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Table of Symbols

The following table lists the most important symbols used throughout this thesis:

Symbol Interpretation

t current time; set to 0 (arbitrary)

s future time; s > t

T future time; date of maturity of zero bond

T − t time-to-maturity of zero bond at current time t

κ speed of adjustment of spot rate

θ long-term value of spot rate

σ2 interest rate variance

λ market risk value

r, r(t) current interest rate

r(s) interest rate at future time s

(·)∗ the respective variable of country Y

P (r, t, T ) price of zero bond at time t with time-to-maturity T − t and spot rate r

R(r, t, T ) yield of zero bond at time t with time-to-maturity T − t and spot rate r

A, B determine the price and yield of a zero bond respectively

φ1, φ2, φ3 determine the price and yield of a zero bond respectively

Et current exchange rate; set to 1 (arbitrary)

Es exchange rate at future time s

Ee
s expected exchange rate at future time s

∆ length of period; set to 0.01 in the latter part of this thesis (arbitrary)
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Chapter 1

Introduction

1.1 Motivation

Exchange rates play a very important role in many areas. Economic situations,

investment decisions and even the cost of travelling are influenced by the cost of

foreign currency. Beside the spot exchange rate the expectation of its future value

has important implications on many decisions. The pressure of an appreciation

and depreciation, respectively, on the exchange rate influences the movement of

capital and investment. Investments and their yields in the home or foreign coun-

try depend critically on the expected exchange rate in the future. The exchange

rate risk determines the risk premium for investments in a foreign country and

has led to many financial instruments used to hedge against this risk. Further-

more, the costs and, as a result, the competitiveness of exported and imported

goods are fundamentally dependent on the exchange rate. In addition to that,

the exchange rate politics of a central bank are influenced by the expectations

of the future values of the exchange rate. These examples and further consid-

erations emphasize the importance of the exchange rates and the expectation of

their future development. Considering all these facts it is not surprising that

researchers spend a great effort to explain the mechanism of determination of the

spot exchange rate, the future expectation and their characteristics.

1



2 Chapter 1: Introduction

In this thesis, I present possibilities of evolving paths of expected exchange

rates and investigate their particular structure and behavior. The model of Cox,

Ingersoll, and Ross [6] serves as a cornerstone for modelling the term structure

and its implications. As interest rates interact with exchange rates and vice versa,

an approach of investigating the expectations needs to take the term structure

into consideration. I hold the view that the model of Cox, Ingersoll, and Ross

[6] is perfectly suited for this task. Contrary to other models, the expectation

of the exchange rate is not only investigated at one particular future time, but

the whole path of expected values is examined. This approach takes into con-

sideration that, similar to the term structure, there exist investors with different

preferences regarding the length and other characteristics of investment opportu-

nities. Consequently, various expectations at different future times are formed.

After introducing certain mathematical definitions and theorems used through-

out the whole thesis and necessary for a deeper understanding of the papers of

Cox, Ingersoll, and Ross [5], [6], the theory of the term structure is presented.

First of all, the general equilibrium model is introduced. After that, this model is

used to evolve the term structure. In Section 3.3, the characteristics are analyzed

and visualized. In Chapter 4, expectations of future values of the exchanges

rates are evaluated. It is important to take into consideration that there are

several possibilities of forming expectations. In Chapter 5, another approach of

calculating the expected exchange rates and their depreciation rates respectively

is presented. Chapter 6 deals with the question of how the expectations and

changes of the path of expectations due to changes in the fundamental factors

influence the determination of the spot exchange rate. Contrary to more simple

models determining the current exchange rate, e.g. based on the interest rate

parity, the influence of the whole path of expectations on the spot exchange rate

is investigated and may, therefore, represent an extension and a more realistic

approach. Finally, various examples are presented, analyzed and visualized in

Chapter 7.

The CD-ROM includes all MATLAB source files mentioned throughout this

thesis as well as the thesis itself.

At this point, I would like to thank Dr. Christian Bauer for the support and

the co-operation. Furthermore, I would like to thank Professor Dr. Lars Gruene

and Professor Dr. Bernhard Herz. This thesis is dedicated to my parents.
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1.2 Notions and Translations

In my thesis, I use several notions for economic variables. In this section, I intro-

duce the nomenclature and the meaning of the various terms.

First of all, the notion i is used to describe the interest rate. The interest is

the payment made by a borrower for the use of money. It is usually calculated as

a percentage of the capital borrowed. This percentage is called the interest rate.

One can distinguish between discrete payments of interest, e.g. every year, and

continuous payments.

The yield-to-maturity is the annualized rate of return in percentage terms on

a fixed income instrument such as a bond.

A discount bond is a bond, which is sold at a price below its face value and returns

its face value at maturity.

If one considers continuous payments of interest and compound interest, the

connection between the price of a bond and its yield-to-maturity can be expressed

as follows:

FV = SP · eR·(T−t),

where, FV is the future value and SP the starting principal of the bond. Further-

more, R is the yield-to-maturity and T − t the time-to-maturity if T is the date

of maturity and t the current time. The expression

eR·(T−t) − 1,

is called the total return. It is given in percentage terms. If a bond’s yield-to-

maturity equals R and the time-to-maturity is T − t, the total return is expressed

by RTR. Consequently,

RTR = eR·(T−t) − 1.

The spot rate at time s is the rate that applies to an infinitesimally short

period of time at time s. The notions spot rate and current interest rate are

synonymous.

The notion long-term yield indicates the yield for a bond with a relatively

long time-to-maturity and short-term yield indicates the yield for a bond with a

relatively short time-to-maturity. The yield in the long-run indicates the yield

for a bond purchased at a relatively distant future point of time, where the yield

in the short-run indicates the yield for a bond purchased in the relatively near

future.



4 Chapter 1: Introduction

The exchange rate is the price of one unit of the foreign currency valued in

the domestic currency. This is called the price quotation. The spot exchange rate

is the exchange rate at a particular point of time.

Furthermore, I have included a table with translations from English into Ger-

man, so that readers may understand the use of the terms more easily.

English German

discount bond Nullkuponanleihe

in the long-run auf lange Sicht

in the short-run auf kurze Sicht

interest Zinsen

interest rate Zins (in Prozent)

long-term langfristig

short-term kurzfristig

spot rate aktueller Zins (in Prozent)

maturity Faelligkeit

time-to-maturity Laufzeit

yield-to-maturity jaehrliche Rendite (in Prozent)

price quotation Preisnotierung

total return Vermoegenszuwachs ueber die gesamte Laufzeit (in Prozent)

starting principal Kapitalsumme zu Beginn

face value Nominalwert



Chapter 2

Mathematical Preliminaries

2.1 Probability Spaces, Random Variables and

Stochastic Processes

To understand the calculations within this thesis, we need to find reasonable

mathematical notions corresponding to the quantities mentioned and mathemat-

ical models for the problems. To this end, a mathematical model for a random

quantity has to be introduced. Before defining what a random variable is, it is

helpful to recall some concepts from general probability theory. The reader is

referred to e.g. Bol [1] or Øksendal [13].

Definition 2.1 If Ω is a given set, then a σ -algebra F on Ω is a family F of

subsets of Ω with the following properties:

5



6 Chapter 2: Mathematical Preliminaries

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

(iii) A1, A2, . . . ∈ F ⇒ A :=
⋃∞

i=1 Ai ∈ F
The pair (Ω,F) is called a measurable space. A probability measure P on a

measurable space (Ω,F) is a function P : F → [0, 1], such that:

(a) P (∅) = 0, P (Ω) = 1

(b) if A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint, then

P
( ⋃∞

i=1 Ai

)
=

∑∞
i=1 P (Ai)

The triple (Ω,F , P ) is called a probability space. It is called a complete prob-

ability space if F contains all subsets G of Ω with P -outer measure zero, i.e.

with

P ∗(G) := inf{P (F ); F ∈ F , G ⊂ F} = 0.

It is obvious that any probability space can be made complete simply by

adding to F all sets of outer measure zero and by extending P accordingly. In

the following we let (Ω,F , P ) denote a given complete probability space.

A well known example of a σ-algebra is the Borel σ-algebra containing all open

sets, all closed sets, all countable unions of closed sets, all countable intersections

of such countable unions, etc.

Definition 2.2 If (Ω,F , P ) is a given probability space, then a function

Y : Ω → IRn is called F -measurable if

Y −1(U) := {ω ∈ Ω; Y (ω) ∈ U} ∈ F

for all open sets U ∈ IRn.



2.1 Probability Spaces, Random Variables and Stochastic Processes 7

Now it is possible to define a random variable:

Definition 2.3 A random variable X is an F-measurable function X : Ω → IRn.

Every random variable induces a probability measure µX(B) = P (X−1(B)).

µX is called the distribution of X.

Moreover, the mean of a random variable and the independency of various

random variables are defined the following way:

Definition 2.4 If
∫
Ω
| X(ω) | dP (ω) < ∞, then the number

E(X) :=

∫

Ω

X(ω)dP (ω) =

∫

IRn

xdµX(x) (2.1)

is called the expectation of X.

More generally, if f : IRn → IR is Borel measurable and∫
Ω
|f(X(ω))|dP (ω) < ∞, then we have

Definition 2.5

E(f(X)) :=

∫

Ω

f(X(ω))dP (ω) =

∫

IRn

f(x)dµX(x). (2.2)

Definition 2.6 A collection of random variables {Xi : i ∈ I} is independent if

the collection of generated σ-algebras HXi
is independent, that is

P (Hi1 ∩ . . . ∩Hik) = P (Hi1) ∗ . . . ∗ P (Hik) for all choices of

Hi1 ∈ HXi1
, . . . , HXik

∈ Hik with different indices i1, . . . , ik. The σ-algebra gen-

erated by U , HU , is the smallest σ-algebra containing U .

Furthermore, we have to deal with stochastic processes. The definition is as

follows:
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Definition 2.7 A stochastic process is a parameterized collection of random

variables

{Xt}t∈T

defined on a probability space (Ω,F , P ) and assuming values in IRn.

The parameter space T is usually the half-line [0,∞). Note that for each

t ∈ T fixed we have a random variable

ω → Xt(ω); ω ∈ Ω.

On the other hand, fixing ω ∈ Ω we can consider the function

t → Xt(ω); t ∈ T,

which is called a path of Xt.

It may be useful for the intuition to think of t as ’time’ and each ω as an

individual ’particle’ or ’experiment’. With this picture Xt(ω) would represent

the position (or result) at time t of the particle (or experiment) ω.

For later purposes we need the Brownian motion, Bt. It is a particular stochas-

tic process. For further information about the Brownian motion and its properties

the reader is referred to Yeh [15].

2.2 An Introduction to Stochastic Differential

Equations (SDE)

2.2.1 General Form of a Stochastic Differential Equation

If we allow for some randomness in some of the coefficients of a differential equa-

tion, we often obtain a more realistic mathematical model of a particular situa-
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tion. For example, a stochastic differential equation may take the form:

dXt

dt
= b(t,Xt) + σ(t,Xt)Wt, (2.3)

where b and σ are some given functions. As one can see, we allow for some

randomness by introducing a ’noise’ term represented by the stochastic process

Wt.

We expect the stochastic process Wt to fulfill the following characteristics:
(i) t1 6= t2 ⇒ Wt1 and Wt2 are independent

(ii) {Wt} is stationary, i.e. the (joint) distribution of {Wt1+t . . . Wtk+t}
does not depend on t

(iii) E(Wt) = 0 for all t

If we rewrite (2.3) by replacing the Wt-notation by a suitable stochastic process

{Vt}t≥0 and if we take into account the assumptions (i)-(iii) on the stochastic

process, Vt can be identified by the Brownian motion Bt, the stochastic differential

equation can be written as:

Xk = X0 +

∫ t

0

b(s,Xs)ds +

∫ t

0

σ(s,Xs)dBs. (2.4)

The existence, in a certain sense, of the latter integral of (2.4) will be proven

in the remainder of this chapter.

2.2.2 Itô’s Integral and Itô’s Formula

In this part, we will introduce the Itô integral and the Itô formula for problems

dealing with 1-dimensional stochastic differential equations. However, straightfor-

ward calculations lead to an extension of the definitions for n-dimensional cases.

The reader is referred to Øksendal [13].

It can be shown that for a set of elementary functions, which take the form

φ(t, ω) =
∑

j

ej(ω) · χ[tj ,tj+1)(t),

where χ denotes the characteristic (indicator) function, the integral
∫ T

S
φ(t, ω)dBt(ω)

can be defined as follows:

∫ T

S

φ(t, ω)dBt(ω) =
∑
j≥0

ej(ω) · [Btj+1
−Btj ](ω),
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where

tk = tnk =





k · 2−n if S ≤ k · 2−n ≤ T

S if k · 2−n < S

T if k · 2−n > T



 .

Note that - unlike the Riemann-Stieltjes integral - it does make a difference

here what points tj we choose. The choice of using the left end point of the

interval leads to the Itô integral.

Furthermore, there exists a class V(S, T ) of functions (for further information

see Øksendal [13]) for which the Itô integral can be defined. It can be shown

that for any function f of this class there exists a sequence {φn} of elementary

functions, such that:

E
[ ∫ T

S

(f − φn)2dt
]
→ 0 as n →∞.

As a result, the Itô integral can be defined:

Definition 2.8 Let f ∈ V(S, T ). Then the Itô integral of f (from S to T ) is

defined by:

∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dBt(ω),

where {φn} is a sequence of elementary functions, such that

E
[ ∫ T

S

(f(t, ω)− φn(t, ω))2dt
]
→ 0 as n →∞.

In the latter part, we may refer to the following property of the Itô integral:

E
[ ∫ T

S

fdBt

]
= 0 for f ∈ V(0, T ). (2.5)

If Xt is an Itô process (see Øksendal [13]), than

Xt = X0 +

∫ t

0

u(s, ω)ds +

∫ t

0

v(s, ω)dBs
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can be written in the shorter differential form

dXt = udt + vdBt.

Now we will introduce the Itô formula which is easier to handle than the Itô

integral for calculations.

Definition 2.9 Let Xt be an Itô process given by:

dXt = udt + vdBt.

Let g(t, x) ∈ C2([0,∞)×R). Then Yt = g(t,Xt) is again an Itô process, and

dYt =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2,

where (dXt)
2 = (dXt)(dXt) is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt.

As mentioned above, the definitions can be extended to define the multidi-

mensional Itô integral and the multidimensional Itô formula.

For an example of usage for solving a stochastic differential equation see Ap-

pendix A.

2.2.3 Stochastic Control Problems and the Hamilton-Jacobi-

Bellman Equation

In this context with control problems which allow for some randomness, the

Hamilton-Jacobi-Bellman equation offers a solution method. However, before

stating the theorem a few properties of the so called Itô diffusion need to be

investigated.
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Definition 2.10 A time homogeneous Itô diffusion is a stochastic process

Xt(ω) = X(t, ω) : [0,∞) × Ω → IRn satisfying a stochastic differential equation

of the form

dXt = b(Xt)dt + σ(Xt)dBt, t ≥ s; Xs = x,

where Bt is m-dimensional Brownian motion and b, σ satisfy particular conditions

necessary for the existence and uniqueness of a solution of a stochastic differential

equation.1

Usually, b is called the drift coefficient and σ, the diffusion coefficient.

For further investigations, we need to describe the observed behavior of a

stochastic process. For this purpose we define:

Definition 2.11 Let Bt(ω) be n-dimensional Brownian motion. Then we define

Ft = F (n)
t to be the σ-algebra generated by the random variables {Bi(s)}1≤i≤n,0≤s≤t.

In other words, Ft is the smallest σ-algebra containing all sets of the form

{ω; Bt1(ω) ∈ F1, . . . , Btk(ω) ∈ Fk},

where tj ≤ t and Fj ⊂ IRn are Borel sets, j ≤ k = 1, 2, . . .

One often thinks of Ft as the history of Bs up to time t. Intuitively, a function

h is Ft-measurable if the value of h(ω) can be decided from the values of Bs(ω)

for s ≤ t. Note that Fs ⊂ Ft for s < t, that is, {Ft} is increasing.

Straightforward calculations prove that an Itô diffusion satisfies the important

Markov property, stating that the future behavior of the process given what has

1For further information the reader is referred to Øksendal [13].
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happened up to time t is the same as the behavior obtained when starting the

process at Xt. For further information the reader is referred to Øksendal [13].

Moreover, the strong Markov property states that the Markov property holds

if the time t is replaced by a random time τ(ω) of a more general type called

stopping time:

Definition 2.12 Let {Nt} be an increasing family of σ-algebras. A function

τ : Ω → [0,∞] is called a (strict) stopping time with respect to {Nt} if

{ω; τ(ω) ≤ t} ∈ Nt

for all t ≥ 0.

For an open U ⊂ IRn the first exit time

τU := inf{t > 0; Xt ∈ IRn \ U}

is a stopping time with respect to Mt, which is the σ-algebra generated by

{Xr; r ≤ t}.
For solving stochastic control problems it is fundamental to associate a second

order partial differential operator A to an Itô diffusion. The basic connection

between A and Xt is the generator of the process Xt. One can show that for an

Itô diffusion and a function f ∈ C2
0(IRn) the generator A satisfies

Af(x) =
∑

i

bi(x)
∂f

∂xi

+
1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj

. (2.6)

Suppose that the state of a system at time t is described by an Itô process Xt

of the form:

dXt = dXu
t = b(t,Xt, ut)dt + σ(t,Xt, ut)dBt, (2.7)

where Xt ∈ IRn, b : IR × IRn × U → IRn, σ : IR × IRn × U → IRn×m and Bt is

m-dimensional Brownian motion. Here ut ∈ U ⊂ IRk is a parameter whose value

we can choose in the given Borel set U at any instant t in order to control the

process Xt. Thus ut = u(t, ω) is a stochastic process. Since our decision at time

t must be based upon what has happened up to time t, the function ω → u(t, ω)

must at least be measurable with respect to F (m)
t .
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Let f : IR× IRn×U → IR and g : IR× IRn → IR be given continuous functions,

let G be a fixed domain in IR× IRn and let T̂ be the first exit time after s from

G for the process {Xs,x
r }r≥s, where Xs,x

r is the solution of (2.7) at time r with an

initial value x = Xs,x
s at time s. Substituting Yt = (s + t,Xs,x

s+t), where y = (s, x)

represents the starting point of the process Yt, one can introduce a performance

function

Ju(y) = Ey
[ ∫ τG

0

fut(Yt)dt + g(YτG
)χ{τG<∞}

]
, (2.8)

where τG = T̂ − s. The performance function represents the value of the function

to be maximized dependent on the value of (s, x), that is the initial value x at

time s, and the choice of the control. The problem is - for each y ∈ G - to find

the number Φ(y) and a control u∗ = u∗(t, ω) = u∗(y, t, ω) ∈ A, such that:

Φ(y) := sup
u(t,ω)

Ju(y) = Ju∗(y), (2.9)

where the supremum is taken over a given family A of admissible controls. Such

a control u∗ - if it exists - is called an optimal control and Φ is called the optimal

performance.

Functions u(t, ω) of the form u(t, ω) = u0(t,Xt(ω)) for some function

u0 : IRn+1 → U ⊂ IRk are called Markov controls. We only consider Markov

controls u = u(t,Xt(ω)).

For υ ∈ U and φ ∈ C2
0(IR× IRn) we define

(Lυφ)(y) =
∂φ

∂s
(y) +

∑
i

bi(y, υ)
∂φ

∂xi

+
1

2

∑
i,j

(σσT )i,j(y, υ)
∂2φ

∂xi∂xj

, (2.10)

where y = (s, x) and x = (x1, · · · , xn). Then for each choice of the function u the

solution Yt = Y u
t is an Itô diffusion with generator A (see (2.6)) given by

(Aφ)(y) = (Lu(y)φ)(y).

It can be shown that reducing the investigation on Markov controls is not too

restrictive.

Now one can state the Hamilton-Jacobi-Bellman Equation:

Theorem 2.13 (The Hamilton-Jacobi-Bellman Equation)

Define

Φ(y) = sup{Ju(y); u = u(Y ) Markov control}.
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Suppose that an optimal Markov control u∗ exists. Under certain conditions2

there is

sup
υ∈U

{fυ(y) + (LυΦ(y))} = 0 (2.11)

for all y ∈ G and

Φ(y) = g(y)

for all y ∈ ∂G.

The supremum in (2.11) is obtained if υ = u∗(y) where u∗(y) is optimal. In

other words,

f(y, u∗(y)) + (Lu∗(y)Φ)(y) = 0

for all y ∈ G.

It can be shown that the condition above is also sufficient.

2For further information the reader is referred to Øksendal [13].
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Chapter 3

The Term Structure of an

Economy

In this chapter, a theory of the term structure of interest rates based on a general

equilibrium model of asset prices is introduced. Both models are treated in the

papers of Cox, Ingersoll, and Ross [5], [6]. It is important to point out that in

Section 3.1 and 3.2 only an outline of the results and ideas is presented. Fur-

thermore, I emphasize that the major interest is paid on those results which are

necessary for the problems dealt with within this thesis. Hence, the results of

Section 3.2, especially those dealing with the current interest rate and the term

structure, which are the cornerstones of the research done in Chapter 4, 5, and

6, are more important than those of Section 3.1. To gain deeper understanding

of the results and proofs of these two papers, I hold the view that the interested

reader needs to study the rather complicated models more intensively. I confine

myself to those results which serve as the background of my investigations.

17
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3.1 An Intertemporal General Equilibrium Model

of Asset Prices (CIRI)

In this paper by Cox, Ingersoll and Ross [5], a general equilibrium asset pricing

model for use in applied research is developed. The main result is the endoge-

nously determined price of any asset in terms of the underlying variables in the

economy. It follows from the solution of a partial differential equation, which

needs to be satisfied by the asset prices. Several assumptions are made to de-

scribe a simple, however easily extended, model of the economy.

First of all, it is assumed that there is a only a single physical good, which

may be either allocated to consumption or investment. Furthermore, all existing

values are expressed in terms of units of this good.

The production possibilities are described by a system of stochastic differential

equations transforming an investment of a vector η of amounts of the good in the

n linear production processes. The processes take the form:

dη(t) = Iηα(Y, t)dt + IηG(Y, t)dω(t). (3.1)

The vector of expected rate of return on η is described by α(Y, t).1

In the equation above and in the rest of this chapter ω(t) is a (n + k) dimen-

sional Wiener process or Brownian motion.

Additionally, the vector of the state variables describing the status of the

economy is also determined by a system of stochastic differential equations. It

takes the following form:

dY (t) = µ(Y, T )dt + S(Y, t)dω(t). (3.2)

The k-dimensional vector of expected rate of return on Y (t) is described by

µ(Y, t).2 Both Y and the joint process (η, Y ) are Markov.

Consequently, this framework includes both uncertain production and random

technological change. The latter leads to a change in the status of the economy.

As a result, the probability distribution of the current output depends on the

1α(Y, t) is a bounded n-dimensional vector valued function of Y and t. Iη is an n×n diagonal

matrix valued function of η whose ith diagonal element is the ith component of η. G(Y, t) is a

bounded n× (n + k) matrix valued function of Y and t.
2µ(Y, t) is k-dimensional.
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current level of the state variables Y , which are themselves changing randomly

over time and thus will determine the future production opportunities.

The economy’s individuals have different opportunities to invest their wealth.

Besides investing in physical production through firms, there is a market for

instantaneous borrowing and lending at an interest rate r, which is the riskless

alternative to investing in contingent claims to amounts of the good. These

securities are specified by all payoffs which may be received from that claim.

These payoffs may depend on the state variables and on the level of aggregate

wealth. Therefore, one can write the stochastic differential equation governing

the movement of the value of claim i, F i, as

dF i = (F iβi − δi)dt + F ihidω(t). (3.3)

To express the dependency of the payout on wealth and the status variables,

one can write δi as δ(W,Y )i. The total mean return on claim i, βiF
i, is defined as

the payout received, δi, plus the mean price change, F iβi− δi. That is, expecting

a payoff of δi, the total mean return is reduced by that amount.

A fixed number of homogenous individuals seeks to maximize an objective

function of the form:

E

∫ t′

t

U [C(s), Y (s), s]ds. (3.4)

U is a von Neumann-Morgenstern utility function dependent on the consump-

tion flow C(s) and the state of the economy Y (s). In addition to that, adjustment

or transactions costs are neglected.

Cox, Ingersoll, and Ross assume (n + k) basis opportunities for investment

in physical production or contingent claims. Additionally, the (n + k + 1)st is

the opportunity in riskless lending or borrowing. It is pointed out that a greater

number of opportunities can be easily obtained by a linear combination of the

basis. If W represents the current amount of wealth, the budget constraint of the

maximizing problem can be written as

dW =
[ n∑

i=1

aiW (αi − r) +
k∑

i=1

biW (βi − r) + rW − C
]
dt

+
n∑

i=1

aiW
( n+k∑

j=1

gijdωj

)
+

k∑
i=1

biW
( n+k∑

j=1

hijdωj

)

≡ Wµ(W )dt + W

n+k∑
j=1

qjdωj, (3.5)

where aiW is the amount of wealth invested in the ith process, and biW is the

amount of wealth invested in the ith contingent claim.
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Taking into account that ai represents investment in physical processes, the

value of ai needs to be nonnegative. Moreover, negative consumption does not

make sense. Further assumptions allow for the application of standard results

from stochastic control theory. As a result, the stochastic control problem of

maximizing (3.4), where the system is described by (3.2) and (3.5), can be eas-

ily solved using the Hamilton-Jacobi-Bellmann equation leading to a system of

necessary and sufficient conditions for the maximization of

Ψ ≡ LνJ + U (3.6)

as a function of C, a, b, where J is an indirect utility function and ν ∈ V . V is a

class of admissable feedback controls.3

Considering the methods of Kuhn-Tucker these conditions can be written as:

ΨC = UC − JW ≤ 0 (3.7)

CΨC = 0 (3.8)

Ψa = [α− r1]WJW + [GGT a + GHT b]W 2JWW

+ GST WJWY ≤ 0 (3.9)

aT Ψa = 0 (3.10)

Ψb = [β − r1]WJW + [HGT a + HHT b]W 2JWW

+ HST WJWY = 0, (3.11)

where 1 is a (k × 1) unit vector.

W and J are the current wealth and indirect utility function respectively. The

optimal values of Ĉ, â,and b̂ are functions of only W , Y , and t.

The economy’s equilibrium is reached when the current wealth is only invested

in physical production, that is,
∑

ai = 1 and bi = 0 for all i. This straightforward

definition follows from the assumption of homogenous individuals. Furthermore,

the individual chooses Ĉ, â, and b̂ taking r, α,and β as given. Using the equations

(3.9)-(3.10) one can show that with b = 0 the values of a and r and, consequently,

β can be determined. The value of α is exogenously given. The equilibrium in-

terest rate r, the equilibrium expected returns on the contingent claim β, the

total production plan a, and the total consumption plan C are determined en-

dogenously. The equilibrium values are calculated by investigating two related

problems. First of all, it is assumed that there is only investment in physical pro-

duction. The equilibrium value for a∗ and Lagrangian multiplier λ∗ can be used

3For further information about the application of the stochastic control theory in this par-

ticular case see Appendix B.1.
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to evolve the value for r∗ for the extended problem with borrowing and lending.

Note that both problems meet the requirement of an equilibrium, that is, bi = 0

for all i. The equilibrium interest rate can be written as:

r(W,Y, t) =
λ∗

WJW

(3.12)

= a∗T α−
(−JWW

JW

)(var(W )

W

)

−
k∑

i=1

(−JWYi

JW

)(cov(W,Yi)

W

)
, (3.13)

where cov(W,Yi) stands for the covariance of changes in optimally invested wealth

with changes in the state variable Yi and similarly for var(W ). The expected rate

of return on optimally invested wealth is a∗T α. As one can see, the equilibrium

interest rate may be either less or greater than a∗T α, even though all individuals

are risk averse to gambles on consumption paths. Although investment in the

production processes exposes an individual to uncertainty about the output re-

ceived, it may also allow the investor to hedge against the risk of less favorable

changes in technology. An individual investing only in locally riskless lending

would be unprotected against this latter risk. In general, either effect may dom-

inate. A more intuitive interpretation of the equilibrium interest rate states that

r equals the negative expected rate of change in the marginal utility of wealth.

The authors now turn to the determination of the equilibrium expected return

on any contingent claim. One can show that by using the system (3.7)-(3.11) and

the Itô’s formula the ith value is given by:

(βi − r)F i = [φW φY1 . . . φYk
][F i

W F i
Y1

. . . F i
Yk

]T . (3.14)

The equilibrium expected return for any contingent claim can thus be written

as the riskfree return plus a linear combination of the first partials of the asset

price with respect to W and Y . The coefficients φW and φYi
, respectively, can be

interpreted as factor risk premiums. The factor risk premium of the jth factor is

defined as the excess expected rate of return on a security or portfolio which has

only the risk of the jth factor.

It can also be shown that

βi − r =
−cov(F i, JW )

F iJW

. (3.15)

That is, the excess expected rate of return on the ith contingent claim is equal

to the negative of the covariance of its rate or return with the rate of change in

the marginal utility of wealth. Just as one would expect, individuals are willing
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to accept a lower expected rate of return on securities which tend to pay off more

highly when marginal utility is greater. Hence, in equilibrium such securities will

have a lower total risk premium. Now it is possible to derive the fundamental

valuation equation for the contingent claims. Considering the results from above,

the price of any contingent claim satisfies the partial differential equation

0 =
1

2
var(W )FWW +

k∑
i=1

cov(W,Yi)FWYi
+

1

2

k∑
i=1

k∑
j=1

cov(Yi, Yj)FYiYj

+ [r(W,Y, t)W − C∗(W,Y, t)]FW

+
k∑

i=1

FYi

[
µi −

(−JWW

JW

)
(cov(W,Yi)−

k∑
j=1

(−JWYj

JW

)
(cov(Yi, Yj)

]

+ Ft − r(W,Y, t)F + δ(W,Y, t), (3.16)

where r(W,Y, t) is given from equation (3.12).

The valuation equation (3.16) holds for any contingent claim. The boundary

and appropriate terminal conditions are particular for each claim, which are de-

fined by the particular contract. These conditions can be described by defining

the price F on [t, T ) × Z, where Z ⊂ (0,∞) × IRk is an open set and ∂Z is

its boundary. Furthermore, ∂̂Z is supposed to be the closed subset of ∂Z such

that (W (τ), Y (τ)) ∈ ∂̂Z for all (W (t), Y (t)), where τ is the time of first passage

from Z. That is, ∂̂Z is the set of all accessible boundary points. Consequently,

(3.16) holds for all (s,W (s), Y (s)) ∈ [t, T ) × Z, with the contractual provisions

determining the boundary information

F (W (T ), Y (T ), T ) = Θ(W (T ), Y (T )), W (T ), Y (T ) ∈ Z,

F (W (τ), Y (τ), τ) = Ψ(W (τ), Y (τ)), W (τ), Y (τ) ∈ ∂̂Z.

This result can be explained in a different way. The contingent claim F enti-

tles its owner to receive three types of payments:
(1) if the underlying variables do not leave a certain region defined by Z

before the maturity date T , a payment of Θ is received at the maturity

date,

(2) if the underlying variables do leave the region before T , at time τ , and,

therefore, belong to the set of all accessible boundary points, a payment

of Ψ is received at that time, and

(3) a payout flow of δ is received until time T or time τ , whichever is sooner.
As a result, the unique solution of the partial differential equation can be

written as:
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F (W,Y, t, T ) = EW,Y,t

[
Θ(W (T ), Y (T )) (3.17)

×
[
e−

R T
t β(W (u),Y (u),u)du

]
I(τ ≥ T ) (3.18)

+ Ψ(W (τ), Y (τ), τ) (3.19)

×
[
e−

R T
t β(W (u),Y (u),u)du

]
I(τ < T ) (3.20)

+

∫ τ∧T

t

δ(W (s), Y (s), s) (3.21)

×
[
e−

R s
t β(W (u),Y (u),u)du

]
ds

]
, (3.22)

where E denotes expectation with respect to System I, I(·) is an indicator func-

tion, and τ is the time of first passage to ∂̂Z.

3.2 A Theory of the Term Structure of Interest

Rates (CIRII)

In this paper by Cox, Ingersoll, and Ross [6], the authors use the intertemporal

general equilibrium asset pricing model presented in Section 3.1 to study the

term structure of interest rates. The term structure of interest rates describes

the relationship among the yields on default-free securities that differ only in their

term to maturity. Therefore, it embodies the anticipations of the members of the

market for future events. It could be used to examine the influence of changes in

the underlying variables on the yield curve. In this model, the determinants of

the term premiums are studied and how changes of variables will effect the term

structure. However, it also considers ideas of several, well known, approaches

to the determination of the term structure, like the expectations hypothesis, the

liquidity hypothesis, and the market segmentation hypothesis.

The underlying general equilibrium model is modified and specialized to suit

the needs of the described problem.

As shown in Section 3.1, the equilibrium interest rate satisfies (3.12). More-

over, it was proven that the equilibrium value of any contingent claim, F, satisfies

the following differential equation:
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1

2
a∗T GGT a∗W 2FWW + a∗T GST WFWY +

1

2
tr(SST FY Y )

+(a∗T αW − C∗)FW + µT FY + Ft + δ − rF

= φW FW + φY FY , (3.23)

where δ(W,Y, t) is the payout flow received by the security and

φW = (a∗T α− r)W

φY =
(−JWW

JW

)
a∗T GST W +

(−JWY

JW

)T

SST . (3.24)

To apply these formulas to the problem of the term structure of interest rates,

the authors specialize the preference structure first to the case of constant relative

risk aversion utility functions and then further to the logarithmic utility function.

In particular, they let U(C(s), Y (s), s) be independent of the state variable Y and

have the form

U(C(s), s) = e−ρs
[C(s)γ − 1

γ

]
, (3.25)

where ρ is a constant discount factor. It is easy to show that in this case the

indirect utility function takes the form:

J(W,Y, t) = f(Y, t)U(W, t) + g(Y, t).

This special form brings about two important simplifications. First, the coefficient

of relative risk aversion of the indirect utility function is constant, independent

of both wealth and the state variables:4

−WJWW

JW

= 1− γ. (3.26)

Second, the elasticity of the marginal utility of wealth with respect to each of

the state variables does not depend on wealth, and5

−JWY

JW

=
−fY

f
. (3.27)

As a result, a∗ will depend on Y but not on W . Consequently, the vector of

factor premiums, φY , as defined in (3.24), also depends only on Y as does the

4For calculations see Appendix B.2
5For calculations see Appendix B.2.
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equilibrium interest rate.

The logarithmic utility function corresponds to the special case of γ = 0.6 As

a result φY reduces further to7

φY = a∗T GS. (3.28)

In addition to that, a∗ is explicitly given by

a∗ = (GGT )−1α +
(1− 1T (GGT )−1α

1T (GGT )−11

)
(GGT )−11. (3.29)

Since with constant relative risk aversions neither the interest rate r nor the

factor risk premiums φY depend on wealth, for such securities the partial deriva-

tives FW , FWW , and FWY are all equal to zero.

By combining these specializations, Cox, Ingersoll, and Ross find that the

valuation equation (3.23) then reduces to

1

2
tr(SST FY Y ) + [µT − a∗T GST ]FY + Ft + δ − rF = 0. (3.30)

Furthermore, it is assumed that the change in production opportunities over

time is described by a single state variable, Y (≡ Y1). The development of the

state variable Y is given by the stochastic differential equation

dY (t) = [ξY + ζ]dt + υ
√

Y dω(t), (3.31)

with suitable variables.

Moreover, the means and variances of the rates of return on the production

processes are proportional to Y . Consequently, it is convenient to introduce the

notation α ≡ α̂Y , GGT ≡ ΩY , and GST ≡ ΣY , where the elements of α̂, Ω, and

Σ are constants.

As a result, the equilibrium interest rate can be written as:8

r(Y ) =
(1T Ω−1α̂− 1

1T Ω−11

)
Y. (3.32)

The interest rate thus follows a diffusion process with

drift(r) =
(1T Ω−1α̂− 1

1T Ω−11

)
(ξY + ζ) ≡ κ(θ − r) (3.33)

var(r) =
(1T Ω−1α̂− 1

1T Ω−11

)2

ννT Y ≡ σ2r. (3.34)

6Note: limγ→0 U(C(s), s) = ln(C(s)).
7For calculations see Appendix B.2.
8For calculations see Appendix B.2.
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It is convenient to define a new one-dimensional Wiener process, z1(t), such

that:

σ
√

rdz1(t) ≡ ν
√

Y dω(t). (3.35)

The interest rate dynamics can then be expressed as:

dr = κ(θ − r)dt + σ
√

rdz1. (3.36)

The long-term value is θ and κ determines the speed of adjustment. Expres-

sion (3.36) corresponds to a continuous time first-order autoregressive process,

where the randomly moving interest rate is elastically pulled toward θ if κ > 0

and θ > 0. This structure leads to an interest rate behavior, which is empirically

relevant. Negative spot rates are precluded and if the spot rate reaches zero,

it can subsequently become positive. The absolute variance increases with an

increase in r. The probability density of the interest rate at time s, conditional

on its value at the current time t, is given by:

f(r(s), s; r(t), t) = ce−u−v
(v

u

) q
2

Iq(2(uv)
1
2 ), (3.37)

where

c ≡ 2κ

σ2(1− e−κ(s−t))
(3.38)

u ≡ cr(t)e−κ(s−t) (3.39)

v ≡ cr(s) (3.40)

q ≡ 2κθ

σ2
− 1 (3.41)

and Iq(·) is the modified Bessel function of the first kind of order q. The distri-

bution function is the noncentral chi-square, χ2[2cr(s); 2q + 2, 2u], with 2q + 2

degrees of freedom and parameter of noncentrality 2u proportional to the current

spot rate.

Straightforward calculations give the expected value and variance of r(s) as:9

E(r(s) | r(t)) = r(t)e−κ(s−t) + θ(1− e−κ(s−t)) (3.42)

var(r(s) | r(t)) = r(t)
(σ2

κ

)
(e−κ(s−t) − e−2κ(s−t)) (3.43)

+θ
(σ2

2κ

)
(1− e−κ(s−t))2. (3.44)

9For calculations see Appendix B.2.
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Note that the instantaneous interest rate is proportional to the state variable

and thus can be thought of as the state variable itself.

Consider the problem of valuing a default-free discount bond promising to pay

one unit at time T . The prices of these bonds for all T will completely determine

the term structure. Under these assumptions, the factor risk premium in (3.24)

is10

[
α̂T Ω−1Σ +

(1− 1T Ω−1α̂

1T Ω−11

)
1T Ω−1Σ

]
Y ≡ λY. (3.45)

By using (3.45) and (3.33), one can write the fundamental equation (3.30) for

the price of a discount bond, P , most conveniently as

1

2
σ2rPrr + κ(θ − r)Pr + Pt − λrPr − rP = 0 (3.46)

with boundary condition P (r, T, T ) = 1. The first three terms in (3.46) are the

expected price change for the bond. As the rate of return can be written as ∆P/P ,

the expected rate of return on the bond is r + (λrPr/P ). λr is the covariance of

changes in the interest rate with percentage changes in optimally invested wealth

(market portfolio). The absence of arbitrage means that the return/risk ratio

should be the same for all assets. λ is the market value of risk.11

By taking the relevant expectation, we obtain the bond prices as:

P (r, t, T ) = A(t, T )e−B(t,T )r, (3.47)

where

A(t, T ) ≡
( 2γe

(κ+λ+γ)(T−t)
2

(γ + κ + λ)(eγ(T−t) − 1) + 2γ

) 2κθ
σ2

(3.48)

B(t, T ) ≡ 2(eγ(T−t) − 1)

(γ + κ + λ)(eγ(T−t) − 1) + 2γ
(3.49)

γ ≡ ((κ + λ)2 + 2σ2)
1
2 . (3.50)

Bonds are commonly quoted in terms of yields rather than prices. For the

discount bonds we are now considering the yield-to-maturity R(r, t, T ) is defined

by:

P (r, t, T ) = e−(T−t)R(r,t,T )

R(r, t, T ) =
rB(t, T )− ln(A(t, T ))

(T − t)
. (3.51)

10For calculations see Appendix B.2.
11If one considers the no-arbitrage condition, one can formulate a pricing kernel. The diffusion

coefficient of the dynamics is restricted to be the negative of λ.
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As maturity nears, the yield-to-maturity approaches the current interest rate

independently of any of the parameters. As we consider longer and longer ma-

turities, the yield approaches a limit which is independent of the current interest

rate:

Rl = R(r, t,∞) =
2κθ

γ + κ + λ
. (3.52)

As one can see in Section 3.3, the value of

Rg =
κθ

κ + λ
(3.53)

plays an important role determining the appearance of the term structure.

There are certain conditions on the variables, which can be written as follows:

κθ ≥ 0 (3.54)

σ2 > 0 (3.55)

λ < 0 (3.56)

κ > 0 (3.57)

θ > 0 (3.58)

κ > |λ| (3.59)

The condition on λ ensures positive premiums, since Pr < 0. Furthermore,

the condition κ > |λ| ensures a positive value for (3.53).

In the paper of Brown and Dybvig [3] new variables are introduced:12

φ1 = [(κ + λ)2 + 2σ2]
1
2 (3.60)

φ2 =
κ + λ + φ1

2
(3.61)

φ3 =
2κθ

σ2
. (3.62)

(3.63)

These offer certain advantages when testing the implications of that model.

Using these variables the equations (3.48)-(3.49) can be written as:

A(t, T ) ≡
( φ1e

φ2(T−t)

φ2(eφ1(T−t) − 1) + φ1

)φ3

(3.64)

B(t, T ) ≡
( eφ1(T−t) − 1

φ2(eφ1(T−t) − 1) + φ1

)
. (3.65)

12I used these variables in all MATLAB files.
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3.3 Characteristics of the Term Structure

In this section, characteristics of the term structure evolved by the model of Cox,

Ingersoll, and Ross [6] are described and partially visualized.13 The authors show

that the term structure is uniformly rising as long as the spot rate is below the

long-term yield (3.52). Secondly, with an interest rate in excess of (3.53), the

term structure is falling. Finally, for intermediate values of the interest rate, the

yield curve is humped. Figure 3.1 displays the results stated above for certain

values of the variables. The values chosen to visualize the characteristics satisfy

the conditions (3.54)-(3.59).

13For MATLAB source file ’characterize.m’ and ’termstructure.m’ see Appendix C.
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Figure 3.1: Term Structure dependency on the spot rate

Moreover, several other comparative statics for the yield curve are easily ob-

tained. The reader may take into consideration that any change of the variables

changes the value of (3.52) and possibly changes the value of (3.53).

In the paper it is shown that an increase in the current interest rate increases

the yields for all maturities, but the effect is greater for shorter maturities. This

can be seen if one considers that a bond’s yield is a composition of the spot rate

and a premium. As a consequence, a higher spot rate increases all yields. The

long-term value of the spot rate, θ, has not changed. Hence, the effect is greater

for shorter maturities.
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Figure 3.2: Effect of an increase in r on the term structure

Similarly, an increase in the steady state mean θ increases all yields, but here

the effect is greater for longer maturities as the long-term value θ has changed,

whereas the current interest rate r has not.
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Figure 3.3: Effect of an increase in θ on the term structure
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The yields-to-maturity decrease as σ2 or λ increases. This can be easily seen

as one remembers that higher values of λ indicate lower premiums as λ is the

market value of risk. As λ increases (or |λ| decreases) the value of risk decreases.

Higher values of the variance of the interest rate, σ2, indicates more uncertainty

about future real production opportunities, and thus more uncertainty about

future consumption. As a consequence, the guaranteed claim in a bond is valued

more highly by investors.
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Figure 3.4: Effect of an increase in σ2 on the term structure
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The effect of a change in κ may be of either sign depending on the current

interest rate, that is, the yield is an increasing function of the speed of adjustment

parameter κ if the interest rate is less than θ and a decreasing function of κ if

the interest rate is greater than θ, respectively. This can be seen if one considers

that a higher value of κ means that the spot rate adjusts faster to a higher/lower

level.
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Figure 3.6: Effect of an increase in κ on the term structure
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Chapter 4

The Expected Exchange and

Depreciation Rates

In this chapter, expectations of the future exchange rates are formed.

4.1 The Underlying Economic Model

The main issue under discussion is how the expected exchange rate of two curren-

cies may evolve and what characteristics may be observed under certain circum-

stances. I will not confine myself to the analyses of two particular countries, e.g.

Germany and the United States of America. Furthermore, I will not distinguish

between relatively small and big countries, as the price level and the countries’

influence on the price will not appear in my model.

In my approach, two countries, country X and country Y, with different cur-

rencies are investigated. Note that all variables used to describe the economy of

country Y are indicated by ∗. When describing the exchange rate or the expec-

tation of the future exchange rate, the price quotation is used from country X’s

point of view. The investigations will be kept as general as possible such that the

35
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results may be specialized to investigate particular problems.

In order to describe the structure and the characteristics of the expected

exchange rates of those two currencies, I applied the model of Cox, Ingersoll,

and Ross for modelling the term structure to each of the two countries (see

Section 3.2). It is possible to examine various situations as I only restricted

the variables describing the economies to certain reasonable intervals, but not to

certain values. There is no trading of goods between the countries. As a result,

the theory of the purchasing power parity is neglected in this approach. The only

way the expectations of the future exchange rate appreciation and depreciation,

respectively, are evolved is that of different investment opportunities in bonds.

That is, the investors observe the term structure of their own country and that

of the foreign country. Differences in yields-to-maturity are seen as the reason for

changes in the exchange rate in the future to ensure that the uncovered interest

rate parity is valid.

Another approach could have been to extend the model of Cox, Ingersoll, and

Ross [6] to be an open economy, e.g. by introducing state variables describing the

foreign country. I did not pursue that approach. However, I would like to point

out that there are a few approaches of extending the model, or similar models,

to be an open economy. For example, refer to Pavlova and Rigobon [14].

First of all, the idea of the interest rate parity is introduced.

4.2 The Interest Rate Parity

The interest rate parity is a relationship that must hold between the spot interest

rates of two currencies and the current and expected exchange rate if there are to

be no arbitrage opportunities. Considering the opportunity of investing in bonds

either of country X or country Y leads to the idea of the equality of yields of

both opportunities. An investment of amount x in the country X, valued in the

currency of country X, results in an amount of (1 + i)x after one period if an

interest rate of i is paid. If you consider an exchange rate of Et at time t, the

amount x is equal to an amount x
Et

valued in the currency of country Y. At the

end of the period the exchange rate is expected to be of a particular value such

that the yield is as high as in country X. Otherwise, an inequality would lead to

arbitrage opportunities and, consequently, to an appreciation or depreciation of

the current exchange rate respectively.
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This equality can be written as:

(1 + i) = (1 + i∗)
Ee

t+1

Et

, (4.1)

where Ee
t+1 stands for the expected value of the exchange rate at time t + 1.

Using the fact that ln(1 + i) ≈ i for small i leads to the following approxima-

tion:

(1 + i) = (1 + i∗)
Ee

t+1

Et

(1 + i) = (1 + i∗)(1 +
Ee

t+1 − Et

Et

)

ln(1 + i) = ln(1 + i∗) + ln(1 +
Ee

t+1 − Et

Et

)

⇒ i ≈ i∗ +
Ee

t+1 − Et

Et

. (4.2)

This is commonly known as the uncovered interest rate parity.

On the other hand, the covered interest rate parity provides an expression for

the forward premium of discount that merchants or investors would have to pay

to hedge or cover the exchange rate risk associated with a contract to receive or

deliver foreign currency in the future. In my thesis, the research done is based

on the uncovered interest rate parity.

4.3 The Expected Exchange Rates

The uncovered interest rate parity can be used to infer the entire path of expected

future values of the spot exchange rate given the observed term structure of

domestic and foreign interest rates and the spot exchange rate. As the agents

expect the assumptions of the interest rate parity to be fulfilled eventually, the

expectation of the future spot exchange rate at any future time s is formed

according to the parity condition. As the model assumes continuous payments

of interest, it is important to distinguish between the yield-to-maturity R(r, t, T )

and the total return (TR), which can be written as:

R(r, t, T )TR = eR(r,t,T )·(T−t) − 1, (4.3)

where T − t stands for the time-to-maturity. It is obvious that the continuous

payment of interest results in higher capital at maturity than a discrete payment
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of interest. It can be easily shown1 that (4.3) is equivalent to

R(r, t, T )TR =
1

P (r, t, T )
− 1. (4.4)

Taking that into account, (4.1) can be used to calculate the expectation of

the exchange rate at time T as follows:

Ee
T =

1 + R(r, t, T )TR

1 + R∗(r∗, t, T )TR
Et (4.5)

=

1
P (r,t,T )

1
P ∗(r∗,t,T )

Et (4.6)

=
P ∗(r∗, t, T )

P (r, t, T )
Et. (4.7)

Using the approximation (4.2) mentioned above leads to an expected exchange

rate of

Ee
T = (R(r, t, T )TR −R∗(r∗, t, T )TR)Et + Et. (4.8)

In the following, (4.5) is implemented, because the errors resulting from the

fact that (4.8) is only an approximation may not be ignored if longer maturities

are investigated.

4.4 The Expected Depreciation Rates

The expectation regarding the exchange rate at any future time T can be used

to calculate the expected depreciation rate. Taking the values of the expected

exchange rates at any arbitrary time j, Ee
j , and i, Ee

i , with j > i, the depreciation

rate, which is expected by a representative agent, can be written as follows:

Ee
j − Ee

i

Ee
i

. (4.9)

Positive values of (4.9) represent an expected depreciation of the exchange

rate. Negative values indicate an appreciation. Moreover, especially the expected

depreciation rate within one period can be estimated using (4.9). If the length of

one period equals ∆, the expected depreciation rate at time s can be written as:
(Ee

s+∆ − Ee
s

Ee
s

)
1
, (4.10)

where the index (·)1 is introduced for later purposes.

1For calculations see Appendix B.3.



Chapter 5

The Expected Future One Period

Total Returns (ExpTR(∆))

In this chapter, the attention is paid on the expected future one period total return

(ExpTR(∆)), that is, the value of

E(R(r(s), s, s + ∆)TR).

Consequently, it deals with the following question: What does an individual of

this economy expect at the current time t of the total return of a bond with time-

to-maturity of one period at a future time s? Analogous to that, the ExpTR(∆)∗

can be examined. Especially the development of the expected difference of the

total return of a bond of country X and a bond of country Y with time-to-maturity

of one period at time s (DiffExpTR(∆)) , denoted by

E(R(r(s), s, s + ∆)TR −R∗(r∗(s), s, s + ∆)TR) =

= E(R(r(s), s, s + ∆)TR)− E(R∗(r∗(s), s, s + ∆)TR), (5.1)

plays an important role in Section 5.3. E(·) stands for the expectation. Note

that for s = t the expectation is already known. It is equivalent to the total

39
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return of a bond with time-to-maturity T − t = ∆, which is known from the

term structure. When dealing with the expectation, therefore, one can assume

s > t. This approach will lead to another expectation of future exchange rates

and depreciation rates respectively.

The abbreviations ExpTR(∆) and DiffExpTR(∆) are also used to describe the

expected future one period total returns and the differences of the expected total

returns at all future times respectively. The particular meaning of ExpTR(∆)

and DiffExpTR(∆), respectively, will be clear out of the used context.

First of all, however, the expectations hypothesis and the liquidity preference

hypothesis need to be introduced.

5.1 The Expectations Hypothesis

The basic idea is that, with the exception of a term premium, there should be

no expected difference in return from holding a long-term bond or rolling over

a sequence of short-term bonds. An equivalent statement is that the expected

holding period return on short-term bonds equals the expected holding period

return on long-term bonds. This hypothesis assumes competitive markets, indi-

viduals maximizing their expected profit by investing in default free bonds, and

the lack of transaction costs. As a result, a lasting difference between yields of

a long-term bond and of rolling over a sequence of short-term bonds cannot be

observed, because arbitrage would lead to an adjustment of prices and yields,

respectively, and, therefore, to an equilibrium. Consequently, the expectations

hypothesis can be described by the assumption that, in equilibrium, long-term

yields are geometric averages1 of current and expected future short-term yields.

Knowledge of the term structure of interest rates of an economy combined with

the assumptions of the expectations hypothesis can be used to evolve expectations

of the future short-term interest rates. Furthermore, under the simple, risk-

neutral efficient markets hypothesis, the forward rate, which is an implicit interest

rate that is valid today for a contract in the future, is the optimum predictor of

the future spot rate as the prices of assets reflect all available information.

However, there is now a consensus within the profession that the simple,

risk-neutral efficient markets hypothesis has been decisively rejected. Various

empirical investigations have shown a difference between the forward rates and the

actual spot rates, especially, if longer maturities are investigated. This may have

1The geometric average of n positive variables a1, a2, . . . , an is defined as n
√

a1a2 . . . an.
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several reasons. For example, the choice of assumptions may not be a suitable

description of real behavior of the agents and of given facts of the market. For

further information refer to Gischer, Herz and Menkhoff [8].

If we allow for some nonrational behavior of financial markets, various other

hypotheses explaining the term structure could be mentioned. In my thesis, the

liquidity preference hypothesis plays an important role, as a certain preference

for holding money instead of other forms of wealth is assumed.

5.2 The Liquidity Preference Hypothesis

According to the expectations hypothesis, there should be no expected difference

in return from holding a long-term bond or rolling over a sequence of short-term

bonds. However, people want to hold money for the purpose of making everyday

market purchases. This explains the transactions demand. Furthermore, people

hold money for sudden emergency purchases and unexpected market transactions

as well as for speculative purposes and later financial opportunities. These two

facts result in a precautionary and speculative demand. The desire, however,

to hold money rather than other forms of wealth, which may result from the

transactions demand, the precautionary demand and the speculative demand,

lead to an inequality of the return from a long-term bond and the return stemming

from a sequence of short-term bonds.

Several possibilities exist to define what exactly a liquidity preference means.

First of all, one could say that the return of bonds with longer maturities is always

higher than the return from investing in bonds with shorter time-to-maturity

repeatedly, that is, the inequality is assumed to exist at any time. However, I

only assume that the return of bonds with a long time-to-maturity is only higher

than the return from investing in bonds with shorter time-to-maturity repeatedly

if the maturity date is not in the relatively near future, but in the sufficiently

distant future. Hence, the model is less restricted.

The liquidity preference, as defined above, can be fulfilled by assuming

R(r, t,∞) > θ. This can be seen if one assumes that the expected future one pe-

riod total return at time s can be approximated by eE(r(s)|r(t))B(s,s−t)−ln(A(s,s−t))−1,

where E(r(s)|r(t)) is calculated as in (3.42). As stated in Section 3.2, the yield

(3.51) approaches the spot rate as maturity nears. Consequently, the assumption

of a liquidity preference for bonds with a maturity date in the sufficiently distant

future can now be written as:

er(t)∆eE(r(t+∆)|r(t))∆ · · · eE(r(T )|r(t))∆ < eR(r,t,T )(T−t). (5.2)
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If the maturity date is in the sufficiently distant future, the yield-to-maturity

R(r, t, T ) is approximately R(r, t,∞) and, considering (3.42), the expected spot

rate given the current interest rate E(r(T )|r(t)) is approximately θ. If the inequa-

tion R(r, t,∞) > θ is valid, there is a date of maturity T such that inequation

(5.2) holds.

Although eE(r(s)|r(t))B(s,s−t)−ln(A(s,s−t)) − 1 is not the correct expected future

one period total return as

E(er(s)B(s,s−t)−ln(A(s,s−t))) 6= eE(r(s)|r(t))B(s,s−t)−ln(A(s,s−t)),

it can be shown that for a sufficiently short length of one period the approximation

E(eR(r(s),s,s+∆)∆) ≈ eE(r(s)|r(t))∆, (5.3)

can be proven valid.2 Consequently, the condition R(r, t,∞) > θ also ensures

a liquidity preference if the correct expected future one period total returns are

investigated.

Analogous to that, a liquidity preference in country Y can be ensured by

assuming R∗(r∗, t,∞) > θ∗.
All examples presented in this thesis (see Chapter 7), where the length of the

period ∆ is arbitrarily set to 0.01, support this assumption.

2For proof see Appendix B.4.
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The following figure visualizes the idea of a liquidity preference for a certain

composition of the variables.3
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Figure 5.1: Geometric average of short term yields vs. long-term yield

As one can see, the yield-to-maturity of long-term bonds is higher than the

yield stemming from a repeated investment in short-term bonds.

5.3 More Expected Depreciation Rates

In comparison with (4.10), the ExpTR(∆) and the ExpTR(∆)∗ can be used to

calculate another expectation of the one period depreciation rate.

By the uncovered interest rate parity condition the expected rate of exchange

rate depreciation is just equal to the relevant interest rate differential. That is,

the expected exchange rate depreciation is equal to the interest differential on

financial assets in the relevant currencies with the same maturity and identical

risk characteristics. As a result, using the assumption of investing an amount of

x of currency of country X one can write the following equation:

x(1 + E(R(r(s), s, s + ∆)TR)) = x(1 + E(R∗(r∗(s), s, s + ∆)TR))
Ee

s+∆

Ee
s

3For MATLAB source file ’testliqpref.m’ see Appendix C.
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⇒
(Ee

s+∆ − Ee
s

Ee
s

)
2

=

1+E(R(r(s),s,s+∆)TR)
1+E(R∗(r∗(s),s,s+∆)TR)

Ee
s − Ee

s

Ee
s

=
1 + E(R(r(s), s, s + ∆)TR)

1 + E(R∗(r∗(s), s, s + ∆)TR)
− 1

=
1 + E(R(r(s), s, s + ∆)TR)− 1− E(R∗(r∗(s), s, s + ∆)TR)

1 + E(R∗(r∗(s), s, s + ∆)TR)

=
E(R(r(s), s, s + ∆)TR)− E(R∗(r∗(s), s, s + ∆)TR)

1 + E(R∗(r∗(s), s, s + ∆)TR)
, (5.4)

where the index (·)2 is introduced for later purposes. As one can see, the

DiffExpTR(∆) determines the expected depreciation rate. Note that for any

time s the expected depreciation rate can be calculated using (5.4). According to

the simple, risk-neutral efficient markets hypothesis mentioned in Section 5.1, the

relevant interest rate differential is the optimum predictor of the future exchange

rate depreciation.

The two different expected depreciation rates merit closer examination. This

poses the question of whether these two expectations are different, show a similar

structure or are even the same.

The expectations hypothesis stated in Section 5.1 leads to the logical con-

clusion that both expected depreciation rates need to be the same, that is, the

expectations hypothesis can be used to formulate an equilibrium between the

expected one period depreciation rate of the exchange rate given the term struc-

ture and the expected depreciation rate given the DiffExpTR(∆) of bonds with

time-to-maturity of ∆. This can be easily seen if one considers the opportunity

of investing in either bonds in country X or in bonds in country Y . The expecta-

tions hypothesis states that the return from holding a long-term bond, e.g. with

time-to-maturity s + ∆ − t, is the same as rolling over a sequence of short-term

bonds (here short-term is equivalent to one period). Consequently, the expected

exchange rate at time s + ∆ − t is the same if one holds a long-term bond with

time-to-maturity s+∆− t or reinvests in short-term bonds repeatedly. The same

argument is assumed to be valid for a long-term bond with time-to-maturity s−t.

Hence, the calculated depreciation rate using the term structure needs to be the

same as the depreciation rate resulting from the DiffExpTR(∆) at time s, such

that: (Ee
s+∆ − Ee

s

Ee
s

)
1

=
(Ee

s+∆ − Ee
s

Ee
s

)
2
. (5.5)

In other words, the depreciation rate calculated using R(r(t), t, s + ∆) and

R∗(r∗(t), t, s + ∆) is the same as the one using the ExpTR(∆) and ExpTR(∆)∗

at time s respectively.
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Considering the liquidity preference, however, the assumed equality (5.5) of

the expected depreciation rates given the expected exchange rate stemming from

the term structure and the expected depreciation rates based on the expectation

regarding the one period total return differentials may not be valid. This follows

from the fact that the equality of yields assumed by the expectations hypothesis

is not valid if a liquidity preference exists.

In Chapter 7, the structure of the two different expected depreciation rates of

the various examples will be investigated. It will become obvious that neither an

absolutely similar nor an absolutely different structure of the depreciation rates

can be observed, independently from the choice of the factors. Moreover, in some

examples a similar development can be observed, whereas in other examples the

paths differ from each other significantly.

Moreover, I would like to point out that the ExpTR(∆) and the ExpTR(∆)∗

could also be used to calculate the expected exchange rate instead of the expected

depreciation rate. However, I confine myself to the investigation to the expected

depreciation rate. The investigation of the differences between the expectations

stemming from the term structure and those stemming from the ExpTR(∆) and

the ExpTR(∆)∗ would not broaden our knowledge.

5.4 Calculation of the ExpTR(∆)

In order to investigate the characteristics of the DiffExpTR(∆) mentioned above

(see (5.1)), the expectation needs to be given explicitly in a form dependent on

the variables which may influence the behavior.4 Basically, an explicit form of

E(R(r(s), s, s + ∆)TR) = (5.6)

= E(eR(r(s),s,s+∆)∆ − 1)

= E(er(s)B(s,s+∆)−ln(A(s,s+∆)))− 1

for a particular future time s is needed.

Note that A(s, s + ∆) and B(s, s + ∆) are defined as in (3.48) and (3.49)

respectively. If one takes a closer look at those definitions, it is obvious that

A(s, s + ∆) and B(s, s + ∆) are constant for any choice of s and independent

from the current time t and the spot rate r(t). For an easier notation, A(s, s+∆)

and B(s, s+∆) are replaced by Ā and B̄ respectively. The variable c is defined as

4For a possible alternative calculation see Appendix B.5.
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in (3.38). The current interest rate r(t) influences the value of u, which is defined

as in (3.39).

In Chapter 3, the probability density (3.37) of the interest rate at time s,

r(s), conditional on its value at the current time t, was introduced. According to

the economic model, negative interest rates are excluded. Furthermore, using the

fact that the distribution function is noncentral chi-square with 2q + 2 degrees of

freedom and a parameter of noncentrality of 2u, where q is defined as in (3.41),

the explicit form of the expectation can be derived. Note, that v is defined as in

(3.40).

First of all, the probability density of a distribution function, which is non-

central chi-square with n degrees of freedom and a parameter of noncentrality of

λ > 0, needs to satisfy the following condition:5

∫ ∞

0

1

2
e−

x+λ
2

(x

λ

)n−2
4

In−2
2

((λx)
1
2 )dx = 1. (5.7)

With

v̄ = v − r(s)B̄

= cr(s)− r(s)B̄

= r(s)(c− B̄) (5.8)

ū =
uv

v̄

=
ucr(s)

r(s)(c− B̄)

=
uc

c− B̄
, (5.9)

where ū > 06, and (3.37), the expectation of er(s)B̄−ln(Ā) can be written as follows:

E(er(s)B̄−ln(Ā)) = (5.10)

=

∫ ∞

0

er(s)B̄−ln(Ā)ce−u−v
(v

u

) q
2

Iq(2(uv)
1
2 )dr(s)

=

∫ ∞

0

c

Ā
er(s)B̄−u−v

(v

u

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=

∫ ∞

0

c

Ā
eū−ūe−u−v̄

(v

u

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

5For description of the noncentral chi-square see Mueller [12].
6For further details see Appendix B.5.
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=

∫ ∞

0

c

Ā
eū−ue−ū−v̄

(v

u

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=

∫ ∞

0

c

Ā

(1

c

)−q(1

c

)q

(c− B̄)−q(c− B̄)qeū−ue−ū−v̄
(v

u

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=

∫ ∞

0

c

Ā

(1

c

)−q

(c− B̄)−qeū−ue−ū−v̄
(v(c− B̄)2

uc2

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=

∫ ∞

0

c

Ā

(1

c

)−q

(c− B̄)−qeū−ue−ū−v̄
(cr(s)(c− B̄)2

uc2

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=

∫ ∞

0

c

Ā

(1

c

)−q

(c− B̄)−qeū−ue−ū−v̄
(r(s)(c− B̄)

uc
c−B̄

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=

∫ ∞

0

c

Ā

(c− B̄

c

)−q

eū−ue−ū−v̄
( v̄

ū

) q
2

Iq(2(ūv̄)
1
2 )dr(s). (5.11)

Using the substitution

n = 2q + 2 (5.12)

λ = 2ū (5.13)

v̄ =
x

2
(5.14)

and considering the chain rule of differentiation, (5.7) is equivalent to

1 =

∫ ∞

0

1

2
e−

x+λ
2

(x

λ

)n−2
4

In−2
2

((λx)
1
2 )dx

=

∫ ∞

0

1

2
e−

x+λ
2

(x

λ

) q
2

Iq((λx)
1
2 )dx

=

∫ ∞

0

1

2
e−

x+2ū
2

( x

2ū

) q
2

Iq((2ūx)
1
2 )dx

=

∫ ∞

0

1

2
e−ū−v̄

( v̄

ū

) q
2

Iq(2(ūv̄)
1
2 )dx

=

∫ ∞

0

1

2
e−ū−v̄

( v̄

ū

) q
2

Iq(2(ūv̄)
1
2 )2dv

=

∫ ∞

0

e−ū−v̄
( v̄

ū

) q
2

Iq(2(ūv̄)
1
2 )(c− B̄)dr(s). (5.15)

As a result, considering (5.15) together with the fact that A(s, s+∆), B(s, s+

∆), u, ū, and c are constant, the expectation (5.10) can be written as:

E(er(s)B̄−ln(Ā)) =
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=

∫ ∞

0

c

Ā

(c− B̄

c

)−q

eū−ue−ū−v̄
( v̄

ū

) q
2

Iq(2(ūv̄)
1
2 )dr(s)

=
c

Ā

(c− B̄

c

)−q

eū−u 1

c− B̄

∫ ∞

0

e−ū−v̄
( v̄

ū

) q
2

Iq(2(ūv̄)
1
2 )(c− B̄)dr(s)

=
c

Ā

(c− B̄

c

)−q

eū−u 1

c− B̄

=
1

Ā

( c

c− B̄

)q+1

e
uB̄

c−B̄

=
1

A(s, s + ∆)

( c

c−B(s, s + ∆)

)q+1

e
uB(s,s+∆)

c−B(s,s+∆) . (5.16)

Hence, the expression (5.6) is equivalent to:

E(R(r(s), s, s + ∆)TR) =

=
1

A(s, s + ∆)

( c

c−B(s, s + ∆)

)q+1

e
uB(s,s+∆)

c−B(s,s+∆) − 1. (5.17)

Furthermore, expression (5.4) can be written as:

(Ee
s+∆ − Ee

s

Ee
s

)
2

=

=

1
Ā

(
c

c−B̄

)q+1

e
uB̄

c−B̄ − 1
Ā∗

(
c∗

c∗−B̄∗

)q∗+1

e
u∗B̄∗

c∗−B̄∗

1
Ā∗

(
c∗

c∗−B̄∗

)q∗+1

e
u∗B̄∗

c∗−B̄∗
. (5.18)

Calculations lead to an expected future one period total return in the long-run

of:

Y l = lim
s→∞

1

A(s, s + ∆)

( c

c−B(s, s + ∆)

)q+1

e
uB(s,s+∆)

c−B(s,s+∆) − 1 =

=
1

A(s, s + ∆)
(

2κ
σ2

2κ
σ2 −B(s, s + ∆)

)
2κθ
σ2 − 1. (5.19)

In the following, the current time t is chosen to be zero and the current

exchange rate E0 is assumed to be equal to one. This standardization does not

represent a restriction to the results presented in the latter part. Additionally, I

chose the length of a period to be 0.01. I have to point out, that the choice of

this particular value is absolutely arbitrary.



5.5 Characteristics of the ExpTR(∆) 49

5.5 Characteristics of the ExpTR(∆)

In this section, I present the results of the analysis of the ExpTR(0.01) based on

the explicit form evolved in Section 5.4. That is, the characteristics of

E(R(r(s), s, s + 0.01)TR) = E(er(s)B(s,s+0.01)−ln(A(s,s+0.01)))− 1

using (5.17) are investigated.

As mentioned above, the expected future one period total return at time s = 0

is already known from the term structure. Hence, the behavior of the expected

yield at time s = t = 0 is also known. Remember that Section 3.3 dealt with

this topic. The reader may take that fact into consideration when studying the

results and the figures below.

My investigations let me assume certain characteristics and a particular be-

havior of the ExpTR(0.01) when a change in one of the variables can be observed.

Before presenting the results and visualizations of various examples, I argue why

the results are valid. First of all, I introduced several intervals for possible and

economic reasonable values of the variables. As a starting point, I refer to Chat-

terjee [4]. In this paper, quasi-maximum likelihood estimates of the model param-

eters are obtained by using a Kalman filter to calculate the likelihood function.

Furthermore, estimates of σ2 presented by Brown and Dybvig [3] were used to

cut down the intervals to reasonable lengths. The bank base rates of the FED

and the EZB of the last decades serve as a framework for the variables θ and

r. Additionally, the conditions (3.54)-(3.59) on the variables from the paper of

Cox, Ingersoll, and Ross [6] were used. A further condition stemming from the

assumption that there exists a liquidity preference can be written as:

R(r, t,∞) > θ ⇔
2κθ

γ + κ + λ
> θ ⇔

2κ√
(κ + λ)2 + 2σ2 + κ + λ

> 1 ⇔

2κ >
√

(κ + λ)2 + 2σ2 + κ + λ ⇔
κ− λ >

√
(κ + λ)2 + 2σ2 ⇔

κ2 − 2κλ + λ2 > κ2 + 2κλ + λ2 + 2σ2 ⇔
κλ < −σ2

2
⇔

σ <
√
−2κλ (5.20)
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Table 5.1 gives an overview of the intervals.

Variable Interval Increment

κ [0.1,1] 0.05

θ [0.005,0.08] 0.00025

r [0.005,0.12] 0.00025

λ [-(κ-0.05),-0.05] 0.05

σ [0.05,min(
√−2κλ,1)] 0.05

Table 5.1: Values of the variables of an economy

I calculated the partial derivatives analytically, however, it was not trivial to

prove an unambiguous behavior for any composition of the variables. Instead,

I used the partial derivatives to give evidence considering the characteristics of

(5.17) by calculating the maximum and minimum, respectively, for any composi-

tion of the variables within the intervals mentioned above and proved the continu-

ity of the partial derivatives. A positive minimum indicates that the expectation

increases with an increase in the particular variable, while a negative maximum

indicates that the expectation decreases with an increase in the particular vari-

able. It was easy to show that all partial derivatives are continuous functions

within the investigated intervals. This can be seen if one considers that any par-

tial derivative of (5.17) is a combination of products, sums and fractions of the

several elements of (5.17) and their partial derivatives. Considering the conditions

on the variables, I split up equation (5.17) into several components and proved

their continuity.7 According to the characteristics of continuous functions, the

continuity of the several components and their partial derivatives, respectively,

and the examination, whether the several parts and their various combinations

are well defined, are sufficient for the proof of continuity. Consequently, I could

easily show the continuity of function (5.17).

Although my thesis lacks an analytical proof of the characteristics, the inves-

tigation of the partial derivatives for a number of compositions and the fact that

7For further details see Appendix B.6.
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these partial derivatives are continuous functions do substantiate my propositions.

At this point, I present the behavior of the expectation.8

As mentioned in Section 5.2, I assume that the inequation (5.2) holds and that

the expected future one period total return can be approximated by eE(r(s)|r(t))0.01−
1. Considering (3.42), for s → 0 the ExpTR(0.01) can be approximated by

er·0.01 − 1 (for s → ∞ it can be approximated by eθ·0.01 − 1). Furthermore, the

approximation er·0.01 ≈ 1 + r · 0.01 for small r · 0.01 is used. According to Table

5.1, it can be assumed that the size of r is sufficiently small to allow for this

approximation.

While the ExpTR(0.01) are rising if the r × 0.01 is below the value in the

long-run, the ExpTR(0.01) are falling if r × 0.01 is in excess of (5.19).
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Figure 5.2: Structure dependent on current spot rate

8For MATLAB source file ’exptr.m’ see Appendix C.
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Moreover, several other comparative statics for the yield curve are obtained.

Calculations have shown that an increase in the current interest rate increases the

ExpTR(0.01) at any future time s. This can be easily interpreted if one considers

that a bond’s yield is a composition of the spot rate and a premium. A higher

spot rate influences the expectations concerning the one period total returns, as

a higher value of spot rate indicates greater yields. The long-term value of the

spot rate, θ, has not changed and, therefore, the expected one period yields in

the long-run have not changed very much. Hence, the effect is greater for the

expectations in the relatively near future. The influence on the total return of a

one period bond at time s = 0, which is determined by the term structure, is the

same. Hence, the behavior of the expectation is consistent with the behavior of

the term structure investigated in Section 3.3.
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Similarly, an increase in the steady state mean θ increases the ExpTR(0.01),

but here the effect is greater for the expectations in the relatively distant future

as the long-term value θ has changed, whereas the current interest rate r has not.

The influence on the total return of a one period bond at time s = 0 is the same.

Hence, the behavior of the expectation is consistent with the behavior of the term

structure investigated in Section 3.3.
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The effect of a change in κ may be of either sign depending on the current

interest rate, that is, the expected value is an increasing function of the speed of

adjustment parameter κ if the spot rate is less than θ and a decreasing function of

κ if the spot rate is greater than θ respectively. This can be seen if one considers

that a higher value of κ means that the spot rate adjusts faster to a higher/lower

level. The influence on the total return of a one period bond at time s = 0 is the

same. Hence, the behavior of the expectation is consistent with the behavior of

the term structure investigated in Section 3.3.
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5.5 Characteristics of the ExpTR(∆) 55

The ExpTR(0.01) decrease as λ increases. This can be easily seen as one

remembers that higher values of λ indicate lower premiums as λ is the market

value of risk. As λ increases (or |λ| decreases), the value of risk decreases. This

development influences the expectation of the agent. A lower market value of

risk decreases the expected one period yield and, consequently, the total return.

The influence on the total return of a one period bond at time s = 0 is the same.

Hence, the behavior of the expectation is consistent with the behavior of the term

structure investigated in Section 3.3.
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The effect of an increase in σ2, however, leads to a surprising result: it in-

creases the ExpTR(0.01). The effect of a change of σ2 on the (expected) yield

at time s = 0 is already known from Section 3.3. A higher value of the variance

of the interest rate, σ2, indicates more uncertainty about future real production

opportunities, and thus more uncertainty about future consumption. As a con-

sequence, the guaranteed claim in a bond is valued more highly by investors and

the yield decreases. Compared with that, the ExpTR(0.01) increases at any time

s.
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Note that another choice of the length of one period, e.g. ∆ = 0.1, influences

the value of the ExpTR(∆) in the long-run. This follows from (5.19). The value

increases as the term increases. Moreover, the expected future one period total

return at any time increases as the term increases. The result is not surprising,

as bonds with a longer maturities achieve a higher total return.
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Moreover, a change of the length of one period may change the results stated

above, although various examples do not indicate that for changes of the variables

r, θ, λ, and κ. However, longer periods change the influence of changes in σ2 on

the expectations. For example, with ∆ = 2.5, and given the particular values of

the variables as in Figure 5.7, an increase in σ2 leads to a contrary statement.

Here, an increase in the variance of the spot rate leads to a decrease of the

ExpTR(2.5).
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Basically, that phenomenon raises the following questions:

(1) Why does an increase in the variance of the spot rate, which usually indi-

cates a higher uncertainty about real production opportunities, result in higher

expected one period yields in the future if the length of the period is chosen to

be 0.01?

(2) Why does the length of the period seem to influence this result in the one

or the other direction?

Supplementary investigations may lead to further and deeper insights, how-

ever, I hold the view that it is not trivial to find a reasonable interpretation of

that behavior and would be beyond the scope of that thesis. I did not undertake

supplementary investigations, because I focused more attention on the interpre-

tation of the expected exchange rates and the particular expected depreciation

rates as exemplified in Chapter 7. Without a reasonable explanation, however,

one can only state that this surprising result may imply certain, so far unknown,

problems within this approach.



Chapter 6

The Influence of the Expectations

on the Spot Exchange Rate

There are several approaches which describe the mechanism of changes of both

the spot exchange rate and the future expectations. One possible way to argue

would be to assume that because of the expected development of the exchange

rate, e.g. a depreciation of the currency, the agents anticipate the development

by speculative purchases of the foreign currency. Hence, the spot exchange rate

is influenced by the expectations. On the contrary, one could also argue that

because of risk-averse agents the expected development is not anticipated by the

agents.

This chapter is dedicated to the question of how changes of the factors of

the economies influence the expectations and the spot exchange rate. However,

I confine myself to the following situation: I analyze the behavior of the spot

exchange rate and the expected exchange rates when a particular value of the

current interest rate at a future point is observed. The other variables are assumed

to remain unchanged.

It is well-known that changes of the expected exchange rate lead to changes

of the spot exchange rate. Most known models, however, only take one expected

exchange rate into consideration when calculating the effect on the spot exchange

rate. In my approach the whole path will influence the spot exchange rate. I

assume that the expectations are more rigid than the spot exchange rate, that is,

the expectations are assumed to change less than the spot exchange rate when a

certain value of the spot rate appears. Moreover, it is assumed that the current

interest rate affects on the spot exchange rate in a particular way, such that the

resulting new expectations of the exchange rate due to the term structure at that

future time s do differ as little as possible from the expectations formed initially

at time t. Figure 6.1 displays the idea of choosing a particular spot exchange rate
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such that the differences between the expected exchange rates are minimized.
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Figure 6.1: The spot exchange rate in the future

In order to ensure that these differences do not balance themselves out, the

differences are squared. Furthermore, I assume that expectations in the long-

run are less rigid and adjust more easily. Hence, the expectations are weighted

differently by introducing the weight 1
T
. As can be seen in the figure above, the

spot rates were initially 9.5% and 10% respectively. In country X, a decrease of

the spot rate at time s = 1 can be observed while in country Y an increase is seen.

The spot exchange rate is supposed to adjust to a particular level, such that the

marked area (in accordance with the weights) is minimized. As mentioned above,

the other variables describing both economies are assumed to remain unchanged.

This implies, however, that the results presented below are only reasonable if the

investigated point of time is in the near future. This stems from the assumption

that changes in the other variables only appear in the long-run.
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In technical terms these assumptions can be expressed as follows:

Es = arg min
{ ∫ ∞

s

[
(Ee

T |Et)− (Ee
T |Es)

]2 1

T
dT

}
(6.1)

= arg min
{ ∫ ∞

s

[P ∗(r∗(t), t, T )

P (r(t), t, T )
Et − P ∗(r∗(s), s, T )

P (r(s), s, T )
Es

]2 1

T
dT

}
, (6.2)

where (Ee
T |Es) stands for the expected exchange rate at time T given the infor-

mation at time s, that is the current interest rate and the spot exchange rate

Es.

The definite integral

F (y) =

∫ b

a

f(x, y)dx (6.3)

is called integral with parameter. If the function is defined within an interval [c, e]

and the integrand is continuous within [a, b]× [c, e] and is partially differentiable

with respect to y, then

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂f(x, y)

∂y
dx (6.4)

for an arbitrary y within the interval [c, e].1 A minimum of (6.3) needs to satisfy

the following conditions:

F ′(y) =

∫ b

a

∂f(x, y)

∂y
dx = 0 (6.5)

F ′′(y) =

∫ b

a

∂2f(x, y)

∂y2
dx > 0. (6.6)

The initial type of problem can be interpreted as finding the argument mini-

mizing the integral on the right hand side of (6.2), which depends on the param-

eter Es. Although the integral in (6.2) is an improper integral as the upper limit

is infinite, I restricted my investigation of the solution of that integral to a closed

interval [t, R]. I hold the view that this restriction does not alter the usefulness

of that approach, because expectations loose their meaningfulness as the point of

time is in the relatively distant future. Moreover, the weight decreases the impor-

tance of those expectations for the determination of Es. Finally, the restriction

of the investigation to a close interval is reasonable for computational purposes.

If one considers that the integrand of (6.2) is a continuous function within the

investigated interval and can be partially differentiated with respect to Es, the

1For further information see [16].
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sufficient conditions (6.5) and (6.6) can be used. The conditions can be written

as follows:

∫ R

s

−2

T

[P ∗(r∗(t), t, T )

P (r(t), t, T )
Et − P ∗(r∗(s), s, T )

P (r(s), s, T )
Es

]P ∗(r∗(s), s, T )

P (r(s), s, T )
dT = 0 (6.7)

∫ R

s

2

T

P ∗(r∗(s), s, T )2

P (r(s), s, T )2
dT > 0. (6.8)

It can be easily seen that (6.8) is satisfied. Consequently, the spot exchange

rate at time s can be calculated by:

Es =

∫ R

s
P ∗(r∗(t),t,T )
P (r(t),t,T )

P ∗(r∗(s),s,T )
P (r(s),s,T )

Et

T
dT

∫ R

s
P ∗(r∗(s),s,T )2

P (r(s),s,T )2
1
T
dT

. (6.9)

Finding an analytical solution of the integrals presented in (6.9) is not a trivial

problem. Using the strategy of adaptive quadrature, however, the value can be

calculated easily.2

If, instead of an actual spot rate at time s the expectation of the spot rate

at time s given the spot rate at the current time t (equation (3.42)) is used, the

value of (6.9) can be interpreted as another expectation of the exchange rate at

time s. It follows:

Ee
s =

∫ R

s
P ∗(r∗(t),t,T )
P (r(t),t,T )

P ∗(E(r∗(s)|r∗(t)),s,T )
P (E(r(s)|r(t)),s,T )

Et

T
dT

∫ R

s
P ∗(E(r∗(s)|r∗(t)),s,T )2

P (E(r(s)|r(t)),s,T )2
1
T
dT

. (6.10)

Investigations of these expectations were not done. However, the reader may

take into consideration that this approach would be another alternative to the

expectations formed in Chapter 4 and 5.

2For MATLAB source file ’nextperiod.m’ see Appendix C.



Chapter 7

Examples: Analysis and

Visualization

In this chapter, the results acquired in Chapter 4 and Chapter 5 are used to

interpret the term structure, the expected exchange rate, and the two elaborated

expected depreciation rates of various examples of two economies with particular

values for the several variables.1 Furthermore, I present two examples visualizing

the results of Chapter 6. Each choice of the values of the variables takes into

consideration the various conditions stemming from the model of the economy.

At this point, I list the conditions mentioned in the chapters above again:

κθ ≥ 0

σ2 > 0

λ < 0

κ > 0

θ > 0

κ > |λ|
σ <

√
−2κλ

Furthermore, it is important to know that the examples are chosen such that

the long-term yields are the same at the most part. This makes at easier to inves-

tigate the influence of single variables on the expectations. The term structure,

the expected exchange rates and the expected depreciation rates are visualized.

1For MATLAB source file ’exchangerates.m’ see Appendix C.
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7.1 Term Structure, Expected Exchange and De-

preciation Rates

In this section, I present various examples of economies including their particular

term structure, the expected exchange rates, and the expected depreciation rates.

Example 1:

Variable Country X Country Y

r: 0.04 (4%) 0.02 (2%)

κ: 0.5 0.5

θ: 0.03 (3%) 0.03 (3%)

σ: 0.5 0.5

λ: -0.4 -0.4
2κθ

γ+κ+λ
: 0.0368 (3.68%) 0.0368 (3.68%)

κθ
κ+λ

: 0.15 (15%) 0.15 (15%)

Table 7.1: Example 1

The economies of both countries are very similar. They only differ from each

other in the difference of the current interest rate. Consequently, the long-term

yields (3.52) and the critical values (3.53) are the same respectively. Figure 7.1

(a) shows the term structure in both countries. As one can see, the spot rate

difference leads to higher yields in country X than in country Y. Moreover, while

the yield curve of country X is humped as the spot rate is between the values

(3.52) and (3.53), the yield curve of country Y is increasing as the spot rate is

below the long-term yield. According to this, it is not surprising that the rep-

resentative agents expect a depreciation of currency X. These expectations can

be seen in Figure 7.1 (b). Because of the fact that the long-term yields are the

same, one would expect the exchange rate to appreciate in the long-run and to

find its level of the current exchange rate. This can not be seen in the figures,

as the investigated horizon is not long enough. In figure 7.1 (c), however, it can

be seen that the expected depreciation rate decreases as the absolute change of

the expected exchange rate from one period to another decreases. Moreover, the

expected depreciation rate seems to become zero. The purple line describes that

process. The expected depreciation rate described by the green line evolves from

the expected future one period total return differentials. The spot rate difference

leads to positive DiffExpTR(0.01). In the long-run, this expected depreciation
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rate also becomes zero. This development can be easily explained if one con-

siders that the long-term values of the spot rates are the same, namely 3%. As

mentioned in Section 5.5, the expectation in the long-run can be approximated

by eθ·0.01 − 1. Consequently, the lack of a difference in the expected future one

period total return in the long-run leads to a depreciation rate of almost zero.

Both expected depreciation rates show a similar structure and the differences are

quite minimal. Finally, the different development of the two expected deprecia-

tion rates is inconsistent with the expected equality stated by the expectations

hypothesis.

0 1 2 3 4 5 6 7 8 9
0.02

0.025

0.03

0.035

0.04

Time−to−maturity

Y
ie

ld
−

to
−

m
at

ur
ity

X: r=0.04;κ=0.5;θ=0.03;σ=0.5;λ=−0.4
Y: r=0.02;κ=0.5;θ=0.03;σ=0.5;λ=−0.4

X
Y

(a) Term Structure

0 1 2 3 4 5 6 7 8 9
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

Time

E
xp

ec
te

d 
E

xc
ha

ng
e 

R
at

e

X: r=0.04;κ=0.5;θ=0.03;σ=0.5;λ=−0.4
Y: r=0.02;κ=0.5;θ=0.03;σ=0.5;λ=−0.4

(b) Expected Exchange Rate

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−4

X: r=0.04;κ=0.5;θ=0.03;σ=0.5;λ=−0.4
Y: r=0.02;κ=0.5;θ=0.03;σ=0.5;λ=−0.4

Time

E
xp

ec
te

d 
de

pr
ec

ia
tio

n 
ra

te

based on term structure                       
based on DiffExpTR(0.01)

(c) Expected Depreciation Rate

Figure 7.1: Example 1
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Example 2:

Variable Country X Country Y

r: 0.055 (5.5%) 0.055 (5.5%)

κ: 0.8 0.5

θ: 0.03 (3%) 0.03 (3%)

σ: 0.5 0.5

λ: -0.4 -0.4
2κθ

γ+κ+λ
: 0.0396 (3.96%) 0.0368 (3.68%)

κθ
κ+λ

: 0.06 (6%) 0.15 (15%)

Table 7.2: Example 2

The economies of both countries are very similar. They only differ from

each other in the difference of the parameters describing the respective speed of

adjustment of the spot rate. A difference in κ, however, indicates different values

of the long-term yields (3.52) and the critical values (3.53). Figure 7.2 (a) shows

the term structure in both countries. As one can see, although the spot rates

are the same, the difference in κ leads to different critical values. Apparently,

the spot rate of country X is in excess of the long-term yield and below the

critical value. Consequently, the term structure is humped. The term structure

of country Y is also humped, however, the maximum is lower than the maximum

of country X’s term structure. This difference accounts for the appreciation of the

expected exchange rate as shown in Figure 7.2 (b). A higher speed of adjustment

in country X explains the positive value of the expected rate of depreciation at

approximately time 4.5 (see Figure 7.2(c)). Nevertheless, the expected exchange

rate is still lower than the spot exchange rate at time t, as the yields of country

X are still higher than those of country Y. In the long-run, however, the higher

value of κ leads to an intersection of both of the yield curves. At this point,

the expected rate of depreciation also leads to an absolute depreciation of the

expected exchange rate. In the distant future, however, one would expect to

observe an appreciation of the expected exchange rate, as the long-term yield of

country X is higher than the long-term yield of country Y. This can not be seen in

the figure as the investigated horizon is not long enough. The green line describes

a different development of the expected rate of depreciation. A depreciation of

the exchange rate is not expected. This can be seen if one considers that the

speed of adjustment in country X is higher, the long-term values of the spot

rates are the same and the spot rates are in excess of the particular θ. It is not

surprising that the rate seems to become zero in the long-run as the expectation
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in the long-run can be approximated by eθ·0.01 − 1. Both expected depreciation

rates show a similar structure, however, the expected depreciation rate based on

the term structure seems to be more volatile. Finally, the different development

of the two expected depreciation rates is inconsistent with the expected equality

stated by the expectations hypothesis.

The phenomenon of an appreciation in the beginning, followed by a deprecia-

tion is not unknown at all. One can often observe the exchange rate to overshoot

and undershoot its final level respectively. One explanation is that the equilib-

rium on the foreign exchange rate market is reached faster than one on the market

for goods. For further information see Krugman and Obstfeld [11].
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Example 3:

Variable Country X Country Y

r: 0.055 (5.5%) 0.055 (5.5%)

κ: 0.8 0.8

θ: 0.03 (3%) 0.0454 (4.54%)

σ: 0.4 0.4

λ: -0.5 -0.2
2κθ

γ+κ+λ
: 0.0510 (5.1%) 0.0510 (5.1%)

κθ
κ+λ

: 0.08 (8%) 0.0605 (6.05%)

Table 7.3: Example 3

The long-term values of the spot rates differ from each other as well as the

market values of risk. The risk of the market in country X is valued higher than

that in country Y. This example, however, represents a situation where the long-

term yields (3.52) are the same. Basically, in the long-run the expected exchange

rate is supposed to be the same as the spot exchange rate at time t = 0. Figure

7.3 (a) shows the term structure in both countries. As one can see, the lower value

of |λ∗| of country Y leads to lower yields, although θ∗ is higher. The absolute

effect of the difference in λ seems to be stronger than the effect of the difference

in θ, as the higher value of θ∗ would indicate higher yields in country Y compared

to the yields paid in country X. The term structure of both countries is humped.

The higher yields in country X are the reason why the exchange rate is expected

to depreciate. Figure 7.3 (b) shows this expectation. As a result, the expected

rate of depreciation is positive as the purple line in Figure 7.3 (c) verifies. The

fact that κ and κ∗, the respective speed of adjustment, and the long-term yields

are the same in both economies can explain why the expected rate of depreciation

becomes almost zero. Because of the fact that the long-term yields are the same,

one would expect the exchange rate to appreciate in the long-run and to find

its level of the today’s exchange rate. This can not be observed as the time

horizon is not long enough. As 7.3 (c) shows, the expected rate of depreciation

based on the expected future one period total returns is negative. That speaks

for the assumption that the absolute effect of a higher value of θ∗ in country Y

is higher than the absolute effect of a higher value of λ∗ on the ExpTR(0.01)∗.
The expected rate of depreciation seems to converge to a value which can be

approximated by e(θ−θ∗)·0.01 − 1. This can be easily interpreted if one considers
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that the expectation in the long-run can be approximated by eθ·0.01 − 1. This

example, however, shows that the expected depreciation rates calculated using

the results of Chapter 4 and Chapter 5 develop totally differently. Finally, the

different development of the two expected depreciation rates is inconsistent with

the expected equality stated by the expectations hypothesis.
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Example 4:

Variable Country X Country Y

r: 0.055 (5.5%) 0.055 (5.5%)

κ: 0.8 0.8

θ: 0.03 (3%) 0.0447 (4.47%)

σ: 0.1 0.4

λ: -0.5 -0.5
2κθ

γ+κ+λ
: 0.0760 (7.6%) 0.0761 (7.61%)

κθ
κ+λ

: 0.08 (8%) 0.1192 (11.92%)

Table 7.4: Example 4

The long-term values of the spot rates differ from each other as well as the

variances of the spot rates. The variance of the spot rate in country Y is higher

than that in country X. That is, the guaranteed claim in a bond is valued more

highly by investors in country Y. This example, however, represents a situation

where the long-term yields (3.52) are the same. Basically, in the long-run the

expected exchange rate is supposed to be the same as the spot exchange rate at

time t = 0. Figure 7.4 (a) shows the term structure in both countries. As one

can see, the higher value of θ∗ of country Y leads to higher yields, although (σ∗)2

is higher. The absolute effect of the difference in θ seems to be stronger than the

effect of the difference in σ2, as the higher value of (σ∗)2 would indicate lower

yields compared to those paid in country X. The term structure of both countries

is increasing. The higher yields in country Y are the reason why the exchange

rate is expected to appreciate. Figure 7.4 (b) shows this expectation. As a result,

the expected rate of depreciation is negative as the purple line in Figure 7.4 (c)

verifies. The fact that κ and κ∗, the respective speed of adjustment, and the

long-term yields are the same in both economies can explain why the expected

rate of appreciation seems to tend to become almost zero. Because of the fact

that the long-term values are the same, one would expect the exchange rate to

depreciate in the long-run and to find its level of the today’s exchange rate. This

can not be observed as the time horizon is not long enough. As 7.4 (c) shows, the

expected rate of depreciation based on the DiffExpTR(0.01) is negative. That

can be easily seen if one remembers that a higher value of θ∗ in country Y leads

to higher expectations as well as the surprising result that with ∆ = 0.01 a higher

value of (σ∗)2 also leads to higher expectations. The expected rate of depreciation

seems to converge to a value which can be approximated by e(θ−θ∗)·0.01 − 1. This

can be easily interpreted if one considers that the expectation in the long-run
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can be approximated by eθ·0.01 − 1. Finally, the different development of the two

expected depreciation rates is inconsistent with the expected equality stated by

the expectations hypothesis.
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Figure 7.4: Example 4
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Example 5:

Variable Country X Country Y

r: 0.055 (5.5%) 0.06 (6%)

κ: 0.6 0.8

θ: 0.03 (3%) 0.0314 (3.14%)

σ: 0.4 0.4

λ: -0.5 -0.5
2κθ

γ+κ+λ
: 0.0534 (5.34%) 0.0534 (5.34%)

κθ
κ+λ

: 0.18 (18%) 0.0837 (8.37%)

Table 7.5: Example 5

The spot rates differ from each other as well as the parameters describing the

speed of adjustment of the spot rates and the long-term values θ and θ∗. The

speed of adjustment of the spot rate in country Y is higher than that in country X.

This example, however, represents a situation where the long-term yields (3.52)

are the same. Basically, in the long-run the expected exchange rate is supposed

to be the same as the spot exchange rate at time t = 0. Figure 7.5 (a) shows

the term structure in both countries. The term structure of both countries is

humped. As one can see, the higher value of the spot rate of country Y leads to

higher yields in the short-run. The higher yields in country Y are the reason why

the exchange rate is expected to appreciate. The fact that the long-term yields

are the same in both economies and that the speed of adjustment in country Y

is higher can explain why the expected exchange rate depreciates as the yields

with longer time-to-maturity are higher in country X. Figure 7.5 (b) shows this

expectation. As a result, the expected rate of depreciation which is negative in

the short-run, becomes positive, and seems to become almost zero in the long-run

as the purple line in Figure 7.5 (c) verifies. As 7.5 (c) shows, the expected rates

of depreciation (based on the expected future one period total returns) show a

similar development. The lower spot rate and the lower value of θ outweigh the

contrary effect of a lower κ (as r > θ) in country X. A lower κ would increase the

ExpTR(0.01), while a lower value of θ would decrease the ExpTR(0.01) compared

to ExpTR(0.01)∗. The effect of the change of θ seems to be stronger. For only

a short period of time the differentials of the expected future one period total

returns are positive. In the long-run the expected rate of depreciation seems

to converge to a value which can be approximated by e(θ−θ∗)·0.01 − 1. This can

be easily interpreted if one considers that the expectation in the long-run can

be approximated by eθ·0.01 − 1. The expected depreciation rates show a similar
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structure, however, the absolute changes of the expected exchange rates differ

from each other. Finally, the different development of the two expected depreci-

ation rates is inconsistent with the expected equality stated by the expectations

hypothesis.

The phenomenon of an appreciation in the beginning, followed by a deprecia-

tion is not unknown at all. One can often observe the exchange rate to overshoot

and undershoot its final level respectively. One explanation is that the equilib-

rium on the foreign exchange rate market is reached faster than one on the market

for goods. For further information see Krugman and Obstfeld [11].
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Figure 7.5: Example 5
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Example 6:

Variable Country X Country Y

r: 0.095 (9.5%) 0.10 (10%)

κ: 0.6 0.8

θ: 0.03 (3%) 0.0876 (8.76%)

σ: 0.2 0.35

λ: -0.5 -0.1
2κθ

γ+κ+λ
: 0.09 (9%) 0.09 (9%)

κθ
κ+λ

: 0.18 (18%) 0.1001 (10.01%)

Table 7.6: Example 6

Every variable of country X is different from those of country Y. The expected

long-term values of the spot rates differ from each other as well as the variances of

the spot rates. Moreover, the spot rates, market values of risk and the parameters

describing the respective speed of adjustment are different. However, the long-

term yields are the same. Consequently, in the long-run the expected exchange

rate is supposed to be the same as the spot exchange rate at time t = 0. The

spot rate of country Y is higher than the spot rate of country X as well as the

long-term value. The variance of the spot rate in country Y is higher than that

in country X. That is, the guaranteed claim in a bond is valued more highly by

investors in country Y. The market value of risk is higher in country X, where

|λ| is higher. The speed of adjustment is also higher in country Y. Figure 7.6 (a)

shows the term structure in both countries. Both yield curves are humped. As one

can see, the higher value of the spot rate in country Y leads to an appreciation

of the expected exchange rate. After approximately 10 periods, however, the

yields in country X are higher. Although a higher value of θ∗ in country Y would

lead to higher yields compared to those paid in country X, the effect of a higher

variance of the spot rate, a lower market value of risk and a higher value of the

speed of adjustment outweigh the effect of θ∗. This leads to yields which are

lower than those of country X. Consequently, one expects the exchange rate to

depreciate. Figure 7.6 (b) shows this expectation. As a result, the expected rate

of depreciation is negative in the short-run and becomes positive in the long-run

as the purple line in Figure 7.6 (c) verifies. The fact that the long-term yields are

the same in both economies can explain why the expected rate of appreciation

seems to tend to become almost zero. As mentioned above, the same values

for the long-term yield would lead to a negative expected rate of depreciation

(an appreciation) such that the expected exchange rate finds its level in the



7.1 Term Structure, Expected Exchange and Depreciation Rates 75

current exchange rate again. This can not be observed as the time horizon is

not long enough. As 7.6 (c) shows, the expected rate of depreciation based on

the DiffExpTR(0.01) is negative all the time. This can be easily seen if one

remembers that a higher value of θ∗ in country Y leads to higher expectations

as well as the surprising result that a higher value of (σ∗)2 also leads to higher

expectations. A lower value of |λ∗| would lead to lower expectations as well as

a higher speed of adjustment in country Y with the spot rate higher than θ∗.
These effects, however, are outweighed by the influence of an increase in θ∗ and

(σ∗)2. The expected rate of depreciation seems to converge to a value which can

be approximated by e(θ−θ∗)·0.01−1. This can be easily interpreted if one considers

that the expectation in the long-run can be approximated by eθ·0.01 − 1. This

example, however, shows that the expected depreciation rates calculated using

the results of Chapter 4 and Chapter 5 develop totally differently. Finally, the

different development of the two expected depreciation rates is inconsistent with

the expected equality stated by the expectations hypothesis.

The phenomenon of an appreciation in the beginning, followed by a deprecia-

tion is not unknown at all. One can often observe the exchange rate to overshoot

and undershoot its final level respectively. One explanation is that the equilib-

rium on the foreign exchange rate market is reached faster than one on the market

for goods. For further information see Krugman and Obstfeld [11].



76 Chapter 7: Examples: Analysis and Visualization

0 1 2 3 4 5 6 7 8 9

0.093

0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

Time−to−maturity

Y
ie

ld
−

to
−

m
at

ur
ity

X: r=0.095;κ=0.6;θ=0.03;σ=0.2;λ=−0.5
Y: r=0.1;κ=0.8;θ=0.0876;σ=0.35;λ=−0.1

X
Y

(a) Term Structure

0 1 2 3 4 5 6 7 8 9
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Time

E
xp

ec
te

d 
E

xc
ha

ng
e 

R
at

e

X: r=0.095;κ=0.6;θ=0.03;σ=0.2;λ=−0.5
Y: r=0.1;κ=0.8;θ=0.0876;σ=0.35;λ=−0.1

(b) Expected Exchange Rate

0 1 2 3 4 5 6 7 8 9
−6

−4

−2

0

2
x 10

−4

X: r=0.095;κ=0.6;θ=0.03;σ=0.2;λ=−0.5
Y: r=0.1;κ=0.8;θ=0.0876;σ=0.35;λ=−0.1

Time

E
xp

ec
te

d 
de

pr
ec

ia
tio

n 
ra

te

based on term structure                          
based on DiffExpTR(0.01)

(c) Expected Depreciation Rate

Figure 7.6: Example 6
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7.2 New Expectations and the Adjustment of

the Spot Exchange Rate

In this section, I present two examples of how observed values of the spot rate at

time s = 1 influence the spot exchange rate and the expectations with regard to

the results of Chapter 6. I chose the economies presented in Example 5. Initially,

the spot rates at time t = 0 were 5.5% in both countries. Figure 7.7 displays

the results when at time s = 1 one can observe the spot rate to be risen to

6% in country Y, while it has not changed in country X. As the other variables

describing both economies have not changed, the long-term yields (3.52) of both

economies have not changed either.
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Figure 7.7: Example 7

The structure of the expectations, however, differs from the initial structure,

because different values of the spot rate influence the prices of the bond. Equa-

tion (3.47) shows that changes of r result in changes of the price. Furthermore,

the different values of the spot exchange rate at time s = 1 also influence the

expectations as (4.5) shows. One would expect an exchange rate that is above

its initial level, as the spot rate in country Y increased to a higher level. Conse-

quently, one would expect a higher demand for the currency of country Y which

results in a depreciation of the currency of country X and thus to an increase

in the exchange rate. Obviously, the calculated spot exchange rate using (6.9)

does meet this expectation. Additionally, it ensures that the squared weighted

differences of the expectations formed at time t = 0 and those formed at time

s = 1 are minimized. To ensure that the expectations almost stay the same, the

spot exchange rate adjusts to E1 = 1.0014.
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On the contrary, an increase in the spot rate in country X leads to an ap-

preciation of its currency. Figure 7.8 and the spot exchange rate of E1 = 0.9871

confirms that.
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Summary

In this thesis, the structure of the expected exchange rates was investigated. The

emphasis was put on the influence of the fundamental factors of the economies

on the expectations.

Based on the term structures resulting from the model of Cox, Ingersoll, and

Ross [6] I constructed a path of expected exchange rates under certain assump-

tions. Various investment opportunities of the agents based on the two different

term structures led to an expectation of the future development of the spot ex-

change rate. Additionally, a further expectation was formed which was based on

the assumptions that there are individuals who expect a certain exchange rate at

a future time resulting from a possible repeated investment in short-term bonds.

An explicit solution of that expectation dependent on the fundamental factors

could be given in Chapter 5. The behavior of this expectation dependent on

changes in the variables, except for the variable describing the volatility of the

spot rate, seems to be consistent with the behavior of the term structure stated

in the paper [6]. Consequently, it was easy to find economic reasonable inter-

pretations for the observed behavior. The lack of a possible explanation for the

influence of the variance of the current interest rate and for the significance of the

length of the period on the expected future one period total return may indicate

deeper and further connections. Further investigation, which would be beyond

the scope of that thesis, could lead to further knowledge. On the contrary, the so

far unexplained behavior could also speak for an unusable approach.

With the help of these expectations I calculated another exchange rate ex-

pectation with regard to future times. Both investigated expected depreciation

rates partly show similar, almost identical behavior, however, partly absolutely

different behavior. Nevertheless, all examples presented in Chapter 7 show rea-

sonable structures of the expectations. This poses the question of which path

of the expected exchange rate is more meaningful and reasonable respectively. I
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hold the view that the question cannot be answered easily as each argumentation

underlying the particular expectation is reasonable. Consequently, it is hard to

be in favor of one of the paths. It can rather be assumed that in the long-run both

expectations are not meaningful at all as the influence of the different price levels,

the inflation rate and the trading of goods are neglected. Within the framework

of the purchasing power parity the influence of price levels gains more importance

in the long-run. As a result, the presented approach may not provide reasonable

statements with regard to the expected exchange rates in the long-run.

In addition to that, I presented a possibility of determining the spot exchange

rate taking the whole path of expected exchange rates into consideration. This

represents an extension to the more simple models explaining the influence of the

expectation on the current value. Although an analytical solution could not be

obtained, a way to calculate the spot exchange rate using numerical integration

methods was shown.



Appendix A

Solving a Stochastic Differential

Equation: an example

The following example will outline how the definition of the Itô Integral and of the

Itô formula can be used to calculate solutions for stochastic differential equations.

We want to solve the following SDE:

dXt =
1

2
Xtdt + XtdBt. (A.1)

Choosing g(t, x) = ln(x) and using Itô’s formula leads to:

d(ln(Xt)) =
1

Xt

dXt +
1

2

(−1

X2
t

)
(dXt)

2

=
1

Xt

dXt +
1

2

(−1

X2
t

)
(
1

2
Xtdt + XtdBt)

2

=
1

Xt

dXt − 1

2

1

X2
t

X2
t dt

=
1

Xt

dXt − 1

2
dt. (A.2)

Rewriting (A.1) as

dXt

Xt

=
1

2
dt + dBt,

it follows together with (A.2) that:

d(ln(Xt)) +
1

2
dt =

1

2
dt + dBt

d(ln(Xt)) = dBt∫ t

0

d(ln(Xs)) = Bt

81



82 Appendix A: Solving a Stochastic Differential Equation: an example

ln
(Xt

X0

)
= Bt

Xt

X0

= eBt

Xt = X0e
Bt .
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Further Technical Notes

B.1 The paper CIRI

Solution to the stochastic control problem:

(
dW

dY

)
=

(
Wµ(W )

µ

)
dt +

(
WΣn+k

j=1 qj

S

)
dω.

This equation can be interpreted as (2.7), where b =

(
Wµ(W )

µ

)
and

σ =

(
WΣn+k

j=1 qj

S

)
.

Here ν(t,W, Y ) is the parameter whose value we can choose to control the

process. V is the Borel set U mentioned in Section 2.2.3. The function to be

maximized can be expressed with certain values for f ν and g as in (2.8). In this

case, there is f ν = U(ν(s), Y (s), s) and g = 0.

The indirect utility function J(W,Y, t) can be interpreted as the function Φ

in (2.9).

If we further consider that

Wµ(W )dt ≡
[ ∑n

i=1 aiW (αi − r) +
∑k

i=1 biW (βi − r) + rW − C
]
dt,

W
∑n+k

j=1 qjdωj ≡
∑n

i=1 aiW
( ∑n+k

j=1 gijdωj

)
+

∑k
i=1 biW

( ∑n+k
j=1 hijdωj

)
, and

ai ≥ 0, C ≥ 0, the theorem of Hamilton-Jacobi-Bellman, that is calculating

supν∈V {LνJ + U} (see (2.11)), leads to the equations (3.7)-(3.11).
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B.2 The paper CIRII

to (3.26):

J(W,Y, t) = f(Y, t)U(W, t) + g(Y, t)

J(W,Y, t)W = f(Y, t)U(W, t)W

J(W,Y, t)WW = f(Y, t)U(W, t)WW

U(W, t)W =
{

e−ρs
[W γ − 1

γ

]}
W

= e−ρsW γ−1

U(W, t)WW =
{

e−ρs
[W γ − 1

γ

]}
WW

= e−ρs(γ − 1)W γ−2

⇒ −WJ(W,Y, t)WW

J(W,Y, t)W

=
−We−ρs(γ − 1)W γ−2

e−ρsW γ−1

= 1− γ

to (3.27):

J(W,Y, t) = f(Y, t)U(W, t) + g(Y, t)

JW = f(Y, t)U(W, t)W

JWY = f(Y, t)Y U(W, t)W

JWY = f(Y, t)
JW

f(Y, t)

⇒ −JWY

JW

=
−fY

f

to (3.28):

Can be calculated easily if one consider that for γ = 0

WJWW = −JW

fY = 0
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as f(Y, t) = 1−e−ρ(t
′−t)

ρ
for γ = 0.

to (3.32):

Note that r = λ∗
WJW

as in (3.12). With (see (3.6))

Ψ = αWJW + GGT a∗W 2JWW + GST WJWY − λ∗1 = 0

there is

a∗T Ψ

WJW

= a∗T α + a∗T GGT a∗
WJWW

JW

+ a∗T GST JWY

JW

− a∗T λ∗

WJW

= a∗T
(
α− λ∗

WJW

)
− a∗T GGT a∗

= a∗T
(
α− λ∗

WJW

−GGT a∗
)

a∗T Ψ

WJW

= 0 ⇔
(
α− λ∗

WJW

−GGT a∗
)

= 0.

That is

a∗ = (GGT )−1
(
α− λ∗

WJW

)
.

Comparing that equation with (3.29) leads to (3.32).

to (3.42):

Proof of the mean value using (2.5):

dr = κ(θ − r)dt + σ
√

rdz1

r(s) = r(t) +

∫ s

t

κ(θ − r(i))di +

∫ s

t

σ
√

r(i)dz1(i)

E(r(s)) = E(r(t)) +

∫ s

t

E(κ(θ − r(i)))di + E(

∫ s

t

σ
√

r(i)dz1(i))

= E(r(t)) +

∫ s

t

κθdi−
∫ s

t

κE(r(i))di + 0

Ė(r(s)) = κθ − κE(r(s)), E(r(t)) = r(t).

A propagator1 satisfies the following equation

P (t; τ) := e
R t

τ A(s)ds (B.1)

1For further information refer to [16].
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for linear differential equations of the form:

x
′

= A(t)x + B(t)

x(0) = x0.

Hence, the linear differential equation can be solved as follows:

E(r(s)) = r(t)e
R s

t −κds +

∫ s

t

P (s, τ)κθdτ

= r(t)e−κ(s−t) +

∫ s

t

e
R s

τ −κdsκθdτ

= r(t)e−κ(s−t) +

∫ s

t

e−κ(s−τ)κθdτ

= r(t)e−κ(s−t) + κθe−κs

∫ s

t

eκτdτ

= r(t)e−κ(s−t) + κθe−κs[eκτ 1

κ
]st

= r(t)e−κ(s−t) + κθe−κs(eκs 1

K
− eκt 1

κ
)

= r(t)e−κ(s−t) + θ(1− e−κ(s−t)).

to (3.45):

Using (3.29), there is

φY = a∗T ΣY

=
[
(GGT )−1α +

(1− 1T (GGT )−1α

1T (GGT )−11

)
(GGT )−11

]T

ΣY

=
[
Ω−1α̂ +

(1− 1T Ω−1α̂

1T Ω−1

Y
1

1
)Ω−1

Y
1
]T

ΣY

=
[
α̂T Ω−1Σ +

(1− 1T Ω−1α̂

1T Ω−11

)
1T Ω−1Σ

]
Y.

B.3 The Expected Exchange Rates

to (4.4):

With R(r, t, T ) = (rB(t, T )−ln(A(t, T )))/(T−t) and P (r, t, T ) = A(t, T )e−rB(t,T )

the proof is as follows:

R(r, t, T )TR = eR(r,t,T )·(T−t) − 1
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=
erB(t,T )

A
− 1

=
1

A(t, T )e−rB(t,T )
− 1

=
1

P (r, t, T )
− 1.

B.4 The Liquidity Preference Hypothesis

to (5.3):

Using a sufficient small ∆ such that

eγ∆ ≈ 1 + γ∆

(γ + κ + λ)∆ + 2 ≈ 2

ln
( c

c−∆

)
≈ c

c−∆
− 1

∆

c−∆
≈ ∆

c

Consequently,

B(s, s + ∆) =
2(eγ∆ − 1)

(γ + κ + λ)(eγ∆ − 1) + 2γ

≈ 2∆γ

(γ + κ + λ)∆γ + 2γ

=
2∆

(γ + κ + λ)∆ + 2

≈ 2∆

2
= ∆

and analogous to that

A(s, s + ∆) ≈ 1.

Hence,

E(R(r(s), s, s + ∆)TR) =

=
1

A(s, s + ∆)

( c

c−B(s, s + ∆)

)q+1

e
uB(s,s+∆)

c−B(s,s+∆) − 1

≈
( c

c−∆

)q+1

e
u∆

c−∆ − 1
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= e
2κθ
σ2 ln( c

c−∆
)e

cr(t)e−κ(s−t)∆
c−∆ − 1

≈ e
2κθ
σ2

(
c

c−∆
−1

)
er(t)e−κ(s−t)∆ − 1

= e
2κθ
σ2

∆
c−∆ er(t)e−κ(s−t)∆ − 1

≈ e
2κθ
σ2

∆σ2(1−e−κ(s−t))
2κ er(t)e−κ(s−t)∆ − 1

= er(t)e−κ(s−t)+θ(1−e−κ(s−t)) − 1

= eE(r(s)|r(t)) − 1.

B.5 Calculation of the ExpTR(∆)

At this point I present a possible alternative of calculating the expectation.

The spot rate needs to satisfy the following stochastic differential equation:

dr = κ(θ − r)dt + σ
√

rdz1.

Calculating the expected interest rate differentials for one period bonds results

in constant A(s, s + ∆) and B(s, s + ∆), denoted by Ā and B̄.

Using Itô’s formula and (2.5) we can calculate the stochastic differential equa-

tion for Yt = g(t, r(t)) = er(t)B̄−ln(Ā):

dY (s) =
B̄

Ā
er(s)B̄drs +

1

2

B̄2

Ā
er(s)B̄ds

Y (s) = er(t)B̄−ln(Ā) +

∫ s

t

1

2

er(i)B̄B̄2

Ā
di +

∫ s

t

er(i)B̄

Ā
B̄dr(i)

= er(t)B̄−ln(Ā) +

∫ s

t

1

2

er(i)B̄B̄2

Ā
di +

∫ s

t

er(i)B̄B̄

Ā
κ(θ − r(i))di +

∫ s

t

er(i)B̄B̄

Ā
σ
√

r(i)dz1(i)

E(Y (s)) = E(er(t)B̄−ln(Ā)) +
1

2

B̄2

Ā

∫ s

t

E(er(i)B̄)di +
B̄

Ā

∫ s

t

E(er(i)B̄κ(θ − r(i)))di

Ė(Y (s)) =
1

2

B̄2

Ā
E(er(s)B̄) +

B̄

Ā
E(er(s)B̄κθ) +

B̄

Ā
E(−κr(s)er(s)B̄)

= E(Y (s))(
1

2
B̄2 + B̄κθ) + E(Y (s)(−κr(s)))B̄.

As one can see, this approach, however, does not lead to a linear differential

equation. Hence, a solution may not be trivial.

ū > 0, because with κ > 0, σ2 > 0, and s > 0 there is e−κ(s−t) < 1. Hence,

c > 0. Consequently, u > 0. Hence, ū > 0.
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B.6 Characteristics of the ExpTR(∆)

To show the continuity of the partial derivatives the following facts are helpful:

2κ2 > |2κλ|,

as κ > |λ|.
Furthermore,

2κγ > 2σ2.

With σ2 < −2κλ the proof is as follows:

2κ
√

(κ + λ)2 + 2σ2 > 2σ2 ⇔
κ
√

(κ + λ)2 + 2σ2 > σ2 ⇔
κ2[(κ + λ)2 + 2σ2] > σ4 ⇔

κ2(κ + λ)2 + σ2(2κ2 − σ2) > 0 ⇔
κ2(κ + λ)2 + σ2(2κ2 + 2κλ) > 0.

Additionally,

γ > κ + λ.

There is

(γ + κ + λ)(eγ(T−t) − 1) + 2γ > 0,

as

(γ + κ + λ)(eγ(T−t) − 1) + 2γ > 0 ⇔
(γ + κ + λ)eγ(T−t) − (γ + κ + λ) + 2γ > 0 ⇔

(γ + κ + λ)eγ(T−t) + γ − κ− λ > 0

and

γ − κ− λ > 0 ⇔√
(κ + λ)2 + 2σ2 > κ + λ.
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Appendix C

MATLAB Source Files

I implemented all algorithms using MATLAB. Moreover, all figures were plotted

using MATLAB.

Source file characterize.m:

%This m-file will create the values of the two different countries

%and/or two different economic situations in one country at current

%time t respectively

clear all;

%COUNTRY X

r_X=0.055; kappa=0.6; theta=0.03; sigma=0.4; lambda=-0.5;

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

ValX=[r_X,kappa,theta,sigma,lambda]; save ValX.mat ValX; clear

all;

%COUNTRY Y (or second situation)

r_Y=0.06; kappa=0.8; theta=0.0314; sigma=0.4; lambda=-0.5;

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

ValY=[r_Y,kappa,theta,sigma,lambda]; save ValY.mat ValY; clear

all;

%Time and exchange rate

t=0; lasttime=9; ER_X_Y=1; ER_X_Y_at_t=[t,lasttime,ER_X_Y]; save

ER_X_Y_at_t.mat ER_X_Y_at_t; clear all;
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Source file termstructure.m:

%This m-file is used for calculation and investigation

%of the term structure of yields

clear all;

load ER_X_Y_at_t.mat

%Current exchange rate

ER_X_Y=ER_X_Y_at_t(3);

%Current time

t=ER_X_Y_at_t(1); lasttime=ER_X_Y_at_t(2);

%COUNTRY X

%COUNTRY X with following values

load ValX.mat r=ValX(1); kappa=ValX(2); theta=ValX(3);

sigma=ValX(4); lambda=ValX(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield

Rl=(2*kappa*theta)/(gamma+kappa+lambda)

%Critical value, which determines whether or not

%the term structure is humped

Rg=(kappa*theta)/(kappa+lambda) phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%This part calculates the term structure of default-free

%discount bonds according to the paper of CIRII

%Yield converges to the spot rate as maturity nears:

%Tau==Null

Rrt(1)=r; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

if At~=0

Rrt(i)=(-log(At)+r*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end
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Values=[t:0.01:lasttime;Rrt]; visu4=figure;

plot(Values(1,:),Values(2,:));hold on;

clear kappa theta sigma lambda gamma phi1 phi2

phi3 r Rrt Prt i;

%COUNTRY Y

%COUNTRY Y with following values

load ValY.mat r=ValY(1); kappa=ValY(2); theta=ValY(3);

sigma=ValY(4); lambda=ValY(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield

Rl=(2*kappa*theta)/(gamma+kappa+lambda)

%Critical value, which determines whether or not

%the term structure is humped

Rg=(kappa*theta)/(kappa+lambda) phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%This part calculates the term structure of default-free discount

%bonds according to the paper of CIRII

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

if At~=0

Rrt(i)=(-log(At)+r*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end

Values=[t:0.01:lasttime;Rrt];

plot(Values(1,:),Values(2,:),’r’);hold off; title([’VAL ONE:

’,texlabel(’r=’),mat2str(ValX(1)),’;’,texlabel(’kappa=’),

mat2str(ValX(2)),’;’,texlabel(’theta=’),mat2str(ValX(3)),’;’,

texlabel(’sigma=’),mat2str(ValX(4)),’;’,texlabel(’lambda=’),

mat2str(ValX(5)),’ VAL TWO:

’,texlabel(’r=’),mat2str(ValY(1)),’;’,texlabel(’kappa=’),
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mat2str(ValY(2)),’;’,texlabel(’theta=’),mat2str(ValY(3)),’;’,

texlabel(’sigma=’),mat2str(ValY(4)),’;’,texlabel(’lambda=’),

mat2str(ValY(5))],’Fontsize’,11);legend([texlabel(’kappa=’),

mat2str(ValX(2))],[texlabel(’kappa=’),mat2str(ValY(2))],0);

xlabel(’Time-to-maturity’);ylabel(’Yield-to-maturity’);grid

on;

%SAVING OF PLOT with counting number i

i=9; saveas(visu4,[’termstructure’,mat2str(i),’.eps’]);

saveas(visu4,[’termstructure’,mat2str(i),’.fig’]);

clear all;
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Source file exptr.m:

%This m-file is used for calculation and investigation

%of the expected total return of zero bonds with

%maturity=lag at future time s

clear all;

load ER_X_Y_at_t.mat

%Current exchange rate

ER_X_Y=ER_X_Y_at_t(3);

%Current time

t=ER_X_Y_at_t(1); lasttime=ER_X_Y_at_t(2);

lag=0.01;

%COUNTRY X

%COUNTRY X with following values

load ValX.mat r=ValX(1); kappa=ValX(2); theta=ValX(3);

sigma=ValX(4); lambda=ValX(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield

Rl=(2*kappa*theta)/(gamma+kappa+lambda);

%Critical value, which determines whether or not

%the term structure is humped

Rg=(kappa*theta)/(kappa+lambda); phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%These values can be chosen constant, cause we only

%investigate bonds with maturity=lag

N=phi2*(exp(phi1*(lag))-1)+phi1; At=(phi1*exp(phi2*(lag))/N)^phi3;

Bt=(exp(phi1*(lag))-1)/N;

%Value in the long-run

Yl=(1/At)*((2*kappa/sigma^2)/((2*kappa/sigma^2)-Bt))^

(2*kappa*theta/sigma^2)-1

%This part calculates the expectation of the TR

%when reinvesting every period

%The yield for a zero bond with time to maturity = lag

%at the current time t=0
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if At~=0

Rrt=(-log(At)+r*Bt)/(lag);

else

Rrt=NaN;

end

%The expected total return for a zero bond with

%maturity=0.01 at current time t can be calculated

%as follows:

RTR(1)=exp(Rrt*lag)-1; i=1; for s=lag+t:lag:lasttime-0.01

i=i+1;

c=(2.*kappa)./(sigma.^2.*(1-exp(-kappa.*(s-t))));

u=c.*r.*exp(-kappa.*(s-t));

q=(2.*kappa.*theta)./(sigma.^2)-1;

RTR(i)=(1/At)*(c/(c-Bt))^(q+1)*exp((u*Bt)/(c-Bt))-1;

end

visu2=figure; plot(t:lag:lasttime-0.01,RTR,’b’);hold on;

clear kappa theta sigma lambda gamma phi1 phi2 phi3

r Rrt i RTR s

c u q Yl At Bt;

%COUNTRY Y

%COUNTRY Y with following values

load ValY.mat r=ValY(1); kappa=ValY(2); theta=ValY(3);

sigma=ValY(4); lambda=ValY(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield

Rl=(2*kappa*theta)/(gamma+kappa+lambda);

%Critical value, which determines whether or not

%the term structure is humped

Rg=(kappa*theta)/(kappa+lambda); phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%These values can be chosen constant, cause we only

%investigate bonds with maturity=lag

N=phi2*(exp(phi1*(lag))-1)+phi1; At=(phi1*exp(phi2*(lag))/N)^phi3;

Bt=(exp(phi1*(lag))-1)/N;
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%Value in the long-run%

Yl=(1/At)*((2*kappa/sigma^2)/((2*kappa/sigma^2)-Bt))^

(2*kappa*theta/sigma^2)-1

%This part calculates the expectation of the TR when

%reinvesting every period

%The yield for a zero bond with time to maturity = lag

% at the current time t=0

if At~=0

Rrt=(-log(At)+r*Bt)/(lag);

else

Rrt=NaN;

end

%The expected total return for a zero bond with

%maturity=0.01 at current time t can be calculated

% as follows:

RTR(1)=exp(Rrt*lag)-1; i=1; for s=lag+t:lag:lasttime-0.01

i=i+1;

c=(2*kappa)/(sigma^2*(1-exp(-kappa*(s-t))));

u=c*r*exp(-kappa*(s-t));

q=(2*kappa*theta)/(sigma^2)-1;

RTR(i)=(1/At)*(c/(c-Bt))^(q+1)*exp((u*Bt)/(c-Bt))-1;

end

plot(t:lag:lasttime-0.01,RTR,’r’); title([’VAL ONE:

’,texlabel(’r=’),mat2str(ValX(1)),’;’,texlabel(’kappa=’),

mat2str(ValX(2)),’;’,texlabel(’theta=’),mat2str(ValX(3)),’;’,

texlabel(’sigma=’),mat2str(ValX(4)),’;’,texlabel(’lambda=’),

mat2str(ValX(5)),’ VAL TWO:

’,texlabel(’r=’),mat2str(ValY(1)),’;’,texlabel(’kappa=’),

mat2str(ValY(2)),’;’,texlabel(’theta=’),mat2str(ValY(3)),’;’,

texlabel(’sigma=’),mat2str(ValY(4)),’;’,texlabel(’lambda=’),

mat2str(ValY(5))],’Fontsize’,11);legend([texlabel(’sigma^2=’),

mat2str(ValX(4)^2)],[texlabel(’sigma^2=’),mat2str(ValY(4)^2)],0);

xlabel(’Time

s’);ylabel(’Expected future one period total return’);grid on;

%SAVING OF PLOT with counting number i
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i=12; saveas(visu2,[’Exp1TR’,mat2str(i),’.eps’]);

saveas(visu2,[’Exp1TR’,mat2str(i),’.fig’]);

clear all;
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Source file testliqpref.m:

%This m-file is used to test whether the investment in bonds with

%longer maturity pays off more than the repeated investment in bonds

%with maturity=0.01

clear all;

load ER_X_Y_at_t.mat

%Current exchange rate

ER_X_Y=ER_X_Y_at_t(3);

%Current time

t=ER_X_Y_at_t(1); lasttime=ER_X_Y_at_t(2);

%COUNTRY X

%COUNTRY X with following values

load ValX.mat r=ValX(1); kappa=ValX(2); theta=ValX(3);

sigma=ValX(4); lambda=ValX(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield%

Rl=(2*kappa*theta)/(gamma+kappa+lambda);

%Critical value, which determines whether or not the

%term structure is humped

Rg=(kappa*theta)/(kappa+lambda); phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%This part calculates the term structure of default-free discount

%bonds according to the paper of CIRII

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

if At~=0

Rrt(i)=(-log(At)+r*Bt)/(Tau);

RTRl(i-1)=exp(Rrt(i)*Tau)-1;

else

Rrt(i)=NaN;

RTRl(i-1)=NaN;

end
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end

%Plotting the effective yield when at time t=0 a zero bond

%with maturity Tau=[0.01:0.01:lasttime-t] is chosen

visu5=figure; Values=[0.01+t:0.01:lasttime;RTRl];

plot(Values(1,:),Values(2,:));hold on;axis tight

%These values can be chosen constant, cause we only investigate

%bonds with maturity=0.01

N=phi2*(exp(phi1*(0.01))-1)+phi1;

At=(phi1*exp(phi2*(0.01))/N)^phi3; Bt=(exp(phi1*(0.01))-1)/N;

%This part calculates the expectation of the total return

%when reinvesting every period

%The expected total return for a zero bond with maturity=0.01

%at current time t can be calculated as follows:

RTR(1)=exp(Rrt(2)*0.01)-1; i=1; for s=0.01+t:0.01:lasttime-0.01

i=i+1;

c=(2.*kappa)./(sigma.^2.*(1-exp(-kappa.*(s-t))));

u=c.*r.*exp(-kappa.*(s-t));

q=(2.*kappa.*theta)./(sigma.^2)-1;

RTR(i)=(1/At)*(c/(c-Bt))^(q+1)*exp((u*Bt)/(c-Bt))-1;

end

%Calculation of the total return when reinvesting every period

i=1; for s=0.01+t:0.01:lasttime

QMRTR(i)=1;

for j=1:i

QMRTR(i)=QMRTR(i)*(RTR(j)+1);

end

QMRTR(i)=QMRTR(i)-1;

i=i+1;

end

%Plotting of the total return when reinvesting every period

plot(Values(1,:),QMRTR,’r’);hold off;axis tight title(’Country X:

Long-term bonds vs. repeated reinvestment’); legend(’Total return

of long-term bond’,’Expected total return of repeated investment

in short-term bonds’,0) xlabel(’Date of

Maturity’);ylabel(’(Expected) Total return’);grid on;
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%COUNTRY Y

%COUNTRY Y with following values

load ValY.mat r=ValY(1); kappa=ValY(2); theta=ValY(3);

sigma=ValY(4); lambda=ValY(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield%

Rl=(2*kappa*theta)/(gamma+kappa+lambda);

%Critical value, which determines whether or not the

%term structure is humped

Rg=(kappa*theta)/(kappa+lambda); phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%This part calculates the term structure of default-free discount

%bonds according to the paper of CIRII

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

if At~=0

Rrt(i)=(-log(At)+r*Bt)/(Tau);

RTRl(i-1)=exp(Rrt(i)*Tau)-1;

else

Rrt(i)=NaN;

RTRl(i-1)=NaN;

end

end

%Plotting the total return when at time t=0 a zero

%bond with maturity Tau=[0.01:0.01:lasttime-t] is chosen

visu6=figure; Values=[0.01+t:0.01:lasttime;RTRl];

plot(Values(1,:),Values(2,:));hold on;axis tight

%These values can be chosen constant, cause we only

%investigate bonds with maturity=0.01

N=phi2*(exp(phi1*(0.01))-1)+phi1;

At=(phi1*exp(phi2*(0.01))/N)^phi3; Bt=(exp(phi1*(0.01))-1)/N;
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%This part calculates the expectation of the total return

%when reinvesting every period

%The expected total return for a zero bond with maturity=0.01

%at current time t can be calculated as follows:

RTR(1)=exp(Rrt(2)*0.01)-1; i=1; for s=0.01+t:0.01:lasttime-0.01

i=i+1;

c=(2.*kappa)./(sigma.^2.*(1-exp(-kappa.*(s-t))));

u=c.*r.*exp(-kappa.*(s-t));

q=(2.*kappa.*theta)./(sigma.^2)-1;

RTR(i)=(1/At)*(c/(c-Bt))^(q+1)*exp((u*Bt)/(c-Bt))-1;

end

%Calculation of the effective yield when reinvesting every period

i=1; for s=0.01+t:0.01:lasttime

QMRTR(i)=1;

for j=1:i

QMRTR(i)=QMRTR(i)*(RTR(j)+1);

end

QMRTR(i)=QMRTR(i)-1;

i=i+1;

end

%Plotting of the total return when reinvesting every period

plot(Values(1,:),QMRTR,’r’);hold off;axis tight title(’Country Y:

Long-term bonds vs. repeated reinvestment’); legend(’Total return

of long-term bond’,’Expected total return of repeated investment

in short-term bonds’,0) xlabel(’Date of

Maturity’);ylabel(’(Expected) Total return’);grid on;

%SAVING OF PLOT with counting number i

i=1; saveas(visu5,[’liqpref’,mat2str(i),’-1.eps’]);

saveas(visu6,[’liqpref’,mat2str(i),’-2.eps’]);

saveas(visu5,[’liqpref’,mat2str(i),’-1.fig’]);

saveas(visu6,[’liqpref’,mat2str(i),’-2.fig’]);

clear all;
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Source file exchangerates.m:

%This m-file is used to calculate the term structure and the

%resulting expectations of the development of the exchange rate

%These results are used to calculate the one period depreciation

%rates. These are compared to the one period depreciation

%rates following from the expected future one period total

%return differences

%The values of the variables need to be set in advance, e.g.

%using characterize.m

clear all;

load ER_X_Y_at_t.mat

%Current exchange rate

ER_X_Y=ER_X_Y_at_t(3);

%Current time

t=ER_X_Y_at_t(1); lasttime=ER_X_Y_at_t(2);

%COUNTRY X

%COUNTRY X with following values

load ValX.mat r_X=ValX(1); kappa=ValX(2); theta=ValX(3);

sigma=ValX(4); lambda=ValX(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield

Rl_X=(2*kappa*theta)/(gamma+kappa+lambda)

%Critical value, which determines whether or not the

%term structure is humped

Rg_X=(kappa*theta)/(kappa+lambda) phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%Calculation of the term structure of COUNTRY X

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r_X;

%Value of zero bond at maturity and effective interest rate

Prt(1)=1; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

Prt(i)=At*exp(-Bt*r_X);
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if At~=0

Rrt(i)=(-log(At)+r_X*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end

N=phi2*(exp(phi1*(0.01))-1)+phi1;

At=(phi1*exp(phi2*(0.01))/N)^phi3; Bt=(exp(phi1*(0.01))-1)/N;

%Value in the long-run

Yl=(1/At)*((2*kappa/sigma^2)/((2*kappa/sigma^2)-Bt))

^(2*kappa*theta/sigma^2)-1

%The expected total return for a zero bond with maturity=0.01

%at current time t can be calculated as follows:

RTRX(1)=exp(Rrt(2)*0.01)-1; i=1; for s=0.01+t:0.01:lasttime-0.01

i=i+1;

c=(2.*kappa)./(sigma.^2.*(1-exp(-kappa.*(s-t))));

u=c.*r_X.*exp(-kappa.*(s-t));

q=(2.*kappa.*theta)./(sigma.^2)-1;

RTRX(i)=(1/At)*(c/(c-Bt))^(q+1)*exp((u*Bt)/(c-Bt))-1;

end

%Saving

ValuesX=[t:0.01:lasttime;Rrt;Prt];

datafile=[’X’,mat2str(r_X),’_’,mat2str(kappa),’_’,mat2str(theta),

’_’,mat2str(sigma),’_’,mat2str(lambda),’.mat’];

save(datafile,’ValuesX’);

phi_rX=[phi1,phi2,phi3,r_X,kappa,theta,sigma,lambda,gamma]; save

X.mat phi_rX;

clear kappa theta sigma lambda gamma phi1 phi2 phi3 i Tau Rrt Prt

r_X s c u q;

%COUNTRY Y

%COUNTRY Y with following values

load ValY.mat r_Y=ValY(1); kappa=ValY(2); theta=ValY(3);

sigma=ValY(4); lambda=ValY(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5;

%Long term value of the yield

Rl_Y=(2*kappa*theta)/(gamma+kappa+lambda)
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%Critical value, which determines whether or not the

%term structure is humped

Rg_Y=(kappa*theta)/(kappa+lambda) phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%Calculation of the term structure of COUNTRY Y

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r_Y;

%Value of zero bond at maturity and effective yield

Prt(1)=1; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

Prt(i)=At*exp(-Bt*r_Y);

if At~=0

Rrt(i)=(-log(At)+r_Y*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end

N=phi2*(exp(phi1*(0.01))-1)+phi1;

At=(phi1*exp(phi2*(0.01))/N)^phi3; Bt=(exp(phi1*(0.01))-1)/N;

%Value in the long-run

Yl=(1/At)*((2*kappa/sigma^2)/((2*kappa/sigma^2)-Bt))

^(2*kappa*theta/sigma^2)-1

%The expected total return for a zero bond with maturity=0.01

%at time current time t can be calculated as follows:

RTRY(1)=exp(Rrt(2)*0.01)-1; i=1; for s=0.01+t:0.01:lasttime-0.01

i=i+1;

c=(2.*kappa)./(sigma.^2.*(1-exp(-kappa.*(s-t))));

u=c.*r_Y.*exp(-kappa.*(s-t));

q=(2.*kappa.*theta)./(sigma.^2)-1;

RTRY(i)=(1/At)*(c/(c-Bt))^(q+1)*exp((u*Bt)/(c-Bt))-1;

end

%Saving%

ValuesY=[t:0.01:lasttime;Rrt;Prt];

datafile=[’Y’,mat2str(r_Y),’_’,mat2str(kappa),’_’,mat2str(theta),
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’_’,mat2str(sigma),’_’,mat2str(lambda),’.mat’];

save(datafile,’ValuesY’);

phi_rY=[phi1,phi2,phi3,r_Y,kappa,theta,sigma,lambda,gamma]; save

Y.mat phi_rY;

clear kappa theta sigma lambda gamma phi1 phi2 phi3 i Tau Rrt Prt

r_Y s c u q;

%The expected exchange rates

%At current time the expectation equals the spot exchange rate

ExER(1)=ER_X_Y; i=1; for j=0.01+t:0.01:lasttime

i=i+1;

ExER(i)=((1/ValuesX(3,i))/(1/ValuesY(3,i)))*ER_X_Y;

end save ExER.mat ExER;

%Here the percentage change of the exchange rate from one

%period to another is calculated

%The values of the expected exchange rate are used

%f(i+1) defines the forward rate: i->i+1

i=0; for j=0.01+t:0.01:lasttime

i=i+1;

f(i+1)=(ExER(i+1)-ExER(i))/ExER(i);

end

%Here the percentage change of the exchange rate from one

%period to another is calculated

%The values of the differences of expected future one

%period total returns are used

l=length(RTRY); TRdiff=[RTRX(1:l)-RTRY(1:l)]./(1+RTRY(1:l));

l=length(f);

%Plot

visu1=figure;

plot(ValuesX(1,:),ValuesX(2,:),’r’,ValuesY(1,:),ValuesY(2,:));axis

tight title([’X:

’,texlabel(’r=’),mat2str(phi_rX(4)),’;’,texlabel(’kappa=’),

mat2str(phi_rX(5)),’;’,texlabel(’theta=’),mat2str(phi_rX(6)),’;’,

texlabel(’sigma=’),mat2str(phi_rX(7)),’;’,texlabel(’lambda=’),

mat2str(phi_rX(8)),’ Y:

’,texlabel(’r=’),mat2str(phi_rY(4)),’;’,texlabel(’kappa=’),
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mat2str(phi_rY(5)),’;’,texlabel(’theta=’),mat2str(phi_rY(6)),’;’,

texlabel(’sigma=’),mat2str(phi_rY(7)),’;’,texlabel(’lambda=’),

mat2str(phi_rY(8))],’Fontsize’,

11);legend(’X’,’Y’,0);xlabel(’Time-to-maturity’);

ylabel(’Yield-to-maturity’);grid on; visu2=figure;

plot(0+t:0.01:lasttime,ExER,’m’);xlabel(’Time’);ylabel(’Expected

Exchange Rate’);axis tight title([’X:

’,texlabel(’r=’),mat2str(phi_rX(4)),’;’,texlabel(’kappa=’),

mat2str(phi_rX(5)),’;’,texlabel(’theta=’),mat2str(phi_rX(6)),’;’,

texlabel(’sigma=’),mat2str(phi_rX(7)),’;’,texlabel(’lambda=’),

mat2str(phi_rX(8)),’ Y:

’,texlabel(’r=’),mat2str(phi_rY(4)),’;’,texlabel(’kappa=’),

mat2str(phi_rY(5)),’;’,texlabel(’theta=’),mat2str(phi_rY(6)),’;’,

texlabel(’sigma=’),mat2str(phi_rY(7)),’;’,texlabel(’lambda=’),

mat2str(phi_rY(8))],’Fontsize’,11);grid on;

visu3=figure;plot(0.01+t:0.01:lasttime,f(2:l),’m’);hold

on;plot(0.01+t:0.01:lasttime,TRdiff,’g’);grid on; title([’X:

’,texlabel(’r=’),mat2str(phi_rX(4)),’;’,texlabel(’kappa=’),

mat2str(phi_rX(5)),’;’,texlabel(’theta=’),mat2str(phi_rX(6)),’;’,

texlabel(’sigma=’),mat2str(phi_rX(7)),’;’,texlabel(’lambda=’),

mat2str(phi_rX(8)),’ Y:

’,texlabel(’r=’),mat2str(phi_rY(4)),’;’,texlabel(’kappa=’),

mat2str(phi_rY(5)),’;’,texlabel(’theta=’),mat2str(phi_rY(6)),’;’,

texlabel(’sigma=’),mat2str(phi_rY(7)),’;’,texlabel(’lambda=’),

mat2str(phi_rY(8))],’Fontsize’,11);grid on; legend(’based on term

structure’,’based on

DiffExpTR(0.01)’,0);xlabel(’Time’);ylabel(’Expected depreciation

rate’);

%SAVING OF PLOT with counting number i

i=9; saveas(visu1,[’Exrates’,mat2str(i),’-1.fig’]);

saveas(visu2,[’Exrates’,mat2str(i),’-2.fig’]);

saveas(visu3,[’Exrates’,mat2str(i),’-3.fig’]);

saveas(visu1,[’Exrates’,mat2str(i),’-1.eps’]);

saveas(visu2,[’Exrates’,mat2str(i),’-2.eps’]);

saveas(visu3,[’Exrates’,mat2str(i),’-3.eps’]);

clear all;
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Source file nextperiod.m:

%This m-file calculates the spot exchange rate at

%the next investigated time point

%It uses the m-files integral1.m and integral2.m

%If one wants to investigate another time point,

%integral1.m and integral2.m need to be adjusted

%The definite interval needs to be adjusted as well

%FIRST: Expectations at current time

clear all;

load ER_X_Y_at_t.mat

%Current exchange rate

ER_X_Y=ER_X_Y_at_t(3);

%Current time

t=ER_X_Y_at_t(1); lasttime=ER_X_Y_at_t(2);

%COUNTRY X

%COUNTRY X with following values

load ValX.mat r_X=ValX(1); kappa=ValX(2); theta=ValX(3);

sigma=ValX(4); lambda=ValX(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5; phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%Calculation of the term structure of COUNTRY X

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r_X;

%Value of Zero Bond at maturity and effective interest rate

Prt(1)=1; i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

Prt(i)=At*exp(-Bt*r_X);

if At~=0

Rrt(i)=(-log(At)+r_X*Bt)/(Tau);

else

Rrt(i)=NaN;
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end

end

%Saving

ValuesX=[t:0.01:lasttime;Rrt;Prt];

datafile=[’X’,mat2str(r_X),’_’,mat2str(kappa),’_’,mat2str(theta),

’_’,mat2str(sigma),’_’,mat2str(lambda),’.mat’];

save(datafile,’ValuesX’);

phi_rX=[phi1,phi2,phi3,r_X,kappa,theta,sigma,lambda,gamma]; save

X.mat phi_rX;

ff=t; gg=r_X;

%Needed for SECOND part

phi1_1=gamma; phi2_1=(kappa+lambda+gamma)*0.5;

phi3_1=(2*kappa*theta)/(sigma^2); r1_1=r_X; r2_1=input(’Please

enter the value (in \%) of the spot rate in Country X at time

t=0.01: ’); r2_1=r2_1/100; r_X=r2_1; ValX(1)=r_X; save ValX.mat

ValX

%COUNTRY Y

%COUNTRY Y with following values

load ValY.mat r_Y=ValY(1); kappa=ValY(2); theta=ValY(3);

sigma=ValY(4); lambda=ValY(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5; phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%Calculation of the term structure of COUNTRY Y

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r_Y;

%Value of Zero Bond at maturity and effective yield

Prt(1)=1;

%i is used for counting within the array

i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

Prt(i)=At*exp(-Bt*r_Y);

if At~=0
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Rrt(i)=(-log(At)+r_Y*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end

%Saving

ValuesY=[t:0.01:lasttime;Rrt;Prt];

datafile=[’Y’,mat2str(r_Y),’_’,mat2str(kappa),’_’,mat2str(theta),

’_’,mat2str(sigma),’_’,mat2str(lambda),’.mat’];

save(datafile,’ValuesY’);

phi_rY=[phi1,phi2,phi3,r_Y,kappa,theta,sigma,lambda,gamma]; save

Y.mat phi_rY;

hh=r_Y;

%Needed for SECOND part

phi1_2=gamma; phi2_2=(kappa+lambda+gamma)*0.5;

phi3_2=(2*kappa*theta)/(sigma^2); r1_2=r_Y; r2_2=input(’Please

enter the value (in \%) of the spot rate in Country Y at time

t=0.01: ’); r2_2=r2_2/100; r_Y=r2_2; ValY(1)=r_Y; save ValY.mat

ValY;

%Calculation of the Expected Exchange Rate and plot%

%Equals the expected exchange rate at evaluation point 1

ExER(1)=ER_X_Y; i=1; for j=0.01+t:0.01:lasttime

i=i+1;

ExER(i)=((1/ValuesX(3,i))/(1/ValuesY(3,i)))*ER_X_Y;

end save ExER.mat ExER; visu1=figure;

plot(t:0.01:lasttime,ExER,’m’);hold on;

%SECOND: Calculation of the spot exchange rate at next time

%x represents time T%

integrand1=[’integral1(x,’,mat2str(phi1_1),’,’,mat2str(phi2_1),

’,’,mat2str(phi3_1),’,’,mat2str(phi1_2),’,’,mat2str(phi2_2),’,’,

mat2str(phi3_2),’,’,mat2str(r1_1),’,’,mat2str(r2_1),’,’,

mat2str(r1_2),’,’,mat2str(r2_2),’,’,mat2str(ER_X_Y),’)’];

integrand2=[’integral2(x,’,mat2str(phi1_1),’,’,mat2str(phi2_1),

’,’,mat2str(phi3_1),’,’,mat2str(phi1_2),’,’,mat2str(phi2_2),’,’,

mat2str(phi3_2),’,’,mat2str(r1_1),’,’,mat2str(r2_1),’,’,mat2str(r1_2),
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’,’,mat2str(r2_2),’)’];

E1=quad(integrand1,1,lasttime)/quad(integrand2,1,lasttime)

ER_X_Y_at_t=[1,lasttime,E1]; save ER_X_Y_at_t.mat ER_X_Y_at_t;

clear Prt Rrt ExER

%THIRD: Expectations at next time%

load ER_X_Y_at_t.mat

%Current exchange rate

ER_X_Y=ER_X_Y_at_t(3);

%Current time%

t=ER_X_Y_at_t(1); lasttime=ER_X_Y_at_t(2);

%COUNTRY X%

%COUNTRY X with following values

load ValX.mat r_X=ValX(1); kappa=ValX(2); theta=ValX(3);

sigma=ValX(4); lambda=ValX(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5; phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%Calculation of the term structure of COUNTRY X

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r_X;

%Value of Zero Bond at maturity and effective interest rate

Prt(1)=1;

%i is used for counting within the array

i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

Prt(i)=At*exp(-Bt*r_X);

if At~=0

Rrt(i)=(-log(At)+r_X*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end

%Saving%

ValuesX=[t:0.01:lasttime;Rrt;Prt];
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datafile=[’X’,mat2str(r_X),’_’,mat2str(kappa),’_’,mat2str(theta),

’_’,mat2str(sigma),’_’,mat2str(lambda),’.mat’];

save(datafile,’ValuesX’);

phi_rX=[phi1,phi2,phi3,r_X,kappa,theta,sigma,lambda,gamma]; save

X.mat phi_rX;

%COUNTRY Y

%COUNTRY Y with following values

load ValY.mat r_Y=ValY(1); kappa=ValY(2); theta=ValY(3);

sigma=ValY(4); lambda=ValY(5);

gamma=((kappa+lambda)^2+2*(sigma^2))^0.5; phi1=gamma;

phi2=(kappa+lambda+gamma)*0.5; phi3=(2*kappa*theta)/(sigma^2);

%Calculation of the term structure of COUNTRY Y

%Yield converges to the spot rate as maturity nears: Tau==Null

Rrt(1)=r_Y;

%Value of Zero Bond at maturity and effective yield

Prt(1)=1;

%i is used for counting within the array

i=1; for Tau=0.01:0.01:lasttime-t

i=i+1;

N=phi2*(exp(phi1*(Tau))-1)+phi1;

At=(phi1*exp(phi2*(Tau))/N)^phi3;

Bt=(exp(phi1*(Tau))-1)/N;

Prt(i)=At*exp(-Bt*r_Y);

if At~=0

Rrt(i)=(-log(At)+r_Y*Bt)/(Tau);

else

Rrt(i)=NaN;

end

end

%Saving%

ValuesY=[t:0.01:lasttime;Rrt;Prt];

datafile=[’Y’,mat2str(r_Y),’_’,mat2str(kappa),’_’,mat2str(theta),

’_’,mat2str(sigma),’_’,mat2str(lambda),’.mat’];

save(datafile,’ValuesY’);

phi_rY=[phi1,phi2,phi3,r_Y,kappa,theta,sigma,lambda,gamma]; save

Y.mat phi_rY;
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%Calculation of the Expected Exchange Rate and plot

%Equals the expected exchange rate at evaluation point 1

ExER(1)=ER_X_Y; i=1; for j=0.01+t:0.01:lasttime

i=i+1;

ExER(i)=((1/ValuesX(3,i))/(1/ValuesY(3,i)))*ER_X_Y;

end save ExER.mat ExER;

plot(t:0.01:lasttime,ExER,’g’);xlabel(’Time’);ylabel(’Expected

Exchange Rate’); title([’X:

’,texlabel(’r(’),mat2str(ff),texlabel(’)=’),mat2str(gg),’;

’,texlabel(’r(’),mat2str(t),texlabel(’)=’),mat2str(r2_1),’ Y:

’,texlabel(’r(’),mat2str(ff),texlabel(’)=’),mat2str(hh),’;

’,texlabel(’r(’),mat2str(t),texlabel(’)=’),mat2str(r2_2)],’Fontsize’,

11);grid on; legend([’at time t=’,mat2str(ff)],[’at time

s=’,mat2str(t)],0); clear all;
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Source file integral1.m:

function

y=integral_1(x,phi1_1,phi2_1,phi3_1,phi1_2,phi2_2,phi3_2,

r1_1,r2_1,r1_2,r2_2,ER_X_Y)

N1_1=phi2_1*(exp(phi1_1*(x))-1)+phi1_1;

A1_1=(phi1_1*exp(phi2_1*(x))/N1_1)^phi3_1;

B1_1=(exp(phi1_1*(x))-1)/N1_1; P1_1=A1_1*exp(-B1_1*r1_1);

N2_1=phi2_1*(exp(phi1_1*(x-1))-1)+phi1_1;

A2_1=(phi1_1*exp(phi2_1*(x-1))/N2_1)^phi3_1;

B2_1=(exp(phi1_1*(x-1))-1)/N2_1; P2_1=A2_1*exp(-B2_1*r2_1);

N1_2=phi2_2*(exp(phi1_2*(x))-1)+phi1_2;

A1_2=(phi1_2*exp(phi2_2*(x))/N1_2)^phi3_2;

B1_2=(exp(phi1_2*(x))-1)/N1_2; P1_2=A1_2*exp(-B1_2*r1_2);

N2_2=phi2_2*(exp(phi1_2*(x-1))-1)+phi1_2;

A2_2=(phi1_2*exp(phi2_2*(x-1))/N2_2)^phi3_2;

B2_2=(exp(phi1_2*(x-1))-1)/N2_2; P2_2=A2_2*exp(-B2_2*r2_2);

y=(P1_2.*P2_2.*ER_X_Y)./(P1_1.*P2_1.*x);
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Source file integral2.m:

function

y=integral_2(x,phi1_1,phi2_1,phi3_1,phi1_2,phi2_2,

phi3_2,r1_1,r2_1,r1_2,r2_2)

N2_1=phi2_1*(exp(phi1_1*(x-1))-1)+phi1_1;

A2_1=(phi1_1*exp(phi2_1*(x-1))/N2_1)^phi3_1;

B2_1=(exp(phi1_1*(x-1))-1)/N2_1; P2_1=A2_1*exp(-B2_1*r2_1);

N2_2=phi2_2*(exp(phi1_2*(x-1))-1)+phi1_2;

A2_2=(phi1_2*exp(phi2_2*(x-1))/N2_2)^phi3_2;

B2_2=(exp(phi1_2*(x-1))-1)/N2_2; P2_2=A2_2*exp(-B2_2*r2_2);

y=(P2_2.^2./P2_1.^2)*1./x;
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