
Artificial Intelligence Methods in
Control

Lars Grüne
Chair of Applied Mathematics

Mathematical Institute
University of Bayreuth

95440 Bayreuth, Germany
lars.gruene@uni-bayreuth.de

https://num.math.uni-bayreuth.de/en/team/lars-gruene/

Lecture Notes

Second Editon

Winter Semester 2023/2024

Preface

These Lecture Notes were written to accompany a Master Course in Applied Mathematics
that I gave in the Winter Semester 2023/2024 at the University of Bayreuth, Germany.
This is the second edition of these notes. I would like to thank all the students of the course
for their valuable feedback, which considerably helped to improve these notes. Apart from
the literature that is cited throughout the text, the books Reinforcement Learning: An
Introduction by Andrew Barto and Richard S. Sutton [1] and Neuro Dynamic Programming
by Dimitri P. Bertsekas and John N. Tsitsiklis [2] have been very valuable sources for writing
these notes.

Bayreuth, October 2024 Lars Grüne

i

Contents

Preface i

1 Introduction 1

2 Problem formulation 3

3 Dynamic Programming 9

3.1 Dynamic programming principle . 9

3.2 Value iteration . 13

3.3 The Hamilton-Jacobi-Bellman equation . 16

4 RL with finite state and action space 19

4.1 Q-learning . 19

4.2 Convergence analysis . 20

4.3 Choice of x and u in the algorithm . 25

5 Non-deterministic Reinforcement Learning 27

5.1 Definitions . 27

5.2 Dynamic programming . 30

5.3 Q-Learning . 33

5.4 Convergence analysis . 35

5.5 The case of known transition probabilities . 37

6 Deep Neural Networks 39

6.1 Definition of DNNs . 40

6.2 The universal approximation theorem . 42

6.3 Improved results for compositional functions 44

6.4 Training the DNN . 46

6.5 Deep reinforcement learning . 47

iii

iv CONTENTS

7 Separable approximations of optimal value functions 51

7.1 Separable functions . 51

7.2 Decaying sensitivity . 54

7.3 Construction of λ-separable approximations . 58

7.4 Error estimates for quadratic optimal value functions 61

7.5 Error estimates for non-quadratic optimal value functions 63

References 66

Chapter 1

Introduction

In this lecture we will be concerned with nonlinear control systems, either in continuous
time

ẋ(t) = f(x(t), u(t)) (1.1)

or in discrete time

x(k + 1) = g(x(k), u(k)). (1.2)

Here f ∶ Rn × Rm → Rn is either a vector field in continuous time or g ∶ X × U → X is a
transition function in discrete time, where X and U are arbitrary sets. In order to unify
the notation, we define X = Rn and U = Rm in the continuous time case. As usual, x is
the state and u is the control input of the system. In RL u is also called the control action
and U is referred to as the action space. We denote the solution satisfying x(0) = x0 by

xu(t, x0) or xu(k, x0),

respectively. The set of control functions in continuous time and the set of control sequences
in discrete time are denoted by U . In continuous time we assume measurability of the
control functions in order to ensure solvability of (1.1) in the Caratheodory sense under
the usual conditions on f . In discrete time we sometimes write (1.2) briefly as x+ = f(x,u).
The topics in this lecture center around a method called “reinforcement learning” (RL).
In this method, a feedback control strategy is “learned” based on a so-called loss function
ℓ(x,u), that assigns a loss to each state x and control u (the precise problem fornulation
will be given in the next chapter). The goal is then to minimise the loss. Conceptually, this
is nothing but an optimal control problem of a similar type as we have already discussed
it in the Mathematical Control Theory lecture. Indeed, RL can be used as an alternative
solution technique to the Riccati equation or to MPC. However, RL can also be used if f
and ℓ are not known exactly or not known, at all, but can only be evaluated by means of
measurements.

In the first half of this lecture we will discuss the foundations of RL for deterministic and
non-deterministic discrete time problems with finitely many states and control inputs. We
will in particular investigate conditions under which RL provably converges to the optimal
strategy.

1

2 CHAPTER 1. INTRODUCTION

In the second half we will turn to deep RL — i.e., RL with deep neural networks as ap-
proximators — for problems with high-dimensional state space. Here we will in particular
investigate the question when deep RL can overcome the so-called “curse of dimensional-
ity”, which describes the fact that typically the numerical effort grows exponentially with
the dimension of the state space.

Chapter 2

Problem formulation

October 7, 2024

In discrete time, our goal is to find a control strategy such that

J(x0, u(⋅)) =
∞

∑
k=0

γkℓ(xu(k, x0), u(k)) (2.1)

becomes minimal, where γ ∈ (0,1] is called the discount factor. In RL, “strategy” is
usually understood as a control in feedback form and the corresponding fedback law is
usually denoted by π. Hence, we are looking for a map π ∶ X → U , such that the solution
xπ(k, x0) of

x(k + 1) = g(x(k), π(x(k))), x(0) = x0 (2.2)

together with the corresponding control values u(k) = π(x(k)) minimises (2.1).

In continuous time, the problem is to find a control such that

J(x0, u(⋅)) = ∫
∞

0
e−δtℓ(xu(t, x0), u(t))dt (2.3)

becomes minimal, where δ ∈ (0,1] is called the discount rate. Again, one would usually like
to have the optimal strategy in feedback form. Again, we are looking for a map π ∶X → U ,
such that the solution xπ(k, x0) of

ẋ(t) = f(x(t), π(x(t))), x(0) = x0 (2.4)

together with the corresponding control values u(t) = π(x(t))minimises (2.3). We note that
while equation (2.2) is always solvable without any additional conditions on π, equation
(2.4) is a differential equation whose right hand side x↦ f(x,π(x)) needs to satisfy certain
conditions in order to guarantee the existence and uniqueness of a solution. For this reason,
the continuous-time problem is more difficult from a mathematical point of view. This is
why in RL the discrete-time formulation is often preferred.

In order to avoid difficulties with the existence of the infinite sum and integral in (2.1) and
(2.3), we make the following standing assumption throughout this lecture.

3

4 CHAPTER 2. PROBLEM FORMULATION

Assumption 2.1 One of the following two properties holds:

(i) ℓ(x,u) ≥ 0 for all x ∈X,u ∈ U

(ii) sup
x∈X,u∈U

∣ℓ(x,u)∣ < ∞ and γ < 1 in discrete time or δ > 0 in continuous time

This assumption implies that the infinite sum or integral always has a well defined value
(which may be infinite). In addition, the assumption implies certain estimates for the
optimal value function

V (x0) ∶= inf
u(⋅)∈U

J(x0, u(⋅)).

Lemma 2.2 Consider the optimal control problems of minimising (2.1) subject to (1.2)
or of minimising (2.3) subject to (1.1). Let Assumption 2.1 hold. Then for all u ∈ U the
limit

lim
K→∞

K

∑
k=0

γkℓ(xu(k, x0), u(k))

or

lim
T→∞

∫
T

0
e−δtℓ(xu(t, x0), u(t))dt

exists and has a finite value or diverges to +∞. Moreover, for each trajectory x(⋅) = xu(⋅, x0)
we have the inequality

lim inf
k→∞

γkV (x(k)) ≥ 0 or lim inf
t→∞

e−δtV (x(t)) ≥ 0.

In the particular case of Assumption 2.1(ii) we moreover have the inequalities

∣V (x0)∣ ≤
M

1 − γ and ∣J(x0, u)∣ ≤
M

1 − γ ,

or

∣V (x0)∣ ≤
M

δ
and ∣J(x0, u)∣ ≤

M

δ
,

respectively, for all x0 ∈X and any upper bound M for ∣ℓ(x,u)∣.

Proof: We show the assertion in discrete time; the continuous-time case follows similarly.
If case (i) of Assumption 2.1 holds, then obviously

K

∑
k=0

γkℓ(xu(k, x0), u(k))

is nonnegative and strictly increasing in K. This shows the first claim and also implies
that V (x) ≥ 0 for all x ∈X, which implies the second claim.

If case (ii) of Assumption 2.1 holds, then an upper bound M ∈ R with ∣ℓ(x,u)∣ ≤ M for
all x ∈ X, u ∈ U holds. This implies that ∣γkℓ(xu(k, x0), u(k))∣ ≤Mγk and thus ∑∞k=0Mγk

is a convergent majorant series, implying absolute convergence and thus the first claim.
Particularly, ∣J(x0, u)∣ ≤ M

1−γ follows, which implies ∣V (x)∣ ≤ M
1−γ and thus the second claim

since γk → 0 as k →∞.

We illustrate the definitions with three examples.

5

Example 2.3 Consider a system with six states as in Figure 2.1, denoted byX = {(i, j) ∣ i =
1,2, j = 1,2,3}.

−100

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

0

0

0 0

0 0

0

0

0

0 0

−100

Figure 2.1: Sketch of Example 2.3

From each state (i, j) ≠ (1,3) it is possible to move to each neighbouring state. This can
be formalised by setting U = {1,2,3,4} and defining

g((i, j), u) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i,min{j + 1,3}), if u = 1 (go right)
(min{i + 1,2}, j), if u = 2 (go down)
(i,max{j − 1,1}), if u = 3 (go left)
(max{i − 1,1}, j), if u = 4 (go up)

for all (i, j) ≠ (1,3). Once the system is in state (1,3), it cannot move anymore, i.e., we
set

g((1,3), u) ∶= (1,3) for all u ∈ U.
Such a state is called an absorbing state.

The goal is to move the system to the absorbing state (1,3). Hence we give a negative
cost (i.e., a reward) to the transition to (1,3) and a cost of 0 (i.e., no reward) to all other
transitions. To this end, we set

ℓ(x,u) = { −100, if x ≠ (1,3) and g(x,u) = (1,3)
0, else

It is thus desirable to reach (1,3) and if we use a discount factor γ < 1, then it is also
desirable to do this as fast as possible, because the earlier ℓ(x,u) = −100 occurs, the
smaller γk(−100) becomes.

Example 2.4 Consider the second order differential equation ẍ = u, which we can rewrite
as the first order system

ẋ1(t) = x2(t)
ẋ2(t) = u(t).

This can be seen as a model of a car on a one-dimensional track with position x1, velocity
x2 and acceleration u. A typical control task may be to bring the car to stop in a certain
position (e.g., in x = 0). The cost function could therefore be chosen as ℓ(x,u) = ∥x∥2+λ∥u∥2
with a parameter λ ≥ 0. For λ > 0, this is a linear quadratic problem of the type we
considered in Mathematical Control Theory.

6 CHAPTER 2. PROBLEM FORMULATION

If we keep the acceleration constant on the interval [0,1], then we can explicitly calculate
the solution

xu(1, x) = (
x1 + x2 + u/2
x2 + u

) .

The model

x+ = g(x,u) = (x1 + x2 + u/2
x2 + u

) , (2.5)

can thus be seen as a sampled-data model of the continuous-time model with sampling
time τ = 1. We can thus also define a discrete-time optimal control problem for this model.

Example 2.5 A classical model in control theory is the inverted pendulum on a cart, also
known as cart-pole system. This model consists of an inverted rigid pendulum fixed on a
cart, cf. Figure 2.5.

M

m

u

φ

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Figure 2.2: Schematic illustration of a pendulum on a cart

The control u here is the acceleration of the cart. By means of physical laws an “exact”1

differential equation model can be derived.

ẋ1(t) = x2(t)
ẋ2(t) = −kx2(t) + g sinx1(t) + u(t) cosx1(t)
ẋ3(t) = x4(t)
ẋ4(t) = u

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=∶ f(x(t), u(t)) (2.6)

In this model the state vector x ∈ R4 consists of 4 components: x1 represents the angle ϕ
of the pendulum (cf. Fig. 2.5), which increases in counterclockwise direction, where x1 = 0
corresponds to the upright pendulum. x2 is the angular velocity, x3 the position of the cart
and x4 its velocity. The constant k is a measure for the friction in the model (the larger k
the more friction) and g ≈ 9.81m/s2 is the gravitational constant.

1The model (2.6) is not really exact, since it is already simplified: We have assumed that the pendulum
is so light that it does not influence the motion of the cart. Moreover, a number of constants was chosen
such that they cancel each other.

7

We will use this model as a test problem in the exercises in the second half of this lec-
ture.

Optimal control problems often involve constraints on x and u. These constraints specify
sets of admissible values of x and u and demand that no values outside these sets are used
when minimising (2.1) or (2.3). In order to simplify the presentation we will not explicitly
consider constraints in this lecture, but always consider them implicitly, by encoding them
into the dynamics f or g or in the cost function ℓ.

For instance, in Example 2.3 there is the implicit state constraint that the system does not
leave the rectangle depicted in Figure 2.1. This is realised by defining the dynamics g in
such a way that leaving the rectangle is simply not possible.

In Example 2.4, it may be desirable to restrict acceleration and speed to physically mean-
ingful quantities and it may also be desirable to restrict the position of the car. This can be
done by defining a so-called penalty function ℓp, which yields large values ℓp(x,u) whenever
the constraints are violated, and use ℓ + ℓp as new cost function. This procedure is known
as soft constraints. For instance, for a state constraint of the form x1 ∈ [−1,1], which may
occur in Example 2.4, a possible penalty function ℓp might be

ℓp(x,u) = µ
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x − 1)2, if x > 1
0, if x ∈ [−1,1]

(x + 1)2, if x < −1
,

where µ > 0 is a sufficiently large parameter. More generally, if control and state constraints
are given in the form

{(x,u) ∣ gi(x,u) ≤ 0 for all i = 1, . . . , q}

for functions g1, . . . , gq, then a penalty function could be defined as

ℓp(x,u) =
q

∑
i=1

µimax{gi(x,u), 0}2.

An alternative to penalty functions are barrier functions, whose value tends to ∞ as (x,u)
approach the boundary of the constraint set. A typical barrier function is the logarithmic
barrier

ℓb(x,u) =
q

∑
i=1

µi(− log(−gi(x,u))).

8 CHAPTER 2. PROBLEM FORMULATION

Chapter 3

Dynamic Programming

October 7, 2024
Dynamic Programming is the name for an algorithm for solving optimal control problems
that is very similar to RL. In fact, the basic principles behind dynamic programming, which
we will present in this chapter, are very important for formulating and understanding the
basic RL algorithm. We will present these in this chapter in the deterministic setting and
will extend them to non-deterministic problems in Chapter 5.

3.1 Dynamic programming principle

Definition 3.1 Consider the optimal control problem of minimising (2.1) or (2.3) with
initial value x0 ∈X

(i) The function
V (x0) ∶= inf

u(⋅)∈U
J(x0, u(⋅))

is called optimal value function.

(ii) A control sequence or function u⋆(⋅) ∈ U is called optimal for initial value x0 if

V (x0) = J(x0, u⋆(⋅))

holds. The corresponding trajectory xu⋆(⋅, x0) is called optimal trajectory.

(iii) A strategy π⋆ ∶X → U is called optimal if

V (x0) = J(x0, π⋆)

holds for all x0 ∈X, where, for an arbitrary feedback law π ∶X → U ,

J(x0, π) ∶=
∞

∑
k=0

γkℓ(xπ(k, x0), π(xπ(k, x0)))

in discrete time and

J(x0, π) ∶= ∫
∞

0
e−δtℓ(xπ(t, x0), π(xπ(t, x0)))dt

in continuous time, where xπ(⋅, x0) solves (2.2) or (2.4), respectively. As in (ii), the
corresponding trajectories xπ⋆(⋅, x0) are called optimal trajectories.

9

10 CHAPTER 3. DYNAMIC PROGRAMMING

We note that if π⋆ is an optimal feedback law, then u⋆(⋅) = π⋆(xπ⋆(⋅, x0)) is an optimal
control for initial value x0.

The first result we state is the dynamic programming principle in discrete time.

Theorem 3.2 [Dynamic programming principle] Consider the optimal control problem
(2.1) with x0 ∈X. Then for all K ∈ N the equation

V (x0) = inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(K,x0))} (3.1)

holds. If, in addition, an optimal control sequence u⋆(⋅) exists for x0, then we get the
equation

V (x0) =
K−1

∑
k=0

γkℓ(xu⋆(k, x0), u⋆(k)) + γKV (xu⋆(K,x0)). (3.2)

In particular, in this case the “inf” in (3.1) is a “min”.

Proof: From the definition of J for u(⋅) ∈ U we immediately obtain

J(x0, u(⋅)) =
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K)), (3.3)

where u(⋅ +K) denotes the shifted control sequence defined by u(⋅ +K)(k) = u(k +K).
We now prove (3.1) by showing “≥” and “≤” separately: From (3.3) we obtain

J(x0, u(⋅)) =
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K))

≥
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(K,x0)).

Since this inequality holds for all u(⋅) ∈ U , it also holds when taking the infimum on both
sides. Hence we get

V (x0) = inf
u(⋅)∈U

J(x0, u(⋅))

≥ inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(K,x0))} ,

i.e., (3.1) with “≥”.
In order to prove “≤”, fix ε > 0 and let uε(⋅) ∈ U be an approximately optimal control
sequence for the right hand side of (3.3), i.e.,

K−1

∑
k=0

γkℓ(xuε(k, x0), uε(k)) + γKJ(xuε(K,x0), uε(⋅ +K))

3.1. DYNAMIC PROGRAMMING PRINCIPLE 11

≤ inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K))} + ε.

Now, observing that the different terms either depend on u(0), . . . , u(k − 1) or on û(k) =
u(k +K), k ∈ N, we can rewrite this as

inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKJ(xu(K,x0), u(⋅ +K))}

= inf
u(⋅)∈U
û(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKJ(xu(K,x0), û(⋅))}

= inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(x0))}

Now (3.3) yields

V (x0) ≤ J(x0, uε(⋅))

=
K−1

∑
k=0

γkℓ(xuε(k, x0), uε(k)) + γKJ(xuε(K,x0), uε(⋅ +K))

≤ inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(K,x0))} + ε,

i.e.,

V (x0) ≤ inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(K,x0))} + ε.

Since ε > 0 was arbitrary and the expressions in this inequality are independent of ε, this
inequality also holds for ε = 0, which shows (3.1) with “≤” and thus (3.1).

In order to prove (3.2) we use (3.3) with u(⋅) = u⋆(⋅). This yields

V (x0) = J(x0, u⋆(⋅))

=
K−1

∑
k=0

γkℓ(xu⋆(k, x0), u⋆(k)) + γKJ(xu⋆(K,x0), u⋆(⋅ +K))

≥
K−1

∑
k=0

γkℓ(xu⋆(k, x0), u⋆(k)) + γKV (xu⋆(K,x0))

≥ inf
u(⋅)∈U

{
K−1

∑
k=0

γkℓ(xu(k, x0), u(k)) + γKV (xu(K,x0))} = V (x0),

where we used the (already proved) equality (3.1) in the last step. Hence, the two “≥” in
this chain are actually “=” which implies (3.2).

In the special case K = 1 the dynamic programming principle becomes

V (x0) = inf
u∈U
{ℓ(x0, u) + γV (g(x0, u))} . (3.4)

12 CHAPTER 3. DYNAMIC PROGRAMMING

This equation is known as the Bellman equation. In RL, the term in braces on the right
hand side of (3.4) plays a particular important role, which is why it is commonly denoted
with its own symbol

Q(x,u) ∶= ℓ(x,u) + γV (g(x,u)). (3.5)

Remark 3.3 In continuous time, an analogous proof shows that for all T > 0 the equation

V (x0) = inf
u(⋅)∈U

{∫
T

0
e−δtℓ(xu(t, x0), u(t))dt + e−δTV (xu(T,x0))} (3.6)

and, for any optimal control function, the equation

V (x0) = ∫
T

0
e−δtℓ(xu⋆(t, x0), u⋆(t))dt + e−δTV (xu⋆(T,x0)) (3.7)

hold.

The following corollary states an immediate consequence from the dynamic programming
principle. It shows that tails of optimal controls are again optimal controls for suitably
adjusted initial value and time.

Corollary 3.4 If u⋆(⋅) is an optimal control sequence minimising (2.1) with initial value
x0, then for each K ∈ N the sequence u⋆K(⋅) = u⋆(⋅ +K), i.e.,

u⋆K(k) = u⋆(k +K), k = 0,1, . . .

is an optimal control sequence for initial value xu⋆(K,x0).

Proof: Inserting V (x0) = J(x0, u⋆(⋅)) and the definition of u⋆K(⋅) into (3.3) we obtain

V (x0) =
K−1

∑
k=0

γkℓ(xu⋆(k, x0), u⋆(k)) + γKJ(K,xu⋆(K,x0), u⋆K(⋅))

Subtracting (3.2) from this equation yields

0 = γKJ(xu⋆(K,x0), u⋆K(⋅)) − γKV (xu⋆(K,x0))

which shows the assertion.

Remark 3.5 Analogously, in continuous time the control function u⋆T (⋅) = u⋆(⋅ + T), i.e.,

u⋆T (t) = u⋆(t + T), t ≥ 0

is an optimal control sequence for initial value xu⋆(T,x0).

In the next theorem by “argmin” we denote the set of minimisers of an expression.

3.2. VALUE ITERATION 13

Theorem 3.6 Consider the optimal control problem of minimising (2.1) and let Assump-
tion 2.1 hold. Consider a feedback law π⋆ ∶X → U satisfying

π⋆(x) ∈ argmin
u∈U

{ℓ(x,u) + γV (g(x,u))} = argmin
u∈U

Q(x,u) (3.8)

for all x ∈X. Then π⋆ is an optimal strategy in the sense of Definition 3.1(iii).

Proof: We pick an arbitrary x0 ∈ X and abbreviate x̂(k) = xπ⋆(k, x0) and û(k) =
π⋆(xπ⋆(k, x0)). Then J(x0, π⋆) = J(x0, û) and we need to show that

J(x0, û) = V (x0),

where it is enough to show “≤” because the opposite inequality follows by definition of V .
Using (3.8) and (3.4) with x0 = x̂(k) we get

γkV (x̂(k)) = γkℓ(x̂(k), û(k)) + γk+1V (x̂(k + 1))

for k = 0,1, Summing these equalities for k = 0, . . . ,K − 1 for arbitrary K ∈ N and
eliminating the identical terms γkV (x̂(k)), k = 1, . . . ,K − 1 on the left and on the right we
obtain

V (x0) =
K−1

∑
k=0

γkℓ(x̂(k), û(k)) + γKV (x̂(K)).

Now Lemma 2.2 implies lim infK→∞ γ
KV (x̂(K)) ≥ 0. Hence we obtain for the limit

lim
K→∞

K−1

∑
k=0

γkℓ(x̂(k), û(k)) ≤ V (x0),

which implies

J(x0, û) =
∞

∑
k=0

γkℓ(x̂(k), û(k)) = lim
K→∞

K−1

∑
k=0

γkℓ(x̂(k), û(k)) ≤ V (x0),

i.e., the desired inequality.

3.2 Value iteration

Value iteration is a first simple algorithmic method for computing V or an approximation
thereof. We consider it here under case (ii) of Assumption 2.1, because in this setting its
convergence is easier to prove. We moreover limit ourselves to the discrete-time case. The
algorithm works as follows.

Algorithm 3.7 (Value iteration)

(0) Set V0 ∶≡ 0 and k ∶= 0

14 CHAPTER 3. DYNAMIC PROGRAMMING

(1) For k = 0,1,2, . . .:
set

Vk+1(x) ∶= inf
u∈U

Qk(x,u) for all x ∈X,

with Qk(x,u) ∶= ℓ(x,u) + γVk(g(x,u))

Of course, there are many questions related to this algorithm: How do we store Vk on a
computer? How to compute the infimum over u for all x? These are exactly the questions
that we will have to deal with when making RL a practical algorithm. However, if for the
moment we simply assume that this is possible, then we can prove the following theorem.

Theorem 3.8 Consider the discrete-time problem of minimising (2.1) and let Assumption
2.1(ii) hold. Let M > 0 be a bound for ∣ℓ∣. Then the inequality

sup
x∈X
∣Vk(x) − V (x)∣ ≤

Mγk

1 − γ

holds.

Proof: From (3.4) we know that

V (x) = inf
u∈U
{ℓ(x,u) + γV (g(x,u))}.

Fix ε > 0, let x ∈X be arbitrary and let uε and uεk be control values satisfying

ℓ(x,uε) + γV (g(x,uε)) ≤ inf
u∈U
{ℓ(x,u) + γV (g(x,u))} + ε

and
ℓ(x,uεk) + γVk(g(x,uεk)) ≤ inf

u∈U
{ℓ(x,u) + γVk(g(x,u))} + ε.

Then we can estimate

V (x) − Vk+1(x) ≤ ℓ(x,uεk) + γV (g(x,uεk)) − ℓ(x,uεk) − γVk(g(x,uεk)) + ε
= γV (g(x,uεk)) − γVk(g(x,uεk)) + ε
≤ γ sup

x∈X
∣V (x) − Vk(x)∣ + ε

and

Vk+1(x) − V (x) ≤ ℓ(x,uε) + γVk(g(x,uε)) − ℓ(x,uε) − γV (g(x,uε)) + ε
= γVk(g(x,uε)) − γV (g(x,uε)) + ε
≤ γ sup

x∈X
∣V (x) − Vk(x)∣ + ε,

which yields
∣V (x) − Vk+1(x)∣ ≤ γ sup

x∈X
∣V (x) − Vk(x)∣ + ε.

3.2. VALUE ITERATION 15

Since this inequality holds for all ε > 0 and all x ∈X, it follows that

sup
x∈X
∣V (x) − Vk+1(x)∣ ≤ γ sup

x∈X
∣V (x) − Vk(x)∣.

By induction we thus obtain

sup
x∈X
∣V (x) − Vk(x)∣ ≤ γk sup

x∈X
∣V (x) − V0(x)∣.

Since V0 ≡ 0, Lemma 2.2 yields that

sup
x∈X
∣V (x) − V0(x)∣ = sup

x∈X
∣V (x)∣ ≤ M

1 − γ .

This shows the claim.

We illustrate Algorithm 3.7 with two examples.

Example 3.9 Consider Example 2.3. We depict the values of Vk in the algorithm for
γ = 0.9 schematically.

V0 ∶
0 0 0

0 0 0
V1 ∶

0 -100 0

0 0 -100
V2 ∶

-90 -100 0

0 -90 -100
V3 ∶

-90 -100 0

-81 -90 -100

After the third iteration the value function does not change anymore. This means that
Algorithm 3.7 converges in finitely many steps for this example.

The optimal strategy π can now easily be computed from Formula (3.8). For the states
x = (1,1), (1,2) and (2,2) it is optimal to move to the right, i.e, π⋆(x) = 2. For state
x = (2,3) it is optimal to move up, i.e., π⋆(x) = 1. For state x = (2,1) the argmin in
(3.8) contains two elements, namely 1 (“go up”) or 2 (“go right”), which means that both
π⋆(x) = 1 and π⋆(x) = 2 are possible. Finally for the absorbing state x = (1,3), all four
controls are optimal, because they all lead to the same behavior and involve the same
cost.

Example 3.10 As the second example we consider Example 2.4 in the discrete-time ver-
sion (2.5). For this example, the value iteration algorithm works even in the case that
γ = 1. This can be proved similarly to the existence of the solution of the algebraic Riccati
equation in Theorem 6.13 of Mathematical Control Theory. Here we carry out the first
three steps of the iteration with ℓ(x,u) = x21 + x22 + u2 and γ = 1:
Starting with V0 ≡ 0, it is easy to see that V1(x) = ∥x∥2. This leads to

Q1(x,u) = 2x21 + 3x22 +
9

4
u2 + 2x1x2 + x1u + 3x2u.

Minimizing this expression with respect to u yields

V2(x) =
17

9
x21 + 2x22 +

4

3
x1x2.

From this we can compute

Q2(x,u) =
26

9
x21 +

19

3
x22 +

11

2
u2 + 46

9
x1x2 +

29

9
x1u +

26

3
x2u.

Minimizing this expression yields

V3(x) =
4307

1782
x21 +

289

99
x22 +

764

297
x1x2.

16 CHAPTER 3. DYNAMIC PROGRAMMING

3.3 The Hamilton-Jacobi-Bellman equation

While Theorem 3.2 and Corollary 3.4 have direct continuous-time counterparts — as ex-
plained in the subsequent remarks — there is no such counterpart to Theorem 3.6. This is
because while we can choose a minimal K > 0 in (3.1) in order to arrive at (3.4), we cannot
choose a minimal T > 0 in (3.6), because this identity holds for all real numbers T > 0 and
for the infimum T = 0 over all these T it becomes trivial.

The trick now lies in rewriting (3.6) before making T “minimal”. This leads to the following
theorem.

Theorem 3.11 (Hamilton-Jacobi-Bellman differential equation)
Let ℓ be continuous in x and u. Moreover, let O ⊆ Rn be open and such that V ∣O is finite.

(i) If V is continuously differentiable in x0 ∈ O, then

−δV (x0) +DV (x0) ⋅ f(x0, u0) + ℓ(x0, u0) ≥ 0

holds for all u0 ∈ Rm.
(ii) If there exists an optimal control u∗ for initial value x0 ∈ O, which is continuous in
t = 0, and V is continuously differentiable in x0, then

−δV (x0) + min
u∈Rm
{DV (x0) ⋅ f(x0, u) + ℓ(x0, u)} = 0 (3.9)

and the minimum is attained in u = u∗(0). Equation (3.9) is called Hamilton-Jacobi-
Bellman equation.

Proof: We first show the auxiliary identity

lim
τ↘0

1

τ
∫

τ

0
e−δτ ℓ(x(t, x0, u), u(t))dt = ℓ(x0, u(0))

for each u ∈ U that is continuous in t = 0. Because of continuity of x and u in t = 0 and
since ℓ is continuous, for any ε > 0 there is t1 > 0 with

∣e−δtℓ(xu(t, x0), u(t)) − ℓ(x0, u(0))∣ ≤ ε

for all t ∈ [0, t1). For τ ∈ (0, t1] this yields

∣1
τ
∫

τ

0
e−δtℓ(xu(t, x0), u(t))dt − ℓ(x0, u(0))∣ ≤

1

τ
∫

τ

0
∣ℓ(xu(t, x0), u(t)) − ℓ(x0, u(0))∣dt

≤ 1

τ
∫

τ

0
ε = ε

and thus the statement for the limit, since ε > 0 was arbitrary.

Now both assertions follow:

(i) For u(t) ≡ u0 ∈ Rm, inequality (3.6) implies

V (x0) ≤ ∫
τ

0
e−δtℓ(xu(t, x0), u(t))dt + e−δτV (x(τ, x0, u))

3.3. THE HAMILTON-JACOBI-BELLMAN EQUATION 17

and thus

−δV (x0) +DV (x0)f(x0, u(0)) =
d

dt
∣
t=0
e−δtV (xu(t, x0))

= lim
τ↘0

e−δτV (xu(τ, x0)) − V (x0)
τ

≥ lim
τ↘0
−1
τ
∫

τ

0
ℓ(xu(t, x0), u(t))dt = −ℓ(x0, u(0)),

i.e., the first assertion.

(ii) From (i) we get

−δV (x0) + inf
u∈Rm
{DV (x0) ⋅ f(x0, u) + g(x0, u)} ≥ 0.

Equation (3.7) moreover implies

V (x0) = ∫
τ

0
e−δtℓ(xu∗(t, x0), u∗(t))dt + V (xu∗(τ, x0)).

This yields

−δV (x0) +DV (x0)f(x0, u∗(0)) =
d

dt
∣
t=0
e−δtV (xu∗(t, x0))

= lim
τ↘0

e−δτV (xu∗(τ, x0)) − V (x0)
τ

= lim
τ↘0
−1
τ
∫

τ

0
ℓ(xu∗(t, x0), u∗(t))dt = −ℓ(x0, u∗(0)),

which implies the existence of the minimum in u = u∗(0) and the claimed identity.

With the help of the Hamilton-Jacobi-Bellman equation we can now fornulate the coun-
terpart of Theorem 3.6.

Theorem 3.12 Consider the optimal control problem of minimising (2.3) and let Assump-
tion 2.1 hold. Let V be continuously differentiable and let π⋆ ∶ X → U be a feedback law
satisfying

π⋆(x) ∈ argmin
u∈Rm

{DV (x) ⋅ f(x,u) + ℓ(x,u)} (3.10)

for all x ∈ Rn and such that the solutions xπ⋆(t, x0) of (2.4) exist and are continuous. Then
π⋆ is an optimal strategy in the sense of Definition 3.1(iii)

Proof: We abbreviate x̂(t) = xπ⋆(t, x0) and û(t) = π(xπ⋆(t, x0)). Then we get that
J(x0, π⋆) = J(x0, û) and equation (3.10) together with equation (3.9) evaluated in x0 = x̂(t)
yields

−δV (x̂(t)) +DV (x̂(t)) ⋅ f(x̂(t), û(t)) + ℓ(x̂(t), û(t)) = 0

for all x ∈ Rn. Using

e−δt(− δV (x̂(t)) +DV (x̂(t)) ⋅ f(x̂(t), û(t))) = d

dt
e−δtV (x̂(t))

18 CHAPTER 3. DYNAMIC PROGRAMMING

yields

−∫
τ

0

d

dt
e−δtV (x̂(t))dt = ∫

τ

0
e−δtℓ(x̂(t), û(t))dt.

Applying the fundamental theorem of calculus we then obtain

V (x0) − e−δτV (x̂(τ)) = ∫
τ

0
e−δtℓ(x̂(t), û(t))dt.

As in the proof of Theorem 3.6, Lemma 2.2 yields lim infτ→∞ e
−δτV (x̂(τ)) ≥ 0. Thus, we

obtain

V (x0) ≥ lim
τ→∞
[V (x0) − e−δτV (x̂(τ))] = ∫

∞

0
ℓ(x̂(t), û(t))dτ = J(x0, û).

This shows the claim since the converse inequality V (x0) ≤ J(x0, û) follows by definition
of V .

It should be noted that the assumptions for the continuous-time Theorem 3.12 are signif-
icantly more restrictive as those for its discrete-time counterpart Theorem 3.6. First of
all, there are many optimal control problems in which the optimal value function V is not
continuously differentiable. Fortunately, there is a remedy for this, because in this case, a
generalised solution concept — the so-called viscosity solutions — can be used. However,
then in general any feedback law π⋆ satisfying (3.10) is discontinuous, which makes the
assumption that (2.4) has a unique solution very difficult to check; in fact, this may not
even be true. All these difficulties motivate the fact that in RL often the discrete-time
formulation is preferred.

Chapter 4

Reinforcement learning with finite
state and action space

October 7, 2024
In this chapter we introduce the reinforcement learning algorithm and analyse its conver-
gence behaviour. We restrict ourselves to discrete time problems (1.2), (2.1) for which
the sets X and U are finite, i.e., they only contain finitely many elements. Obviously,
Example 2.3 falls into this class, but we may also convert Example 2.4 into a model that
satisfies this assumption. To this end, consider numbers x1,max, x2,max, umax ∈ N such that
umax ≥ 2x2,max. Define

X = {(x1, x2) ∈ R2 ∣2x1 ∈ Z, x2 ∈ Z, ∣x1∣ ≤ x1,max, ∣x2∣ ≤ x2,max}, U = {u ∈ Z ∣ ∣u∣ ≤ umax}.

Then the structure of X and U and the inequality umax ≥ 2x2,max implies that for each
x ∈ X there is u ∈ U with g(x,u) ∈ X. In what follows we assume that g(x,u) ∈ X for all
x ∈ X, u ∈ U . This can be achieved for this model by suitably modifying g for those x,u
for which this condition does not hold.

4.1 Q-learning

The basic reinforcement learning algorithm works as follows. The algorithm “learns” the
map Q ∶ X × U → R from (3.5) and is thus called Q-learning. Since X and u are finite,
Q can be represented by its finitely many values Q(x,u), x ∈ X, u ∈ U . If we number the
elements of X and U as x1, . . . , xN , u1, . . . , uM , then the map Q can be represented by the
N ×M -matrix (Qij) = (Q(xi, uj)).

Algorithm 4.1 (Q-learning)

(0) Set Q̃ ∶≡ 0, pick a state x ∈X

(1) Select u ∈ U , evaluate/observe x′ = g(x,u) ∈X and evaluate ℓ(x,u)

(2) Set Q̃(x,u) ∶= ℓ(x,u) + γminu′∈U Q̃(x′, u′)

(3) Set x ∶= x′ or select a new x ∈X and go to (1)

19

20 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

The choice between “set x ∶= x′” and ”select a new x ∈ X” depends on whether we have
the formulas for g at hand and can choose x freely, or whether we observe a real process,
where it may need additional effort to restart it with a different state than x′.

4.2 Convergence analysis

The following theorem gives a first convergence result for this algorithm.

Theorem 4.2 Consider the discrete-time problem of minimising (2.1) with finite X and U
and let Assumption 2.1(ii) hold. Denote by Q̃j the Q̃-function after Step (2) of Algorithm
4.1 has been executed j times. Assume that each pair (x,u) ∈ X × U appears arbitrarily
often in Step (1) of the algorithm. Then

lim
j→∞

Q̃j(x,u) = Q(x,u)

for all x ∈X, u ∈ U .

Proof: Observe that the definition of Q from (3.5) and the Bellman equation (3.4) imply

min
u∈U

Q(x,u) =min
u∈U
{ℓ(x,u) + γV (g(x,u))} = V (x)

and thus Q satisfies the relation

Q(x,u) = ℓ(x,u) + γV (g(x,u)) = ℓ(x,u) + γmin
u′∈U

Q(g(x,u), u′). (4.1)

Moreover, from the inequality for ∣J(x,u)∣ in Lemma 2.2 we obtain that ∣Q(x,u)∣ ≤ M
1−γ for

M =maxx∈X,u∈U ∣ℓ(x,u)∣.
Since every state-action pair (x,u) ∈ X × U appears infinitely often in Step (1), for each
j ∈ N there is p(j) ∈ N such that each pair (x,u) ∈X ×U appears at least once in Step (2)
of the algorithm during the executions j + 1, j + 2, . . . , p(j) in the algorithm. We define

∥Q̃j −Q∥∞ ∶= max
x∈X,u∈U

∣Q̃j(x,u) −Q(x,u)∣

and claim that

∥Q̃k −Q∥∞ ≤ γ∥Q̃j −Q∥∞ (4.2)

for all k ≥ p(j). This shows the claim because if we define p1(j) = p(j), pl+1(j) = p(pl(j)),
then applying (4.2) inductively implies that

∥Q̃k −Q∥∞ ≤ γl∥Q̃0 −Q∣∞ ≤ γl
M

1 − γ

for all k ≥ pl(0), which proves the claim since γl → 0 as l →∞.

4.2. CONVERGENCE ANALYSIS 21

Now consider the j-th time that Step (2) of the algorithm is executed. Then, using the
definition of Q̃j and (4.1), for x and u from Step (2) we can compute

∣Q̃j(x,u) −Q(x,u)∣ = ∣(ℓ(x,u) + γmin
u′∈U

Q̃j−1(x′, u′)) − (ℓ(x,u) + γmin
u′∈U

Q(x′, u′))∣

= γ ∣min
u′∈U

Q̃j−1(x′, u′) −min
u′∈U

Q(x′, u′)∣

≤ γmaxu′ ∈ U ∣Q̃j−1(x′, u′) −Q(x′, u′)∣
≤ γ∥Q̃j−1 −Q∥∞.

For all other x ∈X and u ∈ U we obtain that

∣Q̃j(x,u) −Q(x,u)∣ = ∣Q̃j−1(x,u) −Q(x,u)∣.

These inequalities in particular imply

∥Q̃j −Q∥∞ ≤ ∥Q̃j−1 −Q∥∞

and thus
∥Q̃j′ −Q∥∞ ≤ ∥Q̃j −Q∥∞

for all j′ ≥ j. Now for any pair (x,u) denote by q(x,u) the largest iteration number in
{j + 1, j + 2, . . . , p(j)} for which x and u appear in Step (2) of the algorithm. Then we
obtain

∣Q̃p(j)(x,u) −Q(x,u)∣ ≤ ∣Q̃q(x,u)(x,u) −Q(x,u)∣ ≤ γ∥Q̃q(x,u)−1 −Q∥∞ ≤ γ∥Q̃j −Q∥∞

implying for each k ≥ p(j)

∥Q̃k −Q∥∞ ≤ ∥Q̃p(j) −Q∥∞ = max
x∈X,u∈U

∣Q̃p(j)(x,u) −Q(x,u)∣ ≤ γ∥Q̃j −Q∥∞

and thus (4.2).

We now turn to the analysis of part (i) of Assumption 2.1. Here, we will in particular look
at the case γ = 1, because in the case γ < 1 and with finite states and action sets part (i) of
Assumption 2.1 implies part (ii). Hence, this situation is readily covered by Theorem 4.2.

In order to prove convergence in this case, we need a preparatory lemma.

Lemma 4.3 Consider the discrete-time problem of minimising (2.1) with finite X and U
and γ = 1, and let Assumption 2.1(i) hold. Assume that the optimal value function V
satisfies V (x) < ∞ for all x ∈X. Then for each control sequence u(⋅) the inequality

J(x,u) ≥ Q(x,u(0)) − lim sup
K→∞

Q(xu(K,x0), u(K))

holds.

Proof: We abbreviate x(k) = xu(k, x). Using (4.1) with γ = 1, x = x(k) and u = u(k), we
obtain

ℓ(x(k), u(k)) = Q(x(k), u(k))−min
u′∈U

Q(x(k+1), u′) ≥ Q(x(k), u(k))+Q(x(k+1), u(k+1)).

22 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

This implies

K

∑
k=0

ℓ(x(k), u(k)) ≥
K

∑
k=0

(Q(x(k), u(k)) −Q(x(k + 1), u(k + 1)))

= Q(x(0), u(0)) −Q(x(K + 1), u(K + 1)).

Taking the limit inferior on both sides and using that due to non-negativity of ℓ it coincides
with the (possible infinite) limit of the sum on the left side and that the identity lim inf −ak =
− lim supak holds on the right then shows the assertion.

Now we can prove the theorem in case Assumption 2.1(i) holds.

Theorem 4.4 Consider the discrete-time problem of minimising (2.1) with finite X and
U and γ = 1, let Assumption 2.1(i) hold and assume that the optimal value function V
satisfies V (x) < ∞ for all x ∈X. Denote by Q̃j the Q-function after Step (2) of Algorithm
4.1 has been executed j times. Assume that each pair (x,u) ∈ X × U appears infinitely
often in Step (1) of the algorithm. Then for all sufficiently large j ∈ N we have that

Q̃j(x,u) = Q(x,u)

for all x ∈X, u ∈ U .

Proof: We first note that since ℓ ≥ 0 the values Q̃(x,u) during the algorithm are always
≥ 0. Next we prove that Q̃(x,u) ≤ Q(x,u) holds at each time during the execution of the
algorithm for all x and u. Clearly, since Q(x,u) ≥ 0 this holds at the start of the algorithm.
Now assume that this property holds before Step (2) of the algorithm. Then, using (4.1)
after Step (2) we obtain

Q̃(x,u) = ℓ(x,u) +min
u′∈U

Q̃(x′, u′) ≤ ℓ(x,u) +min
u′∈U

Q(x′, u′) = Q(x,u).

Hence, the inequality persists in each iteration of the algorithm and thus for all times.

Now we show that Q̃(x,u) is increasing when the algorithm proceeds. To this end, denote
again by Q̃j the function obtained after the j-th iteration. Clearly, since Q̃0 ≡ 0 and Q̃1 ≥ 0,
the statement is true in the first iteration. Now assume that Q̃0, . . . , Q̃j are increasing. Let
(x,u) be the state-action pair in the j+1-st iteration. Then either Q̃(x,u) was not updated
before, implying Q̃j(x,u) = 0, or it was updated before. In this case we let j′ ≤ j be the
last iteration where Q̃(x,u) was updated, implying that

Q̃j(x,u) = ℓ(x,u) +min
u′∈U

Q̃j′−1(x′, u′).

Since Q is increasing until iteration j, we obtain Q̃j(x′, u′) ≥ Q̃j′−1(x′, u′). This implies

Q̃j+1 = ℓ(x,u) +min
u′∈U

Q̃j(x′, u′) ≥ ℓ(x,u) +min
u′∈U

Q̃j′−1(x′, u′).

Hence, Q̃0, . . . , Q̃j+1 are increasing and by induction we can conclude that Q̃j is increasing
for all j ∈ N.

4.2. CONVERGENCE ANALYSIS 23

From what we have shown wo far we can immediately conclude that if Q̃j(x,u) = Q(x,u)
for some j ∈ N, then Q̃j′(x,u) = Q(x,u) for all j′ > j. Moreover, we have the inequality

∑
x∈X,u∈U

Q̃j(x,u) ≤ ∑
x∈X,u∈U

Q(x,u),

in which “=” holds if and only if Q̃j = Q. Moreover, the expression ∑x∈X,u∈U Q̃j(x,u) is
increasing in j and can only attain finitely many different values, because ℓ can only attain
finitely many different values.

We now use these properties to show the claim. To this end, using p(j) as defined in the
proof of Theorem 4.2, we prove that unless Q̃j = Q, for at least one (x,u) ∈ X × U the
inequality Q̃p(j)(x,u) > Q̃j(x,u) holds. This shows that ∑x∈X,u∈U Q̃j(x,u) increases and
since this sum can only attain finitely many different values, after finitely many increases
it will coincide with ∑x∈X,u∈U Q(x,u). Then, Q̃j and Q also coincide.

In order to show Q̃p(j)(x,u) > Q̃j(x,u) for at least one (x,u) we proceed by contradiction.

We assume that Q̃j(x̂, û) ≠ Q(x̂, û) for at least one (x̂, û) ∈ X × U (implying Q̃j(x̂, û) <
Q(x̂, û)) and that Q̃j′(x,u) does not grow for any j′ ∈ {j+1, . . . , p(j)} and any (x,u) ∈X×U .
The latter implies that

Q̃j(x,u) = ℓ(x,u) +min
u′∈U

Q̃j(x′, u′) (4.3)

holds for all (x,u) ∈X ×U .

Now for each x ∈X by ux ∈ U we denote denote the control value satisfying

Q̃j(x,ux) =min
u′∈U

Q̃j(x,u′).

Then we can inductively define a control sequence and a corresponding trajectory by setting
u(0) ∶= û, x(0) ∶= x̂ and

x(i + 1) ∶= g(x(i), u(i)), u(i + 1) ∶= ux(i+1).

Using (4.3) and the definition of ux, this yields

K

∑
k=0

ℓ(x(k), u(k)) =
K

∑
k=0

(Q̃j(x(k), u(k)) − Q̃j(x(k + 1), u(k + 1)))

= Q̃j(x(0), u(0)) − Q̃j(x(K + 1), u(K + 1))

≤ Q̃j(x(0), u(0)) = Q̃j(x̂, û).

Since ℓ ≥ 0, this implies that the limit for K →∞ exists and we obtain

J(x̂, u) ≤ Q̃j(x̂, û) < Q(x̂, û). (4.4)

Since J(x̂, u) is finite, ℓ(x(k), u(k)) must converge to 0. Since ℓ can only attain finitely
many values, this implies that there is k′ ∈ N with ℓ(x(k), u(k)) = 0 for all k ≥ k′. This
implies that V (x(k)) = 0 for all k ≥ k′ and Q(x(k), u(k)) = 0 for all k ≥ k′. Hence, Lemma
4.3 yields

J(x̂, u) ≥ Q(x̂, u(0)) − lim sup
K→∞

Q(x(K), u(K)) = Q(x̂, u(0)) = Q(x̂, û),

24 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

which contradicts (4.4).

Once the Q-Learning algorithm has computed a sufficiently accurate approximation Q̃ ≈ Q,
a policy can be defined by choosing a policy satisfying

π̃(x) ∈ argmin
u∈U

Q̃(x,u). (4.5)

The following theorem shows that this is an approximately optimal policy. For brevity, we
only formulate and prove it for the case γ < 1.

Theorem 4.5 Let the assumptions of Theorem 4.2 and Assumption 2.1(ii) hold and as-
sume that

sup
x∈X,u∈U

∣Q(x,u) − Q̃(x,u)∣ ≤ ε

for some ε > 0. Then for all x ∈X the inequality

J(x, π̃) ≤ V (x) + 2ε

1 − γ

holds.

Proof: The assumption on Q̃ and the definition of π̃ implies that

Q(x, π̃(x)) ≤ Q̃(x, π̃(x)) + ε =min
u∈U

Q̃(x,u) + ε ≤min
u∈U

Q(x,u) + 2ε = V (x) + 2ε.

This yields the inequality

ℓ(x, π̃(x)) + γV (g(x, π̃(x))) = Q(x, π̃(x)) ≤ V (x) + 2ε

and thus, since xπ̃(k + 1, x0) = g(xπ̃(k, x0), π̃(xπ̃(k, x0))),

J(x0, π̃) =
∞

∑
k=0

γkℓ(xπ̃(k, x0), π̃(xπ̃(k, x0)))

≤
∞

∑
k=0

γk(V (xπ̃(k, x0)) − γV (xπ̃(k + 1, x0)) + 2ε)

=
∞

∑
k=0

γk2ε + V (x) − lim
K→∞

γkV (xπ̃(k, x0)).

By Lemma 2.2 the last term is ≥ 0 and since γ < 1 the sum over γk evaluates to 1/(1 − γ).
We can thus conclude the claimed inequality

J(x, π̃) ≤ V (x) + 2ε

1 − γ .

4.3. CHOICE OF x AND u IN THE ALGORITHM 25

4.3 Choice of x and u in the algorithm

Choice of x The possible choices of x in Step (3) of the algorithm depend on whether
we obtain the values of g(x,u) and ℓ(x,u) by simulation or by experiment. In the second
case, it may be more efficient to use x = x′ in most cases, as using x ≠ x′ means that we
have to restart the experiment with a new initial value, which may be costly. On the other
hand, always using x = x′ may be inefficient, because then the algorithm only “sees” one
particular solution any fails to see those parts of the state space X that are not visited by
this solution. It is therefore common to reset x after a couple of steps. The time between
two resets is usually called episode in RL.

A method that is often effective is to store the values g(x,u) and ℓ(x,u) of an episode
in a so-called replay buffer and reuse them. This can be done in the same order as they
originally occured or in reverse order. This can be particularly efficient if one step of the
experiment to evaluate g(x,u) and ℓ(x,u) takes a long time.

In case that we know g(x,u) and ℓ(x,u) and can efficiently evaluate them, many more
efficient algorithms are possible. For instance, in the setting of Assumption 2.1(i), it is
possible to order x and u “on the fly” in such a way that each value Q̃(x,u) can be
computed correctly in one shot, i.e., without the need of an iteration. This approach is
known as a Dijkstra-like algorithm. Even with the computational cost of the sorting taken
into account, the computational complexity with such an algorithm can be brought down
to NM log(N) which is much faster than the “brute force” trying of all x and u in a
random order. In the setting of Assumption 2.1(ii), so-called policy iteration schemes can
be used, which also converge much faster in many situations.

Choice of u Clearly, if the set U is large, the number of iterations until all values Q(x,u)
are updated is very large and it will take a lot of time until the algorithm converges. Then,
however, not all controls are really needed to be considered in order to arrive at a good
solutions. It suffices to use the “good” controls, which actually realize the minimum of Q.
The trouble, however, is, that we do not know in advance which controls are “good”. In
order to use only relevant u in Step (1), several selection strategies have been proposed.

An obvious strategy would be to always use the u that minimises Q̃(x,u). However, when
the values of Q̃ are still far from those of Q, this can lead to non-optimal choices and, more
importantly, the algorithm will never be able to correct these non-optimal choices. Hence,
a good strategy should try other control values, too, but is is still a good idea to use those
that lead to a small value of Q̃(x,u) more often. This idea is realised by choosing a k ≥ 1
and assigning to each control the value

P (u) = k−Q̃(x,u)

∑u′∈U k−Q̃(x,u′)
.

Then the control u in Step (1) is chosen randomly with probability P (u). In order to see
how this works and how the choice of k affects the results, assume we have three controls
u1, u2, u2 with values Q̃(x,u1) = 1, Q̃(x,u2) = 2, and Q̃(x,u3) = 3. For k = 2, we then
obtain P (u1) = 4/7, P (u2) = 2/7, and P (u3) = 1/7. For k = 3 we obtain P (u1) = 9/13,
P (u2) = 3/13, and P (u3) = 1/13. In the opposite direction, for k = 1 we obtain P (u1) =
P (u2) = P (u3) = 1/3. This means, the larger k is, the more the control values with small Q̃

26 CHAPTER 4. RL WITH FINITE STATE AND ACTION SPACE

are favoured and the closer k is to one, the more the probabilities are equal. There are also
variants of the algorithm in which k is variied with the number of iterations, with k ≈ 1 in
the beginning (such that all control values are explored with equal probability) and larger
k as the iteration progresses.

Another method for choosing u is the so-called ε-greedy choice. Here one fixes a small ε > 0
and always uses the u that minimises Q̃(x,u) with probability 1 − ε. With probability ε,
an arbitrary u is chosen. This method is in particular interesting in the context of the so
called SARSA algorithm. This is a variant of Q-learning in which the update step (2) is
replaced by

(2’) Set Q̃(x,u) ∶= (1 − α)Q̃(x,u) + α (ℓ(x,u) + γQ̃(x′, u′))
Here α ∈ (0,1] is a step size and u′ ∈ U a control value, which can be chosen by different
rules. If one chooses α = 1 and u′ as the minimiser of u ↦ Q̃(x′, u), then we obtain the
original Q-Learning algorithm. If we keep this choice of u but set α < 1, then one can
prove that the SARSA algorithm converges to the same Q and thus the same optimal
policy as Q-Learning. If, however, u′ is chosen according to the ε-greedy algorithm, then
the algorithm may converge to a different solution. While this solution is not the optimal
solution anymore, it may have other beneficial properties.

Chapter 5

Non-deterministic Reinforcement
Learning

October 7, 2024
So far we have assumed that for each pair of state x and control action u there is a unique
successor state g(x,u). This, however, is not true in many practically relevant situations:

• When we obtain the value x′ = g(x,u) from experiments, it is most very that the
measurements are subject to noise and thus if we use a pair (x,u) several times it
may be likely that we do not always get the same successor state.

• When we have an infinite state space, e.g., x ∈ Ω ⊂ R2, then a typical way to pass to a
finite state space X is by quantization. This means that each state x ∈X represents
a small region (e.g., e square or rectangle in R2). Even if the original dynamics is
deterministic, the image of a region in R2 under the dynamics will usually cover
several regions.

• Finally, RL has been used very successfully in games such as backgammon or chess,
in which the next state depends also on the other player’s action and, possibly, on
chance (like the rolling of a dice).

5.1 Definitions

For these reasons, we now extend the setting to non-deterministic models. As in the
previous chapter, we will stick to discrete time and finite state and control action setsX and
U . However, for each pair (x,u) the expression g(x,u) is now a random variable, which,
depending on chance, can yield different successor states x′ with different probabilities.
These probabilities are modeled by the map

p ∶X ×U ×X → [0,1]

with the convention that

∑
x′∈X

p(x,u, x′) = 1

for all (x,u) ∈X ×U . The interpretation of the map p is:

27

28 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

If we are in state x and use the control u, then p(x,u, x′) is the probability to
be in state x′ after one time step, i.e., the probability that g(x,u) = x′.

Such a is called a finite-state Markov chain. The deterministic setting of the last chapter
is then recovered by defining p(x,u, x′) = 1 if x′ = g(x,u) and p(x,u, x′) = 0 else.

Example 5.1 We reconsider Example 2.3, but now for each transition from one state to
another there is an uncertainly of 10% that the system moves to a different neighbouring
state than intended. Transitions that do not change the state remain unchanged. To this
end, we define, e.g.,

p((1,1),1, (1,2)) = 0.9

p((1,1),1, (2,1)) = 0.1

p((1,1),2, (1,2)) = 0.1

p((1,1),2, (2,1)) = 0.9

p((1,1),3, (1,1)) = 1.0

p((1,1),4, (1,1)) = 1.0,

p((1,2),1, (1,3)) = 0.9

p((1,2),1, (1,1)) = 0.1

p((1,2),2, (2,2)) = 0.1

p((1,2),2, (1,1)) = 0.9

p((1,2),3, (1,1)) = 0.9

p((1,2),3, (1,2)) = 0.1

p((1,2),4, (1,2)) = 1.0,

Here all values with p(x,u, x′) = 0 are omitted. Similarly, we can define p(x,u, x′) for all
other states x.

Due to the non-deterministic model, for each initial state x0 and each control sequence
u ∈ U there is not a single trajectory xu(k, x0) but many of them, each with its own
probability. In other words, xu(k, x0) is now a random variable. We express this by using
a capital “X” and by adding an additional argument Xu(k, x0, ω), ω ∈ Ω, where (Ω,Σ, P)
is a probability space. If we omit ω, the symbol Xu(k, x0) stands for the random variable
that represents the set of all possible trajectories. In order to incorporate the stochastic
influence in the dynamics g, we introduce another argument w in g, which represents a
random perturbation. Hence, we now write g(x,u,w). For the random variable W (k) that
is inserted in g, we use the same convention as for Xu: we write g(x,u,W (k,ω)) when
we refer to a single realization while g(x,u,W (k)) is the corresponding random variable.
Note that for a control sequence with u(0) = u0 we then obtain Xu(1, x0) = g(x0, u0).
The fact that there are now many trajectories raises the need to generalise the concept of
control sequences. For instance, in Example 5.1, the goal is to reach the state (1,3), as
quickly as possible, as this is the only action that gives us reward (= negative cost). If we

5.1. DEFINITIONS 29

start in state (1,1), then the best control action is to use “1” and then again “1”, leading
us first to (1,2) with a probability of 90% and then further to the desired state (1,3) with
again 90%, so alltogether we reach (2,3) with a probability of 81%. However, we may also
reach the states (2,1), (2,2) or (1,1) with a total probability of 19%. If we end up in
(2,1) or (2,2), then we need to make sure that we go up again in one of the next steps,
while if we end up in (1,1) then we should keep on going right. The next control actions
should thus depend not only on time but also on the state we reached. In order to derive
a dynamic programming principle (which we will do in the next section), we actually need
even more flexibility in the choice of u. We allow that the value of u depends on time and
on the whole history of states X(0), . . . ,X(k), which we denote briefly by X(0 ∶ k). At
each time k we thus use controls from the set

Uk ∶= {uk ∶Xk+1 → U}

and the overall set of control functions is defined as the set of infinite sequences

P ∶= {u = (u0, u1, u2, . . .) ∣uk ∈ Uk}.

We refer to the elements of P as control processes. For each u ∈ P we then consider the
random solutions X(k) =Xu(k, x0), k ∈ N satisfying

X(0) = x0 and X(k + 1) = g(X(k), uk(X(0 ∶ k)),W (k)),

where we assume that the random variables W (0), . . . ,W (k) are identically distributed
and stochastically independent for different k, i.e., that the values W (0), . . . ,W (k − 1),
which are (implicitly via X(1), . . . ,X(k)) known at time k, do not give any stochastic
information about W (k). When we write W without any argument we mean a random
variable with the same distribution as the W (k); we could choose, e.g., W =W (0).

Using the definition of p it moreover follows that

P (X(k + 1) = x′ ∣X(j) = xj , j = 0, . . . , k)) = p(xk, uk(x0, . . . , xk), x′).

We note that X(1) only depends on u0(x0), but not on uk(x0, . . . , xk) for k ≥ 1. This
means that we only need to specify u0(x0) ∈ U in order define X(1) = g(x0, u0(x0),W (0)).
We also use the short notation

X(0 ∶ k) or Xu(0 ∶ k, x0)

for the arguments (X(0), . . . ,X(k)) or (Xu(0, x0), . . . ,Xu(k, x0)) of uk.

The optimisation criterion then takes the expected value of the cost along all these trajec-
tories, i.e.,

J(x0, u) = E (
∞

∑
k=0

γkℓ(Xu(k, x0), uk(Xu(0 ∶ k, x0)))) (5.1)

This non-deterministic optimal control problem is also called a Markov Decision Problem
(MDP).

30 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

5.2 Dynamic programming

In this section we derive counterparts to some of the results from Chapter 3. To this end,
we note that Definition 3.1 can be directly applied also in the non-deterministic setting
by using control processes instead of control sequences everywhere. The following theorem
then provides the counterpart of Theorem 3.2.

Theorem 5.2 Consider the optimal control problem of minimising (5.1) with respect to
all control processes. Then for all K ∈ N and all x0 ∈X the optimal value function satisfies

V (x0) = inf
u∈P

E {
K−1

∑
k=0

γkℓ(Xu(k, x0), uk(Xu(0 ∶ k, x0))) + γKV (Xu(K,x0))} . (5.2)

If, in addition, an optimal control process u⋆ ∈ P exists, then the equation

V (x0) = E {
K−1

∑
k=0

γtℓ(Xu⋆(k, x0), uk(Xu⋆(0 ∶ k, x0))) + γKV (Xu⋆(K,x0))} . (5.3)

holds and the “inf” in (5.2) is a “min”.

Proof: In the following proof we use properties of conditional expectations that may
not be common knowledge. We refer to [Stochastische Dynamische Optimierung] for an
explanation.

We first prove (5.2) for K = 1. Throughout the proof we abbreviate X(k) =Xu(k, x0) and
u0 = u0(x0).
“≥”: Let x0 ∈ Rn and u ∈ P arbitrary. Then, for X ′(k) = Xu′(k, x′0) with u′k(x′0, . . . , x′k) =
uk+1(x0, x′0, . . . , x′k) we get

J(x0, u) = E {
∞

∑
k=0

γkℓ(X(k), uk(X(0 ∶ k)))}

= E {ℓ(x0, u0) +
∞

∑
k=1

γkℓ(X(k), uk(X(0 ∶ k)))}

= ℓ(x0, u0) + γE {
∞

∑
k=0

γkℓ(X(k + 1), uk+1(X(0 ∶ k + 1)))}

= ℓ(x0, u0) + γE {E (
∞

∑
k=0

γkℓ(X ′(k), u′k(X ′(0 ∶ k)))∣X ′(0) =X(1))}

= ℓ(x0, u0) + γE {J(X(1), u′)}
≥ E {ℓ(x0, u0) + γV (X(1))}
≥ inf

u∈P
E {ℓ(x0, u) + γV (X(1))} .

Since this inequality holds for all u ∈ P, it also holds for

V (x0) = inf
u∈P

J(x0, u),

which implies “≥”.

5.2. DYNAMIC PROGRAMMING 31

“≤”: Let ε > 0. For any x ∈X we choose a control process ūx ∈ P with

J(x, ūx) ≤ V (x) + ε

and abbreviate X(k) = Xūx0 (k, x0). Moreover, for each x ∈ X we choose a control value
ûx ∈ U with

E{ℓ(x, ûx) + γV (g(x, ûx,W))} ≤ inf
u∈U

E{ℓ(x,u) + γV (g(x,u,W))} + ε,

a define the control process ũ ∈ P as1

ũk(x0, . . . , xk) ∶= {
ûx0 , k = 0
ūx1k−1(x1, . . . , xk), k ≥ 1.

The corresponding solution is denoted by X̃(k) = Xũ(k, x0). Then X(k) = X̃(k + 1) holds
if X(0) = X̃(1). With these definitions we obtain

V (x0) = inf
u∈P

J(x0, u)

= inf
u∈P

E {
∞

∑
k=0

γkℓ(X(k), uk(X(0 ∶ k)))}

= inf
u∈P

E {ℓ(x0, u0) +
∞

∑
k=1

γkℓ(X(k), uk(X(0 ∶ k)))}

≤ E {ℓ(x0, ũ0(x0)) + γ
∞

∑
k=0

γkℓ(X̃(k + 1), ũk+1(X̃(0 ∶ k + 1))}

= ℓ(x0, ûx0) + γE {E (
∞

∑
k=0

γkℓ(X(k), ūX̃(1)k (X(0 ∶ k)))∣X(0) = X̃(1))}

≤ sup
u∈U

E {ℓ(x0, u) + γV (X(1))} + 2ε

where in the last step we used the properties of ūx and ûx. Since ε > 0 was arbitrary, it
follows that

V∞(x0) ≤ inf
u∈U

E {ℓ(x0, u) + γV (X(1))} ,

i.e., the desired inequality.

For K ≥ 2, equation (5.2) now follows by induction. For K = 1 there is nothing to show.

1The definition of ũ is the reason for allowing the control processes to depend on the whole history of
states x0, . . . , xk. This is because even if each ūx

k only depended on xk, the newly defined ũk depends on
x1 for all k ≥ 1, because it uses ux1

k−1.

32 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

For K →K + 1 we obtain

V (x0) = inf
u∈P

E {
K−1

∑
k=0

γkℓ(X(t), uk(X(0 ∶ k)) + γKV (X(K))}

= inf
u∈P

E

⎧⎪⎪⎨⎪⎪⎩

K−1

∑
k=0

γkℓ(X(k), uk(X(0 ∶ k)))

+ γK inf
ũ∈P

E{ℓ(X(K), ũ0(X(K))) + γV (X̃(1)) ∣ X̃(0) =X(K)}
⎫⎪⎪⎬⎪⎪⎭

= inf
u∈P

E

⎧⎪⎪⎨⎪⎪⎩

K−1

∑
k=0

γkℓ(X(k), uk(X(0 ∶ k)))

+ γK(ℓ(X(K), uK(X(0 ∶K))) + γV (X(K + 1)))
⎫⎪⎪⎬⎪⎪⎭

= inf
u∈P

E {
K

∑
k=0

γtℓ(X(k), uk(X(0 ∶ k))) + βK+1V (X(K + 1))} ,

where we used that we can set uK(X(0 ∶K)) ∶= ũ0(X(K)) in the second last step.

Equation (5.3) then follows as in proof of Theorem 3.2.

As in the deterministic setting, in the case K = 1 the dynamic programming principle yields
the Bellman equation

V (x0) = inf
u∈U

E {ℓ(x0, u) + γV (g(x0, u,W))} . (5.4)

We again define the quantity

Q(x,u) ∶= E{ℓ(x,u) + γV (g(x,u,W))}. (5.5)

The following theorem is the counterpart to Theorem 3.6. In the non-deterministic setting
we can, however, only prove it under Assumption 2.1(ii). This is because we do not have
a non-deterministic counterpart of Lemma 2.2.

Theorem 5.3 Consider the optimal control problem of minimising (5.1) with x0 ∈X and
let Assumption 2.1(ii) hold. Consider a feedback law π⋆ ∶X → U satisfying

π⋆(x) ∈ argmin
u∈U

E {ℓ(x,u) + γV (g(x,u,W))} = argmin
u∈U

Q(x,u) (5.6)

for all x ∈X. Then π⋆ is an optimal strategy in the sense of Definition 3.1(iii).

Proof: We abbreviate X̂(k) =Xπ⋆(k, x0). Then we need to show that

V (x0) = J(x0, π⋆).

Using (5.6) and (5.4) with x0 = X̂(k) we get

γkE{V (X̂(k))} = γkE{ℓ(X̂(k), π⋆(X̂(k))) + γk+1V (X̂(k + 1))}

5.3. Q-LEARNING 33

for k = 0,1, Summing these equalities for k = 0, . . . ,K − 1 for arbitrary K ∈ N and
eliminating the identical terms γkV (x̂(k)), k = 1, . . . ,K − 1 on the left and on the right we
obtain

V (x0) = E {
K−1

∑
k=0

γkℓ(X̂(k), π⋆(X̂(k))) + γKV (X̂(K))} .

Now Assumption 2.1(ii) implies that V is bounded, which yields limK→∞ γ
KE{V (X̂(K))} =

0 since γK → 0 as K →∞. Hence we obtain

V (x0) = E { lim
K→∞

K−1

∑
k=0

γkℓ(X̂(k), π⋆(X̂(k))) + γKV (X̂(K))} = E {
∞

∑
k=0

ℓ(x̂(k), π⋆(X̂(k)))} .

Note that here we can take the limit under the expectation because the series is absolutely
convergent, as ℓ is bounded and γ < 1.
Theorem 5.3 has a surprising consequence: while in the minimisation problem we took the
minimum over all control processes, which may depend on time and on the whole history of
the states X(k), the optimal control can be expressed via strategies, which only depend on
the current state and neither on time nor on the past states. It may thus seem unnecessary
to introduce the complicate definition of control processes. However, without this detour it
would not have been possible to prove that optimal controls can always expressed in form
of strategies.

5.3 Q-Learning

The Q-Learning algorithm for the non-deterministic setting is quite similar to the algorithm
in the deterministic setting, with two major changes.

First, the value x′ obtained in Step (1) is now non-deterministic, i.e., for one and the same
pair (x,u) different x′ may occur. In case the values x′ are obtained by observing a real
process, then this does not require any changes in the algorithm. However, in case the
evolution of the system is simulated, instead of evaluating x′ = g(x,u), we must perform
a stochastic simulation based on the information from p(x,u, x′) in order to obtain x′. In
the finite state case we discuss here, this can be done as follows.

Let (x,u) ∈X ×U be given. Let x′1, . . . , x
′
r be the states for which p(x,u, x′j) ≠ 0.

Define inductively

q0 ∶= 0, qj ∶= qj−1 + p(x,u, x′j) for j = 1, . . . , r.
Generate a uniformly distributed random number z ∈ [0,1] using a random
number generator, let j be the smallest index with z ∈ [qj−1, qj] and set x′ = x′j .

(5.7)

It should be noted that if the probabilities p are known, then there are more efficient ways
to modify Q-Learning than the one discussed in the following using the simulation (5.7).
The algorithm we present below is more suited for the case that we have a real process or
a simulation tool for evaluating g but no explicit knowledge of p. Algorithm 5.8 presents
a variant of Q-Learning that takes advantage of the knowledge of p.

34 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

The second change concerns the update of Q̃ in Step (2). In order to motivate that this
rule needs to be changed, consider the following very simple example.

Example 5.4 We consider a non-deterministic problem with exactly two states X =
{x1, x2} and only one control U = {u}. Regardless of in which state the system is, the
(only) control u1 always brings the system to x1 with probability 0.5 and to x2 with prob-
ability 0.5. This means that for both x = x1 and x = x2 the map p is defined as

p(x,u, x′) = { 0.5, if x′ = x
0.5, if x′ = x.

The cost is defined as ℓ(x1, u) = 0 and ℓ(x2, u) = 1.
It is easily seen that from time k = 1 on, the system is in state x1 and x2 with the same
probability of 0.5. If we use, e.g., the discount factor γ = 0.5, this leads to the average cost

Q(x1, u) = E {
∞

∑
k=0

γkℓ(x(k), u(k))} = 0 +E {
∞

∑
k=1

γkℓ(x(k), u(k))} =
∞

∑
k=1

0.5k0.5 = 0.5

and

Q(x2, u) = E {
∞

∑
k=0

γkℓ(x(k), u(k))} = 1 +E {
∞

∑
k=1

γkℓ(x(k), u(k))} = 1 +
∞

∑
k=1

0.5k0.5 = 1.5.

Now assume that the random generator draws a sequence in which every once in a while
x′ = x1 occurs twice in a row for two consecutive iterations j and j + 1 (which is very likely
to happen). Then, each time x′ = x1 appears for the second time, the update rule says that

Q̃j+1(x1, u) = ℓ(x1, u) + γQ̃j(x1, u) = 0.5Q̃j(x1, u).

This means that Q̃j(x1, u) never converges, because it keeps changing its value (un-
less it converges to 0, but this would not be the correct limit). The same happens for
Q̃j(x2, u).

The behaviour in this example, which is typical for most other examples, shows that due
to the random nature of the x′ the Q̃-values do not converge but rather jump randomly
between different values if we use the update rule of the deterministicQ-Learning algorithm.
For this reason, the update rule must be modified as follows.

Algorithm 5.5 (non-deterministic Q-learning)

(0) Set Q̃ ∶≡ 0, fix a real sequence (αj)j∈N with αj ∈ [0,1], pick a state x ∈X, set j ∶= 0

(1) Select u ∈ U , evaluate/simulate x′ = g(x,u,W) ∈X and evaluate ℓ(x,u)

(2) Set Q̃(x,u) ∶= (1 − αj)Q̃(x,u) + αj[ℓ(x,u) + γminu′∈U Q̃(x′, u′)]

(3) Set x ∶= x′ or select a new x ∈X, set j ∶= j + 1 and go to (1)

The new feature of the update rule is that the new value of Q̃ is now a convex combination
of its old value and the update value ℓ(x,u)+γminu′∈U Q̃(x′, u′). We recover the old update
rule if we choose αj = 1 for all j.

5.4. CONVERGENCE ANALYSIS 35

5.4 Convergence analysis

The trick is now to let αj tend to 0, such that the random jumps in the Q̃-values become
smaller and smaller as the iterations progress, but slowly enough such that the correct
value can be learned before the αj become too small. The following theorem shows how
this sequence must be chosen in order to achieve this goal. We note that, e.g., αj(i,x,u) = 1/i
satifies (5.8), while αjj(i,x,u) = 1/i2 converges “too fast” and αj(i,x,u) = 1/

√
i converges “too

slow”.

Theorem 5.6 Consider the discrete-time problem of minimising (5.1) with finite X and
U and let Assumption 2.1(ii) hold. Denote by Q̃j+1 the Q̃-function after Step (2) of
Algorithm 4.1, with j being the iteration counter in the algorithm. Assume that each pair
(x,u) ∈X ×U appears infinitely often in Step (1) of the algorithm and let j(i, x, u) ≥ 1 be
the iteration number in which the pair (x,u) appears for the i-th time in Step (1). Assume
that for each (x,u) ∈X ×U the sequence (αj)j∈N satisfies

lim
j→∞

αj = 0,
∞

∑
i=1

αj(i,x,u) = ∞, and
∞

∑
i=1

α2
j(i,x,u) < ∞. (5.8)

Then
lim
j→∞

Q̃j(x,u) = Q(x,u)

for all x ∈X, u ∈ U with probability 1.

The proof of this theorem can be obtained by studying abstract iterations of the form

rj+1(z) ∶= (1 − αj)rj(z) + αj(Φ(rj)(z) +wj(z)), j = 0,1,2, . . . (5.9)

with the following ingredients of (5.9):

• For each j the term rj is a map from Z to R, where Z is a finite set. If we
number the elements of Z as z1, . . . , zS , then rj can be identified with the vector
(rj(z1), . . . , rj(zS))T ∈ RS .

• The wj(z) are random variables (possibly dependent on the current and past terms
in (5.9)) with E(wj(z)) = 0 and E(w2

j (z)) ≤ A+B∥rj∥2 for constants A,B. Here the
expected values are understood as conditioned on all information that is available in
the j-th iteration of (5.9).

• The map Φ ∶ RS → RS is a contraction2 for the ∞-norm, i.e. there is a constant
β ∈ [0,1) such that

∥Φ(r1) −Φ(r2)∥∞ ≤ β∥r1 − r2∥∞
holds for all r1, r2 ∈ RS .

From Banach’s fixed point theorem one can then conclude that Φ has a unique fixed point
r∗ ∈ RS , i.e., a unique r∗ ∈ RS with Φ(r∗) = r∗.

2The proof of Proposition 5.7 in the mentioned reference only requires Φ to be a pseudo contraction in
a more general norm, but the ∞-norm contraction condition given here is sufficient for this.

36 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

Proposition 5.7 Under the assumptions just listed and (5.8), if each z appears infinitely
often in the iteration (5.9), then for each r0 the iteration (5.9) converges to r∗ with prob-
ability 1.

A complete proof of this proposition can be found as Proposition 4.4 in [2]. We will not
reproduce this proof here, but at least motivate why the condition (5.8) is needed.

To this end, let S = 1 and Φ(r) = 0, which is clearly a contraction with r∗ = 0. The result
of the iteration can then be written explicitly as

rj+1 =
j

∏
l=0

(1 − αl)r0 +
j

∑
k=0

αkwk

j

∏
l=k+1

(1 − αl).

Now the limit of this iteration should not depend on r0, because this would mean that
convergence would depend on the choice of the initial value. This means that

lim
j→∞

j

∏
l=0

(1 − αl) = 0

must hold. This is equivalent to

lim
j→∞

j

∑
l=0

log(1 − αl) = lim
j→∞

log
⎛
⎝

j

∏
l=0

(1 − αl)
⎞
⎠
= −∞.

From the Taylor series for the logarithm it follows that log(1 − αl) ≤ −αl, so the first
condition in (5.8) ensures this property.

Now consider the same setting with r0 = 0. The explicit result of the iteration then reads

rj+1 =
j

∑
k=0

αkwk

j

∏
l=k+1

(1 − αl).

This implies that the expected value satisfies E(rj+1) = 0. A necessary condition for
rj+1 → 0 with probability 1 is that the variance E(r2j+1) also tends to 0. This is given by

E(r2j+1) = E
⎛
⎜
⎝
⎛
⎝

j

∑
k=0

αkwk

j

∏
l=k+1

(1 − αj)
⎞
⎠

2⎞
⎟
⎠
.

Assuming that the wk are identically distributed and stochastically independent, we obtain
E(wkwl) = E(wk)E(wl) = 0 for k ≠ l and E(w2

k) = E(w2
0) for all k ≥ 0. Thus, the expression

simplifies to

E(r2j+1) = E
⎛
⎝

j

∑
k=0

α2
kw

2
k

j

∏
l=k+1

(1 − αl)2
⎞
⎠
= E(w2

0)
j

∑
k=0

α2
k

⎛
⎝

j

∏
l=k+1

(1 − αl)
⎞
⎠

2

.

Now, since ∏jl=k+1(1 − αl) → 0 as j → ∞, one sees that the second condition in (5.8), i.e.,

limj→∞∑jk=0 α
2
k < ∞, ensures that the variance of rk+1 convergence to 0. Of course, these

are only special cases, but they illustrate why the assumptions on the αj are reasonable.

5.5. THE CASE OF KNOWN TRANSITION PROBABILITIES 37

Proof of Theorem 5.6: We define Z =X×U , z = (x,u), r(z) ∶= Q̃(x,u), and Φ ∶ RS → RS
as

Φ(Q̃)(z) = ∑
x′∈X

p(x,u, x′) (ℓ(x,u) + γmin
u′∈U

Q̃(x′, u′)) = ℓ(x,u) + γEx′ (min
u′∈U

Q̃(x′, u′)) .

Denoting by xj the value x′ from the j-th iteration of the algorithm, we can write the
Q-Learning iteration as

Q̃j+1(x,u) = (1 − αj)Q̃j(x,u) + αj(Φ(Q̃)(x,u) +wj(x,u)),

with

wj(x,u) = ℓ(x,u) + γmin
u′∈U

Q̃j(xj , u′) − ∑
x′∈X

p(x,u, x′) (ℓ(x,u) + γmin
u′∈U

Q̃j(x′, u′))

= γ (min
u′∈U

Q̃j(xj , u′) − ∑
x′∈X

p(x,u, x′)min
u′∈U

Q̃j(x′, u′)) .

Since xj is distributed according to the probability p, it is easily checked that the expec-
tation of wj satisfies E(wj(x)) = 0. Moreover,

E(wj(x)2) ≤K(1 + max
x∈X,u∈U

Q̃j(x,u)2)

for a suitable constant K. The fact that Φ is a contraction follows immediately from the
fact that (using the hint from Exercise 1 in Sheet 2)

∣Φ(Q̃1)(x,u) −Φ(Q̃2)(x,u)∣ = ∑
x′∈X

p(x,u, x′)γ∣min
u′∈U

Q̃1(x′, u′) − γmin
u′∈U

Q̃2(x′, u′)∣

≤ ∑
x′∈X

p(x,u, x′)γmax
u′∈U
∣Q̃1(x′, u′) − Q̃2(x′, u′)∣

≤ γ∥Q̃1 − Q̃2∥∞.

Hence, the assertion follows from Proposition 5.7.

The choices of x and u in the algorithm discussed in Section 4.3 can be adapted to the
nondeterministic setting. Again for brevity we will not discuss details.

5.5 The case of known transition probabilities

We briefly state how one can improve Algorithm 5.5 if the probabilities p are known.

Algorithm 5.8 (non-deterministic Q-learning with known p)

(0) Set Q̃ ∶≡ 0 and pick a state x ∈X

(1) Select u ∈ U and evaluate ℓ(x,u)

(2) Set Q̃(x,u) ∶= ℓ(x,u) + γ ∑
x′∈X

p(x,u, x′)min
u′∈U

Q̃(x′, u′)

38 CHAPTER 5. NON-DETERMINISTIC REINFORCEMENT LEARNING

(3) Select a new x ∈X and go to (1)

Instead of simulating x′, this algorithm computes the exact expected value

E (min
u′∈U

Q̃(x′, u′)) = ∑
x′∈X

p(x,u, x′)min
u′∈U

Q̃(x′, u′)

in each step. Rather than “collecting” the stochastic information over many iterations, it
thus uses the exact information in each step. For this reason, vanishing step sizes are not
needed in this variant and convergence is typically much faster than for Algorithm 5.5.

In the RL-literature, the Q-Learning Algorithm 5.5 is called a model-free algorithm while
Algorithm 5.8 is called a model-based algorithm. We note that model-based algorithms
can also be also used when p is not known a priori. In this case, another learning scheme
computes the probabilities p from the evaluations of g during Q-Learning, in the simplest
case by using the empirical distribution, i.e., by counting the observed transitions and
dividing by the number of overall transitions. Depending on the problem, Algorithm 5.8
with such a “learned” p can be faster and more reliable than Algorithm 5.5.

Chapter 6

Deep Neural Networks

October 7, 2024
The Q-Learning algorithms proposed so far were formulated under the assumption that
the state and action space are finite. In practical problems this is most often not the case.

If X and U are compact subsets of Rd and Rm (which is a realistic assumption in many
applications), a standard way to overcome this problem is to replace X and U with finite
approximations by discretising the state and action space. For instance, for the unit cube

X = [0,1]d ⊂ Rd

one can select a step size h = 1/J , J ∈ N, and use the finite set

Xh ∶= {(hq1, . . . , hqd)T ∣ q = (q1, . . . , qd)T ∈ {0, . . . , J}d}.

Then, of course, the dynamics of the system on X must also be discretised in order to
obtain a dynamics on Xh. This can be done by different techniques that we will not
discuss in detail here; we just mention that quantisation, which was briefly explained at
the beginning of the last chapter, is one of these methods.

Regardless of how the dynamics is converted, this procedure leads to the situation that
the exact function Q ∶ X × U → R is approximated by a function Qh ∶ Xh × Uh → R for all
x ∈Xh ×Uh. In order to obtain an aproximation that is defined on X ×U interpolation can
be used. Piecewise constant or piecewise linear interpolation are the simplest choices, but
much more sophisticated methods are possible.

Now, in order to be able to approximate Q by Qh with a certain accuracy, the step size
h > 0 must be sufficiently small, meaning that the value J must be sufficiently large. Then,
however, one immediately sees that the number of elements in Xh grows rapidly — more
precisely exponentially — when the dimension n grows. If in the above example we use
h = 1/9, i.e., J + 1 = 10 states per coordinate direction, then for a two dimensional problem
we need 100 states in Xh (which can be easily handled in a Q-Learning algorithm), but in
a ten dimensional problem we need 1010 = 10 billion (10 Milliarden) states, which already
needs a very powerful computer, even though 10 states per coordinate direction is still a
quite coarse discretisation.

This phenomenon is known as the curse of dimensionality and leads to the fact that this
way of discretising the state space is not suitable for high-dimensional problems. Deep

39

40 CHAPTER 6. DEEP NEURAL NETWORKS

Neural Networks (DNNs) can bring a remedy here and we will discuss in this chapter
under which conditions this is provably true.

Generally, a DNN of the type we consider in this lecture can be seen as a function from a set
Y ⊂ Rd to R, which in addition depends on a vector of parameters θ = (θ1, . . . , θP)T ∈ RP .
This means, a DNN represents a function

W ∶ Y ×RP → R, or, if we fix a θ ∈ RP , W (⋅; θ) ∶ Y → R.

Now, given a function z ∶ Y → R, the goal is to find a parameter vector θ∗ ∈ RP such that

∥W (⋅; θ∗) − z(⋅)∥

is small in some norm ∥ ⋅ ∥. In Q-Learning, z would typically be the function Q from
(3.5), in which case d = n +m and W would be an approximation of Q. Alternatively, one
can define z to be the optimal value function V . Then d = n and ℓ(x,u) + γW (g(x,u))
would be an approximation of Q. This approach has the advantage that the function to
be approximated depends on a lower dimensional argument, but the disadvantage that g
must be known and easy to evaluate in order to evaluate the approximation of Q.

Now, three questions need to be answered:

• What exactly is W and the underlying neural network?

• When is it possible to find θ∗ ∈ RP such that ∥W (⋅, θ∗) − z(⋅)∥ becomes small?

• How do we compute this θ∗.

These will be clarified in the following four sections.

6.1 Definition of DNNs

In this section we describe the type of neural networks that we use in this lecture. A deep
neural network is a computational architecture that has several inputs, which are processed
through ℓ ≥ 1 hidden layers of neurons. The values in the neurons of the layer with the
largest ℓ are used in order to compute the output of the network. In this lecture, we will
only consider feedforward networks, in which the input is processed consecutively through
the layers 1, 2, . . . , ℓ. For our purpose of representing Q or V we will use networks with
the input vector x = (x1, . . . , xd)T ∈ Rd (where this x may contain x and u in case Q is
represented) and a scalar output W (x; θ) ∈ R. Here, the vector θ ∈ RP represents the free
parameters in the network that need to be tuned (or “learned”) in order to obtain the
desired output. Figure 6.1 shows generic neural networks with one and two hidden layers.

Here, the lowest layer is the input layer, followed by one or two hidden layers numbered
with ℓ, and the output layer. The number ℓmax determines the number of hidden layers,
here ℓmax = 1 or 2. Each hidden layer consists of Nℓ neurons and the overall number of
neurons in the hidden layers is denoted by N = ∑ℓmax

ℓ=1 Nℓ. The neurons are indexed using

6.1. DEFINITION OF DNNS 41

output

inputx1 x2
xn

y11 y12 y1N1
ℓ = 1

W (x; θ)

output

inputx1 x2
xn

y21 y22 y2N2

y11 y12 y1N1
ℓ = 1

ℓ = 2

W (x; θ)

Figure 6.1: Neural network with 1 and 2 hidden layers

the number of their layer ℓ and their position in the layer k. Every neuron has a scalar value
yℓk ∈ R and for each layer these values are collected in the vector yℓ = (yℓ1, . . . , yℓNℓ

)T ∈ RNℓ .

The values of the neurons at the lowest level are given by the inputs, i.e., y0 = x ∈ Rd. The
values of the neurons in the hidden layers are determined by the formula

yℓk = σℓ(wℓk ⋅ yℓ−1 + bℓk),

for k = 1, . . .Nℓ. Here x ⋅ y denotes the Euclidean scalar product between two vectors
x, y ∈ Rn, σℓ ∶ R → R is a so called activation function and wℓk ∈ RNℓ−1 , aℓk, b

ℓ
k ∈ R are the

42 CHAPTER 6. DEEP NEURAL NETWORKS

parameters of the layer. Popular activation functions include

σ(r) = r (linear)

σ(r) = 1

1 + e−x (sigmoid)

σ(r) = 2

1 + e−2x − 1 (hyperbolic tangent)

σ(r) = max{0, r} (rectified linear unit, ReLU)

σ(r) = ln(er + 1) (softplus).

Among these functions, ReLU activation functions have become particularly popular for
time-critical applications, because the evaluation of the function x↦W (x; θ∗) can be im-
plemented very efficiently. In contrast, for analytic considerations it is sometimes desirable
that x↦W (x; θ∗) is differentiable, which excludes the non-smooth ReLU function.

In the output layer, the values from the topmost hidden layer ℓ = ℓmax are affine-linearly
combined to deliver the output, i.e.,

W (x; θ) =
Nℓmax

∑
k=1

aky
ℓmax

k + c =
Nℓmax

∑
k=1

akσ
ℓmax(wℓmax

k ⋅ yℓmax−1 + bℓmax

k) + c. (6.1)

The vector θ collects all parameters ak, c, w
ℓ
k, b

ℓ
k of the network.

In case of one hidden layer, in which ℓmax = 1 and thus yℓmax−1 = y0 = y, we obtain the
closed-form expression

W (x; θ) =
N1

∑
k=1

akσ
1(w1

k ⋅ x + b1k) + c.

For two hidden layers, the closed-form expression reads

W (x; θ) =
N2

∑
k=1

akσ
2
⎛
⎜
⎝
w2
k ⋅
⎛
⎜
⎝

σ1(w1
1 ⋅ x + b12)
⋮

σ1(w1
N1
⋅ x + b2N1

)

⎞
⎟
⎠
+ b1k
⎞
⎟
⎠
+ c.

6.2 The universal approximation theorem

The universal approximation theorem states that a neural network with one hidden layer
can approximate all smooth functions arbitrarily well. In its qualitative version, going back
to [3, 4], it states that the set of functions that can be approximated by neural networks
with one hidden layer is dense in the set of continuous functions. In Theorem 6.1, below,
we state a quantitative version, given as Theorem 1 in [6], which is a reformulation of
Theorem 2.1 in [5].

For its formulation consider compact sets Kd ⊂ Rd for which there exists a C > 0, cd ∈ Rd
satisfying

Kd ⊆ cd + [−C,C]d for all d ∈ N.

6.2. THE UNIVERSAL APPROXIMATION THEOREM 43

Note that C is assumed to be independent while cd may depend on d. On these sets we
want to perform our computation. For a continuous function z ∶ Kd → R we define the
infinity-norm over Kd as

∥z∥∞,Kd
∶=max

x∈Kd

∣z(x)∣.

We then define the set of functions

Wd
m ∶=
⎧⎪⎪⎨⎪⎪⎩
z ∈ Cm(Kd,R)

RRRRRRRRRRRR
∑

0≤∣α∣≤m

∥Dαz∥∞,Kd
≤ 1
⎫⎪⎪⎬⎪⎪⎭

where Cm(Kd,R) denoted the functions from Kd to R that are m-times continuously
differentiable, α = (α1, . . . , αp) are multiindices of length ∣α∣ = p with entries αi ∈ {1, . . . , d},
i = 1, . . . , ∣α∣ and

Dαz =
∂ ∣α∣z

∂xα1 . . . ∂xα∣α∣

denotes the m-th directional derivative with respect to α, with Dαz = z if ∣α∣ = 0.

Theorem 6.1 Let σ ∶ R→ R be infinitely differentiable and not a polynomial1. Then, for
any ε > 0, a neural network with one hidden layer provides an approximation

inf
θ∈RP
∥W (x; θ) − z(x)∥∞,Kd

≤ ε

for all z ∈ Wd
m with a number N of neurons satisfying

N = O (ε−
d
m)

and this is the best possible.

Proof: See [6, Theorem 1] or [5, Theorem 2.1] for this result with Kd = [−1,1]d. The
extension to Kd ⊂ cd + [−C,C]d will be carried out in the exercises.

We note that if θ ∈ RP realizing the infimum in the inequality in Theorem 6.1 exists, then
in general it depends on g. Theorem 6.1 implies that one can readily use a network with
one hidden layer for approximating Lyapunov functions. However, in general the number
N of neurons needed for a fixed approximation accuracy ε > 0 grows exponentially in n,
and so does the number of parameters in θ. This means that the storage requirement as
well as the effort to determine θ easily exceeds all reasonable bounds already for moderate
dimensions n. Hence, just like the simple discretisation approach sketched at the beginning
of this chapter, this approach also suffers from the curse of dimensionality.

Remark 6.2 The differentiability requirement in Theorem 6.1 excludes the popular ReLU
activation functions, which are obviously not differentiable. However, there are analogous
results for ReLU activation functions, cf. [6, Section 4.1] and the references therein.

1Polynomials are excluded because in the proof of this theorem it is needed that the derivatives σ(k) for
all degrees k ∈ N do not vanish. See also the discussion after Theorem 1 in [6].

44 CHAPTER 6. DEEP NEURAL NETWORKS

6.3 Improved results for compositional functions

In this section we will exploit the particular structure of compositional functions in order to
obtain approximation results for DNNs with (asymptotically) much lower N . The following
definition and theorem are inspired by [6] but significantly reformulated.

Definition 6.3 A function z ∶ Rd → R is called a compositional function of degree K ∈ N
and level L ∈ N, if there are functions hlj ∶ RK → R, l = 1, . . . , L, j = 1, . . . , d, such that
z(y) = z(x1, . . . , xd) can be written in the form

z(x) =
d

∑
j=1

βjz
L
j ,

where the values zlj are recursively defined as

zlj = hlj(αlj1zl−1ilj1
, . . . , αljKz

l−1
iljK
)

for l = 1, . . . , L, z0i = xi, iljk ∈ {1, . . . , d} and αljk, βj ∈ R

An example for a compositional function of degree 2 and level 1 from R5 to R is

z(x) = h11(x1, x3) + 5h12(x5) + 0.5h13(x2, x4)

and an example for a compositional function of degree 3 and level 2 from R4 to R is

z(x) = h21(h11(x1, x2, x3),2h12(x2, x4),7h13(x1, x2, x3)).

Note that although all functions hlj are formally defined as function from RK , they may
also have less than K arguments (since they do not depend on some of the arguments that
are formally present). Likewise, it may possible that some of the hlj are constantly equal
to 0. In words, the degree K limits the maximal number of arguments of each function hlj
while the level L limits the number of nestings of the functions hlj into each other.

For this class of functions we can now prove the following improved approximation result.

Theorem 6.4 Let σ ∶ R → R be infinitely differentiable and not a polynomial. Let C
be the set of compositional functions defined on sets Kd ⊂ cd + [−C,C]d with fixed C, K
and L but arbitrary d and cd, where each function hlj lies in WK

m and the absolute values
∣αljk∣ and ∣βj ∣ as well as ∣wklm∣ needed for its approximation according to Theorem 6.1 with
z = hlj are bounded by a constant M that is independent of d and of the desired accuracy.

Then, for any ε > 0, a neural network with L hidden layers provides an approximation

inf
θ∈RP
∥W (⋅ ; θ) − z∥∞,Kd

≤ ε

for all z ∈ C with a number N of neurons satisfying

N = O (d
K
m
+1ε−

K
m) .

6.3. IMPROVED RESULTS FOR COMPOSITIONAL FUNCTIONS 45

Proof: For simplicity of notation, throughout this proof we assume that the number of
neurons Nℓ in each level is identical and an integer multiple of d. We denote this number
by Nℓ = N̂d, N̂ ∈ N. Then the overall number of neurons is N = LN̂d.
Now to each hlj we assign the subset of neurons with values yl

(j−1)N̂+1
, . . . , yl

jN̂
. We refer

to this subset of the overall DNN as a sublevel. Then, by Theorem 6.1, for any εlj > 0 we
find weights2 ãlmj , b̃

l
mj , c̃

l
j , and w̃

l
kj such that

∣hlj(αlj1zl−1ilj1
, . . . , αljKz

l−1
iljK
)

´¹¹¸¹¹¹¶
=zlj

−
N̂

∑
m=1

ãlmj σ
l (

K

∑
k=1

w̃lmjkz
l−1
iljk
+ b̃lmj)

´¹¹¹¸¹¹¹¶
=yl
(j−1)N̂+m

+c̃lj ∣ ≤ εlj .

Using the same approximation for zl−1j we can write

yl
(j−1)N̂+m

= σl (
K

∑
k=1

w̃lmjkz
l−1
iljk
+ b̃lmj)

≈ σl
⎛
⎝
K

∑
k=1

w̃lmjk
⎛
⎝
N̂

∑
m̃=1

ãl−1m̃iljky
l−1
(iljk−1)N̂+m̃

+ c̃l−1iljk
⎞
⎠
+ b̃lmj

⎞
⎠

= σl
⎛
⎝

Nℓ

∑
k=1

wl−1mjky
l−1
k + bl−1mj

⎞
⎠
,

where the weights wl−1mjk and bl−1mj are obtained by expanding the sums in the second last

line. This defines the weights for the neurons yl
(j−1)N̂+1

, . . . , yl
jN̂

of this subnet and in the

same way we can compute the weights for all neurons.

Since the partial derivatives of the functions hlj are bounded by 1, we can conclude that each

hlj maps a setKd ⊂ cd+[−C,C]d to a set K̂d ⊂ ĉd+[−C,C]d. Hence, if y ∈Kd ⊂ cd+[−C,C]d,
then the arguments of the functions hlj lie in a set Kdlj ⊂ cdlj + [−CM l−1,CM l−1]K . If
we moreover make sure that the approximation error εlj for each sublevel is bounded by
1, by induction we can guarantee that the internal values in the network are contained in
the set cdlj + [−(CM l−1 − (l − 1)M l−1,CM l−1 + (l − 1)M l−1]K . We thus have to make sure
that in each sublevel the approximation errors satisfy the tolerance εlc on this set. Finally,
in each layer l ≥ 2 the error in the approximation of zl−1j is amplified by the weights w̃lkj .
Hence, we have to make sure that the errors in the lower levels are chosen small enough
that after this amplification they are still within the desired tolerance. This is possible
since we assumed these values to be bounded independent of d.

Now, given a desired overall accuracy ε > 0, choose the values εlj such that the outer-
most functions h1k, k = 1, . . . , d are approximated with an accuracy ε1k = ε/(dβk). Then,
choosing the DNN weights of the top layer as ak = βk, the overall accuracy of the resulting
weighted sum is ε.

Due to the fact that the individual accuracies εlj amplify multiplicatively when propagated
through the network, there exists a constant γ > 0 (depending on L and M), such that

2More precisely, we first find weights for approximating hlj(zl−1ilj1
, . . . , zl−1iljK

) which by appropriate rescal-

ing yield the weights for approximating hlj(αlj1z
l−1
ilj1

, . . . , αljKzl−1iljK
).

46 CHAPTER 6. DEEP NEURAL NETWORKS

εlj ≤ γε/d ensures the desired bound on ε1k. According to Theorem 6.1, each subnet must
consist of

O((γε/d)−
K
m) = O (d

K
m ε−

K
m)

neurons, where the γ vanishes in the O-term because it is independent of d. Since the
number of subnets is bounded by dL, in which L is independent of d, the order of the
overall number of neurons is obtained if we multiply the number, above, by d. This yields
the desired estimate.

Remark 6.5 The difference in the order of the number of neurons is best illustrated using
some sample numbers. Assume we want an approximation accuracy ε = 0.1 and have
functions with d = 10, K = 5 and m = 1. Then both Theorem 6.1 and Theorem 6.4 require
an order of 1010 neurons. For d = 20, the number provided by Theorem 6.1 increases to 1020

(i.e., by a factor of 1010), while the number from Theorem 6.4 only increases to 16 ⋅ 1010
(i.e., by a factor of 16).

If the functions to be approximated by the DNN are sufficiently smooth (and their deriva-
tives bounded), such that we can set m = 3, then for d = 100 we get only the order of 105

neurons from Theorem 6.4, but the order of 1033 neurons from Theorem 6.1.

6.4 Training the DNN

The process of finding a parameter vector θ such that the DNN approximates the function
it should approximate is commonly called training. To this end, we define a so-called loss
function L, which penalises the pointwise deviation of W (x; θ) from a desired value. In
the simplest case, one may want to minimise the expression

(W (x; θ) − z(x))2

for a given function z. This task is called supervised learning. Then L ∶ R ×Rn → R could
be defined as

L(W,x) = (W − z(x))2, (6.2)

such that L(W (x; θ), x) = (W (x; θ) − z(x))2. We note that this problem does not yet fit
the typical task in RL, because there the desired function z = Q or z = V is not known.
We will explain below how this problem can be solved.

Now we would not only want to approximate z in a single point x ∈ Rn, but for all points
y ∈Kn. Ideally, we would like to minimize

∥W (⋅; θ) − z∥∞ or ∥W (⋅; θ) − z∥2.

In order to obtain this at least approximately, we pick a large number of training points
x1train, . . . , x

J
train, which are typically chosen randomly in Kn using a random number gen-

erator. Then we minimise the sum

F (θ) = 1

J

J

∑
j=1

L(W (xjtrain; θ), x
j
train)

6.5. DEEP REINFORCEMENT LEARNING 47

with respect to θ. Since the number of training points in DNN training is usually very
large, this minimisation is not performed at once, but by means of a so called stochastic
gradient method. To this end, we define an iteration counter j, which is set to j = 0 at the
beginning and pick an initial guess θ0 for θ.

Then the set Xtrain = {x1train, . . . , xJtrain} is divided into M randomly generated sub-
sets X1

train, . . ., X
M
train, the so called batches, each containing B elements. Then for

m = 1,2, . . . ,M , the gradient ∇Fm of the function

Fm(θ) ∶=
1

B
∑

xtrain∈Xm
train

L(W (xtrain; θ), xtrain)

is computed in θ = θj and a gradient step

θj+1 ∶= θj − αj∇Fm(θj)

is performed for a step size αj > 0 and j is set to j + 1. When this is done for all m =
1, . . . ,M , one says that the first epoch of the optimisation is completed. Then new batches
X1
train, . . .X

M
train are created from Xtrain and the next epoch of the optimisation is started.

This procedure is repeated until no further progress for the value of F (θj) can be achieved.
Note that j is not reset to 0 after an epoch is finished but keeps on counting the overall
iterations, i.e., we have j = (k − 1)M, . . . , kM − 1 during the k-th epoch.

The good thing about the neural network structure is that the gradient ∇m can be com-
puted very efficiently. Practical algorithms that implement this basic idea come in many
different variants. Particularly, the choice of the step size αj differs in these variants. It
may also be beneficial to add a regularising term to F , e.g., λ∥θ∥22 for a small parameter
λ > 0. This prevents the algorithm from choosing extreme values for θ. The lecture notes
“Optimization for Machine Learning” by Prof. Anton Schiela, available via the e-Learning
course for his lecture, discuss these kind of algorithms in great detail and also provide
convergence statements under appropriate assumptions.

6.5 Deep reinforcement learning

Basic deep Q-learning algorithm

The learning algorithm we discussed so far is called supervised learning, because the values
of the function to be approximated are known and can be used in order to “teach” the
neural network via the loss function.

In RL, the loss function must be defined in a different way, because the desired function
z = Q or z = V is not known; we only know an equation it should satisfy. This is called
unsupervised learning. For instance, in the case that we want to approximate the function
Q, it is known that this function satisfies the dynamic programming principle

Q(x,u) = ℓ(x,u) + γ inf
u′∈U

Q(g(x,u), u′).

Hence, for y = (x,u) and x′ = g(x,u) we define the loss function for computing Q̃(x,u, θj+1)
as

L(Q̃, y) = (Q̃ − ℓ(x,u) − γ inf
u′∈U

Q̃(x′, u′; θj))
2

.

48 CHAPTER 6. DEEP NEURAL NETWORKS

The difference to (6.2) is that the loss function now depends on θj and thus changes
when the iteration progresses. Hence, in each step j of the iteration we solve a standard
supervised learning problem (which is easy to implement), but due to the fact that the
function to be learned changes from j to j + 1, in the end we compute a function that was
unknown at the beginning. A typical way to implement this would be to make a gradient
step for updating θj after a sufficiently large batch of data has been obtained. The data
collected between two updates is called an episode.

As in conventional RL, x′ = g(x,u) can be obtained by evaluating g(x,u) if this function
is known or from simulated or measured data. Also, it is common not to generate the
training points in Xtrain entirely randomly but rather use the training points generated
along certain trajectories, i.e., defining the x-component of the training point y+ = (x+, u+)
in the next time step as x+ = x′. The u-component can, e.g., be obtained by the ε-greedy
choice described in Section 4.3. If these trajectories are obtained by simulation or from
measured data, then one can store and reuse them in later epochs. However, it may still
be advisable to update the training point set Xtrain during the process, because the better
the approximation of V or Q is, the better the controls generated by the ε-greedy choice
are, which may provide better training progress. Obviously, there are a lot of different
ways to implement this, involving quite a number of parameters to be tuned.

It is worth to summarise the main differences between classical RL and deep RL:

Classical Reinforcement Learning Deep Reinforcement Learning

Q̃ is updated for each (x,u) θj is updated after each episode

the update only changes Q̃(x,u) the update changes Q̃(⋅, ⋅ ; θ) everywhere
the new value for (x,u) is exactly the new values determine Q̃(⋅, ⋅ ; θj+1)
assigned to Q̃(x,u) only indirectly via the optimisation

each (x,u) is visited many times only a selection of (x,u) is visited

The last two points make it difficult to obtain rigorous convergence results for deep RL.
The analysis is further complicated by the fact that, compared to simple deep learning
problems, the cost function in deep RL depends on θj and thus changes as θj is updated.

Interestingly, this last complication vanishes if we consider continuous-time problems. In
this case, the loss function is not derived from the Bellman equation (3.4) but from the
Hamilton-Jacobi-Bellman equation (3.9). In continuous-time, it is more reasonable to
approximate V instead of Q. This leads to the loss function

L(W,DW,x) = (−δW + min
u∈Rm
{DW ⋅ f(x,u) + ℓ(x,u)})

2

,

which is obviously not depending on θj .

The price to pay is that now we also need the derivative DW (x; θ) = d/dxDW (x; θ) as an
argument of L, and we also need to compute its derivative with respect to θ for computing
the gradient ∇Fm with respect to θ. This, however, is not too difficult to implement with
state-of-the-art software for neural networks.

6.5. DEEP REINFORCEMENT LEARNING 49

The more difficult part in both discrete and continuous-time deep RL is to compute the
minimum with respect to u in each evaluation of the loss function. In continuous time,
when f is affine linear in u and ℓ is quadratic in u, then the minimum can be computed
explicitly (we considered this situation in the exercises). In discrete time, which is the
much more common setting for deep RL, this is usually not possible.

Variants of the algorithm

For this reason, a variant of the algorithm was developed, which avoids the explicit calcula-
tion of the minimum. The idea is to use a second NN for representing the optimal feedback
law π⋆. We denote this approximated feedback law by π̃⋆. This is called the actor-critic
approach, in which π̃⋆ plays the role of an actor, which determines how to “act”, while
the corresponding optimal value Ṽ or Q̃ serves as a critic, which judges the quality of the
actor.

In contrast to above, here we discuss a variant of the algorithm that uses an approximation
of V rather than Q. In the j-th iteration, given an approximation Ṽ (⋅; θj) of the value
function, one computes a new approximately optimal feedback law π̃⋆(⋅;ψj) minimizing
the loss function

Lπ(π̃⋆, x) = ℓ(x, π̃⋆(x;ψj)) + γṼ (g(x, π̃⋆(x;ψj)); θj) − Ṽ (x; θj).

Then, one computes a new approximation of the optimal value function by minimizing

LV (Ṽ , x) = (ℓ(x, π̃⋆(x;ψj)) + γṼ (g(x, π̃⋆(x)); θj+1) − Ṽ (x; θj+1))
2
.

Rather than explicitly computing an “inf” in the second loss function LV , the minimisation
is now achieved via minimising the first loss function Lπ, for which the training optimisa-
tion algorithm for neural networks is used. In case the problem is non-deterministic, the
approximate feedback law π̃⋆ is also chosen non deterministic. This means that rather than
storing a function u = π̃⋆(x), a function π̃⋆(u ∣x) is stored, which gives the probability that
control u is used when the system is in state x. Then, Lπ is replaced by

π(u ∣x;ψj) (ℓ(x,x) + γṼ (g(x,u); θj) − Ṽ (x; θj)) .

While this looks more complicated and needs additional data for sampling u, it simplifies
the calculation of the gradient ∇ψj

Lπ, as no chain rule is needed and thus the derivative
of V and g does not to be known.

The gradient of Lπ, that is needed for running the gradient descent algorithm, is called the
policy gradient. The above algorithm is a particular form of a policy gradient algorithm.

The problem with the actor-critic approach is that two functions have to be stored in two
networks, which may lead to a higher computational effort and an increase in the approx-
imation error. For this reason, there are variants of the policy gradient algorithm that
work without approximations Ṽ . Rather than using the dynamic programming principle
to define Lπ, one directly uses the original functional J (or an approximation thereof) in
the definition of Lπ.

50 CHAPTER 6. DEEP NEURAL NETWORKS

Chapter 7

Separable approximations of
optimal value functions

October 7, 2024

In this chapter we will provide conditions under which an optimal value function can be
approximates by a particular compositional function, which can then in turn be represented
also in in high dimensions with a “small” neural network according to Theorem 6.4. The
particular compositional structure is defined in the following definition. It is actually much
simpler than the general compositional form. This chapter summarizes results from [9]
with some modifications.

7.1 Separable functions

Definition 7.1 A function z ∶ Rd → R is called λ-separable for λ ∈ N, if there exists s ≤ d
functions ψjλ ∶ R

λ → R, j = 1, . . . , s, and subvectors

xj =
⎛
⎜
⎝

xij,1
⋮

xij,λ

⎞
⎟
⎠
∈ Rλ such that z(x) =

s

∑
j=1

ψjλ(x
j).

The important property of the functions from this definition is that for separable functions
the partial derivative ∂z/∂xi is independent of xk for many pairs (i, k).

Example 7.2 (i) Let d = 3, W (x) = x1x2 + x2x3. Then W can be written as W (x) =
ψ1
2(x1) + ψ2

2(x2) with

x1 = (x1
x2
) , x2 = (x2

x3
) , ψ1

2(x1) = x1x2, ψ2
2(x2) = x2x3.

(ii) For d = 5 and λ = 2, a function W (x) can only depend on 5 “argument pairs” in ψjλ,
out of 25 possible pairs.

51

52CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

The following corollary is now an immediate consequence of Theorem 6.4.

Corollary 7.3 Consider a family of λ-separable functions with ψjλ ∈ W
λ
m for all j = 1, . . . , s

and each separable function z in the family. Then for all ε > 0, there is a neural network
with one hidden layer and C∞ but not polynomial activation functions, such that for each
z in the family

inf
θ∈RP
∥W (⋅, θ) − z∥∞,Kd

and the number of neurons is of the order O(d λ
m
+1ε−

λ
m).

Proof: This follows immediately from Theorem 6.4, since every λ-separable function is a
compositional function with L = 1 and K = λ.
Note that one can represent the separable structure more explicitly in the neural network by
adding a second layer with linear activation functions before the existing layer and splitting
up the hidden layer into s blocks depending on λ inputs from the newly introduced layer.
Figure 7.1 shows this structure, which contains one additional layer but fewer parameters
compared to the network used in the proof of Theorem 6.4.

output

inputx1 x2 xd

y11 y1M ys1 ysM

xi1,1 x1 xi1,l

xis,1
xs xis,ℓ layer 1

layer 2
ψ1
ℓ

ψs
ℓ

W (x, θ)

Figure 7.1: Neural network with separable structure

By means of an example we first want to check whether we can find an optimal control
problem for which the optimal value function is separable. To this end, it appears rea-
sonable to consider a large optimal control problem consisting of independent subsystems,
which are only coupled via the cost function.

Example 7.4 Consider a convoy of s vehicles on a road as in Figure 7.2

The state for each vehicle is two-dimensional, consisting of the position pj and the velocity
vj . We set

xj = (pj
vj
) ∈ R2 and x =

⎛
⎜
⎝

x1

⋮
xs

⎞
⎟
⎠
∈ Rd

7.1. SEPARABLE FUNCTIONS 53

Figure 7.2: Convoy of vehicles

with d = 2s. The differential equations for each vehicle are

ṗj(t) = vj(t), ẋj(t) = uj(t),

where the control uj determies the acceleration of the vehicle. For the cost functional we
use

∫
∞

0
(p1(t) − pref(t))2 +

N−1

∑
i=1

(pi+1(t) − pi(t) −L)2 + γ∥v(t) − Ivref∥22 + δ∥u(t)∥22dt

with

v =
⎛
⎜
⎝

v1
⋮
vs

⎞
⎟
⎠

and u =
⎛
⎜
⎝

u1
⋮
us

⎞
⎟
⎠
.

Here the first term in the functional penalizes the distance of the first vehicle from some
reference position pref , the second demands that the distance between two vehicles should
be equal to L > 0. The third and fourth terms are regularization terms, where γ and
δ are small positive parameters. These terms ensure that the matrices of the resulting
linear-quadratic optimal control problem are positive definite, which allows us to solve the
problem via the Riccati equation.

Since the problem is a linear-quadratic problem, the optimal value function is of the form
V (x(= xTPx for a positive definite matrix P ∈ Rd×d. This function is separable if many
entries of the matrix P are 0. Figure 7.3 shows (parts of) the entries of the P matrix for
s = 7 and s = 20.

Figure 7.3: P matrix for the optimal value function V (x) = xTPx of the convoy example

54CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

Unfortunately, the resulting V is clearly not separable, because none of the entries is 0.
However, a closer look at the entries shows that the entries become small the further they
are far away from the diagonal. These are the entries pij that appear in the products
xipijxj when the difference between i and j is large. The reason for this is that two
vehicles that are far away from each other in the convoy do not influence each other very
much. This is illustrated by Figure 7.4. Here the deviations from the vehicles (solid lines)
from their desired positions (dashed lines) is shown. A large deviation of the first vehicle
(e.g., due to an unexpected braking manoeuvre before t = 0) that becomes visible to the
other vehicles at time t = 0 causes the other vehicles to also leave their desired position in
order to maintain a larger distance, but the extent of this deviation decreases rapidly with
the distance of the vehicle to the first one.

0 1 2 3 4 5 6 7 8 9 10

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 7.4: Deviation of vehicle positions from their desired places

This examples motivates the following questions, which we will investigate in the next
sections.

1) Can we guarantee that Pij ≈ 0 for many pairs (i, j)?

2) Can we prove a variant of Corollary 7.8 for λ-separable approximations? This will
require a suitable error estimate for this approximation depending on the parameter
λ.

(3) What would be a suitable condition replacing Pij ≈ 0 for general nonlinear functions?

7.2 Decaying sensitivity

This section introduces a class of linear-quadratic optimal control problems for which Pij ≈ 0
can be guaranteed for many pairs (i, j). As these terms measure how sensitively one

7.2. DECAYING SENSITIVITY 55

component of the state (or one subsystem) reacts to the other components (or subsystems),
we call this property decaying sensitivity.

The following setting generalises Example 7.4. We consider s ∈ N subsystems with states
xi ∈ Rni and controls ui ∈ Rmi for i = 1, . . . , s. We denote the combined state and control
as

x =
⎛
⎜
⎝

x1

⋮
xs

⎞
⎟
⎠

and u =
⎛
⎜
⎝

u1

⋮
us

⎞
⎟
⎠
. (7.1)

The overall dynamics and cost is then that of a linear-quadratic problem, i.e.,

ẋ(t) = Ax(t) +Bu(t) or x(t + 1) = Ax(t) +Bu(t)

and

ℓ(x,u) = xTQx + uTRu

with matrices A, B, Q, R of suitable dimensions with Q and R being symmetric, Q positive
semidefinite and R positive definite.

A graph describes whether xi directly depends on xj , either in the dynamics or in the cost
function. To this end, we define a graph by defining a set of edges between subsystems

E ⊂ {(i, j) ∣ i, j = 1, . . . , s},

which are undirected, meaning that (i, j) ∈ E if and only if (j, i) ∈ E . In Figure 7.5 the
green vertices visualize the subsystems and each edge is depicted by a black line linking
two vertices. In the graph from this figure, for instance, the edges (1,2) and (2,14) are
contained in E , while the edges (8,9) or (1,7) are not.

1

2

3

4

5

6 7

8

9

10 11

12 1314

15

Figure 7.5: Example of a graph

We define the graph distance dG(i, j) between two subsystems i and j as the length of the
shortest path linking the two vertices with the convention that dG(i, i) = 0. For instance,
in Figure 7.5 we have dG(1,11) = 4 and dG(2,6) = 2. The graph ball Bl(i) of radius l ∈ N
around system i is defined as

Bl(i) = {j ∈ {1, . . . , s} ∣dG(i, j) ≤ l}.

56CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

In Figure 7.5, we have for example B1(9) = {9,10,11} and B3(9) = {5,6,7,8,9,10,11}.
Now the key assumption that links the graph with the interconnection of the subsystems
is the following.

Assumption 7.5 The dynamics for xi reads

ẋi(t) = Aiixi(t) + ∑
j∈B1(i)

Aijx
j(t) +Biui(t)

(or analogously for xi(t + 1) in place of ẋi) and the cost function becomes

ℓ(x,u) =
s

∑
i=1

ℓi(x,u), ℓi(x,u) = (xi)TQiixi + 2 ∑
j∈B1(i)

(xi)TQijxj + (ui)TRiiui.

Here Aij is the block in the matrix A that consists of the entries ap,q, p = ∑i−1k=1 nk +
1, . . . ,∑ik=1 nk, q = ∑

j−1
k=1 nk + 1, . . . ,∑

j
k=1 nk and analogously for the other matrices.

In other words, in the dynamics for xi and in the cost function ℓi only those xj appear that
have a common edge with subsystem i. This implies that A and Q have a block structure
in which only those blocks appearing in one of the ẋi equations or ℓi terms are non-zero,
while B and R are block diagonal matrices. For the convoy example, the matrices become

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
0 0

0 1
0 0

⋱
⋱

0 1
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1

0
1
⋱

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 −1 0
0 γ 0 0
−1 0 1 0 −1 0
0 0 0 γ 0 0

−1 0 1 0 −1 0
0 0 0 γ 0 0

⋱ ⋱ ⋱
−1 0 1 0 −1 0
0 0 0 γ 0 0

−1 0 1 0
0 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, R =
⎛
⎜⎜⎜
⎝

δ
δ
⋱

δ

⎞
⎟⎟⎟
⎠
,

where all empty parts of the matrices contain zeros. Here, every vehicle is directly linked
(via ℓi) to the one before and the one behind. Hence, the edges are of the form E =
{(i, i+1) ∣ i = 1, . . . , s−1} and we have dG(i, j) = ∣i−j∣ and Bl(i) = {max{i−l,1},min{i+l, s}}.
For stating the main theorem on decaying sensitivity we need one more definition.

7.2. DECAYING SENSITIVITY 57

Definition 7.6 Let K > 0 and α ∈ (0,1).
(i) We say that a matrix M ∈ Rd×d is (K,α)-stable, if

∥M t∥ ≤Kαt for all t ∈ N in discrete time, or
∥eMt∥ ≤Kαt for all t ≥ 0 in continuous time.

(ii) A pair of matrices A ∈ Rd×d, B ∈ Rd×m is (K,α)-stabilizable if there is F ∈ Rm×d with
∥F ∥ ≤K such that A +BF is (K,α)-stable.
(iii) A pair of matrices A ∈ Rd×d, C ∈ Rl×d is (K,α)-detectable if (AT ,CT) is (K,α)-
stabilizable.

In the following theorem we use the notation M1 ≥ M2 for square symmetric matrices
as a short notation for M1 −M2 is positive semidefinite and Q1/2 denotes a matrix with
Q1/2Q1/2 = Q, which exists for each square symmetric and positive definite matrix Q.

Theorem 7.7 Consider a discrete-time linear-quadratic optimal control problem satisfy-
ing Assumption 7.5. Assume there are K > 0, α ∈ (0,1) and γ > 0 such that

(a) ∥A∥, ∥B∥, ∥Q∥, ∥R∥ ≤K,

(b) R ≥ γId,

(c) (A,B) is (K,α)-stabilizable,

(d) (A,Q1/2) is (K,α)-detectable.

Then there are constants Λ > 0 and ρ ∈ (0,1), depending only on K, α, and γ, such that
the optimal feedback matrix F ⋆ ∈ Rm×d satisfies

∥F ⋆ij∥2 ≤ ΛρdG(i,j),

where F ⋆ij is the block in F ⋆ that consists of the entries fp,q, p = ∑i−1k=1mk + 1, . . . ,∑ik=1mk,

q = ∑j−1k=1 nk + 1, . . . ,∑
j
k=1 nk.

The proof can be found in [8], Theorem 3.3, and uses techniques from nonlinear opti-
mization. In words, the theorem states that the norm of the map from xj to ui, which is
represented by F ⋆ij , becomes the smaller the further j and i are away from each other in
the graph. While the theorem was proved for discrete-time problems, there is little doubt
(but no formal proof yet) that it is also true in continuous time.

The following corollary shows that the estimate for K carries over to P .

Corollary 7.8 Let the assumptions of Theorem 7.6 hold and let in addition dG(i, j) = ∣i−j∣
and Q ≥ γId hold. Then there are constants Θ > 0, σ ∈ (0,1) depending only on K, α,
and γ, such that the matrix P determining the optimal value function via V (x) = xTPx
satisfies

∥Pij∥2 ≤ ΘσdG(i,j),
where Pij is the block in P that consists of the entries pr,q, r = ∑i−1k=1 nk + 1, . . . ,∑ik=1 nk,
q = ∑j−1k=1 nk + 1, . . . ,∑

j
k=1 nk.

58CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

The proof can be found in the extended version of [9], Proposition 10. Note that the
assumption on Q is not given there but it is needed to conclude that σcl ≤ δ < 1 with δ
independent of s. The proof exploits the fact that

P =
∞

∑
k=0

(Akcl)DAkcl with Acl = A +BF ⋆ and D = Q + (F ⋆)TRF ⋆.

We expect that the statement also holds without the additional assumptions dG(i, j) = ∣i−j∣
and Q ≥ γId but it will then be much more technical.

7.3 Construction of λ-separable approximations

In this section we provide a general construction of λ-separable approximations for arbitrary
nonlinear functions. We start by defining two auxiliary matrices. For this, we keep using
the graph setting introduced in the previous section.

Definition 7.9 (i) Let Bl(j) = {i1, . . . , ir} be the graph ball defined in the previous section,
where the numbering of its elements i1, . . . , ir is arbitrary but fixed. For N j

l = ∑i∈Bl(j) ni

define the matrices Hj
l ∈ R

Nj
l
×n by their blocks, i.e.,

H l
l,p,q = {

Id ∈ Rnq×nq , if ip = q
0 ∈ Rnip×nq , otherwise

(ii) Define
Πj ∶= diag(0n1 . . .0nj Idnj+1 . . . Idns) ∈ Rd×d,

where 0nk
and Idnk

are the zero and the identity matrix, respectively, in Rnk×nk .

When multiplying the matrix Hj
l with x ∈ Rd, the result contains all the subvectors repre-

senting the states of the subsystems in Bl(j) in the order defined by the numbering of the
elements in Bl(j), i.e., for x as in (7.1)

Hj
l x =

⎛
⎜⎜⎜
⎝

xi1

xi2

⋮
xir

⎞
⎟⎟⎟
⎠
=∶ x̂.

Conversely, (Hj
l)
T maps any vector of the form x̂ ∈ RN

j
l to a vector x = (Hj

l)
T x̂Rd, in

which the subvectors xik in x̂ appear as the ikth subvector in x and the places of the
subvectors xi in x that are not contained in x̂ are filled with 0 vectors of dimension ni. As
a consequence, we have that

x =
⎛
⎜
⎝

x1

⋮
xs

⎞
⎟
⎠
⇒ (Hj

l)
THj

l x =
⎛
⎜
⎝

x̄1

⋮
x̄s

⎞
⎟
⎠

(7.2)

with x̄i = xi if i ∈ Bl(j) and x̄i = 0 ∈ Rni otherwise.

7.3. CONSTRUCTION OF λ-SEPARABLE APPROXIMATIONS 59

When applying the matrix Πj to a vector x ∈ Rd, it sets all the subvectors x1, . . . , xj to 0
and leaves the rest as it is, i.e., for x as in (7.1)

Πjx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0

xj+1

⋮
xs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Example 7.10 In the convoy example, we have ni = 2 for all i = 1, . . . , s and dG(i, j) =
∣i− j∣. For s ≥ 8 we have B3(5) = {2,3,4,5,6,7,8} and thus, ordering the elements in B3(5)
in ascending order

H5
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1

1 0
0 1

⋮
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where the leftmost “1” is in the third column and the rightmost “1” in the sixteenth
column. As usual, empty parts of the matrix are filled with zeros.

Now we can define the functions ψjl from Definition 7.1 for a λ-separable approximation of
a general optimal value function V .

Definition 7.11 For l, j ∈ {1, . . . , s} define ψjl ∶ R
d → R as

ψjl (x) = V (Π
j−1(Hj

l)
THj

l x) − V (Π
j(Hj

l)
THj

l x)

Remark 7.12 The corresponding separable function from Definition 7.1 is given by

V l(x) ∶=
s

∑
j=1

ψjl (x) + V (0). (7.3)

It will become clear at the end of this section why in general the term “+V (0)” is needed.
In case of a quadratic V , V (0) = 0 so this term will vanish.

From the construction it follows that each ψjl depends (in the worst case) on all xi for
i ∈ Bl(j). Since each xi is an ni-dimensional vector, we obtain that (7.3) is a λ-separable
function with

λ = max
j=1,...,s

∑
i∈Bl(j)

ni.

60CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

For k = 0, . . . , s − 1 we define

λk ∶= max
j=1,...,s

s

∑
i=1

dG(i,j)=k

ni. (7.4)

Note that this implies λ = ∑s−1k=0 λk.

Example 7.13 Consider the convoy example with s = 10, i.e., d = 20 since ni = 2 for all i.
Let l = 3 and j = 5. Then for x ∈ R20 from (7.1) we have

Π4(H5
3)TH5

3s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
x5

x6

x7

x8

0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and Π5(H5
3)TH5

3s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
0
x6

x7

x8

0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Writing for notational convenience V (x) = V (x1, . . . , xs), we thus obtain

ψ5
3(x) = V (0, . . . ,0, x5, x6, x7, x8,0 . . . ,0)

− V (0, . . . ,0, 0 , x6, x7, x8,0 . . . ,0).

Moreover, since in the convoy example we have E = {(i, i + 1) ∣ i = 1, . . . , s − 1}, it follows
that the number of elements in Bl(j) is at most 2l + 1. The dimension of the states of
the corresponding subsystems is 4l + 2, implying according to Remark 7.12 that (7.3) is
a 4l + 2-separable function for this example. In fact, since Πj−1 and Πj remove all of the
arguments xi with i ≤ j − 1, the worst case considered in Remark 7.12 does not happen
here and in fact we have only l + 1 arguments (e.g., 4 for l = 3 as in ψ5

3, above), resulting
in (7.3) being a 2l + 2-separable function.

As for each i and k there are at most 2 subsystems j with dG(i, j) = k, for λk one easily
computes λk ≤ 4 for all k = 0, . . . , s − 1.

The following lemma shows that this somewhat technical construction has a simple inter-
pretation for quadratic V .

Lemma 7.14 Let V (x) = xTPx for P ∈ Rd×d. For l ∈ N define P l ∈ Rd×d blockwise via

P li,j = {
Pi,j ∈ Rni×nj , if dG(i, j) ≤ l
0 ∈ Rni×nj , otherwise,

where the blocks are defined as in Corollary 7.8. Then the function V l from (7.3) satisfies

V l(x) = xTP lx.

7.4. ERROR ESTIMATES FOR QUADRATIC OPTIMAL VALUE FUNCTIONS 61

Proof: Fix j ∈ {1, . . . , s}. Then

Ψj
l (x) = V (Πj−1(Hj

l)
THj

l x) − V (Π
j(Hj

l)
THj

l x)
= xT (Hj

l)
THj

l [(Π
j+1)TPΠj−1 − (Πj)TPΠj] (Hj

l)
THj

l x.

Now the term in square brackets contains exactly the blocks Pij and Pji of P with i ≥ j.
The multiplication by the Hj

l matrix and its transposed from left and right removes from
these blocks all the blocks with ∣i − j∣ > l. Hence

Ψj
l (x) = x

T
j Pjjxj + ∑

i>j
dG(i,j)≤l

[xTi Pijxj + xTj Pjixi] .

Summing these terms over j we obtain obtain the sum of all terms xTi Pikxk with dG(i, k) ≤ l,
which equals xTP lx.

In words, Lemma 7.14 shows that V l removes all the terms xiPikx
k with dG(i, k) > l from

xTPx. Since these terms are small under the conditions of Corollary 7.8, there is hope
that this function provides a good approximation for V . We will use this in Section 7.4 in
order to derive a rigorous error estimate.

For general non-quadratic functions V , Lemma 7.14 does not give us any indication why
V l should be a good approximation. However, the following consideration suggests that
V l might also work for non-quadratic V :

If we again write V (x) = V (x1, . . . , xs), then we obtain

V (x) = V (x1, . . . , xs) − V (0, x2, . . . , xs)
+ V (0, x2, . . . , xs) − V (0,0, x3, . . . , xs)
+ V (0,0, x3, . . . , xs) − V (0, . . . ,0, x4, . . . , xs)
⋮
+ V (0, . . . ,0, xs) − V (0, . . . ,0)
+ V (0, . . .0)

=
s

∑
j=1

ψjs−1(x) + V (0) = V s(x).

(7.5)

Thus, for l = s − 1, V l exactly coincides with V . Hence, if our function V is such that
ψjl ≈ ψ

j
s, then we can derive a rigorous error estimate. We will do this in Section 7.5.

7.4 Error estimates for quadratic optimal value functions

Assuming that the statement of Corollary 7.8 holds, we can prove the following theorem.
Note that we do not require the assumptions of Corollary 7.8 to hold but only the estimate
that is proved in this corollary. Hence, if we can establish this estimate under different,
possibly weaker conditions, then the following theorem remains valid.

Theorem 7.15 (Error estimate for exponentially decaying ∥Pij∥)
Let V (x) = xTPx with ∥Pij∥2 ≤ ΘρdG(i,j). Assume that λk from (7.4) satisfies λk ≤ Cγl

62CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

with C > 0 arbitrary and γ > 0 such that δ ∶= ργ < 1. Then for all K ≥ 0 there is Ĉ > 0,
depending only on δ, Θ, C, and K, such that

∣V (x) − V l(x)∣ ≤ Ĉγl for all x ∈ Rd with ∥x∥2 ≤K.

Proof: We estimate ∥P − Pl∥2, because by Lemma (7.14) we know that

∣V (x) − V l(x)∣ ≤ ∣xTPx − xTP lx∣ = ∣xT (P − P l)x∣
≤ ∥xT ∥2∥P − P l∥2∥x∥2 ≤ K2∥P − P l∥2.

For the induced matrix 2-norm, for symmetric matrices M by [7, Lemma 5.1] it holds that

∥M∥2 ≤ max
i=1,...,s

s

∑
j=1

∥Mij∥2, implying ∥P − P l∥2 ≤ max
i=1,...,s

s

∑
j=1

∥Pij − P lij∥2.

For these sums we can estimate

s

∑
j=1

∥Pij − P lij∥2 =
s

∑
j=1

j/∈Bl(i)

∥Pij∥2
´¹¹¹¹¸¹¹¹¹¹¶
≤ΘρdG(i,j)

≤ Θ
∞

∑
k=l+1

s

∑
j=1

dG(i,j)=k

ρk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
contains

λk ≤ Cγ
k terms

≤ ΘC
∞

∑
k=l+1

ρkγk = ΘC
∞

∑
k=l+1

δk = ΘC
δ

1 − δ δ
l.

This implies the claim with Ĉ = ΘCK2 δ
1−δ .

A closer inspection of the term in the convoy example reveals that ∥Pij∥2 does not decay
exponentially but only polynomially. The reason for this is that the (K,α)-detectability
assumption is violated in this example, as the constant K is not independent of the number
if vehicles s but rather grows with s. As Figure 7.3 shows, we still have decay of ∥Pij∥2
as dG(i, j) grows, but this is not exponential. The question thus is whether we can prove
a variant of Theorem 7.15 without assuming exponential decay. The following theorem
shows that this is possible.

Theorem 7.16 (Error estimate for polynomially decaying ∥Pij∥2)
Let V (x) = xTPx with ∥Pij∥2 ≤ ΘdG(i, j)−α for some α > 1. Assume that λk from (7.4)
satisfies λk ≤ Ckβ with C > 0 arbitrary and β ∈ (0, α−1). Then for all K ≥ 0 there is Ĉ > 0,
depending only on α, β, Θ, C, and K, such that

∣V (x) − V l(x)∣ ≤ Ĉ
∞

∑
k=l+1

kβ−α for all x ∈ Rd with ∥x∥2 ≤K.

Note that this sum converges to 0 as l →∞, because β − α < −1.

7.5. ERROR ESTIMATES FOR NON-QUADRATIC OPTIMAL VALUE FUNCTIONS63

Proof: As in the proof of Theorem 7.15 it is sufficient to estimate ∑sj=1 ∥Pij − P lij∥2.

s

∑
j=1

∥Pij − P lij∥2 =
s

∑
j=1

j/∈Bl(i)

∥Pij∥2
´¹¹¹¹¸¹¹¹¹¹¶
≤Θk−α

≤ Θ
∞

∑
k=l+1

s

∑
j=1

dG(i,j)=k

ρk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
contains

λk ≤ Ck
β terms

≤ ΘC
∞

∑
k=l+1

kβk−α = ΘC
∞

∑
k=l+1

kβ−α.

This shows the claim with Ĉ = ΘCK2.

7.5 Error estimates for non-quadratic optimal value func-
tions

If V is not of the form V (x) = xTPx, then conditions on Pij are not applicable. In this
final section of this chapter we present conditions that work for arbitrary, even nonsmooth
functions V ∶ Rd → R and allow for identical estimates as in Theorems 7.15 and 7.16.

The crucial assumption on V is the following. As before, we decompose x according to (7.1)
and we write V (x) = V (x1, . . . , xs). Moreover, we fix sets Ki ⊂ Rni and set K ∶= ⨉si=1Ki as
the set on which we want to approximate V .

Assumption 7.17 There is Θ > 0 and ρ ∈ (0,1) or α > 1 such that the map

xi ↦ gj(xi) ∶= V (x) − V (x1, . . . , xj−1,0, xj+1, . . . , xs)

has a Lipschitz constant

(i) L ≤ ΘρdG(i,j)∥xj∥2 or (ii) L ≤ ΘdG(i, j)−α∥xj∥2

in the 2-norm for all xk ∈ Kk, k = 1, . . . , s.

The first question now is whether this specific form of the Lipschitz constant that depends
linearly on ∥xj∥2 is reasonable to expect. The following result shows that for C2 functions it
translated into a condition on the second derivative, which for quadratic functions coincides
with the condition on xTPx we used in the last section.

Lemma 7.18 Assumption 7.17 holds if the sets Ki are convex, V is C2 and the second
partial derivatives (written as matrices with ni rows and nj columns) satisfy

∥ ∂2

∂xi∂xj
V (x)∥

2

≤ ΘρdG(i,j) or ∥ ∂2

∂xi∂xj
V (x)∥

2

≤ ΘdG(i, j)−α,

respectively, holds for all x ∈ K.

64CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

Proof: A little computation using the mean value theorem shows that

∥ ∂
∂xi

gj(xi)∥
2
= ∥ ∂2

∂xi∂xj
V (x1, . . . , xj−1, ξ, xj+1, . . . , xs)xj∥

2

≤ ∥ ∂2

∂xi∂xj
V (x1, . . . , xj−1, ξ, xj+1, . . . , xs)∥

2

∥xj∥2

for some ξ ∈ Kj . Since Ki is convex, ∥ ∂
∂xi
gj(xi)∥

2
provides an upper bound for the Lipschitz

constant L of gi in the 2-norm. This shows the claim. Note that for V (x) = xTPx it

holds that ∂2

∂xi∂xj
V (x) = Pij , showing that for quadratic V Assumption 7.17 coincides with

the conditions from Theorem 7.15 or 7.16, respectively.

Now we can state the nonlinear generalizations of Theorems 7.15 and 7.16.

Theorem 7.19 (Error estimate for exponentially or polynomially decaying Lip-
schitz constant) Let V ∶ Rd → R satisfy Assumption 7.17.

(i) In case Assumption 7.17(i) holds, assume that λk from (7.4) satisfies λk ≤ Cγl with
C > 0 arbitrary and γ > 0 such that δ ∶= ργ < 1. Then for all K ≥ 0 there is Ĉ > 0,
depending only on δ, Θ, C, and K, such that

∣V (x) − V l(x)∣ ≤ Ĉγl for all x ∈ Rd with ∥x∥2 ≤K.

(ii) In case Assumption 7.17(ii) holds, assume that λk from (7.4) satisfies λk ≤ Ckβ with
C > 0 arbitrary and β ∈ (0, α − 1). Then for all K ≥ 0 there is Ĉ > 0, depending only on α,
β, Θ, C, and K, such that

∣V (x) − V l(x)∣ ≤ Ĉ
∞

∑
k=l+1

kβ−α for all x ∈ K with ∥x∥2 ≤K.

Note that this sum converges to 0 as l →∞, because β − α < −1.

Proof: Abbreviate γ(r) = Θρr in case (i) and γ(r) = Θr−α in case (ii). We first show the
auxiliary inequality RRRRRRRRRRR

V (x) −
s

∑
j=1

ψjl (x) − V (0)
RRRRRRRRRRR
≤ ∥x∥22∥Dl∥∞ (7.6)

where Dl = (dl,i,j)i,j=1,...,s ∈ Rs×s is given by the entries

dl,i,j = {
γ(dG(i, j)), if dG(i, j) > l
0, else.

To prove (7.6), we use the identity V (x) = V (0) + ∑sj=1ψ
j
s−1(x) from (7.5), which using a

telescopic sum and the triangle inequality implies

RRRRRRRRRRR
V (x) −

s

∑
j=1

ψjl (x) − V (0)
RRRRRRRRRRR
≤

s

∑
j=1

s−2

∑
k=l

∣ψjk(x) − ψ
j
k+1(x)∣.

7.5. ERROR ESTIMATES FOR NON-QUADRATIC OPTIMAL VALUE FUNCTIONS65

Now for fixed j and any l, from Definition 7.11 we have

∣ψjl (x) − ψl+1(x)∣ = ∣V (Π
j−1(Hj

l)
THj

l x) − V (Π
j(Hj

l)
THj

l x)
− V (Πj−1(Hj

l+1)
THj

l+1x) + V (Π
j(Hj

l+1)
THj

l+1x)∣

=
RRRRRRRRRRRRRRR

s

∑
i=1

dg(i,j)=l+1

gj(0) − gj(xi)
RRRRRRRRRRRRRRR
≤

s

∑
i=1

dg(i,j)=l+1

∣gj(0) − gj(xi)∣

≤
s

∑
i=1

dg(i,j)=l+1

∥xi∥2γ(l + 1)∥xj∥2

for all x ∈ K, where we used Assumption 7.17 and ∥0 − xi∥2 = ∥xi∥2 in the last step. This
implies

RRRRRRRRRRR
V (x) −

s

∑
j=1

ψjl (x) − V (0)
RRRRRRRRRRR
≤

s

∑
j=1

s

∑
i=1

dg(i,j)=l+1

∥xi∥2γ(l + 1)∥xj∥2

=
⎛
⎜
⎝

∥x1∥2
⋮

∥xs∥2

⎞
⎟
⎠

T

Dl

⎛
⎜
⎝

∥x1∥2
⋮

∥xs∥2

⎞
⎟
⎠
≤ ∥x∥2∥Dl∥2∥x∥2 ≤ ∥x∥22∥Dl∥∞

where we used the inequality ∥M∥2 ≤ ∥M∥∞ that follows from [7, Lemma 5.1] for symmetric
matrices in the last step. This shows (7.6). Now using the fact that

∥Dl∥∞ =
s

∑
j=1

γ(dG(i, j)) ≤
∞

∑
k=l+1

s

∑
j=1

dG(i,j)=k

γ(k)

we can proceed as in the proof of Theorem 7.15 in case (ii) and Theorem 7.16 in case
(ii).

The interesting and so far unsolved question is now, whether one can find counterparts to
Theorem 7.7 and Corollary 7.8 for non linear-quadratic optimal control problems, which
give structural conditions on the problem ensuring Assumption 7.17(i) or (ii).

66CHAPTER 7. SEPARABLE APPROXIMATIONS OF OPTIMAL VALUE FUNCTIONS

Bibliography

[1] A. Barto and R. S. Sutton, Reinforcement Learning: An Introduction, MIT Press,
2nd ed., 2018.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Sci-
entific, 2nd ed., 1996.

[3] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control
Signals Systems, 2 (1989), pp. 303–314.

[4] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are
universal approximators, Neural Networks, 3 (1989), pp. 551–560.

[5] H. N. Mhaskar, Neural networks for optimal approximation of smooth and analytic
functions, Neural Computations, 8 (1996), pp. 164–177.

[6] T. Poggio, H. Mhaskar, L. Rosaco, M. Brando, and Q. Liao, Why and when
can deep – but not shallow – networks avoid the curse of dimensionality: a review, Int.
J Automat. Computing, 14 (2017), pp. 503–519.

[7] S. Shin, M. Anitescu, and V. M. Zavala, Exponential decay of sensitivity in graph-
structured nonlinear programs, SIAM Journal on Optimization, 32 (2022), pp. 1156–
1183.

[8] S. Shin, Y. Lin, G. Qu, A. Wierman, and M. Anitescu, Near-optimal distributed
linear-quadratic regulator for networked systems, SIAM Journal on Control and Opti-
mization, 61 (2023), pp. 1113–1135.

[9] M. Sperl, L. Saluzzi, L. Grüne, and D. Kalise, Separable approximations of
optimal value functions under a decaying sensitivity assumption, in Proceedings of the
62nd IEEE Conference on Decision and Control (CDC 2023), IEEE, 2023, pp. 259–264.
Extended version available from https://doi.org/10.48550/arXiv.2304.06379.

67

	Preface
	Introduction
	Problem formulation
	Dynamic Programming
	Dynamic programming principle
	Value iteration
	The Hamilton-Jacobi-Bellman equation

	RL with finite state and action space
	Q-learning
	Convergence analysis
	Choice of x and u in the algorithm

	Non-deterministic Reinforcement Learning
	Definitions
	Dynamic programming
	Q-Learning
	Convergence analysis
	The case of known transition probabilities

	Deep Neural Networks
	Definition of DNNs
	The universal approximation theorem
	Improved results for compositional functions
	Training the DNN
	Deep reinforcement learning

	Separable approximations of optimal value functions
	Separable functions
	Decaying sensitivity
	Construction of -separable approximations
	Error estimates for quadratic optimal value functions
	Error estimates for non-quadratic optimal value functions

	References

