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Chapter 1

Introduction

In this lecture we will mainly be concerned with linear control systems, either in continuous
time

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.1)

or in discrete time
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k).
(1.2)

Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, x ∈ Rn, u ∈ Rm, y ∈ Rl.
We will consider three key questions:

• If we want to describe the behaviour of a real world system, what is the best option to
choose (A,B,C,D)? Particularly, we will be looking at minimal models in terms of
system dimension, as these are the simplest models to use in terms of computational
effort.

Realisation theory will answer this question, which we will address in Chapter 2.

• If the exact description is still too large to be handled for a particular purpose (e.g.,
for optimal control), how can we obtain a smaller and thus less complex, model that
behaves “almost” like the large model?

For this purpose we will introduce the method of “balanced truncation” in Chapter 4.

• The derivation of a model for a real process is a very complex task in itself. In the
last part of this lecture we will derive a method in which this is done automatically
from measured data. We will look at this question in the context of Model Predictive
Control (MPC).

1



2 CHAPTER 1. INTRODUCTION



Chapter 2

Realisation Theory

August 9, 2021
In this chapter we will investigate the question how a minimal model of the form (1.1)
realising a certain behaviour can be characterised.

2.1 Basic definitions

To this end, we consider the behaviour of the control system for initial value x0 = 0.
Clearly, with this choice we can only obtain very particular trajectories; more precisely the
trajectories

x(t; 0, u) = ∫
t

0
eA(t−τ)Bu(τ)dτ.

Nevertheless, we will see at the end of this chapter that the minimal models that result
from considering these trajectories are very meaningful.

Once the initial value is fixed, we obtain a map from u to y, defined by

y(t) = ∫
t

0
CeA(t−τ)Bu(τ)dτ +Du(t) = g ⋆ u(t) +Du(t),

with g(t) = CeAtB and “⋆” denoting the convolution g ⋆ h(t) = ∫
t

0 g(t − τ)h(τ)dτ .

Passing to the Laplace transform, we can write this relation as

ŷ = Gû

with G(s) = ĝ(s) = C(sId −A)−1B +D.

We can now define the meaning of a minimal realisation.

Definition 2.1 Let G(s) = C̃(sId − Ã)−1B̃ +D be a transfer function.

(i) A control system of the form (1.1) defined by (A,B,C,D) with appropriate dimensions
is called a realisation of G, if G(s) = C(sId −A)−1B.

(ii) The dimension n of a realisation is the dimension of the state x, i.e., if the dimension
of a realisation is n ∈ N then A ∈ Rn×n.

(iii) A realisation (1.1) of G with dimension n ∈ N is called a minimal realisation of G, if
any other realisation of G has a dimension n′ ≥ n.

3



4 CHAPTER 2. REALISATION THEORY

Example 2.2 We consider the linear inverted pendulum, given by

A =
⎛
⎜⎜⎜
⎝

0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟
⎠

and B =
⎛
⎜⎜⎜
⎝

0
1
0
1

⎞
⎟⎟⎟
⎠
, (2.1)

with constants g, k > 0. Here x1 represents the linearised angle φ of the pendulum, which
increases in counterclockwise direction, where x1 = 0 corresponds to the upright pendulum.
x2 is the angular velocity, x3 the position of the cart and x4 its velocity. The constant k is
a measure for the friction in the model (the larger k the more friction) and g ≈ 9.81m/s2

is the gravitational constant.

As output we consider two different options: on the one hand we consider y = (y1, y2)T
with y1 the position of the pendulum and y2 the position of the cart, resulting in

C = (1 0 0 0
0 0 1 0

) .

On the other hand, we consider only y = (y1) as the position of the pendulum, leading to

C ′ = (1 0 0 0) .

In both cases, we set D = 0. We then have

(sId −A)−1 =
⎛
⎜⎜⎜
⎝

s −1 0 0
−g s + k 0 0
0 0 s −1
0 0 0 s

⎞
⎟⎟⎟
⎠

−1

=

⎛
⎜⎜⎜⎜
⎝

s+k
ks+s2−g

1
ks+s2−g 0 0

g
ks+s2−g

s
ks+s2−g 0 0

0 0 1
s

1
s2

0 0 0 1
s

⎞
⎟⎟⎟⎟
⎠

,

and thus

(sId −A)−1B =

⎛
⎜⎜⎜⎜
⎝

1
ks+s2−g

s
ks+s2−g

1
s2
1
s

⎞
⎟⎟⎟⎟
⎠

.

This implies that the transfer functions read

G(s) = (
1

ks+s2−g
1
s2

) and G′(s) = ( 1
ks+s2−g) .

2.2 Characterisation of the minimal realisation

Theorem 2.3 Let G(s) = C̃(sId− Ã)−1B̃+D be a transfer function, which is not constant
in s. Then a realisation (A,B,C,D) is minimal if and only if (A,B) is controllable and
(A,C) is observable.

Before we prove the theorem, we prove the following auxiliary lemma.
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Lemma 2.4 Let A ∈ Rn×n. If s ∈ C is so large that ∣s−1λ∣ < 1 for all eigenvalues λ of A,
then

(sId −A)−1 =
∞
∑
i=1

s−iAi−1.

Proof: If all eigenvalues of a matrix Z have modulus less than 1, then the inverse of Id−Z
can be written as a Neumann series

(Id −Z)−1 =
∞
∑
i=0

Zi,

see, e.g., [5, Satz II.1.11]. Now let s be as in the assumption, then this applies to Z = s−1A.
Hence

(sId −A)−1 = [s(Id − s−1A)]−1 = s−1(Id − s−1A)−1 = s−1
∞
∑
i=0

s−iAi =
∞
∑
i=0

s−i−1Ai,

which yields the assertion after renumbering of the index.

Proof of Theorem 2.3: “⇒”: We show this implication by contraposition, i.e., we show
that when (A,B,C,D) is a realisation of G for which (A,B) is not controllable or (A,C)
is not observable, then (A,B,C,D) cannot be a minimal realisation.

Consider first the case that (A,B) is not controllable. We may exclude the case B = 0,
since in this case G ≡ D is constant in s. Then Lemma 2.14 from [4] implies that there
exist r ∈ {1, . . . , n − 1} and an invertible matrix T ∈ Rn×n, such that

T−1AT = ( A1 A2

0 A3
) , T −1B = ( B1

0
)

with A1 ∈ Rr×r, A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×(n−r), B1 ∈ Rr×m and the pair (A1,B1) is
controllable. We also write CT = (C1C2) with C1 ∈ Rl×r and C2 ∈ Rl×(n−r).
We note that since sId − T−1AT has block triangular structure, we obtain

(sId − T−1AT )−1 = ( sId −A1 −A2

0 sId −A3
)
−1

= ( (sId −A1)−1 ∗
0 (sId −A3)−1 ) .

This implies

G(s) = C(sId −A)−1B +D
= CT (sId − T−1AT )−1TB +D

= (C1C2)(sId − ( A1 A2

0 A3
))

−1

( B1

0
) +D

= (C1C2)(
(sId −A1)−1 ∗

0 (sId −A3)−1 )( B1

0
) +D

= C1(sId −A1)−1B1 +D.

This shows that (A1,B1,C1,D) is a realisation of G with dimension r < n and thus
(A,B,C,D) cannot be a minimal realisation. In case (A,C) is not observable, the proof
proceeds similarly, using the duality between controllability and observability.
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“⇐”: Consider now a realisation (A,B,C,D) with dimension n, for which (A,B) is con-
trollable and (A,C) is observable. Then the matrices

R = (BABA2B . . . An−1B)

and

O =

⎛
⎜⎜⎜⎜⎜⎜
⎝

C
CA
CA2

⋮
CAn−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

have full rank n. Consider a second realisation (A′,B′,C ′,D′) of G with dimension n′ ≤ n.
In order to prove minimality of (A,B,C,D), we have to show that n′ ≥ n.

To this end, define
R′ = (B′ A′B′ (A′)2B′ . . . (A′)n

′−1B′)

and

O′ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

C ′

C ′A′

C ′(A′)2

⋮
C ′(A′)n′−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Clearly, due to their dimension, the rank of R′ and O′ is at most n′, hence the rank of the
product matrix O′R′ satisfies rankO′R′ ≤ n′. We will now show that OR = O′R′, which
implies rankO′R′ = rankOR = n, and thus n′ ≥ n.

Explicit computation yields that the matrices OR and O′R′ consist of blocks of the form
CAjB and C ′(A′)kB′ with j = 0, . . . ,2n − 2 and k = 0, . . . ,2n′ − 2. Using Lemma 2.4 and
the fact that both (A,B,C,D) and (A′,B′,C ′,D′) realise G, for all sufficiently large s we
obtain

G(s) = C(sId −A)−1B +D = C
∞
∑
i=1

s−iAi−1B +D =D +
∞
∑
i=1

CAi−1Bs−i

and

G(s) = C ′(sId −A′)−1B′ +D′ =D′ +
∞
∑
i=1

C ′(A′)i−1B′s−i.

Defining H(s) ∶= G(1/s), one thus computes

H(p)(s) = dp

dsp
H(s) =

∞
∑
i=p
q(i)CAi−1Bsi−p

with q(i) ∈ N ∖ 0. For p ≥ 1 this implies

lim
s→0

H(p)(s) = q(p)CAp−1B.

The same computation carried out for the representation of G via (A′,B′,C ′,D′) yields

lim
s→0

H(p)(s) = q(p)C ′(A′)p−1B′.
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This implies

CAp−1B = C ′(A′)p−1B′

for all p ≥ 1 and thus the desired identity OR = O′R′.

Example 2.5 (Continuation of Example 2.2) For the linearised inverted pendulum one
computes that (A,B) is controllable since

R = (BABA2BA3B) =
⎛
⎜⎜⎜
⎝

0 1 −k g + k2

1 −k g + k2 −2gk − k3

0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

has full rank 4. The pair (A,C) is also observable, since

O =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟
⎠

also has full rank 4. Hence, (A,B,C,D) is a minimal representation of the transfer function
G.

However, the pair (A,C ′) is not observable, since

O′ =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
g −k 0 0
−gk k2 0 0

⎞
⎟⎟⎟
⎠

does not have full rank 4 but only rank 2. Hence, (A,B,C ′,D) is not a minimal represen-
tation of the transfer function G′. In this case it is easy to find the minimal representation
by hand, because it suffices to omit the cart coordinates x3 and x4. The corresponding
computations will be done in the exercises.

2.3 Discussion

Remark 2.6 In this remark we discuss which information we lose when passing from a
control system to the minimal realisation of the corresponding transfer function. Obviously,
some information is lost and this is due to two facts:

• The transfer function only “sees” the output y, not the state x. Thus, it does not
see the unobservable states x ∈ N .

• The construction of the transfer function only considers trajectories with initial value
x0 = 0. Thus, it only considers the trajectories in the reachable set R.
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The first fact implies that we need to make sure that all we are truely interested in is
also included in the output, either explicitly (as the positions x1 and x3 in the pendulum
example with output matrix C) or implicitly (due to observability, as the velocities x2 and
x4 in the pendulum example with output matrix C). If we do not do this (as in the case
of the cart position x3 and velocity x4 in the pendulum example with output matrix C ′),
and design our control based on the output, then we will not be able to influence it. Thus,
we need to make sure to choose C and thus y appropriately.

The second fact limits the trajectories which contribute to the definition of G (and thus
of the minimal realisation) to those in the reachable set R. However, with non-0 initial
value other solutions may emerge, which are thus not modelled in the minimal realisation.
Generally, we can write each solution x(t;x0, u) in the form

x(t;x0, u) = xR(t) + xV (t),

with xR(t) ∈ R and xV (t) ∈ V , where V is a subspace of Rn with R + V = Rn. In the
coordinates of Lemma 2.14 from [4], R = ⟨e1, . . . , er⟩ and V = ⟨er+1, . . . , en⟩. Hence, the
control u only influences the xR-part of the solution, while xV (⋅) is independent from u
and from xR.

If A3 from this lemma is Hurwitz, i.e., if all its eigenvalues have negative real part, then
xV (⋅) decays exponentially and will not play a role for the long term behavior of the
system. If, however, A3 is not Hurwitz, then xv(t) will not tend to 0 or may even grow
exponentially, and these solutions are “overlooked” by the minimal realisation. However, as
we know from [4], A3 being not Hurwitz is equivalent to the system being not stabilisable.
This means that while in the non-minimal realisation the non-vanishing or even growing
solution components are present, there is nothing we can do about is with the control
function. Hence, in terms of modelling the way we can influence the system by the control
input, no information is lost in the minimal realisation. We only lose information about
those parts of the solution that we cannot influence, anyway. Moreover, if the system we
start from is stabilizable, then we only lose exponentially decaying parts of the solution
when we pass to the minimal realization.

Example 2.7 It appears reasonable to expect that when the input and output of a system
is low dimensional, then the state dimension of the minimal realisation should also be
relatively small. This example shows that this expectation is, unfortunately, wrong.

We consider a 1d heat equation

vt(t, z) = vzz(t, z)

on Ω = (0,1). Here t denotes time and z ∈ Ω the spatial variable. The subscript denotes
partial derivatives. We use Neumann boundary condition vz(t,0) = 0 at the left end (which
models perfect isolation) and Dirichlet boundary condition v(t,1) = u(t) on the right, where
u ∶ R→ R is the control input.

Clearly, this is not a finite dimensional control system in the sense of (1.1), because the
evolution of v is governed by a partial differential equation (PDE). However, we can ap-
proximate this control system by a system of type (1.1) by means of discretisation in space.
Here we use the simplest way of discretising the heat equation by finite differences. To this
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end, we introduce a grid 0 = z0 < z1 < . . . < zn+1 = 1 with zi+1 − zi = ∆z = 1/(n + 1) for all
i = 0, . . . , n, and use the second order difference quotient

vzz(t, zi) =
∂2

∂z2
v(t, zi) ≈

v(t, zi−1) − 2v(t, zi) + v(t, zi+1)
∆z2

.

We can then define approximations xi(t) ≈ v(t, zi) via the equations

ẋi(t) =
xi−1(t) − 2xi(t) + xi+1(t)

∆z2

for i = 1, . . . , n. For i = 0 we use the first order difference quotient and the Neumann
boundary condition

0 = vz(t, z0) ≈
v(t, z1) − v(t, z0)

∆z

in order to obtain the relation
x0(t) = x1(t)

and in i = n+ 1 we insert the Dirichlet boundary condition xn+1(t) = u(t). The output y is
the temperature measured at the left boundary, which coincides with that in the leftmost
node x1.

This leads to the control system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t)

with

A = 1

∆z2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 ⋯ ⋯ ⋯ 0
1 −2 1 0 ⋯ ⋯ 0
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 1 −2 1
0 ⋯ ⋯ ⋯ 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, B =
⎛
⎜⎜⎜
⎝

0
⋮
0
1

∆z2

⎞
⎟⎟⎟
⎠
, C = (1 0 . . .0).

Clearly, since u and y are one-dimensional, the transfer function is one-dimensional, too.
Yet, computing the reachability and the observability matrix yields

R =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ ⋯ 0 ∗
0 ⋯ 0 ∗ ∗
⋮ ⋰ ⋰ ⋰ ⋮
0 ∗ ∗ ⋯ ∗
∗ ∗ ⋯ ⋯ ∗

⎞
⎟⎟⎟⎟⎟⎟
⎠

and O =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∗ 0 . . . . . . 0
∗ ∗ 0 . . . 0
⋮ ⋱ ⋱ ⋱ ⋮
∗ ⋯ ∗ ∗ 0
∗ ⋯ ⋯ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where the elements on the diagonal are non zero for both matrices. This implies that
they have full rank n. Hence, by Theorem 2.3 this is a minimal realisation. Thus, while
the transfer function is only one-dimensional, the minimal realisation has arbitrary large
dimension, depending on the number n of nodes of the discretisation.

Hence, just by looking at the exact minimal realisation we cannot necessarily expect to
reduce the complexity. We have to resort to approximations in order to be able to obtain
models with smaller dimensions.



10 CHAPTER 2. REALISATION THEORY



Chapter 3

Singular Value Decomposition

August 9, 2021

The singular value decomposition (short SVD) will be important for the subsequent con-
siderations for control systems.

3.1 Existence of the SVD

Theorem 3.1 For any matrix A ∈ Rm×n there exist two orthogonal matrices U ∈ Rm×m
and V ∈ Rn×n (i.e., satisfying UTU = Id, V TV = Id) and a matrix Σ ∈ Rm×n, in which only
the diagonal elements σi can assume values ≠ 0, such that

A = UΣV T .

Moreover, the diagonal entries of Σ are unique (up to permutation), coincide with the
square roots of the eigenvalues of ATA and are called the singular values of A.

Proof: Since ATA is symmetric, there is an orthogonal matrix V ∈ Rn×n with

V TATAV = diag(λ1, . . . , λn).

Here we choose V such that the moduli of the λj are decreasing, i.e., ∣λj+1∣ ≤ ∣λj ∣. The
columns of vj of V then satisfy ATAvj = λjvj and thus

λj = λjvTj vj = vTj ATAvj = ∥Avj∥2
2 ≥ 0.

Hence, if we define σi ∶=
√
λi we obtain real numbers.

Let now σ1, . . . , σr ≠ 0 and σr+1, . . . , σn = 0. We define ui = σ−1
i Avi ∈ Rm for i = 1, . . . , r.

Then
uTi ui = λ−1

i (Avi)TAvi = λ−1
i v

T
i A

TAvi = vTi vi = 1

and
uTi uj = λ

−1/2
i λ

−1/2
j (Avi)TAvj = λ−1/2

i λ
−1/2
j vTi A

TAvj = λ−1/2
i λ

1/2
j vTi vj = 0

for i ≠ j. Consequently, the u1, . . . , ur can be augmented to form an orthonormal basis
(u1, . . . , um) of Rm. Since σr+1, . . . , σn = 0, we obtain λr+1, . . . , λn = 0 and thus Avj = 0 für

11
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j = r + 1, . . . , n. For U = (u1, . . . , un) ∈ Rm×m this implies UΣ = (Av1, . . . ,Avr,0, . . . ,0) =
(Av1, . . . ,Avn) = AV and hence

UΣV T = AV V T = A.

In the following we always order the singular values such that σj+1 ≤ σj holds for all
j = 1, . . . , n − 1.

The interpretation of the singular values is as follows. Let vk be the k-th column of V , uk
the k-th column of U , and ek the k-th unit vector. Then, due to orthogonality of V , we
obtain

Avk = UΣ V T vk
²
=ek

= Uσkek = σkUek = σkuk.

Hence, (vk, σkuk) are pairs of vectors that are mapped onto each other by A and the
corresponding singular value σk determines the length of the image. For an arbitrary
vector x = ∑nk=1 µkvk, we thus obtain

Ax =
n

∑
k=1

µkσkuk. (3.1)

Hence, if some of the σk are very small compared to others, the corresponding vk-compo-
nents of x contribute much less to the image Ax. Note that the coefficients µj are easily
computed by µj = vTj x, since

vTj x =
n

∑
k=1

vTj µkvk = µj .

We note that the proof shows that the singular values of A are exactly the roots of the
eigenvalues of ATA, which coincide with those of AAT . For complex matrices, the same
holds true with ĀTA or AĀT , respectively.

3.2 Low-rank approximations

This opens a way to approximate large matrices A by matrices Ar of lower rank that yield
approximately the same value when multiplied to a vector. To this end, let Ur be the
matrix containing the first r columns of U , Vr the matrix containing the first r columns of
V , and Σr the r × r diagonal matrix containing the singular values σ1, . . . , σr. Defining

Ar ∶= UrΣrV
T
r ,

we then obtain a matrix with rankAr ≤ r, which for x = ∑nk=1 µkvk yields the image

Arx =
r

∑
k=1

µkσkuk, (3.2)

i.e., compared to (3.1) the summands µr+1σr+1vr+1, . . . , µnσnvn are surpressed. If the sin-
gular values σr+1, . . . , σn are small, then the difference between (3.1) and (3.2) should also
be small.
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The following theorem, known as Schmidt-Mirsky or Eckart-Young theorem, makes this
statement precise. We recall the definition of the induced 2-norm for matrices

∥A∥2 = max
∥x∥2=1

∥Ax∥2 = max
λ Eigenvalue of ATA

√
λ.

Theorem 3.2 The matrices A and Ar just defined satisfy

∥A −Ar∥2 = min
rankB≤r

∥A −B∥2 = σr+1.

Proof: Since orthogonal matrices do not change the 2-norm, we obtain

∥A −B∥2 = ∥UT (A −B)V ∥2.

Since UTArV = diag(σ1, . . . , σr,0, . . . ,0), it holds that

UT (A −Ar)V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋱

0
σr+1

⋱
σn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We thus obtain ∥A −Ar∥2 = σr+1.

In order to complete the proof it remains to show that ∥A −B∥2 ≥ σr+1 for all matrices B
with rankB ≤ r. Again, we can use ∥A−B∥2 = ∥UT (A−B)V ∥2 = ∥Σ−Z∥2 with Z = UTBV .
Note that rankZ ≤ r. Hence, it suffices to show that

∥Σ −Z∥2 ≥ σr+1

for all Z with rankZ ≤ r. This rank condition implies that the image of ZT has dimension
less or equal to r. Thus, there is a vector x = ∑r+1

k=1 αkek with x ⊥ imZT and 1 = ∥x∥2
2 =

∑r+1
k=1 α

2
k. This implies 0 = (ZT y)Tx = yTZx for all y ∈ Rn, and thus Zx = 0. Hence

∥(Σ −Z)x∥2
2 = ∥Σx∥2

2 =
r+1

∑
k=1

σ2
kα

2
k ≥

r+1

∑
k=1

σ2
r+1α

2
k = σ

2
r+1

and thus

max
∥x∥2=1

∥(Σ −Z)x∥2 ≥ σr+1.

Clearly, if r ≪ n, then the matrix product Arx = UrΣrVrx can be computed much faster
than Ax and the amount of memory for storing Ar is also much smaller.
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3.3 Examples

Example 3.3 We illustrate the low rank approximation with a simple 2 × 2 example.
Consider the matrix

A = (1 2
2 5

) .

Its SVD reads

U = (−0.3827 −0.9239
−0.9239 0.3827

) , Σ = (5.8284 0
0 0.1716

) , V = (−0.3827 −0.9239
−0.9239 0.3827

) .

The geometric meaning of the singular values can be visualised when plotting the set

{Ax ∣ ∥x∥2 = 1},

which is shown in Figure 3.1.
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Figure 3.1: {Ax ∣ ∥x∥2 = 1}

The figure shows an ellipse whose principal axes correspond to the columns of U . The
diameters correspond to the radii: the ellipse has a width of two times 5.8284 from the
lower left to the upper right corner but only a width of two times 0.1716 from the lower
right to the upper left.

The low rank approximation of A with r = 1 evaluates to

A1 = (0.8536 2.0607
2.0607 4.9749

) .

This matrix has rank 1, meaning that its image is a one-dimensional subspace of R2. It
is exactly the subspace given by the principal axis of the ellipse from Figure 3.1 with the
larger diameter. This is confirmed by Figure 3.2.
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Figure 3.2: {A1x ∣ ∥x∥2 = 1}

Example 3.4 A very descriptive application of the SVD is image compression. To this
end, we represent a grey-scale image by means of a matrix A, in which each element
corresponds to the grey-scale value of a pixel in the image. Figure 3.3 shows a picture of a
familar place with 4320×3240 pixels. This amounts to 4320 ⋅3240 = 13 996 800 pixel values.

Figure 3.3: Original picture with 4320 ⋅ 3240 = 13 996 800 pixels

Figure 3.4 shows the figure corresponding to the low rank matrices A200 (left) and A100

(right). Storing the respective entries of Ur, Vr and Σr requires 200 ⋅ (4320 + 3240 + 1) =
1 512 200 and 200 ⋅ (4320 + 3240 + 1) = 756 100 values, respectively.

It should be noted that in practice the SVD is not used for image compression, because
competing algorithms such as jpeg compression are more efficient and provide visually
better results.

The SVD can be computed via the eigenvalues of ATA, but this can be numerically un-
stable in case A has a large condition number. More sophisticated alrorithms compute the
singular value decomposition avoiding the use of ATA, see Section 1.7 in my lecture notes
“Vertiefung der Numerischen Mathematik” [3].
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Figure 3.4: Approximated picture with low rank matrix Ar with rank r = 200 (left) and
r = 100 (right), amounting to 200 ⋅ (4320+ 3240+ 1) = 1 512 200 and 200 ⋅ (4320+ 3240+ 1) =
756 100 values, respectively.



Chapter 4

Balanced Truncation

August 9, 2021

The idea of balanced truncation is motivated by the fact that passing from an arbitrary
realisation to the minimal realisation removes exactly those solutions that are

• not observable, i.e., yield the output y ≡ 0

• not reachable from x0 = 0.

In order to obtain even smaller approximate models, we could thus remove those solutions
of the model, which are “difficult to observe”, i.e., produce only a small output and “difficult
to reach”, i.e., require a very large control to be reached. If both conditions are satisfied
at the same time, then these solutions will only contribute very little to the map from u
to y. Removing exactly these solutions is the idea of balanced truncation.

Throughout this chapter we assume that A is Hurwitz. We will comment in Section 4.7
at the end about how to proceed if this is not the case. Moreover, we assume that all
realisations under consideration are minimal, i.e., that (A,B) are controllable and (A,C)
is observable.

4.1 Controllability and observability Gramians

Associated to the control system (1.1) we define the following two matrices.

P = ∫
∞

0
eAtBBT eA

T tdt and Q = ∫
∞

0
eA

T tCTCeAtdt. (4.1)

The matrix P is called the controllability Gramian and the matrix Q the observability
Gramian. As proved in Lemma 2.11 of [4], the image of

Wτ = ∫
τ

0
eAtBBT eA

T tdt

is exactly the reachability subspace R. Since A is Hurwitz, there exist C,σ > 0 such that

∥Wτ − P ∥ = ∥∫
∞

τ
eAtBBT eA

T tdt∥ ≤ Ce−στ .

17
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In case (A,B) is controllable, we have that R = Rn and thus Wτ has full rank for each
τ > 0. Since, moreover, the integrand is positive semidefinite, Wτ is positive definite for
each τ and τ ↦ xTWτx is positive and increasing for each x ∈ Rn ∖ {0}. This implies that
there is c > 0 with xTWτx ≥ c∥x∥2 for all τ ≥ 1 and consequently we obtain xTPx ≥ c∥x∥2.
Hence, P is positive definite and in particular it has full rank. Via duality, the same holds
for Q is (A,C) is observable.

The interpretation of P follows from a fact that we observed in [4]: If we want to find a
control function that steers the system from x0 = 0 at time 0 to x(t; 0, u) = x1 at time t > 0,
then this is accomplished by the control function

u(τ) = BT eA
T (t−τ)W −1

t x1.

Now consider the SVD of Wt and let x1 = uk be the k-th column of the matrix U . Then

W −1
t x1 =

1

σk
vk

is large if the singular value is small. This means that a large control u(⋅) is needed in
order to steer the system into the direction uk. In other words, subspaces corresponding to
small singular values of Wt are difficult to reach, in the sense that with small control effort
we will only move very little in this direction. Since small singular values of P correspond
to small singular values of all Wt, t ≥ 0, we can also use the singular values of P in order
to determine subspaces that are difficult to reach. Similarly, subspaces that correspond to
small singular values of Q will only slightly affect the output y.

Computing P and Q via the integral formulas in (4.1) is possible but not very convenient.
The following theorem provides an alternative way.

Theorem 4.1 If A is Hurwitz, then the Gramians P and Q from (4.1) are the unique
solutions of the Lyapunov equations

AP + PAT +BBT = 0 and ATQ +QA +CTC = 0. (4.2)

Proof: We first show that P and Q solve the Lyapunov equations. Inserting the definition
of P from (4.1) into the left equation in (4.2) yields

AP + PAT +BBT = A∫
∞

0
eAtBBT eA

T tdt + ∫
∞

0
eAtBBT eA

T tdtA +BBT

= ∫
∞

0
AeAtBBT eA

T t + eAtBBT eA
T tAT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= d
dt
eAtBBT eAT t

dt +BBT

= lim
t→∞

eAtBBT eA
T t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 since A is Hurwitz

− eA0BBT eA
T 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=IdBTBId=BBT

+BBT = 0.

A similar computation shows the claim for Q.
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The Lyapunov equations are systems of n2 linear equations for the coefficients of P and
Q, respectively. As we have seen in Lemma 3.13 of [4], if A is Hurwitz then a Lyapunov
equation has a unique solution. There the matrix C (which plays the role of BBT and
CTC, respectively, in (4.2)) is assumed to be positive definite, but this property is not
important for proving the unique solvability.

Readily implemented solution algorithms for Lyapunov equations are available for Python
in various packages and for MATLAB in the control systems toolbox. We will discuss the
ideas behind some of these algorithms in Section 4.6.

Example 4.2 We consider the Heat equation from Example 2.7. Computing P and Q
and their singular value decompositions yields the singular values

60.5925,16.2403,6.1467,1.3219,0.1808,0.1808,0.0010,0.0000, . . .

for P and
0.0315,0.0034,0.0005,0.0001,0.0000, . . .

for Q. These values were computed for n = 12 discretization points but actually do not
change much if n is changed. What is immediately seen is that most of these values are
very small. There thus seems to be potential for reducing the order of the model without
changing the solutions very much.

The main conclusion of this section is: good candidates for subspaces that can be neglected
are those for which the singular values of both P and Q are small. This however, leads to
the question how we can determine singular values simultaneously for P and Q. Clearly,
in general they do not need to coincide, at all. However, in suitable coordinates we can
achieve this property. This is the concept of balanced realisations that is described in the
next section.

4.2 Balanced realisations

We recall that we assume that (A,B,C,D) is a minimal realisation, i.e., (A,B) is control-
lable and (A,C) is observable. Then P and Q are positive definite, hence invertible, and
we obtain

PQ = P (QP )P −1,

implying that PQ and QP are similar matrices and thus have the same eigenvalues.

Moreover, P and Q are symmetric (because the integrands in (4.1) are symmetric), hence
they are diagonalizable. In particular, there are an orthogonal matrix V and a diagonal
matrix Λ with

P = V ΛV T .

The diagonal matrix Λ = diag(λ1, . . . , λn) contains the eigenvalues λj of P on the diagonal,
which due to the positive definiteness of P are all positive. Hence, their square roots are
real and Λ1/2 = diag(

√
λ1, . . . ,

√
λn) is a real matrix. We then define

P 1/2 = V Λ1/2V T .
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Then P = P 1/2P 1/2. The eigenvalues of P 1/2 are
√
λ1, . . . ,

√
λn > 0, thus P 1/2 is positive def-

inite, hence invertible, and symmetric since (P 1/2)T = (V Λ1/2V T )T = (V T )T (λ1/2)TV T =
V Λ1/2V T = P 1/2.

Since Q is also positive definite we can thus conclude that

P 1/2QP 1/2

is positive definite, because xTP 1/2QP 1/2x = xT (P 1/2)TQP 1/2x = yTQy > 0 if x ≠ 0, because
then y = P 1/2x ≠ 0 since P 1/2 is invertible.

Denoting the inverse of P 1/2 by P −1/2, this yields

PQ = P (QP )P −1 = P 1/2P 1/2QP 1/2P 1/2P −1/2P −1/2 = P 1/2(P 1/2QP 1/2)P−1/2.

This means that PQ (and thus also QP ) is similar to a positive definite matrix and thus
positive definite itself.

Definition 4.3 The square roots of the (positive) eigenvalues of PQ are called the Hankel
singular values of (1.1). We denote them by σ1, . . . , σn with the convention that σi+1 ≤
σi.

Note that the these values are in general not singular values in the sense of Theorem 3.1.
While these are the roots of the eigenvalues of ATA, the Hankel singular values are the
roots of the eigenvalues of PQ. However, the Hankel singular values are “regular” singular
values of PQ if P = Q holds, because then PQ = PP = P TP due to symmetry of P . We
will next show that with an appropriate coordinate transformation we can always achieve
P = Q, even with a particularly nice form.

To ensure that this procedure makes sense, we first need to show that the Hankel singular
values do not change under coordinate transformations. To this end, consider a system
(1.1) defined by (A,B,C,D), an invertible matrix T , and the transformed system given by

(Ã, B̃, C̃,D) = (TAT−1, TB,CT−1,D).

Then, using Theorem 4.1 and (T T )−1 = (T−1)T =∶ T−T one sees that P̃ = TPT T satisfies

ÃP̃ + P̃ ÃT + B̃B̃T = TAPT T + TPATT T + TBBTT T = T (AP + PAT +BBT )T T = 0

and thus again by Theorem 4.1 P̃ is the controllability Gramian for the transformed system.
Analogously one checks that Q̃ = T−TQT −1 is the observability Gramian for the transformed
system. This leads to the following proposition.

Proposition 4.4 Assume that A is Hurwitz and T is invertible. Then the Hankel singular
values of a system (1.1) defined by (A,B,C,D) and the transformed system

(Ã, B̃, C̃,D) = (TAT−1, TB,CT−1,D)

coincide.
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Proof: The Hankel singular values are uniquely determined by the eigenvalues of PQ for
the non-transformed system and by the eigenvalues of P̃ Q̃ for the transformed system.
Since

P̃ Q̃ = TPT TT−TQT−1 = TPQT−1

the matrices P̃ Q̃ and PQ are similar and thus have the same eigenvalues.

As already mentioned above, it would now be desirable to find a coordinate transformation
such that P̃ = Q̃, because then the Hankel singular values are “regular” singular values of
both matrices P and Q and thus allow us to identify subspaces which are simultaneously
difficult to reach and difficult to observe. The next theorem shows that this is indeed
possible, even with diagonal matrices P̃ and Q̃.

Theorem 4.5 Assume that A is Hurwitz. Consider the coordinate transformation

Tb = Σ−1/2V TR,

where P = STS and Q = RTR are Choleski factorisations of P and Q, respectively, and
SRT = UΣV T is an SVD of SRT . Then the transformed Gramians are of the form

P̃ = Q̃ = Σ =
⎛
⎜⎜⎜
⎝

σ1

σ2

⋱
σn

⎞
⎟⎟⎟
⎠
,

where σ1, . . . , σn are the Hankel singular values. The corresponding realisation (Ã, B̃, C̃,D)
is then called a balanced realisation.

Proof: Since (UΣV T )−T = (V −TΣ−1U−1)T = U−TΣ−1V T = UΣ−1V T , we obtain

STUΣ−1/2Tb = STUΣ−1/2Σ−1/2V TR = ST (UΣV T )−TR = ST (SRT )−TR = STS−TR−1R = Id.

Hence, T−1
b = STUΣ−1/2. This implies

TbPQT
−1
b = Σ−1/2V T RST SRT RST UΣ−1/2

= Σ−1/2V T V ΣUT UΣV TV ΣUT UΣ−1/2

= Σ−1/2ΣΣΣΣ−1/2 = Σ2,

which shows that Σ contains the Hankel singular values. Further we obtain

TbPT
T
b = Σ−1/2V T RST SRT V Σ−1/2

= Σ−1/2V T V ΣUTU ΣV T V Σ−1/2

= Σ−1/2ΣΣΣ−1/2 = Σ,

which proves the claimed form of P . Finally

T−Tb QT−1
b = Σ−1/2UT SRT RST UΣ−1/2

= Σ−1/2UT UΣV T V ΣUT UΣ−1/2

= Σ−1/2ΣΣΣ−1/2 = Σ

shows that Q has the claimed form.
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Figure 4.1: Hankel singular values for Example 2.7 with n = 15

Example 4.6 We consider again the Heat equation from Example 2.7 and 4.2. For n = 15
we obtain the Hankel singular values shown in Figure 4.1.

It is clear that only the first few of these values have a significant size.

4.3 The algorithm

The balanced realisation leads to a transformation of (1.1) of the form

˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t) +Du(t)
(4.3)

with x̃ = Tbx. In these new coordinates, the components x̃i of the transformed state x̃ and
the associated subspace ⟨ei⟩ correspond to the singular value σi of P̃ and Q̃. This means
that if σ̃ is small, then this subspace is both difficult to reach (i.e., the x̃i-component is
affected only very little by the control u) and difficult to observe (i.e., the x̃i-component
contributes only very little to y). Thus, the x̃i-component play only a very small role for
the relation between u and y and when it is removed from the model, then the transfer
function changes only very little (this intuitive idea will be made quantitatively precise
later in this chapter).

The idea of balanced truncation thus lies in removing the subspaces corresponding to
singular values that are very small. As Example (4.8) shows, this can be the vast majority
of the singular values. To this end, we select r such that σr+1, . . . , σn are below a chosen
threshold, partition (4.3) as

(ẋr(t)˙̃x2(t)
) = (Ar Ã12

Ã21 Ã22
)(xr(t)
x̃2(t)

) + (Br
B̃2

)u(t)

y(t) = (Cr C̃2)(
xr(t)
x̃2(t)

) +Du(t)

(4.4)
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and define the reduced system as

ẋr(t) = Arxr(t) +Bru(t)
yr(t) = Crxr(t) +Du(t).

(4.5)

This procedure can be slightly simplified, by observing that if we only need Ar, Br and
Cr and not the rest of Ã, B̃ and C̃, then it is sufficient to compute only the part of the
coordinate transformation Tb that is actually needed for computing Ar, Br and Cr. If we
split up the coordinate transformation and its inverse in the form

Tb = (Tr
T2

) , T −1
b = (T ir T i2)

according to the partition of Ã, then we obtain

(Ar Ã12

Ã21 Ã22
) = TbAT ib = (Tr

T2
)A(T ir T i2) = (TrAT

i
r TrAT

i
2

T2AT
i
r T2AT

i
2
) ,

implying that Ar = TrAT ir . This means, we only need to compute Tr and T ir . Since

Tb = Σ−1/2V TR and T−1
b = STUΣ−1/2,

when we partition the singular value decomposition of SRT as

UΣV T = (U1 U2)(
Σ1 0
0 Σ2

)(V
T

1

V T
2
) ,

then we obtain that

Tb =
⎛
⎝

Σ
−1/2
1 V T

1 R

Σ
−1/2
2 V T

2 R

⎞
⎠

and T−1
b = (STU1Σ

−1/2
1 STU2Σ

−1/2
2

)

and thus

Tr = Σ
−1/2
1 V T

1 R and T ir = STU1Σ
−1/2
1 .

All in all, this leads to the following algorithm.

Algorithm 4.7 (Balanced Truncation)

Input: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, (A,B) controllable, (A,C) observable,
A Hurwitz

(1) Solve the Lyapunov equations

AP + PAT = −BBT , ATQ +QA = −CTC.

(2) Compute the Choleski factorisation

P = STS, Q = RTR.
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(3) Compute the singular value decomposition

SRT = UΣV T = (U1 U2)(
Σ1 0
0 Σ2

)(V
T

1

V T
2
)

with Σ1 ∈ Rr×r for a given r ∈ N, r < n.

(4) Compute the (reduced) coordinate transformations

Tr = Σ
−1/2
1 V T

1 R and T ir = STU1Σ
−1/2
1 .

(5) Compute the reduced system matrices

Ar = TrAT ir , Br = TrB, Cr = CT ir Dr =D.

Output: Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rl×r, Dr ∈ Rl×m

Example 4.8 We consider once more the Heat equation from Example 2.7, 4.2, and 4.8.
We computed Ar for r = 2 and r = 5, solved the resulting control system with u(t) = cos t
and x0 = 0 and plotted the resulting y(t) (black) and yr(t) (red) in Figure 4.2.
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Figure 4.2: Output of full (black) and reduced model (red) with r = 1 (left) and r = 3
(right)

One sees that already with r = 1 the output of the (2-dimensional) reduced order system
matches that of the full model rather well. For r = 3, there is almost no visible difference
anymore between the outputs.

4.4 Asymptotic stability of the reduced system

We now want to analyze the properties of the reduced model. Recall that we have assumed
A to be Hurwitz, implying that solutions converge to 0 if u ≡ 0. Clearly, if Ar is supposed
to be a meaningful approximation to A, then it should have the same property. This will
also be a necessary property for being able to analyze the approximation error in the next
section.
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Theorem 4.9 Consider a system (1.1), which is a minimal realisation with Hurwitz matrix
A and Hankel singular values σ1 ≥ σ2 ≥ σn > 0. Then for any r = 1, . . . , n − 1 the reduced
system (4.5) is balanced with Hurwitz matrix Ar and Hankel singular values σ1, σ2, . . . , σr.

Proof: From Theorem 4.5 it follows that the matrices from the balanced system (4.3)
satisfy

ÃΣ +ΣÃT + B̃B̃T = 0 (4.6)

as well as
ÃTΣ +ΣÃ + C̃T C̃ = 0. (4.7)

Inserting the decomposition from (4.4) into (4.6) and decomposing Σ accordingly into
Σ1 = diag(σ1, . . . , σr) and Σ2 = diag(σr+1, . . . , σn), we obtain

(Ar Ã12

Ã21 Ã22
)(Σ1

Σ2
) + (Σ1

Σ2
)(A

T
r ÃT21

ÃT12 ÃT22

) + (BrB
T
r BrB̃

T
2

B̃2B
T
r B̃2B̃

T
2

) = 0,

implying
ArΣ1 +Σ1A

T
r +BrBT

r = 0 (4.8)

Analogously we obtain
ATr Σ1 +Σ1Ar +CTr Cr = 0 (4.9)

If Ar is Hurwitz then these equations have unique solutions, which implies that Σ1 is
both the controllability and the observability Gramian for (4.5). This shows that (4.5) is
balanced with Hankel singular values σ1, σ2, . . . , σr.

It remains to be shown that Ar is Hurwitz, i.e., that it has only eigenvalues with negative
real part. We start by proving that all eigenvalues have nonpositive real part. To this end,
let λ ∈ C be an eigenvalue of Ar with left eigenvector v̄ ≠ 0, i.e., v̄TAr = λ̄v̄T or, equivalently,
ATr v = λv. Multiplying (4.8) with vT and v from the left and right, respectively, yields

0 = v̄T (ArΣ1 +Σ1A
T
r +BrBT

r )v = λ̄v̄TΣ1x + v̄TΣ1λv + v̄TBrBT
r v.

This implies
(λ̄ + λ)v̄TΣ1v = −v̄TBrBT

r v.

Since Σ1 is positive definite and BrB
T
r is positive semidefinite, this can only be true when

λ̄ + λ ≤ 0 holds. This, in turn, is only possible if the real part of λ is less or equal 0.

In the final (and longest) step of this proof we now show that Ar cannot have purely
imaginary eigenvalues. We proceed by contradiction and thus assume that Ar has purely
imaginary eigenvalues. Then there exists a coordinate transformation T1 such that

T1ArT
−1
1 = (F11 0

0 F22
)

holds, where F11 has only eigenvalues with negative real part and F22 has only purely

imaginary eigenvalues. Defining T = (T1

Id
) and using the decomposition from (4.4), we

obtain

Â ∶= TÃT−1 =
⎛
⎜
⎝

F11 0 F13

0 F22 F23

F31 F32 Ã22

⎞
⎟
⎠
.
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Likewise, we transform

B̂ ∶= TB̃ =
⎛
⎜
⎝

G1

G2

B̃2

⎞
⎟
⎠
, Ĉ ∶= C̃T−1 = (H1 H2 C̃2) ,

P̂ ∶= T P̃T T =
⎛
⎜
⎝

P11 P12 0

P T12 P22 0
0 0 Σ2

⎞
⎟
⎠
, Q̂ ∶= T−T Q̃T−1 =

⎛
⎜
⎝

Q11 Q12 0

QT12 Q22 0
0 0 Σ2

⎞
⎟
⎠
.

We now prove that

G2 = 0,H2 = 0, P12 = 0,Q12 = 0, F23 = 0, and F32 = 0. (4.10)

This in particular implies

Â =
⎛
⎜
⎝

F11 0 F13

0 F22 0

F31 0 Ã22

⎞
⎟
⎠

and B̂ =
⎛
⎜
⎝

G1

0

B̃2

⎞
⎟
⎠
.

Using this particular block structure, it follows that Ar has no purely imaginary eigenvalues:
if λ = βi, β ∈ R is such an eigenvalue, then by choice of T1 it must be an eigenvalue of
F22. Then F22 − λId is singular, and consequently (Â − λId B) is singular. By the Hautus
criterion (Theorem 2.16 in [4]), this implies that (Â, B̂) is not controllable, hence (A,B)
are also not controllable, since controllability is invariant under coordinate transformations.
This, however, contradicts the assumed minimality of the realisation.

We are thus left to prove (4.10). To this end, we consider the Lyapunov equations for P̂

and Ĉ, which in partitioned form read

⎛

⎜

⎝

F11 0 F13

0 F22 F23

F31 F32 Ã22

⎞

⎟

⎠

⎛

⎜

⎝

P11 P12 0

PT
12 P22 0
0 0 Σ2

⎞

⎟

⎠

+

⎛

⎜

⎝

P11 P12 0

PT
12 P22 0
0 0 Σ2

⎞

⎟

⎠

⎛

⎜

⎝

FT
11 0 FT

31

0 FT
22 FT

32

FT
13 FT

23 ÃT
22

⎞

⎟

⎠

+

⎛

⎜

⎝

G1G
T
1 G1G

T
2 G1B̃

T
2

G2G
T
1 G2G

T
2 G2B̃

T
2

B̃2G
T
1 B̃2G

T
2 B̃2B̃

T
2

⎞

⎟

⎠

= 0

and

⎛

⎜

⎝

FT
11 0 FT

31

0 FT
22 FT

32

FT
13 FT

23 ÃT
22

⎞

⎟

⎠

⎛

⎜

⎝

Q11 Q12 0

QT
12 Q22 0
0 0 Σ2

⎞

⎟

⎠

+

⎛

⎜

⎝

Q11 Q12 0

QT
12 Q22 0
0 0 Σ2

⎞

⎟

⎠

⎛

⎜

⎝

F11 0 F13

0 F22 F23

F31 F32 Ã22

⎞

⎟

⎠

+

⎛

⎜

⎝

HT
1 H1 HT

1 H2 HT
1 C̃2

HT
2 H1 HT

2 H2 HT
2 C̃2

C̃T
2 H1 C̃T

2 H2 C̃T
2 C̃2

⎞

⎟

⎠

= 0.

The (2,2) block of the first equation yields

F22P22 + P22F
T
22 +G2G

T
2 = 0.

One can now prove that since F22 has only purely imaginary eigenvalues and P22 is positive
definite, F22P22 + P22F

T
22 is always indefinite, i.e., neither positive nor negative definite.

Since G2G
T
2 is always positive semidefinite, the equation can only be satisfied if G2G

T
2 = 0,

i.e., if G2 = 0. Analogously, from the (2,2) block of the equation for Q̂ one obtains H2 = 0.
This shows the first two claims in (4.10).

Using G2 = 0, from the (1,2) block of the equation for P̂ one gets

F11P12 + P12F
T
22 = 0.
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This is a so-called Sylvester equation and one can prove that it has a unique solution P12

if F11 and −F22 have disjoint sets of eigenvalues, which is the case here. Since P12 = 0 is
obviously a solution, P12 = 0 follows. Similarly, one obtains Q12 = 0 from the (1,2) block
of the equation for Q̂. This shows the third and fourth claim in (4.10).

Finally, the (2,3) block of the equation for P̂ together with G2 = 0 and P12 = 0 yields

F23Σ2 + P22F
T
32 = 0.

Analogously, the (2,3) block of the equation for Q̂ yields

F T32Σ2 +Q22F23 = 0.

Multiplying the first equation with Σ2 from the right and using the second equation we
obtain

0 = F23Σ2
2 + P22F

T
32Σ2 = F23Σ2

2 − P22Q22F23,

which is a Sylvester equation for F23. In order to ensure that this equation has a unique
solution, we have to show that Σ2

2 and P22Q22 have no common eigenvalues. The matrix
Σ2

2 has the eigenvalues σ2
r+1, . . . , σ

2
n. Since P12 = 0 and Q12 = 0, we have that

P̂ ∶= T P̃T T =
⎛
⎜
⎝

P11 0 0
0 P22 0
0 0 Σ2

⎞
⎟
⎠
, Q̂ ∶= T−T Q̃T−1 =

⎛
⎜
⎝

Q11 0 0
0 Q22 0
0 0 Σ2

⎞
⎟
⎠
,

implying

P̂ Q̂ =
⎛
⎜
⎝

P11Q11 0 0
0 P22Q22 0
0 0 Σ2

2

⎞
⎟
⎠
.

Moreover, we know that

P̂ Q̂ = T P̃ Q̃T−1 = (T1Σ2
1T

−1
1 0

Σ2
2
) .

Together this implies that the eigenvalues of P22Q22 must be contained in set of eigenvalues
of Σ2

1, i.e., in {σ2
1, . . . , σ

2
r}. Thus, Σ2 and P22Q22 have disjoint sets of eigenvalues and thus

the Sylvester equation for F23 has a unique solution, which must thus be 0. This also
implies F32 = 0 and thus we have obtained the last two claims in (4.10).

4.5 Approximation error

Finally we want to determine the error of this procedure, i.e., the difference between (1.1)
and (4.5). To this end we want to estimate the error between the outputs y(⋅) and yr(⋅).
Since these depend on the applied input u(⋅), it makes sense to compute the error between
the maps from u to y or yr, respectively. It turns out that it is easier to do this for the
L2-norm of the input and the output. If we measure the difference between y and yr in
the L2-norm, then we can use the inequality

∥y − yr∥L2 ≤ ∥G −Gr∥H∞∥u∥L2 ,
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which is proved in [1, Discussion after Korollar 7.29]. Here ∥ ⋅ ∥H∞ denotes the H-infinity
norm, which for a function G ∶ C→ Cl×m is given by

∥G∥H∞ ∶= sup
ω∈R

σmax(G(iω)),

where σmax(Z) denotes the largest singular value of a matrix Z. Clearly, the fact that the
H-infinity norm is determined by a singular value helps for our considerations. However,
it should be mentioned that other norms might be favourable. For instance, if we liked to
estimate the difference ∥y − yr∥L∞ in the L∞-norm, then the H2-norm of G would be the
more appropriate object. We will come back to this at the end of this section.

In order to obtain the desired error estimate we renumber the Hankel singular values by
removing all values that occur multiple times, leading to pairwise distinct values σ1 > σ2 >
. . . > σ` > 0, with ` ≤ n. Denoting by ni the multiplicity of each σi, we can rewrite P̃ = Q̃ = Σ
from Theorem 4.5 as

P̃ = Q̃ =
⎛
⎜⎜⎜
⎝

σ1Idn1

σ2Idn2

⋱
σ`Idn`

⎞
⎟⎟⎟
⎠
,

where Idni is the ni × ni identity matrix. We now consider first the case that we truncate
the σ`Idn`

block from the system, i.e., that r = n − n`. We define the “error”-transfer
function

Ge(s) ∶= G(s) −Gr(s) = C̃(sId − Ã)−1B̃ −Cr(sId −Ar)−1Br.

Then, using the notation from (4.4), Ge is the transfer function of system (1.1) with
matrices

Ae ∶= (Ã 0
0 Ar

) =
⎛
⎜
⎝

Ar Ã12 0

Ã21 Ã22 0
0 0 Ar

⎞
⎟
⎠
, Be ∶=

⎛
⎜
⎝

Br
B̃2

Br

⎞
⎟
⎠
, and Ce ∶= (Cr C̃2 −Cr).

The state and output of this system we denote by

z ∶=
⎛
⎜
⎝

x̃1

x̃2

x̃r

⎞
⎟
⎠

and e ∶= y − yr.

Since Ã and Ar are Hurwitz, Ae is Hurwitz, too. By this construction, we obtain

Ge(s) = Ce(sId −Ae)−1Be.

Lemma 4.10 Consider a system (1.1), which is a minimal realisation with Hurwitz matrix
A and pairwise distinct Hankel singular values σ1 > σ2 > . . . > σ` > 0 with multiplicities
n1, . . . , n`. Then for r = n − n` the inequality

∥Ge∥H∞ ≤ 2σ`

holds.
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Proof: We use the state transformation

T = 1

2

⎛
⎜
⎝

−Idr 0 Idr
0 2Idn`

0
Idr 0 Idr

⎞
⎟
⎠

with inverse T−1 =
⎛
⎜
⎝

−Idr 0 Idr
0 Idn`

0
Idr 0 Idr

⎞
⎟
⎠
.

This yields the transformed state

Tz =
⎛
⎜
⎝

xr − x̃1

2x̃2

xr + x̃1

⎞
⎟
⎠

and the transformed matrices

Ãe = TAeT−1 =
⎛
⎜
⎝

Ar −1
2Ã12 0

−1
2Ã21 Ã22 Ã21

0 1
2Ã12 Ar

⎞
⎟
⎠
, B̃e = TBe =

⎛
⎜
⎝

0

B̃2

Br

⎞
⎟
⎠
, C̃e = CeT−1 = (−2Cr C̃2 0).

Since the transfer function is invariant under state transformation, we obtain Ge(s) =
C̃r(sId − Ãe)B̃e. Now we augment B̃e and C̃e by setting

̃̃Be ∶=
⎛
⎜
⎝

0 σ`Σ
−1
1 CTr

B̃2 −C̃T2
Br 0

⎞
⎟
⎠
= (B̃e ̃̃B2) and ̃̃Ce = (−2Cr C̃2 0

0 −B̃T
2 −2σ`B

T
r Σ−1

1

) = (
C̃e
̃̃C2

)

and define
̃̃De = ( 0 2σ`Idn`

2σ`Idn`
0

) .

The transfer function for (Ãe, ̃̃Be, ̃̃Ce, ̃̃De) is

G̃e(s) = ̃̃Ce(sId−Ãe)−1 ̃̃Be+ ̃̃De =
⎛
⎝

Ge(s) C̃(sId − Ãe)−1 ̃̃B2 + 2σ`Idn`

̃̃C2(sId − Ãe)−1B̃ + 2σ`Idn`

̃̃C2(sId − Ãe)−1 ̃̃B2

⎞
⎠
.

From [Horn & Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994,
Theorem 3.1.2 and Corollary 3.1.3] it follows that the singular values of the submatrix
Ge(s) are less or equal than that of the full matrix G̃e(s), which implies

∥Ge∥H∞ ≤ ∥G̃e∥H∞ .

It thus suffices to show ∥G̃e∥H∞ ≤ 2σ`. To this end, we use that

̃̃Pe =
⎛
⎜
⎝

σ2
`Σ1

2σ`Idn`

Σ1

⎞
⎟
⎠

satisfies the equations

Ãe
̃̃Pe + ̃̃PeÃTe +

̃̃Be ̃̃BT
e = 0 (4.11)

̃̃Pe ̃̃CTe +
̃̃Be ̃̃DT

e = 0. (4.12)
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Here the second equation follows by direct computation and the first from (4.6) and the
fact that by our choice of r it holds that Σ2 = σ`Idn`

. Instead of computing the singular

values of G̃e(iω) directly, we compute the roots of the eigenvalues of G̃e(iω)G̃e(iω)
T
=

G̃e(iω)G̃e(−iω)T .

To this end we consider

G̃e(s)G̃e(−s)T = ( ̃̃Ce(sId − Ãe)−1 ̃̃Be + ̃̃De) ( ̃̃BT
e (−sId − ÃTe )−1 ̃̃CTe +

̃̃DT
e ) .

Since

(sId − (Ãe − ̃̃Be ̃̃BT
e

0 −Ãe
))

−1

= ((sId − Ãe)
−1 −(sId − Ãe)−1 ̃̃Be ̃̃BT

e (sId + Ãe)−1

0 (sId + Ãe)−1
) ,

G̃e(s)G̃e(−s)T is the transfer function for the matrices

(Ãe − ̃̃Be ̃̃BT
e

0 −Ãe
) ,

⎛
⎝

̃̃Be ̃̃DT
e

̃̃CTe

⎞
⎠
, ( ̃̃Ce − ̃̃De

̃̃BT
e ), ( ̃̃De

̃̃DT
e ).

Transforming these matrices with

T = (Id P̃
0 Id

) with inverse T−1 = (Id −P̃
0 Id

)

(which does not change the transfer function) and using (4.12) yields the matrices

(Ãe 0

0 −Ãe
) , (

0
̃̃CTe

) , ( ̃̃Ce 0), ̃̃De
̃̃DT
e .

This finally yields

G̃e(s)G̃e(−s)T = ( ̃̃Ce 0)((sId − Ãe)
−1 0

0 (sId + Ãe)−1)(
0
̃̃CTe

) + ̃̃De
̃̃DT
e

= ̃̃De
̃̃DT
e = (4σ2

` Idn`
0

0 4σ2
` Idn`

) .

Obviously, all eigenvalues of this matrix are equal to 4σ2
` , which implies that all singular

values of G̃e(s) are equal to 2σ` for all s ∈ C. This finishes the proof.

Remark 4.11 A more involved proof (see [1, Theorem 7.3]) shows that in fact ∥Ge∥H∞ =
2σ` holds.

This leads to the main theorem on the error of balanced truncation.

Theorem 4.12 Consider a system (1.1), which is a minimal realisation with Hurwitz
matrix A and pairwise distinct Hankel singular values σ1 > σ2 > σ` > 0 with multiplicities
n1, . . . , n`. Consider the reduced system (4.5) with r = n1 + . . . + nq for some q ∈ {1, . . . , ` −
1}. Then (4.5) has the pairwise distinct Hankel singular values σ1 > σ2 > σq > 0 with
multiplicities n1, . . . , nq and the transfer functions G of (1.1) and Gr of (4.5) satisfy

∥G −Gr∥H∞ ≤ 2
`

∑
k=q+1

σk.
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Proof: The statement about the Hankel singular values of (4.5) follows directly from the
construction of (4.5). Now by Gkr we denote the transfer function of the reduced system
(4.5) with r = n1 + . . . + nk. This implies that G = G`r and Gr = Gqr. Moreover, denoting
the corresponding matrices by (Akr ,Bk

r ,C
k
r ,D

k
r ), the construction of the reduced system

implies that (Akr ,Bk
r ,C

k
r ,D

k
r ) is the reduced system obtained from (Ak+1

r ,Bk+1
r ,Ck+1

r ,Dk+1
r )

by removing the singular value σk+1, as in the setting of Lemma 4.10. Hence, this lemma
applies to these systems. Using the triangle inequality and applying Lemma 4.10 to the
terms in the resulting sum we can thus estimate

∥G −Gr∥H∞ = ∥G`r −Gqr∥H∞

= ∥G`r −G`−1
r +G`−1

r − . . . +Gq+1
r −Gqr∥H∞

≤
`

∑
k=q+1

∥Gkr −Gk−1
r ∥H∞ ≤

`

∑
k=q+1

2σk.

This shows the claim.

Remark 4.13 It is also possible to prove the lower bound ∥G − Gr∥H∞ ≥ σr+1, see [1,
Lemma 8.14].

For the L∞ error of the output one can use the inequality

∥y − yr∥L∞ ≤ ∥G −Gr∥H2∥u∥L2 ,

which is proved in [1, Korollar 7.31]. The H2-norm of a transfer function can be computed
via

∥G∥H2 = trace(BTQB) = trace(CPCT ).
While balanced truncation does not guarantee that the H2-Norm of the difference of the
transfer function is small, we typically obtain a small value of this norm, which is, moreover,
easily verified after Gr is computed.

4.6 Numerical implementation

For most of the steps in Algorithm 4.7 there exist highly efficient standard algorithms
in almost every scientific programming environment like MATLAB or Python. While
the Choleski factorisation and the SVD are standard tasks in numerical linear algebra,
the solution of the Lyapunov equation in Step (1) is a somewhat more specific problem.
Here we briefly sketch the main ideas behind two popular algorithms for this task for the
Lyapunov equation

AX +XAT = F. (4.13)

Here we only consider symmetric F , which implies that the solution X is also symmetric.

First of all, it is not too difficult to rewrite a Lyapunov equation in vector form such that
standard linear solvers can be used for its solution. However, this is not a very efficient
method, because it leads to a system of linear equations with n2 unknowns (if we use that
X is symmetric, we still have n(n + 1)/2 = (n2 + n)/2 unknowns). Thus, if n is large, then
this becomes a huge system of equations. Given that balanced truncation (and, for that
matter, any model order reduction technique) is particularly needed when n is very large,
it is of utmost importance that we can solve Lyapunov equations in very high dimensions.
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The Bartels-Stewart Algorithm

A standard algorithm for this task, which is also implemented in MATLAB and Python,
is the Bartels-Stewart Algorithm from 1972. This algorithm is available in the con-
trol systems toolbox of MATLAB under the name lyap and in Python under the name
scipy.linalg.solve lyapunov.

In this algorithm the matrix A in (4.13) is first transformed into real Schur form (i.e., in
upper diagonal or quasi-upper diagonal form) by means of QR-transformations. Then the
transformed A, denoted by R = QTAQ, is of the form

R =
⎛
⎜⎜⎜
⎝

R11 R12 ⋯ R1`

R22 ⋯ R2`

⋱ ⋮
R``

⎞
⎟⎟⎟
⎠
= (R1 R2

R``
) ,

where the diagonal blocks Rjj are one or two dimensional, depending on whether the
corresponding eigenvalue is real or complex. Decomposing the transformed unknown X̃ =
QTXQ and the transformed right hand side F̃ = QTFQ in (4.13) accordingly, and using
the fact that X and F and thus X̃ and F̃ are symmetric, one then writes the equation
RX̃ + X̃RT = F̃ as

(R1 R2

R``
)(X1 X2

XT
2 X3

) + (X1 X2

XT
2 X3

)(R
T
1

RT2 RT``
) = (F1 F2

F T2 F3
) .

From this equation X3 can be computed easily, either by solving a scalar equation or by
solving a 3 × 3 system of linear equations. Once X3 is known, X2 can be computed via
backward substitution and the solution of small systems of linear equations (for details see
[1, Section 8.4.1]). When this is done, one proceeds with the equation

R1X1 +X1R
T
1 = F1,

which can be treated in the same way, leading to an induction in which all elements of X̃
are eventually computed. After retransformation, X = QX̃QT yields the result.

A variant of the Bartels-Stewart Algorithm is the Hammarling-Algorithm. This algorithm
does not compute X but directly computes the Cholesky factor Y in the Cholesky factori-
sation X = Y Y T . This means that this algorithm covers Steps (1) and (2) of Algorithm
4.7 in one step. Clearly, this is much more efficient. In the control systems toolbox of
MATLAB, this algorithm is available under the name lyapchol.

According to [1, Section 8.4], both the Bartels-Stewart Algorithm and the Hammarling-
Algorithm have a computational effort of order O(n3) and are applicable until around
n ≈ 10 000.

The ADI method

For even higher dimensions, the so-called ADI algorithm is more appropriate (ADI method
= Alternating Direction Implicit method). To derive this algorithm, equation (4.13) is
rewritten as

AX = −XAT + F. (4.14)
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A very simple idea would now be to perform the iteration

AXj+1 ∶= −XjA
T + F.

This iteration, however, does not guarantee the symmetry of Xj . This can be fixed by
performing a so-called ADI iteration (ADI = Alternating Direction Implicit). Before we
define what this is, we first make a modification to equation (4.14), which will yield an
acceleration of the convergence of the method. We add pX, p scalar, on both sides of
(4.14), leading to

(A + pId)X = −X(AT − pId) + F.

Since X =XT , we can rewrite this equation to

(A + pId)X = −XT (AT − pId) + F.

Now the ADI iteration uses these two equations alternatingly (hence the “A” in ADI) in
the following way: Starting from an initial guess X0, we compute

(A + pjId)Xj+1/2 ∶= −Xj(AT − pjId) + F
(A + pjId)Xj+1 ∶= −XT

j+1/2(A
T − pjId) + F.

There are systematic ways to compute factors pj for which this iteration converges quickly.

With a little bit of computation one verifies that the matrices Xj satisfy

Xj+1 = 2pj(A + pjId)−1F (AT + pjId)−1

+ (A + pjId)−1(A − pjId)XT
j (AT − pjId)(AT + pjId)−1.

(4.15)

From this one can conclude that the matrices Xj are symmetric if X0 and F are (although
the Xj+1/2 are not necessarily symmetric).

Clearly, each iteration requires the solution of two systems of linear equations, because
Xj+1/2 and Xj+1 are implicitly defined (hence the “I” in ADI). In order to make this more
efficient, the matrix A can first be transformed into real Schur form (as in the Bartels-
Stewart Algorithm). However, even with this transformation the algorithm in this basic
form is computationally not more efficient than Bartels-Stewart. The trick to make it
efficient lies in the observation that (4.15) implies that the rank of Xj satisfies

rank(Xj+1) ≤ rank(F ) + rank(Xj).

Abbreviating rF ∶= rank(F ), with the typical choice X0 = 0 this implies rank(Xj) ≤ jrF .
Given that the rank of F in the Lyapunov equations appearing in balanced truncation is
bounded by the dimension of the input and the output, which are typically quite small,
this means that Xj is a low-rank matrix as long as j does not become very large. It can
be written in the form

Xj = ZjZTj ,

with Zj ∈ Rn×jrF .
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The ADI iteration can now be rewritten as an iteration for the factors Zj if we assume
that F = −HHT , which is the case in balanced truncation. Inserting Xj = ZjZTj into (4.15)
yields

Zj+1Z
T
j+1 = −2pj(A + pjId)−1HHT (AT + pjId)−1

+ (A + pjId)−1(A − pjId)ZjZTj (AT − pjId)(AT + pjId)−1

= (
√
−2pj(A + pjId)−1H)(

√
−2pj(A + pjId)−1H)

T

+ ((A + pjId)−1(A − pjId)Zj)((A + pjId)−1(A − pjId)Zj)
T
,

implying that

Zj+1 = (
√
−2pj(A + pjId)−1H (A + pjId)−1(A − pjId)Zj).

Note that this procedure requires pj to be negative in order to avoid the use of complex
arithmetic. With a clever reformulation, it can be achieved that in each iteration only rF
columns in Zj+1 need to be computed, while the rest can be copied from Zj . Thus, while
the iteration still requires the solution of linear equation systems, the number of unknowns
is drastically reduced.

Moreover, Step (2) of Algorithm (4.7) becomes obsolete. Even though the product ZjZ
T
j

is not a Choleski factorisation of Xj , it can be used in place of Z resulting from Step (2),
because in the derivation of the algorithm only the identity X = ZZT is important, but
not necessarily that Z results from a Choleski factorisation.

This algorithm is implemented in the pymor package for model reduction in Python.

4.7 Approaches for non-Hurwitz A

One of the fundamental assumptions on our system (1.1) is that the matrix A is Hurwitz.
Indeed, this property was crucial for the proof of Theorem 4.1, which provides the basis
for computing the Gramians by solving Lyapunov equations.

However, many real-world problems and also many mathematically interesting problems—
such as the inverted pendulum from Example 2.1—have a non-Hurwitz A-matrix. Here we
briefly describe three approaches that can be used in this case.

Decomposition

For some models it may be possible, typically after a suitable coordinate transformation,
to guarantee that the matrix can be decomposed into the form

A = (A11 A12

A21 A22
)
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with A11 ∈ Rq×q for a small (compared to the overall dimension n) index q ∈ N and A22

being Hurwitz. We then define

x = (x
u

xs
) with xu =

⎛
⎜
⎝

x1

⋮
xq

⎞
⎟
⎠

and xs =
⎛
⎜
⎝

xq+1

⋮
xn

⎞
⎟
⎠

and decompose the overall system according to this splitting of x as

ẋ = (ẋ
u

ẋs
) = (A11 A12

A21 A22
)(x

u

xs
) + (B1

B2
)u

and (setting D = 0 for simplicity of exposition)

y = Cx = (C1 C2)x = C1x
u +C2x

s.

We can write this as two individual systems as follows

ẋu = A11x
u +A12x

s +B1u

yu = C1x
u

ẋs = A22x
s +A21x

u +B2u

ys = C2x
s.

Our goal is now to reduce the Hurwitz subsystem with state xs. When doing this, we need,
however, to take into account that the terms A21x

u and A12x
s are taken into account in

the model reduction, i.e., that these terms remain approximately the same after the model
reduction. To this end, we define

Cs = (C2

A12
) , Bs = (B2 A21)

and a new output and input

ŷs = Csxs = ( ys

A12x
s) , ûs = ( u

x2) ,

such that we can write

ẋs = A22x
s +Bsûs

ŷs = Csxs.

Now we can apply balanced truncation to this system and then re-assemble the full system
by combining the reduced model with the xu-system.

Pre-stabilization

The goal of a model reduction may be the application of optimal control, for which it may
be needed to reduce the dimension in order to arrive at a model for which the necessary
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computations can be performed (e.g., the solution of a Riccati equation). Another appli-
cation could be the computation of a complicated controller (e.g., for trajectory tracking
or robustification against perturbations), which may also only be possible for a sufficiently
small model.

In contrast to these tasks, the computation of a merely stabilising controller may be much
simpler and is often also feasible for very high-dimensional models. More concretely, assume
that we have a high-dimensional system (1.1) and a stabilising controller F . For simplicity
of exposition we assume that a state feedback can be implemented. In order to be able
to control the system despite the fact that the controller is used, we set the control to
u = Fx + û. This leads to the closed loop system

ẋ = Ax +BFx +Bû = (A +BF )x +Bû.

The new input û can then be used to compute an optimal controller, a tracking controller
etc. Since this system now has a Hurwitz matrix A + BF in place of A, it can now be
reduced by balanced truncation.

Shifting of the spectrum

A simple way of turning a non-Hurwitz matrix into a Hurwitz matrix is by subtracting λ0Id,
where λ0 > Reλ for all eigenvalues λ of A. Then the model reduction can be performed for
the matrix

Â = A − λ0Id,

which has the shifted eigenvalues λ − λ0. The resulting matrix Âr can be re-transformed
via

Ar = Âr + λ0Id.

This procedure works quite well in practice, but has the severe limitation that there is
usually no guarantee that a stabilizing controller for the reduced system will also stabilize
the full system.

LQG-Balanced Truncation

When we look at the derivation of the balanced truncation algorithm, we see that once
P and Q are computed, the rest of the algorithm can be performed without knowing
where these matrices came from. This means that we can define variants of the balanced
truncation algorithm by choosing different Gramians P and Q. A variant that is suitable
for non-Hurwitz A is to choose P and Q as the solutions of the algebraic Riccati equations

AP + PAT − PCTCP +BBT = 0

ATQ +QA −QBBTQ +CTC = 0.

The values xTPx and xTQx then characterise how “expensive” it is to reach a point x with
a trajectory converging to 0 as t → −∞ and, respectively, how expensive it is to control x
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to 0 for t → ∞, when an optimal control is used (see Chapters 6 and 7 in [4] for details).
Here the cost of the trajectory is measured by

∫
0

−∞
∥Cx(t, x0, u)∥2

2 + ∥u(t)∥2
2dt

and

∫
∞

0
∥Cx(t, x0, u)∥2

2 + ∥u(t)∥2
2dt,

respectively, i.e., it integrates the squared norm of the input and the output along the
respective trajectories.

A state x for which these two values are small contributes only very little to this cost, hence
the intuitive interpretation of these quantities is: when the task is to minimise this cost,
then states with small cost can be neglegted. Beyond this interpretation, one can show
that if P and Q are used in balanced truncation, then the resulting transfer functions of
the reduced and the full model are close in the so-called gap metric. Hence, this approach
is not only intuitively but also rigorously justified.

The main problem with this approach is that the solution of a Riccati equation is in
general quite costly and definitely much more complicated than the solution of a Lyapunov
equation. This means that it is in general difficult to use this approach for a very large
system.

4.8 Other model reduction techniques

In this final section we briefly describe a selection of other model reduction techniques.

Modal truncation

Modal truncation is a (very much) simplified version of balanced truncation. It relies
on the eigenvalues of A and reduced the system by projection to the eigenspaces of A
that correspond to the eigenvalues with largest real parts. One can show that when the
eigenvalues λr+1, . . . , λn are truncated, then the estimate

∥G −Gr∥H∞ ≤ ∥C2∥2∥B2∥2 max
λ∈{λr+1,...,λn}

1

∣Re(λ)∣

holds, where B2 and C2 are transformed versions of B and C using the transformation that
brings A into diagonal form (assuming that this is possible).

Proper orthogonal decomposition

Proper orthogonal decomposition (POD) can be seen as a nonlinear generalisation of sin-
gular value decomposition-based model reduction. The problem with nonlinear control
systems is, that the right hand side is not described by a matrix (or by matrices) and thus
there is not a canonical object that can be used for computing singular values.
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In order to generate a substitute for this matrix, one creates a large matrix Ψ containing
many (simulated) solutions — the rows of Ψ — evaluated at discrete time instants —
the column of Ψ. The hope is that then one can express any other solution at least
approximately as a linear combination of these solutions, i.e., as the image of the linear
map represented by Ψ. This is very often indeed the case, if the solutions contained in Ψ
are chosen appropriately. Then, the SVD-based approximation of Ψ by a low-rank matrix
as in Section 3.2 yields a low order model. Of course, this methods can be refined in many
ways.

A particular challenge for this method when addressing control problems is that a priori
one does not know which are the “good” control functions that need to be considered when
computing the solutions contained in Ψ.

Moment matching

A class of model reduction techniques that is completely different from eigenvalue or sin-
gular value-based approaches are interpolatory techniques. As the name already suggests,
these methods rely on interpolation methods, which are applied to the transfer function
G. More precisely, given k nodes s1, . . . , sk ∈ C and corresponding degrees pj ∈ N, the goal
is to find a reduced order system (Ar,Br,Cr,Dr) such that the resulting transfer function
G̃ satisfies the moment matching conditions

G(p)
r (sj) = G(p)(sj)

hold for all j = 1, . . . , k and p = 0, . . . , pj , where G(p) denotes the p-th derivative of G and
G(0) = G.

Since transfer functions are rational (matrix valued) functions, the algorithmic realisation of
this idea needs techniques from rational interpolation, also known as Padé-Approximation.
Efficient algorithms directly yield the matrics Ar, Br and Cr rather than only the transfer
function Gr. In contrast to balanced truncation (or modal truncation), for this method
one can obtain an error bound for the H2 norm ∥G −Gr∥H2 .



Chapter 5

Data driven model generation and
its use in model predictive control

August 9, 2021

In the first part of this chapter we will explain a purely data-driven approach to generate
a model for a nonlinear control system. We will show that this model can be rewritten in
the form (1.2), however, this requires the solution of an in general underdetermined system
of linear equations, which one would like to avoid. In the second part we will thus explain
how the model in its original form can be efficiently used in a model predictive control
algorithm.

5.1 Assumptions

There are many different ways to derive models from data. A very common approach is
that some physical insight into the controlled process is available, which allows to build a
model, but with unknown parameters. The measured data is then used in order to identify
the values in the model. Here we describe an approach that works entirely without any
a priori knowledge on the process and derives a model entirely based on the measured
output data of a discrete time control system. The approach relies on a theoretical result
by Willems, Rapisarda, Markovsky and De Moor published in [6]. We present it here using
the notation from the article [2] by Berberich, Köhler, Müller, and Allgöwer.

The basic assumption in this chapter is that the unknown model of the process to be
controlled is of the form (1.2). We note that every continuous-time system of the form
(1.1) satisfies this assumption if we proceed as follows: we fix a sampling time T > 0 and
the sampling instants tk = kT , k ∈ N. Then we consider control functions u ∈ U such that
u∣[tk,tk+1] is constant for each k ∈ N. Then, any solution x(t) of (1.1) satisfies xdt(k) = x(tk)
for the solution xdt of (1.2) with

Adt = eAT , Bdt = ∫
T

0
eA(T−t)Bdt.

Hence, although the approach we present is developed for discrete-time systems, it is readily
applicable in continuous time if we restrict ourselves to piecewise constant control inputs.

39
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The idea now is as follows: we run the process that we want to model over the (discrete)
time interval k = 0, . . . ,N −1 with a control sequence u = (u(0), . . . , u(N −1)) and measure
the output y(0), . . . , y(N − 1). Formally:

Definition 5.1 Given a transfer function G, we say that a pair of sequences (u, y) =
(u(k), y(k))k=0,...,N−1 is an input-output trajectory of G, if there exists a minimal realisation
(1.2) of G and an initial value x0, such that the corresponding solution satisfies

y(k) = Cx(k, x0, u) +Du(k) for k = 0, . . . ,N − 1.

We note that minimal realisations in discrete time are defined completely analogously as
in continuous time.

From such an input-output trajectory we then want to derive a model that completely
describes the process. We note that with this approach we only measure the input-output
behavior of the model, hence we will not be able to determine a state x of the system that
represents physical (or economic, chemical, . . . ) quantities. The state that we construct
here will be a purely auxiliary object with the only purpose to construct a system that
exactly reproduces the measures input-output behavior.

The sequences under consideration can be written in a particular matrix form according
to the following definition.

Definition 5.2 Consider a sequence z = (z(k))k=0,...,N−1 with z(k) ∈ Rp. Then for L ∈ N
with L ≤ N we define the Hankel matrix

HL(z) ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

z(0) z(1) ⋯ z(N −L)
z(1) z(2) ⋯ z(N −L + 1)
⋮ ⋮ ⋱ ⋮

z(L − 1) z(L) ⋯ z(N − 1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈ RpL× (N−L+1).

Moreover, for 0 ≤ a ≤ b ≤ N − 1 we define

z[a,b] ∶=
⎛
⎜
⎝

z(a)
⋮

z(b)

⎞
⎟
⎠
∈ Rp(b−a+1).

With this notation we can in particular write the Hankel matrix in the compact form

HL(z) = (z[0,L−1] z[1,L] ⋯ z[N−L,N−1]) .

In order to be able to derive a model from the measured values, the control input used for
generating the data needs to satisfy the following assumption.
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Definition 5.3 We say that a control sequence (u(k))k=0,...,N−1 with u(k) ∈ Rm is persis-
tently exciting of order L if

rank(HL(u)) =mL.

Since HL(u) ∈ RmL× (N−L+1), this means that the matrix has maximal row rank. We note
that this is only possible if N −L + 1 ≥mL, i.e., if N ≥ (m + 1)L − 1.

5.2 Characterisation of the solutions

The following main theorem of this first part of this chapter shows that with the data
from a single input-output trajectory with persistently exciting u we can characterise all
solutions of the control systems.

Theorem 5.4 Suppose the pair (ud, yd) = (ud(k), yd(k))k=0,...,N−1 is an input-output tra-
jectory of a transfer function G and ud = (ud(k))k=0,...,N−1 is persistently exciting of order
L + n, where n is the dimension of the minimal realisation of G. Then, any pair of se-
quences (u(k), y(k))k=0,...,L−1 is an input-output trajectory of G if and only if there exists
α ∈ RN−L+1 such that

⎛
⎝
HL(ud)
HL(yd)

⎞
⎠
α = (u

y
) (5.1)

for

u =
⎛
⎜
⎝

u(0)
⋮

u(L − 1)

⎞
⎟
⎠

and y =
⎛
⎜
⎝

y(0)
⋮

y(L − 1)

⎞
⎟
⎠
.

Proof: We first show that for any α ∈ RN−L+1 the expression

(û
ŷ
) =

⎛
⎝
HL(ud)
HL(yd)

⎞
⎠
α

defines an input-output trajectory. To see this, observe that each column u[i,i+L−1] of

HL(ud) together with the corresponding column y[i,i+L−1] of HL(ud) forms an input-output
trajectory of length L. By linearity of (1.2), for any two solutions x(k, x1, u1), x(k, x2, u2)
and any α1, α2 ∈ R the identity

α1x(k, x1, u1) + α2x(k, x2, u2) = x(k,α1x1 + α2x2, α1u1 + α2u2).

This and the definition of an input-output trajectory implies that the linear combinations

û =HL(ud)α =
N−L
∑
i=0

αiu[i,i+L−1], ŷ =HL(yd)α =
N−L
∑
i=0

αiy[i,i+L−1]

again a form an input-output trajectory. This shows the claim.
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Next we show that for any input-output trajectory (u, y) there is an α such that (5.1)
holds. To do this, since from the first part we already know that

im
⎛
⎝
HL(ud)
HL(yd)

⎞
⎠

is contained in the space of input-output trajectories of length L, it suffices to prove hat
the dimensions of these two spaces coincide.

Let xdk = x(k, x
d
0, u

d) be the state trajectory corresponding to the input-output trajectory.
Since the control system generating this trajectory is minimal, it is in particular control-
lable. Using this property, one can show that the matrix

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ud(0) ud(1) ⋯ ud(N −L)
ud(1) ud(2) ⋯ ud(N −L + 1)
⋮ ⋮ ⋱ ⋮

ud(L − 1) ud(L) ⋯ ud(N − 1)
xd0 xd1 ⋯ xdN−L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

has full row rank, i.e., rank mL+n. This is proved in Corollary 2 in [6] using sophisticated
algebraic techniques, which we will not reproduce here.

Now the columns of HL(yd) are of the form

⎛
⎜
⎝

yd(j)
⋮

yd(j +L − 1)

⎞
⎟
⎠
=
⎛
⎜
⎝

Cxdj +Dud(j)
⋮

Cxdj+L−1 +Dud(j +L − 1)

⎞
⎟
⎠

for j = 0, . . . ,N −L − 1. For the entries of these columns, the identity

Cxdj+k = C(Akxdj +Ak−1Bud(j) +Ak−2Bud(j + 1) + . . . +A0Bud(j + k − 1))

holds. This implies that HL(yd) can be written as

HL(yd) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

D 0 ⋯ ⋯ 0 C

CB D 0 ⋯ 0 CA

CAB CB ⋱ ⋱ 0 CA2

⋮ ⋱ ⋱ 0 ⋮
CAL−2B CAL−2B ⋯ CB D CAL−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

H̃,
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which in turn implies

⎛
⎝
HL(ud)
HL(yd)

⎞
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Id 0 ⋯ ⋯ ⋯ 0

0 Id 0 ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ 0 Id 0

D 0 ⋯ ⋯ 0 C

CB D 0 ⋯ 0 CA

CAB CB ⋱ ⋱ 0 CA2

⋮ ⋱ ⋱ 0 ⋮
CAL−2B CAL−3B ⋯ CB D CAL−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M

H̃.

The matrix M thus satisfies

rankM =mL + rank

⎛
⎜⎜⎜
⎝

C
CA
⋮

CAL−1

⎞
⎟⎟⎟
⎠
,

which is precisely the dimension of the space of input-output trajectories of length L. Since
H̃ has full row rank and thus defines a surjective linear map, the dimension of the image
of MH̃ also equals the dimension of the space of input-output trajectories. This finishes
the proof.

5.3 Reformulation as a standard model

Theorem 5.4 provides a characterisation of the sequences, but not yet a model of the
form (1.2) that yields the measured y as output. However, using the observability of the
minimal realisation (which we have not used in the proof of Theorem 5.4), we can arrive
at an explicit model.

To this end, choose L minimal with the property that

rank

⎛
⎜⎜⎜
⎝

C
CA
⋮

CAL−2

⎞
⎟⎟⎟
⎠
= n.

Since due to the observability we know that the rank of this matrix equals n for L−2 = n−1,
such an L must exist. Then we decompose M in the form

M = (M1

M2
)
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with M2 consisting of the last l rows of M . Then, similar as above, we can conclude that

rankM1 =mL + rank

⎛
⎜⎜⎜
⎝

C
CA
⋮

CAL−2

⎞
⎟⎟⎟
⎠
=mL + n.

Since this number coincides with the number of columns in M and M1, the matrix M1 has
full rank and its rank is identical with the rank of M . This means that the last m rows of
M depend linearly on the first rows, implying that M2 = ZM1 for a suitable matrix Z and
thus

⎛
⎝
HL(ud)
HL(yd)

⎞
⎠
= ( M1H̃

ZM1H̃
) .

Splitting

y =
⎛
⎜⎜⎜
⎝

y(0)
⋮

y(L − 2)
y(L − 1)

⎞
⎟⎟⎟
⎠
= ( y1

y(L − 1))

and using (5.1), we then obtain

⎛
⎜
⎝

u
y1

y(L − 1)

⎞
⎟
⎠
=
⎛
⎝
HL(ud)
HL(yd)

⎞
⎠
α = ( M1H̃α

ZM1H̃α
) .

This implies that

( u
y1

) =M1H̃α (5.2)

and thus

y(L − 1) = ZM1H̃α = Z ( u
y1

) = Z1u +Z2y1 = Z2

⎛
⎜
⎝

y(0)
⋮

y(L − 2)

⎞
⎟
⎠
+Z1u.

Now we define the state ŷ and control û at time k to be

ŷ(k) =
⎛
⎜
⎝

y(k)
⋮

y(k +L − 2)

⎞
⎟
⎠

and û(k) =
⎛
⎜
⎝

u(k)
⋮

u(k +L − 1)

⎞
⎟
⎠
.

Then we obtain

ŷ(k + 1) =
⎛
⎜
⎝

y(k + 1)
⋮

y(k +L − 1)

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 Id 0 . . . . . . 0
0 0 Id 0 . . . 0

⋮ ⋱ ⋱ ⋱ ⋮
0 . . . . . . 0 Id 0
0 . . . . . . . . . 0 Id

Z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Â

⎛
⎜
⎝

y(k)
⋮

y(k +L − 2)

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ŷ(k)

+
⎛
⎜
⎝

0
⋮
Z1

⎞
⎟
⎠

²
=∶B̂

û(k), (5.3)
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where all identity matrices Id are m ×m matrices. In conjunction with C = (Id 0 . . . 0),
which implies Cx(k) = y(k), this yields the standard description of a linear control system.

It is important to emphasize that one aspect of this control system is not entirely standard.
This is because û(k) in this description is not a single control vector but a sequence of
length L. Particularly, we have that

û(k) =
⎛
⎜
⎝

u(k)
⋮

u(k +L − 1)

⎞
⎟
⎠

and û(k + 1) =
⎛
⎜
⎝

u(k + 1)
⋮

u(k +L)

⎞
⎟
⎠
,

which implies that the first L−1 (vector) entires of u(k+1) are already determined at time
k by û(k) and only u(k + L) can be chosen freely. At time k = 0, the values û(0) = u =
(u(0), . . . , u(L − 1))T can be chosen freely.

The way of defining the control system shown in this section has the advantage that
reconstructing the state x(k) from the output measurements y(k) is almost trivial. It
suffices to collect L − 1 measurements y(k), . . . , y(k + L − 2) and stack them together to
obtain the state of the system. However, it requires the computation of the implicitly
defined matrices Z1, Z2, E1 and E2. Moreover, the way the control function enters is
somewhat unusual.

The minimality of L is not crucial for the construction. We would end up with a similar
system if we chose a larger L. In particular, L = n + 1 would always satisfy the rank
requirement.

If we look at system (5.3) componentwise, then we see that it computes y(k +L − 1) from
y(k), . . . , y(k + L − 2) and u(k), . . . , u(k + L − 1). If we carry out the construction with a
larger L′ > L but the same matrix M1, then the matrix M2 has (L′ −L + 1)m rows. Then
system (5.3) changes to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y(k + 1)
⋮

y(k +L − 1)
y(k +L)

⋮
y(k +L′ − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 Id 0 . . . . . . 0
0 0 Id 0 . . . 0

⋮ ⋱ ⋱ ⋱ ⋮
0 . . . . . . 0 Id 0
0 . . . . . . . . . 0 Id

Z ′
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜
⎝

y(k)
⋮

y(k +L − 2)

⎞
⎟
⎠
+
⎛
⎜
⎝

0
⋮
Z ′

1

⎞
⎟
⎠

⎛
⎜
⎝

u(k)
⋮

u(k +L′ − 1)

⎞
⎟
⎠
,

(5.4)
With this equation, we can compute y(k+L−1), . . . , y(k+L′−1) from y(k), . . . , y(k+L−2)
and u(k), . . . , u(k+L′ −1) in one shot, without having to iterate (5.3). As before, for k ≥ 1
the control values u(k), . . . , u(k + L − 2) are fixed from the previous time step. Note that
the persistency of excitation requirement on ud and yd becomes more demanding the larger
L′ becomes. Particularly, in order to compute Z ′

1 and Z ′
2, the larger L′ becomes, the longer

the sequences (ud) and (yd) must be.

5.4 Data-driven model predictive control

In this section we want to use the data-driven approach from the previous sections in model
predictive control (MPC). We recall from [4], that in MPC in each time step an optimal
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control problem over a time horizon N is solved, and the first element is applied to the
control system for the next time step. When combining this with the data-driven approach,
one could in principle use the standard model from the previous section. However, the
explicit derivation of this model can actually be avoided. In this section we describe the
approach from the paper [2], in which the explicit model is not needed. Here we first assume
that all measured data is exact, in order to explain the basic methodology. However, as
this is a highly idealised assumption, in the next section we explain an extension of the
approach that can deal with noisy data. For simplicity, the following exposition is for the
case of scalar y and u, i.e., m = l = 1.

Let us assume that (ud, yd) = (ud(k), yd(k))k=0,...,N−1 is an input-output trajectory of a
transfer function G and ud = (ud(k))k=0,...,N−1 is persistently exciting of order L+n, where
n is the dimension of the minimal realisation of G. Then, in view of Theorem 5.4, we can
write a cost functional for the input-output trajectories of the corresponding system as

JT (y0(⋅), u0(⋅), ȳ(⋅), ū(⋅), α) =
T−1

∑
k=0

`(ȳ(k), ū(k))

subject to the conditions

• y0(k) is defined for k = −n, . . . ,−1

• u0(k) is defined for k = −n, . . . ,−1,

• ȳ(k) and ū(k) are defined for k = −n, . . . , T − 1 and satisfy ȳ[−n,−1] = y0[−n,−1] as well
as ū[−n,−1] = u0[−n,−1].

• α ∈ RN−T−n+1,

and

⎛
⎝
HT+n(ud)
HT+n(yd)

⎞
⎠
α = (ū

ȳ
) .

The interpretation of the ingredients of this formulation are as follows:

• T ∈ N is the optimization horizon of the optimal control problem. This is usually
denoted by “N” in MPC, but N already has a different meaning in this chapter as
the length of the sequences (ud, yd).

• y0(⋅) are the past values of the output. In the representation of Section 5.3, y0 plays
the role of the vector ŷ(k)

• u0(⋅) is the control sequence from the previous steps. It represents the part of the
control sequence that cannot be chosen freely.

• (u, y) is the input-output trajectory from (5.1) for α ∈ RN−T−n+1 in the argument of
JT . For past times, the trajectory coincides with (u0, y0).
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Theorem 5.4 guarantees that the constraints are satisfied exactly by all possible input-
output trajectories (u, y) that start in y0 and are compatible with the previously chosen
control values u0. The setting corresponds to the control system (5.4) with L = n + 1 and
L′ = T + n. Since Theorem 5.4 requires persistency of excitation of order L′ + n, for the
optimization problem to be well defined we need a sequence ud that is persistently exciting
of order T + 2n.

We only consider a relatively simple MPC scheme, in which the goal of the optimization is
to drive the output y to a desired equilibrium value ys with corresponding control us. We
say that (ys, us) is an equilibrium of the system, if the sequences (ysT ) ∶= (ys, ys, . . . , ys),
(usT ) ∶= (us, us, . . . , us) of length T ∈ N form an input-output trajectory for each T ∈ N.

The cost function is then chosen as

`(y, u) = ∥y − ys∥2
R + ∥u − us∥2

Q,

where ∥x∥P =
√
xTPx for a matrix P of appropriate dimension and R and Q are symmetric

and positive definite matrices. In addition, we require constraints y ∈ Y, u ∈ U.

In order to guarantee stability of the scheme, we impose an equilibrium terminal contraint,
i.e., we optimize over those trajectories that end up in the equilibrium. This is the simplest
way to design an MPC scheme with provable stability properties. Inequality terminal
constraints and also schemes entirely without terminal constraints are also possible (cf.
[4]), but require a more involved stability analysis, which we would like to avoid here for
the sake of brevity. Since the initial condition y0 and the initial controls u0 are sequences of
length n, we also require the equilibrium condition for n consecutive outputs and controls.
Overall, this leads to the following optimal control problem.

At time t ∈ N, consider the past inputs and outputs uMPC(0), . . . , uMPC(t − 1) and
yMPC(0), . . . , yMPC(t − 1) of the MPC closed loop. Set u0(k) ∶= uMPC(t + k) and
y0(k) ∶= yMPC(t + k) for k = −n, . . . ,−1. Then solve the optimization problem

min
α,ū,ȳ

JT (y0(⋅), u0(⋅), ȳ(⋅), ū(⋅), α) =
T−1

∑
k=0

`(ȳ(k), ū(k)) (5.5)

with α ∈ RN−T−n+1, (ū(−n), . . . , ū(T − 1)) ∈ Rm(T+n), (ȳ(−n), . . . , ȳ(T − 1)) ∈ Rl(T+n),
subject to the conditions

⎛
⎝
HT+n(ud)
HT+n(yd)

⎞
⎠
α = (ū

ȳ
) ,

(ū[−n,−1]
ȳ[−n,−1]

) = (u0[−n,−1]
y0[−n,−1]

) ,

(ū[T−n,T−1]
ȳ[T−n,T−1]

) = (u
s
n

ysn
) , (5.6)

ū(k) ∈ U and ȳ(k) ∈ Y for all k = 0, . . . , T − 1.
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As usual, the first element of the optimal control sequence ū⋆ is used as control value for
the next step. This means that we set

uMPC(t) ∶= ū⋆(0) and yMPC(t) ∶= ȳ⋆(0). (5.7)

We note that we need to start the process to be controlled at time t = −n, in order to enable
the initialisation of u0(0), . . . , u0(n − 1). This requires to define a rule for initialising the
values uMPC(−n), . . . , uMPC(−1). A standard choice would be to set these values to us.

From now on, we fix an arbitrary minimal realisation of the control system with state
x ∈ Rn. Then there is a unique state trajectory xMPC(⋅) corresponding to uMPC(⋅) and
yMPC(⋅)1.

We now consider the situation (and notation) of Definition 5.1 for this minimal realisation.
The following lemma gives a property of the map mapping x0 and u(⋅) to y(⋅) and u(⋅).

Lemma 5.5 Let p ≥ n − 1 and let (u(⋅), y(⋅)) be the input-output trajectory of length p
corresponding to initial value x0 ∈ Rn and u(⋅) according to Definition 5.1. Then the map

E(x0, u(0), . . . u(p)) ∶= (y(0), . . . , y(p), u(0), . . . , u(p))

is linear and injective. Particularly, there is a constant η > 0 with

∥y(0), . . . , y(p), u(0), . . . , u(p)∥ ≥ η∥x0, u(0), . . . u(p)∥.

Proof: Linearity of E is immediate from the fact that the solution x(k;x0, u) of a linear
control system depends linearly on (x0, u(⋅)). We abbreviate v = (x0, u(0), . . . u(p)), w =
(y(0), . . . , y(p), u(0), . . . , u(p)), implying Ev = w. Now observe that injectivity, i.e., the
fact that Ev ≠ 0 for all v ≠ 0, implies that η ∶= min∥v∥=1 ∥E(v)∥ ≠ 0. For v ≠ 0 this implies

∥Ev∥ = ∥v∥ ∥E v

∥v∥
∥ ≥ ∥v∥η

and thus the claimed inequality. For v = 0, this inequality is immediately clear.

Injectivity now follows from the fact that by observability y(0) = . . . = y(p) = 0 and
u(0) = . . . = u(p) = 0 imply x0 = 0. Hence, if v ≠ 0 then either u(k) ≠ 0 for some
k ∈ {0, . . . , p} and thus Ev ≠ 0, or x0 ≠ 0, implying y(k) ≠ 0 for some k ∈ {0, . . . , p} and thus
again Ev ≠ 0.

This lemma has two important consequences. First, it shows that for each input-output
trajectory (u, y) of length ≥ n there is a unique initial state x0 for any minimal realization
of the control system. This also implies that for each pair u0, y0 in the argument of JT
there is a unique x0 such that the solution x(⋅) corresponding to u0 and y0 (which is
defined for k = −n, . . . ,0) satisfies x(0) = x0. Conversely, from x(0) and ū(⋅) the output

1In the Mathematical Control Theory lecture [4], we have always expressed uMPC(t) as µT (xMPC(t)),
in order to emphasise its feedback character. Since the state is only an auxiliary quantity here and not
present in the MPC scheme, we use the different notation here.
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ȳ(⋅) can be uniquely determined. We may therefore write JT (x0, ȳ(⋅), ū(⋅), α) instead of
JT (y0(⋅), u0(⋅), ȳ(⋅), ū(⋅), α).
Second, the inequality from the lemma implies that for T ≥ n we get

JT (x0, ȳ(⋅), ū(⋅), α) =
T−1

∑
k=0

`(ȳ(k), ū(k)) ≥
n−1

∑
k=0

`(ȳ(k), ū(k))

≥ C∥ȳ(0) − ys, . . . , ȳ(n − 1) − ys, ū(0) − us, . . . , ū(n − 1) − us∥2

≥ η2C∥x0 − xs∥2.

Here we used that E maps v − (xs, usp) to w − (ysp, usp), where xs is the state equilibrium

corresponding to us, ys. We abbreviate C1 = η2C.

We now assume that there is also a similar lower bound. To this end, we first need to make
the following definition.

Definition 5.6 The feasible set XT for the control system is the set of all initial con-
ditions x0 ∈ Rn for which there is a control sequence u of length T with u(k) ∈ U,
y(k) = Cx(k, x0, u) ∈ Y for all k = 0, . . . , T − 1, and (5.6).

Assumption 5.7 We assume that there is a constant C2 > 0 such that optimal value
function

VT (x0) ∶= min
α,ū,ȳ

JT (x, ȳ(⋅), ū(⋅), α),

where the minimisation is subject to all the constraints defined after (5.5), satisfies the
inequality

VT (x0) ≤ C2∥x0 − xs∥2

for all x0 ∈ XT .

Without any constraints, this inequality can easily be concluded from the stabilisability of
the system, which follows from its controllability. However, with the constraints on y and
u it needs to be assumed separately.

The following theorem shows the main qualitative properties of the MPC closed loop.

Theorem 5.8 Consider the MPC scheme based on the optimisation problem (5.5), with
ud being persistently exciting of order T + 2n. Assume that the optimal value function
satisfies Assumption (5.7). Then on the feasible set XT the MPC closed loop is recursively
feasible, satisfies all constraints, and is exponentially stable.

Proof: Observe that for any trajectory satisfying the constraints, the terminal condition
together with observability implies that x(T −1, x0, ū) = xs. This implies that by prolonging
the control sequence with ū(T ) = us, we obtain x(T,x0, ū) = xs and thus (ū(T ), ȳ(T )) =
(us, ys). Hence, the control sequence ũ(⋅) = (ū(1), . . . , ū(T )) satisfies all the constraints
for initial condition x̃0 = x(1, x0, ū). This shows that xMPC(t) ∈ XT if xMPC(t − 1) ∈ XT
and thus recursive feasibility. Constraint satisfaction of the MPC closed loop is then
straightforward.
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In order to show asymptotic stability, consider the optimal value function VT . From the
considerations after Lemma 5.5 and Assumption 5.7, VT has quadratic upper and lower
bounds. Moreover, using the control function ũ⋆ from the previous construction with the
optimal control ū⋆ in place of ū, we obtain

VT (xMPC(t + 1)) − VT (xMPC(t))
≤ JT (x(1, x0, ū

⋆), ũ⋆) − JT (x0, ū
⋆)

≤
T−1

∑
j=0

`(Cx(k + 1, x0, ū
⋆), ū⋆(k + 1)) −

T−1

∑
j=0

`(Cx(k, x0, ū
⋆), ū⋆(k))

= `(Cx(T,x0, ū
⋆), ū⋆(T ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=`(xs,us)=0

− `(Cx(0, x0, ū
⋆), ū⋆(0))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=`(yMPC(t),uMPC(t))

= −`(yMPC(t), uMPC(t)) ≤ 0.

Thus, t↦ VT (xMPC(t)) is non-increasing. By Lemma 5.5 and Assumption 5.7 we moreover
obtain

VT (xMPC(t + n)) − VT (xMPC(t)) ≤ −
t−n−1

∑
k=t

`(yMPC(t), uMPC(t))

≤ −η2C∥xMPC(t) − xs∥2 ≤ −C3VT (xMPC(t)).

By induction this implies that p↦ VT (xMPC(np)) decreases exponentially and since VT is
non-increasing along the solution, t↦ VT (xMPC(t)) also decreases exponentially fast, i.e.,
there are C > 0 and σ ∈ (0,1) with

VT (xMPC(t)) ≤ CσtVT (xMPC(0)).

Then the quadratic bounds on VT imply that

∥xMPC(t) − xs∥ ≤
√

1

C1
VT (xMPC(t)) ≤

√
1

C1
CσtVT (xMPC(0))

≤
√

C2

C1
Cσt∥xMPC(0)) − xs∥2 =

√
C2

C1
C
√
σ
t∥xMPC(0)) − xs∥,

i.e., the claimed exponential stability.

Besides the fact that the proposed MPC scheme runs entirely on the basis of data, i.e.,
without using any first principle laws (e.g., from physics), another remarkable feature of
this MPC scheme is that it only requires output values for setting up the optimal control
problem, but no state information. This means, there is no need to construct an observer
in order to estimate the state xMPC(t) from the output values yMPC [0,t∣.

A potential disadvantage is that in order to start the scheme we first need n measurements
and n control values from t = −n to t = −1 to start the first optimisation. As already
mentioned, the control values uMPC(−n), . . . , uMPC(−1) need to be determined by some
other rule. We note that the choice of these values determines the value xMPC(0), which
appears on the right hand side of the exponential stability estimate. A bad choice of
these values can lead to a large norm ∥xMPC(0))− xs∥ and thus to a large constant in the
exponential stability estimate.
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With similar techniques as in the lecture on Mathematical Control Theory [4], one could
also derive estimates for the performance

∞
∑
t=0

`(yMPC(t), uMPC(t)),

but we will not go into details about this aspect here.

5.5 A robust variant

In practice, the data obtained from measurements of real systems is never absolutely exact,
but subject to so-called measurement noise. In the approach here, this concerns the entries
of the vector yd (and thus of the matrix HT+n(yd) in the constraints of the optimal control
problem) and the past values yMPC , which in practice are not obtained from simulation as
in (5.7) but also from real measurements. In order to reflect this effect in the notation, we
denote the noisy values with ỹd and ỹMPC . Since the values of ỹMPC determine the initial
values y0, we also denote these by ỹ0.

The effect of the noisy values on the optimal control problem (5.5) is that the constraints
may not be feasible anymore, because yMPC(⋅) is not compatible with yd. This implies
that the first constraint of the problem, i.e.,

⎛
⎝
HT+n(ud)
HT+n(ỹd)

⎞
⎠
α = (ū

ȳ
)

may not be compatible with the second constraint, i.e., with

(ū[−n,−1]
ȳ[−n,−1]

) = (u0[−n,−1]
ỹ0[−n,−1]

) .

However, since the deviation of the measured values ỹ from the exact values y are typically
small, it should still be possible to satisfy these two equations approximately. This idea is
the basis for the following “robust” modification of (5.5).

The modifications compared to (5.5) are the following:

• A slack variable σ with the same dimension as ȳ is introduced, which allows for a
relaxation of the first constraint.

• The slack variable is included in the objective, in order to ensure it remains small.

• The coefficient vector α is also included in the objective, in order to avoid the “over-
fitting” phenomenon. The penalisation of α involves a parameter ε > 0, which should
satisfy ε ≥ ∥y − ỹ∥ for all measurements used in the computation.

• A “compatibility condition” between σ and α is added to the constraints. This
depends on the same ε as the penalisation of α.
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At time t ∈ N, consider the past inputs and outputs uMPC(0), . . . , uMPC(t − 1) and
ỹMPC(0), . . . , ỹMPC(t − 1) of the MPC closed loop. Set u0(k) ∶= uMPC(t + k) and
ỹ0(k) ∶= ỹMPC(t + k) for k = −n, . . . ,−1. Then solve the optimization problem

min
α,ū,ȳ,σ

JT (ỹ0(⋅), u0(⋅), ȳ(⋅), ū(⋅), α, σ) =
T−1

∑
k=0

[`(ȳ(k), ū(k)) + λσ∥σ(k)∥] + λαε∥α∥ (5.8)

with α ∈ RN−T−n+1, (ū(−n), . . . , ū(T − 1)) ∈ Rm(T+n), (ȳ(−n), . . . , ȳ(T − 1)) ∈ Rl(T+n),
subject to the conditions

⎛
⎝
HT+n(ud)
HT+n(yd)

⎞
⎠
α = ( ū

ȳ + σ) ,

(ū[−n,−1]
ȳ[−n,−1]

) = (u0[−n,−1]
ỹ0[−n,−1]

) ,

(ū[T−n,T−1]
ȳ[T−n,T−1]

) = (u
s
n

ysn
) ,

∥σ(k)∥∞ ≤ ε(1 + ∥α∥1), k = 0, . . . , T − 1

ū(k) ∈ U and ȳ(k) ∈ Y for all k = 0, . . . , T − 1.

For this optimal control problem one can prove that the optimal value function satisfies
quadratic bounds, similar to the ones given before and in Assumption 5.7, of the form

C1∥x0 − xs∥2 ≤ VT (x0) ≤ C2∥x0 − xs∥2 +C3ελσ.

Similarly to the upper bound, the bound on the decrease VT (xMPC(t+n))−VT (xMPC(t))
also has an additional term of the form C4(ε+ε2). However, this estimate is only obtained
if the first n entries of the optimal control sequence are applied in the MPC scheme in
each step (as opposed to only the first entry, as usual). This way of implementing MPC is
called “n-step MPC”.

For the n-step MPC scheme this implies a practical exponential convergence estimate of
the form

∥xMPC(t) − xs∥ ≤ max{Cσt∥xMPC(0) − xs∥, β(ε)},

where β(ε) is a polynomial in ε. This inequality holds for all initial values with ∥xMPC(0)−
xs∥ ≤ ∆(ε), where ∆(ε)→∞ as ε→ 0.

This means that the measurement noise, represented here by its amplitude ε > 0, determines
both the neighborhood of xs to which the solutions converge and the set of initial conditions
for which the convergence holds.
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— Master.

[2] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, Data-driven model
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[3] L. Grüne, Vertiefung der Numerischen Mathematik. Vorlesungsskript, Univer-
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