
UNIVERSITÄT BAYREUTH
MATHEMATISCHES INSTITUT

Financial Option Valuation by Monte Carlo Simulation

von

Andrea Kölz

Datum: September 28, 2005

Aufgabenstellung / Betreuung:

Prof. Dr. L. Grüne

Contents

1 Introduction 1

2 Options 5
2.1 Financial Derivatives . 5
2.2 Options . 6

2.2.1 Influences on Option Values 8
2.2.2 Payoff Functions . 11
2.2.3 Put-Call Parity . 12
2.2.4 Upper and Lower Bounds 13
2.2.5 Hedging Strategies . 17
2.2.6 Exotic Options . 19

3 Essentials of Stochastics 21
3.1 Random Variables . 23

3.1.1 Integration and moments . 25
3.1.2 Distributions . 27
3.1.3 Multiple Random Variables 29
3.1.4 Confidence Intervals . 32

3.2 Convergence and approximation . 33

4 Asset Price Model 37
4.1 The Wiener Process . 37

4.1.1 Approximation of a Wiener process 37
4.1.2 Some Properties of the Wiener process 38

4.2 Stochastic Integral . 43
4.3 SDE model for asset price movements 45

4.3.1 Ito Lemma . 48
4.3.2 Solution of Geometric Brownian Motion 48
4.3.3 Options on dividend-paying assets 49

I

II CONTENTS

5 Random Number Generators 51
5.1 Uniformly distributed random numbers 51

5.1.1 Linear congruential generators 52
5.1.2 Fibonacci Generators . 52

5.2 Sequences of Numbers with Low Discrepancy 56
5.3 Normally distributed random numbers 59

5.3.1 Inversion . 60
5.3.2 Transformations . 63
5.3.3 Comparison of methods . 66

6 Monte Carlo Method 69
6.1 Monte Carlo Method for option pricing 70
6.2 Convergence of the Monte Carlo Method 74
6.3 Variance reduction . 76
6.4 Quasi-Monte Carlo . 78
6.5 Volatility models . 80

6.5.1 Historical volatility . 82
6.5.2 Implied volatility . 83
6.5.3 Stochastic Volatility . 83

6.6 Results . 86

7 American Options 91
7.1 Tilley’s Bundling Algorithm . 95
7.2 Bounded Recursive Stochastic Simulation (BRSS) 98
7.3 Broadie and Glasserman algorithm 101
7.4 Comparison of methods . 112

8 Summary and Conclusions 117

A Black-Scholes 119
A.1 The Black Scholes Analysis . 119
A.2 Boundary and final conditions . 120
A.3 The Black-Scholes formulae . 121

B The Euler-Maruyama algorithm 125

C MATLAB codes 127
C.1 MATLAB code for Random number Generators 127

C.1.1 Congruential . 127
C.1.2 Fibonacci . 127
C.1.3 Lagged Fibonacci . 128
C.1.4 Boxmuller . 128

CONTENTS III

C.1.5 Moro . 129
C.1.6 Halton sequence . 131

C.2 MATLAB codes used in Chapters 4 and 6 131
C.2.1 Black Scholes . 131
C.2.2 Wiener Process . 132
C.2.3 Asset Price Movement . 132
C.2.4 Monte Carlo simulation for evaluating a European call option 133
C.2.5 Stochastic volatility . 136
C.2.6 Historical volatility . 138

C.3 MATLAB code for Broadie and Glasserman algorithm 138
C.3.1 Broadie and Glasserman algorithm 138
C.3.2 Low estimator tree . 139
C.3.3 High estimator tree . 141

Bibliography 143

IV CONTENTS

List of Tables

5.1 Coefficients for Moro’s inversion method 63
5.2 Comparison: Running time of Moro’s and the Boxmuller method . . . 68

6.1 MC simulation for S0 = 120 . 73
6.2 MC simulation for S0 = 100 . 74
6.3 MC simulation for S0 = 80 . 75
6.4 MC simulation with AV for S0 = 120 79
6.5 Quasi Monte Carlo simulation for S0 = 120 82
6.6 Different numbers of simulations for the same level of accuracy . . . 86
6.7 Different levels of accuracy for a constant number of simulations . . . 88

7.1 AO without dividends for S0 = 80 109
7.2 AO without dividends for S0 = 100 109
7.3 AO without dividends for S0 = 120 110
7.4 Comparison of different start values for S0 111
7.5 Values for an American type call option with a continuous dividend rate 113

V

VI LIST OF TABLES

List of Figures

2.1 Payoff diagrams of a European call (left) and a European put (right). . 12
2.2 Qualitative curves of the prices of European and American options. . . 17
2.3 Payoff diagrams of a long straddle (left) and a long strangle (right) . . 18
2.4 Payoff function of a butterfly spread 19

3.1 Graph of the density function of the Standard Gaussian Distribution . 28

4.1 Zooming in on a path of a Wiener Process 39
4.2 Illustrative example: 3 different paths of the Wiener Process 40
4.3 Real asset price movement compared to simulated ones 46

5.1 1500 pairs of points (Ui−1, Ui) computed with the congruential generator 53
5.2 1500 pairs of points (Ui−1, Ui) computed with the fibonacci generator 54
5.3 1500 pairs of points (Ui−1, Ui) computed with the lagged fibonacci

generator . 55
5.4 1500 pairs of points (Ui−1, Ui) computed with the MATLAB function

’rand’ . 57
5.5 The first 1500 points of the Halton sequence in dimensions 1 (base

p1 = 2) and 2 (base p2 = 3) . 60
5.6 The first 1500 points of the Halton sequence in dimensions 27 (base

p1 = 103) and 28 (base p2 = 107) 61
5.7 The first 10000 numbers of the Halton sequence uniformly distributed

and transformed to a normal distribution by the Boxmuller method and
the Moro algorithm. 66

5.8 10000 numbers computed with the MATLAB function ’rand’ uniformly
distributed and transformed to a normal distribution by the Boxmuller
method and the Moro algorithm. 66

5.9 10000 numbers computed with the linear congruential generator uni-
formly distributed and transformed to a normal distribution by the
Boxmuller method and the Moro algorithm. 67

VII

VIII LIST OF FIGURES

5.10 10000 numbers computed with the lagged fibonacci generator uni-
formly distributed and transformed to a normal distribution by the
Boxmuller method and the Moro algorithm. 67

5.11 10000 numbers computed with the MATLAB function ’randn’ 67

6.1 Confidence interval for a European call option with S0 = 120 74
6.2 Confidence interval for a European call with S0 = 120 and AV 78
6.3 Comparison of the relative error with Boxmuller and Moro 80
6.4 Confidence interval for a European call with S0 = 120 (QMC) 81
6.5 Confidence interval for a European call with S0 = 120 (QMC AV) . . 81
6.6 Mean-reverting volatility . 85
6.7 Option value with constant and mean-reverting volatility 85
6.8 Asset price movement with constant and mean-reverting volatility . . 86
6.9 Relative error of the Monte Carlo method for a European call with

S0 = 120 . 87
6.10 Relative error of the Monte Carlo method for a European call with

S0 = 100 . 88
6.11 Relative error of the Monte Carlo method for a European call with

S0 = 80 . 89

7.1 Simulated tree for b = 3 . 102
7.2 The high estimator Θ . 102
7.3 The simple low estimate . 105
7.4 The low estimator θ . 105
7.5 Confidence interval for an American call with S0 = 80 (b=10) 110
7.6 Confidence interval for an American call with S0 = 80 (b=25) 111
7.7 Confidence interval for an American call with S0 = 80 (b=50) 112
7.8 Relative error of the BRSS Method for an American call with S0 = 80 113

Chapter 1

Introduction

The variety of methods for pricing financial options is very big. Depending on the
complexity of the restricting assumptions that are made and on the type of option that
has to be evaluated, analytical approaches, partial differential equations or compu-
tational methods can be used. In practice, the complexity of most options requires
approximation schemes for determining the price of the option. In this thesis we want
to examine Monte Carlo simulation as a method for evaluating such options. Since
it is very flexible and applicable to a large range of different problems it is also re-
ferred to in plural and the term Monte Carlo methods can be found in literature a lot of
times. Monte Carlo simulation methods are a powerful and widely used tool for pric-
ing path dependent or higher dimensional European type options since the approach is
straightforward, easy to understand and not hard to implement.
In case the option under consideration is American, however, simulation approaches
for option pricing do not seem to be practical at all. In fact, the pricing problem for
American options had been considered to be computationally intractable for a long
time. Only during the last decade, several simulation methods for pricing American
type options have been developed. The first approaches were very limited in their flex-
ibility but better methods have been invented since then and Monte Carlo simulation
is no longer considered to be unsuitable for the problem of pricing American options
today.

The objective of this thesis is the valuation of financial options of both European and
American types by Monte Carlo simulation. In what follows the respective algorithms
are all implemented in MATLAB.
Although simulation methods are not actually needed for the simplest kinds of Eu-
ropean options which can be priced faster using other methods, we will illustrate the
concept of the Monte Carlo method for option pricing on the example of the simplest
kinds of European options, the so called plain vanilla ones.
Subsequently we will make the same restrictions when evaluating American options.

1

2 Chapter 1: Introduction

Before we can price options using Monte Carlo simulation, some groundwork has to
be done.
We will start with taking a look at the concept of an option as a special case of a
financial derivative in Chapter 2. Different factors that have an influence on the price
price will be listed before first boundaries on option values can be derived. The chapter
then concludes with a short overview of different option types that exist on the market
after we discussed what options are used for.
In Chapter 3 some stochastic definitions and theorems are introduced that will be
needed for deriving a mathematical model of asset price dynamics in later chapters.

Having thus covered basics of option theory and stochastics, we can then derive a
mathematical model for the price movement of the underlying asset in Chapter 4.
Examining several properties of the Wiener process as a special case of a general
stochastic process will lead us to the concept of a stochastic integral or Ito integral.
With this important tool we will then be able to construct the stochastic differential
equation(SDE) for modeling the dynamics of asset prices, called Geometric Brownian
Motion. A solution to this SDE for the simple one-dimensional case as well as an
extension of the model for options on dividend paying assets will be given at the end
of that chapter.
Due to the randomness of the asset price movement, it is of importance to have access
to a large quantity of random numbers when evaluating options via Monte Carlo sim-
ulation. This is why we will deal with different methods for generating random num-
bers with certain properties in Chapter 5. Although Monte Carlo methods work with
normally distributed deviates, we will start out with presenting different methods for
generating uniformly distributed pseudo-random numbers. Since randomness is not as
essential for the Monte Carlo method as an equidistant distribution, we will then intro-
duce low discrepancy sequences as an alternative to pseudo-random numbers. Those
so called quasi-random numbers fill the unit square as uniformly as possible.
Subsequently we will examine two different classes of methods that generate normally
distributed numbers out of numbers with a uniform distribution. Those are the ones of
interest for Monte Carlo simulation methods.

At this point we will have covered the last piece of background information that is
needed and we can work with Monte Carlo simulation methods in Chapter 6. After
the general principle of the method is explained, we will illustrate the Monte Carlo
Method for option valuation on the example of a European call option in MATLAB.
This simple example will show clearly that the convergence of Monte Carlo simulation
is very slow. We therefore will examine the convergence behavior of the method and
see that it is not only proportionally to the square root of the number of simulation

1.0 Introduction 3

runs but also to the variance of the random variable in question. Consequently, we will
explore antithetic variates as an example of variance reduction methods. Applying this
improved approach to the same example as before yields significantly better results
than crude Monte Carlo.
Another approach to be investigated is that of using quasi-random numbers instead of
pseudo-random ones. As another example will show, this so called Quasi-Monte-Carlo
method outperforms Monte Carlo simulation with antithetic variates by a large degree.

In Chapter 7 we will then concern ourselves with the valuation of American type op-
tions. At first we will give an overview of the differences to evaluating European
options and explain why difficulties have to be faced when using forward simulation
methods for a problem that requires a backward algorithm. Having this done we will
introduce three different approaches of solving this problem and give a computational
example of the Broadie and Glasserman algorithm before we compare the three meth-
ods.

To conclude the thesis, we will sum up the results we derived in the previous chapters
as well as give a short overview of different topics that could not be explored in this
thesis.

4 Chapter 1: Introduction

Chapter 2

Options

In this chapter we are going to discuss the following questions

- What are options?

- What influences the value of an option?

- What are the upper and lower bounds on the fair value of an option?

- What are options used for?

- What kinds of options are there on the market?

in a very basic way. Therefore, we present some fundamental terms which are needed
when talking about options. After financial derivatives are introduced in general, we
will define the most basic kinds of options, as well as give a short overview of the
influencing factors on the value of an option. Once this is done we can derive upper
and lower bounds on option values, as well as give a brief sketch of hedging strategies.
We will then conclude this chapter by introducing Exotic options before we talk about
the Monte Carlo simulation in the following chapters.
For books covering the basics of option theory we refer to [12], [13], [23] and [24], all
of which have had a huge influence on the presentation of this chapter.

2.1 Financial Derivatives
In general, financial derivatives are contracts that agree to sell or buy an asset for a
certain price at a certain future point of time or during a specified time interval. They
are called derivatives because the value of such a contract depends on the value of the
underlying asset. Thereby the term asset describes any financial object whose value
is known at present but is likely to change in the future. The most common examples
of assets would be shares in a company, bonds, commodities or currencies. Financial

5

6 Chapter 2: Options

derivatives are instruments that provide investors with different possibilities for com-
posing their portfolio in order to meet their individual needs. Depending on how they
are used, they can reduce risk, or they can increase it. Thus financial derivatives can
be instruments for either speculation or hedging. We will deal with different ways of
hedging later in this chapter.

Financial derivatives can roughly be categorized in three groups

- Forwards and Futures
A forward contract is an agreement to buy or sell an asset on a specified future
date for a price agreed upon today.
A futures contract is basically a standardized forward. Its value is determined on
a daily basis, and thus futures - unlike forwards - can be traded on the market.

- Swaps
A swap is an agreement between two parties to exchange a sequence of cash
flows in the future according to some formula.

- Options
An option is a contract that gives its holder the right but not the obligation to buy
or sell an asset at or before a given date in the future.

The buyer of a financial derivative is said to hold the long position, while the seller
or writer holds the short position. These two terms sum up the possible positions that
can be taken in futures, forwards or swaps contracts. Options, however, provide four
possible positions:

long call: the right to buy

long put: the right to sell

short call: the obligation to sell in case of exercise

short put: the obligation to buy in case of exercise

2.2 Options
The main difference between options and other forms of financial derivatives is their
non-obligatory nature for the holder. He can choose whether or not to exercise his
right, whereas the writer has a potential obligation: he must sell (or buy) the underly-
ing asset unless the holder decides to let his option expire worthless. A forward, for
example, does not provide its holder with such a right of choice. It costs nothing to en-
ter into a forward contract. The value of such an agreement is determined by the fixed

2.2 Options 7

price which is to be payed for the asset at expiry. However, entering long into an option
contract comes at a certain price, called premium. The holder attains a right with no
obligation, thus leaving the writer of the option with an asymmetric higher risk. The
premium, which the holder pays to the writer when issuing the option, is supposed to
compensate the writer for those possible future liabilities, and it also limits the holders
potential loss as we will see later on.
In what follows, we will concentrate on the standpoint of the holder. This focus reduces
the possible positions down to the long-call and the long-put.
To review, a call option is a contract that gives its holder the right to buy a certain
amount of the underlying asset from the writer of the option at or up to the maturity
date, and a put option provides its owner with the right to sell the underlying. Thereby,
the holder of a call expects the price of the asset to rise, while the buyer of a put option
expects the price of the asset to drop.
The simplest form of a financial option, a plain-vanilla European option is defined as
follows:

Definition 2.1.

(i) A European call option gives the holder the right, but not the obligation, to buy
an underlying asset at a specified expiry date T , for a specified strike price K.

(ii) A European put option gives the holder the right, but not the obligation, to sell
an underlying asset at a specified expiry date T , for a specified strike price K.

Remark 2.2. Other terms used for the expiry date T are expiration date, exercise date
or maturity date. Sometimes the term exercise price is used instead of strike price when
talking about K.

A European option can only be exercised at its maturity date T . Until this date, the
holder has only two possibilities: he can either keep the option, or he can sell it.
Another form of an option which leaves its holder a lot more freedom concerning the
exercise date is the American option. Its holder has the possibility to buy or sell the
underlying asset at any given time up to the maturity date of the option:

Definition 2.3.

(i) An American call option with strike price K and expiry date T gives the holder
the right, but not the obligation, to buy an asset for the strike price K at any
time t0 ≤ t ≤ T .

(ii) An American put option with strike price K and expiry date T gives the holder
the right, but not the obligation, to sell an asset for the strike price K at any
time t0 ≤ t ≤ T .

8 Chapter 2: Options

Remark 2.4. Generally, the letter V will denote the value of an option. However, if
distinction makes it necessary we will use the letters C or P for a call or a put option
respectively. The indices A and E will mark American and European style options.

Since the possibilities provided by an American option include those of a European
option, the value of an American option can never drop below the value of a European
option with the same maturity and strike price.

Remark 2.5. Later on, we will show that for an American call option early exercise
is never profitable which is why the value of an American call equals the value of a
European call. However, the same is not true for an American put.

Mathematically, American options are more complicated than European ones. In ad-
dition to the value, one also has to determine the best time to exercise an American
option. This problem will be tackled later on in this thesis.
The two forms of options introduced above are the most basic and widespread ones.
The classification into European or American options only concerns the terms of exer-
cise and has no geographical meaning. Both types are traded on markets all over the
world. Today, most options on stock are American style ones.

Remark 2.6. When talking about financial options, there are some expressions used
to describe the state of an option.

- in the money
An option is called in the money if an immediate exercise would be profitable for
the holder. Accordingly, a call is in the money if the asset value S is significantly
higher than the strike price K, and a put is in the money if S < K.

- at the money
This term is used if there is no difference relating to payoff in exercising the
option or letting it expire worthless, i.e. if the strike price K and the underlying
value are about equal, S = K.

- out of the money
An option is called out of the money if exercise would mean a loss in comparison
to letting it expire worthless. Consequently, a call is out of the money if the asset
value S is well below the strike price K, and a put is out of the money if S > K.

2.2.1 Influences on Option Values

The most basic definitions and terms concerning financial options have been intro-
duced in the previous section. We will now define the market model that we are work-
ing with in order to examine some of the characteristics of option values. The financial

2.2 Options 9

market is very complex, which is why it is necessary to make generalizations when ap-
proximating reality in mathematical models. Although the idealizations we are making
in our model are often criticized since they are not very realistic, the resulting Market
model is still widely used:

Assumptions 2.7. [Market model]

- The market is frictionless.
This means that

– There are no transaction costs.

– The costs for buying and selling an asset are the same.

– There is no difference in the constant risk-free interest rate that applies to
any amount of money deposited in or borrowed from a bank.

– The price is not influenced by individual trading.

– Any information is immediately accessible to all parties.

– It is possible to buy or sell any amount of asset at any place and any time
0 ≤ t ≤ T . This implies that the amount of assets may take any real
number, and that we use a continuous market model.

- The no-arbitrage-principle is valid.
The no-arbitrage-principle states that arbitrage, i.e. the opportunity to make
instantaneous, risk-free profit does not exist on a frictionless market. That is to
say, the greatest risk-free return one can make on any investment is the same as
the return if the same amount of money were placed in a bank.
This assumption is justified by the forces of the market. Suppose there was a
possibility of putting together a portfolio which guarantied risk-free profit that
exceeded the return of a bank deposit. This possibility of arbitrage would cause
sensible investors to withdraw their money from the bank and even to borrow
money for further investment in the portfolio. Such a situation cannot exist for
long. As more and more people will try to lock in the portfolio, the increase in
demand will cause its price to rise, thereby restoring parity.

- The asset price follows a geometric Brownian motion.
We will learn more about that in Chapter 4.

- The risk free interest rate r and the volatility σ are constant for 0 ≤ t ≤ T .
An asset’s volatility represents its likeliness to change its value. It can be seen
in the jaggedness of the graph of the asset price against time.

- No dividends are paid.

10 Chapter 2: Options

- Short selling is possible.

Remark 2.8.
Of course there is no such thing as a frictionless market, and in practice arbitrage
may exist in smaller forms. However, those opportunities are not significant, and the
concept of the no-arbitrage principle is widely accepted for the modeling of financial
markets. Thus it is justified to say that if one wants a greater return then one has to
take a greater risk.
Arbitrage is a powerful tool in option theory. It can be used to compare risky financial
investments with investments that are free of risk, but it is also used in proofs.
The assumptions of r and σ being constant and of no dividends being paid are very
restrictive and they do not mirror the reality of the market. Still, we shall work with
this simplified model to introduce the concepts of the Monte Carlo simulation. Later
on, we can loosen up or even drop those assumptions.

Having defined the conditions for our market model, we can now examine the different
parameters that have an influence on the value of an option:

Remark 2.9. [Influences that effect option value]
The value of an option depends on certain parameters. All in all, there are 5 major
variables that effect the premium of a call or put. We want to investigate how the price
of an option reacts to changes in those parameters:

1. The strike price K
The higher the strike price is, the more the holder of a call option has to pay on
exercise, which decreases the profit and thus the value of the option V . There-
fore, raising the strike price causes a fall of the value of the call and respectively
a rise in the value of the put.

2. The value of the underlying asset S
A higher value of the underlying asset increases the chances of the call option
to be exercised and thus show a profit. The value of the call increases. Hence
a rise in the price of the underlying asset causes the price of the call option to
increase while the price of the put option decreases.

3. The time left until the maturity date T
The closer the option comes to its expiry date T , the less likely it is for the un-
derlying asset’s price to change at a significant degree. This lowers the chances
of the underlying asset to change its value in a positive way for the holder of the
option. Consequently, a longer period of time left to expiry increases the price
of the call as well as the put option.

2.2 Options 11

4. The volatility σ

If the volatility σ of the underlying asset is high, a beneficial movement of the
asset becomes more likely. This means that a higher volatility causes both a
higher call price and a higher put price.

5. The risk free interest rate r

While the holder of an option has to pay the premium at the time the contract
is closed, he will have to wait for his expected profit until the option’s maturity
date. This is why the concept of discounting has to be applied here. Suppose
the holder invested the money M(0) he has to pay for the premium in a risk free
bond instead. In this case, he would expect to receive more money when his bond
contract expires, namely M(t) = M(0)ert.
A rise in the risk free interest rate r causes the discounted strike price Ke−rT

to fall, and on account of this the value of the call will rise. The opposite is the
case with the put option; a higher interest rate causes a lower put price.

2.2.2 Payoff Functions
While it is quite difficult to calculate the fair value V of a European option for a time
0 ≤ t < T before the option’s expiry date, it is fairly easy to evaluate its value at its
maturity date t = T . For a European call, there are three possible cases:

1. S > K

The price of the underlying asset is higher than the strike price of the option.
Since there are no transaction costs, the holder will make a profit of V (S, T) =

S −K > 0 (also called cash-settlement) per unit in exercising his option. Thus
it is reasonable for him to make use of his right to buy the underlying asset for
the strike price K.

2. S < K

The price of the underlying asset is below the strike price. This means that if he
chooses to exercise the option, the holder would have to pay a price above the
market price. Since this would represent a loss, it is not likely for the holder to
do so. He will let the option expire and thus become worthless, V (S, T) = 0 .

3. S = K

The price of the underlying asset equals the strike price of the option. It does
not make any difference whether or not the holder uses his option to buy a unit
of the asset, which also renders the option worthless, V (S, T) = 0.

We just proved that the value of a call option at expiry date T is

V (S, T) = max {ST −K, 0} =: (ST −K)+. (2.1)

12 Chapter 2: Options

This function is called the payoff function, and is depicted in Figure 2.1. To evaluate
the profit, the premium has to be subtracted from the payoff.

K S

TC

K S

K

P
T

Figure 2.1: Payoff diagrams of a European call (left) and a European put (right).

The same reasoning can be applied to a European put option in order to derive its
payoff function. Again, we take a look at the different possible situations:

1. S ≥ K

The price of the underlying asset equals or is higher than the strike price of
the option. This means that exercising would not be of any advantage for the
holder. Therefore, it is reasonable for him to let his option expire worthless,
V (S, T) = 0.

2. S < K

The price of the underlying asset is below the strike price. The holder of the put
will make a profit of V (A, t) = K − S > 0 per unit in exercising his option.
It therefore makes sense for him to make use of his right to sell the underlying
asset for the strike price K.

This leads us to the payoff function of a European put

V (S, T) = max {K − ST , 0} =: (K − ST)+ (2.2)

which is depicted in Figure 2.1.

2.2.3 Put-Call Parity

So far we have looked at the value of a European put and a European call as two totally
different things. However, it can be shown that there exists a relationship between the
two, the so called Put-Call-Parity:

2.2 Options 13

Theorem 2.10. [Put-Call-Parity (for European options)]:
Vanilla European put and call options satisfy the following equation:

St + VP − VC = Ke−r(T−t) (2.3)

Proof. (By arguments of arbitrage)

Take the following portfolio: Buy one share of the underlying asset S and one Euro-
pean Put VP with strike price K and maturity T , and sell a European Call VC with the
same strike price K and maturity T . Our portfolio now has the value

π = S + VP − VC

The value of π at time T is

πT = ST +(K−ST)+−(ST−K)+ =

ST + K − ST − 0 = K in case K > ST ,

ST + 0− (ST −K) = K in case K < ST ,

ST + 0 + 0 = K in case K = ST .

Taking into account that the no-arbitrage-principle is valid, the value of π at the time t
must have been Ke−r(T−t), which equals K at time T .

Remark 2.11. The put-call parity makes it possible to calculate the value of an Eu-
ropean call option if the value of an European put option is known and vice versa. In
addition to that, it is also an important tool for deriving upper and lower bounds on
options, which will be done in the next section.
The Put-Call-Parity for options on dividend-paying assets is given by the following
formula:

Pt − Ct = Ke−r(T−t) − Se−δ(T−t) (2.4)

2.2.4 Upper and Lower Bounds

By definition, the holder of an option is not obligated to exercise his right to buy or sell
the underlying asset. In the worst case, he has to let it expire worthless, which puts the
lower limit of the value of an option at 0. Consequently, the highest possible loss for
the holder is limited by the premium. Other than this simple barrier, the value of an
option also satisfies other bounds which are known a priori.

Theorem 2.12. European options satisfy the following bounds at all times 0 ≤ t ≤ T :

1.
(St −Ke−r(T−t))+ ≤ Ct ≤ St (2.5)

14 Chapter 2: Options

2.
(Ke−r(T−t) − St)

+ ≤ Pt ≤ Ke−r(T−t) (2.6)

Proof.

1. (a) Ct ≥ 0: This bound is trivial since an option is a non-obligatory contract,
and thus cannot have a negative value.

(b) Ct ≤ St: The strike price is never negative, and therefore the call option
cannot be more valuable than the underlying asset.

(c) St−Ke−r(T−t) ≤ Ct: Suppose that St−Ke−r(T−t) > Ct was true at some
time 0 ≤ t ≤ T .
In this case, sell an underlying S, buy a call C and invest Ke−r(T−t) in a
risk-free bank account or zero-bond. The cash-flow in this case would be
St − Ct −Ke−r(T−t) > 0. At expiry date T there are two possible cases:

i. ST ≤ K The call is worthless and thus the total value of the portfolio
amounts to −ST + Ke−r(T−t)er(T−t) = K − S(T−t) ≥ 0

ii. ST > K The call’s value is ST −K, which leads to a total value of the
portfolio of −ST + ST −K + K = 0

In both cases, the value at expiry date T is non-negative and thus leaves
the purchaser of the portfolio with the instant risk-free profit of St − Ct −
Ke−r(T−t) > 0 at the time of purchase t. This violates the no-arbitrage
principle, which is why our assumption has to be wrong.

2. The bounds for the put option can be derived directly from those for the call
option and the put-call-parity.

Similar bounds can be derived for American options:

Theorem 2.13. American options satisfy the following bounds at all times 0 ≤ t ≤ T :

1.
(St −Ke−r(T−t))+ ≤ Ct ≤ St (2.7)

2.
CA(St, t) = CE(St, t) (2.8)

3.
(Ke−r(T−t) ≤ St + PA(St, t)− CA(St, t) ≤ K (2.9)

(This inequality can be seen as the put-call parity for American options.)

2.2 Options 15

4.
(Ke−r(T−t) − St)

+ ≤ PA(St, t) ≤ K (2.10)

5.
PA(St, t) ≥ (K − St)

+. (2.11)

Proof.

1. It is easy to see why this inequality applies to an American as well as to a Eu-
ropean call. In the proof of Theorem 2.12, the opportunity of arbitrage was
present at time t. If it is possible to make even higher profit than in the case of
an European call by early exercise, then do so. If not, wait until maturity. Either
way, the owner of the portfolio will make an instant risk-free profit of at least
St + Ct −Ke−r(T−t) > 0.

2. Suppose we make use of our right to exercise the American call at a date 0 ≤
t < T before maturity. Since this is only reasonable if St > K, we gain an
amount of St −K. Applying Theorem 2.13(1) we get

CA(St, t) ≥ (St −Ke−r(T−t))+ = St −Ke−r(T−t) > St −K.

This shows that an early exercise is not advisable, since the value of the call
exceeds the profit that an early exercise would yield. If we wait until maturity,
however, there is no difference between a European and an American option.

3. (a) (Ke−r(T−t) ≤ St + PA(St, t)− CA(St, t):
Recalling Theorem 2.13(2) and the fact that an American put is at least as
valuable as a European one, we get

CA − PA ≤ CE − PE

Applying the put-call-parity for European options leads to

CE − PE = St −Ke−r(T−t) for 0 ≤ t ≤ T,

and thus
Ke−r(T−t) ≤ ST − PA − CA

holds.

(b) St + PA(St, t)− CA(St, t) ≤ K:
Let us take a look at the following portfolio: Suppose there was a time
0 ≤ t ≤ T at which St − K > CA(St, t) − PA(St, t). Sell a put PA(t)

and an underlying St, buy a call CA(t) and invest K in some bank account.
This amounts to a cash flow of PA − CA + S − K > 0. Again there are
two possibilities at the time of exercise T̃ ≤ T :

16 Chapter 2: Options

i. SeT ≤ K: Theorem 2.13(1) states that the value of the call has to be
non-negative at t = T̃ , and thus the portfolio is worth at least
−(K − SeT)− SeT + Ker(eT−t) = Ker(eT−t) −K ≥ 0.

ii. SeT > K: Again Theorem 2.13(1) can be employed for estimating
a lower bound on the value of the call of S eT − K. Therefore, the
value of the portfolio amounts to at least S eT −K − SeT + Ker(eT−t) =

Ker(eT−t) −K ≥ 0

This means that we make an instant profit at time t without running a risk,
since the portfolio will have a non-negative value at exercise time T̃ . Thus
we have found an opportunity of arbitrage which contradicts our model of
the market.

4. Recalling Theorem 2.13 (3), we get

Ke−r(T−t) − St + CA ≤ PA ≤ K − St + CA

(a) PA ≥ (Ke−r(T−t)−St)
+: Applying Theorem 2.13(1) and Theorem 2.12(1)

to the left hand side of this inequality delivers

PA ≥ Ke−r(T−t) − St + CA = Ke−r(T−t) − St + CE ≥
≥ Ke−r(T−t) − St + (St −Ke−r(T−t))+ = (Ke−r(T−t) − St)

+

(b) The same proceeding applied to the right hand side of the inequality shows
that:

PA ≤ K − St + CA = K − St + CE ≤ K − St + St = K

5. Again we have to differentiate between two cases:

(a) K ≤ St: Since the value of an option can never be negative, this is trivial.

(b) K > S: Suppose there was a time t at which PA(St, t) < (K − St)
+.

This would mean that it was possible to make an instant risk-free profit of
K − St − PA(St, t) by buying a put option and exercising it on the spot.

Figure 2.2 gives a rough outline of the bounds we just derived.

2.2 Options 17

K S

K

K e−r(T−t)
P (t)

P (t)

A

E

S

K

−r(T−t)
K e

C (t) = C (t)A E

V

Figure 2.2: Qualitative curves of the prices of European and American options.

2.2.5 Hedging Strategies
As mentioned above, options can be used either for speculating or for reducing risk,
which is called hedging. While a call or put option reflects the expectation of the value
of the underlying asset to rise or to drop respectively, the combination of both makes
it possible to model some more complex expectations on the underlying’s behavior.
There are a lot of different ways of combining financial options, and it would exceed
the frame of this thesis to present them all. We shall, however, present three main
groups of hedging strategies and give an example to each of them.

1. Straddles
The simplest form of a straddle is represented by the purchase (long straddle) or
selling (short straddle) of both a call and a put on the same underlying asset with
the same strike price K and expiry date T .

Example 2.14. Buy a put and a call with the same maturity date T and strike
price K. The value of this portfolio at time T is denoted by

πT = PT + CT = (K − ST)+ + (ST −K)+ =

{
ST −K ST > K,

K − ST ST ≤ K.

Figure 2.3 shows that the purchase of a long straddle is reasonable if one ex-
pects major changes of the value of the underlying. Only a significant difference
between the strike price K and the value of the asset ST makes this portfolio
profitable. Thereby it does not matter whether the value of the underlying asset
drops or rises.

2. Strangles / Combinations
Both strategies contain either buying or selling a call and a put with the same
maturity date but with different exercise prices.
Thereby, the portfolio is called a combination if the options are out-of-the money
at the time of initiating the contracts. Respectively, the portfolio is called a
strangle if both options are in-the-money when the contracts are sealed.

18 Chapter 2: Options

Example 2.15. Buy a call with maturity T and strike price K2 and buy a put
with the same maturity T but with a strike price K1 < K2. The two options form
a portfolio with the value

πT = (K1 − ST)+ + (ST −K2)
+

which can be also be seen in Figure 2.3.
Similarly to the straddle, investors in a strangle expect the value of the underly-
ing to change significantly. The opportunities of drawing a profit with a strangle
are smaller, however, which makes that portfolio less expensive.

3. Spreads
Generally speaking, a spread is the combination of two options of the same type,
i.e either two calls or two puts, on the same underlying with different maturity
dates or different strike prices.

Example 2.16. Imagine the following portfolio: one long call K1, one long put
K2, one short call K and one short put K. All four options have the same
maturity date T . The value of this portfolio at time T is

πT = C1+P1−C2−P2 = (ST −K1)
++(K2−ST)+−(ST −K)+−(K−ST)+

(compare Figure 2.4)
The buyer of a butterfly spread expects the value of the underlying asset to stick
closely to the exercise price K

K S

K

SKK

K

K

1 2

1

2

Figure 2.3: Payoff diagrams of a long straddle (left) and a long strangle (right)

2.2 Options 19

S
KK1 K 2

(K − K)1/2 12

K − K12

Figure 2.4: Payoff function of a butterfly spread

2.2.6 Exotic Options
We have now covered the basics on the most simple versions of American or European
options, the so called vanilla ones. There are, however, a lot of other varieties of
options on the market. The payoff of those so called exotic option is different from the
vanilla call or put. Exotic options can roughly be split into two categories. The term
path-dependent is used if the payoff is dependent on the history of an asset price before
maturity, otherwise they are called path-independent options. There is a huge variety
of exotic options on the market, and we shall only give a brief sketch of the two most
common ones for each category here.
Path-independent options

- Binary Options
The option becomes worthless if the value of the underlying is above (a cash-
or-nothing put) or below (a cash-or-nothing call) a predetermined barrier K.
In case the option is not worthless, the fixed payoff B is independent of the
underlying asset value. A binary call for example has the payoff function

CT =

{
B ST > K,

0 ST ≤ K.
(2.12)

It is easy to see why binary options are path-independent. The underlying asset
value is only needed to determine whether or not there is a payoff. The history
of the asset is of no importance at all.

- Compound Options
This is simply an option on an option. It gives the holder the right to buy or sell
another option with maturity T ′ > T at strike price K. The four basic types of
compound options are call-on-call, call-on-put, put-on-put and put-on-call. The
payoff function of the latter would be

PT = (K − CT)+ (2.13)

20 Chapter 2: Options

Again, the value of the underlying before maturity has no influence on the pay-
off.

Path-dependent options

- Barrier Options
These options either come into existence or become worthless if the underlying
crosses a certain barrier B before maturity. The four basic types are

- up-and-in (the option is activated if the barrier is crossed from below)

- down-and-in (the option is activated if the barrier is crossed from above)

- up-and-out (the option becomes worthless if the barrier is crossed from
below)

- down-and-out (the option becomes worthless if the barrier is crossed from
above)

If the option is active at the time of exercise, the payoff function is that of a
European option. The payoff function of a down-and-out-call for example would
be

CT =

(ST −K)+ min
0≤t≤T

St ≥ B,

0 min
0≤t≤T

St < B.
(2.14)

Since the value of the asset can cross the barrier at any time up to maturity, the
payoff is dependent on the underlying’s behavior not only at exercise. That is
why barrier options belong to the group of path-dependent options.

- Asian Options
Whereas the focus of barrier options lies on extreme values of the asset, the pay-
off of Asian options depends on some average of the asset price over the lifetime
of the contract. There are many different kinds of Asian options, depending on
what kind of average is used for the calculation of the payoff. The European
average rate call uses the continuous average, for example, which results in the
payoff function

CT =

(
1

T

∫ T

0

Sτdτ −K

)+

(2.15)

The dependence on the asset behavior previous to maturity is obvious.

There are a lot more different kinds of exotic options on the market, and their exer-
cise mode can either be European or American style. All the types mentioned above
are single-asset options, i.e. there is only one underlying asset. Options on multiple
underlying assets would be called multi-asset options.

Chapter 3

Essentials of Stochastics

This chapter introduces some basic tools and notations of statistics and probability
theory. They set the groundwork for stochastic processes and stochastic differential
equations (SDEs) which are very important for deriving a model for asset price dy-
namics and which we will deal with in Chapter 4.
Let us begin with the concept of the probability space:

Definition 3.1. A probability space is an ordered triple (Ω,A, P) where

- Ω is an arbitrary non-empty sample space of sample points ω,

- A is a σ-algebra whose elements, the so called events A ∈ A, are subsets of Ω,
and

- P is a probability measure on A assigning a probability P (A) ∈ [0, 1] to each
event A ∈ A.

Thereby, the definition of the probability measure P is given by

Definition 3.2. A probability measure P on a measurable space (Ω,A) is a non-
negative valued set function on A satisfying

P (∅) = 0, (3.1)

P (
∞⋃

n=1

An) =
∞∑

n=1

P (An) (3.2)

for any sequence A1, A2, ..., An, ... ∈ A with Ai ∩Aj = ∅, i 6= j, i, j = 1, 2, 3, ..., and
for which

P (Ω) = 1 (3.3)

holds.

The σ-algebra mentioned in Definition 3.1 which describes A in a probability space is
defined as follows:

21

22 Chapter 3: Essentials of Stochastics

Definition 3.3. A collection A of subsets of Ω is called σ-algebra if

Ω ∈ A (3.4)

A ∈ A ⇒ Ac ∈ A (3.5)

A1, A2, ..., An, ... ∈ A ⇒
∞⋃

n=1

An ∈ A (3.6)

We can see from this definition that there is a certain freedom in the choice of the
subsets of Ω. Basically,A has to be closed under the set operations of complementation
and countable unions and it has to contain the sample space Ω and the empty set ∅. The
choice of subsets of a sample space depends on the events that are to be modeled.

Remark 3.4. In our financial scenario, A is made up in a way such that it represents
all events that can be observed on the market.

A collection C of subsets of Ω does not necessarily have to be a σ-algebra. Therefore,
we need to find a σ-algebra containing C. P (Ω) would be a simple solution for this
problem, but we want to find another σ-algebraA(C) containing C, namely the smallest
one, called the σ-algebra generated by C. In the special case of Ω = Rn being the n-
dimensional Euklidian space with

|x− y| =
(

n∑

k=1

|xk − yk|2
)1/2

,

we choose our σ-algebra to be the σ-algebra B of Borel subsets generated by the n-
dimensional intervals ak ≤ xk ≤ bk, k = 1, 2, ..., n. If Ω is a subset of Rn, we shall
choose A = Bn(Ω) = {A = B ∩ Ω : B ∈ Bn}.
We conclude this introduction by listing some important terms used when talking about
events:

- Nonempty subsets A ∈ A with probability P (A) = 0 are called null events.
P (∅) = 0, is not a null event, however.

- The sample space Ω for which P (Ω) = 1 holds is called the sure event.

- All other events A ∈ A with P (A) = 1 are said to occur almost surely (a.s.) or
with probability 1 (w.p.1).

Remark 3.5. Note that there is a difference between the sure event P (Ω) = 1 and
events B ∈ R for which P (B) = 1 that are called almost sure events.
While the sure event will occur with absolute certainty, this is not true for the almost
sure event, although the probability for both events to happen is 1.

3.1 Random Variables 23

3.1 Random Variables

The concept of the probability space introduced above sets the ground for examining
probabilistic experiments. However, operating on it can be quite difficult since it is not
possible to work with real-valued numbers. This is why we will introduce the concept
of the random variable X here. The name may be misleading, X is not an actual
variable, it is rather a real-valued function X : Ω → R. A random variable provides
us with information about the outcome of a probabilistic experiment, assigning each
element of Ω with a real valued number. Thus we have the advantage of being able to
use all techniques of analysis when dealing with probabilities. The exact definition of
a random variable is given below.

Definition 3.6. A real-valued function X on Ω is called random variable if the sets

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} = X−1((−∞, x])

are measurable for all x ∈ R. That is, if {X ≤ x} ∈ A for each x ∈ R.

Remark 3.7. X(ω) is called a realization of X and can be seen as the result of the
random experiment that has been evaluated by X .

The behavior of the realizations of X(ω) is best described by the probability distribu-
tion PX of X , which indicates for a set B ⊂ R the probability with which a realization
X(ω) lies in B:

Definition 3.8. The function PX defined for all B ∈ B by

PX(B) = P ({ω ∈ Ω : X(ω) ∈ B}) (3.7)

is called the distribution of the random variable X .

The ordered triple (R,B, PX) is a probability space containing all of the essential in-
formation on the random variable X . However, PX is a set function and we therefore
loose all the advantages we gained by introducing the concept of random variables.
This disadvantage can be overcome by introducing a formula for PX , the distribution
function FX . Thereby it not necessary to know the exact function X : Ω → R or the
probability measure P on Ω, although they do, of course, exist. P.E. Kloeden and E.
Platen gave the following definition of the distribution in their book [15]:

Definition 3.9. Let X : Ω → R be a random variable on a probability space (Ω,A, P).
The distribution function FX : R → [0, 1] of X is defined by the probability P that
X ≤ x,

FX(x) = PX(X ≤ x) = P (ω ∈ Ω : X(ω) ≤ x) (3.8)

24 Chapter 3: Essentials of Stochastics

This function indicates the probability with which X takes values smaller than a fixed
point x ∈ R and satisfies the following properties:

- FX is nondecreasing, right-continuous and satisfies the limits

lim
x→+∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0

- In case X is a discrete random variable, that is if it only takes a finite or countably
infinite number of distinct values, [22] states that the distribution function is
given by a step function with jumps ωi with the height of pi, i ∈ N0:

F =

{
0 : x < x0,∑n

i=0 pi : xn ≤ x < xn+1.

where pi is the probability for X to take the value x1. FX is a step-function with
steps the height of pn at x = xn.

- If X is a continuous random variable, i.e. a random variable taking all possible
values in R with P ({ω ∈ Ω : X(ω) = x}) = 0 for all x ∈ R, its distribution
function F is differentiable w.p.1, and the deviation is called density function.

Definition 3.10. Let X : Ω → R be a random variable on a probability space
(Ω,A, P) with distribution function FX . Then the function f : R→ R with

FX(x) =

∫ x

−∞
f(s)ds

is called density function if it exists. In case f is continuous, F ′ = f holds for each
x ∈ R.

This function can be seen as the equivalent to the probability P (x) for sample points
in the discrete case in the sense that the distribution function can be represented by

FX(a) =

∫ a

−∞
f(x)dx.

A way of graphically approximating the density function is described in [11]:
Divide the set of real numbers into equidistant intervals Ij = [jh, (j+1)h], j ∈ Z, h >

0 and to count how many times nj the realizations X1, X2, ..., XN lie in the interval nj .
Plotting the amounts nj

N
as a histogram then results in an approximation of the graph

of the density function f .

3.1 Random Variables 25

3.1.1 Integration and moments

The distributions of random variables are important for deriving more information on
X , for example the average value or the way in which the values are spread about this
average value. These values are called the mean or expected value of X , notated as
E[X] and the variance of X written as V ar[X] respectively. Let us start with E[X].
It can be seen as the average of all possible realizations X[ω] of X with respect to
their likelihood of occurrence. The Law of Large Numbers states that the mean can be
approximated by

E[X] := lim
n→∞

1

n

n∑
i=1

X(ωi). (3.9)

For a discrete random variable the mean can be calculated by employing its density
function:

E[X] :=
∑

xi∈X(Ω)

xifi(x) (3.10)

For random variables with absolutely continuous distributions, the expectation has to
be expressed in terms of integrals:

E[X] :=

∫ ∞

−∞
xf(x)dx. (3.11)

Obviously, this integral is not a Riemann integral. Since we still want to work with
that integral, we need to introduce the definition of the integral due to Lebesgue here.

Definition 3.11. Let φ =
m∑

i=1

aiIA,
m⋃

i=1

, Ai ∩ Aj = ∅, i 6= j, Ai, Aj ∈ A be a so called

simple function or step function on a probability space (Ω,A, P) , where IA is the
indicator function of a set A ⊂ Ω:

IA(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

The Lebesgue integral of such a function φ is then defined as

∫

Ω

φ(ω)dP (ω) =

∫

Ω

φdP =
m∑

i=1

aiP (Ai).

The definition of the Lebesgue integral of a real-valued measurable function F : Ω →
R is then built up step by step from this definition by first extending it on positive-valued
measurable function and then dividing it into its positive and negative parts.

26 Chapter 3: Essentials of Stochastics

Remark 3.12. When looking at a particular random variable, one often denotes the
expected value by µ: E[X] = µ. Some other interesting properties of E[X] are listed
below:

- For integrable functions g : R→ R

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx

holds.

- The expected value is linear in X , which means that for two random variables
X , Y (discrete or continuous) the equality E[αX + βY] = αE[X] + βE[Y] is
true for α, β ∈ R.

The second quantity we want to examine is the variance of X , V ar[X]. Its square
root, the so called standard deviation, indicates the average distance the individual
realizations of X take from the mean. The variance of a random variable X is defined
by

V ar[X] = E[(X − E[X])2]. (3.12)

Remark 3.13. Another expression often used for the variance would be σ2 = V ar(X),
where σ is the standard deviation of X . We want to list some interesting properties of
the variance:

- V ar[X] = E[X2]− E2[X]

- V ar[αX + β] = α2V ar[X].

Note that unlike the expectation, the variance operator is not linear.

Theorem 3.14. Let X be a nonnegative random variable. Then the Markov inequality

P ({ω : X(ω) ≥ a}) ≤ 1

a
E[X] (3.13)

holds for all a > 0.

For a proof we refer to N. Schmitz’s book [22] p 60.

Remark 3.15. As a special case of the Markov inequality we get the Chebyshev in-
equality:
Let X be a random variable with expectation a = E[X] and variance σ2 = V ar[X].
Then

P ({ω : |X − a| ≥ ε) ≤ σ2

ε2
(3.14)

for all ε > 0.

3.1 Random Variables 27

Remark 3.16. We will need the Chebyshev inequality later when we talk about con-
fidence intervals as well as for proving the convergence behavior of the Monte Carlo
method.

Another inequality that will be needed later is the following one:

Theorem 3.17. Let (Ω,A, P) be a probability space and J ⊂ R some interval. Then
the Jensen Inequality ∫

g ◦XdP ≤ g

(∫
XdP

)
(3.15)

holds for a random variable X : Ω → J and a concave function g : J → R such that
g ◦X are integrable.

3.1.2 Distributions
Recalling Definition 3.9, we will now examine some different ways in which random
variables can be distributed:

- Uniform Distribution
A random variable whose probability of being in a given subinterval of [a, b]

is proportional to the length of [a, b] is said to be uniformly distributed on that
subinterval [a, b]. Such a random variable is denoted by X ∼ U(a, b) and its
density function is

f(x) =

{
1

b−a
if x ∈ [a, b],

0 otherwise.

The mean of the uniform distribution is given by

E[X] =

∫ b

a

x

b− a
dx =

b2 − a2

2(b− a)
=

b + a

2
, (3.16)

and its variance is

V ar[X] = E[X2]− E2[X] =

∫ b

a

x2

b− a
dx−

(
a + b

2

)
=

(b− a)2

12
(3.17)

The most common form is the uniform distribution over the interval [0, 1] with
E[X] = 1/2 and V ar[X] = 1/12

- Gaussian Distribution / Normal Distribution
A random variable denoted by X ∼ N(µ, σ2) is normally distributed with ex-
pectation µ and variance σ2. Its density function is given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

28 Chapter 3: Essentials of Stochastics

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.1: Graph of the density function of the Standard Gaussian Distribution

Unlike a normally distributed random variable, a Gaussian random variable may
take any real value. The graph of this function is bell-shaped and centers around
the mean value x = µ. It is stretched or compressed according to the magnitude
of the variance σ2.

Remark 3.18. There is no closed-form expression for the distribution function
of the normal distribution, but it is possible to approximate it numerically.

- Standard Gaussian Distribution / Standard Normal Distribution
This is the simplified version of a normally distributed random variable X where
the expectation µ = 0 and the variance σ2 = 1. Standard Gaussian random vari-
ables X ∼ N(0, 1) are also denoted by Z and just like the Gaussian distribution,
their density function

f(x) =
1√
2π

e−
1
2
x2

has a bell-shaped graph which is symmetric about x = µ = 0 as shown in Figure
3.1.

- Lognormal Distribution
A random variable X is lognormally distributed if ln X is normally distributed.
It is denoted by Λ(µ, σ2) and its density function is given by

f(x) =

1

x
√

2πσ2
e

„
− (ln(x)−µ)2

2σ2

«

x > 0,

0 otherwise.
(3.18)

The relationships between the parameters of a lognormal and a normal distribu-
tion are given by

3.1 Random Variables 29

E[X] = eµ+σ2/2 (3.19)

E[ln X] = µ (3.20)

V ar[X] = e2µ+σ2

(eσ2 − 1) (3.21)

V ar[ln X] = σ2 (3.22)

Remark 3.19. If X is a Gaussian random variable with parameters µ and σ2 then
αX + β is normally distributed with parameters αµ + β and α2 + σ2. It is therefore
possible to transform a normally distributed random variable into a standard normally
distributed one:
For a random variable X ∼ N(µ, σ)

Z =
X − µ

σ

satisfies the standard Gaussian distribution and the transformation

X = σZ + µ

converts a N(0, 1) distributed random variable into a Gaussian random variable.

3.1.3 Multiple Random Variables
So far we have only looked at one random variable at a time. There are, however,
cases in which there might be a large number of random variables defined on the
same probability space. An example for that would be the components of a vector-
valued random variable X : Ω → R2, a so called random vector. It is possible to
define a distribution function for such random variables which is then called the joint
distribution function:

Definition 3.20. Let X1, X2, ..., Xn be random variables on the same probability space.
Then the function FX1,X2,...Xn : Rn → [0, 1] defined by

FX1,X2,...,Xn(x1, x2, ..., xn) = P ({ω ∈ Ω : Xi ≤ xi, i = 1, 2, ..., n}) (3.23)

is called joint distribution function.

The joint distribution function for n random variables satisfies certain properties simi-
lar to those of the distribution function for a single random variable. We will illustrate
them here for the case n = 2:

• lim
xi→−∞

FX1X2(x1, x2) = 0 and lim
xi→∞

FX1X2(x1, x2) = 1

30 Chapter 3: Essentials of Stochastics

• FX1X2 is nondecreasing and right-continuous in x1 and x2.

• FX1X2(x1, x2) = FX2X1(x2, x1)

and

• for i1 = 1 or 2 and i2 = 1 or 2 the marginal distribution FXi1
satisfies

FXi1
= limxi2

→∞ FXi1Xi2
(xi1xi2).

Remark 3.21. The request that the random variables should all be defined on the same
probability space is not as restrictive as it might seem at first glance. It is possible to
modify them such that they have a common probability space.

For continuous random variables the function F is absolutely continuous and therefore
almost everywhere differentiable. This means that for the density function f : Rn →
R+

∂nF

∂x1∂x2...∂xn

= f(x1, x2, ..., xn)

holds almost everywhere.
In case the density function is given by

f(x1, x2) =

√
detC

2π
e

− 1

2

2P
i,j=1

ci,j(xi−µi)(xj−µj)

!

for some 2 × 2 positive definite and symmetric matrix C = [ci,j] with determinant
det C, the random variables are called jointly Gaussian with mean vector µ = (µ1, µ2) ∈
R2 and covariance matrix C−1. Thereby, the ij-th component of C−1 is E[(Xi −
µi)(Xj − µj)] for i, j = 1, 2.
Another important concept needed when working with multiple random variables on
one probability space is the so called stochastic independence.

Definition 3.22. Let (Σ,A, P) be a probability space. Two random variables X and
Y are called (stochastically) independent if the two events (X ≤ x) and (Y ≤ y)are
independent, that is if

F (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) = FX(x)FY (y).

Or more generally, the random variables X1, X2, ..., Xn are called (stochastically)
independent if

P ({X1 ≤ x1} ∩ {X2 ≤ x2 ∩ ... ∩ {Xn ≤ xn}) = P ({X1 ≤ x1})...P ({Xn ≤ xn}).

Definition 3.23. Two random variables on the same probability space are thus called
stochastically independent if the realization of one random variable X does not con-
tain any information about the realization of Y and vice versa.

3.1 Random Variables 31

For independent random variables X and Y the equations

E(XY) = E(X)E(Y) and (3.24)

V ar(X + Y) = V ar(X) + V ar(Y) (3.25)

hold. The concept of independence will be important in the following, when we will
deal with sequences of random variables that are independent and identically dis-
tributed, short i.i.d. One major property of a set of i.i.d random variables {X1, X2, ..., Xm}
is the fact that they are pairwise independent and therefore

E[XiXj] = E[Xi]E[Xj], for i 6= j. (3.26)

Not all random variables are independent however, so it will be useful to have a mea-
sure of the degree of independence, called covariance:

Definition 3.24. Let X and Y be two random variables for which E[X], E[Y] and
E[XY] exist. Then

Cov[X, Y] := E[(X − E[X])(Y − E[Y])]) = E[XY]− E[X]E[Y]

is called the covariance of X and Y .

Remark 3.25. If X and Y are stochastically independent, their covariance is zero.
The opposite is not always true however, thus the covariance is thus just a measure of
dependence and not of independence. Other useful properties of the covariance are

Cov[X, X] = V ar[X]

Cov[X, Y] = Cov[Y, X]

Cov[αX, Y] = αCov[X, Y]

Cov[X,Y + Z] = Cov[X, Y] + Cov[X,Z]

V ar(X ± Y) = V ar[X] + V ar[Y]± 2Cov[X, Y]. (3.27)

Therefore

Cov[X,Y] ≤ 1

2
(V ar[X] + V ar[Y]) (3.28)

can be directly derived from Equation (3.27) and the positivity of variances.

If Cov[X,Y] > 0 then X tends to be large if Y is large and it tends to be small when
Y is.

The last property implies that the value of the covariance depends on the magnitude of
X and Y . We want to introduce some more terminology in this context:

32 Chapter 3: Essentials of Stochastics

Definition 3.26. Let X and Y be two random variables for which E[X], E[Y] and
Cov[X, Y] exist.
We then call X and Y

- positively correlated if Cov(X,Y) > 0,

- negatively correlated if Cov(X, Y) < 0 and

- uncorrelated of Cov(X,Y) = 0.

Another important tool when working with dependence is conditional expectation.
With this operator we can investigate how the distribution of X can be influenced
by an event like (Y = yj).
The conditional expectation is defined as

E[X|Y = yj] =
∑

i

xiP{X = xi|Y = yj} =

=

∑
i

xiP{X = xi|Y = yj}
P{Y = yj} (3.29)

or

E[X|Y = yj] =

∞∫
−∞

xf(x, y)dx

∞∫
−∞

f(x, y)dx

. (3.30)

for discrete and continuous random variables respectively.
Similarly conditional variance is defined by

V ar[X|Y] = E[(X − E[X|Y])2|Y]. (3.31)

3.1.4 Confidence Intervals

When the expectation is approximated by the sample mean, it is useful to have an
indicator of the accuracy of this approximation. This is where the confidence interval
comes into play.
We say that [a, b] is a 95%-confidence interval for X if

P (a ≤ X ≤ b) = 0.95. (3.32)

We are interested in a standard normal random variable X which has a distribution that
is symmetric around 0. We therefore can rewrite Equation (3.32) as

P (|X| ≤ b) = 0.95 (3.33)

3.2 Convergence and approximation 33

with a = −b.
Recalling Definitions 3.9 and 3.10, this probability can be expressed as the distribution
function of the random variable X:

P (|X| ≤ b) =

∫ b

−b

f(x)dx. (3.34)

Remark 3.27. As we already mentioned in Remark 3.18 there is no closed-form ex-
pression for the distribution function of the standard normal distribution. It is therefore
necessary to use numerical methods for computing the inverse of the distribution func-
tion in order to derive a value for b.

Remark 3.28. A 95% confidence interval for X ∼ N(0, 1) is given by

P (|X| ≤ 1.96) = 0.95. (3.35)

Remark 3.29. Remark 3.19 shows that in case X is a normal random variable X ∼
N(µ, σ2), Y is a standard normal random variable with Y = X−µ

σ
. Applying this to

Equation (3.35), we get

P (µ− 1.96σ ≤ X ≤ µ + 1.96σ) = 0.95. (3.36)

Hence [µ − 1.96σ, µ + 1.96σ] is a 95% confidence interval for a standard normally
distributed random variable X .

3.2 Convergence and approximation
In this section, we want to introduce some important terminology concerning conver-
gence of sequences of random variables.
Let us start with the two fundamental theorems of probability, the Law of Large Num-
bers which we already mentioned when talking about expectation, and the Central
Limit Theorem (For a proof of both theorems we refer to N. Schmitz’s book [22]):

Theorem 3.30. A sequence of random variables Xn is said to satisfy the strong law of
large numbers if

1

n

n∑
i=1

(Xi − E[Xi]) (3.37)

converges to zero w.p.1 n →∞, that is to say

P (lim
n→∞

Sn

n
= µ) = 1 withSn =

n∑
i=1

Xi. (3.38)

34 Chapter 3: Essentials of Stochastics

Remark 3.31. The Law of Large Numbers says that computing the average of large
enough number of random variables gives a good approximation of their expectation,
as already stated in Equation (3.9).

Theorem 3.32. Let (Xn)n∈N be a sequence of independent and identically distributed
(i.i.d.) random variables on (Σ,A, P) with variance σ2 = E(Xn − µ)2 > 0 and
expectation µ = E(Xn). Then for Sn defined as in Theorem 3.30

lim
n→∞

P (
Sn − nµ

σ
√

n
≤ x) =

1√
2π

∫ ∞

−∞
e−

1
2
z2

dz

for all x ∈ R.

Remark 3.33. This theorem is known as Central Limit Theorem. It says that the se-
quence of normalized random variables

Zn =
(Sn − nµ)

σ
√

n

with E(Zn) = 0 and V ar(Zn) = 1 converges in distribution to a standard Gaussian
random variable Z. This property will be of importance in later chapters.

Both theorems make statements about the convergence behavior of a sequence of ran-
dom variables. We now want to give a proper definition of such a sequence:

Definition 3.34. A collection of random variables on a common probability space
(Ω,A, P) is called stochastic process X = {Xt, t ∈ [0,∞)}. The index t is usually
interpreted as time. For a fixed sample point ω ∈ Ω, the function t 7→ Xt(ω) is called
the sample path or realization of the process X associated with ω.

Remark 3.35. A particular kind of a stochastic process, the Wiener process will be
of importance in our mathematical model that describes the dynamics of the price
of an asset. It will be necessary to simulate such a stochastic process on a computer,
which is why we are interested in examining the quality of approximations of stochastic
processes.

There exists a large number of different kinds of convergence, and we will only in-
troduce the most common and important ones. In general, there are two kinds of
approximations:

- A strong approximation is an approximation of paths. Thereby it is possible that
not all paths are approximated in the best possible way, but the error is at least
on average small. This can be seen as the generalized version of a deterministic
approximation.

3.2 Convergence and approximation 35

- There are cases, however, when one is not interested in the trajectories (paths)
of X , but it suffices to know its moments, like the mean or variance of X . This
information is provided by the weak convergence, which is numerically cheaper.

Definition 3.36. Let X̃i be a sequence of stochastic processes.

(i) A strong approximation of X at time T with respect to the function g : R → R
satisfies

lim
i→∞

E[|g(X)− g(X̃i)|] = 0.

(ii) A weak approximation of X with respect to g fulfills

lim
i→∞

|E[g(X)]− E[g(X̃i)]| = 0.

As mentioned before, strong approximations are numerically more expensive than
weaker ones.

The strong approximation is the one that is of interest in this thesis. We therefore want
to take a closer look at that kind of convergence now. Two terms describing strong
convergence are widely used, which is why we want to introduce them here:

- Convergence with probability one (w.p.1) / almost sure convergence:
A sequence of random variables XN is said to converge against the random
variable X with probability one if

P ({ω ∈ Ω : lim
n→∞

|Xn(ω)−X(ω)| = 0}) = 1 (3.39)

holds.

- Mean-square convergence:
A sequence of random variables XN is said to converge in the square mean to
the random variable X if E(X2

n) < ∞ for n = 1, 2, ..., E(X2) < ∞ and

lim
n→∞

E(|XN −X|2) = 0. (3.40)

For further reading on probability theory and statistics we recommend the books [15]
and [22].

Having defined all necessary tools, we are now able to mathematically model the
option-pricing problem.

36 Chapter 3: Essentials of Stochastics

Chapter 4

Asset Price Model

In the previous chapter we introduced the concept of a stochastic process which are
the solutions to stochastic differential equations (SDEs). We now want to take a look
at a special stochastic process which will play an important role in the SDE that de-
scribes the price movement of an asset, the Wiener process. After giving a definition
of this special stochastic process, we will take a closer look at some of its properties
before we introduce some important tools of stochastic calculus so that we can derive
a mathematical model for asset price movements.
Among others we want to mention the books [6], [12], [21] and [23] for references on
this topic.

4.1 The Wiener Process
Definition 4.1. A real-valued time continuous stochastic process {Wt}t≥0 is called a
standard Wiener process (or Brownian motion) if for some real constant σ

1. W0 = 0 w.p.1.

2. The increments Wt1 −Wt0 are standard Gaussian random variables with mean
E[Wt1 − Wt0] = 0 and variance V ar[Wt1 − Wt0] = t1 − t0, that is that is
Wt ∼ N(0, t) for t1 ≥ t0 ≥ 0.

3. The increments Wt1 − Wt0 and Ws1 − Ws0 are independent random variables
for s1 ≥ s0 ≥ t1 ≥ t0 ≥ 0.

4.1.1 Approximation of a Wiener process
In this section we want to approximate the Wiener process on a discrete grid. Let
therefore tn = n∆t, n = 1, ...N be discrete time instances in a constant time interval
T = {t0, t1, ..., tN}.

37

38 Chapter 4: The Wiener Process

Algorithm 4.2. Approximation of the Wiener process

Given:

- Step length h = ∆t

- Grid T = {t0, t1, ..., tN} with tn = n∆t, n = 1, ...N

An approximation of the Wiener process is then given by the recursion

Wt0 = 0,

Wti+1
= Wti + ∆Wi (4.1)

for i = 0, ..., N − 1 and N(0, ∆t)-distributed random variables ∆Wi .

Remark 4.3. For a standard normally distributed random variable Z ∼ N(0, 1) we
have Z

√
∆t ∼ N(0, ∆t). We can therefore rewrite Equation (4.1) as

∆Wn = Z
√

∆t for Z ∼ N(0, 1) for each n. (4.2)

Remark 4.4. The MATLAB code for such an approximation of a Wiener process is
given in Appendix C.2.2. It was used for plotting Figures 4.1 and 4.2.

Remark 4.5. Since the approximated Wiener Process satisfies the conditions on the
exact Wiener process at every mesh point, the algorithm delivers a strong approxima-
tion of the Wiener process.

4.1.2 Some Properties of the Wiener process

An interesting fact about the Wiener process is that its paths always look the same no
matter how close you zoom in on them.

Remark 4.6. Note that the Gaussian distribution is only defined for σ > 0.
Let us now take a closer look at the definition of the Wiener process and the implica-
tions of the three conditions:

The first one is just a convention, if we want a Wiener process to start at x instead of
zero, it can be obtained as {x + Wt}t≥0.
It follows from the first and second condition that Wt itself is a standard Gaussian
random variable with E[Wt] = 0 and V ar[Wt] = t. From this we see that the disper-
sion of the sample paths gets bigger and bigger with growing time t while the mean
always remains zero. A path of a Wiener process will thus eventually take any and

4.1 Stochastic Integral 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

1.5

2

2.5

3

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
1.5

2

2.5

3

0.7 0.75 0.8 0.85 0.9

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Figure 4.1: Zooming in on a path of a Wiener Process

every real value no matter if positive or negative, and it will then return to zero again
with probability one.
The second condition also shows that W̃t = Wt+t0 −Wt0 is a Wiener process. A new
path of a Wiener process can thus be obtained by cutting off the end part of a path of
a Wiener process and moving it to t0.
Those properties can be observed in Figure 4.2 where three different paths of a Wiener
process are illustrated.
Another property which can not be seen as easily in the plot is stated in condition
(3). It says that knowing a part of the path in the interval [t1, t2] is of no help for
predicting the path in another partial interval [s1, s2] with s1 ≥ t2 if the information
on the initial values W (s1) and W (t1) is not available. The probability for a path of
a Wiener process to move up or down is thus the same independently of its previous
behavior.

This last condition says that only the present value of the Wiener process is needed to
determine its future value. For general stochastic processes this is called the Markov
property and can mathematically be expressed as

P (Xtn+1 ∈ B | Xt1 = x1, Xt2 = x2, ..., Xtn = xn) = (4.3)

= P (Xtn+1 ∈ B | Xtn = xn, X2 = xi2 , ..., Xn = xin) (4.4)

for all Borel subsets B of R, time instants 0 < t1 < t2 < ... < tn < tn+1 and all states

40 Chapter 4: The Wiener Process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
different paths of a wiener process

 t

Figure 4.2: Illustrative example: 3 different paths of the Wiener Process

x1, x2, ..., xn ∈ R for which the conditional probabilities are defined.
In the discrete-time case, such a Markov process is also called a discrete-time Markov
chain.

Remark 4.7. The Markov property says that the probability that Xn+1 ∈ B given that
the history of the process is known up to time n equals the probability that Xn+1 ∈ B

given only the value of Xn. Hence a Markov process has no memory.

With the help of filtration and adaption we can now introduce another concept which
is important for our model of the asset price movement, namely that of a martingale:

Definition 4.8. A filtration on a probability space (Ω,A, P) is an increasing family
((A)t)t≥0 of sub-σ-algebras of (A), that is for each t there is a sub-σ-algebra (A)t

and (A)s ⊂ (A)t if s < t. A probability space (Ω,A, P) endowed with a filtration
((A)t)t≥0 is said to be a filtrated space.

Remark 4.9. A filtration (A)t can be seen as the collection of possible events up to
time t.

Definition 4.10. A stochastic process X on the probability space (Ω,A, P) is adapted
to the filtration At if Xt is At-measurable for each t.

Remark 4.11. Any process X is adapted to its natural filtration A0
t = σ(Xs, s ≤ t)

which is at the same time the minimal filtration to which X is adapted.
The σ-algebra At includes all events which may occur before or at time t. Thereby, the
natural filtration A0

t is a collection of exactly those events that have occurred up until
time t.

Remark 4.12. For a one dimensional Wiener process {(Wt, At)}t≥0 with given filtra-
tion At Condition 3 in the definition of the Wiener process 4.1 is also often written
as

Wt −Ws is independent of As for 0 ≤ s ≤ t. (4.5)

Now we are able to define a martingale:

4.1 Stochastic Integral 41

Definition 4.13. Let (Ω,A, P) be a probability space, with filtration ((A)t)t≥0 to which
the stochastic process {Xt; t ∈ [t0, T]} is adapted.

(i) The stochastic process is then called a martingale if

E[Xt | As] = Xs w.p.1 (4.6)

for all s, t ∈ [t0, T] where s ≤ t.

(ii) Is the equality sign in equation (4.6) is replaced by a ”≤” or a ”≥”, the stochas-
tic process {Xt; t ∈ [t0, T]} is called a supermartingale, or a submartingale
respectively.

Remark 4.14. Although a lot of martingales do also have the markov property, not all
martingales are Markov processes and not all Markov processes are martingales.

Remark 4.15. Martingales are the equivalents to a fair game in a gambling context.
They state that the expected winnings of the next game conditioned by what is known
of what had been won in previous games up to the present is exactly the winnings of
the present game.

Theorem 4.16. The one dimensional Wiener process Wt is a martingale.

Proof. It follows from Equation (4.5) that

E[Wt|As] = E[Wt −Ws + Ws|As] = E[Wt −Ws|As] + Ws =

= E[Wt −Ws] + Ws = Ws

for s < t w.p.1 as can be seen in [16].

Another concept that should be mentioned in connection with filtrations is that of a
stopping time. It will be useful in Chapter 7 for evaluating American type options:

Definition 4.17. Let Ω be a sample space equipped with a filtration {Fn}n≥0, then the
random variable τ : Ω → Z+ with the property that

{τ ≤ n} ∈ Fn, for all n ≥ 0 (4.7)

is called a stopping time or optional time.

This means that the information whether or not τ ≤ n is based on the knowledge
available at time n, there is no need to look into the future.

Remark 4.18. A stopping time denotes the moments at which a process is stopped and
preserved in its present state. Condition (4.7) states that one has to be able to decide
at time τ whether the process should be stopped or not.

42 Chapter 4: The Wiener Process

Since we are interested in using the Wiener process as the random component of a
stochastic differential equation, we would like to emphasize a very important property
of the Wiener process:

Theorem 4.19. Almost all realizations of Wiener processes WT are nowhere differen-
tiable.

Proof. In accordance with [22] we will first show that

D1 :=
{

ω ∈ Ω : ∃t′ ∈ [0; 1) with
dW

dt
exists in t′

}

is a P-null set:
Let therefore

A(j, k) :=
{

ω ∈ Ω : ∃t ∈ [0; 1) : |W (t + h)−W (t)| ≤ jh ∀h ∈ [0;
1

k
]
}

for j, k ∈ N. Then

⋃
j∈N

⋃
k∈N

A(j, k) =

=
{

ω ∈ Ω : ∃t′ ∈ [0; 1) : −∞ < lim inf
h↓0

1
h
(W (t′ + h)−W (t′))

≤ lim sup
h↓0

1
h
(W (t′ + h)−W (t′)) < ∞

}
⊃ D1

holds. It suffices now to show that there exists a set C(j, k) ∈ A for every A(j, k) with
C(j, k) ⊃ A(j, k) and P (C(j, k)) = 0. In that case

⋃
j∈N

⋃
k∈N

C(j, k) is a P - null set

which encloses D1.
Let A(j, k) be fixed and define

B(i, n) :=

|W (i+1
n

)−W (i
n
)| ≤ 8j

n

ω ∈ Ω : |W (i+2
n

)−W (i+1
n

)| ≤ 8j
n

|W (i+3
n

)−W (i+2
n

)| ≤ 8j
n

for i, n ∈ N. We will show now that A(j, k) ⊂
n⋃

i=1

B(i, n) holds for all n ≥ 4k. Let

there be a t ∈ [0; 1) for ω ∈ Ω with |W (t + h) −W (t)| ≤ jh for all h ∈ [0; 1
k
]. Let i

be chosen such that (i−1)
n

≤ t ≤ i
n

. Thus

|W (
i + ν + 1

n
)−W (

i + ν

n
)| ≤ |W (

i + ν + 1

n
)−W (t)|+|W (

i + ν

n
)−W (t)| ≤ j

2 · 4
n

follows for ν = 0, 1, 2, since 0 < i+ν
n
−t ≤ i+ν+1

n
−t ≤ 4

n
≤ 1

k
. Therefore ω ∈ B(i, n)

and we get

4.2 Stochastic Integral 43

A(j, k) ⊂
n⋃

i=1

B(i, n) for all n ≥ 4k. (4.8)

Remember that the paths of a Wiener process follow a normal distribution. Therefore
with ∫ c

−c

1√
2πσ2t

e
−x2

2σ2t dx ≤ 1√
2πσ2t

∫ c

−c

dx =
2√
2π

c

σ
√

t
<

c

σ
√

t

t ∈ [0; 1) and c ∈ R+ we have

P (|W 1
n
−W0| ≤ c) <

c

σ
n

1
2 .

Taking into consideration that the increments of the Wiener process are independent
and stationary and denoting c = 8j

n
, we get

P (B(i, n)) <

(
8jn

1
2

nσ

)3

=

(
8j

σ

)3

n−
3
2 .

So if we define

C(j, k) :=
∞⋂

n=4k

n⋃
i=1

B(i, n),

Equation (4.8) delivers C(j, k) ⊃ A(j, k) on the one hand, and on the other hand we
get for all n ≥ 4k

P (C(j, k)) ≤ P

(
n⋃

i=1

B(i, n)

)
≤

n∑
i=1

P (B(i, n)) <

(
8j

σ

)3

n−0.5,

which means P (C(j, k)) = 0. This delivers the proof for the interval [0, 1).
Analogously it can be shown that for [0; M),M ∈ N

D :=

{
ω ∈ Ω : ∃t′ ∈ T with

dW

dt
exists in t′

}

is a subset of a P null-set.

4.2 Stochastic Integral
We saw that w.p.1 the paths of a Wiener process are nowhere differentiable (Theorem
4.19), they are not even of bounded variation. It is therefore not possible to define a
stochastic integral, that is an integral with respect to the Wiener process

I(f) =

∫ t

t0

f(s)dWs (4.9)

44 Chapter 4: The Wiener Process

for general stochastic integrands f(t) with the tools of deterministic integration theory.
If we rewrite Equation (4.9) as

∫ t

t0

f(s)dWs =

∫ t

t0

f(s)
dWs

ds
ds, (4.10)

we see that the integral on the right side cannot be a Riemann- or Lebesgue integral.
We do, however, need to find a definition for the integral in Equation (4.9) in order to
be able to define stochastic differential equations.
The approach we will use here was first introduced by Kiyosi Ito in the 1940s. His idea
was it to find a stepwise definition of a stochastic integral. He starts with f being a
constant function, extends the definition over to non-random step-functions to random
step functions and finally reaches a stochastic integral for general random functions f .

We only want to give an outline of the first steps of the construction of the Ito stochastic
integral here, for a deeper investigation we refer to [15]:

- Let f be a constant function:

For such a function f(t) = b the integral given by (4.9) is equal to b{Wt−Wt0}.

- Consider f to be a non-random step function f(t) = fj

for t ∈ [tj, tj+1), j = 1, 2, ..., N , where 0 = t1 < t2 < ... < tN+1 = 1.

Then the integral is given by

I(f) =
N∑

j=1

fj{Wtj+1
−Wtj}. (4.11)

Since the sum of random variables with mean µ is a random variable with mean
µ itself, the right hand side of this equation is a random variable with zero mean.

- Extend f to be a random step-function.

In order to make sure that the integrant is non-anticipative, certain measurability
conditions have to be made. Suppose that Wt is At-measurable for each t ≥ 0.
Then we can construct a random step function

ft = fj for t ∈ [tj, tj+1), j = 1, 2, ..., N, (4.12)

where 0 = t1 < t2 < ... < tN+1 = 1 and fj is Atj -measurable,

meaning that it can be observed by events that are detectable at or before time
tj . Such a random step function is also called a simple process. In addition to
that let each fj be mean-square integrable over Ω and therefore E[f 2

j] < ∞,
j = 1, 2, ..., n. We can now conclude that fj{Wtj+1

−Wtj} has expectation

E[fj{Wtj+1
−Wtj}] = E[fjE[Wtj+1

−Wtj |Atj]] = 0 (4.13)

4.3 SDE model for asset price movements 45

for each j = 1, 2, ..., N since E[Wtj+1
−Wtj |Atj] = 0 w.p.1. Now we can define

the integral I(f) similar to the case of a non-random step function:

I(f) =
N∑

j=1

fj{Wtj+1
−Wtj} (4.14)

w.p.1.

Generalizing the definition of the function f further finally leads to the concept of the
Ito-Integral.

Definition 4.20. The Ito integral of a general function f is defined as
∫ t

t0

f(s)dWs := lim
n→∞

∫ t

t0

fn(s)dWs (4.15)

for simple processes fn defined by Equation (4.12).

Remark 4.21. There is also another definition of a stochastic integral, namely that of
Stranovich, given as

∫ t

0

f(s) ◦ dWs := lim
N→∞

N−1∑

k=0

f 1
2
(tk+tk+1)

(Wtk+1
−Wtk). (4.16)

The advantage of this integral is the fact that the chain rule applies just like in the
deterministic case. However, it requires the knowledge of the asset price both at times
t and t+1 for approximating fs via the average 1

2
(tk +tk+1). This is why the stochastic

integral according to Ito is preferred for financial applications.

4.3 SDE model for asset price movements
We now want to find a mathematical description for asset price dynamics. In order to
be able to do that, we need to introduce the concept of stochastic differential equations:

Definition 4.22. The equation

dXt = a(Xt, t)dt + b(X − t, t)dWt (4.17)

with Xt0 = X0 is called an Ito stochastic differential equation (Ito SDE). This denota-
tion is short for the integral equation

Xt = X0 +

∫ t

t0

a(xs, s)ds +

∫ t

t0

b(Xs, s)dWs. (4.18)

Thereby a(Xt, t) is the drift term or drift coefficient, b(Xt, t) is the diffusion term and
the solution Xt is called an Ito stochastic process.

46 Chapter 4: Stochastic Processes

Remark 4.23. The Wiener process is a special case of an Ito process with a = 0 and
b = 1.

We now have everything we need to discuss one of the most important continuous
mathematical model for price movements of assets. It is based on the idea that the
change of the asset price dS in the time interval t can be represented by an Ito SDE as
defined in Definition 4.17 with drift term a(Xt, t) = µSt and diffusion term b(Xt, t) =

σSt . The resulting linear SDE is called Geometric Brownian Motion:

dSt = µStdt + σStdWt. (4.19)

With S0 as the asset price at time t0 this is our model for the motion of the asset prices
St as already mentioned in our Market Model 2.7. Thereby the drift rate µSt with
expected rate of return µ is responsible for the up- and downward movement of the
price and the diffusion term σSt with volatility σ influences the stochastic dispersion,
i.e. the variance of the motion.

Figure 4.3 shows the price of a real asset on the left in comparison to three simulated
asset price paths on the right:

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
2

4

6

8

10

12

14

16

Figure 4.3: Real asset price movement compared to simulated ones

Remark 4.24. The MATLAB code for such an approximation of the price movement of
assets is given in Appendix C.2.3. It was used for computing the three simulated asset
price paths on the right hand side ¡of Figure 4.3.¡

Let us now take a look at how good this model is at approximating the reality of asset
price movement.
In the assumptions on our Market Model 2.7 we stated any information is immediately
accessible for all parties, and thus it is reasonable to assume that the market responds
instantaneously to those external influences. The current asset price therefore reflects
all past information. This conclusion known as the weak form of the efficient market

4.3 SDE model for asset price movements 47

hypothesis is mathematically modeled by the Markov property. Hence we want the
stochastic process which influences our asset price movement to be a Markov process.
As we already saw in the previous section, the Wiener process satisfies this condition.
The second condition we set on the stochastic process in our model for asset price
movement is that the motion of the price is not biased, i.e. the chances for the asset
price to go up should equal those for it to drop. This is exactly the Martingale property
which we already proved for the Wiener process. It therefore is a fair game.
Let us now take a look at the expectation and the variance of the Geometric Brownian
Motion. Recalling Equation (4.18) we can rewrite Equation (4.19) as

St = S0 +

∫ t

t0

µSsds +

∫ t

t0

σSsdWs. (4.20)

This leads to an expectation of

E[St] = E[S0] + E[

∫ t

0

µSsds] + E[

∫ t

0

σSsdWs] (4.21)

= E[S0] +

∫ t

0

µE[S0]ds,

since E[
∫ t

0
σSsdWs] = 0 as can be seen in [10].

We see that g(t) = E[Ss] is the solution to the ordinary differential equation

dg(t)

dt
= µg(t) with g(0) = E[S0] = S0.

Therefore we have
E[St] = S0e

µt. (4.22)

The variance can be derived the same way and we get

V ar[St] = S2
0e

2µt(eσ2t − 1). (4.23)

Hence the Geometric Brownian Motion is lognormally distributed with

E

[
lnSt

lnS0

]
= (µ− σ2)/2t (4.24)

and

V ar

[
lnSt

lnS0

]
= σ2t. (4.25)

We still have to find values for the parameters µ and σ in our model. Since we want
to evaluate options under the assumption of a risk-neutral world, the drift parameter µ

can be replaced by the risk-free interest rate r. Typical values for r lie between 0.01

and 0.1 (see [13]).

48 Chapter 4: Stochastic Processes

Finding a value for the volatility σ is not as straightforward and we will discuss dif-
ferent volatility models later on in Chapter 6. It is found that σ typically takes values
between 0.05 and 0.5. These values are to be understood as per annum since we are
measuring time in years.

Remark 4.25. One advantage of this simple model for asset price dynamics is the fact
that one does not need to employ numerical methods for solving this SDE. It is possible
to calculate the solution via Ito’s Lemma which is the topic of the next section.

4.3.1 Ito Lemma
A very powerful tool for deriving solutions of SDEs is Ito’s Lemma. It can be seen as
the stochastic extension to the chain rule in ordinary calculus:

Theorem 4.26. Let Xt be an Ito process

dX(t) = a(X(t), t)dt + b(X(t), t)dWt, (4.26)

and let g(x, t) be a function with continuous derivatives ∂g
∂x

, ∂2g
∂x2 , ∂g

∂t
.

Then Yt := g(Xt, t) satisfies the equation

dY (t) =
(

∂g
∂x

(t,X(t)) + ∂g
∂x

(t,X(t))a(t,X(t)) + 1
2

∂2g
∂x2 b(t,X(t))2

)
dt (4.27)

+ ∂g
∂x

(t,X(t))b(t,X(t))dWt,

where W is the same Wiener process as in the SDE

A proof to this important theorem can be found in [1].

4.3.2 Solution of Geometric Brownian Motion
Let Yt = ln(St) and accordingly g(x, t) = ln(x). Since we are not interested in the
changes of the asset price in between t0 = 0 and t, we can assume dt to be t− t0 = t,
which results in dS = St − S0. Applying Ito’s lemma with the coefficient functions
a = µSt and b = σSt we get

ln(St)− ln(S0) = (
1

St

µSt − 1

2

1

S2
t

σ2S2
t)dt +

1

St

σStdWt =

= (µ− 1

2
σ2dt + σStdWt),

and thus
ln(St) = ln(S0) + (µ− 1

2
σ2dt + σStdWt). (4.28)

4.3 SDE model for asset price movements 49

This can be written as
St = S0 + eµ− 1

2
σ2dt+σStdWt , (4.29)

which is the solution to our SDE (4.19).

Remark 4.27. Since we want to approximate the risk-free price of an option, the pa-
rameter µ can be replaced by the risk-free interest rate r. The grounds for this lie in
the Black-Scholes model for option pricing (see Appendix A).

Remark 4.28. If we are only interested in the asset price at time T it is enough to
use Ito’s Lemma for solving the SDE modeling the asset price movement. If we are
interested in the whole path of the asset price, however, we have to rely on numeri-
cal methods for approximating the price path such as the Euler-Maruyama algorithm
introduced in Appendix B.

4.3.3 Options on dividend-paying assets

Starting with the easier of the two additions to our model, we will now explain which
changes have to be applied to the equations that model the price movement of the
underlying and if necessary to the Monte Carlo algorithm.
In this section, we want to examine the effect of dividend payments of the underlying
asset on the option value. Although there are many different types of dividends such
as

- deterministic or stochastic

- continuous or discrete

ones, we will only consider the simplest case here, namely that of a continuous and
constant dividend yield δ already known at the time the option is issued. Thereby, the
payments depend on the price of the underlying, that is they are directly proportional
to it. With the dividend payment being set as δSdt the dividend yield δ defined as the
ratio of the dividend payment to the asset price

δ =
δSdt

Sdt
(4.30)

is indeed constant and continuous. During a time interval of ∆t, the asset pays out a
dividend δSdt. Arbitrage considerations show that this payment must reduce the price
of the asset by the same amount of money. Otherwise it was possible to buy the under-
lying right before the time t when dividends are payed, receive the dividend payment
δS∆t and sell the asset immediately afterwards. This way it would be possible to
make an instantaneous risk-free profit of δS∆t which is ruled out by the no-arbitrage

50 Chapter 4: Stochastic Processes

principle. Therefore, SDE (4.19) which describes the asset price movement has to be
slightly modified. The new risk neutralized price of the underlying dividend-paying
asset St now satisfies the stochastic differential equation

dSt = St[(r − δ)dt + σdWt], (4.31)

where Wt is a standard Brownian motion or Wiener process. δ can therefore be seen
as a negative interest rate. Under this risk neutral martingale measure S is lognormally
distributed with mean (r − δ − σ2

2
)(ti − ti−1) and variance σ2(ti − ti−1).

Applying Ito’s lemma to the equation above, we get

St = St−1e
(r−δ−0.5σ2)(ti−ti−1)+σ

√
ti−ti−1Z , (4.32)

where Z is a standard normal variable.

As we saw, the continuous and constant dividend yield δ affects the model of the asset
price movement but it does not complicate the SDE in a way such that it could not be
solved using Ito’s Lemma anymore. Therefore this additional feature does not have
a significant impact on the Monte Carlo algorithm for deriving a fair option value.
Equation (4.29) is simply replaced by (4.32), and no additional numerical methods are
needed.

Remark 4.29. This is not the case with more complicated dividend payments however.

The concept of options on dividend-paying underlyings will be needed again in Chap-
ter 7 when evaluating an American call option.

Remark 4.30. If we relax the assumption of the volatility being constant, we get a
more complicated model represented by a multi-dimensional stochastic process. An
illustrative example of this case will be given later on in Chapter 6.

Chapter 5

Random Number Generators

In order to run simulations of stochastic processes on a computer, it is necessary to
have access to a large quantity of random numbers with specified statistical proper-
ties. Those numbers can be generated on a digital computer in different ways, but
since deterministic algorithms will be used, the outcome can never be completely ran-
dom. However, the generated numbers are very similar to truly random numbers in
most respects, which is why they are often called pseudo-random numbers. In what
follows, we will simply use the term random number, although we are talking about
pseudo-random numbers. The advantage of using numbers generated by a determin-
istic algorithm is that the same sequence of numbers can be reproduced if the method
used for computing the numbers and the seed is known. It is therefore possible to test
programs that are based on random numbers by repeating test runs with the same in-
put of numbers. In the following, we will introduce different methods for generating
uniformly distributed random numbers on a digital computer. Having done this, we
will introduce the concept of quasi random numbers before we move on to presenting
different methods for generating sequences of normally distributed numbers.

The presentation in this chapter is mainly based on the two books [12] and [23].

5.1 Uniformly distributed random numbers

The basis of generating random numbers with certain stochastic properties is the com-
putation of uniformly distributed random numbers. Those can then be transformed
into numbers with the required statistical properties. We will introduce two groups
of commonly used algorithms for producing uniformly distributed random numbers in
this section, linear congruential generators and fibonacci generators.

51

52 Chapter 5: Random Number Generators

5.1.1 Linear congruential generators

Starting with the seed X0 ∈ {0, 1, ..., M − 1}, a sequence of random numbers is
calculated via the following algorithm:

Algorithm 5.1. Linear Congruential Generator

For i = 1, 2, ...

Xi = (aXi−1 + b) mod M,

Ui =
Xi

M
,

where a and M are positive integers and b is a nonnegative integer.

The modulo function X = A mod M calculates the remainders when A is divided by
M . The first M numbers Ui generated by this algorithm are considered to be uniformly
distributed on [0, 1]. The quality of the distribution can be improved by choosing a, b

and M in a reasonable way.

- One consideration is that M should be sufficiently large. The reason for this
is that the Xi are periodic with period ≤ M , meaning at least two numbers
in {X0, ..., XM} must be equal. A cycle period even smaller than M can be
prevented by picking an a relatively prime to M .

- Another consideration is that a = 1 is not recommendable because that would
settle the generator down to the easily predictable sequence of Xn = (X0 + nb)

mod M . In the special and often used case of b = 0, the resulting generator
is called a multiplicative generator. Obviously, X = 0 must be ruled out here,
otherwise the generator would be stuck with Xi = 0 for all i.

One major disadvantage of this method is the fact that the resulting pairs of random
numbers (Ui, Ui+1) are strongly correlated. They are situated on very few hyperplanes
in Rm. This can be seen in Figure 5.1 where 1500 random number pairs (Ui−1, Ui) are
depicted. They were computed using a linear congruential generator with parameters
a = 1229, b = 1 and M = 2048.

5.1.2 Fibonacci Generators

Here we want to introduce two different kinds of generators:

5.1 uniformly distributed numbers 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1500 pairs of points computed with a linear congruential generator

Figure 5.1: 1500 pairs of points (Ui−1, Ui) computed with the congruential generator

1. Fibonacci Generators
This method is based on the fibonacci sequence which is recursively defined as

a1 = a2 := 1;

an := an−1 + an−2 for n ≥ 3.

The resulting algorithm for generating uniformly distributed random numbers
is:

Algorithm 5.2. Fibonacci Generator

For i = 2, 3, ...

Xi = (Xi−1 + Xi−2) mod M,

Ui =
Xi

M
,

where M, X0, X1 ∈ N.

54 Chapter 5: Random Number Generators

Thereby, the linear congruential method can be used for deriving the initial val-
ues X0 and X1. However, in most cases the results generated by this method
are not very satisfying because the sequence of random numbers is cyclic. This
can be seen in Figure 5.2, although 1500 pairs of random numbers have been
generated, the picture is relatively empty.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1500 pairs of points copmuted with a fibonacci generator

Figure 5.2: 1500 pairs of points (Ui−1, Ui) computed with the fibonacci generator

2. Lagged Fibonacci Generators
Similarly to the method described above, lagged fibonacci generators produce
random numbers by adding two random numbers which occurred earlier in the
sequence. The algorithm would be

Algorithm 5.3. Lagged Fibonacci Generator

5.1 uniformly distributed numbers 55

For i ≥ max{µ, ν}
Xi = (Xi−µ −Xi−ν) mod M,

Ui =
Xi

M
.

Again, the initial values X1, ..., Xmax{µ,ν} can be generated by a linear congruen-
tial generator. For many choices of µ and ν, this algorithm produces satisfying
results. Another advantage of the lagged fibonacci method is the simplicity of its
computation. Pairs of random numbers generated with this method can be seen
in Figure5.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1500 pairs of points computed with a lagged fibonacci generator

Figure 5.3: 1500 pairs of points (Ui−1, Ui) computed with the lagged fibonacci gener-
ator

Remark 5.4. Another generator for uniformly distributed numbers would be Matlab’s
built in function ’rand’. Since it is a built-in MATLAB routine, is a lot faster than the
random number generators mentioned above when implemented as M-files.

56 Chapter 5: Random Number Generators

Older versions of MATLAB used a multiplicative congruential generator with param-
eters

a = 75 = 16807,

b = 0,

M = 231 − 1 = 2147483647

which computed a little more than 2 billion numbers before the sequence repeated it-
self.
Versions 5 and higher of MATLAB use a completely different random number gener-
ator which manages without any multiplications or divisions. This quite complicated
random number generator is based on an algorithm introduced by George Marsaglia,
a professor at Florida State University. Although it has not actually been tested this
generator is theoretically able to generate all floating-point numbers between 2−53

and 1 − 2−53. It therefore has a period length of about 21429. For more details on
MATLAB’s ’rand’ function we refer to C.B. Moler’s book [18] Chapter 9.
Pairs of numbers generated with this function can be seen in Figure 5.4

5.2 Sequences of Numbers with Low Discrepancy

When generating random numbers, a very important property of those numbers is their
even distribution. In Figures 5.1 - 5.3 it is obvious that some spots in the unit square
are more crowded than others. Therefore, it is possible that some areas of the unit cube
are not explored at all using pseudo-random numbers. Intuitively, it seems logical that
the accuracy of simulation results increases if the random numbers are more evenly
distributed. This is what the idea of low discrepancy sequences is based on.
Rather than choosing numbers randomly, the interval (0, 1) is now filled in a determin-
istic way such that the points are as evenly distributed as possible.

Before we can examine some methods for creating low discrepancy sequences, we
have to introduce a measure of the equidistributedness:
Take the unit cube [0, 1]m on which our random numbers are distributed and let Q ⊆
[0, 1]m be an m-dimensional rectangle in that cube. Now the idea is that for an evenly
distributed point set the percentage of the points being situated within Q should be
proportional to the volume of Q, in other words

of xi ∈ Q

of all points
≈ vol(Q)

vol([0, 1]m)

for as many rectangles Q as possible. This leads to the definition of discrepancy:

5.2 Sequences of Numbers with Low Discrepancy 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1500 pairs of points generated with the Matlab function rand

Figure 5.4: 1500 pairs of points (Ui−1, Ui) computed with the MATLAB function
’rand’
Definition 5.5. The discrepancy of the point set {x1, ..., xn} is given by

DN = sup
Q

∣∣∣∣
of xi ∈ Q

N
− volQ

∣∣∣∣ ,

where Q is some rectangle.

The closer the discrepancy DN is to zero, the more evenly the points of a sequence are
distributed:

Definition 5.6. The sequence (yn) is said to be evenly distributed in [0, 1]m if

lim
N→∞

DN = 0,

where the index N refers to the first N points of a sequence.

Definition 5.7. A sequence of points or numbers x1, x2, ..., xN , ... ∈ Rm is called a
low discrepancy sequence if there is a constant Cm such that for all N

DN ≤ Cm
(log N)m

N
(5.1)

58 Chapter 5: Random Number Generators

holds. Thereby, Cm is independent of N .

Remark 5.8. Just like digitally computed random numbers are called pseudo-random
numbers although they are calculated in an entirely deterministic way, numbers of low
discrepancy are often called quasi-random numbers.

We will now examine some examples of sequences of low discrepancy:

Example 5.9. The point set {xN
1 , ..., xN

N} with

xi =
2i− 1

2N
, i = 1, ..., N (5.2)

delivers a sequence of low discrepancy since D∗
N = 1

2N
.

A big drawback of this method is that N has to be fixed. If we increase N for getting
more quasi-random numbers, the whole sequence has to be calculated again for each
new N . A more efficient way of creating quasi-random numbers would be to calculate
the set points dynamically such that they do not have to be recalculated for growing
Ns. A sequence that allows us to place its points dynamically would be the van der
Corput sequence

(xi) :=
1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,

1

16
, ...

Thereby, the i-th element is derived by reversing the binary digits of the index i ∈ N
written as a binary number. The index i = 5, for example, is given by the binary
number 5 = (101)2 =: (d2d1d0)2 with di ∈ [0, 1]. The 5-th element of the van der
Corput sequence can now be derived by reversing these binary digits and putting the
radix point in front of the sequence:

(.d0d1d2)2 =
d0

2
+

d1

22
+

d2

23
=

1

2
+

0

22
+

1

23
=

5

8
.

The numbers of the van der Corput sequence can be defined with the radical-inverse
function:

Definition 5.10. Let

i = (dj...d0) =

j∑

k=0

dkb
k

be the expansion for i = 1, 2, ... in base b, where b is an integer ≥ 2 and dk are digits
in {0, 1, ..., b− 1}. That is i is given in binary form in case b = 2.
Then the radical-inverse function is defined by

φb(i) :=

j∑

k=0

dkb
−k−1.

5.3 normally distributed random numbers 59

This function assigns a rational number 0 < x < 1 to each index i. The higher the
number of digits, the finer the mesh. Each additional digit refines the mesh by a factor
of 1/b. The van der Corput sequence above is obtained by xi := φ2(i).
The radical-inverse function can also be used for computing higher dimensional se-
quences. Thereby, each dimension m can be seen as one time step in the Monte Carlo
simulation. The simplest sequence of points in [0, 1]m would be the Halton Sequence:

Definition 5.11. Let p1, ..., pm be pairwise prime integers. Then the sequence of vec-
tors

xi := (φp1(i), ..., φpm(i)), i = 1, 2, ...

is called the Halton sequence.

Halton Sequences are very simple sequences of low discrepancy. In case m = 2,
the constant is C2 = 0.2602. The first 1500 points of the two-dimensional Halton
Sequence for bases p1 = 2 and p2 = 3 can be seen in Figure 5.5.
A comparison between the uniformity of random distributions and the one dimensional
Halton sequence can be seen in the histogram of Figure 5.7.

Remark 5.12. Sequences of higher dimensions are computed by using a different
prime base for each new dimension. This leads to longer and longer cycle lengths,
meaning it takes a lot longer to fill the grid in the unit cube as the dimensions increase,
and thus the speed decreases with each dimension.

Remark 5.13. Another drawback of higher dimensions is the fact that neighboring
dimensions are highly correlated, which can be seen in Figure 5.6. More sophisticated
high dimensional sequences of low discrepancy would be Faure or Sobol sequences.
The first dimension is equal to the Halton sequence, but for higher dimensions dif-
ferent methods are used to reduce the drawbacks of the Halton sequence. For more
information on those sequences we refer to [20],[2] and [8].

5.3 Normally distributed random numbers

We mentioned at the beginning of this chapter that random numbers are often re-
quired to satisfy certain stochastic properties. Standard Gaussian distributed numbers
Z ∼ N(0, 1) are needed, for example, in order to simulate the Wiener process. In
this section we will learn how uniformly distributed numbers can be transformed into
Gaussian numbers. The two main approaches are inversion methods and transforma-
tion methods.

60 Chapter 5: Random Number Generators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1500 pairs of halton sequence points with base 2 and 3

Figure 5.5: The first 1500 points of the Halton sequence in dimensions 1 (base p1 = 2)
and 2 (base p2 = 3)

5.3.1 Inversion

This class of methods inverts the distribution function and is based on the following
theorem:

Theorem 5.14. Let U ∼ U [0, 1] be a uniformly distributed random variable and F

be a continuous strictly increasing distribution function. Then F−1(U) is a random
variable with distribution function F .

Proof. Since U is uniformly distributed, P (U ≤ ξ) = ξ for all ξ ∈ [0, 1]. Conse-
quently

P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x),

which means that F−1(U) is distributed according to F .

Since there is no closed-form expression for the inverse of the standard Gaussian distri-
bution function F−1, numerical methods are needed for inverting the non-linear equa-

5.3 normally distributed random numbers 61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1500 pairs of halton sequence points with base 43 and 47

Figure 5.6: The first 1500 points of the Halton sequence in dimensions 27 (base p1 =

103) and 28 (base p2 = 107)

tion

F (x) :=
1√
2π

∫ ∞

−∞
e

“
− t2

2

”
dt = u. (5.3)

Thereby, a solution x of the equation F (x) = u is iteratively calculated for prescribed
u. Methods for evaluating x in such a way would be Newton’s method, bisection, or
the secant method. However, these methods are poorly conditioned for u ≈ 1, mean-
ing that small changes in u cause large changes in x. This problem can be avoided by
using a suitable function G(u) ≈ F−1(u) to approximate the inversion x = F−1(u).
It is important to consider that F−1(u) has vertical tangents at u = 1 and u = 0 when
constructing G. An effective method for this approximation would be the rational ap-
proximation. This method makes it easy to reproduce this pole behavior since it allows
to incorporate point symmetry.

We want to introduce one such method here, the inversion algorithm by Moro:

62 Chapter 5: Random Number Generators

Moro’s inversion formula

Moro’s method for inverting the standard normal distribution is divided into two parts.
He truncated the interval 0 < u < 1 to 10−12 ≤ u ≤ −10−12 in order to derive the two
major parts, the main distribution 0.08 < u < 0.92 and the tails 0.92 ≤ u ≤ 1− 10−12

and 10−12 ≤ u ≤ 0.08, where the latter one is obtained thanks to the symmetry with
respect to (x, u) = (0, 0.5). Now both parts have to be approximated. Let us start with
the formula for the middle part

(u− 0.5)

3∑
j=0

aj(u− 0.5)2j

1 +
3∑

j=0

bj(u− 0.5)2j

, (5.4)

the coefficients can be found in Table 5.1 below.
The tails of the distribution are approximated by a polynomial in ln(−lnr) with 10−12 ≤
r ≤ 0.08:

Algorithm 5.15. Moro’s inversion algorithm of the standard normal distribution

Given: u ∼ U(0, 1)

y := u− 0.5

case |y| < 0.42

r := y2

x := y ((a3r+a2)r+a1)r+a0

(((b3r+b2)r+b1)r+b0)r+1

case |y| ≤ 0.42

r := u case y > 0 set r := 1− u

r := log(−logr)

x := c0 + r(c1 + r(c2 + r(c3 + r(c4 + r(c5 + r(c6 + r(c7 + rc8)))))))

case y < 0

set x := −x

Result: x ∼ N(0, 1)

5.3 normally distributed random numbers 63

a0 = 2.50662823884 b− 0 = −8.47351093090 c− 0 = 0.3374754822726147

a1 = −18.61500062529 b1 = 23.08336743743 c1 = 0.9761690190917186

a2 = 41.39119773534 b2 = −21.06224101826 c2 = 0.1607979714918209

a3 = −25.44106049637 b3 = 3.13082909833 c3 = 0.0276438810333863

c4 = 0.0038405729373609

c5 = 0.0003951896511919

c6 = 0.0000321767881768

c7 = 0.0000002888167364

c8 = 0.0000003960315187

Table 5.1: Coefficients for Moro’s inversion method
Remark 5.16. Moro’s inversion method is a simple and fast way for generating nor-
mally distributed numbers.
Note, however, that its conditional nature makes it impossible to work with the se-
quence of numbers of low discrepancy in matrix form. This turns out to be a big disad-
vantage when working with MATLAB since it increases the time needed for computing
normally distributed sequences of numbers with low discrepancy significantly.

5.3.2 Transformations

The inversion method is not the only way to generate Gaussian distributed numbers.
Another approach would be to use transformations between random variables.

Theorem 5.17. Suppose X is a random variable with distribution function F and
density function f(x) on the set A = {x ∈ Rn : f(x) > 0}. Further assume the trans-
formation h : A → B = h(A) to be invertible (strictly continuous) with continuous
inverse h−1. Then Y := h(X) is a random variable with distribution F (h−1(y)) and
density

y 7→ f(h−1(y))

∣∣∣∣det
dh−1(y)

dy

∣∣∣∣ . (5.5)

Proof. We will only give an outline of the proof for the scalar case n = 1 here (for a
more general proof we refer to [5]):

P (h(X) ≤ y) = P (X ≤ h−1(y)) = F (h−1(y)), thus Y has the distribution F (h−1(y)).
Since h−1 is absolutely continuous, the density of Y = h(X) is equal to the derivative
of the distribution function almost everywhere. This assertion is implied by the result
we get when evaluating the derivative dF (h−1(y)

dy
with the chain rule.

In case n = 1 and f(x) = 1 we get the uniform distribution. What we search for is
a transformation y = h(x) such that the density in Equation (5.5) is identical to the

64 Chapter 5: Random Number Generators

density of the normal distribution:

1

∣∣∣∣
dh−1(y)

dy

∣∣∣∣ =
1√
2π

e
−y2

2 (5.6)

This is a common differential equation for h−1 which cannot be expressed in closed
form. However, it is possible to find a closed-form expression for the case n = 2.
Applying Theorem 5.17 on A = [0, 1]2 and f(x) = 1, x ∈ A, we can perform the
transformation y = h(x) with

h(x) =

(√−2 ln x1 cos(2πx2)√−2 ln x1 sin(2πx2)

)
, x = (x1, x2)

T ∈ A. (5.7)

The inverse function his given by

h−1(y) =

(
e
|y|2
2

arctan (y2/y1)
2π

)
, y = (y1, y2)

T . (5.8)

For the determinant we get
∣∣∣∣det

(
dh−1

dy

)∣∣∣∣ =

∣∣∣∣∣det

(
−y1x1 −y2x1

1
2π

−y2/y2
1

1+y2
2/y2

1

1
2π

1/y1

1+y2
2/y2

1

)∣∣∣∣∣ =
x1

2π
=

1

2π
e−|y|

2/2, (5.9)

which is the density of the standard normal distribution in R2. The two components of
the vector y are independent. This means that h(X) has a standard normal distribution
if X is uniformly distributed on [0, 1]. The following algorithm for the Boxmuller
method is based on this fact.

Algorithm 5.18. Boxmuller algorithm

Step 1
Generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1] by using methods we introduced in the first
section of this chapter.

Step 2
Calculate α := 2πU2, β :=

√−2 ln U1

Step 3
Calculate the standard normally distributed numbers

Z1 := β cos α

and
Z2 := β sin α.

5.3 normally distributed random numbers 65

Remark 5.19. It is important to make sure that the uniformly distributed random num-
bers do not have any structure because this structure would be transformed as well.

The computational costs for the Boxmuller method are quite high since the trigonomet-
rical functions have to be evaluated each time we generate a new pair of normally dis-
tributed random variables. This can be avoided using a variant introduced by George
Marsaglia who also contributed to MATLAB’s current random number generator. This
method prepares the input of the Boxmuller method via polar coordinates transforma-
tion:
Random numbers Ui ∼ [0, 1] are used for generating Vi = 2Ui − 1 ∼ U [−1, 1]. Pairs
of values (V1, V2) that fulfill V 2

1 + V 2
2 < 1 are then uniformly distributed on the unit

disk D := {V 2
1 + V 2

2 < 1} with density f(V1, V2) = 1
π

. We will only accept those
points (V1, V2) and apply the transformation

(
V1

V2

)
7→

(
W1

W2

)
=

 V 2

1 + V 2
2

1
2π

arctan(
(

V2

V1
)
)

to generate uniformly distributed points (W1, W2) on the unit square [0, 1]2.

Using the relations W1 = V 2
1 + V 2

2 and W2 = 1
2π

arctan(
(

V2

V1

)
, we get

cos 2πW2 =
V1√

V 2
1 + V 2

2

and sin 2πW2 =
V2√

V 2
1 + V 2

2

For those variables trigonometric functions are no longer necessary in the Boxmuller
method. The variant of Marsaglia is summed up in the following polar algorithm:

Algorithm 5.20. Polar Algorithm

Step 1
Generate random numbers U1, U2 ∼ U(0, 1).

Step 2
Calculate Vi := 2Ui − 1 ∼ U [−1, 1] until W := (V 2

1 + V 2
2 < 1

Step 3
Calculate the standard normally distributed numbers

Z1 := V1

√
−2 ln(W1)/W1

and
Z2 := V2

√
−2 ln(W1)/W1.

66 Chapter 5: Random Number Generators

Remark 5.21. The probability for V 2
1 + V 2

2 < 1 equals the ratio between the volume
of the unit disc π

4
and the volume of the unit square 1, which is about 0.785. This

means that 1− π
4
≈ 21% of all pairs (V1, V2) ∼ U [0, 1] have to be rejected. However,

Marsaglia’s polar method is still more efficient than the Box-Mueller method.

5.3.3 Comparison of methods

In this section we want to compare the accuracy of the two classes of methods we intro-
duced for generating Gaussian distributed numbers out of uniformly distributed ones.
For this we plotted histograms of the distribution of different samples of uniformly dis-
tributed numbers and then applied Moro’s inversion method and the Boxmuller method
on each sequence. The results can be seen in Figures 5.7 - 5.10.
Additionally we want to compare this outcome with the MATLAB function ’randn’
which uses by far the shortest computational time.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

Figure 5.7: The first 10000 numbers of the Halton sequence uniformly distributed and
transformed to a normal distribution by the Boxmuller method and the Moro algorithm.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

Figure 5.8: 10000 numbers computed with the MATLAB function ’rand’ uniformly
distributed and transformed to a normal distribution by the Boxmuller method and the
Moro algorithm.

5.3 normally distributed random numbers 67

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

Figure 5.9: 10000 numbers computed with the linear congruential generator uniformly
distributed and transformed to a normal distribution by the Boxmuller method and the
Moro algorithm.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

Figure 5.10: 10000 numbers computed with the lagged fibonacci generator uniformly
distributed and transformed to a normal distribution by the Boxmuller method and the
Moro algorithm.

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

Figure 5.11: 10000 numbers computed with the MATLAB function ’randn’

We see that in case the MATLAB function ’rand’ or a lagged fibonacci generator are
used as sources for uniformly distributed numbers, the quality of the histograms gen-
erated by Moro’s method and the Boxmuller algorithm is about the same. However,
if a linear congruential generator or the Halton sequence is used, the histograms com-
puted by Moro’s inversion method are a lot closer to the graph of the standard normal
distribution (Figure 3.1) than the ones computed with help of the Boxmuller algorithm.

Remark 5.22. Note that although on average Moro’s method yields better results than
the Boxmuller algorithm, it is not always practical to implement Moro’s method in

68 Chapter 5: Random Number Generators

MATLAB as already mentioned in Remark 5.16.

The fact that the Boxmuller algorithm works a lot faster than Moro’s inversion method
is illustrated in Table 5.2, where the time that needed by both methods for generating
30000 normally distributed numbers out of uniformly distributed ones is listed. In or-
der to establish a standard of comparison, we also listed the time that was needed for
computing the uniformly distributed numbers which the two methods use as input and
which is therefore also included in the computing time taken up by each method.

computing time Moro Boxmuller
for X ∼ U(0, 1)

Halton Sequence 0.2524 8.6646 0.4268

MATLAB function ’rand’ 0.002 7.1782 0.026

Table 5.2: Comparison: Running time of Moro’s and the Boxmuller method

Remark 5.23. The numbers listed in Table 5.2 were computed on a digital computer
with an Intel Celeron M 1.4 GHz processor and 512 MB RAM.
As MATLAB’s function ’tic toc’ for measuring the running time of its programs works
like a stop watch, the results are not very accurate and vary with each run. We therefore
took the average over 10 results for the running time for each program.

Chapter 6

Monte Carlo Method

The idea of the Monte Carlo method is to get an estimate for a certain value by com-
puting the expected value for a large number of independent simulated samples. This
concept is based on the Law of Large numbers which states that the average over a
large enough number of samples approximately equals their mean.
We will introduce the concept of the Monte Carlo Method on the example of approxi-
mating the unknown expectation E[X] = mM of some general random variable X . In
this simple scenario, the Monte Carlo Method consists of only two steps:

Algorithm 6.1. Basic Monte Carlo Method

Step 1
Simulate a large number M of samples of X by using random number generators to
compute independent random variables X1, X2, ..., XM with the same distribution as
X .

Step 2
Approximate the mean using Equation (3.9):

mM :=
1

M

M∑
i=1

Xi. (6.1)

An approximation to E[X] is called an unbiased estimator if it has the same expected
value as X .
In addition to the approximation of the expected value, we are also interested in getting
a feeling of how close we are to the exact solution, which can be given by a confidence
interval [a, b]. Thereby, we want the probability for our expected value mM to be in
this confidence interval to be 95%, i.e.

P (a ≤ mM ≤ b) = 0.95. (6.2)

69

70 Chapter 6: Monte Carlo Method

From the Central Limit Theorem we know that the sum of a large number of i.i.d.

random variables will be approximately normal. Let us therefore assume that
M∑
i=1

Xi ∼
N(Mµ, Mσ2) and (mM − µ) ∼ N(0, σ2/M). With Equation (3.36) we get

P

(
−1.96

σ√
M

≤ mM − µ ≤ 1.96
σ√
M

)
= 0.95. (6.3)

Rewriting this as

P

(
m− 1.96

σ√
M

≤ µ ≤ mM + 1.96
σ√
M

)
= 0.95 (6.4)

shows that a 95%-confidence interval for our unknown expectation µ is given by
[
µ− 1.96

σ√
M

,µ + 1.96
σ√
M

]
. (6.5)

Remark 6.2. Throughout this section we assumed the variance σ of our general ran-
dom variable X to be known. This is a very general assumption, since it is not very
likely for the variance to be given while the expectation has to be approximated. In
praxis it is therefore often necessary to also compute an approximation of the variance

v2
M :=

1

M − 1

M∑
i=1

(Xi −mM)2.

The value vM can then be substituted for σ in Equation (6.5).

6.1 Monte Carlo Method for option pricing
Having introduced the basic principle of the Monte Carlo simulation, we now have all
tools we need for evaluating the price of an Option via simulation.
We first want to give a rough outline on how the method works before we will discuss
the general algorithm of the Monte Carlo method for option pricing.

Remark 6.3. The observations made in this chapter are restricted to European call
options only. This can be done without loss of generality since the respective results for
European put options can be derived by applying the put call parity given in Equation
(2.3).

As we saw in Chapter 2 the value of an option at expiry V̂T can be calculated via
the payoff function (2.1). Discounting that value with the factor e−r(T−t) leads to the
option value at time t:

6.1 Monte Carlo Method for option pricing 71

VS,t = e−r(T−t)VS,T = e−r(T−t) max {ST −K, 0}. (6.6)

It hence suffices to know the price of the underlying asset at expiry ST to derive the
true value of an option.
The main task in pricing European option lies therefore in approximating the value of
the underlying asset at time T .
In Chapter 4 we derived a mathematical model for asset price dynamics, i.e. that of
the Geometric Brownian Motion (Equation (4.19)). Solving this SDE provides us with
the random variable ST which denotes the price of the underlying asset at time T .
However, we also saw that this model does not enable us to look into the future. We
cannot make any real predictions about the asset price movement, all we have is a
stochastic model based on past data.

The idea of the Monte Carlo Method is to overcome this problem by running a large
number M of simulations. Thereby the payoff function is calculated for each of the M

simulated asset price paths and an approximation of the probable price of the option at
time T is then obtained by taking the geometric average of all V (S, T):

V̂ (ST , T) = E(V (ST , T)) =
1

M

M∑
i=1

V (Si, T) (6.7)

Once we know the value of our option at time T , we only need to discount that number
in order to obtain the present value of the option:

V̂ (S, t) = e−r(T−t)E[V (X(T ; t, S)T)] (6.8)

The algorithm of the basic Monte Carlo Method for option pricing consists of four
different steps:

Algorithm 6.4. Monte Carlo simulation for option pricing

Given:

- Asset price St at time t,

- SDE which simulates the asset price movement

dSt = µStdt + σStdWt,

- Expiry date T

- Risk free interest rate r and

72 Chapter 6: Monte Carlo Method

- Payoff function V (ST , T)

Step 1
Simulate M approximations W (t, ωi), i = 1, 2, ..., M of paths of a Wiener process W

with the help of a random number generator as introduced in Chapter 5.

Step 2
Compute the solutions Si(T), i = 1, ..., M of the SDE that simulates the asset price
movement for each path of the Wiener processes generated in Step (1).

Step 3
Approximate the mean E[V (ST , T)] using Equations (2.1) and (3.9):

Ẽ[V (ST , T)] =
1

M

M∑
i=1

V (S̃i, T) (6.9)

Step 4
Discount the estimator of Step 3 (6.9) in order to get an approximation of the fair
option value V (S, t):

Ṽ (S, t) = e−rT Ẽ[V (ST , T)].

Step 5
Compute a 95%-confidence interval

[
E[V (S, T)]− 1.96

√
V ar[V (S, T)]√

M
, E[V (S, T)] + 1.96

√
V ar[V (S, T)]√

M

]
.

Remark 6.5. Since the payoff function of a vanilla European option is not path de-
pendent, we are only interested in the price of the underlying at time T . It is therefore
not necessary to approximate the asset price paths and with them the Wiener process
for any time steps between t = 0 and t = T . Hence Steps 1 and 2 in Algorithm 6.4
can be simplified: It suffices to use Ito’s solution for the SDE modeling the Geometric
Brownian Motion:

ST = S0e
((r−δ)−1/2σ2)T+σ

√
Tξ (6.10)

where ξ is a standard Gaussian random Variable

If the payoff function of the asset is path-dependent, however, or if the model for the
price dynamics of the underlying gets more complicated, numerical methods are neces-
sary. An example of such a method would be the Euler-Maruyama algorithm described
in Appendix B. An Example of such a case is given in Section 6.5.3 when we introduce
a model for stochastic volatility.

6.1 Monte Carlo Method for option pricing 73

Let us now test the accuracy of the method.

Example 6.6. We want to test the Monte Carlo simulation by approximating the value
of a European call option with strike price K = 100, risk-free interest rate r = 0.07,
volatility σ = 0.3, dividend rate δ = 0.1, expiry time T = 1 and asset price at time
t0 = 0 S0 = 120.
Numerical results are listed in Table 6.1.

Remark 6.7. The Black-Scholes value Vexakt = 21.2061 was used a reference for
calculating the relative error of the method. A rough outline of the Black-Scholes
Equation for option valuation is given in Appendix A.

number of Monte Carlo 95% confidence interval rel error
simulations n option value

100 25.7652 [19.9381, 31.5922] 21.50%

200 25.0300 [20.4475, 29.6126] 18.03%

500 24.0296 [21.2438, 26.8155] 13.31%

1, 000 22.8681 [21.0395, 24.6968] 7.84%

2, 000 22.2387 [20.9780, 23.4994] 4.87%

5, 000 21.6153 [20.8333, 22.3974] 1.93%

10, 000 21.5945 [21.0403, 22.1486] 1.83%

20, 000 21.4664 [21.0783, 21.8545] 1.23%

30, 000 21.4060 [21.0921, 21.7198] 0.94%

Table 6.1: MC simulation for S0 = 120

We see that for M < 5000 the accuracy is quite bad although it improves steadily.
The relative error still decreases for a number of simulation runs higher than 5000,
but with a very slow rate of ’convergence’. This property can also be observed in
Figure 6.1 below where a plot for the relative error of the method as well as for the
95%-confidence interval is depicted.
Before we examine the relationship between the number of simulation runs and the
accuracy of the Monte Carlo simulation in the next section, we first want to investigate
the influence of the initial price of the underlying asset S0 on the accuracy of the
method. Let us therefore repeat the simulation with S0 = 100. Numerical results can
be seen in Table 6.2, where the Black-Scholes value Vexakt = 9.6296 was used as a
reference.
We see that the accuracy of the method worsens slightly. However, this can be ex-
plained by the fact that the same absolute error leads to a higher relative error as the
value we use as a reference gets smaller which is the case here. Table 6.3 lists the
results of another Monte Carlo simulation with S0 = 80 and according Black-Scholes
value of Vexakt = 2.7222.

74 Chapter 6: Monte Carlo Method

0 0.5 1 1.5 2 2.5 3

x 10
4

20

20.5

21

21.5

22

22.5
Monte Carlo simulation

number of simulations

op
tio

n
va

lu
e

Figure 6.1: Confidence interval for a European call option with S0 = 120

number of Monte Carlo 95% confidence interval rel error
simulations n option value

100 12.5166 [8.6316, 16.4016] 29.98%

200 12.7475 [9.6009, 15.8941] 32.38%

500 11.8515 [9.9436, 13.7594] 23.07%

1, 000 10.8294 [9.5982, 12.0606] 12.46%

2, 000 10.4437 [9.6029, 11.2845] 8.45%

5, 000 9.9686 [9.4481, 10.4892] 3.52%

10, 000 9.9496 [9.5802, 10.3190] 3.32%

20, 000 9.8356 [9.5776, 10.0936] 2.14%

30, 000 9.7520 [9.5439, 9.9600] 1.27%

Table 6.2: MC simulation for S0 = 100

6.2 Convergence of the Monte Carlo Method

We saw that the number of simulations M has to be very high in order to achieve a
satisfying accuracy of the approximated option value. We also saw that the ’rate of
convergence’ slows down as the number of simulation runs rises. In this section, we
want to explain this convergence behavior of the Monte Carlo method.
Let us therefore consider the example of stochastic integration with a Monte Carlo

6.2 Convergence of the Monte Carlo Method 75

number of Monte Carlo 95% confidence interval rel error
simulations n option value

100 3.7218 [1.8193, 5.6243] 36.72%

200 4.2835 [2.5503, 6.0167] 57.35%

500 3.8468 [2.7989, 4.8947] 41.31%

1000 3.2649 [2.6209, 3.9088] 19.94%

2000 3.0678 [2.6390, 3.4965] 12.70%

5000 2.9156 [2.6512, 3.1801] 7.10%

10000 2.9301 [2.7414, 3.1187] 7.64%

20000 2.8564 [2.7254, 2.9874] 4.93%

30000 2.7878 [2.6828, 2.8927] 2.41%

Table 6.3: MC simulation for S0 = 80

approximation of

θn =
1

n

n∑

k=1

φ(Xk) (6.11)

and an exact value

θ =

∫

Ω

g(x)dx =

∫

Ω

g(x)

f(x)
f(x)dx = E[φ(Xk)], (6.12)

where φ(x) = g(x)
f(x)

and Xk are independent samples of a random variable with density
function f and V ar[φ(Xk] = σ2 for all k = 1, ..., n.
Since the absolute error given by |θn−θ| is again a random variable, it is not possible to
give a deterministic error bound. Instead we have to work with a confidence interval for
the error, which is why we need to calculate the mean and variance of our approximated
value:

E[θn] = E

[
1

n

n∑

k=1

φ(Xk)

]
=

1

n

n∑

k=1

E[θ(Xk)] = θ (6.13)

and

V ar[θn] = E

(
1

n

n∑

k=1

E[θ(Xk)]− E[
1

n

n∑

k=1

θ(Xk)]

)2

 = (6.14)

=
1

n2
E

[
n∑

k=1

(φ(Xk)− E[φ(Xk)])
2

]
=

=
1

n2

n∑

k=1

V ar[φ(Xk)] =
σ2

n
.

With the Chebyshev Inequality (3.14) for ε := σ√
εn

and X = θn we get

76 Chapter 6: Monte Carlo Method

P

(
|θn − θ| ≥ σ√

εn

)
≤ εn

which can be written as

P

(
|θn − θ| < σ√

εn

)
≥ 1− εn. (6.15)

We thus see that the absolute error |θn − θ| is proportional to σ√
n

. This means that the
number of simulations M has to be increased by the factor 100 in order to decrease the
error by 10. Improving the accuracy this way is thus connected with high computa-
tional costs which is why we want to find an alternative way for decreasing the error in
Equation (6.15). The only other parameter that influences the accuracy is the variance
σ, which is why a logical approach could be to try to work with a smaller variance.

6.3 Variance reduction

As mentioned above, methods of variance reduction are efficient tools for improving
the speed of the Monte Carlo simulation. If we succeed at reducing the variance of
V by a factor C < 1, we can simulate confidence intervals of the same widths for C

times less work. However, we still have to take into consideration the costs for com-
puting this new random variable. In the following, we will introduce a method which
is widely applicable, easy to implement and computationally cheap:

Antithetic variates

This method is based on the idea of replacing the set of (i.i.d) normally distributed ran-
dom variables VT in the Monte Carlo simulation by another set of normally distributed
random variables which have the same mean but a smaller variance. Hereby, we use
the fact that if a random variable satisfies Z ∼ N(0, 1), then −Z ∼ N(0, 1).
The method works as follows:

Algorithm 6.8. Antithetic variates for the Monte Carlo simulation

Step 1
Compute M values for VT as described in Algorithm 6.4, using a random variable
Z ∼ N(0, 1).

Step 2
Generate V −

T the same way, but employ a random variable that satisfies−Z ∼ N(0, 1)

6.3 Variance reduction 77

this time instead.

Step 3
Substitute each of the M VT in Algorithm 6.4 with the antithetic variate

V AV
T =

1

2
(VT + V −

T) (6.16)

This method is based on the assumption that

V ar[V AV
T] ≤ V ar[VT] (6.17)

which we want to prove now.

Proof. Using Equation (3.27), we get

V ar[V AV
T] = V ar[

1

2
(VT + V −

T)] =
1

4
V ar[(VT + V −

T)] = (6.18)

=
1

4
V ar[VT] +

1

4
V ar[V −

T] +
1

2
Cov[VT , V −

T]. (6.19)

With the estimate (3.28), we see that

V ar[V AV
T] ≤ 1

4
V ar[VT] +

1

4
V ar[V −

T] +
1

4
(V ar[VT] + V ar[V −

T]). (6.20)

Using V ar[θn] = V ar[θ−n], we get

V ar[V AV
T] ≤ V ar[VT] (6.21)

As we see from (6.18), we get best results for negatively correlated VT and V −
T . Judg-

ing from the method we used for generating VT and V −
T , chances are good for their

covariance to be negative.
Since the additional computational costs for computing V AV

T are comparatively small
in this case, the method of antithetic variates seems to be a good approach for improv-
ing the efficiency of the Monte Carlo simulation for option valuation. From Inequality
(6.21) we see that in the worst possible case the variance of V AV

T equals the variance of
VT . The highest possible loss in efficiency is therefore limited by the additional costs
of the computation of the antithetic variate.

Example 6.9. We use the same parameters as in Example 6.6 and approximate the
option value by Monte Carlo simulation with antithetic variates.

78 Chapter 6: Monte Carlo Method

0 0.5 1 1.5 2 2.5 3

x 10
4

20

20.5

21

21.5

22

22.5
Monte Carlo simulation with AV

number of simulations

op
tio

n
va

lu
e

Figure 6.2: Confidence interval for a European call with S0 = 120 and AV

As we saw in Figure 6.2, not only the efficiency of the method improves significantly,
but the widths of the confidence interval gets a lot smaller too. This can be explained
by looking at the formula for calculating the confidence interval. Its size is directly
proportional to the inverse square root of the number of simulation runs and to the
standard deviation of the random variable which in our case is the expected payoff.
Using the method of antithetic variates reduces the number of 5000 simulation runs for
getting an acceptable level of accuracy with standard Monte Carlo to 1000. Hence us-
ing antithetic variates either delivers better results in roughly the same time or reduces
the number of simulation runs that are needed for a certain degree of accuracy.
Numerical values are included in Table 6.4 below.

6.4 Quasi-Monte Carlo

In our estimation of the absolute error of Monte Carlo simulation we saw that the accu-
racy of the method depends on the number of simulation runs as well as on the variance
of our random variables denoting the option value at expiry VT . What the estimation
(6.15) does not reflect, however, is the fact that the efficiency of a Monte Carlo method
also depends on the quality of the samples of random numbers.
So far we have worked with pseudo-random numbers, which are to a certain degree
very similar to true random numbers. As a consequence, they are not equidistantly
distributed, however, because that would stand in contrast to true randomness. This is

6.4 Quasi-Monte Carlo 79

number of Monte Carlo 95% confidence interval rel error
simulations n option value

100 22.1455 [19.8573, 24.4337] 4.43%

200 22.6566 [20.7774, 24.5359] 6.84%

500 21.9999 [20.8339, 23.1659] 3.74%

1000 21.5650 [20.7544, 22.3756] 1.69%

2000 21.5967 [21.0207, 22.1727] 1.84%

5000 21.3486 [20.9906, 21.7066] 0.67%

10000 21.3977 [21.1429, 21.6525] 0.90%

20000 21.3052 [21.1265, 21.4839] 0.47%

30000 21.2690 [21.1233, 21.4148] 0.30%

Table 6.4: MC simulation with AV for S0 = 120

why we introduced so called low discrepancy sequences in Chapter 5, that is a set of
quasi-random numbers that are a lot more equidistantly distributed than the numbers
that can be computed with pseudo-random number generators.
In this section we want to test the efficiency of the so called Quasi-Monte-Carlo
method, i.e. a standard Monte Carlo simulation that uses sequences of quasi-random
numbers such as the Halton Sequence.

Since the Monte Carlo simulation works on the basis of standard normally distributed
random numbers, we first have to transform the uniformly distributed Halton Sequence
such that it has a standard Gaussian distribution. We want to compare the two meth-
ods we introduced for transforming the distribution of random variables here, Moro’s
method and the Boxmuller algorithm.

Remark 6.10. As we saw before, Moro’s method is significantly slower than the Box-
muller algorithm when implemented in MATLAB because the sequence cannot be
worked with in matrix form. This is not true, however for other means of implementa-
tion such as C++.
We therefore want to examine the quality of both transformation methods indepen-
dently of the aspect of computational costs.

Although literature suggests to use Moro’s inversion algorithm for that in order to yield
optimal results, Figure 6.3 shows that using the Boxmuller algorithm leads to a higher
accuracy of the Monte Carlo method.

Remark 6.11. Since it is also computationally cheaper to work with the Boxmuller
method in MATLAB, this is the algorithm we will use in the following to examine the
improvement in accuracy yielded by the use of low discrepancy sequences.

Example 6.12. Continuing Examples 6.6 and 6.9, we now compute the value of a
European call option via Quasi-Monte-Carlo simulation with and without using anti-

80 Chapter 6: Monte Carlo Method

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.002

0.004

0.006

0.008

0.01

0

0.002

0.004

0.006

0.008

n

re
la

tiv
e

er
ro

r

Boxmuller
Moro

Figure 6.3: Comparison of the relative error with Boxmuller and Moro

thetic variates for S0 = 120.
Figure 6.4 shows that the speed of convergence increases significantly in comparison
to simple Monte Carlo simulation shown in Figure 6.1.
We also see that although the the confidence interval can indeed only be shrunk by
using variance reduction methods, the accuracy of the interval improves by a large
degree. While with simple Monte Carlo approximation the true option value was still
situated outside of the 95%-confidence interval at times, this is not the case with Quasi-
Monte-Carlo simulation anymore.
Table 6.5 gives numerical support for this observation. Again, the true option value
derived with the Black-Scholes Equation is given by Vexakt = 21.2061.

6.5 Volatility models

When introducing the market model in Chapter 2, we mentioned that some of the
rather restricting assumptions such as a constant risk-free interest rate or volatility
and the fact that the underlying asset does not pay any dividends could be relaxed or
dropped later on. This is exactly what we will do in this section. Note that so far it
has not been necessary to use simulation methods for deriving the option value, other
methods such as Black-Scholes or binomial methods could have done the job with less
computational costs. In cases of more complicated models however, those methods
can not be applied anymore and this is where simulation methods such as Monte Carlo

6.5 volatility models 81

0 0.5 1 1.5 2 2.5 3

x 10
4

20

20.5

21

21.5

22

22.5
Quasi Monte Carlo simulation (Boxmuller)

number of simulations

op
tio

n
va

lu
e

Figure 6.4: Confidence interval for a European call with S0 = 120

(QMC)

0 0.5 1 1.5 2 2.5 3

x 10
4

20

20.5

21

21.5

22

22.5
Quasi Monte Carlo simulation (Boxmuller) with AV

number of simulations

op
tio

n
va

lu
e

Figure 6.5: Confidence interval for a European call with S0 = 120 (QMC AV)

82 Chapter 6: Monte Carlo Method

n QMC 95% confidence rel error QMC value 95% confidence rel error
value interval with AV interval

100 20.6538 [15.4833, 25.8242] 2.60% 21.4328 [19.0106, 23.8551] 1.07%

200 20.913 [17.3287, 24.6540] 1.01% 21.1163 [19.4527, 22.7798] 0.42%

500 20.9405 [18.6195, 23.2615] 1.25% 21.1191 [20.0337, 22.2045] 0.41%

1000 21.1343 [19.4407, 22.8280] 0.34% 21.2047 [20.4134, 21.9960] 0.01%

2000 21.1719 [19.9737, 22.3701] 0.16% 21.2070 [20.6505, 21.7635] 0.01%

5000 21.1958 [20.4354, 21.9522] 0.06% 21.2084 [20.8558, 21.5611] 0.01%

10000 21.1963 [20.6594, 21.7331] 0.05% 21.2063 [20.9571, 21.4555] 0.001%

20000 21.2036 [20.8236, 21.5836] 0.01% 21.2089 [21.0323, 21.3855] 0.01%

30000 21.2064 [20.8961, 21.5168] 0.001% 21.2073 [21.0633, 21.3514] 0.01%

Table 6.5: Quasi Monte Carlo simulation for S0 = 120

Simulation are needed.

As already mentioned, the volatility σ determines the average change in asset price
movement of the underlying. It has a huge impact on the simulation of asset prices and
thus a good estimate of this parameter has to be available in order to get accurate results
when pricing options. We will introduce two models for deriving such an estimate
here.

6.5.1 Historical volatility

Since we do not know the future development of the asset price, we have to rely on
values known from the past. Assuming that we have access to data on the previous be-
havior of the underlying, the historical volatility σhist can be derived as the annualized
standard deviation of the logarithmic asset price changes.
Let Si be the value of the asset at time ti and N be the average number of official
trading days in a year.
The historical volatility is then defined as

σhist =
√

N

(
1

n− 1

n−1∑
i=1

(yi − ȳ)2

)
, (6.22)

where

yi = ln Si+1 − ln Si, i = 1, ..., n− 1, ȳ =
1

n

n−1∑
i=1

yi. (6.23)

Unfortunately, volatility is not constant in reality. To emphasize the more recent values
it is also possible to weight the respective asset prices higher than the ones that lie
further in the past.

6.5 volatility models 83

Another reason why the definition of historic volatility is not precise is the fact that the
values vary with the time series they are derived from.

Example 6.13. To illustrate how this method works, we will now calculate the histori-
cal volatility for the Nokia asset whose price path over the past year is depicted on the
left hand side of Figure 4.3.
Thereby, we take the closing value of the asset at every Monday for a year.
Proceeding as described above leads to the value for the historical volatility of the
Nokia asset of σhist = 0.3679.

The code for the MATLAB program we used for calculating this value is given in
Appendix C.2.6.

We want to introduce another model for deriving a value for volatility here which de-
livers a unique solution if certain conditions are met. It is called the implied volatility:

6.5.2 Implied volatility
The option value depends on S, K, r, T and σ. Assuming all those parameters except
for the volatility σ are known and constant, it is possible to derive σ from the Black-
Scholes Equation (see Appendix A) if the option value V ∗ is known at time t = 0.
The option value is now a function of σ only, and can thus be written as V (σ). For the
implied volatility σ∗ we have the equality V (σ∗) = V ∗. Unfortunately, this requires
solving a nonlinear equation, and hence numerical methods are needed. The bisection
method or Newton’s method would work here.

6.5.3 Stochastic Volatility
As mentioned in the previous section, volatility is not constant in reality. This is why
we will examine the example of a more complicated model now: an asset price move-
ment where the volatility follows an SDE itself.
So far our model for simulating the asset price movement has been relatively simple.
Even when we allowed continuous dividends to be payed on the underlying asset, it
was still possible to use Ito’s Lemma for calculating a solution to the SDE that de-
scribed the asset price movement. In the case of multiple stochastic deviates, such
as a stochastic risk-free interest rate or a stochastic volatility, however, it gets more
complicated. The dimension of the problem increases and we need to rely on numer-
ical methods for deriving a solution to the SDE such as the Euler-Maruyama-Scheme
which is described in Appendix B.
In such a case, the option value cannot simply be derived by using the Black-Scholes
formulae (Appendix) anymore either. This is where simulation approaches such as the
Monte Carlo method are very useful.

84 Chapter 6: Monte Carlo Method

The new asset price model with stochastic volatility results in a three dimensional
stochastic process

X(t) = (St, σ(t), ζ(t))T (6.24)

defined by the equations
dSt = rStdt + σ(t)StdW 1

t (6.25)

dσ(t) = −(−σ(t)− ζ(t))dt + ασ(t)dW 2
t (6.26)

dζ(t) = β(σ(t)− ζ(t))dt, (6.27)

where α > 0 and β ≥ 0 are known parameters.

The drift term in (6.26) is negative for σ < ζ and positive for σ > ζ , which causes the
volatility σ to follow ζ . In order to understand the meaning of that, let us now take a
closer look at ζ . This is not a stochastic variable at all, it rather follows an ordinary
non-homogenous linear differential equation whose exact solution is given by

ζ(t) = e−βtζ(0) +

∫ t

0

e−β(t−s)σ(s, ω)ds. (6.28)

Hence ζ is nothing else but the mean of σ weighted by e−β(t−s), which means that ζ

causes a pull of σ to its weighted mean. This effect is called mean reversion.

Example 6.14. To illustrate this, we will now compute the asset price movement
(Figure 6.8) and the value of a European put (Figure 6.7) with constant (green) and
stochastic (blue) volatility as well as a realization of the volatility tandem σt, ζt (Figure
6.6) for 0 ≤ t ≤ 1, ∆t = 0.004 with parameters S0 = 110, K = 100, σ0 = σconst =

0.4, α = 0.3, β = 10, r = 0.1.

6.5 volatility models 85

0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

time t

vo
la

til
ity

volatility tandem

stochastic volatility
mean volatility

Figure 6.6: Mean-reverting volatility

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

20.5

21

21.5

22

22.5

23

23.5

24

time t

op
tio

n
va

lu
e

option value

stochastic volatility
constant volatility

Figure 6.7: Option value with constant and mean-reverting volatility

86 Chapter 6: Monte Carlo Method

0 0.2 0.4 0.6 0.8 1.0 1.2
70

80

90

100

110

120

130

140

150

time t

as
se

t p
ric

e

asset price movement

stochastic volatility
constant volatility

Figure 6.8: Asset price movement with constant and mean-reverting volatility

6.6 Results

Tables 6.6 and 6.7 list the results for different numbers of simulations as seen in Figure
6.9 with parameters K = 100, r = 0.1, σ = 0.4, T = 1, S0 = 120.

method relative error n
simple Monte Carlo 0.2938% 80000

MC with antithetic variates 0.2970% 30000

QMC (Boxmuller) 0.2791% 750

QMC with AV (Boxmuller) 0.2768% 180

Table 6.6: Different numbers of simulations for the same level of accuracy

6.6 Results 87

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

number of simulations

re
la

tiv
e

er
ro

r

European call with dividends

MC
MC with AV
QMC (boxmuller applied to the halton sequence)
QMC (boxmuller applied to the halton sequence) and AV

Figure 6.9: Relative error of the Monte Carlo method for a European call with S0 =

120

Remark 6.15. Note that these numbers are sensitive to the seed that was used for
computing the pseudo-random numbers. Also, the degree of the relative error is still
unstable when the number of simulation runs is quite small. Therefore, the numbers
listed in Table 6.6 are only guiding values.

We see that using antithetic variates makes it possible to achieve an accuracy level
of 30% with almost three times less simulation runs than with crude Monte Carlo
simulation.
Quasi-Monte-Carlo methods perform even better, the number of samples needed by
this approach are about 100 times less in comparison to simple Monte Carlo simula-
tion.

The values listed in Table 6.7 are more reliable since they are based on a higher number
of simulation runs. We see that the level of accuracy reached by Monte Carlo simula-
tion with antithetic variates is more than three times as high as the one yielded without
variance reduction methods.
Again QMC simulation outperforms simple Monte Carlo simulation by a large degree,
the relative error we get using low discrepancy sequences is about 100 times smaller
than using pseudo-random numbers.

88 Chapter 6: Monte Carlo Method

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

number of simulations

re
la

tiv
e

er
ro

r

European call with dividends

MC
MC with AV
QMC (boxmuller applied to the halton sequence)
QMC (boxmuller applied to the halton sequence) and AV

Figure 6.10: Relative error of the Monte Carlo method for a European call with S0 =

100

method n rel error
simple Monte Carlo 30000 0.94%

MC with antithetic variates 30000 0.30%

QMC (Boxmuller) 30000 0.001%

QMC with AV (Boxmuller) 30000 0.01%

Table 6.7: Different levels of accuracy for a constant number of simulations

The Monte Carlo Method has many advantages over other methods for option pricing,
such as

- The concept is not very complicated is thus easy to understand even for ama-
teurs.

- The algorithm is easy to implement because of the simplicity of the method.

- Different methods for improving the performance of the simulation such as using
quasi-random numbers or variance reduction methods are available and can be
added to the original algorithm without high additional computing costs.

6.6 Results 89

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

number of simulations

re
la

tiv
e

er
ro

r

European call with dividends

MC
MC with AV
QMC (boxmuller applied to the halton sequence)
QMC (boxmuller applied to the halton sequence) and AV

Figure 6.11: Relative error of the Monte Carlo method for a European call with S0 =

80

- It is easy to implement and to modify, which makes it flexible and applicable for
a large range of problems.

- Parallel simulations can be run on separate computers in order to reduce the
computing time.

- The error convergence rate of the Monte Carlo Method is independent of the
dimension of the problem.

- It is possible to estimate the accuracy of the option value by computing confi-
dence intervals

It also has its limitations:

- The convergence rate of O(1√
M

) is very slow, which is why the Monte Carlo
simulation requires a large number of simulations to reach a certain degree of
accuracy.

- The results have a statistical nature, therefore only probabilistic error bounds can
be given.

- It is not possible to give a termination criterion such as a certain degree of ac-
curacy. The number of simulation runs has to be fixed before the simulation is
started.

90 Chapter 6: Monte Carlo Method

- The quality of the simulation depends on the quality of the random numbers that
are used.

- Although low discrepancy sequences improve the accuracy by a large degree,
this fact is not reflected in the width of the confidence interval.

- Standard stochastic simulation procedures can only evaluate European style op-
tions.

Chapter 7

American Options

So far we have only evaluated European style options. In this chapter we want to in-
troduce different methods of Monte Carlo simulation for American Options. Recalling
Chapter 2, an American option can be exercised at any time up to expiry. It therefore
provides its holder with more rights than its European equivalent and thus has a po-
tential higher value. We also saw that for a call option on a non-dividend paying asset
the value is the same whether the option is American style or a European style. This
is why we can use the European call option value on a non-dividend paying asset as
a reference for its American style counterpart and are thus able to get a feeling for
the accuracy of the method. Having this done, we can then apply the algorithm to an
American call option on an underlying that pays discrete dividends.

Optimal Exercise Boundary

Pricing American type options does not only require an approximation of the value
of the option at time zero, one also needs to determine when the option should be
exercised. Thereby, we will restrict our observations to so called Bermudan Options,
that is options that can only be exercised at certain discrete time instants

τi = i∆τ , i = 0, ..., Γ, τΓ = T (7.1)

in the interval [0, T], where τ is a stopping time as defined in Definition 4.17 and T is
the expiry date as usual. This restriction is made because the problem for continuous
exercise date possibilities can be very complicated and discrete exercise times work
best with simulation algorithms which are discrete by nature.
The decision of when to exercise the option is clearly influenced by the price of the
underlying: If the option is out-of-the-money (as defined in Remark 2.6) at time τ ,
then the best strategy would undoubtedly be to hold on to the option. If the option is
in-the-money, it seems beneficial to exercise. However, it might also be a good strategy
to wait for the payoff to rise even more. In order to solve this dilemma, we will now

91

92 Chapter 7: American Options

take a look at rules for an optimal exercise strategy. In what follows, we will denote the
time at which it is best for the option to be exercised out of all stopping times τ ≤ T

by τ ∗. Over the life of the option, this optimal exercise time τ ∗ is called the optimal
exercise boundary.

This boundary is defined by two values, the intrinsic option value iτ and the continua-
tion value cτ :

In the case of a European type option, the decision whether or not to exercise at matu-
rity T could be made with help of the payoff function VT = max(0, ST −K). A more
general form of this concept which is also suitable for American type options leads to
the so called intrinsic value denoted by

iτ = max(0, Sτ −K) (7.2)

for possible exercise times 0 = τ0 ≤ τ ≤ τΓ = T . Hence the intrinsic value represents
the payoff yielded by the decision to exercise immediately. However, the American
type option does not have to be exercised at time τ , which is why it also has a so called
continuation value cτ . This value represents the discounted expectation of the future
value of the option in case it is held at time τ and the exercise decision is put off until
the next possible exercise date τ + ∆τ :

cτ = E(Vτ+∆τ)e
−r∆τ . (7.3)

To sum it up, the choice between exercising or holding on to the option and thus
delaying exercising results in two different values of the option, depending on which
decision is reached. The holder of the option wants to maximize the option value and
will thus let his exercise decision depend on what will result in a higher profit. The
option value is thus given by the maximum of the intrinsic value iτ and the continuation
value cτ :

Vτ = max(iτ , cτ). (7.4)

In other words, the option should be exercised if the intrinsic value equals or exceeds
the continuation value. Hence the optimal exercise boundary is situated at the point
where the intrinsic value matches the continuation value:

iτ (Sτ) = cτ (Sτ). (7.5)

Figure 7 shows the graphs of the intrinsic value, the continuation value and the value
of an American call option for one potential exercise date τ .
While simulation programs are well-suited for evaluating European options, the addi-
tional freedom of choosing the time of exercise seems to make it impossible to apply
Monte Carlo methods for pricing American options. The determination of the early

7.0 American Options 93

Intrinsic Value

Continuaton ValueOption Value

K V V*

Wait and see Invest
exercise strategy which is not necessary in the European case requires a backward al-
gorithm. Starting at the maturity date, the optimal exercise strategy can be estimated by
working backwards in time and applying dynamic programming. Standard simulation
programs such as Monte Carlo methods are forward algorithms, however, meaning that
paths of state variables are simulated forward in time. The problem of using Monte
Carlo simulation for pricing American options lies in the fact that a forward algorithm
has to be applied to a problem that requires a backwards procedure to solve.

For a long time, Monte Carlo simulation methods were considered not to be able to
deal with the early exercise possibility of American options. Then, in 1993, Tilley
introduced a bundling algorithm which estimates the value of an American option on
a single asset. Although this method has several major drawbacks such as

- a lack of guarantee for convergence,

- extremely high computational costs and

- low flexibility,

the bundling algorithm proved that it was possible to evaluate American option prices
by applying simulation. Several simulation procedures which use different approaches
to the problem have been developed since then. We will introduce three different al-
gorithms here, including Tilley’s bundling algorithm as the first of them.

94 Chapter 7: American Options

The Bias Problem

For evaluating European options, we used the simulation approach of computing the
estimation

CE = E[e−rT max(ST −K, 0)]. (7.6)

The according problem for evaluating American type options would therefore be to
calculate

CA = max
τ≤T

E[e−rτ max(K − Sτ , 0)] (7.7)

over all stopping times τ ≤ T . Since we restrict ourselves to a few discrete possible
exercise dates, this equality can also be written as

CA = max
τi

E[e−rτ max(K − Sτ , 0)], (7.8)

with τi defined as in Equation (7.1).
Analogously to the European scenario, the simulation procedure would be to simulate
M asset price paths Sj

τi
, i = 0, ..., Γ, j = 1, ..., M as basis for computing M discounted

option values V j which can then be averaged over in order to derive the approximation
of the true option value. The problem hereby lies in the question of how to calculate
the discounted option value. The optimal exercise date τ ∗ needs to be determined
via simulation. A naive approach would be to do this for each asset price path by
calculating

CA = max
τi

(e−rτ max(Sτ −K)). (7.9)

This path estimate uses perfect foresight, however, since it is based on a single simu-
lated asset price path only. Hence this procedure overestimates the option value as the
following inequality shows:

CA = max
τi

(e−rτ max(Sτ −K, 0)) ≥ e−rτ∗ max(Sτ∗−K , 0) (7.10)

Figure 7 illustrates this problem. The asset price path never crosses the optimal exer-
cise boundary, so according to the exercise strategy discussed above, the option should
not be exercised before maturity. This rule is based on an optimal but unknown strat-
egy. In contrast, if the asset price path is known in advance as it is the case in Equation
(7.9), we know that the optimal exercise date would be at τ5, which results in the high-
est possible profit that also exceeds the profit made by sticking to the optimal exercise
strategy. This shows that our approximation of the option value E[C] exceeds the true
option value Ĉ, which means that our estimator is biased high. Simulating many paths
may improve the situation, but since we are still working with information based on
averaged perfect foresight it does not remove this bias problem. It seems unlikely that

7.1 Tilley’s Bundling Algorithm 95

S

S

S

S

S

S

S

0S S 1

2

3

4

5

6

7

T

Simulated Asset Price Path

Optimal Exercise Region

t

S

K

Tt t t t t t t t0 1 2 3 4 5 6 7

it is possible to compute an unbiased simulation estimator when pricing American op-
tions via Monte Carlo methods. In fact, Broadie and Glasserman provided a proof for
this theorem in their paper [4].

Although it is not possible to find an unbiased estimator, a lot of methods have been
developed that try to cope with this problem, three of which we will introduce here.

7.1 Tilley’s Bundling Algorithm

As mentioned above, Tilley’s bundling algorithm was designed for pricing an Ameri-
can option on a single underlying asset. The procedure is based on stochastic dynamic
programming: A backwards induction is applied on bundles of asset price paths in
order to derive an estimate for the option’s holding value. This way, an estimate of
the option value at time τ − ∆τ can be obtained at time τ . Hence by starting at the
maturity date T and working backwards from there, an optimal exercise strategy can
be obtained. The algorithm works as follows:

Algorithm 7.1. Tilley’s bundling algorithm

Step 0 (initialize)
Simulate M asset price paths St(j) for t = 0, ..., T and j = 1, ..., M as we did for
European options.

96 Chapter 7: American Options

Beginning at the last possible early exercise date τ − ∆τ , repeat the following steps
for each time τi as defined in (7.1):
Step 1
Order the asset price paths in descending or ascending order according to the asset
price at time τ for a put or a call option respectively.

Divide the ordered price paths into Q bundles: The first P paths make up the first
bundle, the second P paths build the second bundle and so forth. Let Bτ (j) denote the
set of paths in the bundle which contains the path indexed with j at time τ .

Step 2
Compute the intrinsic value iτ (j) of the option for each path j

it(j) =

{
max((Sτ (j)−K), 0) for a call option,

max((K − Sτ (j)), 0) for a put option.
(7.11)

Step 3
Calculate the continuation value cτ (j) of the option:

cτ (j) =
e−r∆τ

P

∑

∀k∈Bτ (j)

Vτ+∆τ (k). (7.12)

Thereby Vτ (j) is defined later on in step 7 and VT (j) = iT (j)∀j.

Step 4
Define an indicator variable that decides whether to exercise or to hold the option for
each path j:

xt(j) =

{
1 if iτ (j) > cτ (j) exercise the option,

0 if iτ (j) ≤ cτ (j) hold the option.
(7.13)

Step 5
Find the sequence of 0s and 1s that starts with the first 1 and ends with the last 0 out
of all sequences {xτ (j) : j = 1, ...M}. Then determine the start of the first string of
1s which is longer than any of the following strings of 0s. The path index of the first 1

in that exercise-hold boundary is denoted k∗τ .

7.1 Tilley’s Bundling Algorithm 97

Step 6
Define a new exercise-or-hold indicator variable yτ (j) based on the just derived bound-
ary:

yτ (j) =

{
1 for k ≥ k∗τ exercise option,

0 for k < k∗τ hold option.
(7.14)

Step 7
Calculate the current value of the option Vτ (j) for each path j:

Vτ (j) =

{
iτ (j) if yτ (j) = 1,

cτ (j) if yτ (j) = 0.
(7.15)

Step 8
If τ = 0 go to Step 9,
otherwise let τ = τ −∆τ and go back to Step 1.

Step 9
Once the algorithm has arrived at time 0, let zτ (j) denote the exercise-or-hold indica-
tor variable:

zt(j) =

{
1 if yτ (j) = 1 and ys(j) = 0∀s < τ,

0 otherwise.
(7.16)

Step 10
Define the option estimator by

1

M

M∑
j=1

T∑
t=1

zτ (j)e
−rT iτ (j). (7.17)

Remark 7.2. There are only two possibilities for each path j,:

• zτ (j) = 0 for all τ : The option is never exercised.

• zτ∗(j) = 1 and zτ (j) = 0 for all τ 6= τ ∗: The option is exercised at time τ ∗

The accuracy of the estimator given by Equation (7.17) is influenced by two factors,
the number of bundles Q and the number of paths per bundle P . If the number of
simulated paths M and thus the computational costs stay constant, one has to find the
ideal combination of the inversely correlated parameters P and Q.

98 Chapter 7: American Options

Tilley’s approach is a single pass algorithm, meaning that all simulations are carried
out before the actual algorithm is applied. This results in one of the drawbacks men-
tioned above: the computational costs are very high. A high number of paths has
to be simulated in order to receive a satisfying result,it is therefore computationally
expensive to have to store all paths and sort all of them at each time step τ .

7.2 Bounded Recursive Stochastic Simulation (BRSS)

The second algorithm we want to introduce is a method that is based on the approach
first proposed in Grant et al [9]: a backward-recursive determination of the critical
exercise frontier. This is a straightforward and fast way of determining the optimal
early-exercise path and thus the option price of an American style call option. Muhoff,
Hirschauer and Palmer [19] applied some modifications to this approach and called
their method the Bounded Recursive Stochastic Simulation (BRSS). This is the method
we want to introduce here:

Algorithm 7.3. Bounded Recursive Stochastic Simulation

Step 1 Determination of the critical exercise value V ∗
T :

As in every backward-recursive valuation, the starting point of the algorithm is the
option value at expiry date T . Since we are at the last possible time of exercise, the
value of the option of that point equals value of the payoff function of the corresponding
European option:

V ∗
T = max(K − Si1...iT

T , 0) (7.18)

Once we know V ∗
T for time T , we can move backwards and calculate the option value

at earlier times T −∆τ, T − 2∆τ, ..., t0.

Step 2 Determination of the critical early-exercise value V ∗
T−j∆τ :

At each time period , the critical exercise value is the value of the option whose in-
trinsic value and continuation value are equal. Therefore, we have to compute the
continuation value cT−j∆τ (VT−j∆τ) via simulation of M asset price paths (Step 2.2)
and calculate the intrinsic value iT−j∆τ (VT−j∆τ), j = 1, ..., Γ (Step 2.3) each for a set
of N different test values for all periods τ = T −∆τ, T − 2∆τ, ...t0.

For j = 1, ...Γ do

7.2 Grant/ Sequential Dynamic Programming Algorithm 99

Step 2.1 Definition of test-values:

Generate an interval for the present period τ = T − j∆τ using the critical ex-
ercise value of the previous period V ∗

T−(j+1)∆τ as a lower bound and finding an
appropriate upper bound. Then divide the resulting interval into N − 1 subin-
tervals that are equally sized and sufficiently small for interpolation.

Simulation of asset price values can now be applied to all N endpoints nVτ

(n = 1, ..., N) of those subintervals. The value we are looking for is situated
between the first value for which the intrinsic value exceeds the continuation
value and its predecessor.

Step 2.2 Determination of continuation values for each test-value:

Generate M paths at each test value nVτ , starting at the at the lower bound
1Vτ = V ∗

τ+∆τ . Thereby, the same sequence of random numbers is used, starting
at a different number for each starting point and thus reducing computational
effort significantly. In this manner, the continuation values m

n fτ , m = 1, ...,M

for all M paths can be calculated as the discounted payoff of the option:

m
n fτ = max(0,mn Vκ −K)e−r(κ−τ). (7.19)

with

κ =

τ + ∆τ if m
n Vτ+∆τ ≥ V ∗

τ+∆τ ,

τ + 2∆τ if (m
n Vτ+2∆τ ≥ V ∗

τ+2∆τ) ∧ (s
nVτ+∆τ < V ∗

τ+∆τ)

.

.

T otherwise.

(7.20)

The estimator for the continuation value nfτ is then derived as the mean over all
m
n fτ :

nfτ =
1

M

M∑
s=1

m
n fτ (7.21)

Step 2.3 Calculation of intrinsic values for each test-value:

The intrinsic value niτ which is needed for making the decision whether to hold
or exercise the option at time τ is given by the now well-known payoff function

niτ = max(0,n Vτ −K). (7.22)

100 Chapter 7: American Options

Step 2.4 Approximation of the critical early-exercise value:

The two test-values between which a change in the sign of the difference of con-
tinuation value and intrinsic value can be noticed form the new interval within
which the critical early-exercise value is situated. This value can be derived via
linear interpolation using the intrinsic values (n′iτ and n′′iτ) and continuation
values (n′cτ and n′′cτ), where n′ and n′′ denote the respective test-values:

V ∗
τ =n′′ Vτ +

N ′Vτ −n′′ Vτ

(n′iτ −n′ cτ)− (n′′iτ −n′′ cτ)
[− (n′′iτ −n′′ cτ)] (7.23)

Step 3 Control Step:

If the interval we chose in step 2.1 does not contain a test value whose intrinsic value
exceeds the corresponding continuation value, step 2.4 can not be carried out and thus
the upper bound of the initial interval has to be extended before steps 2.2 to 2.4 are
initiated again.
In case the critical exercise value has already been situated in our initial interval, the
approximation described in Step 2 can now be improved by reducing the length of that
interval. This would also shorten the subintervals on which we interpolate in steps 2.2

to 2.4.

Step 4 Determination of the option value:

Once the optimal exercise strategy has been determined in the previous steps, standard
Monte Carlo simulation can now be applied to retrieve the option value at time t = 0.
The (early-)exercise date we derived in the previous steps can thereby be used as the
options maturity date.

Remark 7.4. The computational costs of the BRSS method are relatively small. If the
same sequence of random numbers is used for simulations, only Γ simulations and
ΓM simulation runs are needed for determining the early-exercise strategy. For the
last step of determining the option value, another M simulation runs are needed, so
all in all the method requires a number of simulation runs of (Γ + 1)M .

Remark 7.5. As stated in the introduction of the BRSS method there is one big advan-
tage in comparison to Tilley’s method, multiple stochastic variables such as stochastic
volatility can be modelled with this approach. Extending the algorithm for such multi-
ple stochastic variables is rather complicated, however. At each time period, we have
to determine critical combinations of values that follow different stochastic processes,
which turns our early-exercise strategy into a multi-dimensional problem over time.

7.3 Broadie and Glasserman algorithm 101

S0

S

S S

S

1

1

1

1

2

3

S

S

S

S

S

S

S
S

S

11

12

13

21

22

23

31

32

33

T

T

T

T

T

T

T

T

T

7.3 Broadie and Glasserman algorithm

As mentioned before, Broadie and Glasserman’s approach makes use of two estimators
in order to overcome the bias problem: one which is biased low and one which is biased
high. However, both of them are consistent, that is they converge to the true price,
and asymptotically unbiased for a sufficient high number of simulation runs. A point
estimate and a conservative confidence interval can then be obtained out of those two.
The procedure of deriving the estimators is based on simulated random trees rather
than sample paths. The branching parameter b represents the number of branches at
each node. Starting at S0, at each node b independent asset price values are computed
according to a Geometric Brownian Motion as it was the case with European options.
Thereby, the value at each node is derived from the asset price value of the previous
node. Thus the random tree can be seen as the array

{Sij ...iτ
τ : τ = 0, 1, ..., T ; ij = 1, ..., b; j = 1, ..., τ}, (7.24)

as depicted in Figure 7.3:
Each sequence of asset price values S0, S

i1
1 , Si1i2

2 , ..., Si1...iT
T is a realization of the

Markov chain {Sτ : τ = 0, 1, ..., T}. Therefore, two sequences evolve independently
of each other once they differ in some iτ .
Note that unlike lattice methods, the values of the nodes in the tree are not ordered but
appear in the order they were computed.

Example 7.6. An illustration of such a tree for b = 3 is given in Figure 7.1. The
indices indicate the development of the asset prices. S11

T , S12
T and S13

T are all derived
from S1

1 and thus depend on it. At the same time they are completely independent of
S2

1 , which was used for deriving the asset prices S21
T , S22

T and S23
T which are in return

not dependent on S1
1 .

We will now discuss the two estimators for an American call option:

102 Chapter 7: American Options

127

60

125

100

83

89

112

48

59

75

89

147

127

Figure 7.1: Simulated tree for b = 3

The high estimator Θ

Our first estimator is defined by a dynamic programming algorithm applied to the sim-
ulated tree described above. Starting at the expiry date where the option value is equal
to its European counterpart, i.e. its payoff h, the value at each prior time is computed
as the maximum of the immediate exercise value or intrinsic value given in Equation
(7.2) and the discounted expected option values of the succeeding node, also called
continuation value given by Equation (7.3). Working backwards this way we obtain
the high estimator Θ at the initial node.

Example 7.7. A numerical example is depicted in Figure 7.2 below. The parameters
are S0 = 100, K = 90, T = 1 and r = 0. The choice of a risk-free interest rate equal
to zero is made for simplicity reasons because this makes discounting unnecessary.
The high estimator for the American call option in this example is Θ = 24.

24

37

0

35
0

0

22

0

0

0

0

57

37

Figure 7.2: The high estimator Θ

7.3 Broadie and Glasserman algorithm 103

The mathematical recursive definition of the high estimator Θ is given by

Θi1...iT
T = max(Si1...iT

T −K, 0) = (7.25)

= iT (Si1...iT
T)

Θi1...iτ
τ = max

{
max(Si1...iτ

τ −K, 0),
1

b

b∑
j=1

e−rh(Θ
i1...iτ)j

τ+1

}
(7.26)

= max

{
iτ (S

i1...iτ
τ),

1

b

b∑
j=1

e−rh(Θ
i1...iτ)j

τ+1

}

for τ = 0, ..., T − 1.

Since Θ gives an estimate of the true option value that is biased high, i.e. E[Θ] ≥ PA,
it is called the high estimator. A proof for Θ being biased upwards will be given later
on, but we first want to clarify the this fact by intuitive reasoning:
No simulated tree can perfectly reflect the distribution of asset prices. At some nodes
the asset prices are too high, and the dynamic programming is likely to decide to hold
the call option and thus work with a higher value than the one obtained by the true
optimal decision to exercise. Likewise, asset prices are too low at other nodes, which
might cause the algorithm to declare it best to exercise at a high profit while the true
optimal decision would have been to hold the option.
Either way, the dynamic programming algorithm takes advantage of knowledge of the
future to overestimate the option value.

Theorem 7.8. [High estimator bias]
The high estimator Θ is biased high, i.e.

E[Θ0(b)] ≥ V0(S0) (7.27)

for all b.

Proof. It is to show that E[Θτ |Sτ] ≥ Vτ (Sτ) for τ = 0, 1, ..., T . We will do that by
backwards induction. It follows from the definition of ΘT = VT (ST) that E[ΘT |ST] ≥
VT (ST). Our induction hypothesis is E[Θτ+1|Sτ+1] ≥ Vτ+1(Sτ+1). Using Jensen’s
Inequality (3.15) and the definition of Θtau given in Equation (7.26), we get

E[Θτ |Sτ] = max{iτ (Sτ), E[e−r∆τΘτ+1|Sτ+1]} =

= max{iτ (Sτ , E[e−r∆τE[Θτ+1|Sτ+1]|Sτ]} ≥
≥ max{iτ (Sτ , E[e−r∆τcτ+1(Sτ+1|Sτ]} =

= max{iτ (Sτ), cτ (Sτ)}.

104 Chapter 7: American Options

The low estimator θ

In order to overcome the bias problem, Broadie and Glasserman’s algorithm uses a low
biased estimator in addition to the high biased one. Its calculation is based on the idea
of separating the branches at each node in two sets. One is used to decide whether or
not to exercise, and in case the option is being held, the other one works as the basis
for the estimate of the continuation value.

Example 7.9. We continue Example 7.7 and use the same parameters and asset price
tree (as depicted in Figure 7.1) for deriving a low estimator. The results can be seen in
Figure 7.3. At each node the upper branch delivers the continuation value if necessary,
and the two bottom branches are used for determining the exercise decision. At time
τ2 = T the node values equal those of the high estimator. Let us now take a look at time
τ1. At the top node the decision to exercise the option is reached since the immediate
exercise value max(0, 125−90) = 35 exceeds the continuation value 0.5(0+22) = 11.
The value assigned to this node is 35. A different scenario can be observed at the
bottom node. Here the immediate exercise value max(0, 127− 90) = 37 is lower than
the continuation value 0.5(57 + 37) = 47, therefore the exercise decision is delayed
until the next possible exercise date. The value assigned to the node is then derived
from the upper branch of this node whole value equals zero, so the node value of 0 is
in fact lower than the immediate exercise value of 37. Continuing this calculation for
the rest of the tree leads to a low estimate of the American call of 10.

As the example shows, using only one branch for estimating the continuation value
can be quite inaccurate. Therefore it seems reasonable to apply a slight modification
to the process of evaluating the low estimator at each node. Instead of just using one
branch to determine the continuation value, each of the b branches is taken in turn for
that task and finally the b values obtained by that procedure are averaged and thus the
estimate of the option value of the node is obtained.

Example 7.10. We now apply this modification to our example. A depiction of the
results is given in Figure 7.4. The calculation of the bottom node value at time τ1

includes all possible scenarios, which is why we will concentrate on that node here.

- Branch 1 is used to determine the continuation value
We already treated this case in the example for the simple version of the low
estimator. The decision is reached to continue but the value assigned to the node
is 0.

- Branch 2 is used to determine the continuation value
Here the optimal strategy is to exercise as the immediate exercise value max(0, 127−
90) = 37 exceeds the’continuation value’ 0.5(0 + 37) = 18.5. The value as-
signed to the node thus is 37.

7.3 Broadie and Glasserman algorithm 105

- Branch 3 is used to determine the continuation value
Again it is better exercise because the ’continuation value’ of 0.5(0+57) = 28.5

is not as high as the immediate exercise value of 37. The value assigned to the
node is thus 37.

Therefore, the final averaged value assigned to the node is 24.7. Proceeding in an
analogous way for the remaining nodes, we see that the low estimator for this Ameri-
can type option price problem is θ = 19.9.

10

35

0

0

0

0

22

0

0

0

0

57

37

Figure 7.3: The simple low estimate

0

0

22

0

0

0

0

57

37

35

0

24.7

19.9

Figure 7.4: The low estimator θ

The formal definition of the low estimator is given as follows:

θi1...iT
T = max(K − Si1...iT

T , 0) (7.28)

for the terminal nodes and

θi1...it
t =

1

b

b∑
j=1

(ηi1...it
t)j for t = 0, ..., T − 1. (7.29)

106 Chapter 7: American Options

Thereby η is defined as

(
ηi1...it

t

)j
=

max(K − Si1...it
t , 0) if max(K − Si1...iT

T , 0) ≥ 1
b

b∑
i=1,i6=j

e−rh(θi1...it
t+1)j,

e−rh(θi1...it
t+1)j else,

(7.30)
for j = 1, ..., b. Before a proof for the negative bias of θ is given, we want to give
an intuitively reasoning again first. Take a look at the option when it is just about to
expire. Here at the maturity date, the exercise decision is based on totally unbiased in-
formation. If the correct decision would be induced by this information, the estimator
would not be biased. But the probability of arriving at a suboptimal decision based on
a finite sample is positive. If this happens, the node value will be an unbiased estimate
of the lower value associated with the suboptimal decision. This leads to the expected
node value being a weighted average of an unbiased estimate based on the optimal
decision and an estimate which is biased low because it is based on a suboptimal deci-
sion. Hence on the whole the bias is low.

Theorem 7.11. [Low-estimator bias]
The bias of the low estimator is negative, i.e.

E[θ0(b)] ≤ V0(S0) (7.31)

for all b.

Proof. Again, we use backwards induction to prove the bias theorem. The definition of
the low estimator θT = VT (ST) (Equation (7.28)) indicates that E[θT |ST] ≤ VT (ST).
The induction hypothesis is E[θτ+1|Sτ+1] ≤ cτ+1(Sτ+1).
It follows from the definition of θτ in (7.29) that E[θτ |Sτ] = E[ηj

τ |Sτ] for any j =

1, ..., b. Let us define

Y j
τ (b) =

1

b− 1

b∑

i=1,i6=j

e−r∆τθi
τ+1. (7.32)

Since Y j
τ is conditionally independent of θτ+1 given Sτ , we get

E[ηj
τ |Sτ] = E[iτ (Sτ)I{iτ (Sτ)≥Y j

τ+1}|Sτ] + E[e−r∆τθj
τ+1I{iτ (Sτ)<Y j

τ+1}|Sτ] =

= iτ (SτP [iτ (Sτ) ≥ Y j
τ+1|Sτ]) + E[e−r∆τθj

τ+1|Sτ]P [iτ (Sτ) < Y j
τ+1|Sτ] =

= iτ (Sτ)p + E[e−r∆τθj
τ+1|Sτ](1− p).

At the same time

E[θτ |Sτ] = iτ (Sτ)p + E[e−r∆τE[θj
τ+1|Sτ+1]|Sτ](1− p) ≤

≤ iτ (Sτ)p + E[e−r∆τV (Sτ+1)|Sτ](1− p) =

= iτ (Sτ)p + cτ (Sτ (1− p)) ≤
≤ max{iτ (Sτ), cτ (Sτ)} = Vτ (Sτ).

7.3 Broadie and Glasserman algorithm 107

Remark 7.12. It is possible to generalize the definition of the low estimator. Instead of
using only one branch for determining the continuation value in each iteration of the
loop, implement b1 branches to support the exercise decision and b2 = b− b1 branches
for evaluating the resulting payoff. These alternative estimators are also consistent
and biased low.

Theorems 7.8 and 7.11 showed that the two estimators are indeed biased high and
low respectively. This means that the respective expectations are above or below the
true value. Theoretically it is still possible for the low estimator to exceed the high
estimator. The following theorem shows that this is not the case, however:

Theorem 7.13. For every realization of the array {Sij ...iτ
τ : τ = 0, 1, ..., Γ; ij =

1, ..., b; j = 1, ..., τ}, the high estimator is equal to or higher than the low estima-
tor:

Θij ...iτ
τ ≥ θij ...iτ

τ (7.33)

for all ij...iτ and all τ = 0, 1, ..., T w.p.1.

Proof. Again we use backwards induction starting at θT = ΘT = VT (ST). The in-
duction hypothesis is θ − τ + 1j ≤ Θ − τ + 1j, j = 1, ..., b. Let Y j

t be defined as in
Equation (7.32). In case all Y 1

τ , ..., Y b
τ are less or equal to the intrinsic value iτ (Sτ ,

ηj
τ = iτ (Sτ), j = 1, ..., b, and thus θτ = iτ (Sτ) ≤ Θτ . Let us now consider the more

complicated case of at least one Y j
τ being greater than iτ (Sτ). Then

θj
τ = 1

b

b∑
j=1

ηj
τ = 1

b

b∑
j=1

(iτ (Sτ))I{iτ (Sτ)≥Y j
τ } + e−r∆τθj

τ+1I{iτ (Sτ)≥Y j
τ }

=

(
1
b

b∑
j=1

I{iτ (Sτ)≥Y j
τ }

)
iτ (Sτ) +

(
(1

b

b∑
j=1

I{iτ (Sτ)<Y j
τ }

) bP
j=1

e−r∆τ θj
τ+1I{iτ (Sτ)<Y

j
τ }

bP
j=1

I{iτ (Sτ)<Y
j
τ }

phτ (Sτ) + (1− p)

bP
j=1

e−r∆τ θj
τ+1I{iτ (Sτ)<Y

j
τ }

bP
j=1

I{iτ (Sτ)<Y
j
τ }

.(7.34)

Without loss of generality let us now suppose that Y 1
τ , ..., Y k

τ are greater than iτ (Sτ)

and Y k+1
τ , ..., Y b

τ are equal to or less than iτ (Sτ). Then the ratio in Equation (7.34)

equals k−1
k∑

j=1

e−r∆τθj
τ+1. For any i ≤ k < j ≤ b, the inequality Y i

τ > Y j
τ holds and

we have e−r∆τθi
τ+1 ≤ e−r∆τθj

τ+1. Therefore,

max{e−r∆τθ1
τ+1, ..., e

−r∆τθk
τ+1} ≤ min{e−r∆τθk+1

τ+1, ..., e
−r∆τθk+1

τ+1}.

108 Chapter 7: American Options

This implies
1

k

k∑
i=1

e−r∆τθi
τ+1 ≤

1

k

b∑
i=1

e−r∆τθi
τ+1.

Applying this to (7.34), we get

1
b

b∑
j=1

ηj
τ = piτ (Sτ) + (1− p) 1

k

k∑
j=1

e−r∆τθj
τ+1

≤ piτ (Sτ) + (1− p)1
b

b∑
j=1

e−r∆τθj
τ+1,

≤ piτ (Sτ) + (1− p)1
b

b∑
i=1

e−r∆τΘj
τ+1

≤ max

{
iτ (Sτ),

1
b

b∑
i=1

e−r∆τΘi
τ+1

}
= Θτ .

Remark 7.14. A proof for the consistency of both the high and the low estimator can
be found in M. Broadie and P. Glasserman’s paper [4].

Numerical results

In contrast to Tilley’s bundling algorithm where all asset price paths have to be stored
at all times, the storage requirements of Broadie and Glasserman’s method are quite
low. The algorithm works depth first, meaning that we work branch for branch starting
at the terminal nodes until we get to the initial node.
This way, we do not have to compute the whole tree of asset price values all at once.
Only the values that are needed for calculating the present nodes estimator value have
to be stored. This leads to a total storage cost for the method of O(nbd).

Although this is a huge improvement in comparison to Tilley’s method, the main draw-
back in Broadie and Glasserman’s approach also lies in the computational costs. Since
they rise exponentially with the number of possible exercise times, d cannot be chosen
to be too large.

Remark 7.15. Broadie and Glasserman tested their method for different types of
American options but all for d = 4, i.e. for four possible exercise dates.

We want to present results for d = 3 here. Let us begin with a starting value of the
underlying asset of S0 = 80. The other parameters are the same as in the example
of the European option: K = 100, r = 0.07, σ = 0.3 and T = 1. As mentioned
before, we will take a look at the American Call option on a non-dividend paying
asset first because this allows us to use the European counterpart as a control value,

7.3 Broadie and Glasserman algorithm 109

which is why we set δ = 0. The Black-Scholes value for those parameters is given by
Vexakt = 5.0126. As Table 7.1 shows, the relative error decreases significantly with
higher values for the branching parameter b as well as for more simulation runs n:

b n θ Θ 90% confidence V rel error
interval

10 50 5.2170 5.6653 [4.4736, 6.4528] 5.4412 8.55%

10 100 5.0295 5.4619 [4.5314, 5.9827] 5.2457 4.65%

10 200 4.9189 5.2973 [4.5975, 5.6311] 5.1081 1.91%

25 50 5.2133 5.3645 [4.8322, 5.7584] 5.2889 5.51%

25 100 4.9107 5.0600 [4.6288, 5.3518] 4.9854 0.43%

25 200 4.9327 5.0592 [4.7024, 5.2973] 4.9959 0.33%

50 50 5.1644 5.2039 [4.8082, 5.5629] 5.1842 3.42%

50 100 5.0182 5.0607 [4.8034, 5.2762] 5.0394 0.53%

50 200 5.0052 5.0443 [4.8462, 5.2040] 5.0248 0.24%

Table 7.1: AO without dividends for S0 = 80

The Figures 7.5, 7.6 and 7.7 show, not only the accuracy of the approximation increases
with rising branching parameter b, but the width of the confidence interval decreases
as well which can be seen in Figure 7.8 below.
As we already saw in the case of European options, the accuracy of the simulation is
not independent of the starting value of the underlying asset. This is why we repeated
the simulation runs for S0 = 100 while all the other parameters stay the same. The
Black Scholes value for this scenario is given by Vexakt = 15.2105:

b n θ Θ 90% confidence V rel error
interval

10 50 15.73000 16.7306 [14.2925, 18.2803] 16.2303 6.70%

10 100 15.2012 16.2143 [14.2383, 17.2360] 15.7077 3.27%

10 200 14.9091 15.9789 [14.2745, 16.6451] 15.4440 1.54%

25 50 15.5769 16.0186 [14.7772, 16.8355] 15.7978 3.86%

25 100 15.0026 15.4354 [14.3968, 16.0563] 15.2190 0.06%

25 200 14.9861 15.4278 [14.5273, 15.9014] 15.2070 0.02%

50 50 15.3149 15.5277 [14.6385, 16.2134] 15.4213 1.39%

50 100 15.1108 15.3055 [14.7003, 15.7257] 15.2102 0.002%

50 200 15.0761 15.2770 [14.7638, 15.5934] 15.1765 0.22%

Table 7.2: AO without dividends for S0 = 100

110 Chapter 7: American Options

0 20 40 60 80 100 120 140 160 180 200
3.5

4

4.5

5

5.5

6

6.5
b=10

number of simulations

op
tio

n
va

lu
e

Figure 7.5: Confidence interval for an American call with S0 = 80

(b=10)

The relative error here is on average smaller than in the case of an underlying asset
value at time t = 0 of S0 = 80. This leads to the educated guess that the accuracy of
the method is the better the closer the value of the underlying is to the strike price K

at the beginning S0. Let us check this guess by running the same simulation but this
time with S0 = 120. The Black-Scholes value is hereby given by Vexakt = 30.2829:

b n θ Θ 90% confidence V rel error
interval

10 50 29.7162 32.8286 [27.3096, 35.0200] 31.2724 3.27%

10 100 28.6130 32.0450 [26.9097, 33.5036] 30.3290 0.15%

10 200 28.3554 31.8528 [27.2010, 32.8116] 30.1041 0.59%

25 50 30.5389 31.6815 [29.2412, 32.8923] 31.1102 2.73%

25 100 29.8021 30.8786 [28.8782, 31.7946] 30.3403 0.19%

25 200 29.7889 30.8752 [29.1019, 31.5586] 30.3321 0.16%

50 50 30.1851 30.7731 [29.2145, 31.7703] 30.4791 0.65%

50 100 29.9505 30.5088 [29.3571, 31.1175] 30.2296 0.12%

50 200 29.9100 30.4708 [29.4527, 30.9378] 30.1904 0.31%

Table 7.3: AO without dividends for S0 = 120

7.3 Broadie and Glasserman algorithm 111

0 20 40 60 80 100 120 140 160 180 200
3.5

4

4.5

5

5.5

6

6.5
b=25

number of simulations

op
tio

n
va

lu
e

Figure 7.6: Confidence interval for an American call with S0 = 80

(b=25)

Table 7.3 does not support our guess, which is why we will run more simulations for
different start values of the underlying asset now:

S0 θ Θ confidence Point Black-Scholes rel error
interval estimate Value

70 2.1892 2.2149 [2.0622, 2.3429] 2.2021 2.1806 0.986%
80 5.0182 5.0607 [4.8034, 5.2762] 5.0394 5.0126 0.535%
90 9.3513 9.4450 [9.0439, 9.7582] 9.3982 9.3798 0.535%
100 15.1108 15.3055 [14.7003, 15.7257] 15.2102 15.2105 0.002%

110 22.0652 22.4241 [21.5546, 22.9407] 22.2447 22.2729 0.127%
120 29.9505 30.5088 [29.3571, 31.1175] 30.2296 30.1904 0.118%

130 38.4519 39.2943 [37.7333, 29.9862] 38.8731 38.9755 0.263%

Table 7.4: Comparison of different start values for S0

This shows that on average the relative error is getting smaller with rising values for
S0 at least up to a certain point. As the value of the underlying is situated further away
from the strike price K = 100, the quality of the approximation worsens again, but not
as much as it did on the left side of the strike price.
This can again be explained by the fact that with smaller control values the relative
error gets higher in comparison to the absolute error. Taking this into consideration,

112 Chapter 7: American Options

0 20 40 60 80 100 120 140 160 180 200
3.5

4

4.5

5

5.5

6

6.5
b=50

number of simulations

op
tio

n
va

lu
e

Figure 7.7: Confidence interval for an American call with S0 = 80

(b=50)

we see that the accuracy of the method indeed gets better the closer K is to S0.
We now evaluate an American Call with the same parameters as in the example above
but this time with a continuous dividend rate of δ = 0.1.

Remark 7.16. As mentioned in Chapter 2, the value of an American call option differs
from its European counterpart in case dividends are paid. This is why we do not have
a control value in form of the European option anymore.

7.4 Comparison of methods

To conclude this chapter, we want to compare the methods we introduced here. While
the three algorithms are simulation methods for pricing American type options they all
use different approaches for solving the problem. Consequently each method has its
own characteristic features some of which we want to discuss here.

General approach:

- Tilley’s bundling algorithm is a single pass method based on sorting a large
number of previously simulated asset price paths at each possible exercise date.

7.4 Comparison of methods 113

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

n

re
l e

rr
or

Figure 7.8: Relative error of the BRSS Method for an American call
with S0 = 80

S0 n θ Θ 90% confidence V

interval
80 50 2.8435 2.9181 [2.5976, 3.1745] 2.8808

80 100 2.7307 2.8057 [2.5855, 2.9581] 2.7682

80 200 2.7289 2.8027 [2.6196, 2.9150] 2.7658

100 50 9.9665 10.2934 [9.4292, 10.8472] 10.1299

100 100 9.7664 10.0948 [9.4429, 10.4289] 9.9306

100 200 9.7696 10.0798 [9.5260, 10.3330] 9.9247

120 50 21.9226 23.1255 [20.9341, 23.9062] 22.5240

120 100 21.2130 22.7857 [20.4715, 23.2702] 21.9994

120 200 21.4758 22.8452 [20.9727, 23.1998] 22.1605

Table 7.5: Values for an American type call option with a continuous dividend rate

Proceeding backwards from the expiry date of the option an early exercise strat-
egy is obtained by averaging over the continuation values of the prices in each
bundle.

- The BRSS approach works with sequential stochastic simulation of asset price
paths. Moving backward from the expiry date multiple asset price paths are sim-

114 Chapter 7: American Options

ulated starting at different test values. Linear interpolation between the two test
values that form the boundary of the interval in which the sign of the difference
of intrinsic value and continuation value changes then leads to the critical early
exercise value. Finally simple Monte Carlo simulation can be applied as in the
case of evaluating European options, using the early exercise date as expiry date
of the option.

- Broadie and Glasserman’s algorithm computes two estimators that are both based
on a simulated tree of asset prices. The high estimator is obtained by applying a
dynamic programming algorithm to the asset price tree. This algorithm is then
slightly modified for computing the low estimator. Only a certain amount of
branches is used here to determine the exercise decision, the other ones deliver
the continuation value if necessary. This process is repeated for a large number
of trees order to obtain a point estimate and a confidence interval for the option
value.

Bias:
As already mentioned earlier, it can be shown that an unbiased estimator of the value
of an American option does not exist. We are therefore interested in the ways the
different algorithms deal with this problem:

- Tilley’s estimator is biased high since the algorithm uses the same asset price
paths for the exercise policy and the option value.

- According to Boyle et al [2] the estimator computed by the BRSS method tends
to be biased low. The reason for this can be seen in the fact that the procedure
applies simple Monte Carlo simulation to a suboptimal approximation of the
optimal exercise date previously obtained by using repeated simulation runs.

- Broadie and Glasserman’s algorithm works with two estimators one of which is
biased low while the other one is biased high. Since they are both asymptotically
unbiased for a high enough number of simulations, a way of solving the bias
problem is obtained.

Computational costs:

- Tilley’s bundling algorithm requires all asset paths to be stored at all times. In
addition to that the paths have to be sorted in each time step. Since the number
of simulated price paths has to be large in order to obtain a satisfactory level of
accuracy this results in very high storage and sorting costs.

- Since the BRSS-procedure re-uses one random number sequence by starting at
a different number of the same sequence for each simulation of asset price paths
the actual Monte Carlo simulation only has to be carried out once. Therefore

7.4 Comparison of methods 115

only Γ simulations and ΓS simulation runs are needed to determine the early-
exercise strategy.

- The asset price tree Broadie and Glasserman’s method is based on can be ex-
plored depth-first, which means that it is possible to wait with computing asset
prices until they are actually needed for calculation. This feature leads to mini-
mal storage requirements of only O(bd).

Also, the computational costs of the method (O(nbd)) are quite low for a small
number of possible exercise dates.

Different ways in which the asset price dynamics are simulated:

- The bundling algorithm is based on simulated asset price paths which all have to
be computed at the beginning of the algorithm.

- The BRSS approach also uses asset price paths. They do not all have to be
computed at the beginning of the algorithm, however.

- Broadie and Glasserman’s algorithm works with asset price trees which are ex-
plored depths first, meaning that only the values that are necessary for current
calculations have to be calculated and stored.

116 Chapter 7: American Options

Chapter 8

Summary and Conclusions

The objective of this thesis was the evaluation of financial options by Monte Carlo
simulation methods. Thereby, we distinguished two cases of options, European and
American style ones. In the case of evaluating simple path-independent European type
options, the Monte Carlo simulation approach is straightforward and can be summa-
rized as follows:

- Generate a sequence of uniform pseudo-random or quasi-random numbers that
can then be used as input for either an inversion or transformation algorithm in
order to get standard normal numbers as discussed in Chapter 5.

- Compute the respective solutions of the SDEs based on those random numbers
that simulate the asset price movement according to Chapter 4.

- Use the Law of Large Numbers (Chapter 3) to approximate the expectation of
the option value at expiry by averaging over all sample solutions.

- Discount that expectation in order to derive an approximation of the true option
value.

Thereby, variance reduction methods such as antithetic variates can be used to improve
the accuracy of the method quite efficiently if the original value and the antithetic
variate are negatively correlated as could be seen in Chapter 6.
For a discussion of other methods of variance reduction such as control variates, mo-
ment matching methods or importance sampling we refer to [2].

We also saw in Chapter 6 that Quasi-Monte-Carlo methods outperform regular Monte
Carlo simulation approaches by a large degree. Using the same amount of low dis-
crepancy samples as pseudo-random numbers, the accuracy improves significantly.
Accordingly the number of samples and with it the computing time needed to achieve

117

118 Chapter 8: Conclusions

the same level of accuracy can be reduced radically by working with numbers of the
Halton sequence in the one dimensional case.
However, the application of low discrepancy sequences can be problematic in higher
dimensional cases. Other sequences superior to the Halton sequence have to be used
here to yield satisfactory results. This topic is extensively covered in [20] and [2].

If the option under consideration is American style, the different simulation methods
vary widely in their approaches for dealing with the early exercise feature and the
bias problem. Out of the many methods available we presented three here an put spe-
cial emphasis on Broadie and Glasserman’s method which avoids the bias problem
by working with two estimators that are asymptotically unbiased for a large enough
number of simulation runs. This procedure leads to both a fairly accurate point esti-
mate and a confidence interval in relatively short computing time for a small number
of exercise opportunities.
For a survey on the results yielded by the use of antithetic variates as well as the
application of the method to higher dimensional problems see [4].

Appendix A

Black-Scholes

In this chapter we show how Ito’s Lemma can be used for deriving the Black-Scholes
Equation, that is an equation for V that does not explicitly depend on Wt and its so-
lutions. We used this solution as a reference for the accuracy of the Monte Carlo
simulation in earlier chapters.

A.1 The Black Scholes Analysis
In the following, the assumptions we made in our Market Model in chapter 2 are still
valid. This means in particular that the price of the underlying asset follows the Geo-
metric Brownian Motion given in Equation (4.19).

Applying Ito’s Lemma to this SDE, we get

dV =

(
µS

∂V

∂S
+

∂V

∂t
+

1

2
σ2S2∂2V

∂S2

)
dt + σS

∂V

∂S
dW. (A.1)

In order to eliminate the stochastic parts in Equation (A.1), let us consider a portfolio
consisting of a short option with value V and ∆ units of the underlying asset with a
price of S each. Thereby ∆ is chosen in a way such that the portfolio is riskless. With
the value of this portfolio being

Π = −V + ∆S (A.2)

we see that the change in the value during one time-step is given by

dΠ = −dV + ∆dS. (A.3)

Note that ∆ is fixed during each time step, which is why the term d∆ is not necessary.
Using Equations (4.19) and (A.1) for the terms dS and dV respectively we get

dΠ = −
(

µS

(
∆− ∂V

∂S

)
+

∂V

∂t
+

1

2
σ2S2∂2V

∂S2

)
dt +

(
−∂V

∂S
+ ∆

)
σSdW. (A.4)

119

120 Chapter A: Appendix

Following the risk-neutral investment strategy, our goal will now be to hold exactly
as many units of the underlying asset as are needed to eliminate the stochastic risk in
Equation (A.4). Thus, for

∆ =
∂V

∂S
, (A.5)

the change in the value during one time-step in our portfolio is given by the determin-
istic differential equation

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂2V

∂S2

)
dt. (A.6)

Let us now take a look at another portfolio where the same amount of money was
invested in a sound bank at the risk-free interest rate r:

dΠ = rΠdt =

(
rV − rS

∂V

∂S

)
dt (A.7)

Recalling the no-arbitrage principle, the two portfolios given in Equations (A.6) and
(A.7) have to be equal, which leads to the standard partial differential equation

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (A.8)

also known as the Black-Scholes Equation.

A.2 Boundary and final conditions
Note that we have not yet specified what kind of option we are dealing with. There-
fore, the Black-Scholes Equation (A.8) applies to any option whose value follows a
sufficient smooth function V (S, t).
Since we eliminated the drift term, σ is the only parameter modeling the stochastic
behavior in the Black-Scholes Equation. Thus, except for σ, (A.8) is a standard partial
differential equation, and therefore has indefinite many solutions. Since we are only
interested in one, i.e. the true option value, we need to assign appropriate boundary
conditions to the problem which will lead to a unique solution. Fortunately in the case
of European options the final condition can be derived quite easily from the option
value at expiry date t = T .

Let us first consider the case of a European call option with expiry T and strike price
K. As we saw in Chapter 2, the value of the call at expiry is given by

C(S, T) = max(S −K, 0), (A.9)

A.3 The Black Scholes formulae 121

which is the final condition for the Black-Scholes Equation. Additionally we know
that the right to buy a worthless asset is worthless itself, thus

C(0, t) = 0. (A.10)

On the other hand, if the value of the underlying asset is very high, it becomes ex-
tremely likely for the option to be exercised, which leads to an approximate value of
the option of C(S, t) = Ke−r(T−t). However, for very large values of S, the strike
price K can be neglected, and we get

C(S, t) ∼ S as S →∞. (A.11)

The value of a European put option reacts in quite a different way to a high price of
the underlying asset. The higher it rises, the less likely it becomes for the put option
to be exercised, thus P (S, t) → 0 for S →∞.
In order to derive the value for S = 0, we use the put-call parity introduced in chapter
2:

P (0, t) =
(
C(S, t) + Ke−r(T−t) − S

) |S=0= Ke−r(T−t). (A.12)

To sum it up, we get the following boundary conditions

V (0, t) = 0, V (S, t) ∼ (S →∞) (A.13)

for a European call and

V (0, t) = Ke−r(T−t), V (S, t) → 0(S →∞) (A.14)

for a European put.

A.3 The Black-Scholes formulae
If we restrict ourselves to simple European options with non-stochastic interest rate and
volatility, it is possible to solve the Black-Scholes Equation (A.8) explicitly without the
need of numerical methods.

Theorem A.1. For a European Call the solution to the Black Scholes Equation (A.8)
with the Final Condition (A.9) and the boundary conditions (A.13) is given by

V (S, t) = SΦ(d− 1)−Ke−r(T−t)Φ(d2), S > 0, 0 ≤ t < T, (A.15)

where Φ is the standard deviation of the normal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−s2/2ds, x ∈ R, (A.16)

122 Chapter A: Appendix

and

d1 =
ln(S

K
) + (r + σ2

2
)(T − t)

σ
√

T − t
(A.17)

and

d2 =
ln S

K
+ (r − σ2

2
)(T − t)

σ
√

T − t
(A.18)

For a proof of this theorem we refer to M. Günther, A. Jüngel’s book [12], p 57.

Options on dividend-paying assets:

In Chapter 4 we learned that the price of a discrete time dividend-paying asset follows
the SDE

dS = σSdW + (µ−D0)Sdt (A.19)

Although the ’dt’ term is eliminated when deriving the Black-Scholes Formula, the
dividend-paying feature of the asset still has an effect on the value of the portfolio we
used for deriving the formula and thus influences the Black-Scholes Equation. The
change in value of our portfolio in one period of time is now given by

dΠ = dV −∆dS −D − 0S∆dt. (A.20)

Executing all steps for deriving the Black-Scholes formula that we used in the non-
dividend-paying case delivers

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 (A.21)

as the Black-Scholes Equation for dividend-paying assets.
For the European call option, the final condition remains the same, and so does the
boundary condition at S = 0. The only boundary condition that needs to be changed
is that at S → ∞. At this limit the option value equals that of the asset, but without
the additional income of the dividend, which leads to the boundary condition

C(S, t) ∼ Se−D0(T−t), as S →∞. (A.22)

Thus the value of the European call is given by

C(S, t) = e−D0(T−t)SN(d10)−Ke−r(T−t)N(d20), (A.23)

where

d10 =
log(S

K
) + (e−D0 + 1

2
σ2)(T − t)

σ
√

T − t
(A.24)

A.3 The Black Scholes formulae 123

and
d20 = d1 − σ

√
T − t. (A.25)

The corresponding solution for a European put option on a dividend-paying asset can
be derived using the put-call parity introduced in Chapter 2.
For further reading see [12], [23] and [25].

124 Chapter A: Appendix

Appendix B

The Euler-Maruyama algorithm

When dealing with more complex options or asset price models that are more compli-
cated than the one-dimensional geometric Brownian motion, it is not possible to solve
the SDE(s) describing the asset price movement via Ito’s Lemma anymore. This is
when numerical methods come into play.
In this section we want to introduce the Euler-Maruyama algorithm as presented in
[12]. It was used for modeling asset price paths on the right hand side of Figure 4.3
with the Matlab programm C.2.3 or in Example 6.14 when we dealt with a stochastic
volatility. For simplicity reasons, we will fall back on the simple case of dealing with
a one-dimensional Geometric Brownian Motion

dSt = rSt + σStdWt. (B.1)

Instead of solving this SDE with help of Ito’s Lemma, it can also be approximated by

∆St = rSt∆t + σSt∆Wt. (B.2)

Recalling that the Wiener process Wt is given by

W − t + ∆t = Wt + Z
√

∆t, (B.3)

where Z is a sample of a standard normal variable, the approximation B.2 can be
rewritten as

Si+1 − Si = ∆Si = rSi∆t + σSiZ
√

∆t. (B.4)

This is the basis of the Euler-Maruyama algorithm:

Algorithm B.1. Euler-Maruyama Algorithm

- Initialize the step size h (∆t), the number of steps n;
r, σ, S0;

- for i = 0 to n do
S(i + 1) = S(i)(1 + rh + σdWi)

125

126 Chapter B: Appendix

Appendix C

MATLAB codes

The following MATLAB codes are based on the algorithms listed in the books [12]
and [23] as well as in the paper [4].

C.1 MATLAB code for Random number Generators
In this section we list all algorithms for computing random numbers that were used
throughout the thesis.

C.1.1 Congruential

function [U] = congruential(N);

a = 1229; b = 1; m = 2048;

X(1) = 1;

for i = 2:N+1

X(i) = mod(a*X(i - 1)+b,m);

U(i-1) = X(i)/m;

end

C.1.2 Fibonacci

function [U] = fibonacci(M)

m = 2179;

X(1) = 1; X(2)=2; U(1) = X(1)/m; U(2) = X(2)/m;

127

128 Chapter C: Appendix

for i = 3:M

X(i) = mod(X(i-1)+X(i-2),m);

U(i) = X(i)/m;

end

C.1.3 Lagged Fibonacci

function [U] = fibolagged(M)

m=2048; nu=17; mu=5;

rand(’state’,3)

X = m*rand(1,max(nu,mu));

for i= max(mu, nu)+1:M+max(mu, nu)

X(i) = mod(X(i-mu)-X(i-nu),m);

U(i-max(mu, nu)) = X(i)/m;

end

C.1.4 Boxmuller

function [Z1] = multiboxmueller(M,U);

%generates M normally distributed numbers out of M uniformly

%distributed ones

%U picks the source for the uniformly distributed random numbers:

%U = 1: rand

%U = 2: congruential

%U = 3: lagged fibonacci

%U = 4: halton sequence with base 2 and 3

if U == 1

u = rand(1,M);

u2 = rand(1,M);

elseif U == 2

ConHelp = congruential(2*M);

u = ConHelp(1:M);

u2 = ConHelp(M+1:2*M);

elseif U == 3

FibHelp = fibolagged(2*M);

C.1 MATLAB codes 129

u = FibHelp(1:M);

u2 = FibHelp(M+1:2*M);

elseif U == 4

u= corput(M,2);

u2= corput(M,3);

end

Z1 = sqrt(-2*log(u)).*cos(2*pi*u2);

C.1.5 Moro

%Moro’s inversion algorithm for inverting the standard normal

%distribution function

function [Z1] = Moro(M,U);

a0 = 2.50662823884;

a1 = -18.61500062529;

a2 = 41.39119773534;

a3 = -25.44106049637;

b0 = -8.47351093090;

b1 = 23.08336743743;

b2 = -21.06224101826;

3 = 3.13082909833;

c0 = 0.3374754822726147;

c1 = 0.9761690190917186;

c2 = 0.1607979714918209;

c3 = 0.0276438810333863;

c4 = 0.0038405729373609;

c5 = 0.0003951896511919;

c6 = 0.0000321767881768;

c7 = 0.0000002888167364;

c8 = 0.0000003960315187;

%generates M normally distributed numbers out of M uniformly

%distributed ones

%U picks the source for the uniformly distributed random numbers:

130 Chapter C: Appendix

%U = 1: rand

%U = 2: congruential

%U = 3: lagged fibonacci

%U = 4: halton sequence with base 2

if U == 1

u = rand(1,M);

elseif U == 2

u = congruential(M);

elseif U == 3

u = fibolagged(M);

elseif U == 4

u = corput(M,2);

end

x = zeros(1,M); y = u - 0.5;

for i= 1:M

if abs(y(i)) < 0.42

%main

r(i) = y(i)ˆ2;

x(i) = y(i)* (((a3*r(i) + a2)*r(i) + a1)*r(i) +

a0)/((((b3*r(i) + b2)*r(i) + b1)*r(i) +b0)*r(i)+1);

elseif abs(y(i)) >= 0.42

%tails

r(i)= u(i);

if y(i) > 0

r(i) = 1 - u(i);

end

r(i) = log(-log(r(i)));

x(i) = c0 + r(i)*(c1 + r(i)*(c2 + r(i)*(c3 + r(i)*(c4 +

r(i)*(c5 + r(i)*(c6 + r(i)*(c7 + r(i)*c8)))))));

if y(i) < 0

x(i) = -x(i);

end

end

end

C.2 MATLAB codes 131

Z1 = x;

C.1.6 Halton sequence
function x = halton(N,b);

%computes the first N numbers of the halton sequence for base b

m = fix(log(N)/log(b)); % determining the highest power

D = []; n = 1:N;

for i = 0:m

d = mod(n,b);

n = (n-d)/b;

D = [D;d];

end

x = ((1/b).ˆ(1:(m+1)))*D;

C.2 MATLAB codes used in Chapters 4 and 6

C.2.1 Black Scholes
These programs provide us with the value Vexakt which is needed as a reference for
calculating the relative error:

European call (with discrete dividends)
function result = divcall (S,t,K,r, sigma, T,delta)

%computes the value of a European call with discrete dividends

d1 = (log(S/K) + (r-delta +0.5*sigmaˆ2)*(T-t))/(sigma*sqrt(T-t)); %log = ln

d2 = d1 - sigma*sqrt(T-t); n1 = 0.5*(1 + erf(d1/sqrt(2)));

n2 = 0.5*(1 + erf(d2/sqrt(2)));

result = S.*exp(-delta*(T-t)).*n1 - K*exp(-r*(T-t))*n2;

Remark C.1. In the case of an option on a non-dividend paying underlying δ can
simply be set to equal zero.

European put (with discrete dividends)
function result = divput (S,t,K,r, sigma, T, delta)

132 Chapter C: Appendix

d1 = (log(S/K) + (r-delta +0.5*sigmaˆ2)*(T-t))/(sigma*sqrt(T-t)); %log = ln

d2 = d1 - sigma*sqrt(T-t);

n1 = 0.5*(1 + erf(d1/sqrt(2)));

n2 = 0.5*(1+erf(d2/sqrt(2)));

result = K*exp(-r*(T-t))*(1-n2)-S.*exp(-delta*(T-t)).*(1-n1);

C.2.2 Wiener Process

This algorithm was used for computing the plot in figure (4.2):
n = 1000; % number of time steps
T = 1; %expiry date
h = T/n; %delta t
M = 3; %number of simulation runs or paths
W = zeros(n,M);

randn(’state’,24) Z = randn(n,M);

for i = 1:n
W(i+1,:) = W(i,:) + Z(i,:).*sqrt(h);

end

figure(1)
plot(W)
title(’different paths of a wiener process’)
xlabel(’time t’)
ylabel(’wiener process’)

C.2.3 Asset Price Movement

The plot for the right hand side of Figure 4.3 was computed with this program. It uses
the Euler-Maruyama discretization algorithm introduced in Appendix (B)
%plots M different asset price paths for n timesteps

n= 100; h =1/n; r=0.1; sigma = 0.4; M=3; S0= 100;

delta = 0;

S = zeros(n+1,M); randn(’state’,3) S(1,:) = S0;

dW = randn(n,M).*sqrt(h);

for i=1:n

S(i+1,:) = S(i,:).*(1+(r-delta)*h + sigma*dW(i,:));

end

figure(1)

PH = [1:1:n+1];

C.2 MATLAB codes 133

plot(PH,S)

title(’different asset price paths’)

xlabel(’time t’)

ylabel(’asset price’)

C.2.4 Monte Carlo simulation for evaluating a European call op-
tion

%LONG RUNNING TIME!!!

%Plots the relativ error in option price (in comparison to black-scholes)
%for the one dimensional stochastic process solved with Ito’s formula for
%regular MC, VR MC, QMC and VR QMC

randn(’state’,2) K = 100; r = 0.07; sigma = 0.3; delta = 0.1; T = 1;
S0 =120; n = 10; h = T/n;

M = 30000
%Simultaneous computation of ’Wiener Prozesses ’ for M paths:

HBM = multiboxmueller(M,4); %halton boxmuller quasi-random matrix
HM = moro(M,4); %halton moro quasi random matrix

dWI = sqrt(T) * randn(1,M); %
dWH = sqrt(T) * HBM; %boxmueller fr halton
dWM = sqrt(T) * HM; % moro fr halton

%simultaneous calculation of the asset price movement with Ito’s formula:
%SI = zeros(1,M);
SI(1,:) = S0 *exp(((r-delta) - 1/2 * sigmaˆ2)*T + sigma * dWI);

%simultaneous calculation of the asset price movement with Ito’s formula
%for QMC (Halton-Box_Muller):
SH(1,:) = S0 *exp(((r-delta) - 1/2 * sigmaˆ2)*T + sigma * dWH);

%simultaneous calculation of the asset price movement with Ito’s formula
%for QMC (Halton-moro):
SM(1,:) = S0*exp(((r-delta) - 1/2 * sigmaˆ2)*T + sigma * dWM);

%simultaneous calculation of the asset price movement with Ito’s formula
%for antitetic variates:
SIA(1,:) = S0 *exp(((r-delta) - 1/2 * sigmaˆ2)*T - sigma *
dWI(1,:));

%simultaneous calculation of the asset price movement with Ito’s formula
%% for QMC (Halton-Box_Muller) and antitetic variates:
SHA(1,:) = S0 *exp(((r-delta) - 1/2 * sigmaˆ2)*T - sigma *
dWH(1,:));

%simultaneous calculation of the asset price movement with Ito’s formula
%% for QMC (Halton-moro) and antitetic variates:
SMA(1,:) = S0 *exp(((r-delta) - 1/2 * sigmaˆ2)*T - sigma *
dWM(1,:));

%Simultaneous calculation of the payoff function (put):

134 Chapter C: Appendix

%payoffI = max(0, K-SI(1,:)); %Ito
%payoffIA = 0.5 * (max(0, K-SI(1,:)) + max(0, K-SIA(1,:))); %AV
%payoffH = max(0, K-SH(1,:)); %LD
%payoffHA = 0.5 * (max(0, K-SH(1,:)) + max(0, K-SHA(1,:))); %AV LD
%payoffM = max(0, K-SM(1,:)); %moro
%payoffMA = 0.5 * (max(0,K-SM(1,:)) + max(0,K-SMA(1,:))); %moro AV

%Simultaneous calculation of the payoff function (call):
payoffI = max(0, SI(1,:)-K); %Ito
payoffIA = 0.5 * (max(0, SI(1,:)-K) + max(0, SIA(1,:)-K)); %AV
payoffH = max(0, SH(1,:)-K); % LD boxmueller
payoffM = max(0, SM(1,:)-K); % LD moro
payoffHA = 0.5 * (max(0, SH(1,:)-K) + max(0, SHA(1,:)-K)); %AV LD boxmueller
payoffMA = 0.5 * (max(0, SM(1,:)-K) + max(0, SMA(1,:)-K)); %AV LD moro

%for i=1:M
%aM(:,1) = mean(payoffI); bM(:,1) =std(payoffI); %MC
%aMIA(:,1) = mean(payoffIA); bMIA(:,1) = std(payoffIA); %QMC
%aMH(:,1) = mean(payoffH); bMH(:,1) = std(payoffH); %AV
%aMM(:,1) = mean(payoffM); bMM(:,1) = std(payoffM); %AV QMC
%aMHA(:,1) = mean(payoffHA); bMA(:,1) = std(payoffHA); %moro
%aMMA(:,1) = mean(payoffMA); bMMA(:,1) = std(payoffMA); %moro AV

for i=1:M
%simultaneous calculation of the estimator for the option value
VI = exp(-r*T)*(cumsum(payoffI)./(1:M)); VI(M); VI2(1,:) =
exp(-r*T).*payoffI(1,:); value = VI(M); confl(1,i) =
mean(VI2(1,1:i)) - 1.96*std(VI2(1,1:i))./sqrt(i); confr(1,i) =
mean(VI2(1,1:i)) + 1.96*std(VI2(1,1:i))./sqrt(i);

VIA = exp(-r*T)*(cumsum(payoffIA)./(1:M)); VIA(M); VIA2(1,:) =
exp(-r*T).*payoffIA(1,:); valueAV = VIA(M); conflA(1,i) =
mean(VIA2(1,1:i)) - 1.96*std(VIA2(1,1:i))./sqrt(i); confrA(1,i) =
mean(VIA2(1,1:i)) + 1.96*std(VIA2(1,1:i))./sqrt(i);

VH = exp(-r*T)*(cumsum(payoffH)./(1:M)); VH(M); VH2(1,:)=
exp(-r*T).*payoffH(1,:); valueBM = VH(M); conflBM(1,i) =
mean(VH2(1,1:i)) - 1.96*std(VH2(1,1:i))./sqrt(i); confrBM(1,i) =
mean(VH2(1,1:i)) + 1.96*std(VH2(1,1:i))./sqrt(i);

VM = exp(-r*T)*(cumsum(payoffM)./(1:M)); VM(M); VM2 =
exp(-r*T).*payoffM(1,:); valueM = VM(M); conflM(1,i) =
mean(VM2(1,1:i)) - 1.96*std(VM2(1,1:i))./sqrt(i); confrM(1,i) =
mean(VM2(1,1:i)) + 1.96*std(VM2(1,1:i))./sqrt(i);

VHA = exp(-r*T)*(cumsum(payoffHA)./(1:M)); VHA(M); VHA2=
exp(-r*T).*payoffHA; valueBMA = VHA(M); conflBMA(1,i) =
mean(VHA2(1,1:i)) - 1.96*std(VHA2(1,1:i))./sqrt(i); confrBMA(1,i) =
mean(VHA2(1,1:i)) + 1.96*std(VHA2(1,1:i))./sqrt(i);

VMA = exp(-r*T)*(cumsum(payoffMA)./(1:M)); VMA(M); VMA2 =
exp(-r*T).*payoffMA; valueMA = VMA(M); conflMA(1,i) =
mean(VMA2(1,1:i)) - 1.96*std(VMA2(1,1:i))./sqrt(i); confrMA(1,i) =
mean(VMA2(1,1:i)) + 1.96*std(VMA2(1,1:i))./sqrt(i); end

%Plot1: the reltiv error in option value (in comparison to Black-Scholes)
%Vexakt = divput (S0,0,K,r,sigma,T,delta); %The Black-Scholes value for a European put
Vexakt = divcall (S0,0,K,r,sigma,T,delta); %The Black-Scholes value for a European call

C.2 MATLAB codes 135

figure(1) hold on
%axis([0,M+2000,9,12])%100
axis([0,M+2000,2,4])%80
plot(VI,’b’) plot(Vexakt.*ones(1,M),’k’) plot(confl,’c’)
plot(confr,’m’) title(’Monte Carlo simulation’) xlabel(’number of
simulations’) ylabel(’option value’) hold off

figure(2) hold on
%axis([0,M+2000,9,11])%100
axis([0,M+2000,2.3,4])%80
plot(VIA,’b’) plot(Vexakt.*ones(1,M),’k’) plot(conflA,’c’)
plot(confrA,’m’) title(’Monte Carlo simulation with AV’)
xlabel(’number of simulations’) ylabel(’option value’) hold off

figure(3) hold on
%axis([0,M+2000,9,11])%100
axis([0,M+2000,2.3,4])%80
plot(VH,’b’) plot(Vexakt.*ones(1,M),’k’) plot(conflBM,’c’)
plot(confrBM,’m’) title(’Quasi Monte Carlo simulation (Boxmuller)’)
xlabel(’number of simulations’) ylabel(’option value’) hold off

figure(4) hold on
%axis([0,M+2000,9,11])%100
axis([0,M+2000,1.8,3.5])%80
plot(VM,’b’) plot(Vexakt.*ones(1,M),’k’) plot(conflM,’c’)
plot(confrM,’m’) title(’Quasi Monte Carlo simulation (Moro)’)
xlabel(’number of simulations’) ylabel(’option value’) hold off

figure(5) hold on
%axis([0,M+2000,9,11])%100
axis([0,M+2000,2.3,4])%80
plot(VHA,’b’) plot(Vexakt.*ones(1,M),’k’) plot(conflBMA,’c’)
plot(confrBMA,’m’) title(’Quasi Monte Carlo simulation (Boxmuller)
with AV’) xlabel(’number of simulations’) ylabel(’option value’)
hold off

figure(6) hold on
%axis([0,M+2000,9,11])%100
axis([0,M+2000,2.3,4])%80
plot(VMA,’b’) plot(Vexakt.*ones(1,M),’k’) plot(conflMA,’c’)
plot(confrMA,’m’) title(’Quasi Monte Carlo simulation (Moro) with
AV’) xlabel(’number of simulations’) ylabel(’option value’) hold off

figure(7) hold on
plot(abs(VI-Vexakt*ones(1,M))/Vexakt,’c’)%normal
plot(abs(VIA-Vexakt*ones(1,M))/Vexakt,’m’)%AV
plot(abs(VH-Vexakt*ones(1,M))/Vexakt,’k’)%LD
%plot(abs(VM-Vexakt*ones(1,M))/Vexakt,’r’)%LD moro
plot(abs(VHA-Vexakt*ones(1,M))/Vexakt,’y’)%LD and AV
%plot(abs(VMA-Vexakt*ones(1,M))/Vexakt,’m’)%LD and AV moro
%axis([0,M+100,0,0.05])%100
axis([0,M+2000,0,0.2])%80

legend(’MC’, ’MC with AV’, ’QMC (boxmuller applied to the halton
sequence)’, ’QMC (boxmuller applied to the halton sequence) and AV’)
xlabel(’number of simulations’) ylabel(’relative error’)
title(’European call with dividends’)
%title(’European put’)
hold off

136 Chapter C: Appendix

figure(8) hold on
plot(abs(VH-Vexakt*ones(1,M))/Vexakt,’c’)%LD
plot(abs(VM-Vexakt*ones(1,M))/Vexakt,’m’)%LD moro
title(’comparison Boxmuller,Moro’) legend(’Boxmuller’,’Moro’)
%axis([0,M+1000,0,0.02])%100
axis([0,M+2000,0,0.02])%80
hold off

figure(9) hold on plot(abs(VHA-Vexakt*ones(1,M))/Vexakt,’c’)
plot(abs(VMA-Vexakt*ones(1,M))/Vexakt,’m’) title(’comparison AV
Boxmuller, AV Moro’) legend(’Boxmuller AV’,’Moro AV’)
axis([0,M+1000,0,0.005]) hold off

%Histogram fr haltonboxmueller
figure(16) hist(HBM, [-3.8:0.1:3.8]) title(’Boxmueller auf Halton’)

figure(17) hist(HM, [-3.8:0.1:3.8]) title(’moro auf halton’)

C.2.5 Stochastic volatility

The plots for the example of stochastic volatility resulting in a three dimensional
stochastic process were computed with this program. Again, we used the Euler-
Maruyama discretization algorithm introduced in Appendix (B) for approximating the
solution of the stochastic process.

%stochastic volatility

%Plots stochastic and mean volatility (figure1)

%Plots asset price movement with and without stochastc volatility (figure2)

%Option value with and without stochastic volatility (figure3)

randn(’state’,5)
K = 100; %exercise/strike price
r = 0.1; %risk free interest rate
delta = 0.07, %dividend rate
ssigma0 = 0.3; %stochastic volatility
sigma = 0.3; % fixed volatility for Black-Scholes Vergleich
msigma0 = 0.3; % mean volatility
delta = 0.1 %dividend rate
alpha = 0.3; beta = 10; T = 1;
S0 =120; %asset price at time t=0
n = 250; % number of steps
h = T/n; %delta t
M = 10000; %number of simulations

%Initialising the two Wiener Processes:
dW1 = sqrt(h) * randn(n,M); dW2 = sqrt(h) * randn(n,M);

%Simultaneous calculation of the asset price movement with stochastic
%volatility:

%Initialising:
S = zeros(n+1,M); %asset price movement

C.2 MATLAB codes 137

S(1,:) = S0;
ssigma = zeros(n+1,M); %stochastic volatility
ssigma(1,:) = ssigma0;
msigma = zeros(n+1,M); %averaged volatility
msigma(1,:) = msigma0;

%Euler-Maruyama for solving the tree-dimensional stochastic process:

for i= 1:n
S(i+1,:) = S(i,:).*(1 + (r-delta).*h + ssigma(i,:).* dW1(i,:));

ssigma(i+1,:) = h .* msigma(i,:) + ssigma(i,:).*(1 - h + alpha.* dW2(i,:));

msigma(i+1,:) = h .* ssigma(i,:).*beta + msigma(i,:).*(1 - beta * h);
end

%---
%one-dimensional process: constant volatility:

%Simultaneous calculation of the asset price movement with constant volatility:
%Initialising:
SM = zeros(n+1,M); %asset price movement
SM(1,:) = S0;

%Euler-Maruyama for solving the one-dimensional stochastic process:
for i = 1:n

SM(i+1,:) = SM(i,:).*(1 + (r-delta) *h + sigma *dW1(i,:));

end

%---

%Simultaneous calculation of the Payoff funktion (put):
%payoff = max(0, K-S(n+1,:)); %stochastic volatility

%payoffM = max(0, K-SM(n+1,:)); %constant volatility

%Simultaneous calculation of the Payoff funktion (call):
payoff = max(0, S(n+1,:)-K); %stochastic volatility

payoffM = max(0, SM(n+1,:)-K); %constant volatility

%Calculation of the estiamtor for the option value
V = exp(-r*T)*(cumsum(payoff)./(1:M)); %stochastic volatility

VM = exp(-r*T)*(cumsum(payoffM)./(1:M)); %constant volatility

%Plot 1: realization of the volatility tandem stochastic volatility and mean
%volatility:
figure(1) hold on plot(ssigma(:,1)) plot(msigma(:,1),’m’) hold off
legend(’stochastic volatility’, ’mean volatility’) xlabel(’time t’)
ylabel(’volatility’) title(’volatility tandem’)

%Plot 2: Asset price movement with and without stochastic volatility
figure(2) hold on plot(S(:,1)) plot(SM(:,1),’m’)
legend(’stochastic volatility’, ’constant volatility’)%,
’stochastic volatility with AV’,’constant volatility with AV’)
xlabel(’number of timesteps’) ylabel(’asset price’) title(’asset

138 Chapter C: Appendix

price movement’)

%Plot 3: Option value with and without stochastic volatility

figure(3) hold on plot(V) plot(VM,’m’) hold off
legend(’stochastic volatility’, ’constant volatility’)%,
’stochastic volatility with AV’, ’constant volatility with AV’)
xlabel(’number of timesteps’) ylabel(’option value’) title(’option
value development’)

C.2.6 Historical volatility

This is the MATLAB code for computing the example of historical volatility.
%vektor with asset price values:

A=[9.64,9.10,9.32,9.70,9.79,10.34,11.29,11.43,11.08,11.75,11.34,...

11.87,11.57,12.17,12.44,12.75,12.54,12.38,12.11,11.68,11.42,11.64,...

11.71,11.90,11.65,10.77,11.67,12.17,12.39,12.04,12.36,12.25,12.17,...

12.11,11.91,11.78,11.85,11.32,12.95,12.43,13.36,13.60,13.88,13.70,...

13.85,13.97,14.10,13.88,13.84,14.47,14.80,12.65,12.99];

for i=1:51

y(i)=log(A(i+1))-log(A(i));

end

ysum=cumsum(y);

yq=1/51*(ysum(51));

for i=1:51

ydach=(y(i)-yq)ˆ2;

end

vhist = sqrt(262)*sqrt((1/51) *ydach)

C.3 MATLAB code for Broadie and Glasserman algo-
rithm

C.3.1 Broadie and Glasserman algorithm
%Broadie and Glasserman algorithm for AO

d = 3; %number of possible exercise dates t=0,t=T/2,t=T
b = 50; %number of branches per node in a tree 50
S = 80; %underlying asset value at start %100
n=200;

C.3 MATLAB codes 139

K = 100; %exercise\strike price 110
r = 0.07; %risk-free interest rate 0.05
sigma = 0.3; %volatility 0.2
delta = 0;% 0.1; %dividends
T = 1;

randn(’state’,2) for i=1:n
Lesthelp(i) = brandglasLest(d,b,S,K,r,sigma,delta,T);
Lest(i) = mean(Lesthelp);

%confidence intervall:
confl(i) = max(max((S-K),0), Lest(i) -
1.96*std(Lesthelp(1:i))/sqrt(i)); end

randn(’state’,2) for j=1:n
Hesthelp(j) = brandglasHest(d,b,S,K,r,sigma,delta,T);
Hest(j) = mean(Hesthelp);

%confidence interval:
confr(j) = Hest(j) + 1.96* std(Hesthelp(1:j))/sqrt(j);
end

%point estimate:
V(1,:) = 0.5* max(max((S - K),0), Lest(1,:)) + 0.5* Hest(1,:);

Vexakt= divcall(S,0,K,r, sigma, T,delta)

figure(1) hold on plot(Vexakt.*ones(1,n),’k’) plot(confl,’c’)
plot(confr,’m’) plot(V,’b’) title(’b=50’) xlabel(’number of
simulations’) ylabel(’option value’) hold off

C.3.2 Low estimator tree
%Broadie and Glasserman Algorithmus
function result = brandglasLest(d,b,S,K,r,sigma,delta,T);

lest = 0; h = T/(d-1);

w = ones(1,d); %vector that helps decide where in the matrix the asset price is derived from
v = ones(b,d); %matrix that holds node value and asset price
x = 1;%helps compute asset price in the right place in matrix (case 1; case 3.1)
cv = 0; %Helps sum up all node values in that loop (for 3.1 and 4)
nue = 0; %helps sum up all values for the loop for nu in (3 and 4)

%initialize parameters
v(1,1) = S; for j = 2:d

%the first branch of the asset price tree including the first final
%node:
v(1,j) = v(1,j-1) *exp(((r-delta)-1/2 *sigmaˆ2) *h + sigma* sqrt(h) *randn(1,1));

end

%process tree
j = d; while (j > 0)

%w,j
if j == d & w(j) < b %terminal node (j=d)

%case 1

140 Chapter C: Appendix

v(w(j),j) = max(v(w(j),j) - K, 0);

v(w(j)+1,j) = v(x,j-1) *exp(((r-delta)-1/2 *sigmaˆ2) *h + sigma* sqrt(h) *randn(1,1));
w(j) = w(j) + 1;

elseif j == d & w(j) == b %terminal node (j=d)
%case2

v(w(j),j) = max(v(w(j),j) - K, 0);
w(j) = 0;
j = j-1;

elseif j < d & w(j) < b %intermediate node (j<d)
%case3

for sh = 1: b
for i = 1 : sh -1 %unser sh ist das i=j

cv = cv + exp(-r*h)*v(i,j+1);
end
for i = sh + 1 : b

cv = cv + exp(-r*h)*v(i,j+1);
end
if max(v(w(j),j) - K, 0) >= 1/(b-1) * cv

nu = max(v(w(j),j) - K, 0);
else

nu = exp(-r*h)*v(sh,j+1);
end
cv = 0;
nue = nue + nu;

end
v(w(j),j) = (1/b) * nue;
nue = 0;
%’node value’;
if j > 1

%case3.1

v(w(j)+1,j) = v(w(j-1),j-1)*exp(((r-delta)-1/2 *sigmaˆ2)*h+sigma*sqrt(h)*randn(1,1));
w(j) = w(j) + 1;
for i = j + 1 : d

v(1,i) = v(w(j),j)*exp((r-delta-1/2 *sigmaˆ2)*h+sigma*sqrt(h)*randn(1,1));

w(i) = 1;
end
j = d;

if x < b
x = x+1;

else x = 1;
end

else j =0;
%case3.2

end
elseif j < d & w(j) == b %intermediate node (j<d)

%case4

for sh = 1: b
for i = 1 : sh -1 %unser sh ist das i=j

cv = cv + exp(-r*h)*v(i,j+1);

C.3 MATLAB codes 141

end
for i = sh + 1 : b

cv = cv + exp(-r*h)*v(i,j+1);
end
if max(v(w(j),j) - K, 0) >= 1/(b-1) * cv

nu = max(v(w(j),j) -K, 0);
else

nu = exp(-r*h)*v(sh,j+1);
end
cv = 0;
nue = nue + nu;

end
v(w(j),j) = (1/b) * nue;
nue = 0;
w(j) = 0;
j = j - 1;

end

end lest = lest + v(1,1);

result = lest;

C.3.3 High estimator tree
%Broadie and Glasserman Algorithmus for the High estimator
%AO
function result = brandglasHest(d,b,S,K,r,sigma,delta,T)

h = T/(d-1);

w = ones(1,d); %vector that helps decide where in the matrix the asset price is derived from
v = ones(b,d); %matrix that holds node value and asset price
x = 1;%helps compute asset price in the right place in matrix (case 1; case 3.1)
cv = 0; %Helps sum up all node values in that loop (for 3.1 and 4)

%initialize parameters
v(1,1) = S; for j = 2:d

%the first branch of the asset price tree including the first final
%node:
v(1,j) = v(1,j-1) *exp(((r-delta)-1/2 *sigmaˆ2) *h + sigma* sqrt(h) *randn(1,1));

end

%process tree
j = d; while (j > 0)

%w,j
if j == d & w(j) < b %terminal node (j=d)

%case 1
v(w(j),j) = max(v(w(j),j) - K, 0);

v(w(j)+1,j) = v(x,j-1) *exp(((r-delta)-0.5 *sigmaˆ2) *h + sigma* sqrt(h) *randn(1,1));

w(j) = w(j) + 1;

142 Chapter C: Appendix

elseif j == d & w(j) == b %terminal node (j=d)
%case2

v(w(j),j) = max(v(w(j),j) - K, 0);
w(j) = 0;
j = j-1;

elseif j < d & w(j) < b %intermediate node (j<d)
%case3

for i = 1:b
cv = cv + exp(-r*h)*v(i,j+1);

end
v(w(j),j) = max(max(v(w(j),j)-K,0),1/b * cv);
cv = 0;
%’node value’;
if j > 1

%case3.1

v(w(j)+1,j) = v(w(j-1),j-1)*exp(((r-delta)-1/2 *sigmaˆ2)*h+sigma*sqrt(h)*randn(1,1));

w(j) = w(j) + 1;
for i = j + 1 : d

v(1,i) = v(w(j),j)*exp((r-delta-1/2 *sigmaˆ2)*h+sigma*sqrt(h)*randn(1,1));

w(i) = 1;
end
j = d;

if x < b
x = x+1;

else x = 1;
end

else j =0;
%case3.2

end
elseif j < d & w(j) == b %intermediate node (j<d)

%case4
for i = 1:b

cv = cv + exp(-r*h)*v(i,j+1);
end
v(w(j),j) = max(max(v(w(j),j)-K,0),1/b * cv);
cv = 0;

w(j) = 0;
j = j - 1;

end
%j
%l=l+1;

end result = v(1,1);

Bibliography

[1] L. Arnold, Stochastische Differentialgleichungen - Theorie und Anwendungen;
Oldenburg Verlag 1973.

[2] P. Boyle, M. Broadie, P. Glasserman: Monte Carlo methods for security pricing
Journal of Economic Dynamics and Control vol. 21, 1997 pp 1267-1321.

[3] P. Brandimarte, Numerical Methods in Finance - A MATLAB-Based Introduction;
Wiley series in probability and statistics. Financial engeneering section, John
Wiley & Sons Inc., New York 2002.

[4] M. Broadie, P. Glasserman: Pricing American-style securities using simulation,
Journal of Economic Dynamics and Control vol. 21, 1997 pp 1323-1352.

[5] L. Devroye, Non-Uniform Random Variate Generation; Springer New York 1986

[6] A. Etheridge, A course in financial calculus; Cambridge University Press 2004.

[7] M.C. Fu, S.B. Laprise, D.B. Madan, Y.Su, R. Wu: Pricing American Options: A
Comparison of Monte Carlo Simulation Approaches, Journal of Computational
Finance vol. 4, 2001 pp 39-88.

[8] S. Galanti, A. Jung : Low-Discrepancy Sequences: Monte Carlo Simulation Of
Option Prices, Journal of Derivatives vol. 5, Fall 1997 pp 63-83.

[9] D. Grant, G. Vora, D. Weeks: Simulation of the Early-Exercise Option Problem,
Journal of Financial Engineering 3 vol. 5, 1997 pp 211-227.

[10] L. Grüne, Skript zur Vorlesung Modellierung mit Differentialgleichungen; 2003.

[11] L. Grüne, Skript zur Vorlesung Numerische Mathematik II: Differentialgleichun-
gen; 2003.

[12] M. Günther, A. Jüngel, Finanzderivate mit MATLAB; Vieweg Verlag, 2003 (1st
printing).

143

144 Bibliography

[13] D.J. Higham, An introduction to Financial Option Valuation; Cambridge Univer-
sity Press 2004.

[14] I. Karazas, S. Shreve, Brownian Motion and Stochastic Calculus; Springer Verlag
1988.

[15] P.E. Kloeden, E. Platen, Numerical Solution of stochastic Differential Equations;
Springer Verlag 1999 (corrected 3rd printing).

[16] E. Korn, R. Korn, Optionsbewertung und Portfolio-Optimierung - Methoden
Moderner Finanzmathematik Vieweg 1999 (1st printing).

[17] Y.K. Kwok, Mathematical Models of Financial Derivatives; Springer Verlag Sin-
gapore.

[18] C.B. Moler, Numerical Computing with MATLAB; SIAM 2004.

[19] O. Mußhoff, N. Hirschauer, K. Palmer: Bounded Recursive Stochastic Simula-
tion - a simple and efficient method for pricing complex American type options,
Working Paper, Humboldt-Universität zu Berlin 65/2002.

[20] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods;
SIAM, Philadelphia 1992.

[21] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion; Springer Ver-
lag 1999.

[22] N. Schmitz, Vorlesungen über Wahrscheinlichkeitstheorie; Teubner Verlag
Stuttgart 1996.

[23] R. Seydel, Tools for Computational Finance; Springer Verlag 2002.

[24] J. Tietze, Einführung in die Finanzmathematik Vieweg Verlag 6. Auflage

[25] P. Wilmott, J. Dewynne, S. Howison, Option Pricing - Mathematical models and
computation; Oxford Financial Press 1997.

[26] P. Wilmott, S. Howison, J. Dewynne, The mathematics of financial Derivatives;
Cambridge University Press 1997.

ERKLÄRUNG

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Ver-
wendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegen.

Bayreuth, den September 28, 2005
Andrea Kölz

