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(1) Introduction

What is Model Predictive Control (MPC)?



Setup
We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x0

or, briefly
x+ = f(x, u)

with x ∈ X, u ∈ U

we consider discrete time systems for simplicity of
exposition
continuous time systems can be treated by using the
discrete time representation of the corresponding sampled
data system or a numerical approximation
X and U depend on the model. These may be Euclidean
spaces Rn and Rm or more general (e.g., infinite
dimensional) spaces. For simplicity of exposition we
assume that we have a norm ‖ · ‖ on both spaces
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Prototype Problem
Assume there exists an equilibrium x∗ ∈ X for u = 0, i.e.

f(x∗, 0) = x∗

Task: stabilize the system

x+ = f(x, u)

at x∗ via static state feedback, i.e., find µ : X → U , such that
x∗ is asymptotically stable for the feedback controlled system

xµ(n+ 1) = f(xµ(n), µ(xµ(n))), xµ(0) = x0

Additionally, we impose state constraints xµ(n) ∈ X
and control constraints µ(x(n)) ∈ U

for all n ∈ N and given sets X ⊆ X, U ⊆ U

Lars Grüne, Nonlinear Model Predictive Control, p. 5
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Prototype Problem

Asymptotic stability means

Attraction: xµ(n)→ x∗ as n→∞
plus

Stability: Solutions starting close to x∗ remain close to x∗

(we will later formalize this property using KL functions)

Informal interpretation: control the system to x∗ and keep it
there while obeying the state and control constraints

Idea of MPC: use an optimal control problem which minimizes
the distance to x∗ in order to synthesize a feedback law µ
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The idea of MPC
For defining the MPC scheme, we choose a stage cost `(x, u)
penalizing the distance from x∗ and the control effort, e.g.,
`(x, u) = ‖x− x∗‖2 + λ‖u‖2 for λ ≥ 0

The basic idea of MPC is:

minimize the summed stage cost along trajectories
generated from our model over a prediction horizon N

use the first element of the resulting optimal control
sequence as feedback value

repeat this procedure iteratively for all sampling instants
n = 0, 1, 2, . . .

Notation in what follows:

general feedback laws will be denoted by µ

the MPC feedback law will be denoted by µN
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Lars Grüne, Nonlinear Model Predictive Control, p. 7



The basic MPC scheme
Formal description of the basic MPC scheme:

At each time instant n solve for the current state xµN (n)

minimize
u admissible

JN(xµN (n),u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = xµN (n)

(u admissible ⇔ u ∈ UN and xu(k) ∈ X)

 optimal trajectory x?(0), . . . , x?(N)

with optimal control u?(0), . . . ,u?(N − 1)

Define the MPC feedback law µ(xµN (n)) := u∗(0)

 xµN (n+ 1) = f(xµN (n), µN (xµN (n))) = f(xµN (n),u
?(0)) = x?(1)
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MPC from the trajectory point of view

n

x

0 1 2 3 4 5 6

x0

black = predictions (open loop optimization)
red = MPC closed loop, xn = xµN (n)
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MPC from the trajectory point of view
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x
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MPC from the trajectory point of view
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MPC from the trajectory point of view

n

x

0 1 2 3 4 5 6

...

x4

black = predictions (open loop optimization)
red = MPC closed loop, xn = xµN (n)
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MPC from the trajectory point of view

n

x

0 1 2 3 4 5 6

...

...
x5

black = predictions (open loop optimization)
red = MPC closed loop, xn = xµN (n)
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MPC from the trajectory point of view
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Model predictive control (aka Receding horizon control)

Idea first formulated by A.I. Propoi in 1963

, often rediscovered

used in industrial applications since the mid 1970s, mainly for
constrained linear systems [Qin & Badgwell, 1997, 2001]

more than 9000 industrial MPC applications in Germany
counted in [Dittmar & Pfeifer, 2005]

development of theory since ∼1980 (linear), ∼1990 (nonlinear)

seminal paper: [D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M.

Scokaert, Constrained model predictive control: stability and

optimality, Automatica, 36(2000), 789–814]

Central questions:

When does MPC stabilize the system?

How good is the performance of the MPC feedback law?

How long does the optimization horizon N need to be?

and, of course, the development of good algorithms (not topic of this course)
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Lars Grüne, Nonlinear Model Predictive Control, p. 10



Model predictive control (aka Receding horizon control)

Idea first formulated by A.I. Propoi in 1963, often rediscovered

used in industrial applications since the mid 1970s, mainly for
constrained linear systems [Qin & Badgwell, 1997, 2001]

more than 9000 industrial MPC applications in Germany
counted in [Dittmar & Pfeifer, 2005]

development of theory since ∼1980 (linear), ∼1990 (nonlinear)

seminal paper: [D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M.

Scokaert, Constrained model predictive control: stability and

optimality, Automatica, 36(2000), 789–814]

Central questions:

When does MPC stabilize the system?

How good is the performance of the MPC feedback law?

How long does the optimization horizon N need to be?

and, of course, the development of good algorithms (not topic of this course)

Lars Grüne, Nonlinear Model Predictive Control, p. 10
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x+1 = sin(ϕ+ u)

x+2 = cos(ϕ+ u)/2

with ϕ =

{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0,

X = {x ∈ R2 : ‖(x1, 2x2)T‖ = 1}, U = [0, umax]

x∗ = (0,−1/2)T , x0 = (0, 1/2)T

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2 yields
asymptotic stability for N = 11 but not for N ≤ 10
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Summary of Section (1)

MPC is an online optimal control based method for
computing stabilizing feedback laws

MPC computes the feedback law by iteratively solving
finite horizon optimal control problems using the current
state x0 = xµN (n) as initial value

the feedback value µN(x0) is the first element of the
resulting optimal control sequence

MPC can considerably reduce the computation time
needed for solving infinite horizon optimal control
problems, up to real time capability
 model reduction in time

the car-and-mountain example shows that MPC does not
always yield an asymptotically stabilizing feedback law
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Lars Grüne, Nonlinear Model Predictive Control, p. 12



Summary of Section (1)

MPC is an online optimal control based method for
computing stabilizing feedback laws

MPC computes the feedback law by iteratively solving
finite horizon optimal control problems using the current
state x0 = xµN (n) as initial value

the feedback value µN(x0) is the first element of the
resulting optimal control sequence

MPC can considerably reduce the computation time
needed for solving infinite horizon optimal control
problems, up to real time capability

 model reduction in time

the car-and-mountain example shows that MPC does not
always yield an asymptotically stabilizing feedback law
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(2a) Background material:

Lyapunov functions



Purpose of this section
We introduce Lyapunov functions as a tool to rigorously verify
asymptotic stability

In the subsequent sections, this will be used in order to
establish asymptotic stability of the MPC closed loop

In this section, we consider discrete time systems without
input, i.e.,

x+ = g(x)

with x ∈ X or, in long form

x(n+ 1) = g(x(n)), x(0) = x0

(later we will apply the results to g(x) = f(x, µN (x)))

Note: we do not require g to be continuous

Lars Grüne, Nonlinear Model Predictive Control, p. 14
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Comparison functions
For R+

0 = [0,∞) we use the following classes of comparison
functions

K :=

{
α : R+

0 → R+
0

∣∣∣∣ α is continuous and strictly
increasing with α(0) = 0

}

K∞ :=
{
α : R+

0 → R+
0

∣∣∣α ∈ K and α is unbounded
}

KL :=

β : R+
0 × R+

0 → R+
0

∣∣∣∣∣∣∣∣
β is continuous,
β(·, t) ∈ K for all t ∈ R+

0

and β(r, ·) is strictly de-
creasing to 0 for all r ∈ R+

0


Lars Grüne, Nonlinear Model Predictive Control, p. 15



Asymptotic stability revisited

A point x∗ is called an equilibrium of x+ = g(x) if g(x∗) = x∗

A set Y ⊆ X is called forward invariant for x+ = g(x) if
g(x) ∈ Y holds for each x ∈ Y

We say that x∗ is asymptotically stable for x+ = g(x) on a
forward invariant set Y if there exists β ∈ KL such that

‖x(n)− x∗‖ ≤ β(‖x(0)− x∗‖, n)

holds for all x ∈ Y and n ∈ N

How can we check whether this property holds?

Lars Grüne, Nonlinear Model Predictive Control, p. 16
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Lyapunov function

Let Y ⊆ X be a forward invariant set and x∗ ∈ X. A function
V : Y → R+

0 is called a Lyapunov function for x+ = g(x) if
the following two conditions hold for all x ∈ Y :

(i) There exists α1, α2 ∈ K∞ such that

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖)

(ii) There exists αV ∈ K such that

V (x+) ≤ V (x)− αV (‖x− x∗‖)

Lars Grüne, Nonlinear Model Predictive Control, p. 17



Stability theorem

Theorem: If the system x+ = g(x) admits a Lyapunov
function V on a forward invariant set Y , then x∗ is an
asymptotically stable equilibrium on Y

Idea of proof: V (x+) ≤ V (x)− αV (‖x− x∗‖) implies that V
is strictly decaying along solutions away from x∗

This allows to construct β̃ ∈ KL with V (x(n)) ≤ β̃(V (x(0)), n)

The bounds α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖) imply that
asymptotic stability holds with β(r, t) = α−11 (β̃(α2(r), t))

Lars Grüne, Nonlinear Model Predictive Control, p. 18
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Lyapunov functions — discussion

While the convergence x(n)→ x∗ is typically non-monotone
for an asymptotically stable system, the convergence
V (x(n))→ 0 is strictly monotone

It is hence sufficient to check the decay of V in one time step

 it is typically quite easy to check whether a given function
is a Lyapunov function

But it is in general difficult to find a candidate for a Lyapunov
function

For MPC, we will use the optimal value functions which we
introduce in the next section

Lars Grüne, Nonlinear Model Predictive Control, p. 19
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(2b) Background material:

Dynamic Programming



Purpose of this section

We define the optimal value functions VN for the optimal
control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

used within the MPC scheme (with x0 = xµN (n))

We present the dynamic programming principle, which
establishes a relation for these functions and will eventually
enable us to derive conditions under which VN is a Lyapunov
function

Lars Grüne, Nonlinear Model Predictive Control, p. 21
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Optimal value functions

We define the optimal value function

VN(x0) := inf
u admissible

JN(x0,u)

setting VN(x0) :=∞ if x0 is not feasible, i.e., if there is no
admissible u (recall: u admissible ⇔ xu(k) ∈ X, u(k) ∈ U)

An admissible control sequence u? is called optimal, if

JN(x0,u
?) = VN(x0)

Note: an optimal u? does not need to exist in general. In the
sequel we assume that u? exists if x0 is feasible

Lars Grüne, Nonlinear Model Predictive Control, p. 22
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Lars Grüne, Nonlinear Model Predictive Control, p. 22



Optimal value functions

We define the optimal value function

VN(x0) := inf
u admissible

JN(x0,u)

setting VN(x0) :=∞ if x0 is not feasible, i.e., if there is no
admissible u (recall: u admissible ⇔ xu(k) ∈ X, u(k) ∈ U)

An admissible control sequence u? is called optimal, if

JN(x0,u
?) = VN(x0)

Note: an optimal u? does not need to exist in general. In the
sequel we assume that u? exists if x0 is feasible
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Dynamic Programming Principle
Theorem: (Dynamic Programming Principle) For any feasible
x0 ∈ X the optimal value function satisfies

VN(x0) = inf
u∈U

f(x0,u)∈X

{`(x0, u) + VN−1(f(x0, u))}

Moreover, if u? is an optimal control, then

VN(x0) = `(x0,u
∗(0)) + VN−1(f(x0,u

?(0)))

holds.

Idea of Proof: Follows by taking infima in the identity

JN(x0,u) = `(xu(0),u(0)) +
N−1∑
k=1

`(xu(k),u(k))

= `(x0,u(0)) + JN−1(f(x0,u(0)),u(·+ 1))

Lars Grüne, Nonlinear Model Predictive Control, p. 23



Dynamic Programming Principle
Theorem: (Dynamic Programming Principle) For any feasible
x0 ∈ X the optimal value function satisfies

VN(x0) = inf
u∈U

f(x0,u)∈X

{`(x0, u) + VN−1(f(x0, u))}

Moreover, if u? is an optimal control, then

VN(x0) = `(x0,u
∗(0)) + VN−1(f(x0,u

?(0)))

holds.

Idea of Proof: Follows by taking infima in the identity

JN(x0,u) = `(xu(0),u(0)) +
N−1∑
k=1

`(xu(k),u(k))

= `(x0,u(0)) + JN−1(f(x0,u(0)),u(·+ 1))
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Corollaries
Corollary: Let x? be an optimal trajectory of length N with
optimal control u? and x?(0) = x.

Then

(i) The “tail” (
x?(k), x?(k + 1), . . . , x?(N − 1)

)
is an optimal trajectory of length N − k.

(ii) The MPC feedback µN satisfies

µN(x) ∈ argmin
u∈U

{`(x, u) + VN−1(f(x, u))}

(i.e., u = µN (x) minimizes this expression),

VN(x) = `(x, µN(x)) + VN−1(f(x, µN(x)))

and
u?(k) = µN−k(x

?(k)), k = 0, . . . , N − 1

Lars Grüne, Nonlinear Model Predictive Control, p. 24
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(i) The “tail” (
x?(k), x?(k + 1), . . . , x?(N − 1)

)
is an optimal trajectory of length N − k.

(ii) The MPC feedback µN satisfies
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Dynamic Programming Principle — discussion

We will see later, that under suitable conditions the optimal
value function will play the role of a Lyapunov function for the
MPC closed loop

The dynamic programming principle and its corollaries will
prove to be important tools to establish this fact

In order to see why this can work, in the next section we
briefly look at infinite horizon optimal control problems

Moreover, for simple systems the principle can be used for
computing VN and µN — we will see an example in the
excercises

Lars Grüne, Nonlinear Model Predictive Control, p. 25
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(2c) Background material:

Relaxed Dynamic Programming



Infinite horizon optimal control

Just like the finite horizon problem we can define the infinite
horizon optimal control problem

minimize
u admissible

J∞(x0,u) =
∞∑
k=0

`(xu(k),u(k)), xu(0) = x0

and the corresponding optimal value function

V∞(x0) := inf
u admissible

J∞(x0,u)

If we could compute an optimal feedback µ∞ for this problem
(which is — in contrast to computing µN — in general a very

difficult problem), we would have solved the stabilization
problem

Lars Grüne, Nonlinear Model Predictive Control, p. 27
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Infinite horizon dynamic programming principle
Recall the corollary from the finite horizon dynamic
programming principle

VN(x) = `(x, µN(x)) + VN−1(f(x, µN(x)))

The corresponding result which can be proved for the infinite
horizon problem reads

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

 if `(x, µ∞(x)) ≥ αV (‖x− x∗‖) holds, then we get

V∞(f(x, µ∞(x))) ≤ V∞(x)− αV (‖x− x∗‖)

and if in addition α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖) holds,
then V∞ is a Lyapunov function  asymptotic stability

Lars Grüne, Nonlinear Model Predictive Control, p. 28
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Relaxing dynamic programming
Unfortunately, an equation of the type

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

cannot be expected if we replace “∞” by “N” everywhere

(in fact, it would imply VN = V∞)

However, we will see that we can establish relaxed versions of
this inequality in which we

relax “=” to “≥”

relax `(x, µ(x)) to α`(x, µ(x)) for some α ∈ (0, 1]

 VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

“relaxed dynamic programming inequality” [Rantzer et al. ’06ff]

What can we conclude from this inequality?

Lars Grüne, Nonlinear Model Predictive Control, p. 29
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Relaxed dynamic programming
We define the infinite horizon performance of the MPC closed
loop system x+ = f(x, µN(x)) as

J cl∞(x0, µN) =
∞∑
k=0

`(xµN (k), µN(xµN (k))), xµN (0) = x0

Theorem: [Gr./Rantzer ’08, Gr./Pannek ’11] Let Y ⊆ X be a
forward invariant set for the MPC closed loop and assume that

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

holds for all x ∈ Y and some N ∈ N and α ∈ (0, 1]

Then for all x ∈ Y the infinite horizon performance satisfies

J cl∞(x0, µN) ≤ VN(x0)/α

Lars Grüne, Nonlinear Model Predictive Control, p. 30
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Relaxed dynamic programming

Theorem (continued): If, moreover, there exists α2, α3 ∈ K∞
such that the inequalities

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

hold for all x ∈ Y , then the MPC closed loop is asymptotically
stable on Y with Lyapunov function VN .

Proof: The assumed inequalities immediately imply that
V = VN is a Lyapunov function for x+ = g(x) = f(x, µN(x))
with

α1(r) = α3(r), αV (r) = αα3(r)

⇒ asymptotic stability
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Relaxed dynamic programming

Theorem (continued): If, moreover, there exists α2, α3 ∈ K∞
such that the inequalities

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

hold for all x ∈ Y , then the MPC closed loop is asymptotically
stable on Y with Lyapunov function VN .

Proof: The assumed inequalities immediately imply that
V = VN is a Lyapunov function for x+ = g(x) = f(x, µN(x))
with

α1(r) = α3(r), αV (r) = αα3(r)

⇒ asymptotic stability
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Relaxed dynamic programming
For proving the performance estimate J cl∞(x0, µN) ≤ VN(x0)/α,
the relaxed dynamic programming inequality implies

α
K−1∑
n=0

`(xµN (k), µN(xµN (k)))

≤
K−1∑
n=0

(
VN(xµN (n))− VN(xµN (n+ 1))

)
= VN(xµN (0))− VN(xµN (K)) ≤ VN(xµN (0))

Since all summands are ≥ 0, this implies that the limit for
K →∞ exists and we get

αJ cl∞(x0, µN) = α
∞∑
n=0

`(xµN (k), µN(xµN (k))) ≤ VN(xµN (0))

⇒ assertion

Lars Grüne, Nonlinear Model Predictive Control, p. 32
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Summary of Section (2)

Lyapunov functions are our central tool for verifying
asymptotic stability

Dynamic programming provides us with equations which
will be heavily used in the subsequent analysis

Infinite horizon optimal control would solve the
stabilization problem — if we could compute the feedback
law µ∞

The performance of the MPC controller can be measured
by looking at the infinite horizon value along the MPC
closed loop trajectories

Relaxed dynamic programming gives us conditions under
which both asymptotic stability and performance results
can be derived

Lars Grüne, Nonlinear Model Predictive Control, p. 33
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Application of background results
The main task will be to verify the assumptions of the relaxed
dynamic programming theorem, i.e.,

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

for some α ∈ (0, 1], and

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

for all x in a forward invariant set Y for x+ = f(x, µN(x))

To this end, we present two different approaches:

modify the optimal control problem in the MPC loop by
adding terminal constraints and costs

derive assumptions on f and ` under which MPC works
without terminal constraints and costs

Lars Grüne, Nonlinear Model Predictive Control, p. 34
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(3) Stabilizing Model Predictive Control

with stabilizing terminal conditions



VN as a Lyapunov Function
Problem: Prove that the MPC feedback law µN is stabilizing

Approach: Verify the assumptions

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

for some α ∈ (0, 1], and

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

of the relaxed dynamic programming theorem for the optimal
value function

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0
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Why is this difficult?

Let us first consider the inequality

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

The dynamic programming principle for VN yields

VN(x) ≥ `(x, µN(x)) + VN−1(f(x, µN(x)))

 we have VN−1 where we would like to have VN

 we would get the desired inequality if we could ensure

VN−1(f(x, µN(x))) ≥ VN(f(x, µN(x))) + “small error”

(where “small” means that the error can be compensated replacing

`(x, µN (x)) by α`(x, µN (x)) with α ∈ (0, 1))
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Why is this difficult?
Task: Find conditions under which

VN−1(x) ≥ VN(x) + “small error”

holds

For

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

this appeared to be out of reach until the mid 1990s

Note: VN−1 ≤ VN by non-negativity of `; typically with strict
“<”

 additional stabilizing constraints were proposed

Lars Grüne, Nonlinear Model Predictive Control, p. 38
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Lars Grüne, Nonlinear Model Predictive Control, p. 38



Why is this difficult?
Task: Find conditions under which

VN−1(x) ≥ VN(x) + “small error”

holds

For

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

this appeared to be out of reach until the mid 1990s

Note: VN−1 ≤ VN by non-negativity of `; typically with strict
“<”

 additional stabilizing constraints were proposed

Lars Grüne, Nonlinear Model Predictive Control, p. 38



Why is this difficult?
Task: Find conditions under which

VN−1(x) ≥ VN(x) + “small error”

holds

For

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

this appeared to be out of reach until the mid 1990s

Note: VN−1 ≤ VN by non-negativity of `; typically with strict
“<”

 additional stabilizing constraints were proposed
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Terminal constraints and cost
Optimal control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

We want VN to become a Lyapunov function

Idea: add local Lyapunov function F : X0 → R+
0 as terminal cost

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

F is defined on a region X0 around x∗ which is imposed as
terminal constraint x(N) ∈ X0

[Chen & Allgöwer ’98, Jadbabaie et al. ’98 . . . ]
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Lars Grüne, Nonlinear Model Predictive Control, p. 39



Terminal constraints and cost
Optimal control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

We want VN to become a Lyapunov function

Idea: add local Lyapunov function F : X0 → R+
0 as terminal cost

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

F is defined on a region X0 around x∗ which is imposed as
terminal constraint x(N) ∈ X0
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Terminal constraints and cost
We thus change the optimal control problem to

minimize
u∈UN

X0
(x0)

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

with

UN
X0

(x0) := {u ∈ UN admissible and xu(N) ∈ X0}

Which properties do we need for F and X0 in order to ensure

VN−1(x) ≥ VN(x) + “small error” ?

With suitable assumptions we can even avoid the “small error”

Lars Grüne, Nonlinear Model Predictive Control, p. 40
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Terminal constraints and cost
Assumptions on F : X0 → R+

0 and X0

There exists a controller κ : X0 → U with the following
properties:

(i) X0 is forward invariant for x+ = f(x, κ(x)):

for each x ∈ X0 we have f(x, κ(x)) ∈ X0

(ii) F is a Lyapunov function for x+ = f(x, κ(x)) on X0

which is compatible with the stage cost ` in the following
sense:

for each x ∈ X0 the inequality

F (f(x, κ(x))) ≤ F (x)− `(x, κ(x))

holds

Simplest choice: X0 = {x∗}, F ≡ 0, κ ≡ 0 (if f(x∗, 0) = x∗)

Lars Grüne, Nonlinear Model Predictive Control, p. 41
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Prolongation of control sequences
Let ũ ∈ UN−1

X0
(x0)

⇒ x̃ := xũ(N − 1) ∈ X0

Define u ∈ UN as u(k) :=

{
ũ(k), k = 0, . . . , N − 2
κ(x̃), k = N − 1

with κ from (i)

⇒ xu(N) = f(xũ(N − 1),u(N − 1)) = f(x̃, κ(x̃)) ∈ X0

⇒ u ∈ UN
X0

(x0)

 every ũ ∈ UN−1
X0

(x0) can be prolonged to an u ∈ UN
X0

(x0)

By (ii) the stage cost of the prolongation is bounded by

`(xu(N − 1),u(N − 1)) ≤ F (xu(N − 1))− F (xu(N))

Lars Grüne, Nonlinear Model Predictive Control, p. 42
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ũ(k), k = 0, . . . , N − 2
κ(x̃), k = N − 1

with κ from (i)
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Reversal of VN−1 ≤ VN
Let ũ? ∈ UN−1

X0
(x0) be the optimal control for JN−1, i.e.,

VN−1(x0) = JN−1(x0, ũ
?)

Denote by u ∈ UN
X0

(x0) its prolongation

⇒ VN−1(x0) = JN−1(x0, ũ
?)

=
N−2∑
k=0

`(xũ?(k), ũ?(k)) + F (xũ?(N − 1))

≥
N−1∑
n=0

`(xu(k),u(k)) + F (xu(N))

= JN(x0,u) ≥ VN(x0)

 as desired, we obtain VN−1 ≥ VN

Lars Grüne, Nonlinear Model Predictive Control, p. 43
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Let ũ? ∈ UN−1

X0
(x0) be the optimal control for JN−1, i.e.,

VN−1(x0) = JN−1(x0, ũ
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Let ũ? ∈ UN−1

X0
(x0) be the optimal control for JN−1, i.e.,

VN−1(x0) = JN−1(x0, ũ
?)

Denote by u ∈ UN
X0

(x0) its prolongation

⇒ VN−1(x0) = JN−1(x0, ũ
?)

=
N−2∑
k=0

`(xũ?(k), ũ?(k)) + F (xũ?(N − 1))︸ ︷︷ ︸
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Feasible sets

Define the feasible set

XN := {x ∈ X |UN
X0

(x) 6= ∅}

On XN one can ensure the inequality

VN(x) ≤ α2(‖x− x∗‖)

for some α2 ∈ K∞ under mild conditions, while outside XN we
get VN(x) =∞

 the MPC control is only defined on XN !
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Stability theorem
Theorem: Consider the MPC scheme with regional terminal
constraint xu(N) ∈ X0 and Lyapunov function terminal cost
F compatible with `.

Assume that

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

holds for all x ∈ XN .

Then XN is forward invariant, the MPC closed loop is
asymptotically stable on XN and the performance estimate

J cl∞(x, µN) ≤ VN(x)

holds.

Proof: Combine dynamic programming with VN−1 ≥ VN

Lars Grüne, Nonlinear Model Predictive Control, p. 45
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Stabilizing terminal conditions — Discussion

Stabilizing terminal conditions

yield an elegant stability theory

can indeed improve the stability properties

can be derived in a systematic way, e.g., by linearization

But:

large feasible set usually needs a large optimization
horizon N
(see again the car-and-mountains example)

additional analytical effort for computing F

hardly ever used in industrial practice

In Section (4) we will see how stability can be proved without
stabilizing terminal constraints
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Suboptimality

Recall: For both stabilizing terminal constraints the relaxed
dynamic programming theorem yields the estimate

J cl∞(x0, µN) ≤ VN(x0)

But: How large is VN ?

Without terminal constraints, the inequality VN ≤ V∞ is
immediate

However, the terminal constraints also reverse this inequality,
i.e., we have VN ≥ V∞ and the gap is very difficult to estimate

Lars Grüne, Nonlinear Model Predictive Control, p. 47
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Suboptimality — example

We consider two examples with X = R, U = R for N = 2

Example 1: x+ = x+ u, `(x, u) = x2 + u2

Terminal constraints xu(N) = x∗ = 0

V∞(x) ≈ 1.618x2, J cl∞(x, µ2) = 1.625x2

Example 2: as Example 1, but with `(x, u) = x2 + u4

V∞(20) ≤ 1726, J cl∞(x, µ2) ≈ 11240

General estimates for fixed N appear difficult to obtain. But
we can give an asymptotic result for N →∞

Lars Grüne, Nonlinear Model Predictive Control, p. 48
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Lars Grüne, Nonlinear Model Predictive Control, p. 48



Suboptimality — example

We consider two examples with X = R, U = R for N = 2

Example 1: x+ = x+ u, `(x, u) = x2 + u2

Terminal constraints xu(N) = x∗ = 0

V∞(x) ≈ 1.618x2, J cl∞(x, µ2) = 1.625x2

Example 2: as Example 1, but with `(x, u) = x2 + u4

V∞(20) ≤ 1726, J cl∞(x, µ2) ≈ 11240

General estimates for fixed N appear difficult to obtain. But
we can give an asymptotic result for N →∞
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Asymptotic Suboptimality

Theorem: For both types of terminal constraints the
assumptions of the stability theorems ensure

VN(x)→ V∞(x)

and thus
J cl∞(x, µN)→ V∞(x)

as N →∞ uniformly on compact subsets of the feasible sets

,
i.e., the MPC performance converges to the optimal one

Idea of proof: uses that any approximately optimal trajectory
for J∞ converges to x∗ and can thus be modified to meet the
constraints with only moderately changing its value

Lars Grüne, Nonlinear Model Predictive Control, p. 49
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Summary of Section (3)

terminal conditions reverse the usual inequality
VN−1 ≤ VN to VN−1 ≥ VN

this enables us to derive the
relaxed dynamic programming inequality (with α = 1)
from the dynamic programming principle

the operating region is restricted to the feasible set XN

J cl∞(x, µN) ≤ VN(x) holds and VN → V∞ for N →∞,
but VN >> V∞ is possible

Lars Grüne, Nonlinear Model Predictive Control, p. 50
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Lars Grüne, Nonlinear Model Predictive Control, p. 50



Summary of Section (3)

terminal conditions reverse the usual inequality
VN−1 ≤ VN to VN−1 ≥ VN

this enables us to derive the
relaxed dynamic programming inequality (with α = 1)
from the dynamic programming principle

the operating region is restricted to the feasible set XN

J cl∞(x, µN) ≤ VN(x) holds and VN → V∞ for N →∞

,
but VN >> V∞ is possible
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(4) Stabilizing Model Predictive Control

without stabilizing terminal conditions



MPC without stabilizing terminal constraints

We return to the basic MPC formulation

minimize
u admissible

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0 = xµN (n)

without any stabilizing terminal constraints and costs

In order to motivate why we want to avoid terminal
constraints and costs, we consider an example of P double
integrators in the plane

Lars Grüne, Nonlinear Model Predictive Control, p. 52
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Motivation for avoiding terminal conditions
Example: [Annunziato/Borz̀ı ’10ff., Fleig ’14ff.] The
Fokker-Planck Equation

∂ty(x, t)−
d∑

i,j=1

∂2xixj

(
aij(x, t)y(x, t)

)
+

d∑
i=1

∂xi

(
bi
(
x, t;u)

)
y(x, t)

)
= 0

y(·, 0) = y0

is a parabolic PDE describing the evolution of a probability
density function for stochastic control systems

By solving a Fokker-Planck control problem controls for large
ensembles of stochastic systems can be computed

Due to the complexity of the problem the derivation of
terminal conditions meeting the theoretical assumptions is
hardly feasible — but even without MPC works

Lars Grüne, Nonlinear Model Predictive Control, p. 53
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Stabilizing NMPC without terminal constraint

(Some) stability and performance results known in the literature:

[Alamir/Bornard ’95]

use a controllability condition for all x ∈ X

[Shamma/Xiong ’97, Primbs/Nevistić ’00]

use knowledge of optimal value functions

[Jadbabaie/Hauser ’05]

use controllability of linearization in x∗

[Grimm/Messina/Tuna/Teel ’05, Tuna/Messina/Teel ’06,
Gr./Rantzer ’08, Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10]

use bounds on optimal value functions

Here we explain the last approach

Lars Grüne, Nonlinear Model Predictive Control, p. 56
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use knowledge of optimal value functions

[Jadbabaie/Hauser ’05]
use controllability of linearization in x∗

[Grimm/Messina/Tuna/Teel ’05, Tuna/Messina/Teel ’06,
Gr./Rantzer ’08, Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10]

use bounds on optimal value functions

Here we explain the last approach
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Lars Grüne, Nonlinear Model Predictive Control, p. 56



Bounds on the optimal value function

Recall the definition of the optimal value function

VN(x) := inf
u admissible

N−1∑
k=0

`(xu(k, x),u(k))

Boundedness assumption: there exists γ > 0 with

VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

where `?(x) := min
u∈U

`(x, u)

(sufficient conditions for and relaxations of this bound will be

discussed later)
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Stability and performance index
We choose `, such that

α3(‖x− x∗‖) ≤ `?(x) ≤ α4(‖x− x∗‖)

holds for α3, α4 ∈ K∞ (again, `(x, u) = ‖x− x∗‖2 + λ‖u‖2
works)

Then, the only inequality left to prove in order to apply the
relaxed dynamic programming theorem is

VN(f(x, µN(x))) ≤ VN(x)− αN`(x, µN(x))

for some αN ∈ (0, 1) and all x ∈ X

We can compute αN from the bound VN(x) ≤ γ`?(x)
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Computing αN
We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N (∗)
We want VN(f(x, µN(x))) ≤ VN(x)− αN`(x, µN(x))

• use (∗) to find ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

• concatenate x?(1), . . . , x?(k?) and the optimal trajectory
starting in x?(k?)  x̃(·), ũ(·)

⇒ VN (x
?(1)) ≤ JN (x?(1), ũ) ≤ VN (x?(0))− (1− γηN ) `(x?(0),u?(0))︸ ︷︷ ︸

=“small error′′

x?(k)

k
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Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

Variant 1 [Grimm/Messina/Tuna/Teel ’05]

one k? ⇒ αN = 1− γ(γ − 1)/N

x?(k)

k
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Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

Variant 3 [Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10]

⇒ optimize for αN ⇒ αN = 1− (γ−1)N
γN−1−(γ−1)N−2

x?(k)

k
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Optimization approach to compute αN
We explain the optimization approach (Variant 3) in more
detail. We want αN such that

VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0))

holds for all optimal trajectories x?(n),u?(n) for VN

The bound and the dynamic programming principle imply:

VN(x?(1)) ≤ γ`?(x?(1))

VN(x?(1)) ≤ `(x?(1),u?(1)) + γ`?(x?(2))

VN(x?(1)) ≤ `(x?(1),u?(1)) + `(x?(2),u?(2)) + γ`?(x?(3))

...
...

...
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Optimization approach to compute αN
 VN(x?(1)) is bounded by sums over `(x?(n),u?(n))

For sums of these values, in turn, we get bounds from the
dynamic programming principle and the bound

:

N−1∑
n=0

`(x?(n),u?(n)) = VN(x?(0)) ≤ γ`?(x?(0))

N−1∑
n=1

`(x?(n),u?(n)) = VN−1(x
?(1)) ≤ γ`?(x?(1))

N−1∑
n=2

`(x?(n),u?(n)) = VN−2(x
?(2)) ≤ γ`?(x?(2))

...
...
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Verifying the relaxed Lyapunov inequality
Find αN , such that for all optimal trajectories x?, u?:

VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0)) (∗)

Define λn := `(x?(n),u?(n)), ν := VN(x?(1))

Then: (∗) ⇔ ν ≤
N−1∑
n=0

λn − αNλ0

The inequalities from the last slides translate to

N−1∑
n=k

λn ≤ γλk, k = 0, . . . , N − 2 (1)

ν ≤
j∑

n=1

λn + γλj+1, j = 0, . . . , N − 2 (2)

We call λ0, . . . , λN−1, ν ≥ 0 with (1), (2) admissible
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Optimization problem
⇒ if αN is such that the inequality

ν ≤
N−1∑
n=0

λn − αNλ0

⇔ αN ≤
∑N−1

n=0 λn − ν
λ0

holds for all admissible λn and ν, then the desired inequality
will hold for all optimal trajectories

The largest αN satisfying this condition is

αN := min
λn, ν admissible

∑N−1
n=0 λn − ν
λ0

This is a linear optimization problem whose solution can be
computed explicitly (which is nontrivial) and reads

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
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Stability and performance theorem
Theorem: [Gr./Pannek/Seehafer/Worthmann ’10]: Assume
VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N. If

αN > 0

⇔ N > 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
∼ γ ln γ

then the NMPC closed loop is asymptotically stable with
Lyapunov function VN

and we get the performance estimate
J cl∞(x, µN) ≤ V∞(x)/αN with

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
→ 1 as N →∞

Conversely, if N < 2 + ln(γ−1)
ln γ−ln(γ−1) , then there exists a system

for which VN(x) ≤ γ`?(x) holds but the NMPC closed loop is
not asymptotically stable.
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Horizon dependent γ-values

The theorem remains valid if we replace the bound condition

VN(x) ≤ γ`?(x)

by
VN(x) ≤ γN`

?(x)

for horizon-dependent bounded values γN ∈ R, N ∈ N

 αN = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏
i=2

(γi − 1)

This allows for tighter bounds and a refined analysis
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Controllability condition
A refined analysis can be performed if we compute γN from a
controllability condition

, e.g., exponential controllability:

Assume that for each x0 ∈ X there exists an admissible control
u such that

`(xu(k),u(k)) ≤ Cσk`?(x0), k = 0, 1, 2, . . .

for given overshoot constant C > 0 and decay rate σ ∈ (0, 1)

 VN(x) ≤ γN`
?(x) for γN =

N−1∑
k=0

Cσk

This allows to compute the minimal stabilizing horizon

min{N ∈ N |αN > 0}
depending on C and σ
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Stability chart for C and σ

(Figure: Harald Voit)

Conclusion: for short optimization horizon N it is
more important: small C (“small overshoot”)
less important: small σ (“fast decay”)

(we will see at the end of the section how to use this information)
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Comments and extensions

for unconstrained linear quadratic problems:

existence of γ ⇔ (A,B) stabilizable

additional weights on the last term can be incorporated
into the analysis [Gr./Pannek/Seehafer/Worthmann ’10]

instead of using γ, α can be estimated numerically online
along the closed loop [Pannek et al. ’10ff]

positive definiteness of ` can be replaced by a
detectability condition [Grimm/Messina/Tuna/Teel ’05]

under appropriate uniformity assumptions, the results are
easily carried over to tracking time variant references
xref(n) instead of an equilibrium x∗ [Gr./Pannek ’11]
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Lars Grüne, Nonlinear Model Predictive Control, p. 71



Comments and extensions
The “linear” inequality VN(x) ≤ γ`?(x) may be too
demanding for nonlinear systems under constraints

Generalization: VN(x) ≤ ρ(`?(x)), ρ ∈ K∞

• there is γ > 0 with ρ(r) ≤ γr for all r ∈ [0,∞]
⇒ global asymptotic stability

• for each R > 0
there is γR > 0 with ρ(r) ≤ γRr for all r ∈ [0, R]

⇒ semiglobal asymptotic stability

• ρ ∈ K∞ arbitrary
⇒ semiglobal practical asymptotic stability

[Grimm/Messina/Tuna/Teel ’05, Gr./Pannek ’11]
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The car-and-mountains example reloaded
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0.8

1

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2
 asymptotic stability for N = 11 but not for N ≤ 10

Reason: detour around mountains causes large overshoot C

Remedy: put larger weight on x2:

`(x, u) = (x1 − x∗,1)2 + 5(x2 − x∗,2)2 + |u|2  as. stab. for N = 2
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Lars Grüne, Nonlinear Model Predictive Control, p. 73



The car-and-mountains example reloaded

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2
 asymptotic stability for N = 11 but not for N ≤ 10

Reason: detour around mountains causes large overshoot C

Remedy: put larger weight on x2:

`(x, u) = (x1 − x∗,1)2 + 5(x2 − x∗,2)2 + |u|2  as. stab. for N = 2
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A PDE example

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1− y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

and distributed control u : R× Ω→ R

Discrete time system: y(n) = y(nT, ·), sampling time T = 0.025
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Lars Grüne, Nonlinear Model Predictive Control, p. 75



The uncontrolled PDE

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t=0.45

uncontrolled (u ≡ 0)
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1− y) + u

Goal: stabilize the sampled data system y(n) at y ≡ 0

Usual approach: quadratic L2 cost

`(y(n), u(n)) = ‖y(n)‖2L2 + λ‖u(n)‖2L2

For y ≈ 0 the control u must compensate for yx  u ≈ −yx
 controllability condition

`(y(n), u(n)) ≤ Cσn`∗(y(0))

⇔ ‖y(n)‖2L2 + λ‖u(n)‖2L2 ≤ Cσn‖y(0)‖2L2

≈ ‖y(n)‖2L2 + λ‖yx(n)‖2L2 ≤ Cσn‖y(0)‖2L2

for ‖yx‖L2 >> ‖y‖L2 this can only hold if C >> 0
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MPC for the PDE example
Conclusion: because of

‖y(n)‖2L2 + λ‖yx(n)‖2L2 ≤ Cσn‖y(0)‖2L2

the controllability condition may only hold for very large C

Remedy: use H1 cost

`(y(n), u(n)) = ‖y(n)‖2L2 + ‖yx(n)‖2L2︸ ︷︷ ︸
=‖y(n)‖2

H1

+λ‖u(n)‖2L2 .

Then an analogous computation yields

‖y(n)‖2L2 + (1 + λ)‖yx(n)‖2L2 ≤ Cσn
(
‖y(0)‖2L2 + ‖yx(0)‖2L2

)
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MPC with L2 vs. H1 cost
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1− y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
 L2 should perform better that H1
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Boundary control, L2 vs. H1, N = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0

 

 
Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025

Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Boundary control, λ = 0.001, sampling time T = 0.025

Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Can be made rigorous for many PDEs [Altmüller et al. ’10ff]

Lars Grüne, Nonlinear Model Predictive Control, p. 80



Boundary control, L2 vs. H1, N = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.85

 

 
Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025
Can be made rigorous for many PDEs [Altmüller et al. ’10ff]
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Summary of Section (4)

Stability and performance of MPC without terminal
constraints can be ensured by suitable bounds on VN

An optimization approach allows to compute the best
possible αN in the relaxed dynamic programming theorem

The γ or γN can be computed from controllability
properties, e.g., exponential controllability

The overshoot bound C > 0 plays a crucial role or
obtaining small stabilizing horizons

Computing tight estimates for C is in general a difficult if
not impossible task

But structural knowledge of the system behavior can be
sufficient for choosing a “good” `
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Lars Grüne, Nonlinear Model Predictive Control, p. 81



(5) Economic Model Predictive Control



Motivation for economic MPC

Typical approach in practice (e.g., in chemical process control):

(1) compute an economically good equilibrium (x∗, u∗)
(“good” = high yield, small energy consumption, etc.)

(2) design a controller stabilizing (x∗, u∗), e.g., by MPC

This works fine as long as the system state is close to x∗ but
on the way towards x∗ performance in the sense of the chosen
criterion may be bad

Idea: Use a stage cost ` which does not penalize the distance
to some x∗ but directly encodes the desired economic criterion

Lars Grüne, Nonlinear Model Predictive Control, p. 83
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Mathematical difference of stabilizing and

economic MPC
In stabilizing MPC, the stage cost `(x, u) penalizes the
distance to some equilibrium (x∗, u∗) ∈ X× U. In particular,
we required

`(x, u) > `(x∗, u∗) for all (x, u) ∈ X× U

In economic MPC, we remove this requirement. We use the
same algorithm as in stabilizing MPC, but allow for more
general ` to have more freedom to model economic objectives

We still consider equilibria, but they are now implicitly defined
via the optimization criterion. In order to distinguish them
from (x∗, u∗) in stabilizing MPC, they are denoted by (xe, ue)

Lars Grüne, Nonlinear Model Predictive Control, p. 84
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Performance

As ` is no longer sign definite, we need to redefine how we
measure the performance of µN

Infinite horizon averaged performance:

J
cl

∞(x, µN) = lim sup
K→∞

1

K

K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

Finite horizon (or transient) performance:

J clK(x, µN) =
K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

Only in special cases K →∞ makes sense
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Example: minimum energy control
Example: Keep the state of the system inside the admissible
set X minimizing the quadratic control effort

`(x, u) = u2

with dynamics

x(n+ 1) = 2x(n) + u(n)

and constraints X = [−2, 2], U = [−3, 3]

For this example, a good strategy is to control the system to
xe = 0 and keep it there with ue = 0

 (xe, ue) is an optimal equilibrium with `(xe, ue) = 0

(recall: (xe, ue) equilibrium ⇔ f(xe, ue) = xe)

Lars Grüne, Nonlinear Model Predictive Control, p. 86
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Example: trajectories
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Lars Grüne, Nonlinear Model Predictive Control, p. 87



Example: trajectories

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 5
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Lars Grüne, Nonlinear Model Predictive Control, p. 87



Example: trajectories

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 5

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 10
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Example: averaged closed loop performance

2 4 6 8 10 12 14
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

N

J ∞
(0

.5
,µ

n
)

J
cl

∞(0.5, µN)− `(xe, ue) depending on N , logarithmic scale
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optimal open loop trajectories approach the optimal
equilibrium, stay near it for a while, and turn away

– “turnpike property”
closed loop trajectories converge to a neighborhood of the
optimal equilibrium whose size tends to 0 as N →∞
the averaged closed loop performance satisfies

J
cl

∞(x, µN)→ `(xe, ue) as N →∞ (exponentially fast)

Can we prove this behavior?

The first property will turn out to be the crucial one
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Towards a performance estimate
Defining the optimal value function VN(x) := infu JN(x,u),
the “trick” in all MPC proofs lies in relating VN and VN−1

In economic MPC, the desired inequality is

VN(x) ≤ VN−1(x) + `(xe, ue) + ε

for a small error term ε > 0

⇒ `(x, µN(x))+VN−1(f(x, µN(x))) ≤ VN−1(x)+`(xe, ue)+ε ⇒

Using this inequality for x = xµN (0), . . . , xµN (K − 1) yields

J
cl
K(x, µN ) =

1

K

K−1∑
n=0

`(xµN (n), µN (xµN (n)))

≤ 1

K
(VN−1(xµN (0))− VN−1(xµN (K))) + `(xe, ue) + ε

⇒ J
cl

∞(x, µN) = lim sup
K→∞

J
cl

K(x, µN) ≤ `(xe, ue) + ε ⇒
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Towards a performance estimate

Similarly, estimates for the non averaged J clK can be obtained

Hence, the desired inequality is

VN(x) ≤ VN−1(x) + `(xe, ue) + ε

for a small ε > 0

In order to obtain this inequality, one

takes an optimal trajectory corresponding to VN−1(x)

prolongs this trajectory such that its value increases by no
more than `(xe, ue) + ε

uses the resulting JN(x, u) as an upper bound for VN(x)

This can be achieved by prolonging the trajectory close to xe

Lars Grüne, Nonlinear Model Predictive Control, p. 91
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Assumptions needed for this construction

What do we need to make this construction work? [Gr. ’13]

(1) Continuity of VN near xe (uniform in x and N)
I ensures that we can prolong the trajectory in the middle

without changing the value of the tail too much

(2) Turnpike property

I ensures that the finite horizon optimal trajectories stay
for a certain time near the optimal equilibrium xe

I note: in numerical examples we often observe
exponential turnpike, i.e., the minimum distance to xe

shrinks exponentially fast as N increases

Instead of the turnpike property, in the MPC literature another
property is usually imposed: strict dissipativity
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Strict dissipativity [Willems ’72]
The optimal control problem is called strictly dissipative if
there exists λ : X→ R bounded from below and α ∈ K∞ with

˜̀(x, u) :=

`(x, u)−`(xe, ue)+λ(x)−λ(f(x, u)) ≥ α(‖x−xe‖)

for all x ∈ X, u ∈ U

While originally introduced as a sufficient condition
guaranteeing the turnpike property, a recent result shows:

Theorem [Gr./Müller ’16]: Under suitable controllability
conditions, strict dissipativity is equivalent to a robust turnpike
property plus optimality of the equilibrium (xe, ue)

The previous example is strictly dissipative with λ(x) = −x2/2
Stabilizing functionals are strictly dissipative with λ ≡ 0
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Economic MPC theorem

Theorem: [Gr./Stieler ’14]

Let f and ` be Lipschitz, X and U be compact and assume

(i) local controllability near xe

(ii) strict dissipativity

(iii) reachability of xe from all x ∈ X

(iv) polynomial growth conditions for ˜̀

}
⇒ uniform continuity of VN}

⇒ turnpike property

(i)–(iv) ⇒ exponential turnpike)
[Damm/Gr./Stieler/Worthmann ’14])

(for alternative conditions see also [Porretta/Zuazua ’13])

[Trelat/Zuazua ’14])
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Economic MPC theorem
Under assumptions (i)–(iii), there exist ε1(N), ε2(K)→ 0 as
N →∞ and K →∞, exponentially fast if additionally (iv)
holds, such that the following properties hold

(1) Approximate average optimality:

J
cl

∞(x, µN) ≤ `(xe, ue) + ε1(N)

(2) Practical asymptotic stability: there is β ∈ KL:

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + ε1(N) for all k ∈ N

(3) Approximate transient optimality: for all K ∈ N:

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

for all admissible u with ‖xu(K,x)− xe‖ ≤ β(‖x− xe‖,K) + ε1(N)

Lars Grüne, Nonlinear Model Predictive Control, p. 96



Economic MPC theorem
Under assumptions (i)–(iii), there exist ε1(N), ε2(K)→ 0 as
N →∞ and K →∞, exponentially fast if additionally (iv)
holds, such that the following properties hold

(1) Approximate average optimality:

J
cl

∞(x, µN) ≤ `(xe, ue) + ε1(N)

(2) Practical asymptotic stability: there is β ∈ KL:

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + ε1(N) for all k ∈ N

(3) Approximate transient optimality: for all K ∈ N:

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

for all admissible u with ‖xu(K,x)− xe‖ ≤ β(‖x− xe‖,K) + ε1(N)
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Illustration of (2) and (3)

e
x

x

n

(2): xµN (n) converges to the ε1(N)-ball around xe

(3): cost of all other trajectories reaching the ball at time K is
(3): higher than that of xµN (n) up to the error Kε1(N) + ε2(K)
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Economic MPC with terminal conditions

Like in stabilizing MPC, terminal conditions can be defined

The assumptions on the terminal constraint and cost are —
somewhat surprisingly — identical to the stabilizing case
[Amrit/Angeli/Rawlings ’12]

We illustrate the effect of terminal condition for the previous
example with the simplest choice of the terminal constraints
X0 = {xe}
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Lars Grüne, Nonlinear Model Predictive Control, p. 98



Example with terminal conditions

Example:
N = 5
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Lars Grüne, Nonlinear Model Predictive Control, p. 99



Example with terminal conditions

Example:
N = 5

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)
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Schemes with terminal constraints
Imposing terminal conditions improves the previous results

Theorem: [Angeli/Amrit/Rawlings ’12; Diehl/Rawlings ’11]

Under strict dissipativity and controllability, the resulting MPC
scheme yields averaged optimal trajectories, i.e,

J
cl

∞(x, µN) ≤ `(xe, ue) +

for which xe is asymptotically stable, i.e.,

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + .

In addition [Gr./Panin ’15] we get approx. transient optimality

J clK(x, µN(x)) ≤ JK(x,u) + + ε2(K)

Lars Grüne, Nonlinear Model Predictive Control, p. 100
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‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + ε1(N).

In addition [Gr./Panin ’15] we get approx. transient optimality

J clK(x, µN(x)) ≤ JK(x,u) + + ε2(K)
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Lars Grüne, Nonlinear Model Predictive Control, p. 100



Example: closed loop cost

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

vs.
J clK(x, µN(x)) ≤ JK(x,u) +Kε̃1(N) + ε2(K)
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But: terminal constraints can cause infeasibility and severe
numerical problems
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Extensions, further results

In the affine linear quadratic case our conditions are
equivalent to the system being stabilizable [Gr./Stieler ’14]

The optimal equilibrium can be replaced by an optimal
periodic orbit [Zanon/Gr. ’16, Müller/Gr. ’16]

The results can be formulated directly in continuous time
[Faulwasser/Bonvin ’15, Alessandretti/Aguiar/Jones ’15]

First results for time varying systems are available
[Zanon/Gros/Diehl ’13, Alessandretti/Aguiar/Jones ’15]

First results for discounted optimal control problems
[Gr./Semmler/Stieler ’15, Gr./Kellett/Weller ’16]
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Lars Grüne, Nonlinear Model Predictive Control, p. 102



Extensions, further results

In the affine linear quadratic case our conditions are
equivalent to the system being stabilizable [Gr./Stieler ’14]

The optimal equilibrium can be replaced by an optimal
periodic orbit [Zanon/Gr. ’16, Müller/Gr. ’16]

The results can be formulated directly in continuous time
[Faulwasser/Bonvin ’15, Alessandretti/Aguiar/Jones ’15]

First results for time varying systems are available
[Zanon/Gros/Diehl ’13, Alessandretti/Aguiar/Jones ’15]

First results for discounted optimal control problems
[Gr./Semmler/Stieler ’15, Gr./Kellett/Weller ’16]

Lars Grüne, Nonlinear Model Predictive Control, p. 102



Extensions, further results

In the affine linear quadratic case our conditions are
equivalent to the system being stabilizable [Gr./Stieler ’14]

The optimal equilibrium can be replaced by an optimal
periodic orbit [Zanon/Gr. ’16, Müller/Gr. ’16]

The results can be formulated directly in continuous time
[Faulwasser/Bonvin ’15, Alessandretti/Aguiar/Jones ’15]

First results for time varying systems are available
[Zanon/Gros/Diehl ’13, Alessandretti/Aguiar/Jones ’15]

First results for discounted optimal control problems
[Gr./Semmler/Stieler ’15, Gr./Kellett/Weller ’16]

Lars Grüne, Nonlinear Model Predictive Control, p. 102



Extensions, further results

In the affine linear quadratic case our conditions are
equivalent to the system being stabilizable [Gr./Stieler ’14]

The optimal equilibrium can be replaced by an optimal
periodic orbit [Zanon/Gr. ’16, Müller/Gr. ’16]

The results can be formulated directly in continuous time
[Faulwasser/Bonvin ’15, Alessandretti/Aguiar/Jones ’15]

First results for time varying systems are available
[Zanon/Gros/Diehl ’13, Alessandretti/Aguiar/Jones ’15]

First results for discounted optimal control problems
[Gr./Semmler/Stieler ’15, Gr./Kellett/Weller ’16]
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Summary of Section (5)

Model predictive control works not only for stabilizing
problems

The turnpike property can be used as a replacement for
positive definiteness of `

Strict dissipativity is essentially equivalent to this property
and may be used as a checkable condition

The required uniform continuity may pose a problem for
control systems governed by PDEs  work in progress

Lars Grüne, Nonlinear Model Predictive Control, p. 103
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