(x) = h11(x1, x3) + 5h12(x5) + 0.5h13(x2, x3)

and an example for a compositional function of degree 3 and level 2 from R4 to R is

z(x) = h11(h21(x1, x2, x3),2h22(x2, x4),7h23(x1, x2, x3)).

Note that although all functions hlj are formally defined as function from RK , they may
also have less than K arguments (since they do not depend on some of the arguments that
are formally present). Likewise, it may possible that some of the hlj are constantly equal
to 0. In words, the degree K limits the maximal number of arguments of each function hlj
while the level L limits the number of nestings of the functions hlj into each other.

For this class of functions we can now prove the following improved approximation result.

Theorem 6.4 Let σ ∶ R → R be infinitely differentiable and not a polynomial. Let C be
the set of compositional functions with fixed K and L but arbitrary d, where each function
hlj lies in WK

m and the moduli ∣αljk∣ and ∣βj ∣ as well as of the weights ∣wklm∣ needed for its
approximation according to Theorem 6.1 with z = hlj are bounded by a constant M that
is independent of d and of the desired accuracy.

Then, for any ε > 0, a neural network with L hidden layers provides an approximation

inf
θ∈RP

∥W (⋅ ; θ) − z∥∞,KN ≤ ε

for all z ∈ C with a number N of neurons satisfying

N = O (d
K
m
+1ε−

K
m) .

6.3. IMPROVED RESULTS FOR COMPOSITIONAL FUNCTIONS 45

Proof: For simplicity of notation, throughout this proof we assume that the number of
neurons N` in each level is identical and an integer multiple of d. We denote this number
by N` = N̂d, N̂ ∈ N. Then the overall number of neurons is N = LN̂d.

Now to each hlj we assign the subset of neurons with values yl
(j−1)N̂+1

, . . . , yl
jN̂

. We refer

to this subset of the overall DNN as a sublevel. Then, by Theorem 6.1, for any εlj > 0 we
find weights2 ãlmj , b̃

l
mj , c̃

l
j , and w̃lkj such that

∣hlj(αlj1zl−1
ilj1
, . . . , αljKz

l−1
iljK

)
´¹¹¸¹¹¹¶

=zlj

−
N̂

∑
m=1

ãlmj σ
l (

K

∑
k=1

w̃lmjkz
l−1
iljk

+ b̃lmj)

´¹¹¹¸¹¹¹¶
=yl
(j−1)N̂+m

+c̃lj ∣ ≤ εlj .

Using the same approximation for zl−1
j we can write

yl
(j−1)N̂+m

= σl (
K

∑
k=1

w̃lmjkz
l−1
iljk

+ b̃lmj)

≈ σl
⎛
⎝
K

∑
k=1

w̃lmjk
⎛
⎝
N̂

∑
m̃=1

ãl−1
m̃iljk

yl−1
(iljk−1)N̂+m̃

+ c̃l−1
iljk

⎞
⎠
+ b̃lmj

⎞
⎠

= σl
⎛
⎝

N`

∑
k=1

wl−1
mjky

l−1
k + bl−1

mj

⎞
⎠
,

where the weights wl−1
mjk and bl−1

mj are obtained by expanding the sums in the second last

line. This defines the weights for the neurons yl
(j−1)N̂+1

, . . . , yl
jN̂

of this subnet and in the

same way we can compute the weights for all neurons.

Since the partial derivatives of the functions hlj are bounded by 1, we can conclude that each

hlj maps a set Kd ⊂ cd+[−C,C]d to a set K̂d ⊂ ĉd+[−C,C]d. Hence, if y ∈Kd ⊂ cd+[−C,C]d,
then the arguments of the functions hlj lie in a set Kdlj ⊂ cdlj + [−CM l−1,CM l−1]K . If we
moreover make sure that the approximation error εlj for each sublevel is bounded by 1, by
induction we can guarantee that the internal values in the network are contained in the
set cdlj + [−(CM l−1 − (l − 1)M l−1,CM l−1 + (l − 1)M l−1]K . We thus have to make sure that
in each sublevel the approximation errors satisfy the tolerance εlc on this set. Finally, in
each sublevel the error in the approximation of zlj is amplified by the weights w̃lkj . Hence,
we have to make sure that the errors in the lower levels are choosen small enough that
after this amplification they are still within the desired tolerance. This is possible since we
assumed these values to be bounded independent of d.

Now, given a desired overall accuracy ε > 0, choose the values εlj such that the outer-
most functions h1k, k = 1, . . . , d are approximated with an accuracy ε1k = ε/(dβk). Then,
choosing the DNN weights of the top layer as ak = βk, the overall accuracy of the resulting
weighted sum is ε.

Due to the fact that the individual accuracies εlj amplify multiplicatively when propagated
through the network, there exists a constant γ > 0 (depending on L and M), such that

2More precisely, we first find weights for approximating hlj(z
l−1
ilj1

, . . . , zl−1iljK
) which by appropriate rescal-

ing yield the weights for approximating hlj(αlj1z
l−1
ilj1

, . . . , αljKz
l−1
iljK

).

46 CHAPTER 6. DEEP NEURAL NETWORKS

εlj ≤ γε/d ensures the desired bound on ε1k. According to Theorem 6.1, each subnet must
consist of

O ((γε/d)−
K
m) = O (d

K
m ε−

K
m)

neurons, where the γ vanishes in the O-term because it is independent of d. Since the
number of subnets is bounded by dL, in which L is independent of d, the order of the
overall number of neurons is obtained if we multiply the number, above, by d. This yields
the desired estimate.

Remark 6.5 The difference in the order of the number of neurons is best illustrated
using some sample numbers. Assume we want an approximation accuracy ε = 0.1 and
have functions with d = 10, K = 5 and m = 1. Then Theorem 6.1 requires an order of 1010

neurons while Theorem 6.4 requires only 107 neurons. For d = 20 the first number increases
to 1020 (i.e., by a factor of 1010), while the second only increases to 1.6 ⋅ 108 (i.e., by a
factor of 16).

If the functions to be approximated by the DNN are sufficiently smooth (and their deriva-
tives bounded), such that we can set m = 3, then for d = 100 we get only the order of 105

neurons from Theorem 6.4, but the order of 1033 neurons from Theorem 6.1.

6.4 Training the DNN

The process of finding a parameter vector θ such that the DNN approximates the function
it should approximate is commonly called training. To this end, we define a so-called loss
function L, which penalises the pointwise deviation of W (x; θ) from a desired value. In
the simplest case, one may want to minimise the expression

(W (y; θ) − z(x))2

for a given function z. Then L ∶ R ×Rn → R could be defined as

L(W,y) = (W − z(y))2, (6.2)

such that L(W (x; θ), x) = (W (x; θ) − z(x))2. We note that this problem does not yet fit
the typical task in RL, because there the desired function z = Q or z = V is not known.
We will explain below how this problem can be solved.

Now we would not only want to approximate z in a single point y ∈ Rn, but for all points
y ∈Kn. Ideally, we would like to minimize

∥W (⋅; θ) − z∥∞ or ∥W (⋅; θ) − z∥2.

In order to obtain this at least approximately, we pick a large number of test points
y1
test, . . . , y

J
test, which are typically chosen randomly in Kn using a random number genera-

tor. Then we minimise the sum

F (θ) = 1

J

J

∑
j=1

L(W (yjtest; θ), y
j
test)

6.5. DEEP REINFORCEMENT LEARNING 47

with respect to θ. Since the number of test points in DNN training is usually very large,
this minimisation is not performed at once, but by means of a so called stochastic gradient
method. To this end, we define an iteration counter j, which is set to j = 0 at the beginning
and pick an initial guess θ0 for θ.

Then the set Ytest = {y1
test, . . . , y

J
test} is divided into M randomly generated subsets Y 1

test,
. . ., YM

test, the so called batches, each containing B elements. Then for m = 1,2, . . . ,M , the
gradient ∇Fm of the function

Fm(θ) ∶= 1

B
∑

ytest∈Ymtest

L(W (ytest; θ), ytest)

is computed in θ = θj and a gradient step

θj+1 ∶= θj − αj∇Fm(θj)

is performed for a step size αj > 0 and j is set to j + 1. When this is done for all m =
1, . . . ,M , one says that the first epoch of the optimization is completed. Then new batches
X1
test, . . .X

M
test are created from Xtest and the next epoch of the optimization is started.

This procedure is repeated until no further progress for the value of F (θj) can be achieved.
Note that j is not reset to 0 after an epoch is finished but keeps on counting the overall
iterations, i.e., we have j = (k − 1)M, . . . , kM − 1 during the k-th epoch.

The good thing about the neural network structure is that the gradient ∇m can be com-
puted very efficiently. Practical algorithms that implement this basic idea come in many
different variants. Particularly, the choice of the step size αj differs in these variants. It
may also be beneficial to add a regularising term to F , e.g., λ∥θ∥2

2 for a small parameter
λ > 0. This prevents the algorithm from choosing extreme values for θ. The lecture notes
“Optimization for Machine Learning” by Prof. Anton Schiela, available via the e-Learning
course for his lecture in the summer semester 2020, discuss these kind of algorithms in
great detail and also provide convergence statements under appropriate assumptions.

6.5 Deep reinforcement learning

The learning algorithm we discussed so far is called supervised learning, because the values
of the function to be approximated are known and can be used in order to “teach” the
neural network via the loss function.

In RL, the loss function must be defined in a different way, because the desired function
z = Q or z = V is not known; we only know an equation it should satisfy. This is called
unsupervised learning. For instance, in the case that we want to approximate the function
Q, it is known that this function satisfies the dynamic programming principle

Q(x,u) = `(x,u) + γ inf
u′∈U

Q(g(x,u), u′).

Hence, for y = (x,u) and x′ = g(x,u) we can define

L(W,y) = (W − `(x,u) − γ inf
u∈U

W (x′; θj))
2

.

48 CHAPTER 6. DEEP NEURAL NETWORKS

The difference to (6.2) is that the loss function now depends on θj and thus changes when
the iteration progresses. In the form defined here, the parameter θj appearing in the loss
function is updated after each batch, but one could think of other ways of doing this.

As in conventional RL, x′ = g(x,u) can be obtained by evaluating g(x,u) if this function
is known or from simulated or measured data. Also, it is common not to generate the test
points in Xtest entirely randomly but rather use the test points generated along certain
trajectories, i.e., defining the x-component of the test point y+ = (x+, u+) in the next time
step as x+ = x′. The u-component can, e.g., be obtained by the ε-greedy choice described
in Section 4.3. If these trajectories are obtained by simulation or from measured data, then
one can store and reuse them in later epochs. However, it may still be advisable to update
the test point set Xtest during the process, because the better the approximation of V or Q
is, the better the controls generated by the ε-greedy choice are, which may provide better
training progress. Obviously, there are a lot of different ways to implement this, involving
quite a number of parameters to be tuned.

It is worth to summarise the main differences between classical RL and deep RL:

Classical Reinforcement Learning Deep Reinforcement Learning

Q̃ is updated for each (x,u) θj is updated after each batch

the update only changes Q̃(x,u) the update changes W (⋅ ; θ) everywhere

the new value for (x,u) is exactly the new values determine W (⋅ ; θj+1)
assigned to Q̃(x,u) only indirectly via the optimisation

each (x,u) is visited many times only a selection of (x,u) is visited

The last two points make it difficult to obtain rigorous convergence results for deep RL.
The analysis is further complicated by the fact that, compared to simple deep learning
problems, the cost function in deep RL depends on θj and thus changes as θj is updated.

Interestingly, this last complication vanishes if we consider continuous-time problems. In
this case, the loss function is not derived from the Bellman equation (3.4) but from the
Hamilton-Jacobi-Bellman equation (3.9). In continuous-time, it is more reasonable to
approximate V instead of Q. This leads to the loss function

L(W,DW,x) = (−δW + min
u∈Rm

{DW ⋅ f(x,u) + `(x,u)})
2

,

which is obviously not depending on θj .

The price to pay is that now we also need the derivative DW (x; θ) = d/dxDW (x; θ) as an
argument of L, and we also need to compute its derivative with respect to θ for computing
the gradient ∇Fm with respect to θ. This, however, is not too difficult to implement with
state-of-the-art software for neural networks.

Chapter 7

Compositional Lyapunov functions

July 21, 2021
Although compositionality of the optimal value function V or of the Q-function seems to
be a promising way to ensure that Deep RL works in high dimensions, so far there are
no general results that would ensure this property. However, there is a first result for a
simplified problem, namely for computing Lyapunov functions. We consider this problem
in continuous time and for ordinary differential equations without control input, i.e.,

ẋ(t) = f(x(t)). (7.1)

We assume that f ∶ Rd → Rd is Lipschitz continuous and that x = 0 is an equilibrium, i.e.,
f(0) = 0.

7.1 Lyapunov functions

Definition 7.1 A continuously differentiable function V ∶ O → R defined on an open set O
with 0 ∈ O is a Lyapunov function if it satisfies the following properties: V (0) = 0, V (x) > 0
for all x ≠ 0, and the orbital derivative DV (x)f(x), i.e., the derivative DV of V multiplied
with the direction of the vector field f , satisfies

DV (x)f(x) ≤ −h(x) (7.2)

for a function h ∶ Rd → R with h(x) > 0 for all x ∈ O ∖ {0}. If O = Rd and V (x) → ∞ as
∥x∥→∞, then V is called a global Lyapunov function.

It is known that a Lyapunov function exists if and only if the equilibrium 0 is asymptotically
stable. If V is a Lyapunov function, then any connected component of a sublevel set of
V containing 0 is part of the domain of attraction of x = 0, which is the set of all initial
conditions for which x(t;x0)→ 0 as t→∞. Hence, a given set Kd = [−C,C]d is part of the
domain of attraction of x = 0 if it is contained in such a sublevel set. In this case we call
V a Lyapunov function on Kd.

Under suitable regularity conditions on h, there exists a Lyapunov function that solves the
partial differential equation

DV (x)f(x) + h(x) = 0.

49

50 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

This was proved by Zubov in the 1960s. This equation, called the Zubov equation is nothing
but a particular simple version of a Hamilton-Jacobi-Bellman PDE (3.9). Here h plays the
role of the cost function while V plays the role of the optimal value function (the close
relation between optimal value functions and Lyapunov functions was already observed
several times in Mathematical Control Theory). Hence, the computation of Lyapunov
functions can be seen as a particular special case of computing optimal value functions.

7.2 Separable Lyapunov functions

For Lyapunov functions, we will consider compositional functions with level L = 1. Such
functions are also called separable. In order to define this structure, the system (7.1) is
divided into s subsystems Σi of dimensions di, i = 1, . . . , s. To this end, the state vector
x = (x1, . . . , xd)T and the vector field f are split up as

x =
⎛
⎜⎜⎜
⎝

z1

z2

⋮
zs

⎞
⎟⎟⎟
⎠

and f(x) =
⎛
⎜⎜⎜
⎝

f1(x)
f2(x)
⋮

fs(x)

⎞
⎟⎟⎟
⎠
,

with zi = (xd̂i−1+1, . . . , xd̂i) ∈ R
di and fi ∶ Rd → Rdi denoting the state and dynamics of each

Σi, i = 1, . . . , s, with state dimension di ∈ N and d̂i = ∑ij=1 dj . With

z−i ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi−1

zi+1

⋮
zs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and by rearranging the arguments of the fi, the dynamics of each Σi can then be written
as

żi(t) = fi(zi(t), z−i(t)), i = 1, . . . , s.

Using this decomposition, we can define the following Lyapunov function structure1.

Definition 7.2 A Lyapunov function V for (7.1) is called separable, if there exist C1-
functions V̂i ∶ Rdi → R such that V is of the form

V (x) =
s

∑
i=1

V̂i(zi). (7.3)

In the remainder of this section we discuss conditions on f under which a Lyapunov function
of the form (7.3) exists.

1In order to avoid an overly technical presentation, the exposition in this section is limited to global
Lyapunov functions.

7.2. SEPARABLE LYAPUNOV FUNCTIONS 51

One situation in which a system (7.1) admits a separable Lyapunov function is when the
fi do not depend on z−i, i.e., if fi(zi, z−i) = fi(zi). This means that the subsystems are
completely decoupled. In this case, consider Lyapunov functions V̂i of ẋi = fi(xi) on
compact sets K̂i ⊂ Rdi , and V from (7.3). Then, clearly V (x) ≥ 0 and V (x) = 0 if and only
if x = 0. Moreover,

DV (x)f(x) =
s

∑
i=1

DVi(zi)fi(zi) < 0

for all x ∈Kd =∏si=1 K̂i with x ≠ 0.

Assuming that f decomposes into s completely decoupled subsystems is relatively restric-
tive. Fortunately, a similar construction can also be made if the f are coupled, provided the
coupling is such that it does not affect the stability of the overall subsystem. The systems
theoretic tool for this approach is nonlinear small-gain theory, which relies on the input-
to-state stability (ISS) property introduced in [12]. It goes back to [7, 8] and in the form
for large-scale systems we require here it was developed in the thesis [11] and in a series of
papers around 2010, see, e.g., [4, 5] and the references therein. ISS small-gain conditions
can be based on trajectories or Lyapunov functions and exist in different variants. Here,
we use a variant from [4], which is most convenient for obtaining approximation results
because it yields a smooth Lyapunov function.

For formulating the small gain condition, we assume that for the subsystems Σi there exist
C1 ISS-Lyapunov functions Vi ∶ Rdi → R, satisfying for all zi ∈ Rdi z−i ∈ Rn−di

DVi(zi)fi(zi, z−i) ≤ −αi(Vi(zi)) +∑
j≠i

γij(Vj(zj))

with rates αi ∈ K∞ and gains γij ∈ K∞,2 i, j = 1 . . . , s, i ≠ j. Here, the states z−i of
the other subsystems are interpreted as the input to the i-th subsystem and the term

∑j≠i γij(Vj(zj)) in the ISS inequality quantifies how much this input affects the stability
of the i-th subsystem. Particularly, the larger the ISS-gains γij are, the more the other
systems’ influence can affect the decrease of the Lyapunov function Vi. Setting γii ∶= 0, we
define the map Γ ∶ [0,∞)s → [0,∞)s by

Γ(r) ∶=
⎛
⎝
s

∑
j=1

γ1j(rj), . . . ,
s

∑
j=1

γsj(rj)
⎞
⎠

T

and the diagonal operator A ∶ [0,∞)s → [0,∞)s by

A(r) ∶= (α1(r1), . . . , αs(rs))T .

Definition 7.3 We say that (7.1) satisfies the small-gain condition, if there is a de-
composition into subsystems Σi, i = 1, . . . , s, with ISS Lyapunov functions Vi satisfying
the following condition: there are positive definite3 functions ηi, i = 1, . . . , s, satisfying

∫ ∞0 ηi(αi(r))dr =∞ and such that for η = (η1, . . . , ηs)T the inequality

η(r)TΓ ○A−1(r) < η(r)T r (7.4)

2As usual, we define K∞ to be the space of continuous functions α ∶ [0,∞) → [0,∞) with α(0) = 0 and
α is strictly increasing to ∞.

3A continuous function ρ ∶ [0,∞)→ [0,∞) is called positive definite if ρ(0) = 0 and ρ(r) > 0 for all r > 0.

52 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

holds for all r ∈ [0,∞)s with r ≠ 0. Here A−1 denotes the operator consisting of the inverse
functions α−1

i .

It is easily seen that this inequality is satisfied whenever the gains γij are sufficiently small,
which explains the name small-gain condition. However, it is not necessary that all γij are
small, as the following example shows.

Example 7.4 Consider the 2d ordinary differential equation

ẋ1 = −x1 + ρx2

ẋ2 = εx1 − x2

for parameters ε, ρ > 0. We decompose the system with z1 = x1 and z2 = x2. A suitable way
for obtaining the Lyapunov functions Vi is often to set z−i to 0 and try to find Lyapunov
functions for żi = fi(zi,0). In this example, this is very easy and one sees that the simple
choice Vi(zi) = z2

i does the job (this is typically a good choice in the 1d case). We obtain

DV1(z1)f1(z1,0) = 2z1(−z1) = −2z2
1

as well as

DV2(z2)f2(z2,0) = 2z2(−z2) = −2z2
2 .

Including the coupling we obtain for the first equation

DV1(z1)f1(z1, z2) = −2z2
1 + 2z1ρz2

Using a2 − 2ab+ b2 = (a− b)2 ≥ 0 with a = z1 and b = ρz2 we obtain 2z1ρz2 ≤ z2
1 + ρ2z2

2 . Thus
we can conclude

DV1(z1)f1(z1, z2) ≤ −2z2
1 + z2

1 + ρ2z2
2 ≤ −z2

1 + ρ2z2
2 = −V1(z1) + ρ2V2(z2).

Similarly, for the second equation we obtain

DV2(z2)f2(z2,0) = −2z2
1 + 2z2εz1 ≤ −z2

2 + ε2z2
1 = −V2(z2) + ε2V1(z1).

This yields α1(w) = α2(w) = w, γ12(w) = ρ2w, and γ21(w) = ε2w. This means that the
size of the gains depend on ρ and ε. The larger these parameters, the larger values the
respective gain functions have.

The operators Γ and A then evaluate to

Γ(r) = (ρ2r2, ε
2r1)

T
and A−1(r) = (r1, r2)T ,

implying

Γ ○A−1(r) = (ρ2r2, ε
2r1)

T
.

The small-gain condition (7.4) then reads

η1(r1)ρ2r2 + η2(r2)ε2r1 < η1(r1)r1 + η2(r2)r2.

7.2. SEPARABLE LYAPUNOV FUNCTIONS 53

With the choice η1(r1) = r1/ρ2, η2(r2) = r2/ε2 this inequality becomes

2r1r2 <
r2

1

ρ2
+ r

2
2

ε2
.

If r1r2 ≤ 0 and r1, r2 ≠ 0, then this inequality is always satisfied. For r1r2 > 0, if we assume
that ρε < 1, then using 2ab ≤ a2 + b2 with a = r2/ε, b = r1/ρ, yields

2r1r2 < 2
r1

ρ

r2

ε
≤ r

2
1

ρ2
+ r

2
2

ε2

and this the desired inequality. The small-gain condition (7.4) thus reduces to the require-
ment that ρε < 1. This shows that a single gain can be large—even vary large—if the other
gain is sufficiently small. It does not matter whether a single gain is large. Rather, the
combination of the gains matters.

It should be mentioned that there are small-gain conditions in the literature that are easier
to check and to interpret. However, these conditions lead to Lyapunov functions with less
regularity. The advantage of the condition we use here is that the following theorem from
[4] yields a differentiable Lyapunov function.

Theorem 7.5 Assume that the small-gain conditions from Definition 7.3 hold. Then V
from (7.3) is a Lyapunov function for the C1-functions V̂i ∶ Rdi → R given by

V̂i(zi) ∶= ∫
Vi(zi)

0
λi(τ)dτ

where λi(τ) = ηi(αi(τ)).

Proof: We use the notation

V⃗ (x) =
⎛
⎜
⎝

V1(z1)
⋮

Vs(zs)

⎞
⎟
⎠
, DV⃗ (x)f(x) =

⎛
⎜
⎝

DV1(z1)f1(z1, z−1)
⋮

DV2(zs)fs(zs, z−s)

⎞
⎟
⎠

and λ(V⃗)(x) =
⎛
⎜
⎝

λ1(V1(z1))
⋮

λs(Vs(zs))

⎞
⎟
⎠
.

Similarly we define η(V⃗). Moreover, we write (−A + Γ)(r) = −A(r) + Γ(r). With this
notation, it holds that

DV (x)f(x) = λ(V⃗)(x)TDV⃗ (x)f(x) ≤ λ(V⃗)(x)T (−A + Γ)(V⃗ (x)).

The small-gain condition then implies for all x ≠ 0 that

η(A(V⃗ (x)))TΓ ○A−1 ○A(V⃗ (x)) < η(A(V⃗ (x)))TA(V⃗ (x)).

This implies
−λ(V⃗)(x)TA(V⃗ (x)) + λ(V⃗ (x))TΓ(V⃗ (x))
´¹¹¹¸¹¹¹¶

=∶h(x)

< 0

for all x ≠ 0. This shows (7.2). The fact that V (0) = 0, V (x) > 0 if x ≠ 0 follow
from the construction of V and the requirement V (x) → ∞ as ∥x∥ → ∞ follows from

∫ ∞0 ηi(αi(r))dr =∞.

54 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

We note that for various reasons small-gain conditions are not easy to check and to apply:
the gains γij may be difficult to estimate, the functions ηi may be hard to find and, above
all, appropriate Lyapunov functions Vi for the subsystems may be nontrivial to construct.
However, none of these ingredients need to be known for our approach. Moreover, not even
the number and the dimension of the subsystems needs to be known and we will also be
able to define the zi in a more general way than we did in this section. All that needs to be
assumed in what follows is that a separable Lyapunov function V of the form (7.3) exists.
In summary, the small-gain theory just presented only serves to show that it is realistic to
assume the existence of such a V , but the particular subsystem structure does not need
to be known for constructing it. Rather, provided that an upper bound for the dimension
of the subsystems is known, the resulting compositional form of V will be detected by the
training algorithm of the neural network.

7.3 Approximation results

The separable Lyapunov function (7.2) is nothing but a compositional function with degree
K = maxi di and level L = 1. Provided that this K is independent of d, Theorem 6.4 readily
implies that separable Lyapunov functions can be approximated with a number of neurons
that grows only polynomially in the dimension d, using a DNN with one hidden layer.

However, we can even go one step further. It may be that one cannot find the Lyapunov
functions V̂ in (7.2) depending on subvectors of x, however, it may be possible that a
Lyapunov function of the form (7.2) exists if we allow the zi to be linear combinations of
subvectors of x. Formally, this means that there is a coordinate transformation T ∶ Rd →
Rd, such that f̃(x) = Tf(T−1x) admits a separable Lyapunov function, i.e., a Lyapunov
function of the form (7.2). In this case, one easily sees that if Ṽ is a separable Lyapunov
function for f̃ , then V (x) = Ṽ (Tx) is a Lyapunov function for f . This is because DV (x) =
D(̃Tx)T and f(x) = T−1f̃(Tx), and thus

DV (x)f(x) =DṼ (Tx)TT−1f̃(Tx) =DṼ (Tx)f̃(Tx) ≤ −h̃(Tx) =∶ −h(x).

In order to approximate V (x) with a DNN, it suffices to add a second layer to the neural
network and if we limit ourselves to linear coordinate transformations, it is sufficient to use
linear activation functions in this second layer. It is easily seen that each linear coordinate
transformation T can be exactly represented by this layer.

If we know (or conjecture) a certain separable structure, i.e., if we know upper bounds
for K and s, then we can use this information for setting up the network. We can then
remove some of the connections in the network in order to represent the fact that V̂ (z1)
will only depend on the first subset components of Tx, V̂ (z2) depends on the second
subset of components and so on. Figure 7.1 shows such a network. Using this network
structure allows us to get an indication whether a separable Lyapunov exists also in low
dimensions. While the computational advantage of separable functions only becomes visible
for sufficiently large d, this particular network structure will only be able to represent
Lyapunov functions with a certain separability structure, but not general ones. Hence,
if the network fails to find a Lyapunov function in the training process, then this is an
indication (though, of course, not a proof), that no separable Lyapunov function exists.

7.4. TRAINING THE NETWORK 55

output

inputx1 x2
xn

ŷ11 ŷ1M ŷn1 ŷnM

y11 y1dmax

y1(n−1)dmax+1

y1ndmax ℓ = 1

ℓ = 2
L1

Ln

W (x; θ)

Figure 7.1: Neural network for Lyapunov functions V = Ṽ ○ T with known upper bounds
dmax and n for K and s, respectively

7.4 Training the network

For training the network we need to specify a loss function L ∶ R × Rn × Rn → R. As
explained in the previous chapter, training then consists of finding parameters θ such that

1

m

M

∑
i=1

L (W (x(i)test; θ),DW (x(i)test; θ), x
(i)
test) (7.5)

becomes minimal, where x
(i)
test ∈Kn are the elements of a test dataset, which we refer to as

test points. In our numerical results in the next section we always use Kn = [−1,1]n and
the test points x(i) are chosen randomly and uniformly distributed from Kn. Note that as
in the case of general Hamilton-Jacobi-Bellman equations, the loss function L also depends
on the values of the derivative of W with respect to x in the test points, which we denote
by DW (x(i), θ).
The main work is now to design the loss function such that minimizing (7.5) w.r.t. θ yields
a Lyapunov function. To this end, a straightforward idea is to express the Lyapunov
function property as a partial differential equation (PDE) and follow the approaches in the
literature for solving PDEs with neural networks mentioned in the introduction. A simple
PDE that is suitable for this purpose is the Zubov equation with h(x) = ∥x∥2, i.e.,

DW (x; θ)f(x) = −∥x∥2. (7.6)

This PDE needs to be complemented by suitable boundary conditions, which in the PDE
setting (with x = 0 being the equilibrium of interest) are of the form

W (0, θ) = 0 and W (x; θ) > 0 for all x ∈Kn ∖ {0}.

However, in this form the boundary conditions are difficult to be implemented numerically:
the equality condition W (0, θ) = 0 is difficult because it is only given in a single point, while

56 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

the strict “>” condition is difficult because numerically only “≥” can be enforced directly.
To resolve these problems, we replace the boundary conditions above by the stronger
conditions

α1(∥x∥) ≤W (x; θ) ≤ α2(∥x∥) for all x ∈Kn, (7.7)

with α1, α2 ∈ K. Of course, the functions αi have to be chosen appropriately in order to
allow for the existence of a solution of (7.6) that satisfies (7.7). However, it is known that
if a Lyapunov function on Kn exists, then it is always possible to find such αi. Loosely
speaking, α1 must be sufficiently flat while α2 must be sufficiently steep. In case x = 0 is
exponentially stable and f is continuously differentiable, one can choose the αi as quadratic
functions αi(r) = cir2 with c1 > 0 sufficiently small and c2 > 0 sufficiently large.

Given the vector field f from (7.1), the loss function L is now defined as

L(w,p, x) ∶= (pf(x) + ∥x∥2)2 + ν (([w − α1(∥x∥)]−)2 + ([w − α2(∥x∥)]+)2) , (7.8)

where [a]− ∶= min{a,0}, [a]+ ∶= max{a,0}, and ν > 0 is a weighting parameter (chosen as
ν = 1 in all our numerical examples in the next section). One easily checks that for this L
the expression (7.5) is always ≥ 0 and equals 0 if and only if (7.6) and (7.7) are satisfied for
all test points x(i). Conversely, if a Lyapunov function exists for which the bounds (7.7)
are feasible, and if this Lyapunov function can be represented by neural network under
consideration, the minimizing (7.5) w.r.t. θ will result in the optimal value of (7.5) being
0.

Unfortunately, while this approach works in principle, it is not necessarily compatible with
the complexity analysis from the previous section. The reason is that when a Lyapunov
function with the particular small gain structure (7.3) exists, it may not be a solution of
(7.6), (7.7). As a consequence, while a solution of (7.6), (7.7) may exist, it may not be
representable by the neural network structure from Figure 7.1. Hence, with the choice of
L from (7.8), it may not be possible to exploit the low computational complexity provided
by this particular network structure. The result depicted in Figure 7.3, below, shows that
this indeed happens.

Hence, we need to provide more flexibility to our approach, which we can do by enlarging
the set of minima of the loss function. To this end, note that (7.6) is actually a much too
strong condition. Requiring the partial differential inequality (PDI)

DW (x; θ)f(x) ≤ −∥x∥2, (7.9)

instead of (7.6), will also yield a Lyapunov function. While one may argue that the bound
“−∥x∥2” on the derivative is somewhat arbitrary here, it is easily seen that by appropriate
rescaling any Lyapunov function can be modified such that this bound holds. Hence,
modifying the right hand side of (7.9) does not provide more flexibility (but, of course, it
affects the set of αi for which (7.9) and (7.7) together are feasible).

Incorporating (7.9) instead of (7.6) in the loss function L leads to the expression

L(w,p, x) ∶= ([pf(x) + ∥x∥2]
+
)2 + ν (([w − α1(∥x∥)]−)2 + ([w − α2(∥x∥)]+)2) . (7.10)

One easily checks that for this L the expression (7.5) is again always ≥ 0, but now it equals
0 if and only if (7.9) and (7.7) are satisfied for all test points x(i). As Example 7.11 and
Figure 7.2, below, show, this indeed allows to use the network structure from the previous
section and it also allows for solving higher dimensional problems, see Example 7.12.

7.5. NUMERICAL EXAMPLES 57

7.5 Numerical examples

We illustrate the proposed method with two examples, a low-dimensional one that shows
that the the loss function (7.10) is in general preferable over (7.8) and a larger one
that shows the ability of the method to work in find Lyapunov functions in higher di-
mensions. All computations were performed with Python 3.7.0 and TensorFlow 2.1.0
on a MacBook Pro (2017, 2.3 GHz Intel Core i5) running macOS Mojave (10.14.6).
The python code and the trained networks are available from numerik.mathematik.uni-
bayreuth.de/∼lgruene/DeepLyapunov/.

Our first example considers a two-dimensional example that has a compositional Lyapunov
function consisting of two one-dimensional functions. It is given by

ẋ1 = −x1 − 10x2
2

ẋ2 = −2x2.
(7.11)

Using the Lyapunov-function candidate V (x) = x2
1 + x2

2 + 13x4
2, one computes

DV (x)f(x) = −2x2
1 − 20x1x

2
2 − 4x2

2 − 104x4
2.

Since
−x2

1 − 20x1x
2
2 − 104x4

2 ≤ −x2
1 − 20x1x

2
2 − 100x4

2 = −(x1 + 10x2
2)2 ≤ 0,

we obtain DV (x)f(x) ≤ −x2
1 − 4x2

2 ≤ −∥x∥2. Hence, V is a Lyapunov function and it is
obviously of the compositional form (7.3) with z1 = x1 and z2 = x2.

It should thus be possible to compute a Lyapunov function with the neural network from
Figure 7.1. It turns out that using the loss function (7.10) (with α1(r) = 0.1r2 and α2(r) =
10r2) this is indeed possible. Here we used the network structure from Figure 7.1 with
n = 2 and dmax = 1, with the layers L1 and L2 consisting of 128 neurons, each, and
softplus activation functions σ2(r) = ln(er + 1), resulting in 775 trainable parameters. The
training was performed with 200 000 test points4, optimizing with batch size 32 using the
Adam optimizer implemented in TensorFlow. The optimization was terminated when the
accuracy for the final function W (⋅, θ∗) satisfied5

err1 ∶=
1

m

m

∑
i=1

L (W (x(i), θ∗),DW (x(i), θ∗), x(i)) < 10−6

and
err∞ ∶= max

i=1,...,m
L (W (x(i), θ∗),DW (x(i); θ∗), x(i)) < 10−6,

which was reached after 6 epochs in the run documented here.6 The time needed for the
optimization was 48s. Figure 7.2 shows the computed approximate Lyapunov function
W (⋅, θ∗) as a solid surface along with its derivative along the vector field DW (x; θ∗)f(x)
as a wireframe, shown from two different angles. The graphs illustrate that the method
was successful.

4In all examples, the number of test points was increased until the results produced satisfactory Lyapunov
functions.

5Since L consists of squared penalization terms, err1 is effectively the squared weighted ∥ ⋅ ∥2-norm of
the penalization terms.

6As the test points are random, the results of the training optimization are random, too. The error
tolerance 10−6 was sometimes reached already after 4 epochs and sometimes it was not reached until epoch
20. In all successful runs, the resulting Lyapunov was very similar to the one depicted here.

http://numerik.mathematik.uni-bayreuth.de/%7Elgruene/DeepLyapunov/
http://numerik.mathematik.uni-bayreuth.de/%7Elgruene/DeepLyapunov/

58 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

Figure 7.2: Approximate Lyapunov function W (⋅; θ∗) (solid) and its orbital derivative
DW (⋅; θ∗)f (mesh) for Example (7.11) computed with loss function (7.10)

In contrast to this, performing the computation with the same parameters but with loss
function (7.8) fails. As Figure 7.3 shows, the derivative DW (x; θ∗)f(x) (shown as a wire-
frame) obviously not satisfy the equation DW (x; θ∗)f(x) = −∥x∥2. This is also visible in
the values

err1 = 1.363842 and err∞ = 3.110839

that were reached after 20 epochs7. While this alone would not be a problem (as long as
DW (x; θ∗)f(x) is still negative definite), the inability to meet this equation has the side
effect that the optimization also does not enforce the inequalities (7.7). As a consequence,
the minimum of the computed function is not located in the equilibrium at the origin, as
the lateral view on the right of Figure 7.3 shows. This is because it is more difficult to
represent a Lyapunov function satisfying DV (x)f(x) = −∥x∥2 with the network structure
from Figure 7.1. While this example does, of course, not exclude that the loss function
(7.8) works for other parameters, it provides evidence that the advantage in computational
complexity offered by our approach is more easily exploited using the loss function (7.10).
Moreover, it illustrates the effect when the parameter dmax underestimates the maximal
dimension of the subsystems.

Figure 7.3: Attempt to compute a Lyapunov function W (⋅; θ∗) (solid) with its orbital
derivative DW (⋅; θ∗)f (mesh) for Ex. (7.11) with loss function (7.8)

7In all runs these error values did not change significantly anymore after epoch 15. In some runs the
resulting function had a different shape, but in all cases it visibly violated the required inequalities.

7.5. NUMERICAL EXAMPLES 59

In our second example we illustrate the capability of our approach to handle higher dimen-
sional systems and to determine the subspaces for the compositional representation of V .
To this end we consider a 10-dimensional example of the form

ẋ = f(x) ∶= T−1f̂(Tx). (7.12)

with vector field f̂ ∶ R10 → R10 given by

f̂(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−x1 + 0.5x2 − 0.1x2
9

−0.5x1 − x2

−x3 + 0.5x4 − 0.1x2
1

−0.5x3 − x4

−x5 + 0.5x6 + 0.1x2
7

−0.5x5 − x6

−x7 + 0.5x8

−0.5x7 − x8

−x9 + 0.5x10

−0.5x9 − x10 + 0.1x2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

One easily sees that this system consists of five two-dimensional asymptotically stable
linear subsystems that are coupled by four nonlinearities with small gains. It is thus to
be expected that on K10 = [−1,1]10 the system is asymptotically stable and a Lyapunov
function can be computed using the network from Figure 7.1 five two-dimensional sublayers
L1, . . . , L5. The coordinate transformation T ∈ R10×10 is given by the (randomly generated)
matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
5 − 3

10
1
2 −4

5
4
5

2
5

7
10

7
10 −1 4

5
1
5 1 9

10
4
5 − 1

10
3
5 − 3

10
1
2

4
5 − 3

10

− 3
10

3
10

2
5 −2

5 0 −3
5

3
10

3
5 1 −1

2

− 7
10 − 1

10 −3
5 −1

5 −3
5

2
5

1
10 − 1

10
1
10 −3

5
1
10 −3

5 − 9
10 − 7

10 −1
5 − 1

10
1
10

1
5 0 −4

5
3
5

9
10 −1

5 1 2
5

1
2 0 − 1

10 −2
5 0

−1 1 7
10

3
5 −4

5 −4
5 0 −1

5 −1
5

7
10

− 9
10

4
5

1
5 1 −4

5
2
5 − 3

10
7
10

1
5 −4

5
3
5 − 1

10 −2
5 −1

2 − 3
10 − 1

10 − 7
10 1 4

5 − 3
10

0 −1 − 1
10

2
5 − 3

10 − 1
10 −1

5
7
10 − 1

10
4
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We have computed a Lyapunov function for this system for the loss function (7.10) with
α1(r) = 0.2r2 and α2(r) = 10r2. We used the network structure from Figure 7.1 with n = 5
and dmax = 2, with the layers L1, . . . , L5 consisting of 128 neurons, each, leading to 2671
trainable parameters. The training was performed with 400 000 test points, optimizing over
13 epochs. As for the 2d example, we used batch size 32, the Adam optimizer implemented
in TensorFlow, and softplus activation functions σ2. The time needed for the training was

60 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

266s8 and the resulting function satisfies the inequalities

err1 < 10−6, err∞ < 10−6.

Figures 7.4 and 7.5 show the resulting function W (⋅; θ∗) (solid) and its derivative along
f (wireframe) on the (x2, x8)-plane and the (x9, x10)-plane, respectively. The remaining
components of x were set to 0 in both figures. Figure 7.6 shows the value of W (⋅; θ∗) along
three trajectories of (7.12) (computed numerically using the ode45-routine from matlab).
It shows the strict decrease that is expected from a Lyapunov function.

Figure 7.4: Approximate Lyapunov function W (⋅; θ∗) (solid) and its orbital derivative
DW (⋅; θ∗)f (mesh) for Example (7.12) on (x2, x8)-plane

Figure 7.5: Approximate Lyapunov function W (⋅; θ∗) (solid) and its orbital derivative
DW (⋅; θ∗)f (mesh) for Example (7.12) on (x9, x10)-plane

8The time for the evaluation of W (x; θ∗) in 10 000 test points takes 0.3s, while the evaluation of the
derivative DW (x; θ∗) in 10 000 test points takes 0.1s.

7.5. NUMERICAL EXAMPLES 61

Figure 7.6: Value of approximate Lyapunov function W (x(t); θ∗) along trajectories for ini-
tial values x0 = (1,1,1,1,1,1,1,1,1,1)T , (0,1,0,1,0,1,0,1,0,1)T , (1,0,0,0,0,0,0,0,0,0)T
(left to right)

62 CHAPTER 7. COMPOSITIONAL LYAPUNOV FUNCTIONS

Bibliography

[1] A. Barto and R. S. Sutton, Reinforcement Learning: An Introduction, MIT Press,
2nd ed., 2018.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena
Scientific, 2nd ed., 1996.

[3] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control
Signals Systems, 2 (1989), pp. 303–314.

[4] S. Dashkovskiy, H. Ito, and F. Wirth, On a small gain theorem for ISS networks
in dissipative Lyapunov form, Eur. J. Control, 17 (2011), pp. 357–365.

[5] S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, Small gain theorems for
large scale systems and construction of ISS Lyapunov functions, SIAM J. Control
Optim., 48 (2010), pp. 4089–4118.

[6] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are
universal approximators, Neural Networks, 3 (1989), pp. 551–560.

[7] Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, A Lyapunov formulation of the
nonlinear small-gain theorem for interconnected ISS systems, Automatica, 32 (1996),
pp. 1211–1215.

[8] Z. P. Jiang, A. R. Teel, and L. Praly, Small-gain theorem for ISS systems and
applications, Math. Control Signals Syst., 7 (1994), pp. 95–120.

[9] H. N. Mhaskar, Neural networks for optimal approximation of smooth and analytic
functions, Neural Computations, 8 (1996), pp. 164–177.

[10] T. Poggio, H. Mhaskar, L. Rosaco, M. Brando, and Q. Liao, Why and when
can deep – but not shallow – networks avoid the curse of dimensionality: a review,
Int. J Automat. Computing, 14 (2017), pp. 503–519.

[11] B. S. Rüffer, Monotone Systems, Graphs, and Stability of Large-Scale Intercon-
nected Systems. Dissertation, Fachbereich 3, Mathematik und Informatik, Universität
Bremen, Germany, 2007.

[12] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Au-
tom. Control, 34 (1989), pp. 435–443.

63

	Preface
	Introduction
	Problem formulation
	Dynamic Programming
	Dynamic programming principle
	Value iteration
	The Hamilton-Jacobi-Bellman equation

	RL with finite state and action space
	Q-learning
	Convergence analysis
	Choice of x and u in the algorithm

	Non-deterministic Reinforcement Learning
	Definitions
	Dynamic programming
	Q-Learning
	Convergence analysis
	The case of known transition probabilities

	Deep Neural Networks
	Definition of DNNs
	The universal approximation theorem
	Improved results for compositional functions
	Training the DNN
	Deep reinforcement learning

	Compositional Lyapunov functions
	Lyapunov functions
	Separable Lyapunov functions
	Approximation results
	Training the network
	Numerical examples

	References

