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Purpose of this part

Introduce control systems and optimal control problems
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Contents of this part

Part 1: Optimal Control Problems — An Introduction

e Optimal Control Problems
@ Continuous-time Optimal Control Problems
@ Discrete-time Optimal Control Problems

@ Open-loop and Closed-loop Optimal Control
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Optimal Control Problems



Setting

We consider nonlinear control systems in continuous time

(1) = o) = (6 2(0), u(0)
or in discrete time

w(t) == w(t+1) = g(t, x(1), u(t))
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Setting

We consider nonlinear control systems in continuous time
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or in discrete time
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Setting

We consider nonlinear control systems in continuous time

) d
i(t) == @I(t) = f(t,z(t),u(t)), x(to) = o, t > to
or in discrete time
x(t) == x(t+1) = g(t, z(t),u(t)), x(to) = mo, t = to, to+1,t0+2,...

where f: R xR" xR™ — R", g¢: Z xR" xR™ — R"™ are maps with
appropriate regularity and u(-) is either a suitable control function or a control
sequence, in both cases with values in R™
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or in discrete time
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sequence, in both cases with values in R™
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Setting

We consider nonlinear control systems in continuous time

) d
z(t) :== @x(t) = f(t,z(t),u(t)), z(to) =z, t >t
or in discrete time
() == x(t+1) = g(t,z(t),u(t)), x(ty) = zo, t =to,to+1,10+2,...

where f: R X R"xR"™ - R", ¢:7Z xR"xR™ — R" are maps with
appropriate regularity and u(-) is either a suitable control function or a control
sequence, in both cases with values in R™

We call 2 € R"™ thestateand wu € R™ the control input

The bold wu(-) indicates control functions or sequences with u(t) =u € U
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Example: Pendulum on a cart
Example: Pendulum on a cart

r1 = 0 = angle

xro = angular velocity
r3 = cart position

x4 = cart velocity

u = cart acceleration

~~ control system

T = Ty
oy = —kxy— gsin(xy) — ucos(xy)
T3 = X4
Ty = U

'\
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Example: Pendulum on a cart
Example: Pendulum on a cart

r1 = 0 = angle

xro = angular velocity
r3 = cart position

x4 = cart velocity

u = cart acceleration

~~ control system

T = Ty
oy = —kixe — ko(gsin(xy) — ucos(xy))
T3 = X4
Ty = X3
\ Ty = Xg

i]ﬁ = k?gu(t) — k4[13()(t> — k55135
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What is an Optimal Control Problem?

Informal definition of optimal control:

Determine a control function that causes a control system to minimize a
performance criterion and—at the same time— satisfy physical constraints.

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 6/156



What is an Optimal Control Problem?

Informal definition of optimal control:

Determine a control function that causes a control system to minimize a
performance criterion and—at the same time— satisfy physical constraints.

Generic Optimal Control Problem (OCP) — Continuous time:
m(igl J(zo,u(-))
subject to (OCP.)
#(t)= f(t,x(t),u(t)), x(to) = o

V te [to, tf] :u(t) e UCR™
V te [to, tf] : z(t) e XCR"
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Optimal control in continuous time and discrete time

Continuous-time OCP
min J(z, (")
subject to
o(t)= f(t,z(t),u(t)), =z(to) =0
Vte [to,ts] s u(t) e UCR™
Vte [to, ts]  x(t) e XCR"”
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Optimal control in continuous time and discrete time

Continuous-time OCP Discrete-time OCP
m('gl J(zg,u(+)) m('gl J(zo,u(+))
subject to subject to
i(t)=f(t,z@t),ut)), (b)) =x0  x(t+1)=g(t z(),ut)), (t) =0
Vte [to,ts] s u(t) e UCR™ Vte Ny o1n-1) s u(t) € UC R™
Vte [to, ts]  x(t) e XCR"” Vte Nygiorn) :2(t) e XCR?
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Optimal control in continuous time and discrete time

Continuous-time OCP Discrete-time OCP
m(igl J(zg,u(+)) m(igl J(zo,u(+))
subject to subject to
i(t)=f(t,z@t),ut)), (b)) =x0  x(t+1)=g(t z(),ut)), (t) =0
Vte [to,ts] s u(t) e UCR™ Vte Ny o1n-1) s u(t) € UC R™
Vte [to, ts]  x(t) e XCR"” Vte Nygiorn) :2(t) e XCR?
Ingredients

@ Dynamics?
@ Class of control functions? Definition of state and input constraints?

@ Performance criterion?

w‘ UNIVERSITAT
BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 7/156



Continuous-Time Optimal Control Problems



Continuous-time optimal control problems
Generic Optimal Control Problem (OCP):

win J(zo,u("))

subject to (OCP.)
#(t)= f(t,x(t),u(t)), x(to) = o
Vte [to, ty] s u(t) e U CR™
Vte [to, ty] s x(t) e XCR"

Ingredients
@ Dynamics?
@ Class of control functions? Definition of state and input constraints?

@ Performance criterion?
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Control functions and dynamics

We want to ensure the existence of a unique solution of the initial value problem

#(t) = f(t,2(1),u(t), @(to) = w9
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Control functions and dynamics

We want to ensure the existence of a unique solution of the initial value problem

ZE(t) - f<t7 CL’(t)./ u(t))7 x(to) = To

If
@ f is Lipschitz continuous in = uniformly for u and ¢ from bounded sets

@ u is measurable and locally essentially bounded, i.e., u € L
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Control functions and dynamics

We want to ensure the existence of a unique solution of the initial value problem

ZE(t) - f<t7 CL’(t)./ u(t))7 x(to) = To
If

@ f is Lipschitz continuous in = uniformly for u and ¢ from bounded sets

@ u is measurable and locally essentially bounded, i.e., u € L

then the Theorem of Carathéodory guarantees the existence of a unique solution,
at least on some interval [tg, ax)
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Control functions and dynamics

We want to ensure the existence of a unique solution of the initial value problem

ZE(t) - f<t7 CL’(t)./ u(t))7 x(to) = To

If
@ f is Lipschitz continuous in = uniformly for u and ¢ from bounded sets

@ u is measurable and locally essentially bounded, i.e., u € L

then the Theorem of Carathéodory guarantees the existence of a unique solution,
at least on some interval [tg, ax)

We denote this solution by
Iu<t7 tO-/ ‘TO)
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Control functions and dynamics

We want to ensure the existence of a unique solution of the initial value problem

x@) - f<t7 CL‘(t)./ u(t))v x(to) = 2o
If

@ f is Lipschitz continuous in = uniformly for u and ¢ from bounded sets

@ u is measurable and locally essentially bounded, i.e., u € L

then the Theorem of Carathéodory guarantees the existence of a unique solution,
at least on some interval [tg, ax)

We denote this solution by
$u<t7 tO-/ ‘TO)

(we may omit ¢y, 2, and/or u when clear from the context)
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Performance criteria
Cost functional .J : R" x L!° — R in Lagrange form

ty

J(xo,u(-)):/t 0(t, z(t),u(t))dt

0

@ Stage cost or running cost! /: R x R" x R™ — R, continuous and
continuously differentiable w.r.t. x

@ 1, t; can be fixed or free, i.e., we may minimize not only over u but also
over t; and/or t¢

@ 1y = oo is possible; we will come back to this later

In older texts also called Lagrange function
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Performance criteria

e Cost functional J : R" x L' — R in Lagrange form

J(z0,u()) :/fz(t,x(t),u(t))dt

to

Stage cost /: R x R" x R™ — R
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Performance criteria

e Cost functional J : R" x L' — R in Lagrange form

J(z0,u()) :/fz(t,x(t),u(t))dt

to

Stage cost /: R x R" x R™ — R

e Cost functional J : R™ x L' — R in Mayer form

J(zo,u(+)) = L(to, z(to), ty, x(ty))
Initial and terminal cost L : R x R®" x R x R" — R
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Performance criteria

e Cost functional J : R" x L' — R in Lagrange form

J(z0,u()) :/tfﬁ(t,x(t),u(t))dt

Stage cost /: R x R" x R™ — R

e Cost functional J : R™ x L' — R in Mayer form

J(zo,u(+)) = L(to, z(to), ty, x(ty))
Initial and terminal cost L : R x R®" x R x R" — R

e Cost functional J : R™ x L' — TR in Bolza form

J(xo,u(-)) = L(to, x(to), ty, x(ts)) + /f ' 0(t, x(t),u(t))dt
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Conversion of criteria
Lagrange form: J(xg,u / O(t, z(t),u(t))dt

Mayer form: J(zo,u(-)) = L(to, x(to), ty, z(ts))
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Conversion of criteria
Lagrange form: J(xg,u / O(t, z(t),u(t))dt
to

Mayer form: J(zo,u(-)) = L(to, x(to), ty, z(ts))

The criteria can be converted into each other
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Conversion of criteria
Lagrange form: J(xg,u / O(t, z(t),u(t))dt
[

Mayer form: J(zo,u(-)) = L(to, x(to), ty, z(ts))

The criteria can be converted into each other, e.g. from Lagrange to Mayer:
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Conversion of criteria
Lagrange form: J(xg,u / O(t, z(t),u(t))dt
[

Mayer form: J(zo,u(-)) = L(to, x(to), ty, z(ts))

The criteria can be converted into each other, e.g. from Lagrange to Mayer:

Add an additional state ¢ with differential equation ¢(t) = (¢, z(t), u(t))
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Conversion of criteria
Lagrange form: J(xg,u / O(t, z(t),u(t))dt
[

Mayer form: J(zo,u(-)) = L(to, x(to), ty, z(ts))

The criteria can be converted into each other, e.g. from Lagrange to Mayer:

Add an additional state ¢ with differential equation ¢(t) = (¢, z(t), u(t))

Then we get

o(t)) :co+/f€(t,:1:(t),u(t))dt

to
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Conversion of criteria
Lagrange form: J(xg,u / O(t, z(t),u(t))dt
to

Mayer form: J(zo,u(-)) = L(to, x(to), ty, z(ts))

The criteria can be converted into each other, e.g. from Lagrange to Mayer:

Add an additional state ¢ with differential equation ¢(t) = (¢, z(t), u(t))

Then we get

elt) = o+ / "o, 2(8), u(e))dt

to

Thus, for 7 = (;) Ty = (IO) and L(ty, Z(ty),t, Z(ts)) = c(t;) we obtain
0

L(to, #(to), t7, &(ts)) :/fz(t,x(t),u(t))dt

to
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Constraints
In this course, we limit ourselves to pointwise state and control constraints
z(t) € X, u(t) e U for (almost) all t € [to, /]

for given sets X C R", U C R™
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Constraints
In this course, we limit ourselves to pointwise state and control constraints
z(t) € X, u(t) e U for (almost) all t € [to, /]
for given sets X C R", U C R™
In an implementation, one would describe these sets by inequalities, e.g.,
X={zeR"|g(r)<O0foralli=1,...,n,}

for given functions g,...,g,, : R" = R
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Constraints
In this course, we limit ourselves to pointwise state and control constraints
z(t) € X, u(t) e U for (almost) all t € [to, /]
for given sets X C R", U C R™
In an implementation, one would describe these sets by inequalities, e.g.,
X={zeR"|g(r)<O0foralli=1,...,n,}

for given functions g,...,g,, : R" = R

More general constraints would be, e.g., mixed constraints such as (z,u) € Y or
integral constraints such as ftzf h(z(t),u(t))dt <0

Y
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Constraints
In this course, we limit ourselves to pointwise state and control constraints
z(t) € X, u(t) e U for (almost) all t € [to, /]
for given sets X C R", U C R™
In an implementation, one would describe these sets by inequalities, e.g.,
X={zeR"|g(r)<O0foralli=1,...,n,}

for given functions g,...,g,, : R" = R

More general constraints would be, e.g., mixed constraints such as (z,u) € Y or
integral constraints such as ftzf h(z(t),u(t))dt <0

Constraints can also be incorporated in a “soft” way, by choosing ¢ to satisfy
lz,u) =00 if (r,u) € X xU
In practice one often chooses / to be very large instead of actually co
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Example — Formulating an optimal control problem

The simplified dynamics of a car on a 1d road are given by

o (01 0 e
ac—AaH—Bu-(O O):{:+(1>u, x—(@)

where 1z is the position, 5 is the velocity, and the control input u is the
acceleration
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Example — Formulating an optimal control problem

The simplified dynamics of a car on a 1d road are given by

L (0 1Y 0 (T
ar—A:L+Bu/—(O 0) .I:+<1> u, .L‘—<$2>

where 1z is the position, 5 is the velocity, and the control input u is the
acceleration

Question: How would you specify performance criterion and constraints of a
physically meaningful optimal control problem that steers the car from z; = 1 to
x1 = 0 on the interval [to,t/]?
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Admissible and feasible controls

Definition: A control u(-) € L!°° is said to be feasible for initial value z on
[to, tg] if

@ the solution z(+; ¢y, z) is defined on [t t/]

o u(-) and xy(-; o, x¢) satisfy the constraints for almost all ¢ € [t. /]
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Admissible and feasible controls

Definition: A control u(-) € L!°° is said to be feasible for initial value z on
[to, tg] if

@ the solution z(+; ¢y, z) is defined on [t t/]
o u(-) and xy(-; o, x¢) satisfy the constraints for almost all ¢ € [t. /]

Then, (u(:), zy(;to, z0)) is called a feasible pair
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Admissible and feasible controls

Definition: A control u(-) € L!°° is said to be feasible for initial value z on
[to, tg] if

@ the solution z(+; ¢y, z) is defined on [t t/]
o u(-) and xy(-; o, x¢) satisfy the constraints for almost all ¢ € [t. /]

Then, (u(:), zy(;to, z0)) is called a feasible pair

Definition: The set
U () = {u(-) € L% | u(") is feasible for initial value z, on [to, ]}

is called the set of feasible controls. Short hand notation: U/
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Infinite-horizon objectives

Often one is interested in t; = co. Then the Lagrange term in the objective is
written as

(o, u(") = /OO 0t 2(t), u(t))dt

to
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Infinite-horizon objectives

Often one is interested in t; = co. Then the Lagrange term in the objective is
written as

(o, u(") = /OC 0t 2(t), u(t))dt

to
Infinite-horizon objectives are used for tasks that last indefinitely long
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Infinite-horizon objectives

Often one is interested in t; = co. Then the Lagrange term in the objective is
written as

J(xo,u(-))—/ 0t 2(t), u(t))dt
to

Infinite-horizon objectives are used for tasks that last indefinitely long
Sometimes, exponential discounting is considered

J(zo,u / Bt x(t), u(t))dt

with 3t = e, § >0
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Infinite-horizon objectives

Often one is interested in t; = co. Then the Lagrange term in the objective is
written as

(o, u(") = /mé(t,m(t),u(t))dt

to
Infinite-horizon objectives are used for tasks that last indefinitely long
Sometimes, exponential discounting is considered

J(zo,u /( Bt x(t), u(t))dt

with 3t = ¢ § > 0. For bounded ¢, discounting ensures that also on infinite
horizons
J(z0,u(2) < o0
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Infinite-horizon objectives

Often one is interested in t; = co. Then the Lagrange term in the objective is
written as

J(zo,u()) = /mé(t,x(t),u(t))dt

to
Infinite-horizon objectives are used for tasks that last indefinitely long

Sometimes, exponential discounting is considered
J(xo,u / Bt x(t), u(t))dt
to

with 3t = ¢ § > 0. For bounded ¢, discounting ensures that also on infinite
horizons
J(z0,u(2) < o0

Without discounting, additional conditions on the control system are needed to
ensure finiteness. Typically, these are controllability conditions
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Why consider infinite-horizon problems?

Of course, no real process runs infinitely long
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Why consider infinite-horizon problems?

Of course, no real process runs infinitely long

Yet, many processes have no “natural” end time
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Why consider infinite-horizon problems?

Of course, no real process runs infinitely long

Yet, many processes have no “natural” end time. They run until they are
switched off
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Why consider infinite-horizon problems?

Of course, no real process runs infinitely long

Yet, many processes have no “natural” end time. They run until they are
switched off

For instance, the frequent task of controlling a system to a desired state or
reference solution z,.s and keeping it there is naturally posed as an
infinite-horizon optimal control problem
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Example: Pendulum on a cart
Example: Pendulum on a cart
r1 = 0 = angle
o9 = angular velocity
u r3 = cart position
x4 = cart velocity
u = cart acceleration

Uz, u) = ||z — 2*||* + \u?

Swing-up to and bal-
ancing at the upright
position can be achieved
by an infinite-horizon op-
timal control with cost
((z,u) = ||o — 2| + pu?

'\
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Discrete-Time Optimal Control Problems



Performance criterion in discrete time

Recall the discrete-time dynamics (¢t + 1) = g(t, x(t),u(t)), x(to) = xo

UNIVERSITAT
w‘ BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 19/156



Performance criterion in discrete time

Recall the discrete-time dynamics (¢t + 1) = g(t, x(t),u(t)), x(to) = xo

General (Bolza) performance criterion:

J (0,1 Ze (t, x(t )+ L(to, x(to), t7, x(ts))

t=to

@ Stage cost or running cost /: R x R" x R™ — R
@ Mayer term (initial and/or terminal cost): L : R x R" x R x R" — R
@ Again, 7y and ¢, can be fixed or free
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Infinite-horizon OCP in discrete time

i > Bt a(t), u(t))

t=to
subject to (OCP,)
z(t +1)= g(t,z(t),u(t)), (0) =g
Vte N:u(t) e UCR™
Ve N:z(t) e X CR"

Here, again, 5 € (0, 1] is the discount factor
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Infinite-horizon OCP in discrete time

i > Bt a(t), u(t))

t=to
subject to (OCP,)
z(t +1)= g(t,z(t),u(t)), (0) =g
Vte N:u(t) e UCR™
Vte N:z(t) e X CR"

Here, again, 5 € (0, 1] is the discount factor

(6 =1 yields a problem without discounting)
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Discretization in time
Continuous-time systems can be converted into discrete-time systems
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Discretization in time
Continuous-time systems can be converted into discrete-time systems:

For discretizing the continuous-time control system () = f(¢,z(¢),u(t)) in
time, select a sampling time step & > 0 and choose a finite dimensional space of
control functions that is compatible with A
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Discretization in time
Continuous-time systems can be converted into discrete-time systems:

For discretizing the continuous-time control system () = f(¢,z(¢),u(t)) in
time, select a sampling time step & > 0 and choose a finite dimensional space of
control functions that is compatible with A

Simplest choice: piecewise constant controls, i.e., u constant on each interval
\kh, (k+ 1)h), k € N, with value u
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Discretization in time
Continuous-time systems can be converted into discrete-time systems:

For discretizing the continuous-time control system () = f(¢,z(¢),u(t)) in
time, select a sampling time step & > 0 and choose a finite dimensional space of
control functions that is compatible with A

Simplest choice: piecewise constant controls, i.e., u constant on each interval
\kh, (k+ 1)h), k € N, with value u

Then, set g(k,z,u) to be the solution z,((k + 1)h, kh, z) with control u =
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Discretization in time
Continuous-time systems can be converted into discrete-time systems:

For discretizing the continuous-time control system () = f(¢,z(¢),u(t)) in
time, select a sampling time step & > 0 and choose a finite dimensional space of
control functions that is compatible with A

Simplest choice: piecewise constant controls, i.e., u constant on each interval
\kh, (k+ 1)h), k € N, with value u

Then, set g(k,z,u) to be the solution z((k + 1)h, kh, z) with control u = w.

This way, z(k+1)=g(k,z(k),u(k))

exactly reproduces the continuous-time solutions at times ¢t = kh, k € N
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Discretization in time
Continuous-time systems can be converted into discrete-time systems:

For discretizing the continuous-time control system () = f(¢,z(¢),u(t)) in
time, select a sampling time step & > 0 and choose a finite dimensional space of
control functions that is compatible with A

Simplest choice: piecewise constant controls, i.e., u constant on each interval
\kh, (k+ 1)h), k € N, with value u
Then, set g(k,z,u) to be the solution z((k + 1)h, kh, z) with control u = w.

This way,
z(k +1) = g(k,z(k), u(k))
exactly reproduces the continuous-time solutions at times ¢t = kh, k € N

(k+1)h

Defining the discrete-time cost / as / ((t, x(t), u)dt exactly reproduces the cost
kh
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Discretization in time
Continuous-time systems can be converted into discrete-time systems:

For discretizing the continuous-time control system () = f(¢,z(¢),u(t)) in
time, select a sampling time step & > 0 and choose a finite dimensional space of
control functions that is compatible with A

Simplest choice: piecewise constant controls, i.e., u constant on each interval
\kh, (k+ 1)h), k € N, with value u

Then, set g(k,z,u) to be the solution z((k + 1)h, kh, z) with control u = w.

This way,
z(k +1) = g(k,z(k), u(k))
exactly reproduces the continuous-time solutions at times ¢t = kh, k € N
(k+1)h

Defining the discrete-time cost / as / ((t, x(t), u)dt exactly reproduces the cost
kh

Note: This does not yet include any numerical computation of (/) and

k,(:H)h ((t,xz(t),u)dt, which may be needed in addition
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Open-loop and closed-loop (or feedback) optimal control



Optimal value function and controls

The function
V() := inf J(zg,u(-))

u()eu ot (zg)

is called the optimal value function of the problem
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Optimal value function and controls

The function
V(zg) == inf J (o, u())

u(')eu[to’tf](l‘[))
is called the optimal value function of the problem

(Here and in the following we consider ¢, and ¢ fixed. If these times can vary, one can
define V(to, :I?o), V(tf, xo), or V(to, tf, wo))
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Optimal value function and controls
The function

V() := inf J(zo,u(-))

u(')eu[to’tf](l‘[))
is called the optimal value function of the problem

(Here and in the following we consider ¢, and ¢ fixed. If these times can vary, one can
define V(to, :I?o), V(tf, xo), or V(to, tf, wo))

A control u*(-) € U is called optimal for z if

I (0, 0*()) = V(o)

UNIVERSITAT
BAYREUTH

Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 22/156



Optimal value function and controls

The function
V(zg) == inf J (o, u())

u(')eu[to’tf](l'[))
is called the optimal value function of the problem

(Here and in the following we consider ¢, and ¢ fixed. If these times can vary, one can
define V(to, :I?o), V(tf, xo), or V(to, tf, .I'o))

A control u*(-) € U is called optimal for z if
J (o, u™(+)) = V(o)
The corresponding optimal trajectory is denoted by

I*(t) = Ty~ (IL, t(), l’o)
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Optimal value function and controls

The function
V(zg) == inf J (o, u())

u(')eu[to’tf](l'[))
is called the optimal value function of the problem

(Here and in the following we consider ¢, and ¢ fixed. If these times can vary, one can
define V(to, :I?o), V(tf, xo), or V(to, tf, .I'o))

A control u*(-) € U is called optimal for z if
J (o, u™(+)) = V(o)
The corresponding optimal trajectory is denoted by

I*(t) = Ty~ (IL, t(), fI/'())

Note: If u*(-) exists for g, then the “inf" in the definition of V/(z() is a "min”
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Open-loop optimal control

Given an OCP, let u*(-) be the optimal control for initial value x
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Open-loop optimal control

Given an OCP, let u*(-) be the optimal control for initial value x

This function is determined at time ¢, for all future times ¢ € [ty, /], depending
on I
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Open-loop optimal control

Given an OCP, let u*(-) be the optimal control for initial value x

This function is determined at time ¢, for all future times ¢ € [ty, /], depending
on I

Such a function is called an open-loop optimal control
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Open-loop optimal control

Given an OCP, let u*(-) be the optimal control for initial value x

This function is determined at time ¢, for all future times ¢ € [ty, /], depending
on I

Such a function is called an open-loop optimal control

OCRPY---------- - u(-
(at time 7o) ©)
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Open-loop optimal control

Given an OCP, let u*(-) be the optimal control for initial value x

This function is determined at time ¢, for all future times ¢ € [ty, /], depending
on I

Such a function is called an open-loop optimal control

ocp - wi() O B
(at time 7o) (at time ) o
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Open-loop optimal control

Given an OCP, let u*(-) be the optimal control for initial value x

This function is determined at time ¢, for all future times ¢ € [ty, /], depending
on I

Such a function is called an open-loop optimal control

Ty o u(t) - u*(t) . L
O it time to) L et tme 1) R
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Closed-loop optimal control

If there exists a map F': R x R" — R™ such that all optimal controls satisfy
w’(t) = F(t, z*(t))

for all t € [to, ts], then u*(-) is called closed-loop optimal control and /" is an
optimal feedback law
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Closed-loop optimal control

If there exists a map F': R x R" — R™ such that all optimal controls satisfy
w’(t) = F(t, z*(t))

for all t € [to, ts], then u*(-) is called closed-loop optimal control and /" is an
optimal feedback law

OCP ----- F(,)
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Closed-loop optimal control
If there exists a map F': R x R" — R™ such that all optimal controls satisfy
w’(t) = F(t, z*(t))

for all t € [to, ts], then u*(-) is called closed-loop optimal control and /" is an
optimal feedback law

OCP ----~ F(t,z(t)) ut :é(t’x(t)) i = f(t,z,u) BV
(at time t)
t
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Closed-loop optimal control
If there exists a map F': R x R" — R™ such that all optimal controls satisfy
w’(t) = F(t, z*(t))

for all t € [to, ts], then u*(-) is called closed-loop optimal control and /" is an
optimal feedback law

OCP ----- F(t,z(t)) u :é(t’w(t)) &= f(t,z,u) B a*(t)
(at time t)
i
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Quiz

Why are (optimal) controls in
feedback form preferred?

@ They can react to perturbations

@ They are easier to implement in
practice

@ They are easier to compute
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Quiz

Why are (optimal) controls in
feedback form preferred?

@ They can react to perturbations

@ They are easier to implement in
practice

@ They are easier to compute

Solution: see the pendulum example
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Summary of Part 1: Optimal Control Problems — An
Introduction
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Outline of the course

Part 1: Optimal Control Problems — An Introduction
Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce classical solution concepts for optimal control problems
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Purpose of this part

Introduce classical solution concepts for optimal control problems

Explain the differences between these concepts
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Purpose of this part

Introduce classical solution concepts for optimal control problems
Explain the differences between these concepts

Provide the basis for numerical solution methods
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Contents of this part

Part 2: Solution Concepts

@ Dynamic Programming
@ Euler-Lagrange Equations

@ Pontryagin's Minimum Principle
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Dynamic Programming



Optimal value function
Recall the definition of the optimal value function

V(xg) == inf J(xo,u())
u()eu0 ) (zg)
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Optimal value function

Recall the definition of the optimal value function

V(xg) == inf J(xo,u())
u(-)euo (zo)

Dynamic Programming is a concept that relates optimal value functions and
optimal feedback controls
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Optimal value function

Recall the definition of the optimal value function

V() := inf J(z,u(-))
u()eu "0t (zo)

Dynamic Programming is a concept that relates optimal value functions and

optimal feedback controls. For simplicity, we introduce it for time-invariant
problems (7, g and constraints do not depend on t)
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Optimal value function

Recall the definition of the optimal value function

V() := inf J(z,u(-))
u()eu "0t (zo)

Dynamic Programming is a concept that relates optimal value functions and

optimal feedback controls. For simplicity, we introduce it for time-invariant
problems (7, g and constraints do not depend on t)

We begin with the discrete-time setting
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Optimal value function

Recall the definition of the optimal value function

V() := inf J(z,u(-))
u()eu "0t (zo)

Dynamic Programming is a concept that relates optimal value functions and
optimal feedback controls. For simplicity, we introduce it for time-invariant
problems (7, g and constraints do not depend on t)

We begin with the discrete-time setting

A technical assumption that we make throughout this part:

The cost function ¢ satisfies ¢ >0 or ( is bounded and 5 < 1
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(o) = inf {£(zo,u) + BV (g(x0, 1)) (DPP)
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(zg) = 11}61% {l(zg,u) + BV (g(zo,u))} (DPP)

“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” [Bellman '57]
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(xo) = }LTEI{J{K(ZEO?U) + BV (g(xo,u))} (DPP)

Sketch of proof: For .J we have

J(z0,u ZM = L(x(0),u(0)) + > _ B(x(t),u(t
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(xo) = }LTEI{J{K(ZEO?U) + BV (g(xo,u))} (DPP)

Sketch of proof: For .J we have

J(z0,u ZM = L(x(0),u(0)) + > _ B(x(t),u(t

= ((2(0),u(0)) + B> B (x(t+ 1), ult + 1))
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(xo) = }LTEI{J{E(ZEO?U) + BV (g(xo,u))} (DPP)

Sketch of proof: For .J we have

J(zg,u Zﬁ U(x = {(x(0),u(0)) + Zﬁtf(x(t) u(t

= {(x(0),u(0))+p EOO: BH(z(t+1),u(t +1))
= {(2(0),u(0)) + BJ(x(1),u(- + 1))
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(xo) = }LTEI{J{E(ZEO?U) + BV (g(xo,u))} (DPP)

Sketch of proof: For .J we have, writing u = u(0)

J(zg,u Zﬁ U(x = {(x(0),u(0)) + Zﬁtf(x(t) u(t

= {(x(0),u(0))+p EOO: BH(z(t+1),u(t +1))

= 0(x(0), u(0)) + A (x(1), u(- + 1))
= l(xo,u) + BJI(g(zo,u),u(-+ 1))
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCP,) with time-invariant problem data.
The optimal value function satisfies for all 5 € R"

V(xo) = }LTEI{J{K(ZEO?U) + BV (g(xo,u))} (DPP)

Sketch of proof: For .J we have, writing u = u(0)

J(z0,u ZM = L(x(0),u(0)) + > _ B(x(t),u(t

= ((2(0),u(0)) + B> B (x(t+ 1), ult + 1))

This equality carries over to the infimum over these expressions O]
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ibo,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all t =0, 1,2, ...
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ibo,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all ¢ = 0,1,2,... Then u*(-) = u(-) is optimal for 2o = x(0)
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ibo,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all ¢ = 0,1,2,... Then u*(-) = u(-) is optimal for 2o = x(0)

Sketch of proof: (DPP) and the assumption implies

((x(t), u(t)) = V(x(t)) — BV (g(x(t),u(t)))
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ibo,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all ¢ = 0,1,2,... Then u*(-) = u(-) is optimal for 2o = x(0)

Sketch of proof: (DPP) and the assumption implies

((x(t), u(t)) = V(x(t)) = BV (g(x(t), u(t)) = V(2(t)) — BV (z(t + 1))
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ro,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all ¢ = 0,1,2,... Then u*(-) = u(-) is optimal for 2o = x(0)

Sketch of proof: (DPP) and the assumption implies

(a(t), ult)) = V(a(t) — BV (g(a(t), ulb) = V(a(t)) — BV (a(t + 1))
S S B, u) = Vim) — ATV((T))
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ro,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all ¢ = 0,1,2,... Then u*(-) = u(-) is optimal for 2o = x(0)

Sketch of proof: (DPP) and the assumption implies

((x(t), u(t)) = V(x(t)) = BV (g(x(t), u(t)) = V(2(t)) — BV (z(t + 1))

= Zﬁtﬁ(x(t), u(t)) = V(zg) — BV (2(T)) — V(zg) asT — oo
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Characterisation of optimal open-loop controls
V(xg) = mf {E(ro,u) + BV (g(xo,u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCP,) with
time-invariant problem data and a trajectory x(-) with control u(-) and assume

that
a Ua(t),ut) + BV (g(a(t),u(t))) = f 1£(z(t), u) + BV (g(z(t), u))}
holds for all ¢ = 0,1,2,... Then u*(-) = u(-) is optimal for 2o = x(0)

Sketch of proof: (DPP) and the assumption implies
Uz(t),u(t) = V(xz(t)) = BV (g(z(t),u(?))) = V(z(t)) — BV (2(t + 1))
= Zﬁtﬁ(x(t), u(t)) = V(zg) — BV (2(T)) — V(zg) asT — oo

This shows tf;e claim since  J(z,u(-)) = lim Z BH(z(t),u(t)) O

T*}OOYL 0
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Characterisation of optimal feedback controls
Consider now a feedback control F': R™ — U. This control is applied via

T (t) =zt + 1) = g(x(t), F(x(t))), z(0)==zy, t=0,1,2,...

It thus generates the control u(t) = F'(z(t)), depending on x
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Characterisation of optimal feedback controls
Consider now a feedback control F': R™ — U. This control is applied via

T (t) =zt + 1) = g(x(t), F(x(t))), z(0)==zy, t=0,1,2,...

It thus generates the control u(t) = F'(z(t)), depending on x

We call a feedback £ optimal, if for each xy € R" the control u* generated by
F* satisfies
J(zg,u*) = V(xp)
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Characterisation of optimal feedback controls
Consider now a feedback control F': R™ — U. This control is applied via

T (t) =zt + 1) = g(x(t), F(x(t))), z(0)==zy, t=0,1,2,...

It thus generates the control u(t) = F'(z(t)), depending on x

We call a feedback £ optimal, if for each xy € R" the control u* generated by
F* satisfies
J(zg,u*) = V(xp)

Corollary: A feedback F' satisfying
{(x, F(@)) + BY (g(x, F(x))) = inf {£(z,) + BV (g(x, u))}

for all z € X'is an optimal feedback law
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Characterisation of optimal feedback controls
Consider now a feedback control F': R™ — U. This control is applied via

T (t) =zt + 1) = g(x(t), F(x(t))), z(0)==zy, t=0,1,2,...

It thus generates the control u(t) = F'(z(t)), depending on x

We call a feedback £ optimal, if for each xy € R" the control u* generated by
F* satisfies
J(zg,u*) = V(xp)

Corollary: A feedback F' satisfying
{(x, F(@)) + BY (g(x, F(x))) = inf {£(z,) + BV (g(x, u))}

for all z € X'is an optimal feedback law

Sketch of proof: One checks that the controls generated by F’ satisfy the
conditions of the previous theorem n
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Dynamic programming principle in continuous time
Consider (OCP.) with time-invariant problem data on the infinite horizon [0, c0).

Vize) = inf { /0 " B0 (t), u())dt + ﬁTV(x(T))}

u(-)eu

Problem: The “inf" is still over a function u(-), not over a value u € U
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Dynamic programming principle in continuous time
Consider (OCP.) with time-invariant problem data on the infinite horizon [0, c0).

Vize) = inf { /0 " B0 (t), u())dt + ﬁTV(x(T))}

u(-)eu

Problem: The “inf" is still over a function u(-), not over a value u € U

Remedy: Send 7 — 0, after rearranging terms and dividing by 7:

ng { =IO L atato, i | = o

u(-)eu T
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Dynamic programming principle in continuous time
Consider (OCP.) with time-invariant problem data on the infinite horizon [0, c0).

Vize) = inf { /0 " B0 (t), u())dt + ﬁTV(x(T))}

u(-)eu

Problem: The “inf" is still over a function u(-), not over a value u € U

Remedy: Send 7 — 0, after rearranging terms and dividing by 7:

ng { =IO L atato, i | = o

u(-)eu T
(r = 0)= nf { ;lt V() + L 0), u(O))} _ 0
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Dynamic programming principle in continuous time
Consider (OCP.) with time-invariant problem data on the infinite horizon [0, c0).

u(-)eu

Vize) = inf { /0 " B0 (t), u())dt + ﬁTV(x(T))}

Problem: The “inf" is still over a function u(-), not over a value u € U

Remedy: Send 7 — 0, after rearranging terms and dividing by 7:

ng { =IO L atato, i | = o

u(-)eu T
. d ¢ _
(1—0)= u(lgléu { 7 t:oﬁ V(z(t)) + £(z(0), u(O))} =0
& Titrelufj{—é\/(xo) + DV (x) f(xo,u) + (zo,u)} = 0

with 6 = —In (8
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Dynamic programming principle in continuous time
Consider (OCP.) with time-invariant problem data on the infinite horizon [0, c0).

Vize) = inf { /0 " B0 (t), u())dt + ﬁTV(x(T))}

u(-)eu

Problem: The “inf" is still over a function u(-), not over a value u € U

Remedy: Send 7 — 0, after rearranging terms and dividing by 7:

ng { =IO L atato, i | = o

u(-)eu T
. d ¢ _
(1—0)= u(lgléu { 7 t:oﬁ V(z(t)) + £(z(0), u(O))} =0
& Titrelufj{—é\/(xo) + DV (x) f(xo,u) + (zo,u)} = 0

with 6 = —In 3. This is the Hamilton-Jacobi-Bellman equation
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Dynamic programming principle in continuous time
Consider (OCP.) with time-invariant problem data on the infinite horizon [0, c0).

Vize) = inf { /0 " B0 (t), u())dt + ﬁTV(x(T))}

u(-)eu

Problem: The “inf" is still over a function u(-), not over a value u € U

Remedy: Send 7 — 0, after rearranging terms and dividing by 7:

ng { =IO L atato, i | = o

u(-)eu T
. d ¢ _
(1—0)= u(lglgu { 7 t:oﬁ V(z(t)) + £(z(0), u(O))} =0
& /litrelufj{—é\/(xo) + DV (x) f(xo,u) + (zo,u)} = 0

with 6 = —In 3. This is the Hamilton-Jacobi-Bellman equation
(here limp g u(t) = u(0) is assumed; the proof can be modified if this does not hold)
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Characterisation of optimal open-loop controls

OV (zg) = qlfeltg {DV (x0) f(x0,u) + l(xo,u)} (HJB)
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Characterisation of optimal open-loop controls

OV (xg) = in[g {DV (z0) f(x0,u) + (xo,u)} (HJB)

ue

Theorem: Consider a trajectory x(-) with control u(-) and assume that
DV (@(t)) f(x(t), u()) + £(2(t), ut)) = inf {DV(2(t))f(2(t), u) + £(x(t), u)}

holds for all ¢ > 0
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Characterisation of optimal open-loop controls

OV (xg) = in% {DV (z0) f(x0,u) + (xo,u)} (HJB)

Theorem: Consider a trajectory x(-) with control u(-) and assume that
DV (@(t)) f(x(t), u()) + £(2(t), ut)) = inf {DV(2(t))f(2(t), u) + £(x(t), u)}

holds for all ¢ > 0

Then u*(-) = u(-) is an optimal control for initial value =y = :(0)
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Characterisation of optimal open-loop controls

OV (xg) = in% {DV (z0) f(x0,u) + (xo,u)} (HJB)

Theorem: Consider a trajectory x(-) with control u(-) and assume that
DV (@(t)) f(x(t), u()) + £(2(t), ut)) = inf {DV(2(t))f(2(t), u) + £(x(t), u)}

holds for all ¢ > 0

Then u*(-) = u(-) is an optimal control for initial value =y = :(0)

Sketch of proof: Using (HJB) and integrating the equation from 0 to 7" yields

/0 BUe((t), u(t))dt = V(zo) — BTV (x(T))
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Characterisation of optimal open-loop controls

OV (xg) = in% {DV (z0) f(x0,u) + (xo,u)} (HJB)

ue

Theorem: Consider a trajectory x(-) with control u(-) and assume that
DV (@(t)) f(x(t), u()) + £(2(t), ut)) = inf {DV(2(t))f(2(t), u) + £(x(t), u)}

holds for all ¢ > 0

Then u*(-) = u(-) is an optimal control for initial value =y = :(0)

Sketch of proof: Using (HJB) and integrating the equation from 0 to 7" yields
T
/ BH(x(t),u(t))dt = V(xg) — BTV (2(T)) — V(x)
0

as ' — oo
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Characterisation of optimal open-loop controls

OV (xg) = in% {DV (z0) f(x0,u) + (xo,u)} (HJB)

ue

Theorem: Consider a trajectory x(-) with control u(-) and assume that

DV (@(t)) f(x(t), u()) + £(2(t), ut)) = inf {DV(2(t))f(2(t), u) + £(x(t), u)}
holds for all ¢ > 0

Then u*(-) = u(+) is an optimal control for initial value zo = x(0)

Sketch of proof: Using (HJB) and integrating the equation from 0 to 7" yields

/0 BUe(x(t), u(t))dt = V(zo) — BTV (2(T)) — V(z0)

im f@%(x(ty u(t))dt O

as 1" — oo. This shows the claim since J(z,u(-)) = Tl
A)OOO
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Characterisation of optimal feedback controls
Consider again a feedback control F': R"™ — U, now in continuous time:

i(t) = f(a(t), F@(t)), (0) =5, t >0
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Characterisation of optimal feedback controls
Consider again a feedback control F': R"™ — U, now in continuous time:

i(t) = f(a(t), F@(t)), (0) =5, t >0

Assuming that this equation has a solution, F' generates the control
u(t) = F(x(t)), depending on zg
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Characterisation of optimal feedback controls
Consider again a feedback control F': R"™ — U, now in continuous time:

i(t) = f(a(t), F@(t)), (0) =5, t >0

Assuming that this equation has a solution, F' generates the control
u(t) = F(x(t)), depending on zg

Recall: ™" is optimal if for each 2y € R™ the control u* generated by F™* satisfies

J(Io, u*) = V(Io)
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Characterisation of optimal feedback controls
Consider again a feedback control F': R"™ — U, now in continuous time:

i(t) = f(a(t), F@(t)), (0) =5, t >0

Assuming that this equation has a solution, F' generates the control
u(t) = F(x(t)), depending on zg

Recall: ™" is optimal if for each 2y € R™ the control u* generated by F™* satisfies

J(Io, u*) = V(l’o)

Corollary: A feedback F' satisfying
DV () f(a, F(x)) + €z, F(x)) = nf {DV(2) f (2, u) + 6z, u)}
ue

for all x € R"™ is an optimal feedback law
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Characterisation of optimal feedback controls
Consider again a feedback control F': R"™ — U, now in continuous time:

i(t) = f(a(t), F@(t)), (0) =5, t >0

Assuming that this equation has a solution, F' generates the control
u(t) = F(x(t)), depending on zg

Recall: ™" is optimal if for each 2y € R™ the control u* generated by F™* satisfies

J(Io, u*) = V(Io)

Corollary: A feedback F' satisfying
DV (z)f(x, F(x)) + {(z, F(z)) = in{E{DV(x)f(x,u) +l(x,u)}
ue
for all x € R"™ is an optimal feedback law

Sketch of proof: One checks that the controls generated by F’ satisfy the
conditions of the previous theorem n
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Dynamic programming for finite-horizon problems
Dynamic programming also works for finite-horizon problems
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Dynamic programming for finite-horizon problems
Dynamic programming also works for finite-horizon problems

Task: minimize

J(to ty, 70, () 1= / BUe(e(t), u(t)) dt + B L(x(ty)

or

J(tovtfvx(]?u(')) :_Zﬁt ) 5th( ( ))

t=to
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Dynamic programming for finite-horizon problems
Dynamic programming also works for finite-horizon problems

Task: minimize
I(to, s, 70, u / B0 (t), u(t)) dt + B L(x(ty))

or

J(to, ty, o, u( Zﬁt () + 8" L(x(ty))

t=to

The optimal value function is then time dependent V' (to,ts,z0) := (iI)lfu J(to,ts,z0,u(-))
u(-)e
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Dynamic programming for finite-horizon problems
Dynamic programming also works for finite-horizon problems

Task: minimize
I(to, s, 70, u / B0 (t), u(t)) dt + B L(x(ty))

or

J(to, ty, o, u( Zﬁt () + 8" L(x(ty))

t=to

The optimal value function is then time dependent V' (to,ts,z0) := (iI)lfu J(to,ts,z0,u(-))
u(-)e

The Bellman equation becomes

V(to,ty,x0) = irelg{é(xo,u)+5V(t0+1,tf,g(aco,u))} if to <ty, V(ty, ty,x)=L(x)

UNIVERSITKT
w‘ BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 36/156



Dynamic programming for finite-horizon problems
Dynamic programming also works for finite-horizon problems

Task: minimize
I(to, s, 70, u / B0 (t), u(t)) dt + B L(x(ty))

or

J(to, ty, o, u( Zﬁt () + 8" L(x(ty))

t=to

The optimal value function is then time dependent V' (to,ts,z0) := (iI)lfu J(to,ts,z0,u(-))
u(-)e

The Bellman equation becomes
V(to,ty,x0) = irelg{é(xo,u)+5V(t0+1,tf,g(aco,u))} if to <ty, V(ty, ty,x)=L(x)

and the Hamilton-Jacobi-Bellman equation reads

dto
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5iv(t0,t/,xo) = mf {88 V(to,ts, xo)f(xo,u) +€($,u)} if to <ty, V(ty,ty,x)=L(x)
, - , . It



A note on optimal feedback laws

Note: It follows from dynamic programming theory, that optimal feedback laws
(if they exist)

@ do not depend on time if the problem data is time-invariant and ¢; = oo

@ do in general depend on time in all other cases
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Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

\y‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 38/156



Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V' is not C'!
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Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V' is not C'!

Remedy: Use viscosity solution theory [Lions '82; Crandall/Lions '83]
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Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V' is not C'!

Remedy: Use viscosity solution theory [Lions '82; Crandall/Lions '83]

This is a weak solution concept that allows for a general existence and
uniqueness result

\y‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 38/156



Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V' is not C'!

Remedy: Use viscosity solution theory [Lions '82; Crandall/Lions '83]

This is a weak solution concept that allows for a general existence and
uniqueness result.  However, it does not simplify computations

\y‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 38/156



Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V' is not C'!

Remedy: Use viscosity solution theory [Lions '82; Crandall/Lions '83]

This is a weak solution concept that allows for a general existence and
uniqueness result.  However, it does not simplify computations

Particularly, the computation of the optimal feedback law from
DV () f(a, F(x)) + €z, F(x)) = f {DV(2) f (2, u) + {(z,u)}
ue

is highly nontrivial in the viscosity solution framework
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Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V' is C'!, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V' is not C'!
Remedy: Use viscosity solution theory [Lions '82; Crandall/Lions '83]

This is a weak solution concept that allows for a general existence and
uniqueness result.  However, it does not simplify computations

Particularly, the computation of the optimal feedback law from
DV (x)f(x, F(x)) + {(z, F(x)) = in%{DV(;r;)f(;U./ u) +l(z,u)}
ue
is highly nontrivial in the viscosity solution framework

~> It is often much easier to discretize the problem in time and use the
discrete-time theory
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Intermediate Summary — Dynamic programming and the HJBE

The solution to an OCP can be characterized by dynamic programming
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Intermediate Summary — Dynamic programming and the HJBE

The solution to an OCP can be characterized by dynamic programming

@ Bellman equation in discrete time (time-invariant infinite-horizon problem)
V(x) = inf {£(z,u) + 5V (g(r,u)} (DDP)

@ Hamilton-Jacobi-Bellman equation in continuous time (time-invariant
finite-horizon)

0 : 0 :
687250‘/(1507?7”7 l) - irel[[fj {axv(thtf»J;)f(J;; u) + €(£7 u)} (HJB)
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Intermediate Summary — Dynamic programming and the HJBE

The solution to an OCP can be characterized by dynamic programming

@ Bellman equation in discrete time (time-invariant infinite-horizon problem)
V(x) = inf {£(z,u) + 5V (g(r,u)} (DDP)

@ Hamilton-Jacobi-Bellman equation in continuous time (time-invariant
finite-horizon)

0 .. [0 :
58—%\/(750,@-,1) = ire%{(%j‘/(tojf,i)j(x,u) —i—E(L‘,u)} (HJB)

@ From these equations, optimal feedback laws may be obtained, which are
often required in practice
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Intermediate Summary — Dynamic programming and the HJBE

The solution to an OCP can be characterized by dynamic programming

@ Bellman equation in discrete time (time-invariant infinite-horizon problem)
V(x) = inf {£(z,u) + 5V (g(r,u)} (DDP)

@ Hamilton-Jacobi-Bellman equation in continuous time (time-invariant
finite-horizon)

0 .. [0 :
(5870\/(750,@-,1) = ire%{(%j‘/(tojf,i)j(x,u) —i—E(L,u)} (HJB)

@ From these equations, optimal feedback laws may be obtained, which are
often required in practice

e But, solving the DPP or the HIB equation is in general difficult!
(we will come back to this later)
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Euler-Lagrange Equations



Problem Setup

The Euler-Lagrange equations allow to compute open-loop control functions for
fixed initial values in a simplified setting:

ty
i / 0t 2(8), u () )dt
u(- to

(

subject to: (P)
i':f@,l',lI), $(t0>:{£0
u(-) € Clto, 4™

fRxR"xR™ = R", fellwrt. (t,z,u), fe€C"wrt (z,u)
C:RxR"xR™ R, (el wrt (t,z,u), £€C wrt (z,u)

Short hand notation:

D,7 = ;Z, (DwZ)T =Zy, Ze{f, ¢, L,...} andw € {z, u, t}
w
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Problem Setup

The Euler-Lagrange equations allow to compute open-loop control functions for
fixed initial values in a simplified setting (continuous control functions, no

constraints) ty
wmin / Ot 3(8), u(t))dt
u(-) to
subject to: (P)
.’t':f@,.’lf,u), T(f(J):TU
u(-) € Clto, t7]™

fRxR"xR™ = R", fellwrt (t,z,u), fe€Cwrt (z,u)
CRxR"xR™ R, £eC’wrt (t,z,u), (€C wrt (z,u)

Short hand notation:

DyZ = 882, (DwZ)' =Zy, Ze{f ¢, L,...}andwe {z, u,t}
w
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The approach by Euler and Lagrange

mm / 0(t, x(t),u(t))dt

subJect to: (P)
O:fi'—f(t,l',U), x(tO) = Zo
u(-) € Clto, t4]™
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The approach by Euler and Lagrange

ty
min / 0t 2(8), u())dt
u(- to

subject to: (P)
O:j}—f(t,l',U), l’(to) =T
u(-) € Clto, ts]™

Rewrite equality constraint imposed by the dynamics

J (g, 1) _/fe(t,a;(t),u(t)) + @) " (2(t) — f(t,z(t), u(t))) dt

to

with Lagrange multiplier A : [to, ;] — R"
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The approach by Euler and Lagrange

~ Equality constraints included in the objective

J (29, 1) :/fﬁ(t,x(t),u(t))+)\(t)T(:b(t)—f(tx(t%u(t)))dt

to

Apply integration by parts to A\ &
. d :
Mi=—e A+ — (@) e /)\Tj:dt = / —x" At + (27))
to obtain

(o, u / 04t 2(1), (b))~ (2(5)TAE) + MO T F (1 2(0) u(e) )dt+aT A

to
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The approach by Euler and Lagrange

Consider a small perturbation of the optimal control u*(-)
U*<')+77'V<')7 UERU“O
which generates a perturbed state trajectory

Tyt 4 vt o)

and the limit
J(xn. u* . — J(x * o
lim (o, 0" + 7 V) (o, ") = — J(zo, 0" +1- V)
n—0 n 877

n=0
Optimality implies?
0

Oy =0

0 J(zg,u* +n-v) =0J(xg,u*,v) =0

20.J(x0,u*, v) denotes the Gateaux derivative w.r.t. u.
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The approach by Euler and Lagrange

Let
ow 0 x (t,x0)
= A Lyp* . ;L)
M |,—o u +n-v

called sensitivity or variation of z(-) with respect to the input perturbation v
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The approach by Euler and Lagrange

Let

0

called sensitivity or variation of z(-) with respect to the input perturbation v

oJumunv»—/”(aaawwnfu»—ffmx%wnf@»mw—A@DTaaw

to

Tut 4 vt mo),
n=0

+ (Cu(t, 2 (t), u*(t) — [, (¢, 2*(2), u*(t)))\(t))T v dt
— dx(to)  Alto) +0x(t;) A(ty) = 0
—_———

=0
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The approach by Euler and Lagrange
Let

0

called sensitivity or variation of z(-) with respect to the input perturbation v

oJumunv»—/”(aaawwnfu»—ffmx%wnf@»mw—A@DTaaw

+ (Cu(t, 2 (t), u*(t) — [, (¢, 2*(2), u*(t)))\(t))T v dt
— dx(to)  Alto) +0x(t;) A(ty) = 0
—_———

=0

Tut 4 vt mo),
n=0

We obtain
0= Llo(t,z*,u*) — f](t, 2", u )\ — A

0 = Ly(t,z*,u*) — £ (t, 2%, u*)\
0= A(ty)
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First-order necessary conditions of optimality

Theorem (First-order necessary conditions):
Suppose that u*(-) € Cltg,tf|™ is a local minimizer of Problem (P) and
2*(-) € CHto, ty]™, a*(t) = wyu=(t, o, o) is the corresponding solution.

Then there exists a function \*(+) € C'[to, t;|" such that, for all ¢ € [to, /], the
triple (u*(-), z*(:), \*(+)) satisfies:

= f(t,x*,u"), x*(ty) = o
o= L, (t, 2", u*) — £ (2" u)N, N (tp) =0 (E-L)
0= Lu(t,x*,u*) + fl(t 2%, u)\"
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations

o Unknowns: (u*(+),2*(-), \*(+)) € Clto, tf]™ x Cto, t4]" x C'to, ts]"
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations
o Unknowns: (u*(+),2*(-), \*(+)) € Clto, tf]™ x Cto, t4]" x C'to, ts]"

@ (E-L) are first-order necessary conditions of (P). Hence any triple
(u(+),z(+), A(+)) solving (E-L) is also referred to as an extremal
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations
o Unknowns: (u*(+),2*(-), \*(+)) € Clto, tf]™ x Cto, t4]" x C'to, ts]"

@ (E-L) are first-order necessary conditions of (P). Hence any triple
(u(+),z(+), A(+)) solving (E-L) is also referred to as an extremal

@ The variable )\ is called adjoint or costate. It is the OCP counterpart to a
Lagrange multiplier in static nonlinear optimization
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations
o Unknowns: (u*(+),2*(-), \*(+)) € Clto, tf]™ x Cto, t4]" x C'to, ts]"

@ (E-L) are first-order necessary conditions of (P). Hence any triple
(u(+),z(+), A(+)) solving (E-L) is also referred to as an extremal

@ The variable )\ is called adjoint or costate. It is the OCP counterpart to a
Lagrange multiplier in static nonlinear optimization

o If there is a terminal cost L in (P) (i.e., a Mayer term depending only on ¢

and z(ts)), then
Atyp) = La(ty, x(ty))
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations
o Unknowns: (u*(+),2*(-), \*(+)) € Clto, tf]™ x Cto, t4]" x C'to, ts]"

@ (E-L) are first-order necessary conditions of (P). Hence any triple
(u(+),z(+), A(+)) solving (E-L) is also referred to as an extremal

@ The variable )\ is called adjoint or costate. It is the OCP counterpart to a
Lagrange multiplier in static nonlinear optimization

o If there is a terminal cost L in (P) (i.e., a Mayer term depending only on ¢
and z(ts)), then
Aty) = La(ty, 2(t5))

e For terminal constraints =(t;) = x, the condition on A(Z;) is replaced by
w(ty) = zy
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First-order necessary conditions — Remarks

@ (E-L) are known as Euler-Lagrange equations
o Unknowns: (u*(+),2*(-), \*(+)) € Clto, tf]™ x Cto, t4]" x C'to, ts]"

@ (E-L) are first-order necessary conditions of (P). Hence any triple
(u(+),z(+), A(+)) solving (E-L) is also referred to as an extremal

@ The variable )\ is called adjoint or costate. It is the OCP counterpart to a
Lagrange multiplier in static nonlinear optimization

o If there is a terminal cost L in (P) (i.e., a Mayer term depending only on ¢
and z(ts)), then
Aty) = La(ty, x(ty))
e For terminal constraints =(t;) = x, the condition on A(Z;) is replaced by
w(ty) = zy
@ For general terminal constraints (¢, z(t;)) = 0, we obtain

Atg) = La(ty, a(ty)) + v Vot x(ty))
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First-order necessary conditions — Remarks

The Euler-Lagrange equations can be rewritten more concisely using the
Hamiltonian function: H : R x R" x R™ x R" — R

H(t,z,u,\) i= Lt z,u) + AT f(tz,u) = 0t 2,u) + (N, f(tz,u)

Notation for scalar product of w, z,€ R™: (w, 2) =w'z

3H.J. Sussmann and J.C. Willems, “300 years of optimal control: from the Brachystochrone
to the Maximum Principle”. In: IEEE Control Systems 17.3 (1997), pp. 32—-44
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First-order necessary conditions — Remarks

The Euler-Lagrange equations can be rewritten more concisely using the
Hamiltonian function: H : R x R" x R™ x R" — R

H(t,z,u,\) i= Lt z,u) + AT f(tz,u) = 0t 2,u) + (N, f(tz,u)

Notation for scalar product of w, z,€ R™: (w, 2) =w'z

Euler-Lagrange equations using Hamiltonian:

v = Hy(t,z*,u*, \Y), 2*(to) = 0
N = —H,(t,z",u", \*), \(t;) =0
0= H,(t, 2", u",\")

3H.J. Sussmann and J.C.
to the Maximum Principle”

UNIVERSITAT
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Willems, “300 years of optimal control: from the Brachystochrone
. In: IEEE Control Systems 17.3 (1997), pp. 32-44
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First-order necessary conditions — Remarks

The Euler-Lagrange equations can be rewritten more concisely using the
Hamiltonian function: H : R x R" x R™ x R" — R

H(t,z,u, ) =Ltz u) + N f(tz,u) =0t z,u) + (N f(t,z,u)
Notation for scalar product of w, z,€ R™: (w, 2) =w'z
Euler-Lagrange equations using Hamiltonian:

v = Hy(t,z*,u*, \Y), 2*(to) = 0
N = —H,(t,z",u", \*), \(t;) =0
0= H,(t, 2", u",\")

Good overview on the history of optimal control: [Sussmann/Willems '97]*

3H.J. Sussmann and J.C. Willems, “300 years of optimal control: from the Brachystochrone
to the Maximum Principle”. In: IEEE Control Systems 17.3 (1997), pp. 32—-44
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First-order necessary conditions — Remarks

e If (P) is time-invariant (¢, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: £ H (¢, z*(t), u*(t), \*(t)) = 0

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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First-order necessary conditions — Remarks

e If (P) is time-invariant (¢, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: £ H (¢, z*(t), u*(t), \*(t)) = 0

@ Change of Hamiltonian along optimal trajectory

CZH@, v N) = H, + (Hy, f(t,2,0)) + (Ha, 1) + (f(£,7,10), A)

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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First-order necessary conditions — Remarks

e If (P) is time-invariant (¢, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: £ H (¢, z*(t), u*(t), \*(t)) = 0

@ Change of Hamiltonian along optimal trajectory

CZH@, v N) = H, + (Hy, f(t,2,0)) + (Ha, 1) + (f(£,7,10), A)

@ Euler-Lagrange equations hold for local minima and maxima

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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First-order necessary conditions — Remarks

e If (P) is time-invariant (¢, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: £ H (¢, z*(t), u*(t), \*(t)) = 0

@ Change of Hamiltonian along optimal trajectory

CZH@, v N) = H, + (Hy, f(t,2,0)) + (Ha, 1) + (f(£,7,10), A)

o Euler-Lagrange equations hold for local minima and maxima. How can we
tell one from the other?

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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First-order necessary conditions — Remarks

e If (P) is time-invariant (¢, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: £ H (¢, z*(t), u*(t), \*(t)) = 0

@ Change of Hamiltonian along optimal trajectory

CZH@, v N) = H, + (Hy, f(t,2,0)) + (Ha, 1) + (f(£,7,10), A)

o Euler-Lagrange equations hold for local minima and maxima. How can we
tell one from the other?

~~ Second order necessary conditions (Legendre-Clebsch condition):

D*H = H,, = 0 for minima, D?H = H,, <0 for maxima

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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First-order necessary conditions — Remarks

e If (P) is time-invariant (¢, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: £ H (¢, z*(t), u*(t), \*(t)) = 0

@ Change of Hamiltonian along optimal trajectory

CZH(t, v N) = H, + (Hy, f(t,2,0)) + (Ha, 1) + (f(£,7,10), A)

o Euler-Lagrange equations hold for local minima and maxima. How can we
tell one from the other?

~~ Second order necessary conditions (Legendre-Clebsch condition):
D*H = H,, = 0 for minima, D?H = H,, <0 for maxima

@ A readable introduction: [Chachuat '09]*

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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A toy example

',
min —u”(t)dt
u() /0 0
subject to

z(t) =u(t) —z(t), x(0)=1, (1)=0

Task: Write the Euler-Lagrange equations for this problem
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A toy example

1 1 )
min —u’(t)dt
u(’) /0 2 Q

subject to
z(t) =u(t) —z(t), x(0)=1, (1)=0
Task: Write the Euler-Lagrange equations for this problem
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Discrete-time counterpart to (E-L)

Continuous-time OCP Discrete-time OCP (= NLP)
ty N—-1
min [ 200, u(t)at min >~ (e (0.00)
subject to subject to

t=ftz,m), 2(0) = o(t+ )= g(t,a(t), u(t), 2(0) =z

With  H =0+ )\ f:

T+ = H)\(t,ZE*, U*7 )‘*)7 .CE*(O) = Zo
N = —H,(t,z", u", \*),  N(tf) = ?

H,
0= Hy(t,a" u", \")
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Discrete-time Euler-Lagrange equations

Define the Lagrangian pointwise in time

-~

L(t) = (x(t),ut)) + At + 1) (g(t,z(t),u(t)) — z(t + 1))

and
N-1
Ltz \) = N0) (zg — 2(0)) + Y  L(t)
t=0
Stationarity of the Lagrangian
Ly=0 ~ (t+1) = g(t, 2" (t),u*(t))
L, =0 ~ M) =g N (t+ 1)+ 4y, M(N)=0 (E-Lg)

L,=0 ~ 0=g  \(t+1)+4,

These are the discrete-time Euler-Lagrange equations
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Comparison — Discrete-time and continuous-time Euler-Lagrange

UNIVERSITAT
BAYREUTH

Discrete-time OCP

N-1
subject to

2t + 1= g(t, z(t),u(t)), x(0) = o

' (t+1) =g(t,z"(¢),u’(t)), x(0) =
M) = gi N (t+1)+4,, N(N)=0
0=g N(t+1)+¢,
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Comparison — Discrete-time and continuous-time Euler-Lagrange

Continuous-time OCP Discrete-time OCP
N-1
t
min / "0, 2(8), u(t))dt min > ((t.2(0), u(t)
ul 0 t=0
subject to subject to
&= f(t,z,u), (0) =0 z(t+1)=g(t, z(t),u(t)), z(0) ==

With  H =(+ )\ f:

vr = Hy(t,2",u", X)), 2*(0) =z 2 (t+1)=g(t.a"(t),u*(t), 2(0)=um
A= —H (L', w0, ), N (t) =0 NH(E) = gI N (1) + Ly N(V) =0
0= H,(t,z*,u* \) 0 T>\*(t +1) + 4,
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Comparison — Discrete-time and continuous-time Euler-Lagrange

Continuous-time OCP Discrete-time OCP
‘ N—-1
min / "0t 2(8), u(t))dt min Y (¢, 2(t), u(t))
) Jo R
subject to subject to
&= f(t,z,u), z(0)=m z(t+1)=g(t, z(t),u(t)), z(0)==xg

= f(t,z*,u*), x*(0) =z 2 (t+1) = g(t,z* (), u* (1)), z(0) =z
No=—fIN =t X(tp)=0 M) =g N (t+1)+4£,, N(N)=0
0= fIN+4, 0 TA*(t+1)+£u
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Comparison — Discrete-time and continuous-time Euler-Lagrange

Continuous-time OCP Discrete-time OCP
t N—-1
min / 0, 2(8), u(t))dt min > ((t, x(t), u(t))
u() o ul) 455
subject to subject to
&= f(t,z,u), xz(0)=mxg z(t+ 1)=g(t, z(t),u(t)), z(0) =z
= f(t, 2", u"), 27(0) = w0 X (t+ 1) =g(t,z*(t),u*(t)), =(0)=x
M= N =, M(ty) =0 N(t) =g A" (t+1) + Loy X(N)=0
0= fiA+4L, 0=g N(t+1)+0,

But: There is no fully equivalent discrete-time counterpart of the Hamiltonian
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Pontryagin’s Minimum Principle



Preliminaries

We now allow for measurable controls and add constraints to the OCP (P). We
start with input constraints
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Preliminaries

We now allow for measurable controls and add constraints to the OCP (P). We
start with input constraints

Problem setup (time invariant, free end time, terminal constraint):

min / Y oe(t). u(e))dt
u(-),ty to
subject to
T = f(a:, u), :L‘(to) =T (PPMP)
u(-) € LY ([to, 7, U), UCR™
ty € [to,T], T < oo

z(lf) =z

f:R*xR™ = R", fecl wrt. (zr,u), fecC wrt. ()
(: R"xR™ =R, (el wrt. (z,u), (c€C'wrt. ()
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Towards Pontryagin's minimum principle
Reformulation in Mayer form
ty

c(t) = 0(x(t),u(t))dt

to
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Towards Pontryagin's minimum principle

Reformulation in Mayer form

ty
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min c(t
Jnin (tr)

subject to
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Towards Pontryagin's minimum principle

Reformulation in Mayer form

c(t) = tfax(t),u(t))dt ur(r_l)ivrtlf c(ty)

S8) — c(t) subject to

0=(:s) i = Flow), d(to) = [0,a0]"

A0y — () ule)) = (@), ult)) ()e ([t,t]U), UCR™
( I)(ty) =z

Z(to) = <x00>

Hamiltonian for reformulated problem

H(w,u, ) = (A, flw,0)) = do()0(a(t), u(®)+A0) " f(x(t), u(t)) x:@o)
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Pontryagin's minimum principle®

Theorem: Suppose that (u*(-), t}) € Li([to, ts], U) x [to, T] is a global
minimizer of Problem (Ppyp) and let 2*(-) be the corresponding extended
solution 7*(+) = Ty« (-, to, To).

V. G. Boltyanskii et al. “On the theory of optimal processes”. In: Doklady Akademii Nauk
SSSR 110 (1956), pp. 7-10, L. S. Pontryagin et al. The Mathematical Theory of Optimal
Processes. John Wiley & Sons Inc., New York, 1962
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Pontryagin's minimum principle®
Theorem: Suppose that (u*(-), t}) € Li([to, ts], U) x [to, T] is a global

minimizer of Problem (Ppyp) and let 2*(-) be the corresponding extended
solution 7*(+) = Ty« (-, to, To).

Then there exists an absolutely continuous function
NOEICHOPWONE
N(t) #[0,...,0]T forall £ € [ty, ], such that (u*(-), #*(-), A\*(-)) satisfy
() = HQmmw@ng,;w@:m%f
iww:-Jf(ﬂuywuykuD

mmH@mM:<XﬂLm>

V. G. Boltyanskii et al. “On the theory of optimal processes”. In: Doklady Akademii Nauk
SSSR 110 (1956), pp. 7-10, L. S. Pontryagin et al. The Mathematical Theory of Optimal
Processes. John Wiley & Sons Inc., New York, 1962
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Pontryagin's minimum principle®
Theorem: Suppose that (u*(-), t}) € Li([to, ts], U) x [to, T] is a global

minimizer of Problem (Ppyp) and let 2*(-) be the corresponding extended
solution 7*(+) = Ty« (-, to, To).

Then there exists an absolutely continuous function
NOEICHOPWONE
N(t) #[0,...,0]T forall £ € [ty, ], such that (u*(-), #*(-), A\*(-)) satisfy
(1) = H; (x*(t),u*(t),ﬁ*(t)) , F(to) = (0,20)7
N(t) = —H, (a:*(t), w(t), 5\*(15))

with H(z,u, \) = <5\, f(J,,u)> and . ..

V. G. Boltyanskii et al. “On the theory of optimal processes”. In: Doklady Akademii Nauk
SSSR 110 (1956), pp. 7-10, L. S. Pontryagin et al. The Mathematical Theory of Optimal
Processes. John Wiley & Sons Inc., New York, 1962
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Pontryagin’s minimum principle

. and:

i) The function H (x*(t),v, /\*(t)> attains its minimum on U at v = u*(¢) for
almost all ¢ € [to, t7]:
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Pontryagin’s minimum principle

. and:

i) The function H (x*(t),v, /\*(t)> attains its minimum on U at v = u*(¢) for
almost all ¢ € [to, t7]:

i) Forall t € [t,t}] it holds

Ay(t) = const. > 0, H (m*(t), u*(t), X*(t)) = const.
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Pontryagin’s minimum principle

. and:

i) The function H (x*(t),v, /\*(t)> attains its minimum on U at v = u*(¢) for
almost all ¢ € [to, t7]:

i) Forall t € [t,t}] it holds
Ay(t) = const. > 0, H (x*(t), u*(t), 5\*(t)> = const.
iii) If the final time ¢, is free, the following transversality condition holds
H (:z:*(t}), ur(t), k(z;)) ~0.
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Proofs

D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press, 2012.
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

E.R. Pinch. Optimal Control and the Calculus of Variations. Oxford University
Press, 1995
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Comments and Variants

@ The (scalar) extra adjoint )\ is constant and non-negative
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Comments and Variants

@ The (scalar) extra adjoint )\ is constant and non-negative

@ If t; < oo is fixed and the terminal state is unconstrained

Ats) =0
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Comments and Variants

@ The (scalar) extra adjoint )\ is constant and non-negative

@ If t; < oo is fixed and the terminal state is unconstrained

Ats) =0

e If ; < 0o and a Mayer term L is considered

A(ty) = La(x(ty))
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Comments and Variants

@ The (scalar) extra adjoint )\ is constant and non-negative

@ If t; < oo is fixed and the terminal state is unconstrained

Ats) =0

e If ; < 0o and a Mayer term L is considered

Aty) = Ly(x(ty))

@ For general terminal constraints (¢, z(t;)) = 0, we obtain

Atg) = La(ty, a(ty)) + v Vot x(ty))
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The extra adjoint A

The Hamiltonian in the Euler-Lagrange equations (E-L) is
H(z,u,A) = Lx(t),u(t) + A" f(z(t),u(t))
and in the PMP we have

H(x, u,@) = Nol(z(t),u(t)) + A" f(z(t),u(t))

A
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The extra adjoint A

The Hamiltonian in the Euler-Lagrange equations (E-L) is
H(z,uA) = ((x(t),u(t) + A f(z(t) u(t))
and in the PMP we have

H(x, u,@) = Nol(z(t),u(t)) + A" f(z(t),u(t))

A

In the absence of state constraints®, we can normalize )\, = 1, such that both
Hamiltonians coincide

This condition is only sufficient; if state constraints are present, then this may still be
possible. OCPs with Ay = 0 are particularly complicated and called abnormal
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The PMP vs. the Euler-Lagrange equations

The Euler-Lagrange equations (E-L) require for u*
Vt € [to,tf]: 0= L(a",u")+ f, (z%, 0" )X\ = H, (2", u", \)
while the PMP reads
Vt € [to, ty]: H (m*,v,ﬂ*) >H (a:*,u*,)l*)
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The PMP vs. the Euler-Lagrange equations

The Euler-Lagrange equations (E-L) require for u*
Vt € [to,tf]: 0= L(a",u")+ f, (z%, 0" )X\ = H, (2", u", \)
while the PMP reads
Vt € [to, ty]: H (iE*,U,S\*> >H (a:*,u*,ﬂ*)
Minimizing H with respect to u gives the necessary condition
H, <x*7 u”, :\) =0 = Nl (t, 2", u*) + ] (t, 2", u*)\*

which by normalizing Ay = 1 matches the condition for the controls in (E-L)
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The PMP vs. the Euler-Lagrange equations

The Euler-Lagrange equations (E-L) require for u*
Vi€ fto,t5]: 0= (u(a,ut) + f, (2%, u)A" = H, (2%, u", \)
while the PMP reads
Vt € [to, ty]: H (iE*,U,S\*> >H (a:*,u*,ﬂ*)
Minimizing H with respect to u gives the necessary condition
H, <x*7 u”, :\) =0 = Nl (t, 2", u*) + ] (t, 2", u*)\*

which by normalizing Ay = 1 matches the condition for the controls in (E-L)

~» The PMP generalises the Euler-Lagrange equations
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The PMP vs. the Euler-Lagrange equations

The Euler-Lagrange equations (E-L) require for u*
Vt € [to,tf]: 0= L(a",u")+ f, (z%, 0" )X\ = H, (2", u", \)
while the PMP reads
Vt € [to, ty]: H (:1:*,2},5\*> >H (a:*,u*,ﬂ*)
Minimizing H with respect to u gives the necessary condition
H, (x*, u”, :\> =0 = Nl (t, 2", u*) + ] (t, 2", u*)\*
which by normalizing Ay = 1 matches the condition for the controls in (E-L)

~» The PMP generalises the Euler-Lagrange equations

Note: The principle was originally developed for maximisation problems, hence it
was called Pontryagin's Maximum Principle
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A toy example

"1
min /uQ(t)dt
0 2

u(")
subject to
z(t) =u(t) —z(t), x(0)=1, 2(1)=0
U =1[-0.6,0]

Task: State the Hamiltonian and write the PMP for this problem
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A toy example

1 1 )
min —u’(t)dt
u(’) /0 2 Q

subject to
z(t) =u(t) —z(t), x(0)=1, 2(1)=0
U =1[-0.6,0]

Task: State the Hamiltonian and write the PMP for this problem

1
H(z,u,\) = A0§u2 + M (u — )
T = Hy(z",u*, \) =u"— 2z~

N = —H, (z",u", \*) = \*
1 1
)\Oéu*z + 3w — %) > /\0§u2 + M (u — %)

z5(0) =1, 2*(1)=0
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A pitfall example — The PMP for infinite horizon problems

Ilrll(lgl /o —(1 —z(t))u(t)dt

subject to
(t) = (1 —z(t))u(t), =(0)=0
u() € Li;c([o? tf]v [0’ 1])

@ Horizons: ¢y < 0o and 5 = oo
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A pitfall example — The PMP for infinite horizon problems

tf
i / (1= 2(6))u(t)dt Observe that
ul- 0

subject to (v o
Hi) = (1— 2(®)ul), 20)=0  J(zgu) = —a(ty) = ¢ || umar
u() € Li;c([o’ tf]v [07 1]) which gives

w(t) = 1

@ Horizons: ¢; < oo and ¢ = oo
f f x*(t) — 1 o eft

for any horizon t; > 0.
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A pitfall example — The PMP for infinite horizon problems

ty
m(igl / —(1 —z(t))u(t)dt Observe that
u(: 0

subject to (v o
Hi) = (1— 2(®)ul), 20)=0  J(zgu) = —a(ty) = ¢ || umar
u(-) € L([0,t],[0,1]) which gives

w(t) = 1

@ Horizons: ¢; < oo and ¢ = oo
f f l*(t) — 1 o eft

for any horizon t; > 0.

For t; < oo, the terminal condition for the adjoint A is A(t;) =0
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A pitfall example — The PMP for infinite horizon problems
Ilrll(l? /0 —(1 —z(t))u(t)dt Observe that

subject to - i () dr

#(t) =1 —z®)u), z(0)=0  J(zgu)=—z(t;) =e /0 " ~1

U(') € LZO(ZDC([O’ tf]v [07 1]) . .
which gives

wi(t) =1

@ Horizons: ¢; < oo and ¢ = oo
f f l*(t) — 1 o eft

for any horizon t; > 0.

For t; < oo, the terminal condition for the adjoint A is A(t;) =0
This suggests that for {; = oo, the condition might be tlim At) =0
—00
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A pitfall example — The PMP for infinite horizon problems

The Hamiltonian reads

H(xz,u, g, \) = —Xo(1 —z)u+ A(1 —2)u
= (A=)l —2)u

Thus, the PMP entails '
A=—H,= (A= X)u

with Ay > 0 (since there are no state constraints)
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A pitfall example — The PMP for infinite horizon problems

The Hamiltonian reads

H(xz,u, g, \) = —Xo(1 —z)u+ A(1 —2)u
= A=X)(1—2)u

Thus, the PMP entails '
A=—H,= (A= X)u

with Ay > 0 (since there are no state constraints)
With the (already known) optimal control u*(#) = 1 we obtain

A(t) = (M0) = Ag)e’ + Ao

UNIVERSITAT
w‘ BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 63/156



A pitfall example — The PMP for infinite horizon problems

The Hamiltonian reads

H(xz,u, g, \) = —Xo(1 —z)u+ A(1 —2)u
= A=X)(1—2)u

Thus, the PMP entails '
A=—H,= (A= X)u

with Ay > 0 (since there are no state constraints)
With the (already known) optimal control u*(#) = 1 we obtain

A(t) = (M0) = Ag)e’ + Ao

~~ regardless of how we choose A(0), we never obtain 1tlim At)=0
—00
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The PMP for infinite-horizon problems?

For infinite horizons,

@ the general structure of the PMP remains unchanged

@ But, if there is no terminal constraint on the state, the PMP does not
provide a boundary/transversality condition’ for the adjoint tlim A(t)
—00

"This major issue was first observed in H. Halkin, “Necessary conditions for optimal control
problems with infinite horizons”. In: Econometrica: Journal of the Econometric Society 42.2
(1974), pp. 267-272.

8T. Faulwasser and C.M. Kellett, “On continuous-time infinite horizon optimal
control—Dissipativity, stability, and transversality”. In: Automatica 134 (2021), 109907
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The PMP for infinite-horizon problems?

For infinite horizons,
@ the general structure of the PMP remains unchanged

@ But, if there is no terminal constraint on the state, the PMP does not
provide a boundary/transversality condition’ for the adjoint tlim A(t)
—00

Remedies are known for problems with particular properties® (beyond the scope
of this course)

"This major issue was first observed in H. Halkin, “Necessary conditions for optimal control
problems with infinite horizons”. In: Econometrica: Journal of the Econometric Society 42.2
(1974), pp. 267-272.

8T. Faulwasser and C.M. Kellett, “On continuous-time infinite horizon optimal
control—Dissipativity, stability, and transversality”. In: Automatica 134 (2021), 109907
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The link between the HIJBE and the PMP

Recall the HIBE for undiscounted problems:

gt (t,tr,x )-mf{aa Vit ty,x )f(;r;,u)%—é(:v,u)} if to <ty

ucl
The point-wise in time minimisation of the Hamiltonian in the PMP gives

H (x*(t), ', X*@)) — min H (x*(t), u, Ms)) — min(A0)") T f(&*, u)FAol(a*, u)

ued ueU
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The link between the HIJBE and the PMP

Recall the HIBE for undiscounted problems:

0 .
ot Vit ty,x )_ilelf{{a Vit ty,x )f(;L,u)—&—é(:L,u)} if to <t

The point-wise in time minimisation of the Hamiltonian in the PMP gives

H (x*(t),u*, X*(t)) = min H (x*(t),u,;\*(t)> = min(A()*) " f(2*, u)+Nol(z*, u)

ued ueU

and for \y = 1 we observe the identity

TVt tg,0) = ()T()

~> the adjoint \* is the derivative of the optimal value function w.r.t. x
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Extensions of the presented PMP

@ The PMP can be extended to problems with mixed input-state constraints®

g(a(t),u(t)) <0

9R.F. Hartl, S.P. Sethi, R.G. Vickson. “A survey of the maximum principles for optimal
control problems with state constraints”. In: SIAM Review 37.2 (1995), pp. 181-218
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Extensions of the presented PMP

@ The PMP can be extended to problems with mixed input-state constraints®

gl(t), u()) < 0

@ These constraints require additional adjoints v : [ty,t;] — R™ in the PMP
and further extensions of the Hamiltonian

9R.F. Hartl, S.P. Sethi, R.G. Vickson. “A survey of the maximum principles for optimal
control problems with state constraints”. In: SIAM Review 37.2 (1995), pp. 181-218
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Extensions of the presented PMP

@ The PMP can be extended to problems with mixed input-state constraints®

gl(t), u()) < 0

@ These constraints require additional adjoints v : [ty,t;] — R™ in the PMP
and further extensions of the Hamiltonian

@ There exist discrete-time counterparts of the PMP, but they turn out to be
more restrictive than KKT conditions

9R.F. Hartl, S.P. Sethi, R.G. Vickson. “A survey of the maximum principles for optimal
control problems with state constraints”. In: SIAM Review 37.2 (1995), pp. 181-218
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works for L'*-functions?

@ Because there are examples where
such functions are needed

@ Because this simplifies its proof

@ It ain't really important, the authors
who wrote it simply did it this way
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Why do we need controls from L!%¢?

This example!® shows why is it important that the PMP allows for u € L2

10
min / z1(t)? dt
u(-) 0

subject to

- (8 é)w—l—(?)u 2(0) = 2

vVt €[0,10] :  u(t) € [-1,1]

OA T. Fuller. “Relay control systems optimized for various performance criteria”. In:
Automation and remote control, Proc. first world congress IFAC Moscow. Vol. 1. 1960, pp.
510-519
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Why do we need controls from L!%¢?

This example!® shows why is it important that the PMP allows for u € L2

10 — : —
min / ;L'l(t)Z dt I . ,’I\\ I
u()  Jo snlt) N N EREY
subject to :NOX R,
- s
. (01 0 B ! i
’ <0 0) x—"_ <1> u’ x(O) $0 20\ /2 4 6 8 10 -20 2 4 6 8 10
vt €[0,10]:  u(t) € [-1,1] " "

0A.T. Fuller. “Relay control systems optimized for various performance criteria”. In:

Automation and remote control, Proc. first world congress IFAC Moscow. Vol. 1. 1960, pp.
510-519
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Why do we need controls from L!%¢?

This example!® shows why is it important that the PMP allows for u € L2

10 , T .
min x1(t)” dt NN il ¢
u(-) /(; 1( ) 1\ .| \\\ ,‘,:Eq.]u]]

_ ’, - g =[-2,-1

subject to & RN
" ’
. (01 0 ' e

T = x u, xz(0)==x . 4
(0 0) * <1 o0 =20 o .
0 2 4 6 8 10 0 2 4 6 8 10
Ve [0,10: u(t) € [~1,1] " g

The optimal controls take only values
u*(t) € {-1,0,1}

but has infinitely many switches

0A.T. Fuller. “Relay control systems optimized for various performance criteria”. In:

Automation and remote control, Proc. first world congress IFAC Moscow. Vol. 1. 1960, pp.
510-519
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Why do we need controls from L!%¢?

This example!® shows why is it important that the PMP allows for u € L2

10 z . ==
min .’L‘l(t)2 dt oS R i
u() 0 " \ 29 =[-1,0]
= ’, \\ = 2 =[-2-1]
subject to LN
R Ny
. 0 1 0 et
T = T u z(0)==x 28 )
<0 O 1 ) ( ) O N 7’ »
0 2 4 6 8 10 0 2 4 6 8 10

+
vt e [0,10]:  u(t) € [-1,1] . .

The optimal controls take only values

u*(t) € {-1,0,1} Easy problems can admit

complicated analytic solutions!
but has infinitely many switches

OA T. Fuller. “Relay control systems optimized for various performance criteria” . In:
Automation and remote control, Proc. first world congress IFAC Moscow. Vol. 1. 1960, pp.
510-519
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Summary of Part 2: Solution Concepts

@ Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,

independent conditions on u*(¢) for each t € [t, /]

UNIVERSITAT
\y‘ BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 69/156



Summary of Part 2: Solution Concepts

@ Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,

independent conditions on u*(¢) for each t € [t, /]

@ The conditions rely on auxiliary quantities:
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Summary of Part 2: Solution Concepts

@ Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,
independent conditions on u*(¢) for each t € [t, /]
@ The conditions rely on auxiliary quantities:

» For dynamic programming: The optimal value function V, characterized by
a partial differential equation or a discrete time functional equation
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Summary of Part 2: Solution Concepts

@ Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,

independent conditions on u*(¢) for each t € [t, /]

@ The conditions rely on auxiliary quantities:
» For dynamic programming: The optimal value function V, characterized by
a partial differential equation or a discrete time functional equation

» For the PMP: The optimal adjoint \*, characterized by an ordinary
differential or difference equation
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Summary of Part 2: Solution Concepts

@ Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,

independent conditions on u*(¢) for each t € [t, /]

@ The conditions rely on auxiliary quantities:

» For dynamic programming: The optimal value function V, characterized by
a partial differential equation or a discrete time functional equation

» For the PMP: The optimal adjoint \*, characterized by an ordinary
differential or difference equation

@ Dynamic programming gives necessary and sufficient conditions for optimal
open-loop and closed-loop controls
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Summary of Part 2: Solution Concepts
@ Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,

independent conditions on u*(¢) for each t € [t, /]

@ The conditions rely on auxiliary quantities:

» For dynamic programming: The optimal value function V, characterized by
a partial differential equation or a discrete time functional equation

» For the PMP: The optimal adjoint \*, characterized by an ordinary
differential or difference equation

@ Dynamic programming gives necessary and sufficient conditions for optimal
open-loop and closed-loop controls

@ The PMP gives necessary conditions for an optimal open-loop control
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”

Summary of Part 2: Solution Concepts

Both Dynamic Programming and the PMP provide optimality conditions for
the values of u* that are pointwise in time, i.e.,

independent conditions on u*(¢) for each t € [t, /]

The conditions rely on auxiliary quantities:

» For dynamic programming: The optimal value function V, characterized by
a partial differential equation or a discrete time functional equation

» For the PMP: The optimal adjoint \*, characterized by an ordinary
differential or difference equation

Dynamic programming gives necessary and sufficient conditions for optimal
open-loop and closed-loop controls

The PMP gives necessary conditions for an optimal open-loop control

In high dimensions, finding A* is usually much easier than finding V'
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Outline of the course

Part 1: Optimal Control Problems — An Introduction
Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce numerical methods for solving optimal control problems
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Purpose of this part

Introduce numerical methods for solving optimal control problems

Compare methods that compute optimal feedback laws with methods computing
open-loop optimal controls and trajectories
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Purpose of this part

Introduce numerical methods for solving optimal control problems

Compare methods that compute optimal feedback laws with methods computing
open-loop optimal controls and trajectories

Discuss the numerical effort
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Contents of this part

Part 3: Numerical Solution Methods

@ Methods based on Dynamic Programming, computing feedback laws

» Classical methods for Hamilton-Jacobi-Bellman equations

» Deep Reinforcement Learning

@ Methods computing open-loop optimal controls

» Methods based on Pontryagin’s Maximum Principle
» Direct Solution Methods
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Methods based on Dynamic Programming



Conceptual approach

For brevity, we only look at infinite-horizon problems in this section
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Conceptual approach

For brevity, we only look at infinite-horizon problems in this section

Recall that optimal feedback laws are characterized by the relations

(e, F*(@)) + BV (g, F*(2))) = inf {€(,u) + BV (g, u)))

ue

in discrete time and

DV (z)f(x, F*(x)) + (z, F*(z)) = inf {DV () f(x,u) + {(z,u)}

uel

in continuous time
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Conceptual approach

For brevity, we only look at infinite-horizon problems in this section

Recall that optimal feedback laws are characterized by the relations

(e, F*(@)) + BV (g, F*(2))) = inf {€(,u) + BV (g, u)))

ue

in discrete time and

DV (z)f(x, F*(x)) + l(z, F*(z)) = inf {DV (z) f(x,u) + {(z,u)}

uel

in continuous time

Hence, we now discuss numerical methods for calculating V', as then F' can be
computed from V' as a minimiser of the above expressions
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Conceptual approach

For brevity, we only look at infinite-horizon problems in this section

Recall that optimal feedback laws are characterized by the relations

(e, F*(@)) + BV (g, F*(2))) = inf {€(,u) + BV (g, u)))

ue

in discrete time and

DV (z)f(x, F*(x)) + l(z, F*(z)) = inf {DV (z) f(x,u) + {(z,u)}

uel

in continuous time

Hence, we now discuss numerical methods for calculating V', as then F' can be
computed from V' as a minimiser of the above expressions

We start with the continuous-time case using the Hamilton-Jacobi-Bellman
equation
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Numerical solution of the HJB equation

Since the Hamilton-Jacobi-Bellman equation

in%{—(FV(ZL‘O) + DV (o) f(xo, u) + l(xg,u)} =0

ue

is a partial differential equation, many standard numerical methods for PDEs can
be applied. In the literature, one can find finite differences, finite elements, finite
volume methods etc.

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations, SIAM, 2013
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Numerical solution of the HJB equation

Since the Hamilton-Jacobi-Bellman equation

in%{—(ﬂ/(zno) + DV (o) f(xo, u) + l(xg,u)} =0

ue

is a partial differential equation, many standard numerical methods for PDEs can
be applied. In the literature, one can find finite differences, finite elements, finite
volume methods etc.

Here we explain the so-called semi-Lagrangian discretisation!!, which is tailored
to HJB equations

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations, SIAM, 2013
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Numerical solution of the HJB equation

Since the Hamilton-Jacobi-Bellman equation

111%{—5‘/(11;0) + DV (o) f(xo, u) + l(xg,u)} =0

ue

is a partial differential equation, many standard numerical methods for PDEs can
be applied. In the literature, one can find finite differences, finite elements, finite
volume methods etc.

Here we explain the so-called semi-Lagrangian discretisation!!, which is tailored
to HJB equations

Its advantages are unconditional stability and the possibility to obtain error
bounds for the feedback law computed from the approximation to V'

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations, SIAM, 2013
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Semi-Lagrangian discretisation
irel{j{—(SV(x) + DV (z)f(x,u) + l(z,u)} =0

In semi-Lagrangian discretisation, the equation is first discretised in time and
then in space
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Semi-Lagrangian discretisation
irel[g{—(SV(x) + DV (z)f(x,u) + l(z,u)} =0

In semi-Lagrangian discretisation, the equation is first discretised in time and
then in space:

Step 1: For a time step i > 0, approximate
eV (ulh,2) — V()
h )
where 7, (h, z) is a numerical approximation of the solution x,(h, z) with u = v,
e.g., the Euler approximation 7, (h,z) = x + hf(z,u)

—0V(x) + DV (x)f(z,u) ~
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Semi-Lagrangian discretisation
irel[g{—(SV(x) + DV (z)f(x,u) + l(z,u)} =0

In semi-Lagrangian discretisation, the equation is first discretised in time and
then in space:

Step 1: For a time step i > 0, approximate
eV (ulh,2) — V()
? ,
where 7, (h, z) is a numerical approximation of the solution x,(h, z) with u = v,
e.g., the Euler approximation 7, (h,z) = x + hf(z,u)

—0V(x) + DV (x)f(z,u) ~

Rearrange the terms to obtain the semi-discretised equation
: —0h =~
Vi(x) = ire% {M(mo,u) +e V;,,(xu(hw))} =0
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Semi-Lagrangian discretisation

in{j{—(ﬂ/(x) + DV (x)f(x,u) +l(x,u)} =0

ue

In semi-Lagrangian discretisation, the equation is first discretised in time and
then in space:

Step 1: For a time step i > 0, approximate
e "V (Zy(h,2)) — V()
h '
where 7, (h, z) is a numerical approximation of the solution x,(h, z) with u = v,
e.g., the Euler approximation 7, (h,z) = x + hf(z,u)

—0V(x) + DV (x)f(z,u) ~

Rearrange the terms to obtain the semi-discretised equation
: —0h =~
Vi(x) = iIellifJ {hﬁ(mo, u) + e Vi (zu(h, x))} =0

(effectively, this step reverses part of the derivation of the HJB equation)
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Semi-Lagrangian discretisation

Vi(x) = inf {hl(zo, u) + e Vi (Zu(h,z))} =0

uelU

Step 2: We now solve this equation approximately on a compact set C' C R”
using spatial discretization
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Semi-Lagrangian discretisation

Vi(x) = inf {hl(zo, u) + e Vi (Zu(h,z))} =0
uclU

Step 2: We now solve this equation approximately on a compact set C' C R"
using spatial discretization:

Choose a finite dimensional function space 7, on C'  (e.g., continuous and
piecewise linear functions defined on a simplicid grid with space step size k£ > 0;
adaptive discretisation schemes may also be used)
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Semi-Lagrangian discretisation

Vi(x) = inf {hl(zo, u) + e Vi (Zu(h,z))} =0

uelU

Step 2: We now solve this equation approximately on a compact set C' C R"
using spatial discretization:

Choose a finite dimensional function space 7, on C'  (e.g., continuous and
piecewise linear functions defined on a simplicid grid with space step size k£ > 0;
adaptive discretisation schemes may also be used)

Let I1, be a projection from the space of bounded functions W : C' — R to F;
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Semi-Lagrangian discretisation

Vi(x) = inf {M(mo,u) + €7§th(i'u(haaj))} =0

uelU

Step 2: We now solve this equation approximately on a compact set C' C R"
using spatial discretization:

Choose a finite dimensional function space 7, on C'  (e.g., continuous and
piecewise linear functions defined on a simplicid grid with space step size k£ > 0;
adaptive discretisation schemes may also be used)

Let I1, be a projection from the space of bounded functions W : C' — R to F;
Find V), € F) satisfying

V() = I, (inufj {e ™" Vip(Zu(h,2)) + M(:roju)}) forall x € C
ue
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Semi-Lagrangian discretisation

Vi(x) = inf {hl(zo, u) + e Vi (Zu(h,z))} =0

uelU

Step 2: We now solve this equation approximately on a compact set C' C R"
using spatial discretization:

Choose a finite dimensional function space 7, on C'  (e.g., continuous and
piecewise linear functions defined on a simplicid grid with space step size k£ > 0;
adaptive discretisation schemes may also be used)

Let I1, be a projection from the space of bounded functions W : C' — R to F;
Find V), € F) satisfying

V() = I, (inufj {e ™" Vip(Zu(h,2)) + M(:roju)}) forall x € C
ue

Note: Control input constraints are readily implementable, but state constraints
lead to boundary conditions that may complicate the computation
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2d Example: Optimal Investment in a Firm
[Feichtinger et al. '00,
Gr./Semmler '04]

xr1 = invested capital, x5 = investment, wu = change of investment

P1(t) = 2a(t) — owa(t),  @a(t) = u(t)

[); — P_O .04

—l(z,u) = k1\/x1 —

1—|—/<:2 172
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2d Example: Optimal Investment in a Firm
[Feichtinger et al. '00,
Gr./Semmler '04]

xr1 = invested capital, x5 = investment, wu = change of investment

To(t) = u(t)
2 2
Cx;  ou _ 004
— - T~ p=e

optimal value function
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2d Example: Optimal Investment in a Firm
[Feichtinger et al. '00,
Gr./Semmler '04]

xr1 = invested capital, x5 = investment, wu = change of investment

P1(t) = 2a(t) — owa(t),  @a(t) = u(t)

optimal value function optimal feedback law
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2d Example: Optimal Investment in a Firm
[Feichtinger et al. '00,
Gr./Semmler '04]

xr1 = invested capital, x5 = investment, wu = change of investment
1(t) = zo(t) — oz (1), To(t) = u(t)

T
1+ kQ/L

—l(z,u) = k1\/x1 —

optimal value function optimal feedback law discretization grid
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vi(x) = irelé {hf(:l;,u) + €7éh‘/h(i'u<hax>>} =0

is nothing but the Bellman equation
Vi(z) = irg{J {l(z,u) + BV (g(z,u))}

if we write g(z,u) = 7,(h,z), B =e°" (in place of h/, and V in place of V},
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vi(z) = ireltg {ht(z,u) + e Vi (Zu(h,z))} =0
is nothing but the Bellman equation
Vi(z) = 1161{J {l(z,u) + BV (g(z,u))}

if we write g(z,u) = 7,(h,z), B =e°" (in place of h/, and V in place of V},
This has several implications:

@ The feedback obtained from V), can be implemented as an approximately
optimal feedback for the exact time-discretised (sampled) problem
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vi(z) = lerel[g {ht(z,u) + e Vi (Zu(h,z))} =0
is nothing but the Bellman equation
Vi(z) = 1161{J {l(z,u) + BV (g(z,u))}

if we write g(z,u) = 7,(h,z), B =e°" (in place of h/, and V in place of V},
This has several implications:

@ The feedback obtained from V), can be implemented as an approximately
optimal feedback for the exact time-discretised (sampled) problem
~> the technical difficulties in continuous-time are avoided
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vi(z) = lerel[g {ht(z,u) + e Vi (Zu(h,z))} =0
is nothing but the Bellman equation
Vi(z) = 1161{J {l(z,u) + BV (g(z,u))}

if we write g(z,u) = 7,(h,z), B =e°" (in place of h/, and V in place of V},
This has several implications:

@ The feedback obtained from V), can be implemented as an approximately
optimal feedback for the exact time-discretised (sampled) problem
~> the technical difficulties in continuous-time are avoided

@ This also leads to rigorous error estimates
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vi(w) = inf {hl(w,u) + ™" Vi(@u(h, 7))} = 0
is nothing but the Bellman equation
Vi(z) = 1161{J {l(z,u) + BV (g(z,u))}

if we write g(z,u) = 7,(h,z), B =e°" (in place of h/, and V in place of V},
This has several implications:

@ The feedback obtained from V), can be implemented as an approximately
optimal feedback for the exact time-discretised (sampled) problem
~> the technical difficulties in continuous-time are avoided

@ This also leads to rigorous error estimates
@ The method in Step 2 can be applied to discrete-time problems
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vi(w) = inf {hl(w,u) + ™" Vi(@u(h, 7))} = 0
is nothing but the Bellman equation
Vi(z) = 1161{J {l(z,u) + BV (g(z,u))}

if we write g(z,u) = 7,(h,z), B =e°" (in place of h/, and V in place of V},
This has several implications:

@ The feedback obtained from V), can be implemented as an approximately
optimal feedback for the exact time-discretised (sampled) problem
~> the technical difficulties in continuous-time are avoided

@ This also leads to rigorous error estimates
@ The method in Step 2 can be applied to discrete-time problems
@ Any method for discrete-time problems can be used in place of Step 2
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Solving the Bellman equation
How to find V' € F} satisfying

V(z) =11, (inufJ {l(z,u) + /))V(g(.r,u))}) forallz e C' 7

ue

First, since . is finite dimensional, it suffices to check the equation for 2 from a
finite set ), C C

In the classical approaches, V' is then obtained iteratively:

@ value iteration: V() := Il (inf ey {{(z,u) + BVi(g(x,u))}) Ve Cy
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Solving the Bellman equation
How to find V' € F} satisfying

ue

V(z) =11, (inufJ {l(z,u) + [))V(g(.r,u))}) forallz e C' 7

First, since . is finite dimensional, it suffices to check the equation for 2 from a
finite set ), C C

In the classical approaches, V' is then obtained iteratively:
@ value iteration:  Vi(x) := I (infuep {{(z,u) + fVi(g(z,u))}) Ve Cy

@ policy iteration:
» choose F; such that u = F;(x) minimises {{(z,u) + V;(g(x,u))} Vo ey
> compute Vi satisfying Vi (z) = Iy (6(z,u) + BViss (g(z, Fi(2)))) Ve € Ci
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Solving the Bellman equation
How to find V' € F} satisfying

V(z) =11, (inufJ {l(z,u) + [)’V(g(ﬂ?,u))}) forallz e C' 7

ue

First, since . is finite dimensional, it suffices to check the equation for 2 from a
finite set ), C C

In the classical approaches, V' is then obtained iteratively:
@ value iteration:  Vi(x) := I (infuep {{(z,u) + fVi(g(z,u))}) Ve Cy

@ policy iteration:
» choose F; such that u = F;(x) minimises {{(z,u) + V;(g(x,u))} Vo ey
> compute Vi satisfying Vi (z) = Iy (6(z,u) + BViss (g(z, Fi(2)))) Ve € Ci

Value iteration converges linearly, policy iteration quadratically
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()-Learning

In practice, a closed expression for g(z,u) may not always be available. For
instance, we may only be able make experiments in order to determine
" = g(x,u) from 2 and u, but do not have a mathematical model
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()-Learning

In practice, a closed expression for g(z,u) may not always be available. For
instance, we may only be able make experiments in order to determine
" = g(x,u) from 2 and u, but do not have a mathematical model

Remedy:  Compute Q(x,u) = {(z,u) + BV (g(z,u)) instead of V(x)
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()-Learning

In practice, a closed expression for g(z,u) may not always be available. For
instance, we may only be able make experiments in order to determine
" = g(x,u) from 2 and u, but do not have a mathematical model

Remedy:  Compute Q(x,u) = {(z,u) + BV (g(z,u)) instead of V(x)

characterization of the optimal feedback law

(r, F*(@)) + BV (glw, F*(2))) = inf {0(z,u) + BV (g(z,u))}
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()-Learning

In practice, a closed expression for g(z,u) may not always be available. For
instance, we may only be able make experiments in order to determine
" = g(x,u) from 2 and u, but do not have a mathematical model

Remedy:  Compute Q(x,u) = {(z,u) + BV (g(z,u)) instead of V(x)

If () is known, the characterization of the optimal feedback law
U, F*(2) + BV (g, F* (@) = inf {0z, ) + BV (g(z, u))}

changes to
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()-Learning

In practice, a closed expression for g(z,u) may not always be available. For
instance, we may only be able make experiments in order to determine
" = g(x,u) from 2 and u, but do not have a mathematical model

Remedy:  Compute Q(x,u) = {(z,u) + BV (g(z,u)) instead of V(x)

If () is known, the characterization of the optimal feedback law
U, F*(2) + BV (g, F* (@) = inf {0z, ) + BV (g(z, u))}
h t
Anes T Qz, F*(x)) = inf Q(z,u)
ue

~ F* can be determined without knowing ¢
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()-Learning

In practice, a closed expression for g(z,u) may not always be available. For
instance, we may only be able make experiments in order to determine
" = g(x,u) from 2 and u, but do not have a mathematical model

Remedy:  Compute Q(x,u) = {(z,u) + BV (g(z,u)) instead of V(x)

If () is known, the characterization of the optimal feedback law
U, F*(2) + BV (g, F* (@) = inf {0z, ) + BV (g(z, u))}

changes to
¢ Qz, F*(x)) = inf Q(z,u)
ue
~ F* can be determined without knowing ¢
An iterative algorithm for obtaining () is classical ()-learning:
Qi1 (i, u;) ==Lz, u;) + Binf,ep Qi(x],u) for a sequence of experimental or

simulated data w;, u;, ;" with 2" = g(z;,u;). Often, x;1; = x; is chosen
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Deep Reinforcement Learning



Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n = 2
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n = 2
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n = 2
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n =2 i1
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n =2 i1

100000 discretisation points if n =5 {::c::i:t:
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n =2 i1

100000 discretisation points if n =5 {:-------

1000000000 discretisation points if n =9 [:::::00:
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Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V' is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C' C R”, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n =2 i1

100000 discretisation points if n =5 {:-------

1000000000 discretisation points if n =9 [:::::00:

The problem quickly becomes computationally infeasible
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Deep Learning approaches for computing V' or ()

In deep learning approaches, there is no explicit space discretization via a grid or
mesh. Rather the functions V' or () are approximations by deep Neural Networks

For those not familiar with deep neural networks, we provide a brief introduction
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Excursion: Neural Networks



does best describe the nature of a
neural network?

@ A matrix
@ A function
@ A sequence

@ An equation
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Neural Networks
hidden layers

An NN represents a function f(x)
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Neural Networks
hidden layers

An NN represents a function f(x)
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Neural Networks
hidden layers

An NN represents a function f(x)
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Neural Networks
hidden layers

An NN represents a function f(z), here [ : R* — R?

A
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(1)

How are the values v, calculated?
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How are the values yy) calculated?
1

2 1 1 1 1 1
= o (ol + w0+l )
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How are the values yy) calculated?

2 1 1 1 1 1 1
= o (ol + w0+l )

2
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How are the values y(l) calculated?

!

2 1) (1 1) (1 1 1
o = o (il + wlip” + .+ wlly® + oY)
wl(ly) = weights

bgl) = bias terms

2
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(1)

How are the values v, calculated?
0 = (ol w4 D+ 1)
n () :
w; . = weights
= (w0 )
= b, = bias terms

2
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How are the values y

2
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Z@ calculated?
1

2 1 1 1 1 1
= o (ol + w0+l )

0 W _
e (S e)
j=1

w.:

D

weights

bgl) = bias terms

o R — R is called activation function
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(1)

How are the values v, calculated?
0 = (ol w4 D+ 1)
n () :
w; . = weights
= (w0 )
= b, = bias terms

2
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o R — R is called activation function

Examples:
sigmoid:
o(y) = ﬁ
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(1)

How are the values v, calculated?
0 = (ol w4 D+ 1)
n () :
w; . = weights
= (w0 )
= b, = bias terms

2
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o R — R is called activation function

10F

Examples:
sigmoid:
o(y) = ﬁ

ReL U:
a(y) = max{0,y}

-~ v e s o o N o
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(1)

How are the values v, calculated?
0 = (ol w4 D+ 1)
n () :
w; . = weights
= (w0 )
= b, = bias terms
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o R — R is called activation function

Examples:
sigmoid:
o(y) = ﬁ

ReL U:
a(y) = max{0,y}

softplus: ]
o(y) =log(l+ev) ™ * = = = oo
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Training
Training describes the process of finding the right weights w” and bias terms bz(-l)
such that the network approximates the desired function ¢,

This is done using a training algorithm based on optimisation methods
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Training
Training describes the process of finding the right weights wflj) and bias terms b;l)
such that the network approximates the desired function

This is done using a training algorithm based on optimisation methods

A loss function determines the objective of the optimisation
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Training
Training describes the process of finding the right weights w” and bias terms bz(-l)
such that the network approximates the desired function ¢,

This is done using a training algorithm based on optimisation methods
A loss function determines the objective of the optimisation

Typical loss function when data x; and y; = @4(z;) of the desired function is

known:
LN
L(0) = N Z(@(Iiﬁ) — i)’
i=1
xy,...,xy = function arguments 7 (wz(]j) bgl)),,;ijl = parameters of the NN

Y1, ..., yn = function values of @(x,0) = function represented by the NN
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Training
Training describes the process of finding the right weights wflj) and bias terms b;l)
such that the network approximates the desired function

This is done using a training algorithm based on optimisation methods
A loss function determines the objective of the optimisation

Typical loss function when data x; and y; = @4(z;) of the desired function is
known:

N
1
L(0) = N Z(@(Iiﬁ) — i)’
i=1
xy,...,xy = function arguments 7 (wz(lj) bgl)),,;ijl = parameters of the NN

Y1, ...,yn = function values of ¢, @(x,0) = function represented by the NN

This is the standard loss function for regression (“supervised learning”), i.e., for
learning a function with prescribed values at the data points
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Stochastic Gradient Descent

£0) = & D (0(w1,0) )
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Stochastic Gradient Descent

1 N

L(0) = N Z(Sﬁ(miﬁ) - ?/z')Q
i=1
Minimising L(0) is usually done via so-called Gradient Descent
These methods compute a minimizing ¢ iteratively via
9i+1 = HZ — OZZVL(QZ)

for some suitably chosen step size o; > 0 (“learning rate”)
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Stochastic Gradient Descent

1 N

L) = > (p(a:,0) — 3,
N

i=1
Minimising L(0) is usually done via so-called Gradient Descent
These methods compute a minimizing ¢ iteratively via
Oiv1 =0, — ;VL(6;)
for some suitably chosen step size o; > 0 (“learning rate”)

These are very efficient to implement, since - f(z,§) can be computed
iteratively for NNs via Backpropagation (essentially: the chain rule)
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Stochastic Gradient Descent

L) = D (s 0) — )’

i=1
Minimising L(0) is usually done via so-called Gradient Descent
These methods compute a minimizing ¢ iteratively via

Oiv1 =0, — ;VL(6;)
for some suitably chosen step size o; > 0 (“learning rate”)

These are very efficient to implement, since - f(z,§) can be computed
iteratively for NNs via Backpropagation (essentially: the chain rule)

However, for huge data sets, the computation of VL involves a huge sum
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Stochastic Gradient Descent

L) = D (s 0) — )’

i=1
Minimising L(0) is usually done via so-called Gradient Descent
These methods compute a minimizing ¢ iteratively via

Oiv1 =0, — ;VL(6;)
for some suitably chosen step size o; > 0 (“learning rate”)

These are very efficient to implement, since - f(z,§) can be computed
iteratively for NNs via Backpropagation (essentially: the chain rule)

However, for huge data sets, the computation of VL involves a huge sum

Remedy: In each gradient step, compute only the derivative for a randomly
selected subset of (z;,v;)
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Stochastic Gradient Descent

L) = D (s 0) — )’

i=1
Minimising L(0) is usually done via so-called Gradient Descent
These methods compute a minimizing ¢ iteratively via

Oiv1 =0, — ;VL(6;)
for some suitably chosen step size o; > 0 (“learning rate”)

These are very efficient to implement, since - f(z,§) can be computed
iteratively for NNs via Backpropagation (essentially: the chain rule)

However, for huge data sets, the computation of VL involves a huge sum

Remedy: In each gradient step, compute only the derivative for a randomly
selected subset of (z;,v;) — “Stochastic Gradient Descent”
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Stochastic Gradient Descent

1 N

L(0) = N Z(‘P(ﬂ%ﬁ) — i)’
i=1
Minimising L(0) is usually done via so-called Gradient Descent
These methods compute a minimizing ¢ iteratively via
9i+1 = 91 — OZZVL(QZ)
for some suitably chosen step size o; > 0 (“learning rate”)

These are very efficient to implement, since - f(z,§) can be computed
iteratively for NNs via Backpropagation (essentially: the chain rule)

However, for huge data sets, the computation of VL involves a huge sum

Remedy: In each gradient step, compute only the derivative for a randomly
selected subset of (z;,v;) — “Stochastic Gradient Descent”

— Example: Learning a sine function
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Deep Learning approaches for computing V' or ()

In deep learning approaches, Vi or () are approximations to V' or () by deep
NNs (DNNs)
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Deep Learning approaches for computing V' or ()

In deep learning approaches, Vi or () are approximations to V' or () by deep
NNs (DNNs) and a possibility for choosing the loss function is

N
1 .
v 3 Vi) = o {6(a500 + BV (oo}
J:
for data x; or, respectively,
1 N
I 2 @ (2, uy) = Uwj ug) — 5 inf Qun(z],u))f
j:

for data zj,u;, 27, j=1,...,N
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Deep Learning approaches for computing V' or ()

In deep learning approaches, Vi or () are approximations to V' or () by deep
NNs (DNNs) and a possibility for choosing the loss function is

N
1 .
v 2 Vinw(es) = inf e, + Vil )}
J:
for data x; or, respectively,
1 N
I 2 @ (2, uy) = Uwj ug) — 5 inf Qun(z],u))f
j:

for data zj,u;, 27, j=1,...,N

“Loss functions penalize violations of Bellman equation in data points”
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Deep Learning approaches for computing V' or ()

In deep learning approaches, Vi or () are approximations to V' or () by deep
NNs (DNNs) and a possibility for choosing the loss function is

~ Z Viva () = inf {€(z;,u) + BVin(g(ws, u))} [
for data z; or, respectlvely,
1 N
I 2 @ (2, uy) = Uwj ug) — 5 inf Qun(z],u))f
=

for data zj,u;, 27, j=1,...,N
“Loss functions penalize violations of Bellman equation in data points”

In continuous time, the Hamilton-Jacobi-Bellman-based loss function for V' reads

S Vi) + inf {0y, 0) + DVaon () g )} 2
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Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem
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Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem

Remedies:

e Vyy or @)y are computed iteratively, e.g., using the loss function

L(Vnirt, @) = (Vnan (@) — ,125 {l(z,u) + BVNni(g(w,u))} )2
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Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem

Remedies:

o Vyy or @)y are computed iteratively, e.g., using the loss function

L(VNnit1,2) = (VNN,z'+1(CL') — 51615 {(x,u) + BVNn,i(g(z,u))} )2

=p(x,0)

=wpa(z)

~ can be implemented as a standard regression problem
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Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem

Remedies:

o Vyy or @)y are computed iteratively, e.g., using the loss function

L(Van,t1,2) = (Vnip (2) — gelfU {l(x,u) + BVNn,i(g(z,u))} )2

=p(x,0)

=wpa(z)

~ can be implemented as a standard regression problem

@ Instead of computing the “inf” in L, an approximate minimizer Fiyy ; is
stored in a second Neural Network ~~ *“actor-critic method”
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Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem

Remedies:
o Vyy or @)y are computed iteratively, e.g., using the loss function

L(Van,t1,2) = (Vnip (2) — 525 {l(x,u) + BVNn,i(g(z,u))} )2

=p(x,0)

=pq(z)
~ can be implemented as a standard regression problem

@ Instead of computing the “inf” in L, an approximate minimizer Fiyy ; is
stored in a second Neural Network ~~ *“actor-critic method”

@ Once an approximation to I is stored, the fact that F' optimizes the cost
can be used in the design of the loss function ~~ “policy gradient method"
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Deep Learning approaches, implementation details

e Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ~~ “episodes”
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Deep Learning approaches, implementation details

e Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ~~ “episodes”

@ Generated data is used several times
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Deep Learning approaches, implementation details

e Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ~~ “episodes”

@ Generated data is used several times

@ For the iterative loss function
N
1 )
N Zl ‘VNN,H-I(IJ') - 525 {g(%‘a u) + 5VNN,¢(9(%'7 U))} |2
]:

a new iteration is performed after every couple of episodes
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Deep Learning approaches, implementation details

e Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ~~ “episodes”

@ Generated data is used several times

@ For the iterative loss function
N
1 )
N Zl ‘VNN,H-I(IJ') - lelgg—c] {g(%‘a u) + 5VNN,¢(9(%‘7 U))} |2
]:

a new iteration is performed after every couple of episodes

@ The controls for generating the x; are chosen as minimisers of ¢ 4 3V ;
(“exploitation™), with randomly generated exceptions ( “exploration”)
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Deep Learning approaches, implementation details

e Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ~~ “episodes”

@ Generated data is used several times

@ For the iterative loss function
N
1 )
N Z Vit (@) — lelgg—c] {0(zj,u) + BVNni(g(zs,u)} 2
=1

a new iteration is performed after every couple of episodes

@ The controls for generating the x; are chosen as minimisers of ¢ 4 3V ;
(“exploitation™), with randomly generated exceptions ( “exploration”)

@ On https://pylessons.com/ or on https://spinningup.openai.com
templates for Deep Reinforcement Learning can be obtained
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Deep Learning approaches, implementation details

e Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ~~ “episodes”

@ Generated data is used several times

@ For the iterative loss function
N
1 )
N Z Vit (@) — lelgg—c] {0(zj,u) + BVNni(g(zs,u)} 2
=1

a new iteration is performed after every couple of episodes

@ The controls for generating the x; are chosen as minimisers of ¢ 4 3V ;
(“exploitation™), with randomly generated exceptions ( “exploration”)

@ On https://pylessons.com/ or on https://spinningup.openai.com
templates for Deep Reinforcement Learning can be obtained

We will see in the Part 5 of this course whether Deep Learning can really do
better than grid- or meshed-based approaches
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Methods computing open-loop optimal controls



How to solve OCPs for open-loop controls?

Core challenge:  How to compute the function u*(-) 7
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How to solve OCPs for open-loop controls?

Core challenge:  How to compute the function u*(-) 7

Two main options:
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How to solve OCPs for open-loop controls?
Core challenge:  How to compute the function u*(-) 7
Two main options:
1. Apply PMP to obtain necessary
optimality conditions (NCOs)
2. Solve NCO differential equations

by discretization in time

~~ |Indirect solution methods
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How to solve OCPs for open-loop controls?

Core challenge:  How to compute the function u*(-) 7

Two main options:

1. Apply PMP to obtain necessary 1. Discretize OCP in time to obtain
optimality conditions (NCOs) a finite-dimensional nonlinear
optimization problem (NLP)

2. Solve NCO differential equations 2. Solve NLP by suitable
by discretization in time optimisation algorithm

~~ |Indirect solution methods ~~ Direct solution methods
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How to solve OCPs for open-loop controls?

Core challenge:  How to compute the function u*(-) 7

Two main options:

1. Apply PMP to obtain necessary 1. Discretize OCP in time to obtain
optimality conditions (NCOs) a finite-dimensional nonlinear
optimization problem (NLP)

2. Solve NCO differential equations 2. Solve NLP by suitable
by discretization in time optimisation algorithm

~~ |Indirect solution methods ~~ Direct solution methods

“First optimise, then discretise”
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How to solve OCPs for open-loop controls?

Core challenge:  How to compute the function u*(-) 7

Two main options:

1. Apply PMP to obtain necessary 1. Discretize OCP in time to obtain
optimality conditions (NCOs) a finite-dimensional nonlinear
optimization problem (NLP)

2. Solve NCO differential equations 2. Solve NLP by suitable

by discretization in time optimisation algorithm
~~ Indirect solution methods ~~ Direct solution methods
“First optimise, then discretise” “First discretise, then optimise”
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Methods based on Pontryagin’s Maximum Principle
“Indirect Solution Methods"



Basic idea of indirect shooting

“First optimise, then discretise”

wmin / "0t (), u()dt + Lty x(t))

a) Sy
subject to: (P)
= f(t,z,u), z(ty) =z
u() € Loo([to, ], U)
0 =W(ty,x(ty))
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Basic idea of indirect shooting

“First optimise, then discretise”

wmin / "0t (), u()dt + Lty x(t))

u) Sy,
subject to: (P)
= f(t,z,u), z(ty) =z
u(-) € Loo([to, ], U)
0 =W(ty,x(ty))
NCOs:

s, us N, x*(ty) = xo

N(tg) = La(ty, a*(ts)) + (V") Wa(ty, 2" (ty)),

0
0= W(ty,z"(ty))
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Basic idea of indirect shooting

Main difficulty: The NCOs contain a boundary value problem
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Basic idea of indirect shooting
Main difficulty: The NCOs contain a boundary value problem

Idea: Split NCOs into two parts:
@ NCOs enforced (approximately) at each iteration
@ NCOs enforced (approximately) upon convergence
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Basic idea of indirect shooting
Main difficulty: The NCOs contain a boundary value problem

Idea: Split NCOs into two parts:
@ NCOs enforced (approximately) at each iteration
@ NCOs enforced (approximately) upon convergence

NCOs:
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”

A basic indirect shooting algorithm

Choose £ > 0. Guess \?, 0. Set k=0

1. Solve numerically from ¢, to ¢

jjk - H)\(tvxkauku )‘k)v x(t())k =T

A= —H,(t, 25 u* \F), Ato)" = \§
0= H,(t a" u" \F)
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A basic indirect shooting algorithm

Choose = > 0. Guess A\, ”. Set k=0

1. Solve numerically from ¢, to ¢
i = Hy(t, 2", u" \F), 2(t)* =z
Ne = —H(t, 2% uF N, Nt)F = A
0= H,(t a" u" \F)

2. Compute defect of transversality and terminal conditions:

ko = (AT = Lalty w(ty)") = () T Walty, (ty)")
F o) = ( Wty x(ty)") >

3. 0F | FO\E V)| < —  STOP
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A basic indirect shooting algorithm

Choose = > 0. Guess A\, ”. Set k=0
1. Solve numerically from ¢, to ¢
i = Hy(t, 2", u* ), (te)* = 20
A= — [ (2% 0 NF), (k)" = A\
0= H,(t a" u" \F)

2. Compute defect of transversality and terminal conditions:

by - (AE)E = La(ty, (ty)*) — (V) T, (ty, x(tf)F)
m@’”—( Wty a(t)") >

3 |FOE M) <e —  STOP
4. Update \E, v" to enforce F(A\E, %) — 0. k< k+ 1. GOTO Step 1
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How to do Step 47

o We want
lim F(A\E vF) = 0.

k—o0

This is a root finding problem, e.g., we can apply Newton's method'?

120r any quasi Newton method, also stepsize parameters could be introduced.
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How to do Step 47

o We want
lim F(A\E vF) = 0.

k—o0

This is a root finding problem, e.g., we can apply Newton's method'?

@ Compute defect gradients DA{;']'— and D, .« F and solve the Newton step

(D F DyiF) @3:) —F (N VM).

120r any quasi Newton method, also stepsize parameters could be introduced.
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How to do Step 47

o We want
lim F(A\E vF) = 0.

k—o0

This is a root finding problem, e.g., we can apply Newton's method'?

@ Compute defect gradients DA{;']'— and D, .« F and solve the Newton step

(D F DuiF) @3:) —F (N VM).

N A ANF
e ) =k ) T LAk )

120r any quasi Newton method, also stepsize parameters could be introduced.

e Update
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. "1,
rlrll(u)q /0 Ju (t)dt
subject to
2(t) =u(t)(1 - x(t))
z(0) = xg, 2(1) =1
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Example

Indirect shooting as sketched above: °=0,\) = —0.1, g = —1, 2, = 0.75

T T T 1 T T T T T T T T T
25F E
[y
of E
¥ 5 ol |
150 E
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t
40 0 :
= 100 ] = 5 ]
Ty |
10 e i i i s s Y N S S (S S S S
0 o1 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1
t t
6 — 2.30076072
4t . 2.3007607
-
= S
af 1 2.30076068
0 2.30076066 S S S
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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Example

Indirect shooting as sketched above: °=0,\) = —0.1, g = —1, 2, = 0.75

108 - - - - - - - - - I [ I T I i [ ] I — k=18
N0 0
R ———
108 | . L . . . . . . 1 : ! - : : - - : :
0 20 4 60 8 100 120 140 160 180 200 0 o1 02 03 04 05 06 07 08 09 1
k t
107 T T T T T T r r r 0 p——Try
= 0°F 1 = 5
0l
10! L L L L L L L L L L L L L L L L L L
20 49 60 8 100 120 140 160 180 200 0 o1 02 03 04 05 06 07 08 09 1
k t
10° b o () - 2.30976072
O et -l
2.3007607 -
x
0 3
10 \D 2.30976068 -
0 50 100 150 200 2.30976066 : : . . ‘ . ‘ . -
& 0 o1 02 03 04 05 06 07 08 09 1

vt = —1151; N5 = —1.1543, [N (t;) — v*| = 9.4- 1073, |a*(t;) — x| = 1.43- 1073
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Remarks on indirect methods

@ Requires to set up the NCOs from the PMP

13T. Englert, A. Volz, F. Mesmer, S. Rhein, K. Graichen. “A software framework for
embedded nonlinear model predictive control using a gradient-based augmented Lagrangian
approach (GRAMPC)". In: Optimization and Engineering 20.3 (2019), pp. 769-809
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Remarks on indirect methods

@ Requires to set up the NCOs from the PMP
@ Input constraints can be considered (not in the example)

@ Indirect methods can be very precise and memory efficient (no need to store
large matrices)*3
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Remarks on indirect methods

Requires to set up the NCOs from the PMP

Input constraints can be considered (not in the example)

(]

Indirect methods can be very precise and memory efficient (no need to store
large matrices)*3

In case of active state constraints ~~ much more complicated NCOs ~~
indirect methods become tedious to apply

13T. Englert, A. Volz, F. Mesmer, S. Rhein, K. Graichen. “A software framework for
embedded nonlinear model predictive control using a gradient-based augmented Lagrangian
approach (GRAMPC)". In: Optimization and Engineering 20.3 (2019), pp. 769-809
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Remarks on indirect methods

@ Requires to set up the NCOs from the PMP
@ Input constraints can be considered (not in the example)

@ Indirect methods can be very precise and memory efficient (no need to store
large matrices)*3

@ In case of active state constraints ~» much more complicated NCOs ~~
indirect methods become tedious to apply

@ Unstable dynamics 4 = f(x,u) lead to numerical issues ~~ good initial
guesses needed in Newton's method ~~ often requires manual attention

13T. Englert, A. Volz, F. Mesmer, S. Rhein, K. Graichen. “A software framework for
embedded nonlinear model predictive control using a gradient-based augmented Lagrangian
approach (GRAMPC)". In: Optimization and Engineering 20.3 (2019), pp. 769-809
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Remarks on indirect methods

@ Requires to set up the NCOs from the PMP
@ Input constraints can be considered (not in the example)

@ Indirect methods can be very precise and memory efficient (no need to store
large matrices)*3

@ In case of active state constraints ~» much more complicated NCOs ~~
indirect methods become tedious to apply

@ Unstable dynamics 4 = f(x,u) lead to numerical issues ~~ good initial
guesses needed in Newton's method ~~ often requires manual attention

e Either adjoint dynamics or state dynamics are unstable

13T. Englert, A. Volz, F. Mesmer, S. Rhein, K. Graichen. “A software framework for
embedded nonlinear model predictive control using a gradient-based augmented Lagrangian
approach (GRAMPC)". In: Optimization and Engineering 20.3 (2019), pp. 769-809
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Direct Solution Methods



Direct solution approaches — Main idea
“First discretize, then optimize”

Convert OCP
m(il)q J(zo,u(-))
subject to
w(t)=f(t,x(t),a(t)), w(to) = xo
Vte [to, ts] s u(t) e UCR™
Vte [to,ty] s x(t) e XCR"
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Direct solution approaches — Main idea

“First discretize, then optimize”

Convert OCP into nonlinear opt. problem (NLP)
: ‘ g
min J(zo, u(-)) Join £(¢)
subject to subject to
w(t)=f(t,x(t),a(t)), w(to) = xo h(§) =0
Vte [to, ts] s u(t) e UCR™ g(&) <0

Vte [to,ty] s x(t) e XCR"
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Direct solution approaches — Main idea

“First discretize, then optimize”

Convert OCP into nonlinear opt. problem (NLP)
: . g
min J (2o, u(:)) oin (©)
subject to subject to
z(t)= f(t,x(t),u(t)), =x(to) = xo h(§) =0
Vte [to, ts] s u(t) e UCR™ g(&) <0

Vte [to,ty] s x(t) e XCR"

Optimization in a function space
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Optimization in a function space dimensional vector space
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Direct solution approaches — Main idea

“First discretize, then optimize”

Convert OCP into nonlinear opt. problem (NLP)
: . g
min J(zo, u(-)) oin (©)
subject to subject to
z(t)= f(t,x(t),u(t)), =x(to) = xo h(§) =0
Vte [to, ts] s u(t) e UCR™ g(&) <0

Vte [to,ty] s x(t) e XCR"
Optimization in a finite-
Optimization in a function space dimensional vector space

@ How to discretize u(-)? How to obtain a solution to & = f(z,u)?
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Input discretization?
Parametrize u(-) by finitely many parameters wy, k= 1,..., Noy

Nopl

() € Lulto 1/, U) ~ () =3 weon(t)

with basis functions ¢y (+)
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Input discretization?
Parametrize u(-) by finitely many parameters wy, k= 1,..., Noy

Nupl,

u() € Loo(lto, 5], U) ~ u(t) =) wdn(t)

with basis functions ¢y (+)

The parameters u;, then become the optimization variables in the
finite-dimensional problem
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Input discretization?
Parametrize u(-) by finitely many parameters wy, k= 1,..., Noy

Nupl,

u() € Loo(lto, 5], U) ~ u(t) =) wdn(t)

with basis functions ¢y (+)

The parameters u;, then become the optimization variables in the
finite-dimensional problem

Which basis functions to use?
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Input discretization?

piecewise constant piecewise linear without continuity

u(t) / piecewise linear with continuity piecewise cubic with continuity
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Input discretization?

piecewise constant piecewise linear without continuity

Very often, one simply uses piecewise constant input parametrizations
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Discretisation of dynamics?

How to solve & = f(¢,z,u)?
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Discretisation of dynamics?

How to solve & = f(¢,z,u)?

Here: only simple fixed step-size integration methods
These can be written as discrete-time control systems

h =ty 1 — tp = const.

T(tet1) = g(t, ©(tn), uk)
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Discretisation of dynamics?

How to solve & = f(t,z,u)?

Here: only simple fixed step-size integration methods

These can be written as discrete-time control systems

h =ty 1 — tp = const.

2(tps1) = g(te, x(ty), ug)

Simplest choice: Euler scheme ¢(t,x,u) =z + hf(t, z,u)

(but more sophisticated schemes like Heun, classical Runge-Kutta, or implicit
methods may be advantageous)
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Considered OCP

min L(t s, x(ty))
u(-),p

subject to (OCP)
(t) = f(t,x(t),u(t)), x(to) = w0
vte [to, ts] s u(t) e UC R™
vte [to, ty] s x(t) e X CR”
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Considered OCP

min L(ty, z(ts))
u(-),p

subject to (OCP)
x(t) - f(tv :L’(t), u@))? Jj(t(J) = o
vte [to, ts] s u(t) e UC R™
Vte [to, ts] s x(t) e X CR"

For the illustration of the procedure we consider a problem without terminal
conditions. This can be adapted to most common settings, such as

@ free end time problems

@ periodic boundary conditions

@ free initial conditions

° ...
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Direct single shooting (simultaneous)

min L(ts, z(ty))
u(-),p

subject to
#(t) = [t x(t),a(t), w(to) = o
Vte [to, ts] s u(t) e UC R™
Vte [to, ty] s x(t) e X CR”
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Direct single shooting (simultaneous)

min L(ty, 2(ty))
u(')vp

subject to
#(t) = [t x(t),a(t), w(to) = o
Vte [to, ts] s u(t) e UC R™
Vte [to, ty] s x(t) e X CR”

@ Discretized problem: (with ¢ replaced by k)
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Direct single shooting (simultaneous)

min L(tf, x(tf))
u(')vp

subject to
#(t) = [t x(t),a(t), w(to) = o
Vte [to, ts] s u(t) e UC R™
Vte [to, ty] s x(t) e X CR”

@ Discretized problem: (with ¢ replaced by k)

min L(N,z(N)) subject to
u(0),...,u(N—1),x(N),p

z(0) = zo, x(k+1) = g(k,z(k),u(k))
Vke {0,...,N—1}: wu(k)eUCR™
Vke {0,...,N}: =z(k)eX
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Remarks on direct single shooting

@ The state 2:(/N) (on which the cost L(/N,z(N)) depends) is computed “in
one shot” from z, hence the name
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Remarks on direct single shooting

@ The state 2:(/N) (on which the cost L(/N,z(N)) depends) is computed “in
one shot” from z, hence the name

@ ODE is (approximately) satisfied for all iterates
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Remarks on direct single shooting

@ The state 2:(/N) (on which the cost L(/N,z(N)) depends) is computed “in
one shot” from z, hence the name

@ ODE is (approximately) satisfied for all iterates

e Easy to code
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Remarks on direct single shooting

@ The state 2:(/N) (on which the cost L(/N,z(N)) depends) is computed “in
one shot” from z, hence the name

@ ODE is (approximately) satisfied for all iterates
e Easy to code

@ Constraints are enforced at discretization points only
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Remarks on direct single shooting

The state 2:(/V) (on which the cost L(/N,z(/N)) depends) is computed “in
one shot” from z, hence the name

ODE is (approximately) satisfied for all iterates
Easy to code
Constraints are enforced at discretization points only

The NLP has n,, - NV 4 n,, decision variables
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V.

(]

Remarks on direct single shooting

The state 2:(/V) (on which the cost L(/N,z(/N)) depends) is computed “in
one shot” from z, hence the name

ODE is (approximately) satisfied for all iterates

Easy to code

Constraints are enforced at discretization points only
The NLP has n,, - NV 4 n,, decision variables

Unstable systems lead to highly sensitive dependence of the solution from
the control input ~~ NLP difficult to solve
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Direct multiple shooting

min L(t;,a(t;))
u(')vp

subject to
i(t) = f(t,x(t),u(t), @(to) =0
Vte [to,tf] s u(t) e UC R™
vte [to,tf] t x(t) e X C R"
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Direct multiple shooting

min L(ty, x(ty))
u(-),p

subject to
i(t) = f(t,x(t),u(t), @(to) =0
Vte [to,tf] s u(t) e UC R™
vte [to,tf] t x(t) e X C R"

@ Introduce N + 1 (vector valued) additional decision variables £(0),...,{(N — 1)

@ Solve ODE separately on N small intervals, enforce continuity through additional
constraints upon convergence

min L(N,z(N)) subject to
u(o)v'"7U(N71)>£(0)7“"g(Nfl)vp
Vke {0, N =1} s a(k + 1) =g(k, £(k), u(k)),
Vke {1,..., N =1} : {(k) = (k) and & = o

Vke{o,..., —1}:u(k) eUCR™ Vke{0,...,N}:z(k) € X CR"
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Example — Direct multiple shooting

4 4
oL S T — . Revisit the optimal investment
[ 5 10 15 20 25 30 35 40 45 50 .
t problem: x; = invested
4 T T T T . .
capital, x5 = investment, u
2R ] = change of investment
P o r R g s e e e Solved with CasADi'® and
of T = ipopt
S -o.sff' -
B 0 é 10 1‘5 2‘0 2‘5 3‘0 35 4‘0 4‘5 50

4 Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, Moritz Diehl. “CasADi: a
software framework for nonlinear optimization and optimal control”. In: Mathematical
Programming Computation 11 (2019), pp. 1-36
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Remarks on direct multiple shooting

@ The state z(/N) is now computed in N (=multiple) shots from x, which are
coupled via constraints®®

15H.G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal
control problems”. In: Proc. 9th IFAC World Congress. 1984
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Remarks on direct multiple shooting

@ The state z(/N) is now computed in N (=multiple) shots from x, which are
coupled via constraints®®

@ ODE is satisfied upon convergence of NLP solver
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Remarks on direct multiple shooting

@ The state z(/N) is now computed in N (=multiple) shots from x, which are
coupled via constraints®®

@ ODE is satisfied upon convergence of NLP solver

@ Constraints are enforced at discretization points only
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Remarks on direct multiple shooting

@ The state z(/N) is now computed in N (=multiple) shots from x, which are
coupled via constraints®®

@ ODE is satisfied upon convergence of NLP solver
@ Constraints are enforced at discretization points only

© n, - N+mn, (N+1)+n, N+ n, decision variables

15H.G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal
control problems”. In: Proc. 9th IFAC World Congress. 1984
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Remarks on direct multiple shooting

The state z(/N) is now computed in N (=multiple) shots from x, which are
coupled via constraints®®

@ ODE is satisfied upon convergence of NLP solver

Constraints are enforced at discretization points only

(]

Ny - N +ng - (N +1)+n, - N +n, decision variables

Handles unstable systems much better than single shooting

15H.G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal
control problems”. In: Proc. 9th IFAC World Congress. 1984
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Remarks on direct multiple shooting

The state z(/N) is now computed in N (=multiple) shots from x, which are
coupled via constraints®®

@ ODE is satisfied upon convergence of NLP solver

Constraints are enforced at discretization points only

(]

Ny - N +ng - (N +1)+n, - N +n, decision variables

Handles unstable systems much better than single shooting

Workhorse method for many MPC implementations, see Part 4 of the course

15H.G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal
control problems”. In: Proc. 9th IFAC World Congress. 1984
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Other direct methods?

@ Collocation: parametrization of control and state trajectories via piecewise
polynomials

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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Other direct methods?

@ Collocation: parametrization of control and state trajectories via piecewise
polynomials

@ Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,

2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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Other direct methods?

@ Collocation: parametrization of control and state trajectories via piecewise
polynomials

@ Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

@ Combinations of the above, e.g., one can use multiple shooting with
collocation for the integration, ...

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
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Other direct methods?

@ Collocation: parametrization of control and state trajectories via piecewise
polynomials

@ Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

@ Combinations of the above, e.g., one can use multiple shooting with
collocation for the integration, ...

~ all of these improve constraint satisfaction between discretisation points
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Other direct methods?

@ Collocation: parametrization of control and state trajectories via piecewise
polynomials

@ Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

@ Combinations of the above, e.g., one can use multiple shooting with
collocation for the integration, ...

~ all of these improve constraint satisfaction between discretisation points

@ Decision tree for optimization software: https://plato.asu.edu/guide.html

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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Other direct methods?

Collocation: parametrization of control and state trajectories via piecewise
polynomials

Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

Combinations of the above, e.g., one can use multiple shooting with
collocation for the integration, ...

~ all of these improve constraint satisfaction between discretisation points

Decision tree for optimization software: https://plato.asu.edu/guide.html

For further introductory reading, see Chapter 5 of [Chachuat '09]*°

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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Summary of Part 3: Numerical Solution Methods

@ Dynamic programming yields an optimal feedback law, indirect and direct
methods yield open-loop optimal trajectories and controls
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Summary of Part 3: Numerical Solution Methods

@ Dynamic programming yields an optimal feedback law, indirect and direct
methods yield open-loop optimal trajectories and controls

@ Numerical effort of dynamic programming grows much faster with the state
dimension than that of indirect and direct methods
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methods yield open-loop optimal trajectories and controls

@ Numerical effort of dynamic programming grows much faster with the state
dimension than that of indirect and direct methods

@ Deep reinforcement learning may provide a remedy, but for which problems?
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dimension than that of indirect and direct methods

@ Deep reinforcement learning may provide a remedy, but for which problems?

@ Indirect methods are more accurate, but also considerably slower and more
complicated to handle than direct methods

@ Multiple shooting much better for unstable problems than single shooting

Conclusion so far: None of the classical techniques are suitable for
high-dimensional optimal feedback control problems
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Summary of Part 3: Numerical Solution Methods

@ Dynamic programming yields an optimal feedback law, indirect and direct
methods yield open-loop optimal trajectories and controls

@ Numerical effort of dynamic programming grows much faster with the state
dimension than that of indirect and direct methods

@ Deep reinforcement learning may provide a remedy, but for which problems?

@ Indirect methods are more accurate, but also considerably slower and more
complicated to handle than direct methods

@ Multiple shooting much better for unstable problems than single shooting

Conclusion so far: None of the classical techniques are suitable for
high-dimensional optimal feedback control problems

The last two parts of this course present techniques that overcome this limitation
for optimal control problems with particular properties
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Outline of the course

Part 1: Optimal Control Problems — An Introduction
Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce MPC as an approximate solution method for infinite-horizon optimal
feedback control, which does not rely on dynamic programming
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Purpose of this part

Introduce MPC as an approximate solution method for infinite-horizon optimal
feedback control, which does not rely on dynamic programming

Explain the turnpike property as the crucial structural property that enables MPC
to yield near-optimal solutions
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Purpose of this part

Introduce MPC as an approximate solution method for infinite-horizon optimal
feedback control, which does not rely on dynamic programming

Explain the turnpike property as the crucial structural property that enables MPC
to yield near-optimal solutions

Present a challenging industrial use case
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Contents of this part

Part 4: Model Predictive Control

@ Model Predictive Control
@ The Turnpike Property
@ Main Performance Result

@ Use Case: Optimal Startup of a Combined Cycle Power Plant
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Model predictive control



Model predictive control

Turnpike properties are pivotal for analysing Model Predictive Control (MPC),
one of the most successful advanced control methods
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Model predictive control

Turnpike properties are pivotal for analysing Model Predictive Control (MPC),
one of the most successful advanced control methods

MPC approximates an optimal control problem on an infinite horizon

u

minimise Jo.(xg, u Z€
t=0
by the iterative solution of finite horizon problems
minimise Jy(xg, 1) = U(xy(t),u(t))

with fixed N €¢ N
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Model predictive control

Turnpike properties are pivotal for analysing Model Predictive Control (MPC),
one of the most successful advanced control methods

MPC approximates an optimal control problem on an infinite horizon

o0
minimise Jo.(xg, u E l(x
t=0

u

by the iterative solution of finite horizon problems
minimise Jy(xg, 1) = U(xy(t),u(t))

with fixed N € N. How do we get a feedback law F'?
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MPC from the trajectory point of view
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)
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MPC from the trajectory point of view

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view
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black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X
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red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)

red = MPC closed loop xypc(t)
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6 t

black = predictions (open loop optimisation)
red = MPC closed loop xypc(t)

The feedback control value F'(x;pc(t)) is evaluated online as the first element
of the finite horizon optimal control sequence
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The turnpike property



The turnpike property

a temporal redundancy property



The turnpike property

The turnpike property describes a behaviour of (approximately) optimal
trajectories for a finite horizon optimal control problem

miniumise Iy(z,u) = U(xy(t),u(t))

with a cost function /: X x U — R
and state and input constraints z,(t) € X, u(t) € U
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The turnpike property

The turnpike property describes a behaviour of (approximately) optimal
trajectories for a finite horizon optimal control problem

miniumise Iy(z,u) = U(xy(t),u(t))

with a cost function /: X x U — R
and state and input constraints z,(t) € X, u(t) € U

Informal description of the turnpike property:

Any optimal trajectory stays near an equilibrium x most of the time
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The turnpike property

The turnpike property describes a behaviour of (approximately) optimal
trajectories for a finite horizon optimal control problem

miniumise Iy(z,u) = U(xy(t),u(t))

with a cost function /: X x U — R
and state and input constraints z,(t) € X, u(t) € U

Informal description of the turnpike property:

Any optimal trajectory stays near an equilibrium x most of the time

We illustrate the property by two simple examples
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Example: minimum energy control

Example: Keep the state of the system inside a given interval X minimising the

quadratic control effort
((x,u) = u?

with dynamics
=2+ u

and constraints X = [-2,2], U = [-3, 3]
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Quiz

Which is the “cheapest” state
for keeping the system inside
X =[-2,2]?

o =2

exr=020

@ Any |z| < ¢ for € > 0 sufficiently
small
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Example: optimal trajectories

04r ~

0.2r- -

02 I I I I
0 5 10 15 20 25

Optimal trajectory for N =5
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5, ...,7
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,9
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5, ... 11
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,13
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,15
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,17
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,19
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5, ..., 21
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Example: optimal trajectories

o8- & .
0.6 ~ |
0.4 ) 8

02 RNo—¢

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,23
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Example: optimal trajectories

02 I I I I
0 5 10 15 20 25

Optimal trajectories for N =5,...,25
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Example: a macroeconomic model

Consider a classical 1d macroeconomic model
[Brock/Mirman '72]

Minimise the finite horizon objective S " /(4 (t), u(t)) with
lz,u) = —In(Az® —u), A=05,a=0.34
and dynamics  z(k + 1) = u(k) on X=TU=10,10]
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Example: a macroeconomic model

Consider a classical 1d macroeconomic model
[Brock/Mirman '72]

Minimise the finite horizon objective S " /(4 (t), u(t)) with
lz,u) = —In(Az® —u), A=05,a=0.34
and dynamics  z(k + 1) = u(k) on X=TU=10,10]

r = invested capital; u = investment in next time step
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Example: a macroeconomic model

Consider a classical 1d macroeconomic model
[Brock/Mirman '72]

Minimise the finite horizon objective S " /(4 (t), u(t)) with
lz,u) = —In(Az® —u), A=05,a=0.34
and dynamics  z(k + 1) = u(k) on X=TU=10,10]

r = invested capital; u = investment in next time step

Ax® = capital after one time step
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Example: a macroeconomic model

Consider a classical 1d macroeconomic model
[Brock/Mirman '72]

Minimise the finite horizon objective S " /(4 (t), u(t)) with
lz,u) = —In(Az® —u), A=05,a=0.34
and dynamics  z(k + 1) = u(k) on X=TU=10,10]

r = invested capital; u = investment in next time step
Ax® = capital after one time step

Az® — u = consumed capital; In(-) = utility function
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Example: a macroeconomic model

Consider a classical 1d macroeconomic model
[Brock/Mirman '72]

Minimise the finite horizon objective S " /(4 (t), u(t)) with
lz,u) = —In(Az® —u), A=05,a=0.34
and dynamics  z(k + 1) = u(k) on X=TU=10,10]

r = invested capital; u = investment in next time step
Ax® = capital after one time step

Az® — u = consumed capital; In(-) = utility function
On infinite horizon, it is optimal to stay at the equilibrium

x¢ & 2.2344  with £(z° u®) ~ 1.4673

\y‘ UNIVERSITAT
BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 118/156



Example: optimal trajectories

L L L
10 15 20 25
n

Optimal trajectory for N =5
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Example: optimal trajectories

L L L
10 15 20 25

Optimal trajectories for N =5, ...,7
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Example: optimal trajectories

L L
15 20 25

Optimal trajectories for N =5,...,9
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Example: optimal trajectories

Optimal trajectories for N =5, ... 11
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Example: optimal trajectories

Optimal trajectories for N =5,...,13
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Example: optimal trajectories

Optimal trajectories for N =5,...,15
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Example: optimal trajectories

Optimal trajectories for N =5,...,17
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Example: optimal trajectories

Optimal trajectories for N =5,...,19
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Example: optimal trajectories

Optimal trajectories for N =5, ..., 21
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Example: optimal trajectories

Optimal trajectories for N =5,...,23
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Example: optimal trajectories

55

45 .

0 L L b
0 5 10 15 20 25

n

Optimal trajectories for N =5,...,25
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How to formalise the turnpike property?

o o o

5 10 15 20 25
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How to formalise the turnpike property?
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How to formalise the turnpike property?

o 5 10 15 20 25
n

The number of points outside the blue neighbourhood is
bounded by a number independent of NV
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How to formalise the turnpike property?

o 5 10 15 20 25
n

The number of points outside the blue neighbourhood is
bounded by a number independent of NV (here: by 8)
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How to formalise the turnpike property?

o 5 10 15 20 25
n

The number of points outside the blue neighbourhood is
bounded by a number independent of NV (here: by 8)

In continuous time: The Lebesgue measure replaces the counting of points
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History
@ First described by [Ramsey 1928, von Neumann 1938]
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History
@ First described by [Ramsey 1928, von Neumann 1938]

@ Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]
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@ First described by [Ramsey 1928, von Neumann 1938]

@ Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]
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History
@ First described by [Ramsey 1928, von Neumann 1938]

@ Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]
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History
@ First described by [Ramsey 1928, von Neumann 1938]

@ Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]
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History
@ First described by [Ramsey 1928, von Neumann 1938]
@ Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]

@ Extensively studied in the 1970s in mathematical economy, cf. survey
[McKenzie 1983]
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History

First described by [Ramsey 1928, von Neumann 1938]

Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical economy, cf. survey
[McKenzie 1983]

@ Renewed interest since about ten years [Zaslavski '14ff,
Faulwasser et al. "15ff, Trélat/Porretta/Zuazua et al. '15ff,
Gugat et al. "16ff, Schaller et al. '19f, Breiten/Pfeiffer '20, ...]
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History

First described by [Ramsey 1928, von Neumann 1938]

Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical economy, cf. survey
[McKenzie 1983]

@ Renewed interest since about ten years [Zaslavski '14ff,
Faulwasser et al. "15ff, Trélat/Porretta/Zuazua et al. '15ff,
Gugat et al. "16ff, Schaller et al. '19f, Breiten/Pfeiffer '20, ...]

Selected applications:
» synthesis of optimal trajectories [Anderson/Kokotovic '87]
» learning in neural ODEs [Esteve-Yagiie/Geshkovski/Pighin/Zuazua '21ff,
Puttschneider/Faulwasser '24f]
> optimization based estimation [Schiller/Gr./Miiller '24f]
» model predictive control [will be explained in a few minutes]
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Tracking type problems

For a stabilizable equilibrium x* with control u*, i.e., g(z*, u®) = 2%, the tracking
cost
() = o — |+ el — o)

for ;o > 0 defines an optimal control problem with turnpike property at ¢ = z°
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Tracking type problems

For a stabilizable equilibrium z* with control u*, i.e., g(x*, u®) = x*, the tracking

cost
Uz®, ) o= |l — 2| + pllu — w7

for ;o > 0 defines an optimal control problem with turnpike property at ¢ = z°

However, the class of problems exhibiting the turnpike property is much larger
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Tracking type problems

For a stabilizable equilibrium z* with control u*, i.e., g(x*, u®) = x*, the tracking

cost
Uz®, ) o= |l — 2| + pllu — w7

S

for ;o > 0 defines an optimal control problem with turnpike property at 2 = =

However, the class of problems exhibiting the turnpike property is much larger

Strict Dissipativity is a key to understanding how large it is
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a
storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:

Ag(z,u)) < M) + £z, u) — £z, u®) — afllz — 2°)
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a

storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:

AMg(z,u)) < Mx) + (x,u) — 0z u®) — ]|z — x¢)

a€K: a:Rj — RJ, continuous,
strictly increasing, a(0) =0

(0,0) r
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a

storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:

Mgl u)) < M) + £z, u) — £z, u) — alflz — o)
Facts (for stabilizable systems):
@ Strict dissipativity implies the turnpike property [Gr. '13]
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a

storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:

Mg, w)) < M) + £z, u) — £z, u) — alflz — )
Facts (for stabilizable systems):
@ Strict dissipativity implies the turnpike property [Gr. '13]

@ Under a controllability condition, it is equivalent to a robust version of the
turnpike property [Gr./Miiller '16]
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a
storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:
AMg(z,u)) < Max) + (x,u) — 0(xfu®) — ]|z — 2¢)

Facts (for stabilizable systems):

@ Strict dissipativity implies the turnpike property [Gr. '13]

@ Under a controllability condition, it is equivalent to a robust version of the

turnpike property [Gr./Miiller '16]

(this is analogous to “asymptotic stability < existence of a Lyapunov function”)
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a
storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:

AMg(x,u)) < MNzx) + Lz, u) — £(2f,u®) — o]z — z°||)
Facts (for stabilizable systems):
@ Strict dissipativity implies the turnpike property [Gr. '13]

@ Under a controllability condition, it is equivalent to a robust version of the
turnpike property [Gr./Miiller '16]
(this is analogous to “asymptotic stability < existence of a Lyapunov function”)
@ For linear-quadratic problems, strict dissipativity is equivalent to classical

systems theoretic properties like detectability or weaker variants thereof
[Gr./Guglielmi 18, '20]
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a
storage function A : X — R, bounded from below, and o € C such that for all
reX,ueUwith g(z,u) € X:
AMg(z,u)) < Max) + (x,u) — 0(xfu®) — ]|z — 2¢)
Facts (for stabilizable systems):
@ Strict dissipativity implies the turnpike property [Gr. '13]
@ Under a controllability condition, it is equivalent to a robust version of the
turnpike property [Gr./Miiller '16]
(this is analogous to “asymptotic stability < existence of a Lyapunov function”)
@ For linear-quadratic problems, strict dissipativity is equivalent to classical

systems theoretic properties like detectability or weaker variants thereof
[Gr./Guglielmi 18, '20]

@ Tracking type problems are strictly dissipative with A = 0
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Main Performance Result



MPC in presence of the turnpike property
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MPC in presence of the turnpike property

This behaviour allows to prove the following performance theorem
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MPC via strict dissipativity — Theorem

Theorem: [Gr./Stieler '14] Consider an optimal control problem which is strictly
dissipative at an equilibrium ¢
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Theorem: [Gr./Stieler '14] Consider an optimal control problem which is strictly
dissipative at an equilibrium z°

Assume moreover that the optimal value functions V) are equicontinuous at z¢
for all N € NU {oo}
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MPC via strict dissipativity — Theorem

Theorem: [Gr./Stieler '14] Consider an optimal control problem which is strictly
dissipative at an equilibrium z°

Assume moreover that the optimal value functions V) are equicontinuous at z¢
for all N € NU {oo}
Then the MPC closed loop is

@ semiglobally practically asymptotically stable

@ approximately transient optimal

@ approximately averaged optimal
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MPC via strict dissipativity — Theorem

Theorem: [Gr./Stieler '14] Consider an optimal control problem which is strictly
dissipative at an equilibrium z°

Assume moreover that the optimal value functions V) are equicontinuous at z°
for all N € NU {oo}

Then the MPC closed loop is
@ semiglobally practically asymptotically stable
@ approximately transient optimal

@ approximately averaged optimal

We explain the first two properties graphically
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lllustration of transient optimality

Practical asymptotic stability:

zy po(n) converges to the £1(NV)-ball around ¢
(with £1(N) — 0 as N — o0)

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 126/156



lllustration of transient optimality

Practical asymptotic stability:

zy po(n) converges to the £1(NV)-ball around ¢
(with £1(N) — 0 as N — o0)

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 126/156



lllustration of transient optimality

Practical asymptotic stability:

zy po(n) converges to the £1(NV)-ball around ¢
(with £1(N) — 0 as N — o0)

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 126/156



lllustration of transient optimality

Practical asymptotic stability:

zy po(n) converges to the £1(NV)-ball around ¢
(with £1(N) — 0 as N — o0)

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 126/156



lllustration of transient optimality

Practical asymptotic stability:

zy po(n) converges to the £1(NV)-ball around ¢
(with £1(N) — 0 as N — o0)

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 126/156



lllustration of transient optimality

Transient optimality:

cost of reaching the ball at time K is
higher than that of z,,pc(n) up to an error Ke(N) + £9(K)

(with £1(N),e2(K) — 0 as N, K — o0)

UNIVERSITAT
BAYREUTH

Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 126/156



Use case



Use case

optimal startup of a combined cycle power plant



Combined Cycle Power Plants
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~

C. Stadler/Bwag, wikipedia

Combined cycle power plants generate
electrical energy via a combination of
gas and steam turbines
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C. Stadler/Bwag, wikipedia

Combined cycle power plants generate
electrical energy via a combination of
gas and steam turbines

The exhaust gas from the gas turbine
produces steam for a steam turbine
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Combined Cycle Power Plants

Low Pressure (LP) Stack
tac
High Pressure (HP) uS
us
I Heat Recovery Steam Generator

| Xua

Gas Turbine

Uq

Intermediate Pressure (LP)

Cold Water
u,: exhaust gas temperature  u,: IP bypass valve v;: IP turb. control valve
u,: HP turbine control valve  us: HP spray valve v,: LP turb. control valve
u3: HP bypass valve Uug: RH spray valve v3: LP bypass

Combined cycle power plants generate
electrical energy via a combination of
gas and steam turbines

The exhaust gas from the gas turbine
produces steam for a steam turbine
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Combined Cycle Power Plants

Low Pressure (LP)
Stack
i u |
High Pressure (HP) 5
u .
Xo3Xv, i 3 *

R 1 | Jow

Heat Recovery Steam Generator

I

Condenser | X‘u6
1

Intermediate Pressure (LP)

Cold Water
u;: exhaust gas temperature  uy: IP bypass valve vy: IP turb. control valve
u,: HP turbine control valve  us: HP spray valve v,: LP turb. control valve
u3: HP bypass valve ug: RH spray valve v3: LP bypass

Combined cycle power plants generate  This way, up to 64% efficiency can be
electrical energy via a combination of  reached (and even more if the remain-
gas and steam turbines ing heat is used for district heating)

The exhaust gas from the gas turbine
produces steam for a steam turbine
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Combined Cycle Power Plants

Low Pressure (LP)
Stack
i u |
High Pressure (HP) 5
u .
Xo3Xv, i 3 *

R 1 | Jow

Heat Recovery Steam Generator

I

Condenser | Xu6
1

Intermediate Pressure (LP)

Cold Water
u;: exhaust gas temperature  uy: IP bypass valve vy: IP turb. control valve
u,: HP turbine control valve  us: HP spray valve v,: LP turb. control valve
u3: HP bypass valve ug: RH spray valve v3: LP bypass

Combined cycle power plants generate  This way, up to 64% efficiency can be
electrical energy via a combination of  reached (and even more if the remain-
gas and steam turbines ing heat is used for district heating)

The exhaust gas from the gas turbine  Goal: Develop control strategies for
produces steam for a steam turbine flexible, fast, and economic start-up
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Control Objective and Constraints
Objective:
@ reach a desired load level with minimal fuel consumption ~~ economic MPC
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@ practical constraint: electricity is traded one day ahead
~ optimal reference is computed in advance and tracked by MPC
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Control Objective and Constraints
Objective:
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@ practical constraint: electricity is traded one day ahead
~ optimal reference is computed in advance and tracked by MPC

Constraints:

@ ensure safe plant operation, e.g., avoid too high pressures
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Control Objective and Constraints
Objective:
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@ practical constraint: electricity is traded one day ahead
~ optimal reference is computed in advance and tracked by MPC

Constraints:
@ ensure safe plant operation, e.g., avoid too high pressures
@ anticipate the behaviour of the underlying low level control system

@ avoid excessive wear and tear: if steam temperatures rise much faster than
wall temperatures, high temperature gradients occur, causing thermal stress,
which should be limited
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Constraints:
@ ensure safe plant operation, e.g., avoid too high pressures
@ anticipate the behaviour of the underlying low level control system

@ avoid excessive wear and tear: if steam temperatures rise much faster than
wall temperatures, high temperature gradients occur, causing thermal stress,
which should be limited

Possible measures against high temperature gradients:
@ injection of water to cool down the steam
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Control Objective and Constraints
Objective:
@ reach a desired load level with minimal fuel consumption ~~ economic MPC

@ practical constraint: electricity is traded one day ahead
~ optimal reference is computed in advance and tracked by MPC

Constraints:
@ ensure safe plant operation, e.g., avoid too high pressures
@ anticipate the behaviour of the underlying low level control system

@ avoid excessive wear and tear: if steam temperatures rise much faster than
wall temperatures, high temperature gradients occur, causing thermal stress,
which should be limited

Possible measures against high temperature gradients:
@ injection of water to cool down the steam
@ slower ramp up of gas turbine
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Model

The model is derived from

@ conservation of mass
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Model

The model is derived from

@ conservation of mass

m = Z m; [kg- s
i€l
m: system mass [k¢|
m;: mass of medium entering (> 0) / leaving (< 0) the system [kg]
I,,: set of indices for medium entering/leaving the system
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Model

The model is derived from
@ conservation of mass

@ conservation of energy
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Model

The model is derived from
@ conservation of mass

@ conservation of energy

(Z(mu) = Z Qi — Z Wi + Z P10 (W]
i€lg i€y i€Ln
m: system mass kg
u: specific internal energy of system [J - kg™!]
(;: heat transfer into (> 0) / out (< 0) of the system [J]
W;: work performed by (> 0) / on (< 0) the system [J]
m;: mass of medium entering (> 0) / leaving (< 0) the system [kg]
h;: specific enthalpy of medium entering / leaving the system [J - kg~
I¢: set of indices for heat transferred into/out of the system
Iy set of indices for work performed by/on the system
I,,,: set of indices for medium entering/leaving the system
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Model

The model is derived from
@ conservation of mass
@ conservation of energy

@ convective and conductive heat-transfer
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Model

The model is derived from
@ conservation of mass
@ conservation of energy

@ convective and conductive heat-transfer

Convective heat transfer, e.g., steam < wall:

Q=a-A(T=Ty) W]
(): heat transfer [J]

a: heat transfer coefficient [IV -m 2. K]

A: contact area between fluid and material [m?]

T": material temperature [K]

Ty: fluid temperature [K]
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Model

The model is derived from
@ conservation of mass
@ conservation of energy

@ convective and conductive heat-transfer

Conductive heat transfer, inside material:
. dT

Q:)\-A-% (W]

(): heat transfer [J]

A: conductivity [IV -m - K1
A: cross-sectional area [m?]

T': material temperature [K]

x: location [m]
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Model

The model is derived from
@ conservation of mass
@ conservation of energy
@ convective and conductive heat-transfer

@ kinetic energy of rotation bodies (shaft)
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The model is derived from
@ conservation of mass
@ conservation of energy
@ convective and conductive heat-transfer
@ kinetic energy of rotation bodies (shaft)

e work performed by turbines
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Model

The model is derived from
@ conservation of mass
@ conservation of energy
@ convective and conductive heat-transfer
@ kinetic energy of rotation bodies (shaft)

e work performed by turbines

After reduction: ~ 30 differential states, 300 algebraic states, and 430 constraints
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Model

The model is derived from
@ conservation of mass
@ conservation of energy
@ convective and conductive heat-transfer
@ kinetic energy of rotation bodies (shaft)

e work performed by turbines

After reduction: ~ 30 differential states, 300 algebraic states, and 430 constraints

The economic optimization objective is

[ ) ety
Jto
with 11(t) = 1 if the desired load level is not yet reached and 1(?) = 0 otherwise,
©(t) = fuel consumption at time ¢
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Designing the Turnpike

@ As a rule of thump, the prediction horizon should be long enough that the
optimizer can find the way to the turnpike
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Designing the Turnpike

@ As a rule of thump, the prediction horizon should be long enough that the
optimizer can find the way to the turnpike

@ In order to reach the turnpike, the prediction horizon for the economic
optimization is about 1 hour (at least)
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that are prohibitive for online implementation
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~ even if no day ahead reference is desired, it is beneficial to compute
the economically optimal trajectory in advance and track it by
tracking MPC in the online phase
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the economically optimal trajectory in advance and track it by
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@ For tracking MPC, the reference trajectory is the turnpike
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Designing the Turnpike

@ As a rule of thump, the prediction horizon should be long enough that the
optimizer can find the way to the turnpike

@ In order to reach the turnpike, the prediction horizon for the economic
optimization is about 1 hour (at least). This leads to optimization times
that are prohibitive for online implementation

~ even if no day ahead reference is desired, it is beneficial to compute
the economically optimal trajectory in advance and track it by
tracking MPC in the online phase

@ For tracking MPC, the reference trajectory is the turnpike. If the system
state is sufficiently close, a prediction horizon of a few minutes is suitable
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Designing the Turnpike

@ As a rule of thump, the prediction horizon should be long enough that the
optimizer can find the way to the turnpike

@ In order to reach the turnpike, the prediction horizon for the economic
optimization is about 1 hour (at least). This leads to optimization times
that are prohibitive for online implementation

~ even if no day ahead reference is desired, it is beneficial to compute
the economically optimal trajectory in advance and track it by
tracking MPC in the online phase

@ For tracking MPC, the reference trajectory is the turnpike. If the system
state is sufficiently close, a prediction horizon of a few minutes is suitable

@ Since in the online phase the initial state at the beginning of the start up is
unknown, a library of optimal references with different initial states is
computed in advance
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Start-up runs on the plant

plant load

=== NMPC reference
=== NMPC start-up 1
=== NMPC start-up 2
=== NMPC start-up 3
=== NMPC start-up 4
== conventional start-up 1

1]

== conventional start-up 2

2, conventional start-up 3
o conventional start-up 4
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Start-up runs on the plant

amount of burned fuel since t=0

=== NMPC reference
=== NMPC start-up 1
=== NMPC start-up 2
=== NMPC start-up 3

NMPC start-up 4

= 0.8 conventional start-up 1

. == conventional start-up 2

= conventional start-up 3

° conventional start-up 4
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o
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0/
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HP bypass valve

1
IS
©

to,

shifted and scaled to

opening,
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== conventional
== conventional
conventional

conventional
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start-up 1

start-up 2

start-up 3

start-up 4

F

start-up 1
start-up 2

Start-up runs on the plant

start-up 3" g%

start-up 4
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time,
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Start-up runs on the plant

ST speed
1 U —
117,
== \MPC reference
=== NMPC start-up 1 I
=== NMPC start-up 2 1
I

=== NMPC start-up 3

]
I
NMPC start-up 4 '
111
I
]
I
I

=3

8 conventional start-up 1

1]

== conventional start-up 2

S )
= conventional start-up 3
o conventional start-up 4
. 1
3
G 08 [
3
o I
I
9 I
© I
o 1 !
Q
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he I
-
e ]
@ (]
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o I !
n 0.2 []
I
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_-——,‘—1—"\——" ! ‘
0.6 0.8 1

0 0.4
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Lars Griine, An Introductlon to ptimal Control and Recent Solution Strategies, p. 131/156

BAY]



Start-up runs on the plant

wall temperature difference thick-walled component A

=== NMPC reference

o === NMPC start-up 1
. === NMPC start-up 2
— === NMPC start-up 3
o} NMPC start-up 4
+ 0.8 .
- == conventional start-up 1
’2 == conventional start-up 2
8 conventional start-up 3
« conventional start-up 4
el
g

0.6
el
o]
In)
&
-
<
@
2 0.4
o
S
o
ftut
“
-
o
I
5 0.2
D
©
g e ¥ . :
g D L e e = L
£
o]
+

0
0 0.2 0.4 0.6 0.8 1
w‘ gwxgs?”ﬂ time, shifted and scaled to 6
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Summary of Part 4

@ Model Predictive Control (MPC) synthesizes closed-loop solutions from
open-loop optimal controls and trajectories
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Summary of Part 4

@ Model Predictive Control (MPC) synthesizes closed-loop solutions from
open-loop optimal controls and trajectories

@ It generates a feedback law by online optimization
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Summary of Part 4

@ Model Predictive Control (MPC) synthesizes closed-loop solutions from
open-loop optimal controls and trajectories

@ It generates a feedback law by online optimization

@ If the turnpike property and dissipativity holds, near-optimal performance
can be shown
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Summary of Part 4

@ Model Predictive Control (MPC) synthesizes closed-loop solutions from
open-loop optimal controls and trajectories

@ It generates a feedback law by online optimization

@ If the turnpike property and dissipativity holds, near-optimal performance
can be shown

@ MPC is highly successful in industrial applications
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Outline of the course

Part 1: Optimal Control Problems — An Introduction
Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Identify structural properties of optimal control problems, under which deep
neural networks can indeed avoid the curse of dimensionality

Use ideas from distributed optimal control to describe these properties

Give rigorous estimates for the approximation error
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Contents of this part

Part 5: Deep Neural Networks for High-Dimensional Problems

@ Reminder: Deep Reinforcement Learning
@ Separable functions
@ Distributed optimal control

@ Decaying Sensitivity
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Deep Reinforcement Learning



Deep Reinforcement Learning

Recall the optimal value function

V(z) = irlllf Joo(z, 1)
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Deep Reinforcement Learning

Recall the optimal value function

V(z) = ilgf Joo(z, 1)

In Deep Reinforcement Learning, deep neural networks (DNNs) are used for
storing V'
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Deep Reinforcement Learning

Recall the optimal value function

V(z) = il{llf Joo(z, 1)

In Deep Reinforcement Learning, deep neural networks (DNNs) are used for
storing V' (or a derivate thereof, called ()
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Deep neural network with 2 hidden layers
output W(z;0)=a-y*+c

(=2 y: = o?(wi -yt +b7)

(=2 yézal(wix+b}g)

input

wy, wi, a = vectors of weights, ' = scalar product

by, bi, ¢ = scalar parameters, o', 0°: R — R = activation functions

1

Examples: o(r) =7, o(r) =max{r,0}, o(r)=I(e"+1), o(r) = 7=

0 = vector of all parameters (w}, b, a,c)
W (z;60%) =~ V(z), approximating function for “trained” 6*
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Deep Reinforcement Learning

The network is then “trained” such that the function W (z;6*) with optimized
parameters 0* satisfies the Hamilton-Jacobi-Bellman equation

inf {¢(z,u) + DW (x;6) f(w,u)} ~ 0
or the Bellman equation
inf {£(z,u) +W(g(x,u);6") = W(x;6")} =0

as good as possible
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Deep Reinforcement Learning

The network is then “trained” such that the function W (z;6*) with optimized
parameters 0* satisfies the Hamilton-Jacobi-Bellman equation

inf (£, u) + DW (2:6°) f(x, u)} ~ 0
or the Bellman equation

525 {(z,u) + W(g(z,u);0%) — W(z;6")} =~ 0
as good as possible

Training DNNs is an interesting problem in itself, which we briefly discussed in
Part 3
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Deep Reinforcement Learning

The network is then “trained” such that the function W (z;6*) with optimized
parameters 0* satisfies the Hamilton-Jacobi-Bellman equation

inf (£, u) + DW (2:6°) f(x, u)} ~ 0
or the Bellman equation

525 {(z,u) + W(g(z,u);0%) — W(z;6")} =~ 0
as good as possible

Training DNNs is an interesting problem in itself, which we briefly discussed in
Part 3

Here, the following necessary property will be discussed:

Can DNNs provide approximations W (-;0*) ~ V' for large space dimensions d?
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Universal approximation theorem
Let K = [—r, k|", k > 0 fixed, d € N varying
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Universal approximation theorem
Let K = [—k,k|", k > 0 fixed, d € N varying, ||V x = max,cx |V (2)]
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Universal approximation theorem
Let ' = [—k,k|", k> 0 fixed, d € N varying, ||V x = max,cx |V ()|, and

9
VH <1
‘&Ei 00, K }

n

2.

i=1

W = {V € C'(K,R)
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Universal approximation theorem
Let ' = [—k,k|", k> 0 fixed, d € N varying, ||V x = max,cx |V ()|, and

9
VH <1
‘6:1:2' 00, K }

Theorem [Cybenko '89, Mhaskar '96, Poggio et al. '17]:
Let o' : R — R be infinitely differentiable and not polynomial. Then, for any
£ > 0, a neural network with one hidden layer provides an approximation

n

2.

i=1

W = {V € C'(K,R)

inf [|[W(z;0) =V (2)||lwr <€

OcRP

for any V' € W}' with a minimal number of neurons

N=0(")
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Quiz
Assume the required number of
neurons for achieving the accuracy
e>0is O(e™").

|
By how much does the number ﬂ'_-'.
increase if we want to reduce the g5
accuracy € to £/5 7

e By a factor of 5
@ By a factor of n°

e By a factor of 5"
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Quiz
Assume the required number of
neurons for achieving the accuracy
e>0is O(e™").

|
By how much does the number ﬂ'_-'.
increase if we want to reduce the g5
accuracy € to £/5 7

e By a factor of 5
@ By a factor of n°

e By a factor of 5"

What is worse?
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Quiz
Assume the required number of
neurons for achieving the accuracy
e>0is O(e™").

|
By how much does the number ﬂ'_-'.
increase if we want to reduce the g5
accuracy € to £/5 7

e By a factor of 5
@ By a factor of n°

e By a factor of 5"

What is worse?

E.g., forn=10: 59 ~10" > 10°
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Separable functions



What are separable functions and why are they beneficial?
Separable function:

Vi(r) = ZVj(wj), w; =
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What are separable functions and why are they beneficial?
Separable function: -

Vi(r) = ZVj(wj), w; =

€.
Z],dj

We approximate the individual V; by
the grey blocks, whose number grows
linearly with the dimension d
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What are separable functions and why are they beneficial?
Separable function:

Vi(r) = ZVj(wj), w; =

Lija

€.
Z]'dj

We approximate the individual V; by
the grey blocks, whose number grows
linearly with the dimension d

Applying the universal approximation
theorem separately in each grey block,
we can prove:
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What are separable functions and why are they beneficial?
Separable function:

Vi(r) = ZVj(wj), w; =

Lija

€.
Z]'dj

We approximate the individual V; by
the grey blocks, whose number grows
linearly with the dimension d

Applying the universal approximation
theorem separately in each grey block,
we can prove:

Theorem [Gr. 21]: Functions V'(z) = 377, Vj(w;) with V; € W and
d; < dyax independent of d can be approximated on K with any
accuracy € > 0 with a number of neurons growing only polynomially in d
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What are separable functions and why are they beneficial?
Separable function:

Vi(z) = ZVj(wj), wj =

Lija

€.
Z]'dj

We approximate the individual V; by
the grey blocks, whose number grows
linearly with the dimension d

Applying the universal approximation
theorem separately in each grey block,
we can prove:

Theorem [Gr. 21]: Functions V'(z) = 377, Vj(w;) with V; € W and
d; < dyax independent of d can be approximated on K with any
accuracy € > 0 with a number of neurons growing only polynomially in d

More precisely, the number of required neurons is O (e*dm“) @) (ddmaX“)
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Distributed optimal control



Setting for distributed control [ *
We assume that the system can be decomposed into '
s subsystems Zi = filzi, z—iw), i=1,...,s, Z_; = il
Zi+1
with z; € R"™
Zs
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Setting for distributed control [

We assume that the system can be decomposed into
s subsystems o C_ _ | %1
y Zi _fi(zhz—hui)? v = 17"'787 2=
Zit1
with z; € R™, whose interconnection is expressed via an :
undirected graph -
~S

©
® G—O 6

w‘ UNIVERSITAT @ @
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Setting for distributed control [ *

We assume that the system can be decomposed into '
s subsystems Zi = fi(zi, 2-i,u), i=1,...,5, 2= |
Zi+1

with z; € R™, whose interconnection is expressed via an :
undirected graph: Whenever f; depends on z;, 2

then there is an edge from z; to z;

O
© (& &

G—) &)
@ @
()
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Setting for distributed control [ *

We assume that the system can be decomposed into 5
s subsystems Zi = fi(zi, 2-i,u), i=1,...,5, 2= |
Zi+1

with z; € R™, whose interconnection is expressed via an :
undirected graph: Whenever f; depends on z;, 2

then there is an edge from z; to z;

O
© (& &
G—) O

dg(i,j) := graph distance from i-th to j-th subsystem
eg., do(1,11) =4, du(2,6) =2 @
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Setting for distributed control

21

. Zi—1
Zi= filzi, 2 uy), 1=1,...,s, 2o =
Zi+1

Likewise, we assume that the cost ¢(z, 1) can be written as

(z,u) E Ci(ziy 2—i,w;)

w‘ UNIVERSITKT
BAYI Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 142/156



Setting for distributed control

21

. Zi—1
Zi= filzi, z_,uy), 1=1,....s, 2o =
Zit+1

Likewise, we assume that the cost ¢(z, 1) can be written as

(z,u) E Ci(ziy 2—i,w;)

The graph structure is then determined by the f; and the /; together
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Setting for distributed control

21

. Zi—1
Zi= filzi, z_,uy), 1=1,....s, =1
Zit+1

Likewise, we assume that the cost /(z, u) can be written as

(z,u) E Ci(ziy 2—i,w;)

The graph structure is then determined by the f; and the /; together

Question: How does the state of a subsystem influence the optimal trajectory
of another subsystem far away?
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Decaying sensitivity



Convoy example

Example: Convoy of vehicles

I, . I, i,

Q™ Q=

Q=
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\y BAYREUTH Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 143/156



Convoy example

Example: Convoy of vehicles

ok o omm e

It is known that a perturbation in the first vehicle (e.g., a braking manoeuvre)
may amplify while propagating through the convoy
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Convoy example

Example: Convoy of vehicles

ok o omm e

It is known that a perturbation in the first vehicle (e.g., a braking manoeuvre)
may amplify while propagating through the convoy

However, the perturbation will decrease quickly, if the vehicles are controlled
optimally
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Convoy example

Consider a convoy of i = 1,..., N vehicles on a road with state z; = (z;,v;)"
and dynamics
T =0, U = Uy
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Convoy example

Consider a convoy of i = 1,..., N vehicles on a road with state z; = (z;,v;)"
and dynamics
T =0, U = Uy

We compute a control that minimizes the functional
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Convoy example

Consider a convoy of i = 1,..., N vehicles on a road with state z; = (z;,v;)"
and dynamics
T =, U=y

We compute a control that minimizes the functional

/0 (21(t) — Bres (2) +Z 21 (t) = 2i(t) — L) +Alo(t) = Togesl)3 + 6lut)]3dt
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Convoy example

Consider a convoy of i = 1,..., N vehicles on a road with state z; = (z;, v;)”
and dynamics
Ty =0, V= U

We compute a control that minimizes the functional

/0 (21(8) — res (1) +Zasz+1 )= @ilt) = L +Alo(t) — Toreg |3 + 8llu(t)| 3t

reference for

1st vehicle

w‘ UNIVERSITKT
BAY Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 144/156



Convoy example

Consider a convoy of i = 1,..., N vehicles on a road with state z; = (z;, v;)”
and dynamics
T =i U =

We compute a control that minimizes the functional

/0 (21(1) — Tres (2) +sz+l ) — i(t) — L2 +Allo(t) — Tonel3 + Sllult)3dt

desired distance

reference for
1st vehicle
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Convoy example

Consider a convoy of i = 1,..., N vehicles on a road with state z; = (z;, v;)”
and dynamics
T =i U =

We compute a control that minimizes the functional

o N-1
/0 (21(t) = 2rep ()2 + 3 (@it () — 24(8) — L) +[0(t) = Lore |3 + dllu(t) |3 dt
=1

reference for desired distance regularization terms

1st vehicle
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1,....5, 2,y =0, Ve =0

| Po‘siti‘ons‘

a(t)
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1,....5, 2,y =0, Ve =0

| Po‘siti‘ons‘

TH

~> The sensitivity decays with the distance from the perturbation
U e
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1,....5, 2,y =0, Ve =0

| Po‘siti‘ons‘

TH

~> The sensitivity decays with the distance from the perturbation
U e
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1,....5, 2,y =0, Ve =0

| Po‘siti‘ons‘

TH

~> The sensitivity decays with the distance from the perturbation
U e
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1,....5, 2,y =0, Ve =0

Positions
05 T T T T
R
wsh
N
1.5
B
T st
-3
sl
Wb ______]
45
5 ‘
0 1 2 3 4 5 6 7 8 9 10

~> The sensitivity decays with the distance from the perturbation
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1,....5, 2,y =0, Ve =0

| Po‘siti‘ons‘

~> The sensitivity decays with the distance from the perturbation
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Decaying sensitivity for LQ optimal control
Consider linear quadratic optimal control problems, i.e., with linear dynamics
f(x,u) = Az + Bu and with quadratic cost /(z,u) = 27 Qx + u’ Rx

Then the optimal value function and the optimal feedback are quadratic and
linear, respectively, i.e., V(z)=aTPx, u*=F(z)= Kz
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Decaying sensitivity for LQ optimal control

Consider linear quadratic optimal control problems, i.e., with linear dynamics
f(x,u) = Ar + Bu and with quadratic cost ((x,u) = 27Qz + u' Rx

Then the optimal value function and the optimal feedback are quadratic and
linear, respectively, i.e., V(z)=aTPx, u*=F(z)= Kz

Theorem [Shin/Lin/Qu/Wierman/Anitescu '23]: Under suitable uniform
stabilizability and detectability assumptions the inequality

1635 < Cpteted
holds for a 0 < p < 1, with K;; being the block in K" mapping z; to u;
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Decaying sensitivity for LQ optimal control

Consider linear quadratic optimal control problems, i.e., with linear dynamics
f(x,u) = Ar + Bu and with quadratic cost ((x,u) = 27Qz + u' Rx

Then the optimal value function and the optimal feedback are quadratic and
linear, respectively, i.e., V(z)=aTPx, u*=F(z)= Kz
Theorem [Shin/Lin/Qu/Wierman/Anitescu '23]: Under suitable uniform
stabilizability and detectability assumptions the inequality

15| < Cpe®D)
holds for a 0 < p < 1, with K;; being the block in K" mapping z; to u;

(proved in discrete time but expected to hold also in continuous time)
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Decaying sensitivity for LQ optimal control

Consider linear quadratic optimal control problems, i.e., with linear dynamics
f(x,u) = Ar + Bu and with quadratic cost ((x,u) = 27Qz + u' Rx

Then the optimal value function and the optimal feedback are quadratic and
linear, respectively, i.e., V(z)=aTPx, u*=F(z)= Kz

Theorem [Shin/Lin/Qu/Wierman/Anitescu '23]: Under suitable uniform
stabilizability and detectability assumptions the inequality

1635 < Cpteted
holds for a 0 < p < 1, with K;; being the block in K" mapping z; to u;

(proved in discrete time but expected to hold also in continuous time)

Corollary [Sperl/Gr./Saluzzi/Kalise '23]: On suitable graphs this implies
17| < Cptot)
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Decaying sensitivity for LQ optimal control

Consider linear quadratic optimal control problems, i.e., with linear dynamics
f(x,u) = Ar + Bu and with quadratic cost ((x,u) = 27Qz + u' Rx

Then the optimal value function and the optimal feedback are quadratic and
linear, respectively, i.e., V(z)=aTPx, u*=F(z)= Kz

Theorem [Shin/Lin/Qu/Wierman/Anitescu '23]: Under suitable uniform
stabilizability and detectability assumptions the inequality

1K < Cpletd)
holds for a 0 < p < 1, with K;; being the block in K" mapping z; to u;
(proved in discrete time but expected to hold also in continuous time)
Corollary [Sperl/Gr./Saluzzi/Kalise '23]: On suitable graphs this implies
I17,]) < Cpet
“Exponentially decaying sensitivity”
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Construction of the separable approximations



Structure of the separable approximation

We approximate V' by a separable function

S
V(x) ~ Z \Ijé:(’zlkl ) Rigor st Zik,z)
k=1
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Structure of the separable approximation

We approximate |/ by a separable function

S
V(T) ~ Z q]§c<zik,1’ Rigor s Zik,z)
k=1 ~~ g

=W
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Structure of the separable approximation

We approximate |/ by a separable function

S
V(T) ~ Z q]§c<zik,1’ Rigor s Zik,z)
k=1 ~~ g

=W

Then each wy, has dimension d;, = n;, , +mn;,, +...+n;,
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Structure of the separable approximation

We approximate |/ by a separable function

S
V(T) ~ Z \I]§f<zik,1’ Rigor s Zik,l)
k=1 ~~ g

=W

Then each wy, has dimension dj, = n;, | +n;,, + ... + 1,
~ complexity theorem applies if n; and [ bounded independent of d
~> approximation by polynomially growing NNs possible
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Structure of the separable approximation

We approximate |/ by a separable function

S
V(T) ~ Z q]§c<zik,1’ Rigor s Zik,z)
k=1 ~~ g

=W

Then each wy, has dimension dj, = n;, | +n;,, + ... + 1,
~ complexity theorem applies if n; and [ bounded independent of d
~> approximation by polynomially growing NNs possible

Note: It is in general unrealistic to expect

V(:E) = Z \I]fk(ziku’ Rigor s Zikm,l) or V(l’) ~ \Ijllc(ZUd)
k=1

k=1
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Separable approximations for V' (z) = ! Px
Assume for a moment that dg (i, 7) = |i — j| (as in the convoy example)
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Separable approximations for V' (z) = ! Px

Assume for a moment that dg (i, 7) = |i — j| (as in the convoy example)
Then the decay of || ;|| implies

V(0,...,0, 2k, Zka1s- -+, 2s) — V(0,...,0,0, k11, ..., 2s)

~ V(O7---707Zk7zk+]7-..7zk+l’0’...,O) — V(O,...,O,O,Zk+1,...,ZkJrl,O,...,O)
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Assume for a moment that dg (i, 7) = |i — j| (as in the convoy example)
Then the decay of || ;|| implies

V(0,...,0, 2k, Zka1s- -+, 2s) — V(0,...,0,0, k11, ..., 2s)

~ V(()’---707Zk7zk+]7-..7Zk+l’0’...70) — V(O,...,O,O,ZkJr],...,ZkJrl,o,...,OZ

[

-~

=: \I/ic(zk ca 7Zmin{k+l,s})
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V.

Separable approximations for V' (z) = ! Px
Assume for a moment that dg (i, 7) = |i — j| (as in the convoy example)

Then the decay of || ;|| implies
V(0,...,0, 2k, Zka1s- -+, 2s)

~ V(O,...,O,Zk,Zk+],...,ZkJrl,O,...,O) - V(O,...,O,O,Zk+1,

[

- V(O,...,O,O,ZkJrl,...

, Zs)

...,zkH,O,...

\—

-~

=: \I/ic(zk ca 7Zmin{k+l,s})

This implies s
V(I) ~ V(()) + Z \Ili(zka s >Zmin{k+l,s})7
k=1
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Separable approximations for V' (z) = ! Px

Assume for a moment that dg (i, 7) = |i — j| (as in the convoy example)
Then the decay of || ;|| implies

V(0,...,0, 2k, Zka1s- -+, 2s) — V(0,...,0,0, k11, ..., 2s)

~ V(O7---707Zk7zk+]7-..7zk+l’0’...,O) — V(O,...,O,O,ZkJr],...,ZkJrl,o,...,OZ

[

~~

= ‘lli(zk/ <o 7Zmin{k+l,s})

This implies s
V(I) ~ V(()) + Z \Ili(zka s >Zmin{k+l,s})7
k=1

Theorem [Sperl/Saluzzi/Kalise/Gr. '25]: When the sensitivity decays exponentially

V(z)—V(0) — Z U (Zhy s Zmingrisy)| < cp' on Ly balls

k=1
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Separable approximations for V' (z) = ! Px

Assume for a moment that dg (i, 7) = |i — j| (as in the convoy example)
Then the decay of || ;|| implies

V(0,...,0, 2k, Zka1s- -+, 2s) — V(0,...,0,0, k11, ..., 2s)

~ V(O,...,O,Zk,Zk+],...,ZkJrl,O,...,O) — V(O,...,O,O,ZkJr],...,ZkJrl,O,...,OZ

[

= ‘lli(zk/ <o 7Zmin{k+l,s})

This implies s

V($> ~ V(()) + Z \IJZ(ZIW s >Zmin{k+l,5})7
k=1

Theorem [Sperl/Saluzzi/Kalise/Gr. '25]: When the sensitivity decays exponentially

V(z)—V(0) — Z U (Zhy s Zmingrisy)| < cp' on Ly balls

k=1
If de:(zi,2;) # |i — j|, then for any node the number of nodes with graph
distance [ must grow slower than p~
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Separable approximations for nonlinear V'

For nonlinear problems, the optimal value function is not of the form V(z) = 27 Px

w‘ UNIVERSITAT
BAYI H Lars Griine, An Introduction to Optimal Control and Recent Solution Strategies, p. 149/156



Separable approximations for nonlinear V'
For nonlinear problems, the optimal value function is not of the form V(z) = 27 Px

In this case, decaying sensitivity can be expressed via the Lipschitz constant L;; of

Zj —> V(Zl, ce ey By Riy ity - - ,Z(;) — V(Zl, .. ../21‘_1,0, Zitly - ../ZS) (*)
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Separable approximations for nonlinear V'
For nonlinear problems, the optimal value function is not of the form V(z) = 27 Px

In this case, decaying sensitivity can be expressed via the Lipschitz constant L;; of

Zj — V(Zlv cee s Ri—1y By Zigly e ,Z(;) - V(Zla ceey Zi—1, Oa Zigly - 728) (*)
Theorem [Sperl/Saluzzi/Kalise/Gr. '25]:  If  L;; < Cp?a@D||z|  then

q
V(z)—V(0) — Z U (2, .., Zmin{k4l,s}) | < cp’ on Ly balls
k=1
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Separable approximations for nonlinear V'
For nonlinear problems, the optimal value function is not of the form V(z) = 27 Px

In this case, decaying sensitivity can be expressed via the Lipschitz constant L;; of

Zj V(Zl, ce ey By Riy ity - - ,Z(;) — V(Zl, cee s i1, 0, Zidly e ZS) (*)
Theorem [Sperl/Saluzzi/Kalise/Gr. '25]:  If  L;; < Cp?a@D||z|  then

q
V(z)—V(0) — Z U (2, .., Zmin{k4l,s}) | < cp’ on Ly balls
k=1

Moreover, estimates for slower-than-exponentially decaying sensitivity are possible
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Separable approximations for nonlinear V'
For nonlinear problems, the optimal value function is not of the form V(z) = 27 Px

In this case, decaying sensitivity can be expressed via the Lipschitz constant L;; of

Zj V(Zl, ce ey By Riy ity - - ,Z(;) — V(Zl, cee s i1, 0, Zidly e ZS) (*)
Theorem [Sperl/Saluzzi/Kalise/Gr. '25]:  If  L;; < Cp?a@D||z|  then

q
V() = V(0) = > Uz, Zmingeris)| < o' on Ly balls
k=1

Moreover, estimates for slower-than-exponentially decaying sensitivity are possible

The important open question is: When do the Lipschitz constants L;; of (x)
satisfy this inequality?
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Separable approximations for nonlinear V'
For nonlinear problems, the optimal value function is not of the form V(z) = 2 Px

In this case, decaying sensitivity can be expressed via the Lipschitz constant L;; of

Zj V(Zl, ce ey By Riy ity - - ,Z(;) — V(Zl, cee s i1, 0, Zidly e ZS) (*)
Theorem [Sperl/Saluzzi/Kalise/Gr. '25]:  If  L;; < Cp?a@D||z|  then

q
V() = V(0) = > Uz, Zmingeris)| < o' on Ly balls
k=1

Moreover, estimates for slower-than-exponentially decaying sensitivity are possible

The important open question is: When do the Lipschitz constants L;; of (x)
satisfy this inequality? This is subject of current research
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Numerical test
We test the approach on the linear-quadratic problem with

w=Avtu,  L(z,u) =23+ ful,

X

and A € R?%9%2% 3 randomly generated banded matrix
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Numerical test
We test the approach on the linear-quadratic problem with

o=Av+u,  lz,u) =23+ [lul3,
and A € R?%9%2% 3 randomly generated banded matrix

This induces exponentially decaying sensitivity of P

10t
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10-8 4

10-11 4

10-14 4

10-17 4

0
| Pj1

L j=1,...,200
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Numerical test
We test the approach on the linear-quadratic problem with

o=Av+u,  lz,u) =23+ [lul3,
and A € R?%9%2% 3 randomly generated banded matrix

This induces exponentially decaying sensitivity of P

10t
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1078 4 100 4

10-11 4

10-14 4

10-17 4
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|Pall, 7 =1,...,200 singular values of P
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Numerical test

Separable network structure with

Odjzl = Zp = Tg

o [=10 (number of inputs
for each W)
o M =16 (number of neurons

for each W)

@ sigmoid activation functions
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Numerical test

Separable network structure with

0 dj=1 = zx=up In order to avoid effects due to in-

e[ =10 (number of inputs  complete learning in reinforcement
for each U}) learning (exploration vs. exploita-

o M =16 (number of neurons tion), we use supervised learning to
for each W})  learn V'

@ sigmoid activation functions
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Numerical results

For the 200-dim problem we reach a mean-square error < 1072 in the test data

W(x; 6) V(x)
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Numerical results

We have numerically evaluated the minimal number of neurons and parameters in
the network for achieving a mean-square error in the test data of 102 for varying
dimensions

—e— Neurons -
-4- Parameters (Bandwidth 1) -
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-#- Parameters (Bandwidth 3) -
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V.

Numerical results

We have numerically evaluated the minimal number of neurons and parameters in
the network for achieving a mean-square error in the test data of 102 for varying

dimensions

Number Neurons/Parameters

2500

2000

1500

1000

500

—e— Neurons

-4- Parameters (Bandwidth 1) -
--#- Parameters (Bandwidth 3) 7

60 80 100 120
Dimension

Interestingly, the growth is linear (and not polynomial with degree > 2)
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Separable vs. fully connected networks

Obviously, one can always embed a
separable network into a fully con-
nected network
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Separable vs. fully connected networks

Obviously, one can always embed a
separable network into a fully con-
nected network. Is there any benefit
in using the separable structure?
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Separable vs. fully connected networks

Obviously, one can always embed a
separable network into a fully con-
nected network. Is there any benefit
in using the separable structure?
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Yes: the amount of data and the
number of training epochs needed for
training is significantly smaller
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Separable vs. fully connected networks

Obviously, one can always embed a
separable network into a fully con-
nected network. Is there any benefit
in using the separable structure?

—— Fully Connected Architecture
4000{ —=- Separable Architecture

Number of Epochs
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Log2(Number of Training Data Points) d = 50

Yes: the amount of data and the
number of training epochs needed for
training is significantly smaller
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Separable vs. fully connected networks

Obviously, one can always embed a
separable network into a fully con-
nected network. Is there any benefit
in using the separable structure?

—— Fully Connected Architecture
» 4000{ —=- Separable Architecture
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21000
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17 16 15 14
Log2(Number of Training Data Points) d = 50
Yes: the amount of data and the

number of training epochs needed for
training is significantly smaller
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We conjecture that this can
be explained using anchored
decompositions [Sobol '69, Kuo/

Sloan/Wasilikowski/Wozniakowski '09,
Rieger/Wendland '24]
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Summary of Part 5

@ Using Deep Neural Networks for approximating optimal value function does
in general not remove the curse of dimensionality
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Summary of Part 5

@ Using Deep Neural Networks for approximating optimal value function does
in general not remove the curse of dimensionality

@ However, the existence of separable approximations of optimal value
functions allows for a curse-of-dimensionality-free approximation via deep
neural networks
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@ Using Deep Neural Networks for approximating optimal value function does
in general not remove the curse of dimensionality

@ However, the existence of separable approximations of optimal value
functions allows for a curse-of-dimensionality-free approximation via deep
neural networks

@ This existence can be established via decaying sensitivity
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Summary of Part 5

@ Using Deep Neural Networks for approximating optimal value function does
in general not remove the curse of dimensionality

@ However, the existence of separable approximations of optimal value
functions allows for a curse-of-dimensionality-free approximation via deep
neural networks

@ This existence can be established via decaying sensitivity

@ Open questions: — Exponential sensitivity for nonlinear problems

— Analysis of sampling efficiency
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