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(1) Introduction

What is Model Predictive Control (MPC)?



Setup
We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x0

or, briefly
x+ = f(x, u)

with x ∈ X, u ∈ U

we consider discrete time systems for simplicity of
exposition
continuous time systems can be treated by using the
discrete time representation of the corresponding sampled
data system or a numerical approximation
X and U depend on the model. These may be Euclidean
spaces Rn and Rm or more general (e.g., infinite
dimensional) spaces. For simplicity of exposition we
assume that we have a norm ‖ · ‖ on both spaces
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Prototype Problem
Assume there exists an equilibrium x∗ ∈ X for u = 0, i.e.

f(x∗, 0) = x∗

Task: stabilize the system

x+ = f(x, u)

at x∗ via static state feedback, i.e., find µ : X → U , such that
x∗ is asymptotically stable for the feedback controlled system

xµ(n+ 1) = f(xµ(n), µ(xµ(n))), xµ(0) = x0

Additionally, we impose state constraints xµ(n) ∈ X
and control constraints µ(x(n)) ∈ U

for all n ∈ N and given sets X ⊆ X, U ⊆ U
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Prototype Problem

Asymptotic stability means

Attraction: xµ(n)→ x∗ as n→∞
plus

Stability: Solutions starting close to x∗ remain close to x∗

(we will later formalize this property using KL functions)

Informal interpretation: control the system to x∗ and keep it
there while obeying the state and control constraints

Idea of MPC: use an optimal control problem which minimizes
the distance to x∗ in order to synthesize a feedback law µ
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The idea of MPC
For defining the MPC scheme, we choose a stage cost `(x, u)
penalizing the distance from x∗ and the control effort, e.g.,
`(x, u) = ‖x− x∗‖2 + λ‖u‖2 for λ ≥ 0

The basic idea of MPC is:

minimize the summed stage cost along trajectories
generated from our model over a prediction horizon N

use the first element of the resulting optimal control
sequence as feedback value

repeat this procedure iteratively for all sampling instants
n = 0, 1, 2, . . .

Notation in what follows:

general feedback laws will be denoted by µ

the MPC feedback law will be denoted by µN
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The basic MPC scheme
Formal description of the basic MPC scheme:

At each time instant n solve for the current state xµN (n)

minimize
u admissible

JN(xµN (n),u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = xµN (n)

(u admissible ⇔ u(k) ∈ U and xu(k) ∈ X)

 optimal trajectory x?(0), . . . , x?(N)

with optimal control u?(0), . . . ,u?(N − 1)

Define the MPC feedback law µN(xµN (n)) := u∗(0)

 xµN (n+ 1) = f(xµN (n), µN (xµN (n))) = f(xµN (n),u
?(0)) = x?(1)
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MPC from the trajectory point of view

n
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...
x6

black = predictions (open loop optimization)
red = MPC closed loop, xn = xµN (n)
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Model predictive control (aka Receding horizon control)

Idea first formulated by A.I. Propoi in 1963, often rediscovered

used in industrial applications since the mid 1970s, mainly for
constrained linear systems [Qin & Badgwell, 1997, 2001]

more than 9000 industrial MPC applications in Germany
counted in [Dittmar & Pfeifer, 2005]

development of theory since ∼1980 (linear), ∼1990 (nonlinear)

seminal paper for stabilizing MPC: [D.Q. Mayne, J.B. Rawlings,

C.V. Rao, P.O.M. Scokaert, Constrained model predictive control:

stability and optimality, Automatica, 36(2000), 789–814]

Central questions:

When does MPC stabilize the system?

How good is the performance of the MPC feedback law?

How long does the optimization horizon N need to be?

and, of course, the development of good algorithms (not topic of this course)
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An example
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x+
1 = sin(ϕ+ u)

x+
2 = cos(ϕ+ u)/2

with ϕ =

{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0,

X = {x ∈ R2 : ‖(x1, 2x2)T‖ = 1}, U = [0, umax]

x∗ = (0,−1/2)T , x0 = (0, 1/2)T

MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2 yields
asymptotic stability for N = 11 but not for N ≤ 10
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Summary of Section (1)

MPC is an online optimal control based method for
computing stabilizing feedback laws

MPC computes the feedback law by iteratively solving
finite horizon optimal control problems using the current
state x0 = xµN (n) as initial value

the feedback value µN(x0) is the first element of the
resulting optimal control sequence

MPC can considerably reduce the computation time
needed for solving infinite horizon optimal control
problems, up to real time capability
 model reduction in time

the car-and-mountain example shows that MPC does not
always yield an asymptotically stabilizing feedback law

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 12

(2a) Background material:

Lyapunov functions

Purpose of this section
We introduce Lyapunov functions as a tool to rigorously verify
asymptotic stability

In the subsequent sections, this will be used in order to
establish asymptotic stability of the MPC closed loop

In this section, we consider discrete time systems without
input, i.e.,

x+ = g(x)

with x ∈ X or, in long form

x(n+ 1) = g(x(n)), x(0) = x0

(later we will apply the results to g(x) = f(x, µN (x)))

Note: we do not require g to be continuous

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 14

Comparison functions
For R+

0 = [0,∞) we use the following classes of comparison
functions

K :=

{
α : R+

0 → R+
0

∣∣∣∣ α is continuous and strictly
increasing with α(0) = 0

}

r(0, 0)

rα( )

β(       )r*, t

r t(0, 0) (0, 0)

r, t*β(       )

K∞ :=
{
α : R+

0 → R+
0

∣∣∣α ∈ K and α is unbounded
}

KL :=

β : R+
0 × R+

0 → R+
0

∣∣∣∣∣∣∣∣
β is continuous,
β(·, t) ∈ K for all t ∈ R+

0

and β(r, ·) is strictly de-
creasing to 0 for all r ∈ R+

0
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Asymptotic stability revisited

A point x∗ is called an equilibrium of x+ = g(x) if g(x∗) = x∗

A set Y ⊆ X is called forward invariant for x+ = g(x) if
g(x) ∈ Y holds for each x ∈ Y

We say that x∗ is asymptotically stable for x+ = g(x) on a
forward invariant set Y if there exists β ∈ KL such that

‖x(n)− x∗‖ ≤ β(‖x(0)− x∗‖, n)

holds for all x ∈ Y and n ∈ N

How can we check whether this property holds?

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 16

Lyapunov function

Let Y ⊆ X be a forward invariant set and x∗ ∈ X. A function
V : Y → R+

0 is called a Lyapunov function for x+ = g(x) if
the following two conditions hold for all x ∈ Y :

(i) There exists α1, α2 ∈ K∞ such that

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖)

(ii) There exists αV ∈ K such that

V (x+) ≤ V (x)− αV (‖x− x∗‖)

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 17

Stability theorem

Theorem: If the system x+ = g(x) admits a Lyapunov
function V on a forward invariant set Y , then x∗ is an
asymptotically stable equilibrium on Y

Idea of proof: V (x+) ≤ V (x)− αV (‖x− x∗‖) implies that V
is strictly decaying along solutions away from x∗

This allows to construct β̃ ∈ KL with V (x(n)) ≤ β̃(V (x(0)), n)

The bounds α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖) imply that
asymptotic stability holds with β(r, t) = α−1

1 (β̃(α2(r), t))

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 18

Lyapunov functions — discussion

While the convergence x(n)→ x∗ is typically non-monotone
for an asymptotically stable system, the convergence
V (x(n))→ 0 is strictly monotone

It is hence sufficient to check the decay of V in one time step

 it is typically quite easy to check whether a given function
is a Lyapunov function

But it is in general difficult to find a candidate for a Lyapunov
function

For MPC, we will use the optimal value functions which we
introduce in the next section

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 19



(2b) Background material:

Dynamic Programming

Purpose of this section

We define the optimal value functions VN for the optimal
control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

used within the MPC scheme (with x0 = xµN (n))

We present the dynamic programming principle, which
establishes a relation for these functions and will eventually
enable us to derive conditions under which VN is a Lyapunov
function

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 21

Optimal value functions

We define the optimal value function

VN(x0) := inf
u admissible

JN(x0,u)

setting VN(x0) :=∞ if x0 is not feasible, i.e., if there is no
admissible u (recall: u admissible ⇔ xu(k) ∈ X, u(k) ∈ U)

An admissible control sequence u? is called optimal, if

JN(x0,u
?) = VN(x0)

Note: an optimal u? does not need to exist in general. In the
sequel we assume that u? exists if x0 is feasible

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 22

Dynamic Programming Principle
Theorem: (Dynamic Programming Principle) For any feasible
x0 ∈ X the optimal value function satisfies

VN(x0) = inf
u∈U

f(x0,u)∈X

{`(x0, u) + VN−1(f(x0, u))}

Moreover, if u? is an optimal control, then

VN(x0) = `(x0,u
∗(0)) + VN−1(f(x0,u

?(0)))

holds.

Idea of Proof: Follows by taking infima in the identity

JN(x0,u) = `(xu(0),u(0)) +
N−1∑
k=1

`(xu(k),u(k))

= `(x0,u(0)) + JN−1(f(x0,u(0)),u(·+ 1))

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 23



Corollaries
Corollary: Let x? be an optimal trajectory of length N with
optimal control u? and x?(0) = x. Then

(i) The “tail” (
x?(k), x?(k + 1), . . . , x?(N − 1)

)
is an optimal trajectory of length N − k.

(ii) The MPC feedback µN satisfies

µN(x) ∈ argmin
u∈U

{`(x, u) + VN−1(f(x, u))}

(i.e., u = µN (x) minimizes this expression),

VN(x) = `(x, µN(x)) + VN−1(f(x, µN(x)))

and
u?(k) = µN−k(x

?(k)), k = 0, . . . , N − 1

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 24

Dynamic Programming Principle — discussion

We will see later, that under suitable conditions the optimal
value function will play the role of a Lyapunov function for the
MPC closed loop

The dynamic programming principle and its corollaries will
prove to be important tools to establish this fact

In order to see why this can work, in the next section we
briefly look at infinite horizon optimal control problems

Moreover, for simple systems the principle can be used for
computing VN and µN — we will see an example in the
excercises

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 25

(2c) Background material:

Relaxed Dynamic Programming

Infinite horizon optimal control

Just like the finite horizon problem we can define the infinite
horizon optimal control problem

minimize
u admissible

J∞(x0,u) =
∞∑
k=0

`(xu(k),u(k)), xu(0) = x0

and the corresponding optimal value function

V∞(x0) := inf
u admissible

J∞(x0,u)

If we could compute an optimal feedback µ∞ for this problem
(which is — in contrast to computing µN — in general a very

difficult problem), we would have solved the stabilization
problem

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 27



Infinite horizon dynamic programming principle
Recall the corollary from the finite horizon dynamic
programming principle

VN(x) = `(x, µN(x)) + VN−1(f(x, µN(x)))

The corresponding result which can be proved for the infinite
horizon problem reads

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

 if `(x, µ∞(x)) ≥ αV (‖x− x∗‖) holds, then we get

V∞(f(x, µ∞(x))) ≤ V∞(x)− αV (‖x− x∗‖)

and if in addition α1(‖x− x∗‖) ≤ V∞(x) ≤ α2(‖x− x∗‖)
holds, then V∞ is a Lyapunov function  asymptotic stability

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 28

Relaxing dynamic programming
Unfortunately, an equation of the type

V∞(x) = `(x, µ∞(x)) + V∞(f(x, µ∞(x)))

cannot be expected if we replace “∞” by “N” everywhere
(in fact, it would imply VN = V∞)

However, we will see that we can establish relaxed versions of
this inequality in which we

relax “=” to “≥”

relax `(x, µ(x)) to α`(x, µ(x)) for some α ∈ (0, 1]

 VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

“relaxed dynamic programming inequality” [Rantzer et al. ’06ff]

What can we conclude from this inequality?

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 29

Relaxed dynamic programming
We define the infinite horizon performance of the MPC closed
loop system x+ = f(x, µN(x)) as

J cl∞(x0, µN) =
∞∑
k=0

`(xµN (k), µN(xµN (k))), xµN (0) = x0

Theorem: [Gr./Rantzer ’08, Gr./Pannek ’11] Let Y ⊆ X be a
forward invariant set for the MPC closed loop and assume that

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

holds for all x ∈ Y and some N ∈ N and α ∈ (0, 1]

Then for all x ∈ Y the infinite horizon performance satisfies

J cl∞(x0, µN) ≤ VN(x0)/α

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 30

Relaxed dynamic programming

Theorem (continued): If, moreover, there exists α2, α3 ∈ K∞
such that the inequalities

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

hold for all x ∈ Y , then the MPC closed loop is asymptotically
stable on Y with Lyapunov function VN .

Proof: The assumed inequalities immediately imply that
V = VN is a Lyapunov function for x+ = g(x) = f(x, µN(x))
with

α1(r) = α3(r), αV (r) = αα3(r)

⇒ asymptotic stability

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 31



Relaxed dynamic programming
For proving the performance estimate J cl∞(x0, µN) ≤ VN(x0)/α,
the relaxed dynamic programming inequality implies

α

K−1∑
n=0

`(xµN (k), µN(xµN (k)))

≤
K−1∑
n=0

(
VN(xµN (n))− VN(xµN (n+ 1))

)
= VN(xµN (0))− VN(xµN (K)) ≤ VN(xµN (0))

Since all summands are ≥ 0, this implies that the limit for
K →∞ exists and we get

αJ cl∞(x0, µN) = α

∞∑
n=0

`(xµN (k), µN(xµN (k))) ≤ VN(xµN (0))

⇒ assertion
Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 32

Summary of Section (2)

Lyapunov functions are our central tool for verifying
asymptotic stability

Dynamic programming provides us with equations which
will be heavily used in the subsequent analysis

Infinite horizon optimal control would solve the
stabilization problem — if we could compute the feedback
law µ∞

The performance of the MPC controller can be measured
by looking at the infinite horizon value along the MPC
closed loop trajectories

Relaxed dynamic programming gives us conditions under
which both asymptotic stability and performance results
can be derived

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 33

Application of background results
The main task will be to verify the assumptions of the relaxed
dynamic programming theorem, i.e.,

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

for some α ∈ (0, 1], and

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

for all x in a forward invariant set Y for x+ = f(x, µN(x))

To this end, we present two different approaches:

modify the optimal control problem in the MPC loop by
adding terminal constraints and costs

derive assumptions on f and ` under which MPC works
without terminal constraints and costs

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 34

(3) Stabilizing Model Predictive Control

with stabilizing terminal conditions



VN as a Lyapunov Function
Problem: Prove that the MPC feedback law µN is stabilizing

Approach: Verify the assumptions

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

for some α ∈ (0, 1], and

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

of the relaxed dynamic programming theorem for the optimal
value function

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 36

Why is this difficult?
Let us first consider the inequality

VN(x) ≥ α`(x, µN(x)) + VN(f(x, µN(x)))

The dynamic programming principle for VN yields

VN(x) ≥ `(x, µN(x)) + VN−1(f(x, µN(x)))

 we have VN−1 where we would like to have VN

 we would get the desired inequality if we could ensure

VN−1(f(x, µN(x))) ≥ VN(f(x, µN(x))) + “small error”

(where “small” means that the error can be compensated replacing

`(x, µN (x)) by α`(x, µN (x)) with α ∈ (0, 1))

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 37

Why is this difficult?
Task: Find conditions under which

VN−1(x) ≥ VN(x) + “small error”

holds

For

VN(x0) := inf
u admissible

N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

this appeared to be out of reach until the mid 1990s

Note: VN−1 ≤ VN by non-negativity of `; typically with strict
“<”

 additional stabilizing constraints were proposed

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 38

Terminal constraints and cost
Optimal control problem

minimize
u admissible

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0

We want VN to become a Lyapunov function

Idea: add local Lyapunov function F : X0 → R+
0 as terminal cost

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

F is defined on a region X0 around x∗ which is imposed as
terminal constraint x(N) ∈ X0

[Chen & Allgöwer ’98, Jadbabaie et al. ’98 . . . ]

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 39



Terminal constraints and cost
We thus change the optimal control problem to

minimize
u∈UN

X0
(x0)

JN(x0,u) =
N−1∑
k=0

`(xu(k),u(k)) + F (xu(N))

with

UN
X0

(x0) := {u ∈ UN admissible and xu(N) ∈ X0}

Which properties do we need for F and X0 in order to ensure

VN−1(x) ≥ VN(x) + “small error” ?

With suitable assumptions we can even avoid the “small error”

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 40

Terminal constraints and cost
Assumptions on F : X0 → R+

0 and X0

There exists a controller κ : X0 → U with the following
properties:

(i) X0 is forward invariant for x+ = f(x, κ(x)):

for each x ∈ X0 we have f(x, κ(x)) ∈ X0

(ii) F is a Lyapunov function for x+ = f(x, κ(x)) on X0

which is compatible with the stage cost ` in the following
sense:

for each x ∈ X0 the inequality

F (f(x, κ(x))) ≤ F (x)− `(x, κ(x))

holds

Simplest choice: X0 = {x∗}, F ≡ 0, κ ≡ 0 (if f(x∗, 0) = x∗)

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 41

Prolongation of control sequences
Let ũ ∈ UN−1

X0
(x0) ⇒ x̃ := xũ(N − 1) ∈ X0

Define u ∈ UN as u(k) :=

{
ũ(k), k = 0, . . . , N − 2
κ(x̃), k = N − 1

with κ from (i)

⇒ xu(N) = f(xũ(N − 1),u(N − 1)) = f(x̃, κ(x̃)) ∈ X0

⇒ u ∈ UN
X0

(x0)

 every ũ ∈ UN−1
X0

(x0) can be prolonged to an u ∈ UN
X0

(x0)

By (ii) the stage cost of the prolongation is bounded by

`(xu(N − 1),u(N − 1)) ≤ F (xu(N − 1))− F (xu(N))

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 42

Reversal of VN−1 ≤ VN
Let ũ? ∈ UN−1

X0
(x0) be the optimal control for JN−1, i.e.,

VN−1(x0) = JN−1(x0, ũ
?)

Denote by u ∈ UN
X0

(x0) its prolongation

⇒ VN−1(x0) = JN−1(x0, ũ
?)

=
N−2∑
k=0

`(xũ?(k), ũ?(k)) + F (xũ?(N − 1))︸ ︷︷ ︸
≥`(xu(N−1),u(N−1))+F (xu(N))

≥
N−1∑
n=0

`(xu(k),u(k)) + F (xu(N))

= JN(x0,u) ≥ VN(x0)

 as desired, we obtain VN−1 ≥ VN

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 43



Feasible sets

Define the feasible set

XN := {x ∈ X |UN
X0

(x) 6= ∅}

On XN one can ensure the inequality

VN(x) ≤ α2(‖x− x∗‖)

for some α2 ∈ K∞ under mild conditions, while outside XN we
get VN(x) =∞

 the MPC control is only defined on XN !

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 44

Stability theorem
Theorem: Consider the MPC scheme with regional terminal
constraint xu(N) ∈ X0 and Lyapunov function terminal cost
F compatible with `. Assume that

VN(x) ≤ α2(‖x− x∗‖), inf
u∈U

`(x, u) ≥ α3(‖x− x∗‖)

holds for all x ∈ XN .

Then XN is forward invariant, the MPC closed loop is
asymptotically stable on XN and the performance estimate

J cl∞(x, µN) ≤ VN(x)

holds.

Proof: Combine dynamic programming with VN−1 ≥ VN

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 45

Stabilizing terminal conditions — Discussion

Stabilizing terminal conditions

yield an elegant stability theory

can indeed improve the stability properties

can be derived in a systematic way, e.g., by linearization

But:

large feasible set usually needs a large optimization
horizon N
(see again the car-and-mountains example)

additional analytical effort for computing F

hardly ever used in industrial practice

In Section (4) we will see how stability can be proved without
stabilizing terminal constraints
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Suboptimality

Recall: For both stabilizing terminal constraints the relaxed
dynamic programming theorem yields the estimate

J cl∞(x0, µN) ≤ VN(x0)

But: How large is VN ?

Without terminal constraints, the inequality VN ≤ V∞ is
immediate

However, the terminal constraints also reverse this inequality,
i.e., we have VN ≥ V∞ and the gap is very difficult to estimate
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Suboptimality — example

We consider two examples with X = R, U = R for N = 2

Example 1: x+ = x+ u, `(x, u) = x2 + u2

Terminal constraints xu(N) = x∗ = 0

V∞(x) ≈ 1.618x2, J cl∞(x, µ2) = 1.625x2

Example 2: as Example 1, but with `(x, u) = x2 + u4

V∞(20) ≤ 1726, J cl∞(x, µ2) ≈ 11240

General estimates for fixed N appear difficult to obtain. But
we can give an asymptotic result for N →∞
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Asymptotic Suboptimality

Theorem: For both types of terminal constraints the
assumptions of the stability theorems ensure

VN(x)→ V∞(x)

and thus
J cl∞(x, µN)→ V∞(x)

as N →∞ uniformly on compact subsets of the feasible sets,
i.e., the MPC performance converges to the optimal one

Idea of proof: uses that any approximately optimal trajectory
for J∞ converges to x∗ and can thus be modified to meet the
constraints with only moderately changing its value
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Summary of Section (3)

terminal conditions reverse the usual inequality
VN−1 ≤ VN to VN−1 ≥ VN

this enables us to derive the
relaxed dynamic programming inequality (with α = 1)
from the dynamic programming principle

the operating region is restricted to the feasible set XN

J cl∞(x, µN) ≤ VN(x) holds and VN → V∞ for N →∞,
but VN >> V∞ is possible
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(4) Stabilizing Model Predictive Control

without stabilizing terminal conditions



MPC without stabilizing terminal constraints

We return to the basic MPC formulation

minimize
u admissible

JN(x0, u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = x0 = xµN (n)

without any stabilizing terminal constraints and costs

In order to motivate why we want to avoid terminal
constraints and costs, we consider an example of P double
integrators in the plane
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Motivation for avoiding terminal conditions
Example: [Annunziato/Borz̀ı ’10ff., Fleig ’14ff.] The
Fokker-Planck Equation

∂ty(x, t)−
d∑

i,j=1

∂2xixj

(
aij(x, t)y(x, t)

)
+

d∑
i=1

∂xi

(
bi
(
x, t;u)

)
y(x, t)

)
= 0

y(·, 0) = y0

is a parabolic PDE describing the evolution of a probability
density function for stochastic control systems

By solving a Fokker-Planck control problem controls for large
ensembles of stochastic systems can be computed

Due to the complexity of the problem the derivation of
terminal conditions meeting the theoretical assumptions is
hardly feasible — but even without MPC works

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 53

Reference density function



Stabilizing NMPC without terminal constraint

(Some) stability and performance results known in the literature:

[Alamir/Bornard ’95]
use a controllability condition for all x ∈ X

[Shamma/Xiong ’97, Primbs/Nevistić ’00]
use knowledge of optimal value functions

[Jadbabaie/Hauser ’05]
use controllability of linearization in x∗

[Grimm/Messina/Tuna/Teel ’05, Tuna/Messina/Teel ’06,
Gr./Rantzer ’08, Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10,

Köhler/Müller/Allgöwer ’18ff]
use bounds on optimal value functions

Here we explain the last approach
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Bounds on the optimal value function

Recall the definition of the optimal value function

VN(x) := inf
u admissible

N−1∑
k=0

`(xu(k, x),u(k))

Boundedness assumption: there exists γ > 0 with

VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

where `?(x) := min
u∈U

`(x, u)

(sufficient conditions for and relaxations of this bound will be

discussed later)
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Stability and performance index
We choose `, such that

α3(‖x− x∗‖) ≤ `?(x) ≤ α4(‖x− x∗‖)

holds for α3, α4 ∈ K∞ (again, `(x, u) = ‖x− x∗‖2 + λ‖u‖2

works)

Then, the only inequality left to prove in order to apply the
relaxed dynamic programming theorem is

VN(f(x, µN(x))) ≤ VN(x)− αN`(x, µN(x))

for some αN ∈ (0, 1) and all x ∈ X

We can compute αN from the bound VN(x) ≤ γ`?(x)
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Computing αN
We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N (∗)
We want VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0))

• use (∗) to find ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

• concatenate x?(1), . . . , x?(k?) and the optimal trajectory
starting in x?(k?)  x̃(·), ũ(·)

⇒ VN (x
?(1)) ≤ JN (x?(1), ũ) ≤ VN (x?(0))− (1− γηN )︸ ︷︷ ︸

=αN

`(x?(0),u?(0))

x?(k)
*k

k
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Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

Variant 1 [Grimm/Messina/Tuna/Teel ’05]

VN(x) ≤ γ`?(x) ⇒ `(x?(k), u?(k)) ≤ γ`?(x)/N for at least

one k? ⇒ αN = 1− γ(γ − 1)/N

x?(k) k*

k
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Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

Variant 2 [Tuna/Messina/Teel ’06, Gr./Rantzer ’08]

VN(x) ≤ γ`?(x) ⇒ `(x?(k), u?(k)) ≤ γ
(
γ−1
γ

)k
`?(x)

⇒ k? = N − 1 ⇒ αN = 1− (γ − 1)N/γN−2

x?(k)
*k

k
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Decay of the optimal trajectory

We assume VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N

We want ηN > 0, k? ≥ 1 with `?(x?(k?)) ≤ ηN`
?(x?(0))

Variant 3 [Gr. ’09, Gr./Pannek/Seehafer/Worthmann ’10]

VN(x) ≤ γ`?(x) ⇒ formulate all constraints and trajectories

⇒ optimize for αN ⇒ αN = 1− (γ−1)N

γN−1−(γ−1)N−2

x?(k) *k

k
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Optimization approach to compute αN
We explain the optimization approach (Variant 3) in more
detail. We want αN such that

VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0))

holds for all optimal trajectories x?(n),u?(n) for VN

The bound and the dynamic programming principle imply:

VN(x?(1)) ≤ γ`?(x?(1))

VN(x?(1)) ≤ `(x?(1),u?(1)) + γ`?(x?(2))

VN(x?(1)) ≤ `(x?(1),u?(1)) + `(x?(2),u?(2)) + γ`?(x?(3))

...
...

...
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Optimization approach to compute αN
 VN(x?(1)) is bounded by sums over `(x?(n),u?(n))

For sums of these values, in turn, we get bounds from the
dynamic programming principle and the bound:

N−1∑
n=0

`(x?(n),u?(n)) = VN(x?(0)) ≤ γ`?(x?(0))

N−1∑
n=1

`(x?(n),u?(n)) = VN−1(x?(1)) ≤ γ`?(x?(1))

N−1∑
n=2

`(x?(n),u?(n)) = VN−2(x?(2)) ≤ γ`?(x?(2))

...
...
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Verifying the relaxed Lyapunov inequality
Find αN , such that for all optimal trajectories x?, u?:

VN(x?(1)) ≤ VN(x?(0))− αN`(x?(0),u?(0)) (∗)
Define λn := `(x?(n),u?(n)), ν := VN(x?(1))

Then: (∗) ⇔ ν ≤
N−1∑
n=0

λn − αNλ0

The inequalities from the last slides translate to

N−1∑
n=k

λn ≤ γλk, k = 0, . . . , N − 2 (1)

ν ≤
j∑

n=1

λn + γλj+1, j = 0, . . . , N − 2 (2)

We call λ0, . . . , λN−1, ν ≥ 0 with (1), (2) admissible
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Optimization problem
⇒ if αN is such that the inequality

ν ≤
N−1∑
n=0

λn − αNλ0 ⇔ αN ≤
∑N−1

n=0 λn − ν
λ0

holds for all admissible λn and ν, then the desired inequality
will hold for all optimal trajectories

The largest αN satisfying this condition is

αN := min
λn, ν admissible

∑N−1
n=0 λn − ν
λ0

This is a linear optimization problem whose solution can be
computed explicitly (which is nontrivial) and reads

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
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Stability and performance theorem
Theorem: [Gr./Pannek/Seehafer/Worthmann ’10]: Assume
VN(x) ≤ γ`?(x) for all x ∈ X, N ∈ N. If

αN > 0 ⇔ N > 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
∼ γ ln γ

then the NMPC closed loop is asymptotically stable with
Lyapunov function VN and we get the performance estimate
J cl∞(x, µN) ≤ V∞(x)/αN with

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
→ 1 as N →∞

Conversely, if N < 2 + ln(γ−1)
ln γ−ln(γ−1)

, then there exists a system

for which VN(x) ≤ γ`?(x) holds but the NMPC closed loop is
not asymptotically stable.
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Horizon dependent γ-values

The theorem remains valid if we replace the bound condition

VN(x) ≤ γ`?(x)

by
VN(x) ≤ γN`

?(x)

for horizon-dependent bounded values γN ∈ R, N ∈ N

 αN = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏
i=2

(γi − 1)

This allows for tighter bounds and a refined analysis
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Controllability condition
A refined analysis can be performed if we compute γN from a
controllability condition, e.g., exponential controllability:

Assume that for each x0 ∈ X there exists an admissible control
u such that

`(xu(k),u(k)) ≤ Cσk`?(x0), k = 0, 1, 2, . . .

for given overshoot constant C > 0 and decay rate σ ∈ (0, 1)

 VN(x) ≤ γN`
?(x) for γN =

N−1∑
k=0

Cσk

This allows to compute the minimal stabilizing horizon

min{N ∈ N |αN > 0}
depending on C and σ
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Stability chart for C and σ

(Figure: Harald Voit)

Conclusion: for short optimization horizon N it is
more important: small C (“small overshoot”)
less important: small σ (“fast decay”)

(we will see at the end of the section how to use this information)

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 70

Comments and extensions

for unconstrained linear quadratic problems:
existence of γ ⇔ (A,B) stabilizable

additional weights on the last term can be incorporated
into the analysis [Gr./Pannek/Seehafer/Worthmann ’10]

instead of using γ, α can be estimated numerically online
along the closed loop [Pannek et al. ’10ff]

positive definiteness of ` can be replaced by a
detectability condition [Grimm/Messina/Tuna/Teel ’05]

under appropriate uniformity assumptions, the results are
easily carried over to tracking time variant references
xref(n) instead of an equilibrium x∗

[Gr./Pannek ’11, Köhler/Müller/Allgöwer ’18ff.]
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Comments and extensions
The “linear” inequality VN(x) ≤ γ`?(x) may be too
demanding for nonlinear systems under constraints

Generalization: VN(x) ≤ ρ(`?(x)), ρ ∈ K∞

• there is γ > 0 with ρ(r) ≤ γr for all r ∈ [0,∞]
⇒ global asymptotic stability

• for each R > 0
there is γR > 0 with ρ(r) ≤ γRr for all r ∈ [0, R]

⇒ semiglobal asymptotic stability

• ρ ∈ K∞ arbitrary
⇒ semiglobal practical asymptotic stability

[Grimm/Messina/Tuna/Teel ’05, Gr./Pannek ’11]
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The car-and-mountains example reloaded
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MPC with `(x, u) = ‖x− x∗‖2 + |u|2 and umax = 0.2
 asymptotic stability for N = 11 but not for N ≤ 10

Reason: detour around mountains causes large overshoot C

Remedy: put larger weight on x2:

`(x, u) = (x1 − x∗,1)2 + 5(x2 − x∗,2)2 + |u|2  as. stab. for N = 2
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A PDE example

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1− y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

and distributed control u : R× Ω→ R

Discrete time system: y(n) = y(nT, ·), sampling time T = 0.025
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The uncontrolled PDE
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1− y) + u

Goal: stabilize the sampled data system y(n) at y ≡ 0

Usual approach: quadratic L2 cost

`(y(n), u(n)) = ‖y(n)‖2
L2 + λ‖u(n)‖2

L2

For y ≈ 0 the control u must compensate for yx  u ≈ −yx
 controllability condition

`(y(n), u(n)) ≤ Cσn`∗(y(0))

⇔ ‖y(n)‖2
L2 + λ‖u(n)‖2

L2 ≤ Cσn‖y(0)‖2
L2

≈ ‖y(n)‖2
L2 + λ‖yx(n)‖2

L2 ≤ Cσn‖y(0)‖2
L2

for ‖yx‖L2 >> ‖y‖L2 this can only hold if C >> 0
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MPC for the PDE example
Conclusion: because of

‖y(n)‖2
L2 + λ‖yx(n)‖2

L2 ≤ Cσn‖y(0)‖2
L2

the controllability condition may only hold for very large C

Remedy: use H1 cost

`(y(n), u(n)) = ‖y(n)‖2
L2 + ‖yx(n)‖2

L2︸ ︷︷ ︸
=‖y(n)‖2

H1

+λ‖u(n)‖2
L2 .

Then an analogous computation yields

‖y(n)‖2
L2 + (1 + λ)‖yx(n)‖2

L2 ≤ Cσn
(
‖y(0)‖2

L2 + ‖yx(0)‖2
L2

)
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MPC with L2 vs. H1 cost
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N= 3, L2
N=11, L2
N= 3, H1

MPC with L2 and H1 cost, λ = 0.1, sampling time T = 0.025
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1− y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
 L2 should perform better that H1
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Boundary control, L2 vs. H1, N = 20
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Boundary control, λ = 0.001, sampling time T = 0.025
Can be made rigorous for many PDEs [Altmüller et al. ’10ff]

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 80

Summary of Section (4)

Stability and performance of MPC without terminal
constraints can be ensured by suitable bounds on VN

An optimization approach allows to compute the best
possible αN in the relaxed dynamic programming theorem

The γ or γN can be computed from controllability
properties, e.g., exponential controllability

The overshoot bound C > 0 plays a crucial role or
obtaining small stabilizing horizons

Computing tight estimates for C is in general a difficult if
not impossible task

But structural knowledge of the system behavior can be
sufficient for choosing a “good” `
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(5) Economic Model Predictive Control (5a) Time-invariant problems



Performance
In this section we do not limit ourselves to stabilizing costs as,
e.g., `(x, u) = ‖x− x∗‖2 + λ‖u− u∗‖2

MPC with more general ` is often termed economic MPC. In
this setting, performance of µN can be measured in two ways

Infinite horizon averaged performance:

J
cl

∞(x, µN) = lim sup
K→∞

1

K

K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

Finite horizon (or transient) performance:

J clK(x, µN) =
K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

Only in special cases K →∞ makes sense
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Example 1: minimum energy control
Example: Keep the state of the system inside the admissible
set X minimizing the quadratic control effort

`(x, u) = u2

with dynamics

x(n+ 1) = 2x(n) + u(n)

and constraints X = [−2, 2], U = [−3, 3]

For this example, the closer the state is to xe = 0, the cheaper
it is to keep the system inside X

 optimal trajectory should stay near xe = 0

We illustrate MPC for this problem without terminal conditions

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 85

Example 1: trajectories
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Example 1: averaged closed loop performance
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∞(0.5, µN)− `(xe, ue) depending on N , logarithmic scale
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Example 2: a macroeconomic model
The second example is a 1d macroeconomic model

[Brock/Mirman ’72]

Minimize the performance with

`(x, u) = − ln(Axα − u), A = 5, α = 0.34

with dynamics x+ = u and constraints X = U = [0, 10]

Interpretation:
x = capital
Axα = capital after one time step before consumption
u = capital after one time step after consumption
Axα − u = consumption
ln(Axα − u) = benefit from consumption (utility function)

On infinite horizon, it is optimal to stay at the equilibrium

xe ≈ 2.2344 with `(xe, ue) ≈ 1.4673
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Example 2: trajectories
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Example 2: averaged closed loop performance
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Observations
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optimal open loop trajectories approach the optimal
equilibrium, stay there for a while, and turn away

– “turnpike property”
closed loop trajectories converge to a neighborhood of the
optimal equilibrium whose size tends to 0 as N →∞
the averaged closed loop performance satisfies

J
cl

∞(x, µN)→ `(xe, ue) as N →∞ (exponentially fast)

Can we prove this behavior?

We first investigate the turnpike property
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The turnpike property

The turnpike property

The turnpike property describes a behaviour of (approximately)
optimal trajectories for a finite horizon optimal control problem

minimise
u

JN(x,u) =
N−1∑
n=0

`(xu(n),u(n))

with state and input constraints xu(n) ∈ X, u(n) ∈ U

Informal description of the turnpike property: any optimal
trajectory stays near an equilibrium xe most of the time

We illustrate the property by the two examples
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Example 1: minimum energy control

Example: Keep the state of the system inside a given interval
X minimising the quadratic control effort

`(x, u) = u2

with dynamics
x+ = 2x+ u

and constraints X = [−2, 2], U = [−3, 3]
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Example 1: optimal trajectories
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Optimal trajectories for N = 5, . . . , 25
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Example 2: a macroeconomic model

The second example is a 1d macroeconomic model
[Brock/Mirman ’72]

Minimise the finite horizon objective with

`(x, u) = − ln(Axα − u), A = 5, α = 0.34

with dynamics x+ = u

on X = U = [0, 10]

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 96

Example 2: optimal trajectories
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How to formalize the turnpike property?

n
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Number of points outside the blue neighbourhood is bounded
by a number independent of N (here: by 8)
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The turnpike property: formal definitions

Let xe be an equilibrium, i.e., f(xe, ue) = xe

Turnpike property: For each ε > 0 and ρ > 0 there is Cρ,ε > 0
such that for all N ∈ N all optimal trajectories x? starting in
Bρ(x

e) satisfy the inequality

#
{
k ∈ {0, . . . , N − 1}

∣∣∣ ‖x?(k)− xe‖ ≥ ε
}
≤ Cρ,ε

If the infinite horizon problem is well defined, this definition
can also be used for N =∞
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History

Apparently first described by [von Neumann 1945]

Name “turnpike property” coined by
[Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical
economy, cf. survey [McKenzie 1983]

Renewed interest in recent years [Zaslavski ’14ff,

Trélat/Zuazua et al. ’15ff, Faulwasser et al. ’15ff, . . . ]

Many applications, e.g., structural insight in economic
equilibria; synthesis of optimal trajectories

[Anderson/Kokotovic ’87]
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A first performance estimate

Assumptions

We make the following assumptions:

The turnpike property holds at an equilibrium (xe, ue)

Without loss of generality we assume `(xe, ue) = 0

— otherwise we replace `(x, u) by `(x, u)− `(xe, ue)
The corresponding infinite horizon problem is well defined

We will later explain how to avoid the assumption `(xe, ue) = 0
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Towards the first performance estimate

Define the optimal value function VN(x) = infu(·) JN(x, u)
and the optimal control by u?N for N ∈ N and N =∞
Assume VN(x) ≈ VN(xe) for x ≈ xe and N = 1, . . . ,∞

We can then use the turnpike property to prove

|JP (x0, u
?
N)− JP (x0, u

?
∞)| ≤ ε

and
|JP (x0, u

?
∞) + V∞(xe)− V∞(x0)| ≤ ε

for an error term ε > 0
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Proving |JP (x0, u
?
N)− JP (x0, u

?
∞)| ≤ ε

Sketch of the idea:

x?(·)

xe

P
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Towards the first performance estimate
From |JP (x0, u

?
N)− JP (x0, u

?
∞)| ≤ ε

and |JP (x0, u
?
∞) + V∞(xe)− V∞(x0)| ≤ ε we obtain

|JP (x0, u
?
N) + V∞(xe)− V∞(x0)| ≤ 2ε

This inequality yields:

JclK(x, µN ) =
K−1∑
n=0

`(xµN (n), µN (xµN (n)))

≤
K−1∑
n=0

JP (xµN (n), u
?
N )− JP−1(xµN (n+ 1)), u?N−1)

≤
K−1∑
n=0

(
V∞(xµN (n))− V∞(xµN (n+ 1)) + 4ε

)
= V∞(xµN (0))− V∞(xµN (K)) + 4Kε

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 105

Assumptions needed for this construction
What do we need to make this construction work?

(1) Turnpike property

I ensures that the optimal trajectories stay for a certain
time near the optimal equilibrium xe, such that we can
merge the trajectories

(2) Continuity of VN in xe (uniform in N = 1, . . . ,∞)
I ensures that the merged trajectories have a value close

to the original ones

Under these conditions we obtain [Gr. ’11; Gr. ’16, Theorem 4.4]

J clK(x, µN) + V∞(xµN (K)) ≤ V∞(xµN (0)) +Kε(N)

“The MPC trajectory on {0, . . . , K} is an initial piece of an
approximately optimal infinite horizon trajectory”
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Interpretation of the estimate

J clK(x, µN) + V∞(xµN (K)) ≤ V∞(xµN (0)) +Kε(N)

If V∞ is bounded from below, this estimate ensures the error

J
cl

∞(x, µN) ≤ `(xe, ue) + ε(N)

for the averaged performance

J
cl

∞(x, µN) = lim sup
K→∞

1

K

K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

However, the above estimate is better than pure average
approximate optimality, because it also ensures the finite-time
error

Kε(N)

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 107



Strict dissipativity

Strict dissipativity in MPC

Around the same time when we discovered the importance of
the turnpike property, in MPC with terminal constraints the
notion of strict dissipativity was discovered to be an important
structural property

[Diehl/Rawlings ’11, Angeli/Amrit/Rawlings ’12]
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Strict dissipativity
[cf. Willems ’72]

x+ = f(x, u)

Definition: The system is called strictly dissipative if there are
xe ∈ X, s : X × U → R, λ : X → R bounded from below,
α ∈ K such that for all x ∈ X, u ∈ U

λ(x+) ≤ λ(x) + s(x, u)− α(‖x− xe‖)
λ = storage function = energy stored in the system
s = supply rate = energy supplied/extracted from the outside

For s(x, u) = `(x, u)− `(xe, ue), strict dissipativity has various
impacts on the MPC scheme
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Strict dissipativity and MPC

˜̀(x, u) := `(x, u)−`(xe, ue)+λ(x)−λ(f(x, u)) ≥ α(‖x−xe‖)
It was proved in [Gr. 13, Gr./Stieler ’14] that

strict dissipativity plus a reachability condition implies the
turnpike property (in principle known at least since
[Carlson/Haurie/Leizarowitz ’91])
strict dissipativity plus local controllability implies
continuity of VN in xe uniformly in N = 1, . . . ,∞
strict dissipativity allows to construct Lyapunov functions
for the MPC trajectories
MPC allows for improved performance estimates

The previous examples are strictly dissipative with
λ(x) = −x2/2 and λ(x) ≈ 0.2306x, respectively

Stabilizing costs are strictly dissipative with λ ≡ 0
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Strict dissipativity and turnpike property

Question: how restrictive is it to assume strict dissipativity?

Theorem [Gr./Müller ’16]: Under suitable controllability
conditions, strict dissipativity is equivalent to the turnpike
property plus optimality of the equilibrium (xe, ue)

Theorem [Gr./Guglielmi ’18] For finite dimensional linear
quadratic problems without state constraints, strict
dissipativity and the turnpike property are equivalent to
detectability

With bounded state constraints, strict dissipativity and the
turnpike property are equivalent to hyperbolicity of the zero
dynamics (weaker than detectability)
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The full performance result for time-invariant

problems

Economic MPC theorem

Theorem: [Gr./Stieler ’14]

Let f and ` be Lipschitz, X and U be compact and assume

(i) local controllability near xe

(ii) strict dissipativity

(iii) reachability of xe from all x ∈ X

(iv) polynomial growth conditions for ˜̀

}
⇒ uniform continuity of VN}

⇒ turnpike property

(i)–(iv) ⇒ exponential turnpike)
[Damm/Gr./Stieler/Worthmann ’14])

(for alternative conditions see also [Porretta/Zuazua ’13])

[Trelat/Zuazua ’14])
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Economic MPC theorem
Under assumptions (i)–(iii), there exist ε1(N), ε2(K)→ 0 as
N →∞ and K →∞, exponentially fast if additionally (iv)
holds, such that the following properties hold

(1) Approximate average optimality:

J
cl

∞(x, µN) ≤ `(xe, ue) + ε1(N)

(2) Practical asymptotic stability: there is β ∈ KL:

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + ε1(N) for all k ∈ N

A practical Lyapunov function is given by the optimal value
function for the problem with cost ˜̀

(3) Approximate transient optimality: for all K ∈ N:

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

for all admissible u with ‖xu(K,x)− xe‖ ≤ β(‖x− xe‖,K) + ε1(N)
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Illustration of (2) and (3)

ex
ε

x

nK

(N)1

(2): xµN (n) converges to the ε1(N)-ball around xe

(3): cost of all other trajectories reaching the ball at time K is
(3): higher than that of xµN (n) up to the error Kε1(N) + ε2(K)
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Schemes with terminal constraints

If we know the equilibrium xe, we may use it as a terminal
constraint, i.e., in each step of the MPC scheme we optimize
only over those trajectories satisfying xu(N) = xe

Example:
N = 5
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Schemes with terminal constraints
Imposing xu(N) = xe improves the previous results

Theorem: [Angeli/Amrit/Rawlings ’12; Diehl/Rawlings ’11]

Under strict dissipativity and controllability, the resulting MPC
scheme yields averaged optimal trajectories, i.e,

J
cl

∞(x, µN) ≤ `(xe, ue) + ε1(N)����XXXXε1(N)

for which xe is asymptotically stable, i.e.,

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + ε1(N)����XXXXε1(N).

In addition [Gr./Panin ’15] we get approx. transient optimality

J clK(x, µN(x)) ≤ JK(x,u) +K ε1(N)��ZZK ε̃1(N) + ε2(K)
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Example: closed loop cost

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

vs.
J clK(x, µN(x)) ≤ JK(x,u) +Kε̃1(N) + ε2(K)
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no terminal conditions

terminal conditions

But: terminal constraints can cause infeasibility and severe
numerical problems

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 119



Extensions, further results

The terminal constraint xu(N) = xe can be relaxed to
xu(N) ∈ X0 for a neighborhood X0 of xe if the functional
JN is appropriately modified [Amrit/Rawlings/Angeli ’12,

Gr./Panin ’15]

The results can be formulated directly in continuous time
[Faulwasser/Bonvin ’15, Alessandretti/Aguiar/Jones ’15]

The optimal equilibrium can be replaced by an optimal
periodic orbit [Zanon/Gr. ’15, Müller/Gr. ’15]

Results for time-varying systems
[Zanon/Gros/Diehl ’13, Alessandretti/Aguiar/Jones ’15,

Gr./Pirkelmann ’17, Gr./Pirkelmann/Stieler ’18]

 next section
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Summary of Section (5a)

Economic Model Predictive Control can be seen as a
method for splitting up general infinite horizon optimal
control problems into the iterative solution of finite
horizon problems

The existence of the turnpike property at an optimal
solution is the key ingredient for this approach

Strict dissipativity is essentially equivalent to this property

Good news: if MPC works, then it works regardless of
whether we checked the conditions — but if we want to
be sure we need to check
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(5b) Time-varying problems

Setup
We consider nonlinear discrete time time-varying control
systems

xu(n+ 1) = f(n, xu(n), u(n)), xu(0) = x0

with xu(n) ∈ X, u(n) ∈ U , X, U normed spaces

Problem: infinite horizon optimal control

Prototype problem: For a stage cost ` : N0 ×X × U → R
solve

“minimize”
u

J∞(x, u) =
∞∑
n=0

`(n, xu(n), u(n))

subject to state/control constraints xu(n) ∈ X(n), u(n) ∈ U(n)

with optimal control in feedback form u(n) = µ(n, xu(n))
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Application background

Prototype problem: Keep the temperature in a room in a
desired range with mimimal energy consumption for heating
and cooling, based on predicted information on outside
temperature, room usage etc.

Since there is no terminal time for the process, an infinite
horizon formulation with

X(n) = desired temperature range at time n and

`(n, x, u) = energy consumption

is an appropriate mathematical formulation
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Application background

The methods are applicable to appropriate PDE models
(Boussinesq equations, advection diffusion equations). An
example will be given at the end of this section

In order to develop the concepts, we illustrate the results with
a simple 1d discrete time model:

x(n+ 1) = x(n)︸︷︷︸
inside temperature

+ u(n)︸︷︷︸
heating/cooling

+ w(n)︸ ︷︷ ︸
outside temperature

with stage cost
`(x, u) = u2

and time varying w(n) and X(n)
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Example: optimal trajectory
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Optimality concept
Already for this simple example, the problem

“minimize”
u

J∞(x, u) =
∞∑
n=0

`(n, xu(n), u(n))

is not meaningful, because the sum will not converge

Remedy: Overtaking Optimality [Gale ’67]

A trajectory x? with control u? is called overtaking optimal if

lim sup
K→∞

(
K−1∑
n=0

`(n, x?(n), u?(n))−
K−1∑
n=0

`(n, xu(n), u(n))

)
≤ 0

holds for all admissible trajectory-control pairs (xu, u) with
xu(0) = x?(0)
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Model predictive control
The MPC scheme is straightforwardly generalized to the
time-varying setting:

Idea: replace the infinite horizon problem

minimize J∞(x, u) =
∞∑
n=0

`(n, xu(n), u(n))

by the successive solution of finite horizon problems

minimize JN(n, x, u) =
n+N−1∑
k=n

`(k, xu(k), u(k))

for n = 0, 1, 2, . . . with fixed optimization horizon N ∈ N and
xu(k) ∈ X(k), u(k) ∈ U(k)
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Questions

The questions are as for time-invariant problems:

Is the MPC closed-loop solution approximately optimal?
If yes, for which objective?

What is the long-time behaviour of the MPC closed loop?

Numerical simulations suggest that the closed-loop cost
converges for N →∞
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MPC closed loop cost for different horizon length
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But what is the limit?
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Remember the time-invariant case
Recall: For time-invariant problems, it is known that MPC
approximates infinite horizon optimal trajectories as N →∞ if

there exists an optimal equilibrium xe at which the
turnpike property holds, i.e.,
I finite horizon optimal trajectories stay near xe most of

the time
I infinite horizon optimal trajectories converge to xe

a continuity condition of the optimal value function holds
at xe

In this case, the closed-loop solutions converge to a
neighbourhood of xe

Question: can we find a counterpart for such an optimal
equilibrium xe for time-varying problems?

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 131



MPC closed loop
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MPC closed loop for different initial values
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A generalized optimal equilibrium
Obviously, the closed loop trajectories converge to the black
limit trajectory. How is it characterized?

Idea: generalize the definition of optimal operation at an
equilibrium from [Müller ’13]:

We say that the system is optimally operated at a trajectory x̂
with control û if

lim sup
K→∞

(
K−1∑
n=0

`(n, x̂(n), û(n))−
K−1∑
n=0

`(n, xu(n), u(n))

)
≤ 0

holds for all admissible trajectory-control pairs (xu, u)

Note: this is similar to the definition of overtaking optimality,
but now xu(0) 6= x̂(0) is allowed
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Towards the main result

Goal: obtain an approximate optimality result for the MPC
closed loop trajectory

Approach: generalize the time-invariant result

To this end, we assume that the problem exhibits a trajectory
x̂ with control û at which the system is optimally operated

Now we have to define suitable time-varying versions of the
turnpike property and of the continuity assumption

We start with the turnpike property
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The turnpike property
We assume there is a function σ(P )↘ 0 as P →∞ such that
for all N the finite horizon optimal pairs (x?n,N , u

?
n,N) satisfy

‖(x?n,N(k, x), u?n,N(k))− (x̂(k), û(k))‖ ≤ σ(P )

for all but at most P time indices k ∈ {n, . . . , n+N}

k

x

x̂P = 8

σ(P )
σ(P )

k +N

x?n,N
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Example: turnpike property for varying N
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Example: turnpike property for varying x0
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Continuity
As a second ingredient for our approximation result we need
continuity of the optimal value functions

VN(n, x) := inf
u
JN(n, x, u) and V∞(n, x) := inf

u
J∞(n, x, u)

near x = x̂(n)

But: V∞ is not well defined in the framework of overtaking
optimality

Remedy: Use the shifted stage cost (cf. [Ramsey 1928])

ˆ̀(n, x, u) = `(n, x, u)− `(n, x̂(n), û(n))

Then, by definition, V̂∞(n, x̂(n)) = 0

Continuity now formalizes that the shifted problem “behaves
well” for x near x̂(n)
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Approximate continuity

We assume that there is a function γV : R+
0 ×N∪ {∞} → R+

0

such that for all n ∈ N and all x from a neighborhood
Bε(x̂(n)) the inequality

|V̂N(n, x)− V̂N(n, x̂(n))| ≤ γV (‖x− x̂(n)‖, N)

holds

Here

γV (r,N) is continuous, increasing in r, decreasing in N

γV (0, N)→ 0 if N →∞, γV (0,∞) = 0

In order to simplify the presentation we moreover assume there
is C > 0 with V̂N(n, x) ≥ −C for all n ∈ N, x ∈ X(n)

Lars Grüne, Deterministic Stabilizing and Economic MPC, p. 140

Main performance theorem
Theorem: Assume that the turnpike property and approximate
continuity hold. Then there exists an error term δ(N)→ 0 as
N →∞ with

lim sup
K→∞

(K−1∑
n=0

`(n, xµN (n), µN(xµN (n)))

−
K−1∑
n=0

`(n, xu(n), u(n))−Kδ(N)
)
≤ 0

for all admissible (xu, u) with xu(0) = xµN (0)

In other words: the MPC closed loop trajectory on {0, . . . , K}
is the initial piece of an overtaking optimal trajectory — up to
the error Kδ(N)

Note: The factor “K” in the error term usually vanishes when
looking at the relative error
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Strict dissipativity and convergence theorem

Strict dissipativity generalizes to the time-varying setting

Definition: The optimal control problem is called strictly
dissipative at x̂ if there exists a storage function
λ : N×X × U → R, bounded from below, such that

λ(n+ 1, f(n, x, u)) ≤ λ(n, x) + `(n, x, u)− `(n, x̂(n), û(n))

− α(‖(x, u)− (x̂(n), û(n))‖)

holds for all n, x, u and α ∈ K∞
Theorem: If strict dissipativity holds and V̂N is bounded from
above uniformly in N , then the turnpike property holds

If, in addition, the system is locally controllable around x̂, then
the approximate continuity property holds
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Strict dissipativity

If we assume strict dissipativity, then we can also prove
convergence of the MPC closed-loop solution to a
neighbourhood of the turnpike trajectory:

Theorem: If the assumptions of the main result and strict
dissipativity hold, then there is an error term ε(N)→ 0 as
N →∞ such that

lim sup
n→∞

‖xµN (n)− x̂(n)‖ ≤ ε(N)

This is also what we have seen in the example
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MPC closed loop for different initial values
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Convection-diffusion equation
Consider the partial differential equation

yt − α∆y + v∇y = 0 on Q := Ω× [0, T ]

with boundary conditions

∂y

∂n
+ γy = δyout on Γout

∂y

∂n
+ γy = δu on Γc

where

y : Q→ R is the temperature

yout : Σout → R is the time-varying outside temperature

u : Σc → R is the controlled temperature

v : Q→ Rd is the controlled convection

α, γ, δ are coefficients
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Optimal control problem

minimize
y,u,v

J(y, u, v) =
εu
2

∫ T

0

‖u‖2
L2(Γc)dt+

εv
2

∫ T

0

‖v‖2
L2(Ω)dt

s.t. PDE + boundary conditions

u(x, t) ≤ u(x, t) ≤ u(x, t) on Γc

y(x, t) ≤ y(x, t) ≤ y(x, t) on Ωy

where Ωy ⊂ Ω.

Ωy

Ω

ΓcΓout

Figure: Example setting.
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Numerical solution

We solve MPC for the sampled-data system with sampling
time 0.01

In order to solve the optimal control problem, we use a direct
discretization (or early lumping) approach, based on a finite
element discretization using FEniCS [Alnæs et al. ’15] and
using Ipopt1 for the resulting finite dimensional optimization
problem

This is not the most sophisticated and efficient numerical
approach but works ok for a one-dimensional state space

1https://projects.coin-or.org/Ipopt
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Turnpike behaviour
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Continuity
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Continuity — Dependence on N
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Closed loop cost
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Summary of Section (5b)

For time-varying problems, an overtaking optimal
time-varying solution replaces the optimal equilibrium

Then, both turnpike theory and strict dissipativity can be
generalized

With this generalization, similar stability and performance
results for MPC as in the time-invariant case can be
obtained
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