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Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce control systems and optimal control problems

Explain the ingredients of an optimal control problem

Explain the difference between open-loop and closed-loop optimal control
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Contents of this part

Part 1: Optimal Control Problems — An Introduction

Optimal Control Problems

Continuous-time Optimal Control Problems

Discrete-time Optimal Control Problems

Open-loop and Closed-loop Optimal Control
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Optimal Control Problems



Setting

We consider nonlinear control systems in continuous time

ẋ(t) :=
d

dt
x(t) = f(t, x(t),u(t))

, x(t0) = x0, t ≥ t0

or in discrete time

x+(t) := x(t+1) = g(t, x(t),u(t))

, x(t0) = x0, t = t0, t0+1, t0+2, . . .

where f : R× Rn × Rm → Rn, g : Z× Rn × Rm → Rn are maps with
appropriate regularity and u(·) is either a suitable control function or a control
sequence, in both cases with values in Rm

We call x ∈ Rn the state and u ∈ Rm the control input

The bold u(·) indicates control functions or sequences with u(t) = u ∈ U
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 4/156



Setting

We consider nonlinear control systems in continuous time
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Example: Pendulum on a cart
Example: Pendulum on a cart

θ

θ

m=l=1

u

−ucos( )

−u

x1 = θ = angle
x2 = angular velocity
x3 = cart position
x4 = cart velocity
u = cart acceleration

⇝ control system

ẋ1 = x2

ẋ2 = −kx2 − g sin(x1)− u cos(x1)
ẋ3 = x4

ẋ4 = u

ẋ5 = x6

ẋ6 = k3u(t)− k4x6(t)− k5x5
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What is an Optimal Control Problem?

Informal definition of optimal control:
Determine a control function that causes a control system to minimize a
performance criterion and—at the same time— satisfy physical constraints.

Generic Optimal Control Problem (OCP) – Continuous time:

min
u(·)

J(x0,u(·))

subject to (OCPc)

ẋ(t)= f(t, x(t),u(t)), x(t0) = x0

∀ t∈ [t0, tf ] : u(t) ∈ U ⊆ Rm

∀ t∈ [t0, tf ] : x(t) ∈ X ⊆ Rn
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Optimal control in continuous time and discrete time

Continuous-time OCP

min
u(·)

J(x0,u(·))

subject to

ẋ(t)= f(t, x(t),u(t)), x(t0) = x0

∀t∈ [t0, tf ] : u(t) ∈ U ⊆ Rm

∀t∈ [t0, tf ] : x(t) ∈ X ⊆ Rn

Discrete-time OCP

min
u(·)

J(x0,u(·))

subject to

x(t+ 1)= g(t, x(t),u(t)), x(t0) = x0

∀t∈ N[t0,t0+N−1] : u(t) ∈ U ⊆ Rm

∀t∈ N[t0,t0+N ] : x(t) ∈ X ⊆ Rn

Ingredients

Dynamics?

Class of control functions? Definition of state and input constraints?

Performance criterion?
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Continuous-Time Optimal Control Problems



Continuous-time optimal control problems

Generic Optimal Control Problem (OCP):

min
u(·)

J(x0,u(·))

subject to (OCPc)

ẋ(t)= f(t, x(t),u(t)), x(t0) = x0

∀t∈ [t0, tf ] : u(t) ∈ U ⊆ Rm

∀t∈ [t0, tf ] : x(t) ∈ X ⊆ Rn

Ingredients

Dynamics?

Class of control functions? Definition of state and input constraints?

Performance criterion?

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 8/156



Control functions and dynamics

We want to ensure the existence of a unique solution of the initial value problem

ẋ(t) = f(t, x(t),u(t)), x(t0) = x0

If

f is Lipschitz continuous in x uniformly for u and t from bounded sets

u is measurable and locally essentially bounded, i.e., u ∈ Lloc
∞

then the Theorem of Carathéodory guarantees the existence of a unique solution,
at least on some interval [t0, tmax)

We denote this solution by
xu(t, t0, x0)

(we may omit t0, x0, and/or u when clear from the context)
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Performance criteria

Cost functional J : Rn × Lloc
∞ → R in Lagrange form

J(x0,u(·)) =
∫ tf

t0

ℓ(t, x(t),u(t))dt

Stage cost or running cost1 ℓ : R× Rn × Rm → R, continuous and
continuously differentiable w.r.t. x

t0, tf can be fixed or free, i.e., we may minimize not only over u but also
over t0 and/or tf

tf =∞ is possible; we will come back to this later

1In older texts also called Lagrange function

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 10/156



Performance criteria

Cost functional J : Rn × Lloc
∞ → R in Lagrange form

J(x0,u(·)) =
∫ tf

t0

ℓ(t, x(t),u(t))dt

Stage cost ℓ : R× Rn × Rm → R

Cost functional J : Rn × Lloc
∞ → R in Mayer form

J(x0,u(·)) = L(t0, x(t0), tf , x(tf ))

Initial and terminal cost L : R× Rn × R× Rn → R

Cost functional J : Rn × Lloc
∞ → R in Bolza form

J(x0,u(·)) = L(t0, x(t0), tf , x(tf )) +

∫ tf

t0

ℓ(t, x(t),u(t))dt
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Conversion of criteria

Lagrange form: J(x0,u(·)) =
∫ tf

t0

ℓ(t, x(t),u(t))dt

Mayer form: J(x0,u(·)) = L(t0, x(t0), tf , x(tf ))

The criteria can be converted into each other, e.g. from Lagrange to Mayer:

Add an additional state c with differential equation ċ(t) = ℓ(t, x(t),u(t))

Then we get

c(tf ) = c0 +

∫ tf

t0

ℓ(t, x(t),u(t))dt

Thus, for x̃ =

(
c
x

)
, x̃0 =

(
0
x0

)
and L(t0, x̃(t0), tf , x̃(tf )) = c(tf ) we obtain

L(t0, x̃(t0), tf , x̃(tf )) =

∫ tf

t0

ℓ(t, x(t),u(t))dt
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Then we get

c(tf ) = c0 +

∫ tf

t0

ℓ(t, x(t),u(t))dt

Thus, for x̃ =

(
c
x

)
, x̃0 =

(
0
x0

)
and L(t0, x̃(t0), tf , x̃(tf )) = c(tf ) we obtain

L(t0, x̃(t0), tf , x̃(tf )) =

∫ tf

t0

ℓ(t, x(t),u(t))dt
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Constraints

In this course, we limit ourselves to pointwise state and control constraints

x(t) ∈ X, u(t) ∈ U for (almost) all t ∈ [t0, tf ]

for given sets X ⊆ Rn, U ⊆ Rm

In an implementation, one would describe these sets by inequalities, e.g.,

X = {x ∈ Rn | gi(x) ≤ 0 for all i = 1, . . . , ng}
for given functions g1, . . . , gng : Rn → R

More general constraints would be, e.g., mixed constraints such as (x, u) ∈ Y or
integral constraints such as

∫ tf
t0
h(x(t),u(t))dt ≤ 0

Constraints can also be incorporated in a “soft” way, by choosing ℓ to satisfy

ℓ(x, u) =∞ if (x, u) ̸∈ X× U

In practice one often chooses ℓ to be very large instead of actually ∞
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 13/156



Constraints

In this course, we limit ourselves to pointwise state and control constraints

x(t) ∈ X, u(t) ∈ U for (almost) all t ∈ [t0, tf ]

for given sets X ⊆ Rn, U ⊆ Rm

In an implementation, one would describe these sets by inequalities, e.g.,

X = {x ∈ Rn | gi(x) ≤ 0 for all i = 1, . . . , ng}
for given functions g1, . . . , gng : Rn → R

More general constraints would be, e.g., mixed constraints such as (x, u) ∈ Y or
integral constraints such as

∫ tf
t0
h(x(t),u(t))dt ≤ 0

Constraints can also be incorporated in a “soft” way, by choosing ℓ to satisfy

ℓ(x, u) =∞ if (x, u) ̸∈ X× U

In practice one often chooses ℓ to be very large instead of actually ∞
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Example – Formulating an optimal control problem

The simplified dynamics of a car on a 1d road are given by

ẋ = Ax+Bu =

(
0 1
0 0

)
x+

(
0
1

)
u, x =

(
x1
x2

)
where x1 is the position, x2 is the velocity, and the control input u is the
acceleration

Question: How would you specify performance criterion and constraints of a
physically meaningful optimal control problem that steers the car from x1 = 1 to
x1 = 0 on the interval [t0, tf ]?
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Admissible and feasible controls

Definition: A control u(·) ∈ Lloc
∞ is said to be feasible for initial value x0 on

[t0, tf ] if

the solution xu(·; t0, x0) is defined on [t0, tf ]

u(·) and xu(·; t0, x0) satisfy the constraints for almost all t ∈ [t0, tf ]

Then, (u(·), xu(·; t0, x0)) is called a feasible pair

Definition: The set

U [t0,tf ](x0)
.
=
{
u(·) ∈ Lloc

∞ | u(·) is feasible for initial value x0 on [t0, tf ]
}

is called the set of feasible controls. Short hand notation: U
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Infinite-horizon objectives

Often one is interested in tf =∞. Then the Lagrange term in the objective is
written as

J(x0,u(·)) =
∫ ∞

t0

ℓ(t, x(t),u(t))dt

Infinite-horizon objectives are used for tasks that last indefinitely long

Sometimes, exponential discounting is considered

J(x0,u(·)) =
∫ ∞

t0

βtℓ(t, x(t),u(t))dt

with βt = e−δt, δ > 0. For bounded ℓ, discounting ensures that also on infinite
horizons

J(x0,u(·)) <∞

Without discounting, additional conditions on the control system are needed to
ensure finiteness. Typically, these are controllability conditions
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Why consider infinite-horizon problems?

Of course, no real process runs infinitely long

Yet, many processes have no “natural” end time. They run until they are
switched off

For instance, the frequent task of controlling a system to a desired state or
reference solution xref and keeping it there is naturally posed as an
infinite-horizon optimal control problem
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 17/156



Why consider infinite-horizon problems?

Of course, no real process runs infinitely long

Yet, many processes have no “natural” end time. They run until they are
switched off

For instance, the frequent task of controlling a system to a desired state or
reference solution xref and keeping it there is naturally posed as an
infinite-horizon optimal control problem
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Example: Pendulum on a cart
Example: Pendulum on a cart

θ

θ

m=l=1

u

−ucos( )

−u

x1 = θ = angle
x2 = angular velocity
x3 = cart position
x4 = cart velocity
u = cart acceleration

ℓ(x, u) = ∥x− x∗∥2 + λu2

Swing-up to and bal-
ancing at the upright
position can be achieved
by an infinite-horizon op-
timal control with cost
ℓ(x, u) = ∥x− x∗∥2 + µu2
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Discrete-Time Optimal Control Problems



Performance criterion in discrete time

Recall the discrete-time dynamics x(t+ 1) = g(t, x(t),u(t)), x(t0) = x0

General (Bolza) performance criterion:

J(x0,u(·)) =
tf∑

t=t0

ℓ(t, x(t),u(t)) + L(t0, x(t0), tf , x(tf ))

Stage cost or running cost ℓ : R× Rn × Rm → R
Mayer term (initial and/or terminal cost): L : R× Rn × R× Rn → R
Again, t0 and tf can be fixed or free

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 19/156



Performance criterion in discrete time

Recall the discrete-time dynamics x(t+ 1) = g(t, x(t),u(t)), x(t0) = x0

General (Bolza) performance criterion:

J(x0,u(·)) =
tf∑

t=t0

ℓ(t, x(t),u(t)) + L(t0, x(t0), tf , x(tf ))

Stage cost or running cost ℓ : R× Rn × Rm → R
Mayer term (initial and/or terminal cost): L : R× Rn × R× Rn → R
Again, t0 and tf can be fixed or free
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Infinite-horizon OCP in discrete time

min
u(·)

∞∑
t=t0

βtℓ(t, x(t),u(t))

subject to (OCPd)

x(t+ 1)= g(t, x(t),u(t)), x(0) = x0

∀t∈ N : u(t) ∈ U ⊆ Rm

∀t∈ N : x(t) ∈ X ⊆ Rn

Here, again, β ∈ (0, 1] is the discount factor

(β = 1 yields a problem without discounting)
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Discretization in time
Continuous-time systems can be converted into discrete-time systems

:

For discretizing the continuous-time control system ẋ(t) = f(t, x(t),u(t)) in
time, select a sampling time step h > 0 and choose a finite dimensional space of
control functions that is compatible with h

Simplest choice: piecewise constant controls, i.e., u constant on each interval
[kh, (k + 1)h), k ∈ N, with value uk

Then, set g(k, x, u) to be the solution xu((k + 1)h, kh, x) with control u ≡ uk.
This way,

x(k + 1) = g(k, x(k),u(k))

exactly reproduces the continuous-time solutions at times t = kh, k ∈ N

Defining the discrete-time cost ℓ as

∫ (k+1)h

kh

ℓ(t, x(t), u)dt exactly reproduces the cost

Note: This does not yet include any numerical computation of x(h) and∫ (k+1)h

kh
ℓ(t, x(t), u)dt, which may be needed in addition
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Open-loop and closed-loop (or feedback) optimal control



Optimal value function and controls
The function

V (x0) := inf
u(·)∈U [t0,tf ]

(x0)

J(x0,u(·))

is called the optimal value function of the problem

(Here and in the following we consider t0 and tf fixed. If these times can vary, one can

define V (t0, x0), V (tf , x0), or V (t0, tf , x0))

A control u⋆(·) ∈ U is called optimal for x0 if

J(x0,u
⋆(·)) = V (x0)

The corresponding optimal trajectory is denoted by

x⋆(t) = xu⋆(t, t0, x0)

Note: If u⋆(·) exists for x0, then the “inf” in the definition of V (x0) is a “min”
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(Here and in the following we consider t0 and tf fixed. If these times can vary, one can

define V (t0, x0), V (tf , x0), or V (t0, tf , x0))

A control u⋆(·) ∈ U is called optimal for x0 if

J(x0,u
⋆(·)) = V (x0)

The corresponding optimal trajectory is denoted by

x⋆(t) = xu⋆(t, t0, x0)

Note: If u⋆(·) exists for x0, then the “inf” in the definition of V (x0) is a “min”
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Open-loop optimal control

Given an OCP, let u⋆(·) be the optimal control for initial value x0

This function is determined at time t0 for all future times t ∈ [t0, tf ], depending
on x0

Such a function is called an open-loop optimal control

OCP u⋆(·)

ẋ = f(t, x,u) x⋆(t)

x0

(at time t0)

u(t) = u⋆(t)

(at time t)
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 23/156



Open-loop optimal control

Given an OCP, let u⋆(·) be the optimal control for initial value x0

This function is determined at time t0 for all future times t ∈ [t0, tf ], depending
on x0

Such a function is called an open-loop optimal control
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Closed-loop optimal control

If there exists a map F : R× Rn → Rm such that all optimal controls satisfy

u⋆(t) = F (t, x⋆(t))

for all t ∈ [t0, tf ], then u⋆(·) is called closed-loop optimal control and F is an
optimal feedback law

OCP F (·, ·)

ẋ = f(t, x,u) x⋆(t)
u(t) = F (t, x(t))

(at time t)

x(t)
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Quiz

Why are (optimal) controls in
feedback form preferred?

They can react to perturbations

They are easier to implement in
practice

They are easier to compute

Solution: see the pendulum example
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Summary of Part 1: Optimal Control Problems — An

Introduction
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Outline of the course

Part 1: Optimal Control Problems — An Introduction

Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce classical solution concepts for optimal control problems

Explain the differences between these concepts

Provide the basis for numerical solution methods
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Contents of this part

Part 2: Solution Concepts

Dynamic Programming

Euler-Lagrange Equations

Pontryagin’s Minimum Principle
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Dynamic Programming



Optimal value function

Recall the definition of the optimal value function

V (x0) := inf
u(·)∈U [t0,tf ]

(x0)

J(x0,u(·))

Dynamic Programming is a concept that relates optimal value functions and
optimal feedback controls. For simplicity, we introduce it for time-invariant
problems (ℓ, g and constraints do not depend on t)

We begin with the discrete-time setting

A technical assumption that we make throughout this part:

The cost function ℓ satisfies ℓ ≥ 0 or ℓ is bounded and β < 1
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Dynamic programming principle in discrete time
Theorem: (Dynamic programming principle or Bellman equation) Consider
the discrete-time infinite-horizon OCP (OCPd) with time-invariant problem data.
The optimal value function satisfies for all x0 ∈ Rn

V (x0) = inf
u∈U
{ℓ(x0, u) + βV (g(x0, u))} (DPP)

“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” [Bellman ’57]

Sketch of proof: For J we have, writing u = u(0)

J(x0,u(·)) =
∞∑
t=0

βtℓ(x(t),u(t)) = ℓ(x(0),u(0)) +
∞∑
t=1

βtℓ(x(t),u(t))

= ℓ(x(0),u(0)) + β
∞∑
t=0

βtℓ(x(t+ 1),u(t+ 1))

= ℓ(x(0),u(0)) + βJ(x(1),u(·+ 1))

= ℓ(x0, u) + βJ(g(x0, u),u(·+ 1))

This equality carries over to the infimum over these expressions
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Characterisation of optimal open-loop controls

V (x0) = inf
u∈U
{ℓ(x0, u) + βV (g(x0, u))} (DPP)

Theorem: Consider the discrete-time infinite-horizon OCP (OCPd) with
time-invariant problem data and a trajectory x(·) with control u(·) and assume
that

ℓ(x(t),u(t)) + βV (g(x(t),u(t))) = inf
u∈U
{ℓ(x(t), u) + βV (g(x(t), u))}

holds for all t = 0, 1, 2, . . .

Then u⋆(·) = u(·) is optimal for x0 = x(0)

Sketch of proof: (DPP) and the assumption implies

ℓ(x(t),u(t)) = V (x(t))− βV (g(x(t),u(t))) = V (x(t))− βV (x(t+ 1))

⇒
T−1∑
t=0

βtℓ(x(t),u(t)) = V (x0)− βTV (x(T )) → V (x0) as T →∞

This shows the claim since J(x,u(·)) = lim
T→∞

T−1∑
t=0

βtℓ(x(t),u(t))
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Characterisation of optimal feedback controls
Consider now a feedback control F : Rn → U. This control is applied via

x+(t) := x(t+ 1) = g(x(t), F (x(t))), x(0) = x0, t = 0, 1, 2, . . .

It thus generates the control u(t) = F (x(t)), depending on x0

We call a feedback F ⋆ optimal, if for each x0 ∈ Rn the control u⋆ generated by
F ⋆ satisfies

J(x0,u
⋆) = V (x0)

Corollary: A feedback F satisfying

ℓ(x, F (x)) + βV (g(x, F (x))) = inf
u∈U
{ℓ(x, u) + βV (g(x, u))}

for all x ∈ X is an optimal feedback law

Sketch of proof: One checks that the controls generated by F satisfy the
conditions of the previous theorem
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Dynamic programming principle in continuous time
Consider (OCPc) with time-invariant problem data on the infinite horizon [0,∞).

V (x0) = inf
u(·)∈U

{∫ τ

0

βtℓ(x(t),u(t))dt+ βτV (x(τ))

}
Problem: The “inf” is still over a function u(·), not over a value u ∈ U

Remedy: Send τ → 0, after rearranging terms and dividing by τ :

inf
u(·)∈U

{
βτV (x(τ))− V (x(0))

τ
+

1

τ

∫ τ

0

βtℓ(x(t),u(t))dt

}
= 0

(τ → 0)⇒ inf
u(·)∈U

{
d

dt

∣∣∣∣
t=0

βtV (x(t)) + ℓ(x(0),u(0))

}
= 0

⇔ inf
u∈U
{−δV (x0) +DV (x0)f(x0, u) + ℓ(x0, u)} = 0

with δ = − ln β. This is the Hamilton-Jacobi-Bellman equation

(here limt↘0 u(t) = u(0) is assumed; the proof can be modified if this does not hold)
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 33/156



Dynamic programming principle in continuous time
Consider (OCPc) with time-invariant problem data on the infinite horizon [0,∞).

V (x0) = inf
u(·)∈U

{∫ τ

0

βtℓ(x(t),u(t))dt+ βτV (x(τ))

}
Problem: The “inf” is still over a function u(·), not over a value u ∈ U

Remedy: Send τ → 0, after rearranging terms and dividing by τ :

inf
u(·)∈U

{
βτV (x(τ))− V (x(0))

τ
+

1

τ

∫ τ

0

βtℓ(x(t),u(t))dt

}
= 0

(τ → 0)⇒ inf
u(·)∈U

{
d

dt

∣∣∣∣
t=0

βtV (x(t)) + ℓ(x(0),u(0))

}
= 0

⇔ inf
u∈U
{−δV (x0) +DV (x0)f(x0, u) + ℓ(x0, u)} = 0

with δ = − ln β. This is the Hamilton-Jacobi-Bellman equation

(here limt↘0 u(t) = u(0) is assumed; the proof can be modified if this does not hold)
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Characterisation of optimal open-loop controls

δV (x0) = inf
u∈U
{DV (x0)f(x0, u) + ℓ(x0, u)} (HJB)

Theorem: Consider a trajectory x(·) with control u(·) and assume that

DV (x(t))f(x(t),u(t)) + ℓ(x(t),u(t)) = inf
u∈U
{DV (x(t))f(x(t), u) + ℓ(x(t), u)}

holds for all t ≥ 0

Then u⋆(·) = u(·) is an optimal control for initial value x0 = x(0)

Sketch of proof: Using (HJB) and integrating the equation from 0 to T yields∫ T

0

βtℓ(x(t),u(t))dt = V (x0)− βTV (x(T )) → V (x0)

as T →∞. This shows the claim since J(x,u(·)) = lim
T→∞

T∫
0

βtℓ(x(t),u(t))dt
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 34/156



Characterisation of optimal open-loop controls

δV (x0) = inf
u∈U
{DV (x0)f(x0, u) + ℓ(x0, u)} (HJB)

Theorem: Consider a trajectory x(·) with control u(·) and assume that

DV (x(t))f(x(t),u(t)) + ℓ(x(t),u(t)) = inf
u∈U
{DV (x(t))f(x(t), u) + ℓ(x(t), u)}

holds for all t ≥ 0

Then u⋆(·) = u(·) is an optimal control for initial value x0 = x(0)

Sketch of proof: Using (HJB) and integrating the equation from 0 to T yields∫ T

0

βtℓ(x(t),u(t))dt = V (x0)− βTV (x(T )) → V (x0)

as T →∞. This shows the claim since J(x,u(·)) = lim
T→∞

T∫
0

βtℓ(x(t),u(t))dt
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Characterisation of optimal feedback controls
Consider again a feedback control F : Rn → U, now in continuous time:

ẋ(t) = f(x(t), F (x(t))), x(0) = x0, t ≥ 0

Assuming that this equation has a solution, F generates the control
u(t) = F (x(t)), depending on x0

Recall: F ⋆ is optimal if for each x0 ∈ Rn the control u⋆ generated by F ⋆ satisfies

J(x0,u
⋆) = V (x0)

Corollary: A feedback F satisfying

DV (x)f(x, F (x)) + ℓ(x, F (x)) = inf
u∈U
{DV (x)f(x, u) + ℓ(x, u)}

for all x ∈ Rn is an optimal feedback law

Sketch of proof: One checks that the controls generated by F satisfy the
conditions of the previous theorem
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Dynamic programming for finite-horizon problems
Dynamic programming also works for finite-horizon problems

Task: minimize

J(t0, tf , x0,u(·)) :=
∫ tf

t0

βtℓ(x(t),u(t)) dt+ βtfL(x(tf ))

or

J(t0, tf , x0,u(·)) :=
tf∑

t=t0

βtℓ(x(t),u(t)) + βtfL(x(tf ))

The optimal value function is then time dependent V (t0, tf , x0) := inf
u(·)∈U

J(t0, tf , x0,u(·))

The Bellman equation becomes

V (t0, tf , x0) = inf
u∈U
{ℓ(x0, u)+βV (t0+1, tf , g(x0, u))} if t0 < tf , V (tf , tf , x) = L(x)

and the Hamilton-Jacobi-Bellman equation reads

δ
∂

∂t0
V (t0, tf , x0) = inf

u∈U

{
∂

∂x
V (t0, tf , x0)f(x0, u) + ℓ(x, u)

}
if t0 < tf , V (tf , tf , x) = L(x)
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and the Hamilton-Jacobi-Bellman equation reads

δ
∂

∂t0
V (t0, tf , x0) = inf

u∈U

{
∂

∂x
V (t0, tf , x0)f(x0, u) + ℓ(x, u)

}
if t0 < tf , V (tf , tf , x) = L(x)
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Dynamic programming for finite-horizon problems
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A note on optimal feedback laws

Note: It follows from dynamic programming theory, that optimal feedback laws
(if they exist)

do not depend on time if the problem data is time-invariant and tf =∞
do in general depend on time in all other cases
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Hamilton-Jacobi-Bellman equation
The Hamilton-Jacobi-Bellman equation is a partial differential equation (PDE)

If the optimal value function V is C1, then it satisfies this equation uniquely
(under appropriate boundary conditions)

Problem: In many practical examples, V is not C1

Remedy: Use viscosity solution theory [Lions ’82; Crandall/Lions ’83]

This is a weak solution concept that allows for a general existence and
uniqueness result. However, it does not simplify computations

Particularly, the computation of the optimal feedback law from

DV (x)f(x, F (x)) + ℓ(x, F (x)) = inf
u∈U
{DV (x)f(x, u) + ℓ(x, u)}

is highly nontrivial in the viscosity solution framework

⇝ It is often much easier to discretize the problem in time and use the
⇝ discrete-time theory
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Intermediate Summary – Dynamic programming and the HJBE

The solution to an OCP can be characterized by dynamic programming

Bellman equation in discrete time (time-invariant infinite-horizon problem)

V (x) = inf
u∈U
{ℓ(x, u) + βV (g(x, u))} (DDP)

Hamilton-Jacobi-Bellman equation in continuous time (time-invariant
finite-horizon)

δ
∂

∂t0
V (t0, tf , x) = inf

u∈U

{
∂

∂x
V (t0, tf , x)f(x, u) + ℓ(x, u)

}
(HJB)

From these equations, optimal feedback laws may be obtained, which are
often required in practice

But, solving the DPP or the HJB equation is in general difficult!
(we will come back to this later)
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 39/156



Intermediate Summary – Dynamic programming and the HJBE

The solution to an OCP can be characterized by dynamic programming

Bellman equation in discrete time (time-invariant infinite-horizon problem)

V (x) = inf
u∈U
{ℓ(x, u) + βV (g(x, u))} (DDP)

Hamilton-Jacobi-Bellman equation in continuous time (time-invariant
finite-horizon)

δ
∂

∂t0
V (t0, tf , x) = inf

u∈U

{
∂

∂x
V (t0, tf , x)f(x, u) + ℓ(x, u)

}
(HJB)

From these equations, optimal feedback laws may be obtained, which are
often required in practice

But, solving the DPP or the HJB equation is in general difficult!
(we will come back to this later)
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 39/156



Euler-Lagrange Equations



Problem Setup

The Euler-Lagrange equations allow to compute open-loop control functions for
fixed initial values in a simplified setting:

min
u(·)

∫ tf

t0

ℓ(t, x(t),u(t))dt

subject to: (P)

ẋ = f(t, x,u), x(t0) = x0

u(·) ∈ C[t0, tf ]m

f :R× Rn × Rm → Rn, f ∈ C0 w.r.t. (t, x, u), f ∈ C1 w.r.t. (x, u)

ℓ :R× Rn × Rm → R , ℓ ∈ C0 w.r.t. (t, x, u), ℓ ∈ C1 w.r.t. (x, u)

Short hand notation:

DwZ =
∂

∂w
Z, (DwZ)

⊤ = Zw, Z ∈ {f, ℓ, L, . . . } and w ∈ {x, u, t}
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Problem Setup

The Euler-Lagrange equations allow to compute open-loop control functions for
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min
u(·)

∫ tf

t0

ℓ(t, x(t),u(t))dt
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The approach by Euler and Lagrange

min
u(·)

∫ tf

t0

ℓ(t, x(t),u(t))dt

subject to: (P)

0= ẋ− f(t, x,u), x(t0) = x0

u(·) ∈ C[t0, tf ]m

Rewrite equality constraint imposed by the dynamics

J(x0,u) =

∫ tf

t0

ℓ(t, x(t),u(t)) + λ(t)⊤
(
ẋ(t)− f(t, x(t),u(t))

)
dt

with Lagrange multiplier λ : [t0, tf ]→ Rn
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The approach by Euler and Lagrange

⇝ Equality constraints included in the objective

J(x0,u) =

∫ tf

t0

ℓ(t, x(t),u(t)) + λ(t)⊤
(
ẋ(t)− f(t, x(t),u(t))

)
dt

Apply integration by parts to λ⊤ẋ

λ⊤ẋ = −x⊤λ̇+
d

dt

(
x⊤λ

)
⇔

∫
λ⊤ẋdt =

∫
−x⊤λ̇dt+

(
x⊤λ

)
to obtain

J(x0,u) =

∫ tf

t0

ℓ(t, x(t),u(t))−
(
x(t)⊤λ̇(t) + λ(t)⊤f(t, x(t),u(t))

)
dt+x⊤λ

∣∣∣tf
t0
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The approach by Euler and Lagrange
Consider a small perturbation of the optimal control u⋆(·)

u⋆(·) + η · v(·), η ∈ R, η ≈ 0

which generates a perturbed state trajectory

xu⋆ + η · v(t, x0)

and the limit

lim
η→0

J(x0,u
⋆ + η · v)− J(x0,u⋆)

η
=

∂

∂η

∣∣∣∣
η=0

J(x0,u
⋆ + η · v)

Optimality implies2

0 =
∂

∂η

∣∣∣∣
η=0

J(x0,u
⋆ + η · v) = dJ(x0,u

⋆,v) = 0

2dJ(x0,u
⋆,v) denotes the Gateaux derivative w.r.t. u.
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The approach by Euler and Lagrange
Let

δx :=
∂

∂η

∣∣∣∣
η=0

xu⋆ + η · v(t, x0),

called sensitivity or variation of x(·) with respect to the input perturbation v

dJ(x0,u
⋆,v) =

∫ tf

t0

(
ℓx(t, x

⋆(t),u⋆(t))− f⊤
x (t, x

⋆(t),u⋆(t))λ(t)− λ̇(t)
)⊤

δx(t)

+
(
ℓu(t, x

⋆(t),u⋆(t))− f⊤
u (t, x

⋆(t),u⋆(t))λ(t)
)⊤

v dt

− δx(t0)⊤λ(t0)︸ ︷︷ ︸
=0

+δx(tf )
⊤λ(tf )

!
= 0

We obtain

0 = ℓx(t, x
⋆,u⋆)− f⊤

x (t, x
⋆,u⋆)λ− λ̇

0 = ℓu(t, x
⋆,u⋆)− f⊤

u (t, x
⋆,u⋆)λ

0 = λ(tf )
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First-order necessary conditions of optimality

Theorem (First-order necessary conditions):
Suppose that u⋆(·) ∈ C[t0, tf ]m is a local minimizer of Problem (P) and
x⋆(·) ∈ C1[t0, tf ]n, x⋆(t) = xu⋆(t, t0, x0) is the corresponding solution.

Then there exists a function λ⋆(·) ∈ C1[t0, tf ]n such that, for all t ∈ [t0, tf ], the
triple (u⋆(·), x⋆(·), λ⋆(·)) satisfies:

ẋ⋆ = f(t, x⋆,u⋆), x⋆(t0) = x0

λ̇⋆ = −ℓx(t, x⋆,u⋆)− f⊤
x (t, x

⋆,u⋆)λ⋆, λ⋆(tf ) = 0 (E-L)

0 = ℓu(t, x
⋆,u⋆) + f⊤

u (t, x
⋆,u⋆)λ⋆.
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First-order necessary conditions – Remarks

(E-L) are known as Euler-Lagrange equations

Unknowns: (u⋆(·), x⋆(·), λ⋆(·)) ∈ C[t0, tf ]m × C1[t0, tf ]n × C1[t0, tf ]n

(E-L) are first-order necessary conditions of (P). Hence any triple
(u(·), x(·), λ(·)) solving (E-L) is also referred to as an extremal

The variable λ is called adjoint or costate. It is the OCP counterpart to a
Lagrange multiplier in static nonlinear optimization

If there is a terminal cost L in (P) (i.e., a Mayer term depending only on tf
and x(tf )), then

λ(tf ) = Lx(tf , x(tf ))

For terminal constraints x(tf ) = xf , the condition on λ(tf ) is replaced by
x(tf ) = xf

For general terminal constraints ψ(tf , x(tf )) = 0, we obtain

λ(tf ) = Lx(tf , x(tf )) + ν⊤Ψx(tf , x(tf ))
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If there is a terminal cost L in (P) (i.e., a Mayer term depending only on tf
and x(tf )), then

λ(tf ) = Lx(tf , x(tf ))

For terminal constraints x(tf ) = xf , the condition on λ(tf ) is replaced by
x(tf ) = xf

For general terminal constraints ψ(tf , x(tf )) = 0, we obtain

λ(tf ) = Lx(tf , x(tf )) + ν⊤Ψx(tf , x(tf ))
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First-order necessary conditions – Remarks

The Euler-Lagrange equations can be rewritten more concisely using the
Hamiltonian function: H : R× Rn × Rm × Rn → R

H(t, x, u, λ) := ℓ(t, x, u) + λ⊤f(t, x, u) = ℓ(t, x, u) + ⟨λ, f(t, x, u)⟩

Notation for scalar product of w, z,∈ Rn: ⟨w, z⟩ = w⊤z

Euler-Lagrange equations using Hamiltonian:

ẋ⋆ = Hλ(t, x
⋆,u⋆, λ⋆), x⋆(t0) = x0

λ̇⋆ = −Hx(t, x
⋆,u⋆, λ⋆), λ⋆(tf ) = 0

0 = Hu(t, x
⋆,u⋆, λ⋆)

Good overview on the history of optimal control: [Sussmann/Willems ’97]3

3H.J. Sussmann and J.C. Willems, “300 years of optimal control: from the Brachystochrone
to the Maximum Principle”. In: IEEE Control Systems 17.3 (1997), pp. 32–44
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First-order necessary conditions – Remarks

If (P) is time-invariant (ℓ, f do not depend on t), then the Hamiltonian is
constant along optimal solutions: d

dt
H(t, x⋆(t),u⋆(t), λ⋆(t)) = 0

Change of Hamiltonian along optimal trajectory

d

dt
H(t, x,u, λ) = Ht + ⟨Hx, f(t, x,u)⟩+ ⟨Hu, u̇⟩+ ⟨f(t, x,u), λ̇⟩

Euler-Lagrange equations hold for local minima and maxima. How can we
tell one from the other?

⇝ Second order necessary conditions (Legendre-Clebsch condition):

D2H = Huu ⪰ 0 for minima, D2H = Huu ⪯ 0 for maxima

A readable introduction: [Chachuat ’09]4

4B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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A toy example

min
u(·)

∫ 1

0

1

2
u2(t)dt

subject to

ẋ(t) = u(t)− x(t), x(0) = 1, x(1) = 0

Task: Write the Euler-Lagrange equations for this problem

H(x, u, λ) =
1

2
u2 + λT (u− x)

ẋ⋆ = Hλ(x
⋆,u⋆, λ⋆) = u⋆ − x⋆

λ̇⋆ = −Hx(x
⋆,u⋆, λ⋆) = λ⋆

0 = Hu(x
⋆,u⋆, λ⋆) = u⋆ + λ⋆

x⋆(0) = 1, x⋆(1) = 0
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Discrete-time counterpart to (E-L)

Continuous-time OCP

min
u(·)

∫ tf

0

ℓ(t, x(t),u(t))dt

subject to

ẋ = f(t, x,u), x(0) = x0

With H = ℓ+ λ⊤f :

ẋ⋆ = Hλ(t, x
⋆,u⋆, λ⋆), x⋆(0) = x0

λ̇⋆ = −Hx(t, x
⋆,u⋆, λ⋆), λ⋆(tf ) = 0

0 = Hu(t, x
⋆,u⋆, λ⋆)

Discrete-time OCP (= NLP)

min
u(·)

N−1∑
t=0

ℓ(t, x(t),u(t))

subject to

x(t+ 1)= g(t, x(t),u(t)), x(0) = x0

?
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Discrete-time Euler-Lagrange equations

Define the Lagrangian pointwise in time

L̂(t) .= ℓ(x(t),u(t)) + λ(t+ 1)⊤(g(t, x(t),u(t))− x(t+ 1))

and

L(t, x,u, λ) .= λ(0)⊤(x0 − x(0)) +
N−1∑
t=0

L̂(t)

Stationarity of the Lagrangian

Lλ = 0 ⇝ x⋆(t+ 1) = g(t, x⋆(t),u⋆(t))

Lx = 0 ⇝ λ⋆(t) = g⊤x λ
⋆(t+ 1) + ℓx, λ⋆(N) = 0 (E-Ld)

Lu = 0 ⇝ 0 = g⊤u λ
⋆(t+ 1) + ℓu

These are the discrete-time Euler-Lagrange equations
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Comparison – Discrete-time and continuous-time Euler-Lagrange

Discrete-time OCP

min
u(·)

N−1∑
t=0

ℓ(t, x(t),u(t))

subject to

x(t+ 1)= g(t, x(t),u(t)), x(0) = x0

x⋆(t+ 1) = g(t, x⋆(t),u⋆(t)), x(0) = x0

λ⋆(t) = g⊤x λ
⋆(t+ 1) + ℓx, λ⋆(N) = 0

0 = g⊤u λ
⋆(t+ 1) + ℓu

But: There is no fully equivalent discrete-time counterpart of the Hamiltonian
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Comparison – Discrete-time and continuous-time Euler-Lagrange

Continuous-time OCP

min
u(·)

∫ tf

0

ℓ(t, x(t),u(t))dt

subject to
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Pontryagin’s Minimum Principle



Preliminaries

We now allow for measurable controls and add constraints to the OCP (P). We
start with input constraints

Problem setup (time invariant, free end time, terminal constraint):

min
u(·),tf

∫ tf

t0

ℓ(x(t),u(t))dt

subject to

ẋ = f(x,u), x(t0) = x0 (PPMP)

u(·) ∈ Lloc
∞ ([t0, tf ],U) , U ⊆ Rm

tf ∈ [t0, T ], T <∞
x(tf ) = x1

f : Rn × Rm → Rn, f ∈ C0 w.r.t. (x, u), f ∈ C1 w.r.t. (x)

ℓ : Rn × Rm → R , ℓ ∈ C0 w.r.t. (x, u), ℓ ∈ C1 w.r.t. (x)
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Towards Pontryagin’s minimum principle

Reformulation in Mayer form

c(t) =

∫ tf

t0

ℓ(x(t),u(t))dt

x̃(t) =

(
c(t)
x(t)

)
˙̃x(t) =f̃(x(t),u(t)) =

(
ℓ(x(t), u(t))
f(x(t),u(t))

)
x̃(t0) =

(
0
x0

)

min
u(·),tf

c(tf )

subject to

˙̃x = f̃(x,u), x̃(t0) = [0, x0]
⊤

u(·) ∈ Ĉ ([t0, tf ],U) , U ⊆ Rm

tf ∈ [t0, T ], T <∞(
0 I

)
x̃(tf ) = x1

Hamiltonian for reformulated problem

H(x,u, λ̃) =
〈
λ̃, f̃(x,u)

〉
= λ0(t)ℓ(x(t),u(t))+λ(t)

⊤f(x(t),u(t)) λ̃ =

(
λ0
λ

)
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x̃(t) =

(
c(t)
x(t)

)
˙̃x(t) =f̃(x(t),u(t)) =

(
ℓ(x(t), u(t))
f(x(t),u(t))

)
x̃(t0) =

(
0
x0

)

min
u(·),tf

c(tf )

subject to

˙̃x = f̃(x,u), x̃(t0) = [0, x0]
⊤

u(·) ∈ Ĉ ([t0, tf ],U) , U ⊆ Rm

tf ∈ [t0, T ], T <∞(
0 I

)
x̃(tf ) = x1

Hamiltonian for reformulated problem

H(x,u, λ̃) =
〈
λ̃, f̃(x,u)

〉
= λ0(t)ℓ(x(t),u(t))+λ(t)

⊤f(x(t),u(t)) λ̃ =

(
λ0
λ

)
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Pontryagin’s minimum principle5

Theorem: Suppose that (u⋆(·), t⋆f ) ∈ Lloc
∞ ([t0, tf ],U)× [t0, T ] is a global

minimizer of Problem (PPMP) and let x̃⋆(·) be the corresponding extended
solution x̃⋆(·) = x̃u⋆(·, t0, x̃0).

Then there exists an absolutely continuous function

λ̃⋆(·) = (λ⋆0(·), λ⋆(·))⊤,
λ̃⋆(t) ̸= [0, . . . , 0]⊤ for all t ∈ [t0, tf ], such that (u⋆(·), x̃⋆(·), λ̃⋆(·)) satisfy

˙̃x⋆(t) = Hλ̃

(
x⋆(t),u⋆(t), λ̃⋆(t)

)
, x̃(t0) = (0, x0)

⊤

˙̃λ⋆(t) = −Hx̃

(
x⋆(t),u⋆(t), λ̃⋆(t)

)
with H(x,u, λ̃) =

〈
λ̃, f̃(x,u)

〉
and . . .

5V. G. Boltyanskii et al. “On the theory of optimal processes”. In: Doklady Akademii Nauk
SSSR 110 (1956), pp. 7–10, L. S. Pontryagin et al. The Mathematical Theory of Optimal
Processes. John Wiley & Sons Inc., New York, 1962
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Pontryagin’s minimum principle

. . . and:

i) The function H
(
x⋆(t), v, λ̃⋆(t)

)
attains its minimum on U at v = u⋆(t) for

almost all t ∈ [t0, t
⋆
f ]:

H
(
x⋆(t), v, λ̃⋆(t)

)
≥ H

(
x⋆(t),u⋆(t), λ̃⋆(t)

)
.

ii) For all t ∈ [t0, t
⋆
f ] it holds

λ⋆0(t) ≡ const. ≥ 0, H
(
x⋆(t),u⋆(t), λ̃⋆(t)

)
= const.

iii) If the final time tf is free, the following transversality condition holds

H
(
x⋆(t⋆f ),u

⋆(t⋆f ), λ̃
⋆(t⋆f )

)
= 0.
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Proofs

D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press, 2012.
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

E.R. Pinch. Optimal Control and the Calculus of Variations. Oxford University
Press, 1995

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 57/156
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Comments and Variants

The (scalar) extra adjoint λ0 is constant and non-negative

If tf <∞ is fixed and the terminal state is unconstrained

λ(tf ) = 0

If tf <∞ and a Mayer term L is considered

λ(tf ) = Lx(x(tf ))

For general terminal constraints ψ(tf , x(tf )) = 0, we obtain

λ(tf ) = Lx(tf , x(tf )) + ν⊤Ψx(tf , x(tf ))
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The extra adjoint λ0

The Hamiltonian in the Euler-Lagrange equations (E-L) is

H(x,u, λ) = ℓ(x(t),u(t)) + λ⊤f(x(t),u(t))

and in the PMP we have

H(x,u, λ0, λ︸︷︷︸
λ̃

) = λ0ℓ(x(t),u(t)) + λ⊤f(x(t),u(t))

In the absence of state constraints6, we can normalize λ0 = 1, such that both
Hamiltonians coincide

6

This condition is only sufficient; if state constraints are present, then this may still be
possible. OCPs with λ0 = 0 are particularly complicated and called abnormal
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The PMP vs. the Euler-Lagrange equations
The Euler-Lagrange equations (E-L) require for u⋆

∀t ∈ [t0, t
⋆
f ] : 0 = ℓu(x

⋆,u⋆) + f⊤
u (x

⋆,u⋆)λ⋆ = Hu (x
⋆,u⋆, λ)

while the PMP reads

∀t ∈ [t0, t
⋆
f ] : H

(
x⋆, v, λ̃⋆

)
≥ H

(
x⋆,u⋆, λ̃⋆

)

Minimizing H with respect to u gives the necessary condition

Hu

(
x⋆,u⋆, λ̃

)
= 0 = λ0ℓu(t, x

⋆,u⋆) + f⊤
u (t, x

⋆,u⋆)λ⋆

which by normalizing λ0 = 1 matches the condition for the controls in (E-L)

⇝ The PMP generalises the Euler-Lagrange equations

Note: The principle was originally developed for maximisation problems, hence it
was called Pontryagin’s Maximum Principle
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A toy example

min
u(·)

∫ 1

0

1

2
u2(t)dt

subject to

ẋ(t) = u(t)− x(t), x(0) = 1, x(1) = 0

U = [−0.6, 0]
Task: State the Hamiltonian and write the PMP for this problem

H(x, u, λ) = λ0
1

2
u2 + λT (u− x)

ẋ⋆ = Hλ(x
⋆,u⋆, λ⋆) = u⋆ − x⋆

λ̇⋆ = −Hx(x
⋆,u⋆, λ⋆) = λ⋆

λ0
1

2
u⋆2 + λ⋆T (u⋆ − x⋆) ≥ λ0

1

2
u2 + λT (u− x⋆)

x⋆(0) = 1, x⋆(1) = 0
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A pitfall example – The PMP for infinite horizon problems

min
u(·)

∫ tf

0

−(1− x(t))u(t)dt

subject to

ẋ(t) = (1− x(t))u(t), x(0) = 0

u(·) ∈ Lloc
∞ ([0, tf ], [0, 1])

Horizons: tf <∞ and tf =∞

Observe that

J(x0,u) = −x(tf ) = e
−
∫ tf

0

u(τ)dτ
−1

which gives

u⋆(t) ≡ 1

x⋆(t) = 1− e−t

for any horizon tf > 0.

For tf <∞, the terminal condition for the adjoint λ is λ(tf ) = 0

This suggests that for tf =∞, the condition might be lim
t→∞

λ(t) = 0
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A pitfall example – The PMP for infinite horizon problems
The Hamiltonian reads

H(x,u, λ0, λ) = −λ0(1− x)u+ λ(1− x)u
= (λ− λ0)(1− x)u

Thus, the PMP entails
λ̇ = −Hx = (λ− λ0)u

with λ0 > 0 (since there are no state constraints)

With the (already known) optimal control u⋆(t) ≡ 1 we obtain

λ⋆(t) = (λ(0)− λ0)et + λ0

⇝ regardless of how we choose λ(0), we never obtain lim
t→∞

λ(t) = 0
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The PMP for infinite-horizon problems?

For infinite horizons,

the general structure of the PMP remains unchanged

But, if there is no terminal constraint on the state, the PMP does not
provide a boundary/transversality condition7 for the adjoint lim

t→∞
λ(t)

Remedies are known for problems with particular properties8 (beyond the scope
of this course)

7This major issue was first observed in H. Halkin, “Necessary conditions for optimal control
problems with infinite horizons”. In: Econometrica: Journal of the Econometric Society 42.2
(1974), pp. 267–272.

8T. Faulwasser and C.M. Kellett, “On continuous-time infinite horizon optimal
control—Dissipativity, stability, and transversality”. In: Automatica 134 (2021), 109907
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The link between the HJBE and the PMP

Recall the HJBE for undiscounted problems:

∂

∂t
V (t, tf , x) = inf

u∈U

{
∂

∂x
V (t, tf , x)f(x, u) + ℓ(x, u)

}
if t0 < tf

The point-wise in time minimisation of the Hamiltonian in the PMP gives

H
(
x⋆(t),u⋆, λ̃⋆(t)

)
= min

u∈U
H
(
x⋆(t), u, λ̃⋆(t)

)
= min

u∈U
(λ(t)⋆)⊤f(x⋆, u)+λ0ℓ(x

⋆, u)

and for λ0 = 1 we observe the identity

∂

∂x
V (t, tf , x) = (λ⋆)⊤(t)

⇝ the adjoint λ⋆ is the derivative of the optimal value function w.r.t. x
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Extensions of the presented PMP

The PMP can be extended to problems with mixed input-state constraints9

g(x(t),u(t)) ≤ 0

These constraints require additional adjoints ν : [t0, tf ]→ Rng in the PMP
and further extensions of the Hamiltonian

There exist discrete-time counterparts of the PMP, but they turn out to be
more restrictive than KKT conditions

9R.F. Hartl, S.P. Sethi, R.G. Vickson. “A survey of the maximum principles for optimal
control problems with state constraints”. In: SIAM Review 37.2 (1995), pp. 181–218
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Quiz

Why is it important that the PMP
works for Lloc

∞ -functions?

Because there are examples where
such functions are needed

Because this simplifies its proof

It ain’t really important, the authors
who wrote it simply did it this way
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Why do we need controls from Lloc∞ ?

This example10 shows why is it important that the PMP allows for u ∈ Lloc
∞ :

min
u(·)

∫ 10

0
x1(t)

2 dt

subject to

ẋ =

(
0 1
0 0

)
x+

(
0
1

)
u, x(0) = x0

∀t ∈ [0, 10] : u(t) ∈ [−1, 1]

The optimal controls take only values
u⋆(t) ∈ {−1, 0, 1}

but has infinitely many switches

0 2 4 6 8 10
t [-]

-2

-1

0

1

2

x 1
 [-

]

x̄1

x0 = [1, 0]
x0 = [2, 1]
x0 = [−1, 0]
x0 = [−2,−1]

0 2 4 6 8 10
t [-]

-2

-1

0

1

2

x 2
 [-

]

x̄2

x0 = [1, 0]
x0 = [2, 1]
x0 = [−1, 0]
x0 = [−2,−1]

Easy problems can admit
complicated analytic solutions!

10A.T. Fuller. “Relay control systems optimized for various performance criteria”. In:
Automation and remote control, Proc. first world congress IFAC Moscow. Vol. 1. 1960, pp.
510–519
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Summary of Part 2: Solution Concepts

Both Dynamic Programming and the PMP provide optimality conditions for
the values of u⋆ that are pointwise in time, i.e.,

independent conditions on u⋆(t) for each t ∈ [t0, tf ]

The conditions rely on auxiliary quantities:

▶ For dynamic programming: The optimal value function V , characterized by
a partial differential equation or a discrete time functional equation

▶ For the PMP: The optimal adjoint λ⋆, characterized by an ordinary
differential or difference equation

Dynamic programming gives necessary and sufficient conditions for optimal
open-loop and closed-loop controls

The PMP gives necessary conditions for an optimal open-loop control

In high dimensions, finding λ⋆ is usually much easier than finding V
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Outline of the course

Part 1: Optimal Control Problems — An Introduction

Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce numerical methods for solving optimal control problems

Compare methods that compute optimal feedback laws with methods computing
open-loop optimal controls and trajectories

Discuss the numerical effort
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Contents of this part

Part 3: Numerical Solution Methods

Methods based on Dynamic Programming, computing feedback laws

▶ Classical methods for Hamilton-Jacobi-Bellman equations

▶ Deep Reinforcement Learning

Methods computing open-loop optimal controls

▶ Methods based on Pontryagin’s Maximum Principle

▶ Direct Solution Methods
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Methods based on Dynamic Programming



Conceptual approach
For brevity, we only look at infinite-horizon problems in this section

Recall that optimal feedback laws are characterized by the relations

ℓ(x, F ⋆(x)) + βV (g(x, F ⋆(x))) = inf
u∈U
{ℓ(x, u) + βV (g(x, u))}

in discrete time and

DV (x)f(x, F ⋆(x)) + ℓ(x, F ⋆(x)) = inf
u∈U
{DV (x)f(x, u) + ℓ(x, u)}

in continuous time

Hence, we now discuss numerical methods for calculating V , as then F can be
computed from V as a minimiser of the above expressions

We start with the continuous-time case using the Hamilton-Jacobi-Bellman
equation
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Numerical solution of the HJB equation

Since the Hamilton-Jacobi-Bellman equation

inf
u∈U
{−δV (x0) +DV (x0)f(x0, u) + ℓ(x0, u)} = 0

is a partial differential equation, many standard numerical methods for PDEs can
be applied. In the literature, one can find finite differences, finite elements, finite
volume methods etc.

Here we explain the so-called semi-Lagrangian discretisation11, which is tailored
to HJB equations

Its advantages are unconditional stability and the possibility to obtain error
bounds for the feedback law computed from the approximation to V

11M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations, SIAM, 2013
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Semi-Lagrangian discretisation

inf
u∈U
{−δV (x) +DV (x)f(x, u) + ℓ(x, u)} = 0

In semi-Lagrangian discretisation, the equation is first discretised in time and
then in space

:

Step 1: For a time step h > 0, approximate

−δV (x) +DV (x)f(x, u) ≈ e−δhV (x̃u(h, x))− V (x)

h
,

where x̃u(h, x) is a numerical approximation of the solution xu(h, x) with u ≡ u,
e.g., the Euler approximation x̃u(h, x) = x+ hf(x, u)

Rearrange the terms to obtain the semi-discretised equation

Vh(x) = inf
u∈U

{
hℓ(x0, u) + e−δhVh(x̃u(h, x))

}
= 0

(effectively, this step reverses part of the derivation of the HJB equation)
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Semi-Lagrangian discretisation

Vh(x) = inf
u∈U

{
hℓ(x0, u) + e−δhVh(x̃u(h, x))

}
= 0

Step 2: We now solve this equation approximately on a compact set C ⊂ Rn

using spatial discretization

:

Choose a finite dimensional function space Fk on C (e.g., continuous and
piecewise linear functions defined on a simplicid grid with space step size k > 0;
adaptive discretisation schemes may also be used)

Let Πk be a projection from the space of bounded functions W : C → R to Fk

Find Vhk ∈ Fk satisfying

Vhk(x) = Πk

(
inf
u∈U

{
e−δhVhk(x̃u(h, x)) + hℓ(x0, u)

})
for all x ∈ C

Note: Control input constraints are readily implementable, but state constraints
lead to boundary conditions that may complicate the computation
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 75/156



Semi-Lagrangian discretisation

Vh(x) = inf
u∈U

{
hℓ(x0, u) + e−δhVh(x̃u(h, x))

}
= 0

Step 2: We now solve this equation approximately on a compact set C ⊂ Rn

using spatial discretization:

Choose a finite dimensional function space Fk on C (e.g., continuous and
piecewise linear functions defined on a simplicid grid with space step size k > 0;
adaptive discretisation schemes may also be used)

Let Πk be a projection from the space of bounded functions W : C → R to Fk

Find Vhk ∈ Fk satisfying

Vhk(x) = Πk

(
inf
u∈U

{
e−δhVhk(x̃u(h, x)) + hℓ(x0, u)

})
for all x ∈ C

Note: Control input constraints are readily implementable, but state constraints
lead to boundary conditions that may complicate the computation
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2d Example: Optimal Investment in a Firm
[Feichtinger et al. ’00,

Gr./Semmler ’04]

x1 = invested capital, x2 = investment, u = change of investment

ẋ1(t) = x2(t)− σx1(t), ẋ2(t) = u(t)

−ℓ(x, u) = k1
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ẋ1(t) = x2(t)− σx1(t), ẋ2(t) = u(t)
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ẋ1(t) = x2(t)− σx1(t), ẋ2(t) = u(t)
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Semi-Lagrangian discretisation and the Bellman equation
The semi-discrete HJB equation

Vh(x) = inf
u∈U

{
hℓ(x, u) + e−δhVh(x̃u(h, x))

}
= 0

is nothing but the Bellman equation

V (x) = inf
u∈U
{ℓ(x, u) + βV (g(x, u))}

if we write g(x, u) = x̃u(h, x), β = e−δh, ℓ in place of hℓ, and V in place of Vh

This has several implications:

The feedback obtained from Vhk can be implemented as an approximately
optimal feedback for the exact time-discretised (sampled) problem
⇝ the technical difficulties in continuous-time are avoided

This also leads to rigorous error estimates

The method in Step 2 can be applied to discrete-time problems

Any method for discrete-time problems can be used in place of Step 2
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Solving the Bellman equation
How to find V ∈ Fk satisfying

V (x) = Πk

(
inf
u∈U
{ℓ(x, u) + βV (g(x, u))}

)
for all x ∈ C ?

First, since Fk is finite dimensional, it suffices to check the equation for x from a
finite set Ck ⊂ C

In the classical approaches, V is then obtained iteratively:

value iteration: Vi+1(x) := Πk (infu∈U {ℓ(x, u) + βVi(g(x, u))}) ∀x ∈ Ck

policy iteration:
▶ choose Fi such that u = Fi(x) minimises {ℓ(x, u) + βVi(g(x, u))} ∀x ∈ Ck

▶ compute Vi+1 satisfying Vi+1(x) = Πk (ℓ(x, u) + βVi+1(g(x, Fi(x)))) ∀x ∈ Ck

Value iteration converges linearly, policy iteration quadratically
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Q-Learning
In practice, a closed expression for g(x, u) may not always be available. For
instance, we may only be able make experiments in order to determine
x+ = g(x, u) from x and u, but do not have a mathematical model

Remedy: Compute Q(x, u) = ℓ(x, u) + βV (g(x, u)) instead of V (x)

If Q is known, the characterization of the optimal feedback law

ℓ(x, F ⋆(x)) + βV (g(x, F ⋆(x))) = inf
u∈U
{ℓ(x, u) + βV (g(x, u))}

changes to
Q(x, F ⋆(x)) = inf

u∈U
Q(x, u)

⇝ F ⋆ can be determined without knowing g

An iterative algorithm for obtaining Q is classical Q-learning:

Qi+1(xi, ui) := ℓ(xi, ui) + β infu∈U Qi(x
+
i , u) for a sequence of experimental or

simulated data xi, ui, x
+
i with x+i = g(xi, ui). Often, xi+1 = x+i is chosen
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Deep Reinforcement Learning



Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V is the notorious curse of dimensionality

:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C ⊂ Rn, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n = 2
100 000 discretisation points if n = 5

1 000 000 000 discretisation points if n = 9

The problem quickly becomes computationally infeasible
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 80/156



Curse of dimensionality

Besides various technical issues, the main conceptual challenge of numerically
approximating V is the notorious curse of dimensionality:

If we solve the Bellman equation with grid- or mesh based spatial approximation
techniques on C ⊂ Rn, then the numerical effort grows exponentially with the
space dimension n

Example: Assume 10 discretisation steps are needed in each coordinate direction.
Then we obtain

100 discretisation points if n = 2
100 000 discretisation points if n = 5

1 000 000 000 discretisation points if n = 9

The problem quickly becomes computationally infeasible
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Deep Learning approaches for computing V or Q

In deep learning approaches, there is no explicit space discretization via a grid or
mesh. Rather the functions V or Q are approximations by deep Neural Networks

For those not familiar with deep neural networks, we provide a brief introduction
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Excursion: Neural Networks



Quiz

Which of the following objects
does best describe the nature of a
neural network?

A matrix

A function

A sequence

An equation
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Neural Networks

x =


x1
x2
x3
x4


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f1(x)

f2(x)

f3(x)

input
layer

hidden layers

output
layer

f(x) =

f1(x)f2(x)
f3(x)



An NN represents a function f(x), here f : R4 → R3
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How are the values y
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j + b
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)
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(l)
i,j = weights

b
(l)
i = bias terms

σ : R→ R is called activation function

Examples:

sigmoid:
σ(y) = 1

1+e−y

ReLU:
σ(y) = max{0, y}

softplus:
σ(y) = log(1 + ey) -10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 84/156



How are the values y
(l)
i calculated?

y
(1)
1

y
(1)
2

y
(1)
3

y
(1)
4

y
(1)
n

y
(2)
m

y
(2)
3

y
(2)
2

y
(2)
1

w
(1)
1,1w
(1)
1,1

w
(1)
1,2w
(1)
1,2

w
(1)
1,3w
(1)
1,3

w
(1)
1,4w
(1)
1,4

w
(1)
1,nw
(1)
1,n

...

...

y
(2)
1 = σ

(
w

(1)
1,1y

(1)
1 + w

(1)
1,2y

(1)
2 + . . .+ w

(1)
1,ny

(1)
n + b

(1)
1

)
y
(l+1)
i = σ

(
n∑

j=1

w
(l)
i,jy

(l)
j + b

(l)
i

)
w

(l)
i,j = weights

b
(l)
i = bias terms

σ : R→ R is called activation function

Examples:

sigmoid:
σ(y) = 1

1+e−y

ReLU:
σ(y) = max{0, y}

softplus:
σ(y) = log(1 + ey) -10 -8 -6 -4 -2 0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10
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Training
Training describes the process of finding the right weights w

(l)
i,j and bias terms b

(l)
i

such that the network approximates the desired function φd

This is done using a training algorithm based on optimisation methods

A loss function determines the objective of the optimisation

Typical loss function when data xi and yi = φd(xi) of the desired function is
known:

L(θ) =
1

N

N∑
i=1

(φ(xi, θ)− yi)2

x1, . . . , xN = function arguments θ = (w
(l)
i,j , b

(l)
i )i,j,l = parameters of the NN

y1, . . . , yN = function values of φd φ(x, θ) = function represented by the NN

This is the standard loss function for regression (“supervised learning”), i.e., for
learning a function with prescribed values at the data points
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Stochastic Gradient Descent

L(θ) =
1

N

N∑
i=1

(φ(xi, θ)− yi)2

Minimising L(θ) is usually done via so-called Gradient Descent

These methods compute a minimizing θ iteratively via

θi+1 := θi − αi∇L(θi)
for some suitably chosen step size αi > 0 (“learning rate”)

These are very efficient to implement, since d
dθ
f(x, θ) can be computed

iteratively for NNs via Backpropagation (essentially: the chain rule)

However, for huge data sets, the computation of ∇L involves a huge sum

Remedy: In each gradient step, compute only the derivative for a randomly
selected subset of (xi, yi) → “Stochastic Gradient Descent”

→ Example: Learning a sine function
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Deep Learning approaches for computing V or Q
In deep learning approaches, VNN or QNN are approximations to V or Q by deep
NNs (DNNs)

and a possibility for choosing the loss function is

1

N

N∑
j=1

|VNN(xj)− inf
u∈U
{ℓ(xj, u) + βVNN(g(xj, u))} |2

for data xj or, respectively,

1

N

N∑
j=1

|QNN(xj, uj)− ℓ(xj, uj)− β inf
u∈U

QNN(x
+
j , u))|2

for data xj, uj, x
+
j , j = 1, . . . , N

“Loss functions penalize violations of Bellman equation in data points”

In continuous time, the Hamilton-Jacobi-Bellman-based loss function for V reads

1

N

N∑
j=1

|δVNN(xj) + inf
u∈U
{ℓ(xj, u) +DVNN(xj)f(xj, u))} |2
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Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem

Remedies:

VNN or QNN are computed iteratively, e.g., using the loss function

L(VNN,i+1, x) =
(
VNN,i+1(x)− inf

u∈U
{ℓ(x, u) + βVNN,i(g(x, u))}

)2

⇝ can be implemented as a standard regression problem

Instead of computing the “inf” in L, an approximate minimizer FNN,i is
stored in a second Neural Network ⇝ “actor-critic method”

Once an approximation to F is stored, the fact that F optimizes the cost
can be used in the design of the loss function ⇝ “policy gradient method”

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 88/156



Deep Learning approaches, implementation details

Minimising these loss functions is a hard problem

Remedies:

VNN or QNN are computed iteratively, e.g., using the loss function

L(VNN,i+1, x) =
(
VNN,i+1(x)− inf

u∈U
{ℓ(x, u) + βVNN,i(g(x, u))}

)2

⇝ can be implemented as a standard regression problem

Instead of computing the “inf” in L, an approximate minimizer FNN,i is
stored in a second Neural Network ⇝ “actor-critic method”

Once an approximation to F is stored, the fact that F optimizes the cost
can be used in the design of the loss function ⇝ “policy gradient method”
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Deep Learning approaches, implementation details
Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ⇝ “episodes”

Generated data is used several times

For the iterative loss function

1

N

N∑
j=1

|VNN,i+1(xj)− inf
u∈U
{ℓ(xj, u) + βVNN,i(g(xj, u))} |2

a new iteration is performed after every couple of episodes

The controls for generating the xj are chosen as minimisers of ℓ+ βVNN,i

(“exploitation”), with randomly generated exceptions (“exploration”)

On https://pylessons.com/ or on https://spinningup.openai.com

templates for Deep Reinforcement Learning can be obtained

We will see in the Part 5 of this course whether Deep Learning can really do
better than grid- or meshed-based approaches
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 89/156



Deep Learning approaches, implementation details
Data points are often generated along trajectories, as long as constraints are
violated or a pre-defined goal is reached ⇝ “episodes”

Generated data is used several times

For the iterative loss function

1

N

N∑
j=1

|VNN,i+1(xj)− inf
u∈U
{ℓ(xj, u) + βVNN,i(g(xj, u))} |2

a new iteration is performed after every couple of episodes

The controls for generating the xj are chosen as minimisers of ℓ+ βVNN,i

(“exploitation”), with randomly generated exceptions (“exploration”)

On https://pylessons.com/ or on https://spinningup.openai.com

templates for Deep Reinforcement Learning can be obtained

We will see in the Part 5 of this course whether Deep Learning can really do
better than grid- or meshed-based approaches
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Methods computing open-loop optimal controls



How to solve OCPs for open-loop controls?

Core challenge: How to compute the function u⋆(·) ?

Two main options:

1. Apply PMP to obtain necessary
optimality conditions (NCOs)

2. Solve NCO differential equations
by discretization in time

⇝ Indirect solution methods

“First optimise, then discretise”

1. Discretize OCP in time to obtain
a finite-dimensional nonlinear
optimization problem (NLP)

2. Solve NLP by suitable
optimisation algorithm

⇝ Direct solution methods

“First discretise, then optimise”
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Methods based on Pontryagin’s Maximum Principle

“Indirect Solution Methods”



Basic idea of indirect shooting

“First optimise, then discretise”

min
u(·)

∫ tf

t0

ℓ(t, x(t),u(t))dt+ L(tf , x(tf ))

subject to: (P)

ẋ = f(t, x,u), x(t0) = x0

u(·) ∈ L∞([t0, tf ],U)
0 = Ψ(tf , x(tf ))

NCOs:
ẋ⋆ = Hλ(t, x

⋆,u⋆, λ⋆), x⋆(t0) = x0

λ̇⋆ = −Hx(t, x
⋆,u⋆, λ⋆),

λ⋆(tf ) = Lx(tf , x
⋆(tf )) + (ν⋆)⊤Ψx(tf , x

⋆(tf )),

0 = Hu(t, x
⋆,u⋆, λ⋆),

0 = Ψ(tf , x
⋆(tf ))
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Basic idea of indirect shooting

Main difficulty: The NCOs contain a boundary value problem

Idea: Split NCOs into two parts:

NCOs enforced (approximately) at each iteration

NCOs enforced (approximately) upon convergence

NCOs:

ẋ⋆ = Hλ(t, x
⋆,u⋆, λ⋆), x⋆(t0) = x0

λ̇⋆ = −Hx(t, x
⋆,u⋆, λ⋆),

λ⋆(tf ) = Lx(tf , x
⋆(tf )) + (ν⋆)⊤Ψx(tf , x

⋆(tf )),

0 = Hu(t, x
⋆,u⋆, λ⋆),

0 = Ψ(tf , x
⋆(tf ))
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Idea: Split NCOs into two parts:

NCOs enforced (approximately) at each iteration

NCOs enforced (approximately) upon convergence

NCOs:

ẋ⋆ = Hλ(t, x
⋆,u⋆, λ⋆), x⋆(t0) = x0

λ̇⋆ = −Hx(t, x
⋆,u⋆, λ⋆),

λ⋆(tf ) = Lx(tf , x
⋆(tf )) + (ν⋆)⊤Ψx(tf , x

⋆(tf )),

0 = Hu(t, x
⋆,u⋆, λ⋆),

0 = Ψ(tf , x
⋆(tf ))
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A basic indirect shooting algorithm

Choose ε > 0. Guess λ00, ν
0. Set k = 0

1. Solve numerically from t0 to tf

ẋk = Hλ(t, x
k,uk, λk), x(t0)

k = x0

λ̇k = −Hx(t, x
k,uk, λk), λ(t0)

k = λk0

0 = Hu(t, x
k,uk, λk)

2. Compute defect of transversality and terminal conditions:

F(λk0, νk)
.
=

(
λ(tf )

k − Lx(tf , x(tf )
k)− (νk)⊤Ψx(tf , x(tf )

k)
Ψ(tf , x(tf )

k)

)

3. If ∥F(λk0, νk)∥ ≤ ε → STOP

4. Update λk0, ν
k to enforce F(λk0, νk)→ 0. k ← k + 1. GOTO Step 1
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How to do Step 4?

We want
lim
k→∞
F(λk0, νk) = 0.

This is a root finding problem, e.g., we can apply Newton’s method12

Compute defect gradients Dλk
0
F and DνkF and solve the Newton step

(
Dλk

0
F DνkF

)(∆λk
∆νk

)
= −F(λk0, νk).

Update (
λk+1
0

νk+1

)
=

(
λk0
νk

)
+

(
∆λk

∆νk

)
.

12Or any quasi Newton method, also stepsize parameters could be introduced.
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Example

min
u(·)

∫ 1

0

1

2
u2(t)dt

subject to

ẋ(t) = u(t)(1− x(t))
x(0) = x0, x(1) = x1
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Example

Indirect shooting as sketched above: ν0 = 0, λ00 = −0.1, x0 = −1, x1 = 0.75
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Example

Indirect shooting as sketched above: ν0 = 0, λ00 = −0.1, x0 = −1, x1 = 0.75

ν⋆ = −11.51; λ⋆0 = −1.1543, |λ⋆(tf )− ν⋆| = 9.4 · 10−3, |x⋆(tf )− x1| = 1.43 · 10−3
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Remarks on indirect methods

Requires to set up the NCOs from the PMP

Input constraints can be considered (not in the example)

Indirect methods can be very precise and memory efficient (no need to store
large matrices)13

In case of active state constraints ⇝ much more complicated NCOs ⇝
indirect methods become tedious to apply

Unstable dynamics ẋ = f(x,u) lead to numerical issues ⇝ good initial
guesses needed in Newton’s method ⇝ often requires manual attention

Either adjoint dynamics or state dynamics are unstable

13T. Englert, A. Völz, F. Mesmer, S. Rhein, K. Graichen. “A software framework for
embedded nonlinear model predictive control using a gradient-based augmented Lagrangian
approach (GRAMPC)”. In: Optimization and Engineering 20.3 (2019), pp. 769–809
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Direct Solution Methods



Direct solution approaches – Main idea

“First discretize, then optimize”

Convert OCP

min
u(·)

J(x0,u(·))

subject to

ẋ(t)= f(t, x(t),u(t)), x(t0) = x0

∀t∈ [t0, tf ] : u(t) ∈ U ⊆ Rm

∀t∈ [t0, tf ] : x(t) ∈ X ⊆ Rn

Optimization in a function space

into nonlinear opt. problem (NLP)

min
ξ∈Rnξ

f(ξ)

subject to

h(ξ) = 0

g(ξ) ≤ 0

Optimization in a finite-
dimensional vector space

How to discretize u(·)? How to obtain a solution to ẋ = f(x, u)?
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 98/156



Direct solution approaches – Main idea

“First discretize, then optimize”

Convert OCP

min
u(·)

J(x0,u(·))

subject to
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Input discretization?

Parametrize u(·) by finitely many parameters uk, k = 1, . . . , Nopt

u(·) ∈ L∞([t0, tf ],U) ⇝ u(t) =

Nopt∑
k=1

ukϕk(t)

with basis functions ϕk(·)

The parameters uk then become the optimization variables in the
finite-dimensional problem

Which basis functions to use?
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Input discretization?

t

u(t)

t0 tf tk tns−1 tns = tf

piecewise constant

piecewise linear with continuity

piecewise linear without continuity

piecewise cubic with continuity

Very often, one simply uses piecewise constant input parametrizations
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Discretisation of dynamics?

How to solve ẋ = f(t, x,u)?

Here: only simple fixed step-size integration methods

These can be written as discrete-time control systems

h
.
= tk+1 − tk = const.

x(tk+1) = g(tk, x(tk), uk)

Simplest choice: Euler scheme g(t, x, u) = x+ hf(t, x, u)

(but more sophisticated schemes like Heun, classical Runge-Kutta, or implicit
methods may be advantageous)
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Considered OCP

min
u(·),p

L(tf , x(tf ))

subject to (OCP)

ẋ(t) = f(t, x(t),u(t)), x(t0) = x0

∀t∈ [t0, tf ] : u(t) ∈ U ⊂ Rm

∀t∈ [t0, tf ] : x(t) ∈ X ⊂ Rn

For the illustration of the procedure we consider a problem without terminal
conditions. This can be adapted to most common settings, such as

free end time problems
periodic boundary conditions
free initial conditions
. . .
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Direct single shooting (simultaneous)

min
u(·),p

L(tf , x(tf ))

subject to

ẋ(t) = f(t, x(t),u(t)), x(t0) = x0

∀t∈ [t0, tf ] : u(t) ∈ U ⊂ Rm

∀t∈ [t0, tf ] : x(t) ∈ X ⊂ Rn

Discretized problem: (with tk replaced by k)

min
u(0),...,u(N−1),x(N),p

L(N, x(N)) subject to

x(0) = x0, x(k + 1) = g(k, x(k), u(k))

∀k∈ {0, . . . , N − 1} : u(k) ∈ U ⊂ Rm

∀k∈ {0, . . . , N} : x(k) ∈ X

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 103/156



Direct single shooting (simultaneous)

min
u(·),p

L(tf , x(tf ))

subject to
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Remarks on direct single shooting

The state x(N) (on which the cost L(N, x(N)) depends) is computed “in
one shot” from x0, hence the name

ODE is (approximately) satisfied for all iterates

Easy to code

Constraints are enforced at discretization points only

The NLP has nu ·N + np decision variables

Unstable systems lead to highly sensitive dependence of the solution from
the control input ⇝ NLP difficult to solve
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Direct multiple shooting

min
u(·),p

L(tf , x(tf ))

subject to

ẋ(t) = f(t, x(t),u(t)), x(t0) = x0

∀t∈ [t0, tf ] : u(t) ∈ U ⊂ Rm

∀t∈ [t0, tf ] : x(t) ∈ X ⊂ Rn

Introduce N + 1 (vector valued) additional decision variables ξ(0), . . . , ξ(N − 1)
Solve ODE separately on N small intervals, enforce continuity through additional
constraints upon convergence

min
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 105/156



Direct multiple shooting

min
u(·),p

L(tf , x(tf ))

subject to
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Example – Direct multiple shooting

Revisit the optimal investment
problem: x1 = invested
capital, x2 = investment, u
= change of investment

Solved with CasADi13 and
ipopt

14Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, Moritz Diehl. “CasADi: a
software framework for nonlinear optimization and optimal control”. In: Mathematical
Programming Computation 11 (2019), pp. 1–36
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Remarks on direct multiple shooting

The state x(N) is now computed in N (=multiple) shots from x0, which are
coupled via constraints15

ODE is satisfied upon convergence of NLP solver

Constraints are enforced at discretization points only

nu ·N + nx · (N + 1) + nx ·N + np decision variables

Handles unstable systems much better than single shooting

Workhorse method for many MPC implementations, see Part 4 of the course

15H.G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal
control problems”. In: Proc. 9th IFAC World Congress. 1984
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 107/156



Remarks on direct multiple shooting

The state x(N) is now computed in N (=multiple) shots from x0, which are
coupled via constraints15

ODE is satisfied upon convergence of NLP solver

Constraints are enforced at discretization points only

nu ·N + nx · (N + 1) + nx ·N + np decision variables

Handles unstable systems much better than single shooting

Workhorse method for many MPC implementations, see Part 4 of the course

15H.G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal
control problems”. In: Proc. 9th IFAC World Congress. 1984
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Other direct methods?

Collocation: parametrization of control and state trajectories via piecewise
polynomials

Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

Combinations of the above, e.g., one can use multiple shooting with
collocation for the integration, . . .

⇝ all of these improve constraint satisfaction between discretisation points

Decision tree for optimization software: https://plato.asu.edu/guide.html

For further introductory reading, see Chapter 5 of [Chachuat ’09]16

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 108/156

https://plato.asu.edu/guide.html


Other direct methods?

Collocation: parametrization of control and state trajectories via piecewise
polynomials

Pseudo-spectral methods: high order orthogonal polynomial approximation
of state and input trajectories

Combinations of the above, e.g., one can use multiple shooting with
collocation for the integration, . . .

⇝ all of these improve constraint satisfaction between discretisation points

Decision tree for optimization software: https://plato.asu.edu/guide.html

For further introductory reading, see Chapter 5 of [Chachuat ’09]16

16B. Chachuat. Nonlinear and Dynamic Optimization—From Theory to Practice. EPFL,
2009. URL: https://infoscience.epfl.ch/server/api/core/bitstreams/28c307a4-ced8-4df6-bf43-
fd02005ed74d/content
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Summary of Part 3: Numerical Solution Methods

Dynamic programming yields an optimal feedback law, indirect and direct
methods yield open-loop optimal trajectories and controls

Numerical effort of dynamic programming grows much faster with the state
dimension than that of indirect and direct methods

Deep reinforcement learning may provide a remedy, but for which problems?

Indirect methods are more accurate, but also considerably slower and more
complicated to handle than direct methods

Multiple shooting much better for unstable problems than single shooting

Conclusion so far: None of the classical techniques are suitable for
high-dimensional optimal feedback control problems

The last two parts of this course present techniques that overcome this limitation
for optimal control problems with particular properties
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 109/156



Summary of Part 3: Numerical Solution Methods

Dynamic programming yields an optimal feedback law, indirect and direct
methods yield open-loop optimal trajectories and controls

Numerical effort of dynamic programming grows much faster with the state
dimension than that of indirect and direct methods

Deep reinforcement learning may provide a remedy, but for which problems?

Indirect methods are more accurate, but also considerably slower and more
complicated to handle than direct methods

Multiple shooting much better for unstable problems than single shooting

Conclusion so far: None of the classical techniques are suitable for
high-dimensional optimal feedback control problems

The last two parts of this course present techniques that overcome this limitation
for optimal control problems with particular properties
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Outline of the course

Part 1: Optimal Control Problems — An Introduction

Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Introduce MPC as an approximate solution method for infinite-horizon optimal
feedback control, which does not rely on dynamic programming

Explain the turnpike property as the crucial structural property that enables MPC
to yield near-optimal solutions

Present a challenging industrial use case

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 111/156



Purpose of this part

Introduce MPC as an approximate solution method for infinite-horizon optimal
feedback control, which does not rely on dynamic programming

Explain the turnpike property as the crucial structural property that enables MPC
to yield near-optimal solutions

Present a challenging industrial use case
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Contents of this part

Part 4: Model Predictive Control

Model Predictive Control

The Turnpike Property

Main Performance Result

Use Case: Optimal Startup of a Combined Cycle Power Plant
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Model predictive control

Turnpike properties are pivotal for analysing Model Predictive Control (MPC),
one of the most successful advanced control methods

MPC approximates an optimal control problem on an infinite horizon

minimise
u

J∞(x0,u) =
∞∑
t=0

ℓ(xu(t),u(t))

by the iterative solution of finite horizon problems

minimise
u

JN(x0,u) =
N−1∑
t=0

ℓ(xu(t),u(t))

with fixed N ∈ N. How do we get a feedback law F?
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MPC from the trajectory point of view

t

black = predictions (open loop optimisation)

red = MPC closed loop xMPC(t)

The feedback control value F (xMPC(t)) is evaluated online as the first element
of the finite horizon optimal control sequence
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 113/156



MPC from the trajectory point of view

3

n

x

0 1 2 3 4 5 6

...
x

t

black = predictions (open loop optimisation)

red = MPC closed loop xMPC(t)

The feedback control value F (xMPC(t)) is evaluated online as the first element
of the finite horizon optimal control sequence
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The turnpike property

The turnpike property describes a behaviour of (approximately) optimal
trajectories for a finite horizon optimal control problem

minimise
u

JN(x,u) =
N−1∑
t=0

ℓ(xu(t),u(t))

with a cost function ℓ : X × U → R
and state and input constraints xu(t) ∈ X, u(t) ∈ U

Informal description of the turnpike property:

Any optimal trajectory stays near an equilibrium xe most of the time

We illustrate the property by two simple examples
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Example: minimum energy control

Example: Keep the state of the system inside a given interval X minimising the
quadratic control effort

ℓ(x, u) = u2

with dynamics
x+ = 2x+ u

and constraints X = [−2, 2], U = [−3, 3]
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Quiz

Which is the “cheapest” state
for keeping the system inside
X = [−2, 2]?

x = 2

x = 0

Any |x| < ε for ε > 0 sufficiently
small
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Example: optimal trajectories
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Optimal trajectory for N = 5
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Example: a macroeconomic model
Consider a classical 1d macroeconomic model

[Brock/Mirman ’72]

Minimise the finite horizon objective
∑N−1

t=0 ℓ(xu(t),u(t)) with

ℓ(x, u) = − ln(Axα − u), A = 5, α = 0.34

and dynamics x(k + 1) = u(k) on X = U = [0, 10]

x = invested capital; u = investment in next time step

Axα = capital after one time step

Axα − u = consumed capital; ln(·) = utility function

On infinite horizon, it is optimal to stay at the equilibrium

xe ≈ 2.2344 with ℓ(xe, ue) ≈ 1.4673

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 118/156
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How to formalise the turnpike property?
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The number of points outside the blue neighbourhood is
bounded by a number independent of N (here: by 8)

In continuous time: The Lebesgue measure replaces the counting of points
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 120/156



History
First described by [Ramsey 1928, von Neumann 1938]

Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]
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History
First described by [Ramsey 1928, von Neumann 1938]

Name “turnpike property” coined by [Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical economy, cf. survey
[McKenzie 1983]

Renewed interest since about ten years [Zaslavski ’14ff,
Faulwasser et al. ’15ff, Trélat/Porretta/Zuazua et al. ’15ff,

Gugat et al. ’16ff, Schaller et al. ’19f, Breiten/Pfeiffer ’20, ...]

Selected applications:
▶ synthesis of optimal trajectories [Anderson/Kokotovic ’87]
▶ learning in neural ODEs [Esteve-Yagüe/Geshkovski/Pighin/Zuazua ’21ff,

Püttschneider/Faulwasser ’24f]
▶ optimization based estimation [Schiller/Gr./Müller ’24f]
▶ model predictive control [will be explained in a few minutes]
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Tracking type problems

For a stabilizable equilibrium xs with control us, i.e., g(xs, us) = xs, the tracking
cost

ℓ(xs, us) := ∥x− xs∥+ µ∥u− us∥
for µ ≥ 0 defines an optimal control problem with turnpike property at xe = xs

However, the class of problems exhibiting the turnpike property is much larger

Strict Dissipativity is a key to understanding how large it is
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Strict dissipativity
The optimal control problem is called strictly dissipative on X, if there exists a
storage function λ : X → R, bounded from below, and α ∈ K such that for all
x ∈ X, u ∈ U with g(x, u) ∈ X:

λ(g(x, u)) ≤ λ(x) + ℓ(x, u)− ℓ(xe, ue)− α(∥x− xe∥)
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α ∈ K: α : R+
0 → R+

0 , continuous,
strictly increasing, α(0) = 0

r(0, 0)

rα( )
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storage function λ : X → R, bounded from below, and α ∈ K such that for all
x ∈ X, u ∈ U with g(x, u) ∈ X:

λ(g(x, u)) ≤ λ(x) + ℓ(x, u)− ℓ(xe, ue)− α(∥x− xe∥)
Facts (for stabilizable systems):

Strict dissipativity implies the turnpike property [Gr. ’13]

Under a controllability condition, it is equivalent to a robust version of the
turnpike property [Gr./Müller ’16]

(this is analogous to “asymptotic stability ⇔ existence of a Lyapunov function”)

For linear-quadratic problems, strict dissipativity is equivalent to classical
systems theoretic properties like detectability or weaker variants thereof
[Gr./Guglielmi ’18, ’20]

Tracking type problems are strictly dissipative with λ ≡ 0
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Main Performance Result



MPC in presence of the turnpike property
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This behaviour allows to prove the following performance theorem
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MPC via strict dissipativity — Theorem

Theorem: [Gr./Stieler ’14] Consider an optimal control problem which is strictly
dissipative at an equilibrium xe

Assume moreover that the optimal value functions VN are equicontinuous at xe

for all N ∈ N ∪ {∞}
Then the MPC closed loop is

semiglobally practically asymptotically stable

approximately transient optimal

approximately averaged optimal

We explain the first two properties graphically
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Illustration of transient optimality

e
x

x

n

Practical asymptotic stability:

xMPC(n) converges to the ε1(N)-ball around xe

(with ε1(N)→ 0 as N →∞)

blabla
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Illustration of transient optimality

ex
ε

x

nK

(N)1

Transient optimality:

cost of all other trajectories reaching the ball at time K is
higher than that of xMPC(n) up to an error Kε1(N) + ε2(K)

(with ε1(N), ε2(K)→ 0 as N,K →∞)
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Combined Cycle Power Plants

C. Stadler/Bwag, wikipedia

Combined cycle power plants generate
electrical energy via a combination of
gas and steam turbines

The exhaust gas from the gas turbine
produces steam for a steam turbine

This way, up to 64% efficiency can be
reached (and even more if the remain-
ing heat is used for district heating)

Goal: Develop control strategies for
flexible, fast, and economic start-up
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Control Objective and Constraints
Objective:

reach a desired load level with minimal fuel consumption ⇝ economic MPC

practical constraint: electricity is traded one day ahead
⇝ optimal reference is computed in advance and tracked by MPC

Constraints:

ensure safe plant operation, e.g., avoid too high pressures

anticipate the behaviour of the underlying low level control system

avoid excessive wear and tear: if steam temperatures rise much faster than
wall temperatures, high temperature gradients occur, causing thermal stress,
which should be limited

Possible measures against high temperature gradients:

injection of water to cool down the steam

slower ramp up of gas turbine
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Model
The model is derived from

conservation of mass
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Model
The model is derived from

conservation of mass

ṁ =
∑
i∈Im

ṁi [kg · s−1]

m: system mass [kg]
mi: mass of medium entering (> 0) / leaving (< 0) the system [kg]
Im: set of indices for medium entering/leaving the system
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Model
The model is derived from

conservation of mass

conservation of energy

d

dt
(mu) =

∑
i∈IQ

Q̇i −
∑
i∈IW

Ẇi +
∑
i∈Im

hmi
ṁi [W ]

m: system mass [kg]
u: specific internal energy of system [J · kg−1]
Qi: heat transfer into (> 0) / out (< 0) of the system [J ]
Wi: work performed by (> 0) / on (< 0) the system [J ]
mi: mass of medium entering (> 0) / leaving (< 0) the system [kg]
hi: specific enthalpy of medium entering / leaving the system [J · kg−1]
IQ: set of indices for heat transferred into/out of the system
IW : set of indices for work performed by/on the system
Im: set of indices for medium entering/leaving the system
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Model
The model is derived from

conservation of mass

conservation of energy

convective and conductive heat-transfer

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 129/156



Model
The model is derived from

conservation of mass

conservation of energy

convective and conductive heat-transfer

Convective heat transfer, e.g., steam ↔ wall:

Q̇ = α · A · (T − Tf ) [W ]

Q: heat transfer [J ]
α: heat transfer coefficient [W ·m−2 ·K−1]
A: contact area between fluid and material [m2]
T : material temperature [K]
Tf : fluid temperature [K]
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Model
The model is derived from

conservation of mass

conservation of energy

convective and conductive heat-transfer

Conductive heat transfer, inside material:

Q̇ = λ · A · dT
dx

[W ]

Q: heat transfer [J ]
λ: conductivity [W ·m−1 ·K−1]
A: cross-sectional area [m2]
T : material temperature [K]
x: location [m]
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Model
The model is derived from

conservation of mass

conservation of energy

convective and conductive heat-transfer

kinetic energy of rotation bodies (shaft)
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Model
The model is derived from

conservation of mass

conservation of energy

convective and conductive heat-transfer

kinetic energy of rotation bodies (shaft)

work performed by turbines

After reduction: ∼ 30 differential states, 300 algebraic states, and 430 constraints
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Model
The model is derived from

conservation of mass

conservation of energy

convective and conductive heat-transfer

kinetic energy of rotation bodies (shaft)

work performed by turbines

After reduction: ∼ 30 differential states, 300 algebraic states, and 430 constraints

The economic optimization objective is∫ ∞

t0

µ(t) · φ(t)dt

with µ(t) = 1 if the desired load level is not yet reached and µ(t) = 0 otherwise,
φ(t) = fuel consumption at time t
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Designing the Turnpike

As a rule of thump, the prediction horizon should be long enough that the
optimizer can find the way to the turnpike

In order to reach the turnpike, the prediction horizon for the economic
optimization is about 1 hour (at least). This leads to optimization times
that are prohibitive for online implementation

⇝ even if no day ahead reference is desired, it is beneficial to compute
⇝ the economically optimal trajectory in advance and track it by
⇝ tracking MPC in the online phase

For tracking MPC, the reference trajectory is the turnpike. If the system
state is sufficiently close, a prediction horizon of a few minutes is suitable

Since in the online phase the initial state at the beginning of the start up is
unknown, a library of optimal references with different initial states is
computed in advance
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 130/156



Designing the Turnpike

As a rule of thump, the prediction horizon should be long enough that the
optimizer can find the way to the turnpike

In order to reach the turnpike, the prediction horizon for the economic
optimization is about 1 hour (at least). This leads to optimization times
that are prohibitive for online implementation

⇝ even if no day ahead reference is desired, it is beneficial to compute
⇝ the economically optimal trajectory in advance and track it by
⇝ tracking MPC in the online phase

For tracking MPC, the reference trajectory is the turnpike. If the system
state is sufficiently close, a prediction horizon of a few minutes is suitable

Since in the online phase the initial state at the beginning of the start up is
unknown, a library of optimal references with different initial states is
computed in advance
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Start-up runs on the plant

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 131/156



Start-up runs on the plant

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 131/156



Start-up runs on the plant
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 131/156



Start-up runs on the plant
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Summary of Part 4

Model Predictive Control (MPC) synthesizes closed-loop solutions from
open-loop optimal controls and trajectories

It generates a feedback law by online optimization

If the turnpike property and dissipativity holds, near-optimal performance
can be shown

MPC is highly successful in industrial applications
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Outline of the course

Part 1: Optimal Control Problems — An Introduction

Part 2: Solution Concepts

Part 3: Numerical Solution Methods

Part 4: Model Predictive Control

Part 5: Deep Neural Networks for High-Dimensional Problems
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Purpose of this part

Identify structural properties of optimal control problems, under which deep
neural networks can indeed avoid the curse of dimensionality

Use ideas from distributed optimal control to describe these properties

Give rigorous estimates for the approximation error
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Contents of this part

Part 5: Deep Neural Networks for High-Dimensional Problems

Reminder: Deep Reinforcement Learning

Separable functions

Distributed optimal control

Decaying Sensitivity
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Deep Reinforcement Learning



Deep Reinforcement Learning

Recall the optimal value function

V (x) = inf
u
J∞(x,u)

In Deep Reinforcement Learning, deep neural networks (DNNs) are used for
storing V (or a derivate thereof, called Q)
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Deep neural network with 2 hidden layers

x1 x2 x3 xd. . .

y11 y12 y13 . . . y1N1

x1 x2 x3

y21 y22 y23 . . . y2N2

W ≈ V output

ℓ = 2

ℓ = 2

input

W (x; θ) = a · y2 + c

y2k = σ2(w2
k · y1 + b2k)

y1k = σ1(w1
k · x+ b1k)

w1
k, w

2
k, a = vectors of weights, “ · ” = scalar product

b1k, b
2
k, c = scalar parameters, σ1, σ2 : R→ R = activation functions

Examples: σ(r) = r, σ(r) = max{r, 0}, σ(r) = ln(er + 1), σ(r) = 1
1+e−r

θ = vector of all parameters (wℓ
k, b

ℓ
k, a, c)

W (x; θ∗) ≈ V (x), approximating function for “trained” θ∗
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Deep Reinforcement Learning
The network is then “trained” such that the function W (x; θ∗) with optimized
parameters θ∗ satisfies the Hamilton-Jacobi-Bellman equation

inf
u∈U
{ℓ(x, u) +DW (x; θ∗)f(x, u)} ≈ 0

or the Bellman equation

inf
u∈U
{ℓ(x, u) +W (g(x, u); θ∗)−W (x; θ∗)} ≈ 0

as good as possible

Training DNNs is an interesting problem in itself, which we briefly discussed in
Part 3

Here, the following necessary property will be discussed:

Can DNNs provide approximations W (· ; θ∗) ≈ V for large space dimensions d ?
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Universal approximation theorem
Let K = [−κ, κ]n, κ > 0 fixed, d ∈ N varying

, ∥V ∥∞,K := maxx∈K |V (x)|, and

Wn
1 :=

{
V ∈ C1(K,R)

∣∣∣∣ n∑
i=1

∥∥∥ ∂
∂xi
V
∥∥∥
∞,K
≤ 1

}

Theorem [Cybenko ’89, Mhaskar ’96, Poggio et al. ’17]:
Let σ1 : R→ R be infinitely differentiable and not polynomial. Then, for any
ε > 0, a neural network with one hidden layer provides an approximation

inf
θ∈RP
∥W (x; θ)− V (x)∥∞,K ≤ ε

for any V ∈ Wn
1 with a minimal number of neurons

N = O
(
ε−n
)
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Quiz

Assume the required number of
neurons for achieving the accuracy
ε > 0 is O (ε−n).

By how much does the number
increase if we want to reduce the
accuracy ε to ε/5 ?

By a factor of 5

By a factor of n5

By a factor of 5n

What is worse?

E.g., for n = 10: 510 ≈ 107 > 105
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Separable functions



What are separable functions and why are they beneficial?
Separable function:

V (x) =
s∑

j=1

Vj(wj), wj =

 xij,1
...

xij,dj



We approximate the individual Vj by
the grey blocks, whose number grows
linearly with the dimension d

Applying the universal approximation
theorem separately in each grey block,
we can prove:

x1 x2 x3 x4 xd−1 xd. . .

y11,1
w1. . . y11,d1

y12,1
w2. . . y12,d2

. . . y1s,1
ws. . . y1s,ds

x1 x2 x3 x4 xd−1 xd

y11,d1
y1s,1

V1

y21,1 . . . y21,M

V2

y22,1 . . . y22,M . . .
Vs

y2s,1 . . . y2s,M

W ≈ V

Theorem [Gr. 21]: Functions V (x) =
∑s

j=1 with Vj ∈ Wdj
1 and independent of d

can be approximated on K with any accuracy ε > 0 with a number of neurons
growing only polynomially in d

More precisely, the number of required neurons is O
(
ε−dmax

)
O
(
ddmax+1

)
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Distributed optimal control



Setting for distributed control
We assume that the system can be decomposed into
s subsystems żi = fi(zi, z−i, ui), i = 1, . . . , s, z−i =



z1
...

zi−1

zi+1
...
zs

with zi ∈ Rni

, whose interconnection is expressed via an
undirected graph: Whenever fi depends on zj,
then there is an edge from zi to zj

z1

z2

z3

z4

z5

z6 z7

z8
z9

z10 z11

z12 z13z14

z15

dG(i, j) := graph distance from i-th to j-th subsystem
e.g., dG(1, 11) = 4, dG(2, 6) = 2

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 141/156



Setting for distributed control
We assume that the system can be decomposed into
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Setting for distributed control

żi = fi(zi, z−i, ui), i = 1, . . . , s, z−i =



z1
...

zi−1

zi+1
...
zs


Likewise, we assume that the cost ℓ(x, u) can be written as

ℓ(x, u) =
s∑

i=1

ℓi(zi, z−i, ui)

The graph structure is then determined by the fi and the ℓi together

Question: How does the state of a subsystem influence the optimal trajectory
Question: of another subsystem far away?

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 142/156



Setting for distributed control
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Decaying sensitivity



Convoy example

Example: Convoy of vehicles

It is known that a perturbation in the first vehicle (e.g., a braking manoeuvre)
may amplify while propagating through the convoy

However, the perturbation will decrease quickly, if the vehicles are controlled
optimally
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Convoy example

Consider a convoy of i = 1, . . . , N vehicles on a road with state zi = (xi, vi)
T

and dynamics
ẋi = vi, v̇i = ui

We compute a control that minimizes the functional∫ ∞

0
(x1(t)− xref (t))

2 +

N−1∑
i=1

(xi+1(t)− xi(t)− L)2 + γ∥v(t)− Ivref∥22 + δ∥u(t)∥22dt
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Convoy example

Optimal solutions for N = 100 vehicles, shown i = 1, . . . , 5, xref ≡ 0, vref ≡ 0

Positions

0 1 2 3 4 5 6 7 8 9 10
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-2

-1.5

-1

-0.5

0

0.5

⇝ The sensitivity decays with the distance from the perturbation
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Decaying sensitivity for LQ optimal control
Consider linear quadratic optimal control problems, i.e., with linear dynamics
f(x, u) = Ax+Bu and with quadratic cost ℓ(x, u) = xTQx+ uTRx

Then the optimal value function and the optimal feedback are quadratic and
linear, respectively, i.e., V (x) = xTPx, u⋆ = F (x) = Kx

Theorem [Shin/Lin/Qu/Wierman/Anitescu ’23]: Under suitable uniform
stabilizability and detectability assumptions the inequality

∥Kij∥ ≤ CρdG(i,j)

holds for a 0 < ρ < 1, with Kij being the block in K mapping zj to ui

(proved in discrete time but expected to hold also in continuous time)

Corollary [Sperl/Gr./Saluzzi/Kalise ’23]: On suitable graphs this implies

∥Pij∥ ≤ CρdG(i,j)

“Exponentially decaying sensitivity”
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Construction of the separable approximations



Structure of the separable approximation

We approximate V by a separable function

V (x) ≈
s∑

k=1

Ψl
k(zik,1 , zik,2 , . . . , zik,l)

Then each wk has dimension dk = nik,1 + nik,2 + . . .+ nik,l

• ⇝ complexity theorem applies if nj and l bounded independent of d

• ⇝ approximation by polynomially growing NNs possible

Note: It is in general unrealistic to expect

V (x) =
s∑

k=1

Ψl
k(zik,1 , zik,2 , . . . , zik,l) or V (x) ≈

s∑
k=1

Ψ1
k(zik,1)
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Separable approximations for V (x) = xTPx
Assume for a moment that dG(i, j) = |i− j| (as in the convoy example)

Then the decay of ∥Pij∥ implies

V (0, . . . , 0, zk, zk+1, . . . , zs) − V (0, . . . , 0, 0, zk+1, . . . , zs)

This implies
V (x) ≈ V (0) +

s∑
k=1

Ψl
k(zk, . . . , zmin{k+l,s}),

Theorem [Sperl/Saluzzi/Kalise/Gr. ’25]: When the sensitivity decays exponentially∣∣∣∣∣V (x)− V (0)−
s∑

k=1

Ψl
k(zk, . . . , zmin{k+l,s})

∣∣∣∣∣ ≤ cρl on L2 balls

If dG(zi, zj) ̸= |i− j|, then for any node the number of nodes with graph
distance l must grow slower than ρ−l

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 148/156
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Separable approximations for nonlinear V
For nonlinear problems, the optimal value function is not of the form V (x) = xTPx

In this case, decaying sensitivity can be expressed via the Lipschitz constant Lij of

zj 7→ V (z1, . . . , zi−1, zi, zi+1, . . . , zs)− V (z1, . . . , zi−1, 0, zi+1, . . . , zs) (∗)

Theorem [Sperl/Saluzzi/Kalise/Gr. ’25]: If Lij ≤ CρdG(i,j)∥zi∥ then∣∣∣∣∣V (x)− V (0)−
q∑

k=1

Ψl
k(zk, . . . , zmin{k+l,s})

∣∣∣∣∣ ≤ cρl on L2 balls

Moreover, estimates for slower-than-exponentially decaying sensitivity are possible

The important open question is: When do the Lipschitz constants Lij of (∗)
satisfy this inequality? This is subject of current research

Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 149/156
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Moreover, estimates for slower-than-exponentially decaying sensitivity are possible

The important open question is: When do the Lipschitz constants Lij of (∗)
satisfy this inequality?

This is subject of current research
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Numerical test
We test the approach on the linear-quadratic problem with

ẋ = Ax+ u, ℓ(x, u) = ∥x∥22 + ∥u∥22,
and A ∈ R200×200 a randomly generated banded matrix

This induces exponentially decaying sensitivity of P
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ẋ = Ax+ u, ℓ(x, u) = ∥x∥22 + ∥u∥22,
and A ∈ R200×200 a randomly generated banded matrix

This induces exponentially decaying sensitivity of P

0 25 50 75 100 125 150 175 200

10 17

10 14

10 11

10 8

10 5

10 2

101

0 25 50 75 100 125 150 175 200

10 1

100

∥Pj1∥, j = 1, . . . , 200 singular values of P
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Numerical test

Separable network structure with

dj = 1 ⇒ zk = xk

l = 10 (number of inputs
for each Ψl

k)

M = 16 (number of neurons
for each Ψl

k)

sigmoid activation functions

In order to avoid effects due to in-
complete learning in reinforcement
learning (exploration vs. exploita-
tion), we use supervised learning to
learn V
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W ≈ V
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Numerical results

For the 200-dim problem we reach a mean-square error < 10−3 in the test data
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Numerical results
We have numerically evaluated the minimal number of neurons and parameters in
the network for achieving a mean-square error in the test data of 10−3 for varying
dimensions
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Interestingly, the growth is linear (and not polynomial with degree ≥ 2)
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Separable vs. fully connected networks
Obviously, one can always embed a
separable network into a fully con-
nected network

. Is there any benefit
in using the separable structure?
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We conjecture that this can
be explained using anchored
decompositions [Sobol ’69, Kuo/

Sloan/Wasilikowski/Woźniakowski ’09,

Rieger/Wendland ’24]
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Summary of Part 5

Using Deep Neural Networks for approximating optimal value function does
in general not remove the curse of dimensionality

However, the existence of separable approximations of optimal value
functions allows for a curse-of-dimensionality-free approximation via deep
neural networks

This existence can be established via decaying sensitivity

Open questions: – Exponential sensitivity for nonlinear problems

Open questions: – Analysis of sampling efficiency
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M. Sperl, L. Saluzzi, L. Grüne, and D. Kalise, “Separable approximations of optimal value
functions under a decaying sensitivity assumption”. In: Proc. CDC 2023, 2790–2795
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Lars Grüne, An Introduction to Optimal Control and Recent Solution Strategies, p. 156/156

https://dx.doi.org/doi:10.48550/arXiv.2502.08559

	Indirect solution methods
	Direct solution methods

