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Chapter 1

Introduction

There are several methods for pricing asset characteristics such as the risk-
free interest rate, the return of risky assets and Sharpe Ratios. In this thesis
the underlying model is always a stochastic growth model. Even when we are
restricted to a certain model there are still different approaches for solving
for the financial measures, such as the Time Series, the Random Variable and
the Stochastic Dynamic Programming approach. The purpose of this thesis
is to compare the outcome of those approaches with each other when applied
to the same model. In this thesis the time series and the random variable ap-
proach are computed but not the stochastis dynamic programming approach.
The results for the latter can be found in Grüne and Semmler, Solving Asset
Pricing Models with Stochastic Dynamic Programming [7].

Since we will work with a stochastic growth model, which means we work
with a model where we do not obtain certain outcomes but usually various
possible ones, the concepts of random variables, expected values, etc. are
extensively used throughout this paper. Thus chapter 2 will give an intro-
duction to probability and distribution theory. It will also describe the basic
features of stochastic growth models as used throughout the following chap-
ters.

Since we want to solve the model for asset price characteristics, we have
to close the gap between the consumption paths we find when solving the
stochastic growth models and the parameters we need for calculating the
financial measures. The intention of chapter 3 is to explain how we get from
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2 CHAPTER 1. INTRODUCTION

the basic pricing equation, which is nothing else but the first order condition
for an optimization problem, to measures such as the risk-free interest rate,
etc.. We will also find that knowing a consumer’s stochastic discount factor
is sufficient for the calculation of at least an upper bound for the Sharpe
Ratio.

In chapter 4 the reference model as was used in the underlying paper, that
is Grüne and Semmler, Solving Asset Pricing Models with Stochastic Dy-
namic Programming [7], is introduced. This model is consumption based
with labour augmenting shocks and given dynamics for the capital devel-
opment over time. It can be solved analytically. Looking at the capital
dynamics in the long run we will discover that independent of starting values
the capital will start to oscillate around some sort of ”equilibrium point”
at an early point in time . Thus one assumes that the financial measures
calculated from this model will also converge quickly to some ”equilibrium”.

Chapter 5, which introduces the time series approach will show, that the
assumed convergence behaviour of the Sharpe Ratio cannot be found. In
fact, we will find that we have to look very far ahead of the starting point in
time before we get at least some kind of ”equilibrium”. But even then the
difference between the outcome of our approach compared to the one of the
stochastic dynamic programming approach, is obvious.

In chapter 6 the last approach is introduced. Since we will work with the
concept of random variables, all information about the distributions are used.
In comparison with the results of the stochastic dynamic programming ap-
proach the results we obtain in this context are nearly equal.

Having obtained all results needed to compare the models with each other,
and having seen that the outcomes vary rather a lot, chapter 7 will now look
for differences in the programmes and approaches. Since the results of the
random variable approach are equal to the results of the stochastic dynamic
programming approach, this chapter is focussing on explaining the differences
between the random variable and time series model. We will start with ver-
ifying the time series programm for accurateness. The next section will look
for correlations between various parameters of the underlying growth model
and will then look in how far the correlations differ from approach to ap-
proach. Having figured out that there are differences, we will test the impact
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of a change of the standard deviation of our shock variable on the model
outcomes.

Reality shows that consumption based models do not fit financial market
characteristics to time series data. Therefore asset pricing models with the
additional preference of loss aversion were recently proposed by behavioural
finance. Thus in chapter 8 we have a closer look at a growth model also in-
cluding the concept of loss aversion. Consumers are here assumed to become
more careful with every loss they experience. In order to fit this concept into
our basic stoachstic growth model, we have to adjust the model for a factor
that reacts on gains or losses the consumer experiences. Since the financial
measures have to give considerations to this adjustment, we will re-define the
formulas we use for the calculation of the asset price characteristics. In the
last section we will compare the results gained from a time series approach to
solve that model for Sharpe Ratios with the results obtained by the stochas-
tic dynamic programming as can be found in Grüne and Semmler, Solving
Asset Pricing with Loss Aversion [8].

Finally we will summarize and conclude the results found in the previous
chapters.

The Appendix will cover the MATLAB codes used for computation and it
will give an overview of the included CD.



Chapter 2

Preliminaries

We will begin this chapter with the introduction to probability and distribu-
tion theory. These concepts are essential for the different methods we use for
solving the underlying model for the asset price characteristics. Furthermore
we will define the basic concepts of the stochastic growth model such as the
Marginal Utility of Consumption.

2.1 Introduction to Probability Theory

Because of the uncertainty about future payoffs that stochastic growth mod-
els try to capture we need formal definitions of stochastic variables, i.e. the
Expected Value, the Standard deviation, etc. Therefore it is necessary to
give a brief introduction to probability theory as in Greene’s Econometric
Analysis [6], chp. 3 and 4.

Definition 2.1.1 (Random Variable).
A Random Variable X : Ω → R is a function from an ”event space” Ω to R.
Its realizations or outcomes will be denoted by x. The probability measure
is associated with X so that subsets of Ω are assigned a probability P (Ω). In
other words: Until the experiment is performed it is unknown what value X
will take. Therefore probabilities are associated with realizations to quantify
this uncertainty. The probability that X takes a certain value is denoted as
P(X=x).

4



2.1. INTRODUCTION TO PROBABILITY THEORY 5

A random variable is said to be discrete if the set of outcomes is either finite
in number or countably infinite. The random variable is continuous if the set
of outcomes is uncountable.

Definition 2.1.2 (Probability Distribution).
A probability distribution denoted as f(x) is a listing of values taken by a
random variable X and their associated probabilities.
For a discrete random variable,

f(x) = P (X = x). (2.1)

The axioms of probability require that

1. 0 ≤ P (X = x) ≤ 1.

2.
∑

x

f(x) = 1.

For the continuous case, we can only assign positive probabilities to intervals
in the range of x, because the probability associated with any particular point
is zero. The probability density function (pdf) is defined so that f(x) ≥ 0
and

1. P (a ≤ x ≤ b) =

∫ b

a

f(x)dx ≥ 0.

The result is the area under f(x) in the interval from a to b. The axioms of
probability require that

2.

∫ ∞

−∞
f(x)dx = 1.

It is possible that the range of x is not infinite. In that case f(x) = 0 is
defined anywhere outside the appropriate range.

Definition 2.1.3 (Cumulative Distribution Function).
Let x be a random variable. The probability that x is less than or equal to
a is denoted F (a). F (x) is called cumulative distribution function (cdf).
For a discrete random variable,

F (x) =
∑
X≤x

f(x) = P (X ≤ x). (2.2)
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For a continuous variable,

F (x) =

∫ x

−∞
f(t)dt.

For the discrete as well as for the continuous random variable, the cdf has to
satisfy the following properties:

1. 0 ≤ F (x) ≤ 1.

2. If x > y, then F (x) ≥ F (y).

3. F (+∞) = 1.

4. F (−∞) = 0.

Definition 2.1.4 (Expected Value).
The mean, or expected value, denoted µ, of a random variable is defined as:

E[x] =


∑

x xf(x) , if X is discrete,∫
x
xf(x)dx, if X is continuous.

(2.3)

Henceforth the notations
∑

x or
∫

x
are used for the sum or integral over the

entire range of values of x.
Let g(x) be a function of x. The expected value of g(x) is defined as:

E[g(x)] =


∑

x g(x)f(x) , if X is discrete,∫
x
g(x)f(x)dx, if X is continuous.

(2.4)

Definition 2.1.5 (Variance, Standard Deviation).
The Variance, which must be positive, of a random variable is denoted σ2

and defined as:

V ar[x] = E[(x− µ)2] (2.5)

=


∑

x(x− µ)2f(x) , if X is discrete,∫
x
(x− µ)2f(x)dx, if X is continuous.

(2.6)

It measures the dispersion of a distribution. Usually, we use σ, the positive
square root, to describe a distribution. σ is called the standard deviation of
x and can be interpreted as having the same units of measurement as x and
µ.
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There are some important results that simplify the computation of the ex-
pected value and the variance.

Theorem 2.1.6. Let X be a random variable.

1. The computation of the variance is simplified by using the following
equation:

V ar[X] = E[X2]− µ2 (2.7)

2. For constants a and b:

E[a + bX] = a + bE[X], (2.8)

which implies, for any constant a, that E[a] = a.

3. For constants a and b:

V ar[a + bX] = b2V ar[X], (2.9)

which implies, for any constant a, that V ar[a] = 0.

Proof: Theorem 2.1.5.
Consider the discrete case, the continuous one is analogous.

1.

V ar[x] =
∑

x

(x− µ)2f(x)

=
∑

x

(x2 − 2xµ + µ2)

=
∑

x

x2f(x)︸ ︷︷ ︸
=E[x2]

−2µ
∑

x

xf(x)︸ ︷︷ ︸
=µ

+µ2
∑

x

f(x)︸ ︷︷ ︸
=1

= E[x2]− 2µ2 + µ2 = E[x2]− µ2
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2.

E[a + bx] =
∑

x

(a + bx)f(x)

= a
∑

x

f(x)︸ ︷︷ ︸
=1

+b
∑

x

xf(x)︸ ︷︷ ︸
=E[x]

= a + bE[x]

3.

V ar[a + bx] = E[(a + bx)2]︸ ︷︷ ︸
=E[a2+2abx+b2x2]

−E[a + bx]2︸ ︷︷ ︸
(=a+bE[x])2

= a2 + 2abE[x] + b2E[x2]− a2 − 2abE[x]− b2E[x]2

= b2(E[x2]− E[x]2)

= b2V ar[x]

In our stochastic growths model we will work with two random variables.
It is therefore useful to introduce the joint density function, the conditional
mean and the conditional variance.
Let X and Y be two random variables. The joint density function, f(x, y),
satisfies:

P (a ≤ x ≤ b, c ≤ y ≤ d) =


∑

a≤x≤b

∑
c≤y≤d f(x, y), discrete case,∫ b

a

∫ d

c
f(x, y)dxdy , continuous case.

(2.10)

The requirements that go along with the requirements in the univariate case,
are:

f(x, y) ≥ 0 ,∑
x

∑
y f(x, y) = 1 , if X and Y are discrete,∫

x

∫
y
f(x, y)dxdy = 1, if X and Y are continuous.

(2.11)
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We need the definition for the marginal probability distribution in order to
define expectations in a joint distribution.

Definition 2.1.7 (Marginal Probability Density).
The marginal probability density is also called marginal probability distribu-
tion. It is defined with respect to an individual variable and obtained from
the joint distribution by summing or integrating out the other variable.

fx(x) =


∑

y f(x, y) , in the discrete case,∫
y
f(x, s)ds, in the continuous case.

(2.12)

Analogous for fy(y).

Definition 2.1.8 (Expected Values and Variances in a Joint Distri-
bution).
Let X and Y be random variables. Means and Variances of the variables are
calculated with respect to the marginal distributions. For the mean of x in
a discrete distribution,

E[x] =
∑

x

xfx(x) (2.13)

=
∑

x

x

[∑
y

f(x, y)

]
(2.14)

=
∑

x

∑
y

xf(x, y) (2.15)

The means of a variable in the continuous case are defined likewise, using
integration instead of summation.
The computation of variances works in the same manner:

V ar[x] =
∑

x

(x− E[x])2f(x) (2.16)

=
∑

x

∑
y

(x− E[x])2f(x, y). (2.17)

Similarly for the continuous case, again using integration.
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Definition 2.1.9 (Covariance and Correlation).
Let X and Y be random variables. For any function g(x, y),

E[g(x, y)] =


∑

x

∑
y g(x, y)f(x, y) , in the discrete case∫

x

∫
y
g(x, y)f(x, y)dydx, in the continuous case.

(2.18)

The covariance of x and y is:

Cov[x, y] = E[(x− µx)(y − µy)] (2.19)

= E[xy]− µxµy (2.20)

= σxy. (2.21)

For the analysis the sign of the covariance is important, because it will in-
dicate the direction of the covariation of X and Y. Consider an investment
strategy that covaries positively with consumption, i.e. if consumption goes
up, so does the revenue of the investment strategy. This sort of investment
would not save from loss if income decreases and, as a result of it, consump-
tion decreases.
Since the magnitude of the covariation depends on the scales of measurement,
the preferable measure is the correlation coefficient.

Definition 2.1.10 (Correlation Coefficient).
The correlation coefficient has the same sign as the covariance but is unaf-
fected by any scaling of the variables. Hence its value is always between −1
and 1.

r[x, y] = ρxy (2.22)

=
σxy

σxσy

, (2.23)

where σx and σy are the standard deviations of x and y, respectively.

In econometric modelling, conditioning and the use of conditional distribu-
tions play a pivotal role. Again, we will just consider the bivariate case.

Definition 2.1.11 (Conditional Distribution).
There is a conditional distribution over y for each value of x. The conditional
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densities are:

f(y | x) =
f(x, y)

fx(x)
(2.24)

and

f(x | y) =
f(x, y)

fy(y)
. (2.25)

Definition 2.1.12 (Conditional Mean and Conditional Variance).
The conditional mean is the mean of the conditional distribution:

E[y | x] =


∑

y yf(y | x), if y is discrete∫
y
yf(y | x) , if y is continuous.

(2.26)

The conditional mean is also called the regression of y on x.

Similar to the mean, the conditional variance is the variance of the con-
ditional distribution:

V ar[y | x] = E[(y − E[y | x])2 | x] (2.27)

=

∫
y

(y − E[y | x])2f(y | x)dy, if y is continuous (2.28)

or (2.29)

V ar[y | x] =
∑

y

(y − E[y | x])2f(y | x), if y is discrete. (2.30)

Again, the computation can be simplified by:

V ar[y | x] = E[y2 | x]− (E[y | x])2. (2.31)

Definition 2.1.13 (σ-Algebra).
Let Ω be a set. Then a σ-algebra F is a nonempty collection of subsets of Ω
such that the following hold:

1. Ω ∈ F

2. if A ∈ F then Ac ∈ F , where Ac denotes the complement of A,
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3. if (An)n is a sequence of elements of F , then
⋃

n An ∈ F .

If S is any collection of subsets of F , then we can always find a σ-algebra
containing S, namely the power set of Ω, P(Ω). By taking the intersection of
all σ-algebras containing S, we obtain the smallest such σ-algebra. We call
the smallest σ-algebra containing S, the σ-algebra generated by S.

Definition 2.1.14 (Borel sets).
The Borel σ-algebra is defined to be the smallest σ-algebra generated by the
open sets in Ω.

Definition 2.1.15 (Independent and Identically distributed Random
Variables ).
Let X and Y be random variables.

X and Y are independent ⇐⇒ f(x, y) = fx(x)fy(y) (2.32)

Remark 2.1.16. If two random variables X and Y are independent then
their covariance is zero, that means they are uncorrelated. And for any two
functions g1(x) and g2(y) then

E[g1(x)g2(y)] = E[g1(x)]E[g2(y)]. (2.33)

In order to look at the convergence behaviour of a sequence of random vari-
ables xn, we will introduce the concept of convergence in distribution:

Definition 2.1.17 (Convergence in Distribution). Assume xn to be a
sequence of random variables and let xn have cdf Fn(x). xn converges in
distribution to a random variable x if

lim
n→∞

|Fn(x)− F (x)| = 0

at all continuity points of F (x). F (x) is the cdf of x.

The basic form of the most important theorem in econometrics which helps to
describe the statistical properties of estimators when their exact distributions
are unknown, is given in the following theorem.
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Theorem 2.1.18 (Central Limit Theorem).
Let x1, . . . , xn be a random sample from a probability distribution with mean
µ and finite variance σ2. Then for xn = 1

n

∑n
i=1 xi the Lindbergh-Levy variant

for the mean of a univariate distribution holds. Formally:

√
n(xn − µ)

d−→ N [0, σ2], (2.34)

where N [0, σ2] is the the normal distribution with mean 0 and standard

deviation σ.
d−→ stands for the limiting distribution and means that if xn

converges in distribution to x, and F (x) is the cdf of x, then F (x) is the
limiting distribution of xn.

Thus
√

n(xn − µ)
d−→ N [0, σ2] can also be thought of representing the fact

that the relationship is an asymptotic one, i.e. with n increasing without
boundary the distribution

√
n(xn−µ) approaches the normal distribution of

with mean zero and variance σ2. See also A.W. Lo, [11], p.38..

2.2 Stochastic Growth Model

According to Mirman and Brock [2], we will introduce the basic stochastic
growth model.
One tradition of asset pricing models is based on the stochastic growth model
with production. In these models it is crucial how consumption is modelled.
The goal is to find an optimal consumption path in order to deduce the
values of investment strategies. The randomness is assumed to occur in the
production function of firms as labor augmenting technical progress. As a
result consumption and dividends can be assumed to be endogenous. In
dealing in this uncertain context, we will maximize the expected sum of
discounted utilities.

Definition 2.2.1 (Utility of Consumption).
Utility of Consumption, denoted u(c), is the welfare an individual gets by
consuming a certain amount of goods. We assume consumers to spend their
available income so as to maximize their utility function, u(·).

Definition 2.2.2 (Utility Function).
The utility function u(·) is the expression economists use to show utility as
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a function of an individual’s consumption. We assume the utility, u(c), is
increasing in the quantity of each good consumed. We require the utility
function to fulfill the usual properties, that is:

u′ > 0, u′′ < 0.

The second property denotes concavity, which is important to express a con-
sumer’s declining marginal value of additional consumption. To guaran-
tee any consumption at all, we also require the utility function to satisfy
u′(0) = +∞.

From now on time subscripts will be used only when necessary to explicitly
distinguish events in different periods.
Consider a one sector growth model of an economy in discrete time with
future production uncertainties. The production function for this economy
is given by:

Yt = F (Kt, Lt; εt), (2.35)

where Yt, Kt and Lt are output, capital and labor at time t, respectively. εt is
the random variable representing uncertainty. As usual, we assume that our
production function has constant returns to scale in its first two arguments.
That means, that multiplying both arguments by any nonnegative constant
α causes output to change by the same factor.
Formally, but without the time coefficient:

F (αL, αK; ε) = αF (L, K; ε), for all α ≥ 0. (2.36)

Because of the production function’s homogeneity of degree 1, we can work
with the production function in the following form. Let α = 1

L
, we yield:

yt ≡
Yt

Lt

= F (1,
Kt

Lt

; εt) = f(kt, εt). (2.37)

Here kt is the economy’s capital stock per unit of labor and yt is output per
unit of labor. kt is also called capital labor ratio.

Assumption 2.2.3 (Assumptions on f).
Let ρ be the possible values of the random variable εt. f(·, ρ) is endowed
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with the common properties of production functions.Thus we assume:

f(0, ρ) = 0,

f ′(·, ρ) > 0,

f ′′(·, ρ) < 0,

for all values of ρ. In addition, f(·, ρ) is assumed to satisfy the Inada condi-
tions, namely:

f ′(0, ρ) = +∞,

f ′(∞, ρ) = 0,

for all values of ρ. Finally f and f ′ are continuous in k and ε jointly.

Now, take a closer look at the statistics of the random variable εt. Since
the probability space (Ωt,Ft, Pt) is assumed to be the same in each period,
time subscripts will be dropped for convenience and the state space will
be denoted by (Ω,F , P ). Here, let Ω be the ”event space”,the arbitrary,
nonempty set of possible ”states of the world” that influence the production
function. ω ∈ Ω represents the occurence of an exogenous event that effects
the production function. To be mathematically rigorous, let F be a collection
of subsets of Ω. The set F is a σ-algebra of subsets of Ω. P is supposed to
be a probability measure, i.e. P is a nonnegative σ-additive function on F .
That means P (Ω) = 1, P (F ) = Σm

i=1P (Fi)∀F ∈ F and every finite partition
{Fi, i = 1, · · · , m} of F in F and ∀F ∈ F is {Fi, i = 1, 2, · · · }, Fi 6= Fj ∀i 6=
j,∪∞i=1Fi = F and ∪∞i=1 P (Fi) = P (F ).
Thus the probability that the state of the world ω is an element of F is given
by

P (F ) = P [ω ∈ F ]. (2.38)

In order to translate random happenings in measurable values the random
variable εt is introduced that takes our measure space (Ω,F , P ) into the real
line (R,B), where B is the set of Borel sets defined as above.
It is important to note that the random variables εt are assumed to be inde-
pendent and identically distributed. This assumption is strongly simplifying
whereas the assumption about the time independency of the measure space
remains crucial to the limit theorem.
ε : Ω → R generates a measure, ν(·), on the Borel subsets of the real line.

ν(z ∈ S) = P{ω ∈ ε−1(S)},
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where

ε−1(S) ∈ F for all S ∈ B,

and

ε−1(S) = {ω : z(ω) ∈ S}.

Thus the numerical random value z with associated measure ν(·) represents
the statistics of the random ”states of the wordl”.
Output is either increased or decreased for all values of k by the random
event ε. Moreover it is assumed that the random events are indexed in a way
as to have

∂f(k, ε)

∂ε
> 0, for all k. (2.39)

Furthermore, it is assumed that the random event can only affect production
in a ”compact” way. In other words, numbers 0 < α < β < ∞ exist such
that

ε ∈ [α, β]

and for all x > 0,

∞ > f(k, β) > f(k, α) > 0. (2.40)

Without loss of generality is it assumed that for every ρ > α, ν([α, ρ]) > 0.
Since, if not, α = sup{η : ν([0, η]) = 0} could be chosen. Accordingly,
ν([ρ, β]) > 0 for each ρ < β.
Now, consider the growth process which is represented by the following dif-
ference equation

ct + kt = f(kt−1, εt−1), (2.41)

where ct is an optimal consumption policy in the sense that consumption is
chosen so as to maximize the expected sum of discounted utilities. We will
also assume an infinfite time horizon.
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Definition 2.2.4 (Maximization Problem).
In this set-up the maximization problem becomes:

max Et[
∞∑

t=0

δtu(ct)] (2.42)

subject to the constraints

ct + kt = f(kt−1, εt−1), t = 1, 2, . . .

c0 + k0 = s, k0, c0 ≥ 0,

where s > 0 is the given initial data of the problem representing the his-
torically given capital stock. δ is the subjective discount rate and it holds:
δ ∈ (0, 1).

Consider the definition of β and the conditions that hold for the production
function. There exists a kβ so that for all k > kβ

f(k, β) < k.

Thus it is not possible to sustain capital independent from the state of the
world if k > kβ.



Chapter 3

Stochastic Growth Model and
Financial Measures

In the context of this paper we have to compute every financial measure with
respect to the set-up of a stochastic growth model. In order to get our for-
mulas in the necessary way we look without loss of generality at a discrete,
two period decision problem, cf Cochrane [4] p.6 - p.19. We will see that
every infinite decision problem is equivalent to the two-period problem. It
is also always possible to look at the constraints to such a problem from the
perspective of consumption.

Let us start with the two-period problem and derive the basic pricing equa-
tion. For every maximization problem of the form:

max
ξ

u(ct) + Et[βu(ct+1)]

subject to

ct = et − ptξ

ct+1 = et+1 + xt+1ξ,

where ξ denotes the fraction of income that is invested, et is the income of
period t and xt is period t’s payoff, the first order condition for an optimal

18
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consumption and portfolio choice is:

d

dξ
[u(et + ptξ) + Et[βu(et+1 + xt+1ξ)]] = 0 (3.1)

⇐⇒ pt = Et[β
u′(ct+1)

u′(ct)︸ ︷︷ ︸
=mt+1

xt+1] = Et[mt+1xt+1]. (3.2)

Usually, for stocks, the one-period payoff is the next price and the dividend,
i.e. xt+1 = pt+1 + dt+1.
Now, consider an infinite-period problem, where the investor can choose a
dividen stream dt+1 over time and purchase it at time t for a price pt. The
maximization problem becomes:

max
ξ

Et[
∞∑

j=0

βju(ct+j)]

subject to:

ct = et − ptξ

ct+j = et+j + ξdt+j

As in the two-period case the First Order condition gives us the basic pricing
equation directly.

pt = Et

[
∞∑

j=1

βj u
′(ct+j)

u′(ct)
dt+j

]

= Et

[
β

u′(ct+1)

u′(ct)
dt+1 +

∞∑
j=2

βj u
′(ct+j)

u′(ct)
dt+j

]

= Et

[
mt+1dt+1 + β

u′(ct+1)

u′(ct)

∞∑
j=2

β−1 u′(ct)

u′(ct+1)
βj u

′(ct+j)

u′(ct)
dt+j

]

= Et

[
mt+1dt+1 + mt+1

∞∑
j=2

βj−1 u′(ct+j)

u′(ct+1)
dt+j

]

= Et

[
mt+1(dt+1 +

∞∑
j=1

βj u
′(ct+1+j)

u′(ct+1)
dt+1+j)

]
= Et[mt+1(dt+1 + pt+1)]

= Et[mt+1xt+1]
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Starting from the basic pricing equation we can redefine the asset pricing
characteristics.

Rf is still the risk-free interest rate. Its value is known in advance and every
return is how many units of consumption, e.g. dollars, you get tommorrow,
if you pay one unit today. Thus the basic pricing equation for the risk-free
interest rate becomes 1 = E[mRf ] = E[m]Rf . Thus

Rf =
1

E[m]
. (3.3)

As usual the time subscripts are dropped for reasons of convenience. Using
the latter equation and the fact that the covariance can be computed as
Cov[m,x] = E[mx]− E[m]E[x] we get:

E[R]−Rf = −RfCov[m, R] (3.4)

Proof: of Equation (3.4).

p = E[mx]

⇐⇒ p = Cov[m,x] + E[m]︸ ︷︷ ︸
1

Rf

E[x]

⇐⇒ p = Cov[m, x]︸ ︷︷ ︸
risk adjustment

+
1

Rf
E[x]︸ ︷︷ ︸

asset’s price in
a risk neutral world

Now consider

1 = E[mR] ⇐⇒ 1 = Cov(mR) +
1

Rf
E[R]

⇐⇒ E[R]−Rf = −RfCov[m,R]

One important index for our analysis is the Sharpe Ratio (SR). It measures
the risk-adjusted performance of an investment asset. The formal definition
is as follows:
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Definition 3.0.5 (Sharpe Ratio).
The Sharpe Ratio is the ratio of the excess expected return, µ − Rf , of an
investment to its return volatility or standard deviation, σ.

SR ≡ µ−Rf

σ
(3.5)

where µ denotes the expected return of the investment asset and Rf the
return of another ”standard” asset, mostly referred to as the return of a
risk-free asset, i.e. a bond.

The intention of the SR is to measure the surplus return per unit of risk.
By comparison of two assets usually the one with the higher positive Sharpe
Ratio is chosen as investment strategy.
Thus we can express the Sharpe Ratio in the following way:

SR =

∣∣∣∣E[R]−Rf

σR

∣∣∣∣ (3.6)

=
−RfCov[m, R]

σR

, (3.7)

where

Rt+1 =
dt+1 + pt+1

pt

(3.8)

is the gross return and dt denotes the dividend on the asset in period t.
We also have the opportunity to calculate an upper bound for the Sharpe
Ratios.

Theorem 3.0.6. The upper bound, SB, for the Sharpe Ratio is given by:

SB =
σ(m)

E[m]
(3.9)

Proof: of Theorem (3.0.7.)
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SR =
−RfCov[m, R]

σR

=
− 1

E[m]
Cov[m,R]

σR

= − σm

E[m]

Cov[m, R]

σmσR︸ ︷︷ ︸
=ρm,R

=
σm

E[m]
−ρm,R︸ ︷︷ ︸

−1≤ρm,R≤1

≤ σm

E[m]
= SB



Chapter 4

Reference Model

We will now have a closer look at the most basic stochastic growth model,
as in Grüne and Semmler [7] in chapter 5. The general set-up as in Mirman
and Brock [2] was already introduced in chapter 2.

4.1 The Model

In our model we will now have log utility, i.e. u(ct) = ln u(ct), aggregate cap-
ital stock and labour augmenting technology shocks. In detail, the problem
set-up is as follows:

V (k, z) := max
ct

E[
∞∑

t=0

βt ln(ct)] (4.1)

subject to

kt+1 =ztAkα
t − ct

ln zt+1=ρ ln zt + εt

}
=: ϕ((k, z), c, ε)

A, α and ρ are real constants and the εt are i.i.d. random variables with zero
mean. For numerical reasons we substitute ln zt by yt. Important for the time
series is the fact that εt is chosen as a Gaussian distributed random variable
with standard deviation σ = 0.008. The domain in which we will compute the

23
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model, Ω = [0.1, 10]× [−0.32, 0.32], can be controlled invariant, that means
there exists an optimal consumption path c such that ϕ((k, z), c, ε) ∈ Ω for
any (k, z) ∈ Ω and for all ε. The difference between the model in Grüne and
Semmler, [7], p. 15 and this model is, that, since we do not work on grids, we
do not have to restrict ε on the interval [−0.032, 0.032], which is very handy
for the time series approach. The topic restriction will be discussed again in
chapter 6, when the random variable approach is introduced.
This model is equivalent to the stochastic growth model of chapter 2. the
difference is just, that in our model the discount factor is given by β instead
of δ, and we will give initial values for z and k instead an initial value for
s = c0 + k0 as was in the Mirman and Brock,[2] set-up.

4.2 The Optimal Value and Control Function

An interesting feature of the value function (4.1) is that it can also be written
as

V (k, z) = max
c

E[u(c(k, z)) + βV (ϕ((k, z), c(k, z), ε))] (4.2)

This is the Bellman equation. It reduces the multi-period optimization to a
two-stage problem, effectively. At first we maximize current utility by taking
into account that the choice ct affects future possibilities through kt+1. Then,
in the future we also maximize so that our outcome can be summarized
by the expected discounted future value function. This insight in dynamic
programming is referred to as the optimality principle, see Geraats, [5]

As mentioned above our model can be solved analytically for the policy
function in feedback form. Thus a sequence of optimal consumption can
be derived and used for the numerical solution of the asset’s price and the
Sharpe Ratio.
The following remark will give the optimal value and control function, see
Grüne, [9].

Remark 4.2.1. V ∗(k, z) is the optimal value function for problem (4.1) given
by

V ∗(k, z) = B + C ln (k) + D ln(z)
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with

B =
ln (1− αβ)A + αβ

1−αβ
ln αβA

1− β
,

C =
α

1− αβ

and

D =
1

(1− αβ)(1− ρβ)

Then, the optimal consumption sequence c for the stochastic growth model
with log utility and the above dynamics is given by:

c∗(k, z) = (1− αβ)Aztk
α
t (4.3)

Proof: of Remark 4.2.1.
We will start by calculating the optimal control function to the given optimal
value function. After that we will verify that the optimal value function
satisfies the optimality principle, which is for all kt, zt holds:

V (kt, zt) = max
ct

Et[u(ct(kt, zt)) + βV (ϕ((kt, zt), ct(kt, zt), εt))]

1. In order to find the optimal control function, we will look at the neces-
sary or first order condition (FOC) and the sufficient or second order
condition (SOC) for a maximum.

(a) The necessary condition for a maximum is given by: V ′(kt, zt) = 0.

V ′(kt, zt) =
∂ Et[u(ct(kt, zt)) + βV (ϕ((kt, zt), ct(kt, zt), εt))]

∂ct

=
∂ Et[ln ct + β(B + C ln Aztk

α
t − ct + D ln ρzt + εt]

∂ct

=
1

ct

+ β(−C
1

Aztkα
t − ct

)

FOC
= 0.
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⇒ Aztktα

ct

− 1− βC = 0

⇐⇒ Aztk
α
t

1 + βC
= ct

with C = α
1−αβ

⇒ (1− αβ)Aztk
α
t = c∗t .

(b) If c∗t maximizes V ∗ and V ∗ is twice differentiable, then
V ∗′′(kt, zt; c

∗
t ) ≤ 0 has to hold. (SOC)

V ′′(kt, zt) =
∂2 Et[u(ct(kt, zt)) + βV (ϕ((kt, zt), ct(kt, zt), εt))]

∂c2
t

= Et[−
1

c2
t

− −βC(−1)

(Aztkα
t − ct)2

]

with c∗t

⇒ Et[−
1

((1− αβ)Aztkα
t )2︸ ︷︷ ︸

>0

− βC

(αβAztkα
t )2︸ ︷︷ ︸

>0

]

< 0.

2. c∗t is the optimal control function, which means that c∗t maximizes
V ∗(kt, zt) at every point in time and for all (kt, zt).
V ∗(kt, zt) = maxct Et[u(ct(kt, zt))+βV ∗(ϕ((kt, zt), ct(kt, zt), εt))] has to
hold if V ∗ is the optimal value function.
Thus it is sufficient to show that V ∗(kt, zt) satisfies
V ∗(kt, zt) = Et[u(c∗t (kt, zt)) + βV ∗(ϕ((kt, zt), c

∗
t (kt, zt), εt))] in order to

prove that it is the optimal value function.

Let us now start by looking at the right side of the above formula and
substituting ln zt by yt:

Et[V
∗(ϕ((kt, yt), c

∗
t (kt, yt), εt))]

= Et[B + C ln(eytAkα
t − (1− αβ)Aeytkα

t )︸ ︷︷ ︸
ln(αβA)+yt+α ln(kt)

+D (ρ yt + εt)]
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= B + C (ln(αβA) + yt + α ln(kt)) + D ρ yt + D Et[εt]︸ ︷︷ ︸
=0

B,C,D
=

ln((1−αβ)A)+ α
1−αβ

ln(αβA)

1−β
+ α(1−ρβ)+ρ

(1−αβ)(1−ρβ)
yt

+ α2

1−αβ
ln(kt)

⇒V ∗(kt, zt)= Et[u(ct(kt, zt)) + βV ∗(ϕ((kt, zt), c
∗
t (kt, zt), εt))]

= Et[ln((1− αβ)ey
t Akα

t ) + βV ∗(ϕ((kt, zt), c
∗
t (kt, zt), εt))]

= ln((1− αβ)A)ytα ln(kt) + βEt[V
∗(ϕ((kt, zt), c

∗
t (kt, zt), εt))]

= ln((1− αβ)A)ytα ln(kt)

+β
ln((1−αβ)A) α

1−αβ
ln(αβ)

1−β

+ α(1−ρβ)+ρ
(1−αβ)(1−ρβ)

yt + α2

1−αβ
ln(kt))

=
ln((1− αβ)A) + αβ

1−αβ
ln(αβA)

1− β︸ ︷︷ ︸
=B

+
(1− αβ + αβ)(1− ρβ) + ρβ

(1− αβ)(1− ρβ)︸ ︷︷ ︸
=D

yt

+
α

1− αβ︸ ︷︷ ︸
C

ln(kt)

= B + C ln(kt) + Dyt

As we have seen in the last chapter m(ct, ct+1) = β u′(ct+1)
u′(ct)

. For our optimal
control function c, m is given by:

m(ct, ct+1) = β
ct)

ct+1)
(4.4)

The last thing we need before we can start calculating the Sharpe Ratios is
the price formula.

Remark 4.2.2. The price for a wealth portfolio with log utility is propor-
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tional to consumption. In our case the formula is given by:

pt =
β

1− β
(1− αβ)Aztk

α
t (4.5)

Proof: of Remark 4.2.2.
We need to look at the present-value formula for the price of a wealth portfo-
lio. In this context the wealth portfolio is a claim to all future consumption.
We yield:

pt = Et

[
∞∑

j=1

βj u
′(ct+j)

u′(ct)
ct+j

]

= Et

[
∞∑

j=1

βj ct

ct+j

ct+j

]
geometric series

=
β

1− β
ct

We will need these formulas for both approaches to a solution of the maxi-
mization problem.

4.3 The Dynamics in the Long Run

Figure 4.1 will give a rough impression of paths k to different start values of
k and z and along optimal trajectories. It can easily be seen that all trajec-
tories oscillate around the point (k, ln z) ≈ (2, 0) in the long run.

In the next two chapters we will work through solutions of the problem
of calculating the Sharpe Ratio by looking at the time series of the dynam-
ics and as the second approach we will look at m(xt) as a random variable.
In chapter 7 we will compare both attempts with each other and with the
analytical solution as can be found in Grüne and Semmler, [7].
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Figure 4.1: k-components of optimal trajectories for z(0) = {−0.32, 0, 0.32}



Chapter 5

Time Series Approach

In this chapter we will solve the problem of calculating the Sharpe Ratio as
described in the last chapter by modelling the time series of our dynamics,
z and k. Both need to be modelled in order to find possible paths for con-
sumption c. As we have already seen, all time series for the capital stock,
k, independent of their initial values oscillate around some kind of ”equilib-
rium” point. Because of that and the fact, that we are just interested in the
long time behaviour of our economy, it is enough to always model one path
instead of several ones as it is usually done in Monte Carlo Simulations.

5.1 Random Number Generators

In our stochastic growth model the stochastic factor, ε, is said to be stan-
dard normally distributed with zero mean and a standard deviation of 0.008.
Therefore we will need a standard normally distributed random variable.
Since every simulation of random variables is a deterministic operation the
numbers we generate are said to be pseudo random variables. Since there is
no Pseudo Random Number Generator with that distribution implemented
under MATLAB, it is necessary to implement one. A way to do so was de-
scribed in ”Finanzderivate mit MATLAB” by M. Günther and A. Jüngel,
[10].
The first step is to produce uniformly distributed pseudo random variables

30
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in the interval [0, 1],

Y ∼ U [0, 1],

which are transformed into normally distributed random numbers by using
a function h.

Z := h(Y ) ∼ N(0, 1)

Both terms were already defined in chapter 1. The exact implementation of
the algorithms used in this chapter are in the appendix.

Step 1 The uniformly distributed random numbers are produced by lagged
Fibonacci-Generators based on Tausworth.

for i ≥ max µ, ν

Xi := (Xi−µ + Xi−ν) mod M,

Ui := Xi/M,

where X1, ..., Xµ,ν are generated by a standard MATLAB random num-
ber generator.

Step 2 Uniformly distributed random numbers are transformed by the al-
gorithm based on Box-Muller: Generate U1, U2 ∼ U [0, 1]. Then Z1 =√

(− 2 ln U1) cos(2πU2) and Z2 =
√

(− 2 ln U1) sin(2πU2) are standard
normally distributed.

Step 3 Since we need random numbers that are normally distributed with
zero mean and standard deviation of 0.008 we take the standard nor-
mally distributed random numbers, Zi, i = 1..N generated in step 2
and the transformation Xi = 0.008Zi, for all i. The Xi are N(0, 0.008).

The basis for step 2 is the following theorem:

Theorem 5.1.1. Let X be a random variable with probability density f on
a set A = x ∈ (R) : f(x) > 0. The transformation h : A → B = h(A) be
invertible and the inverse h−1 be continuous. Then Y = h(X) has the density
function

y 7→ f(h−1(y))

∣∣∣∣det(
dh−1

dy
(y))

∣∣∣∣ , y ∈ B.
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Proof: of Step 3.
Let Y ∼ N(0, 1). Now, consider X = σY + µ.

Expected Value: E(X)
(2.8)
= σE(Y ) + µ = µ

Variance: V ar(X)
(2.8)
= σ2V ar(Y ) = σ2

Thus X ∼ N(µ, σ2), which means for our model that we have generated a
stochastic factor ε ∼ N(0, 0.0082).

5.2 Solving the model

As soon as we have generated our standard normally distributed pseudo
random variables εt we can model a path for the development of labour over
time.
Remember the dynamics for z are given by: ln zt+1 = ρ ln zt + εt

For computational reasons, we will work with the logarithm at the latest
possible point during our analysis. Therefore we rewrite the equation by
substituting ln z = y. We get:

yt+1 = ρyt + εt (5.1)

kt+1 = eytAkα
t − ct (5.2)

Starting with modelling the path for y we get the path for z by taking zt = eyt

for t = 1 · · ·N . Figure 5.1 shows a possible outcome for both y and z for an
initial value y(0) = 0. See Appendix A.2 for the exact MATLAB code.

In the next step both path y and path c are modelled, since both are
dependent of each other. As one can see in the formula for k, c is already
included, but is one time step aback. Thus, if k is computed on the interval
[0, N ], then c will just be computed from 0 up to the point N − 1. Since
we know the optimal control function to our particular stochastic growth
problem, we can calculate an initial value for c as long as we have chosen
initial values for y and for z. Again the exact MATLAB code is given in
Appendix A.2.. In figure 5.2 the initial values are k(0) = 0.1 and y(0) = 0.

From there it is easy to calculate the stochastic growth factor m. Remember
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Figure 5.1: Paths for y and z

Figure 5.2: Path for capital k and consumption c
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(4.4):

m(ct, ct+1) = β
ct

ct+1

.

One path for m(ct, ct+1) is given in Figure 5.3 for the usual initial values used
throughout this chapter. Looking again at chapter 3, where the asset price

Figure 5.3: The stochastic discount factor m

characteristics in the context of a stochastic growth model were introduced,
it can be seen, that we need the expected value and the standard deviation
of m for computing the risk-free interest rate Rf , the Upper Bound SB and
the Sharpe Ratio SR, itself. See (3.3),(3.6),(3.7) and (3.9).
If we choose initial values y(0) = 0, k(0) = 0.1 and a time horizon of N = 50
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we get:

E[m] =
1

N − 1

N−2∑
t=0

m(ct, ct+1) = 0.9343 (5.3)

σm =

√√√√ 1

N − 1

N−2∑
t=0

V ar[m(ct, ct+1)] = 0.0726 (5.4)

Rf =
1

E[m]
= 1.0704 (5.5)

SB =
σm

E[m]
= 0.0760. (5.6)

In the formula for the expected value for m, it is only divided by N-1, because
we just have N values for c(xt). Since we use ct+1 for calculating m(ct, ct+1)
we always look one consumption step ahead of time and therefore yield N−1
values for m.

Consider the Sharpe Ratio as introduced in chapter 3. In order to compute
the Sharpe Ratio we have to find the return path first. Therefore we have a
look at at the price formula of this problem, which is given by (4.5).

pt =
β

1− β
(1− αβ)Aztk

α
t

Figure 5.4 shows a price path to our model with initial values y(0) = 0
and k(0) = 0.1. As soon as we have our prices to different points in time
we can calculate the return. Since the wealth portfolio is a claim to future
consumption the dividend dt is given by consumption ct. Therefore the gross
return function becomes:

Rt+1 =
ct+1 + pt+1

pt

(5.7)

Figure 5.5 shows the path for the gross return for our consumption based
model with initial values as used above. Now, we can start to evaluate the
Sharpe Ratio for our model. Starting from R, we are able to compute the
expectation of R over time, the covariance of gross return R and stochastic
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Figure 5.4: The price p

Figure 5.5: The gross return R
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growth model m and finally the Sharpe Ratio.

E[R] =
1

N − 1

N−2∑
t=0

Rt = 1.0815 (5.8)

σR =

√√√√ 1

N − 1

N−2∑
t=0

V ar[Rt] = 0.1473 (5.9)

Cov[R,m] =
1

N − 1

N−2∑
t=0

Cov[Rt, mt] = −0.0103 (5.10)

SR =
−RfCov[m, R]

σ[R]
= 0.0751. (5.11)

5.3 Sharpe Ratios subject to initial values

In this chapter we will give solutions for the Sharpe Ratio and relevant asset
price characteristics subject to different initial values in Table 5.1. Remember
the domain in which we compute the model is Ω = [0.1, 10]×[−0.32, 0.32] and
that the paths for y and k oscillate approximately around some ”equilibrium”
point (0, 2) at a pretty early point in time. We have seen in Figure 4.1 that
it already starts to oscillate when a time horizon of just N = 50 is chosen.
Nonetheless even for any pair of initial values with k = 2 a time horizon
of N = 10000 is needed to get to a final value for the Sharpe Ratio. For
any other pair of initial values the maximum time horizon is chosen to be
N = 50000, see Table 5.1..The MATLAB codes generating these results are
given in appendix (A.2)
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We find that the Sharpe Ratios differ from the Sharpe Ration given by Grüne
and Semmler, [7], p.16, that is 0.007999.

Before we analyse the model for reasons for this difference in chapter 7, we
will have a look at the random variable approach in chapter 6.
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Initial values: (y0, k0) = (−0.32, 2.0)
N 50 500 1000 5000 10000

E[m] 0.9436 0.9494 0.9498 0.9500 0.9500
σm 0.0171 0.0103 0.0095 0.0088 0.0087
Rf 1.0597 1.0533 1.0529 1.0527 1.0526

E[R] 1.0601 1.0534 1.0530 1.0527 1.0527
σR 0.0188 0.0115 0.0106 0.0098 0.0097

Cov[R,m] -0.00032 -0.00012 -0.00010 -0.00009 -0.00008
SB 0.0181 0.0109 0.0100 0.0092 0.0091

Sharpe Ratio 0.0181 0.0109 0.0100 0.0092 0.0091

Initial values: (y0, k0) = (0.32, 2.0)
N 50 500 1000 5000 10000

E[m] 0.9557 0.9506 0.9504 0.9501 0.9501
σm 0.0178 0.0104 0.0095 0.0088 0.0087
Rf 1.0464 1.0519 1.0522 1.0525 1.0526

E[R] 1.0467 1.0521 1.0523 1.0526 1.0526
σR 0.0203 0.0117 0.0107 0.0098 0.0097

Cov[R,m] -0.00036 -0.00012 -0.00010 -0.00009 -0.00008
SB 0.0187 0.0110 0.0100 0.0092 0.0091

Sharpe Ratio 0.0186 0.0110 0.0100 0.0092 0.0091

Initial values: (y0, k0) = (0, 2.0)
N 50 500 1000 5000 10000

E[m] 0.9495 0.9500 0.9501 0.9500 0.9500
σm 0.0100 0.0092 0.0088 0.0086 0.0086
Rf 1.0531 1.0526 1.0526 1.0526 1.0526

E[R] 1.0533 1.0527 1.0527 1.0527 1.0527
σR 0.0112 0.0102 0.0099 0.0096 0.0096

Cov[R,m] -0.00011 -0.00009 -0.00008 -0.00008 -0.00008
SB 0.0105 0.0096 0.0093 0.0091 0.0091

Sharpe Ratio 0.0105 0.0096 0.0093 0.0091 0.0091
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Initial values: (y0, k0) = (−0.32, 9.0)
N 50 500 1000 5000 10000 50000

E[m] 0.9552 0.9506 0.9503 0.9501 0.9501 0.9500
σm 0.0711 0.0241 0.0181 0.0111 0.0099 0.0088
Rf 1.0468 1.0520 1.0523 1.0525 1.0526 1.0526

E[R] 1.0509 1.0525 1.0525 1.0527 1.0527 1.0527
σR 0.0551 0.0199 0.0156 0.0110 0.0103 0.0097

Cov[R,m] -0.0039 -0.00047 -0.00028 -0.00012 -0.00010 -0.00008
SB 0.0744 0.0254 0.0190 0.0117 0.0105 0.0093

Sharpe Ratio 0.0739 0.0250 0.0187 0.0115 0.0103 0.0092

Initial values: (y0, k0) = (0.32, 9.0)
N 50 500 1000 5000 10000 50000

E[m] 0.9662 0.9517 0.9509 0.9502 0.9501 0.9501
σm 0.0437 0.0170 0.0135 0.0098 0.0092 0.0086
Rf 1.0349 1.0508 1.0516 1.0524 1.0525 1.0526

E[R] 1.0367 1.0511 1.0518 1.0525 1.0526 1.0527
σR 0.0395 0.0165 0.0135 0.0105 0.0100 0.0096

Cov[R,m] -0.0017 -0.00028 -0.00018 -0.00011 -0.00009 -0.00008
SB 0.0452 0.0178 0.0142 0.0103 0.0097 0.0091

Sharpe Ratio 0.0450 0.0177 0.0140 0.0102 0.0096 0.0091

Initial values: (y0, k0) = (0, 9.0)
N 50 500 1000 5000 10000 50000

E[m] 0.9606 0.9511 0.9506 0.9501 0.9501 0.9501
σm 0.0558 0.0199 0.0153 0.0103 0.0095 0.0087
Rf 1.0410 1.0514 1.0520 1.0525 1.0525 1.0526

E[R] 1.0437 1.0518 1.0522 1.0526 1.0526 1.0527
σR 0.0463 0.0177 0.0142 0.0107 0.0101 0.0096

Cov[R,m] -0.0026 -0.00035 -0.00021 -0.00011 -0.00010 -0.00008
SB 0.0581 0.0209 0.0161 0.0108 0.0100 0.0092

Sharpe Ratio 0.0578 0.0207 0.0159 0.0107 0.0099 0.0091
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Initial values: (y0, k0) = (−0.32, 0.1)
N 50 500 1000 5000 10000 50000

E[m] 0.9276 0.9478 0.9490 0.9498 0.9499 0.9500
σm 0.0660 0.0236 0.0178 0.0110 0.0099 0.0088
Rf 1.0780 1.0550 1.0538 1.0528 1.0527 1.0526

E[R] 1.0869 1.0561 1.0543 1.0530 1.0528 1.0527
σR 0.1262 0.0423 0.0307 0.0162 0.0133 0.0104

Cov[R,m] -0.0082 -0.00097 -0.00053 -0.00017 -0.00013 -0.00009
SB 0.0712 0.0249 0.0187 0.0116 0.0104 0.0093

Sharpe Ratio 0.0703 0.0243 0.0182 0.0112 0.0100 0.0091

Initial values: (y0, k0) = (0.32, 0.1)
N 50 500 1000 5000 10000 50000

E[m] 0.9140 0.9492 0.9496 0.9500 0.9500 0.9500
σm 0.0769 0.0259 0.0193 0.0115 0.0102 0.0089
Rf 1.0627 1.0536 1.0530 1.0527 1.0526 1.0526

E[R] 1.0765 1.0550 1.0538 1.0529 1.0528 1.0527
σR 0.1710 0.0554 0.0398 0.0197 0.0155 0.0110

Cov[R,m] -0.00130 -0.0014 -0.00074 -0.00021 -0.00015 -0.00009
SB 0.0817 0.0273 0.0203 0.0122 0.0107 0.0093

Sharpe Ratio 0.0805 0.0266 0.0196 0.0114 0.0100 0.0090

Initial values: (y0, k0) = (0, 0.1)
N 50 500 1000 5000 10000 50000

E[m] 0.9342 0.09485 0.9493 0.9499 0.9500 0.9500
σm 0.0710 0.0425 0.0184 0.0112 0.0100 0.0088
Rf 1.0704 1.0543 1.0534 1.0528 1.0527 1.0526

E[R] 1.0815 1.0555 1.0541 1.0530 1.0528 1.0527
σR 0.1473 0.0483 0.0349 0.0178 0.0143 0.0106

Cov[R,m] -0.0103 -0.0012 -0.00062 -0.00019 -0.00014 -0.00009
SB 0.0760 0.0258 0.0193 0.0118 0.0105 0.0093

Sharpe Ratio 0.0751 0.0252 0.0187 0.0112 0.0100 0.0091

Table 5.1: Sharpe Ratios depending on initaial values



Chapter 6

Random Variable Approach

This chapter covers the random variable approach to our stochastic growth
model. First, note, that all MATLAB codes used throughout this chapter
can be found in appendix A.3.

6.1 Restrictions on ε

As one could see in chapter 4 the stochastic discount factor is given by:

m(ct, ct+1) = β
ct

ct+1

We will know look at m as a function of our random variable ε, which goes
into the function via z and therefore c. Substituting the control function for
c into the formula for m and just looking one step ahead from the initial
values gives us:

m(k, y) =
βey0k0

α

eρy0+εαβAey0k0
α (6.1)

Again we have to find the Expected Value of m and and several other char-
acteristics in order to calculate the Upper Bound and the Sharpe Ratio.

If we want to calculate the expected value of our random variable m, we have

42
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Figure 6.1: density function of ε in [−0.5, 0.5]

to use the density function of ε. Since ε ∼ N(0, 0.008) the density function
is:

∼
f (ε) =

1√
2πσ2

e−
1
2

ε2

0.0082 (6.2)

Because of the fact that we work with MATLAB and that uses numerical
methods for the calculation of integrals, we have to restrict the interval for ε.
Figure 6.1 shows the density function. Obviously the numbers in the tail of
the figure are very close to zero. A cutout of the right tail is given in Figure
6.2. This figure gives us the impression that all values outside the interval
[−0.05, 0.05] are approximately 0. In order to ceck that impression we also
calculate the density function in the interval [−0.05, 0.05] and look at those
tails.

Thus we see that using the interval [−0.032, 0.032] is sufficient for our
calculation. We will use this interval, since it was also used in Grüne and

Figure 6.2: density function of ε in [−0.05, 0.05]
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Semmler, [7], p. 15. If we broaden the interval the values we get for the
Sharpe Ratio and other characteristics do not change any more.

6.2 Sharpe Ratios subject to initial values

Since we compute the following integrals only in the interval [−0.032, 0.032],

we have to scale the density function of ε by
∫ 0.032

−0.032

∼
f (ε)dε = 0.9999 for

σε = 0.008. We get:

f(ε) =
1

0.9999

1√
2πσ2

e−
1
2

ε2

0.0082 (6.3)

Thus the expected value for m is calculated holding c0, k0 and z0 constant
and by substituting the corresponding formulas for k1 and z1 where needed:

E[m] =

∫ 0.032

−0.032

βey0k0
α

eρy0+εαβAey0k0
α f(ε) dε (6.4)

Calculation of the Variance of m:

V ar[m] =

∫ 0.032

−0.032

(
βey0k0

α

eρy0+εαβAey0k0
α − E[m])2 f(ε) dε (6.5)

Calculation of the asset’s expected return and variance:

E[R] =

∫ 0.032

−0.032

c1 + p1

p0

f(ε) dε (6.6)

=

∫ 0.032

−0.032

eρ y0+ε(αβey0Akα
0 )α

βey0kα
0

f(ε) dε (6.7)

V ar[R] =

∫ 0.032

−0.032

(
eρ y0+ε(αβey0Akα

0 )α

βey0kα
0

− E[R])2 f(ε) dε (6.8)

The risk-free interest rate Rf , the Sharpe Ratio SR and the upper bound SB
are calculated as usual. Therefore we need to compute the covariance of R
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and m, as well.

Cov[R,m] =

∫ 0.032

−0.032

(
c1 + p1

p0

− E[R])(β
c0

c1

− E[m]) f(ε) dε (6.9)

=

∫ 0.032

−0.032

(
eρ y0+ε(αβey0Akα

0 )α

βey0kα
0

− E[R]) (6.10)

· ( βey0k0
α

eρy0+εαβAey0k0
α − E[m]) f(ε) dε (6.11)

Table 6.1 shows the characteristics depending on various initial values. The
MATLAB codes generating these results are given in appendix (A.2).

In the Table all numbers are only calculated up to the fourth decimal digit.
The more exact Sharpe Ratio is 0.00799533412689, which fits nicely with the
result as can be found in Grüne and Semmler, [7], p.16, that is 0.007999.
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Initial values: k(0) = 0.1
y(0) = 0 y(0) = −0.32 y(0) = 0.32

E[m] 0.4815 0.5199 0.4459
σm 0.0038 0.0042 0.0036
Rf 2.0770 1.9235 2.2428

E[R] 2.0772 1.9236 2.2430
σR 0.0166 0.0154 0.0179

Cov[R,m] -0.00006 -0.00006 -0.00006
SB 0.0080 0.0080 0.0080
SR 0.0080 0.0080 0.0080

Initial values: k(0) = 9.0
y(0) = 0 y(0) = −0.32 y(0) = 0.32

E[m] 1.3216 1.4271 1.2239
σm 0.0106 0.0114 0.0098
Rf 0.7567 0.7007 0.8171

E[R] 0.7567 0.7008 0.8171
σR 0.0061 0.0056 0.0065

Cov[R,m] -0.00006 -0.00006 -0.00006
SB 0.0080 0.0080 0.0080
SR 0.0080 0.0080 0.0080

Initial values: k(0) = 2.0
y(0) = 0 y(0) = −0.32 y(0) = 0.32

E[m] 0.9430 1.0183 0.8733
σm 0.0075 0.0081 0.0070
Rf 1.0604 0.9821 1.1451

E[R] 1.0605 0.9821 1.1452
σR 0.0085 0.0079 0.0092

Cov[R,m] -0.00006 -0.00006 -0.00006
SB 0.0080 0.0080 0.0080
SR 0.0080 0.0080 0.0080

Table 6.1: Sharpe Ratios depending on initial values



Chapter 7

Comparison

As one can see by comparing the results of chapter 5 and chapter 6, Table
5.1 and Table 6.1, the results differ rather a lot. At first we have to note that
the only results we can really compare and which we hoped to be equal are
the Sharpe Ratio and the upper bound. We do now have to admit that both
approaches have rather different outcomes.
Consider the initial values (y0, k0) = (0, 0.1). Then the result for example
for E[m] is 0.4815 when using the random variable approach and the result
is 0.9500 for the time series with N = 10000. It is important to mention
that we cannot compare those results with each other since in the time series
approach we middle over a lot of results in the long run, that oscillate at a
pretty early point in time approximately around (y, k) ∼ (0, 2). Thus we can
compare the outcome of E[m] from the time series only with the outcome of
the random variable for initial values (y0, k0) = (0, 2). Same holds for Rf

and E[R].
Nonetheless the results obviously do not fit, therefore we need to take a
more detailed look at the programmes and the differences between both ap-
proaches. We want to begin this analysis by checking the time series pro-
gramme for correctness. After that we will have a look at the correlations
between the random variables in both programmes.

47
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7.1 Programme Check

We will now verify all programmes needed for the time series approach. The
codes are given in Appendix (A.2).
At first we want to check if the equations for the time series for y, k and c
work properly. One way to do so is to rewrite some of the equations. Assume
that we just generate N = 10000 results for y1, k1 and c1, i.e. we look at
sample data just one time step ahead from the initial values. According to
the central limit theorem (2.1.18), averaging over these values should give us
approximately the same values for y, k and c as we would get by using the
random variable approach, which works by finding the expected value in one
time step. The Matlab code for simulating the sample datas are given in the
programme SR control, (A.4)
In order to generate the sample data we leave the programmes RWfibonacci.m
and boxmuller.m the way they are, because we still need those N(0, 0.0082)
distributed pseudo random variables ε. But we will change the routine in
Refz, since we do not need a path over time but 10.000 results for the first
time step. Thus we drop the time subscript t and use the subscript j to denote
the ”j-th sample data”. We rewrite the equation for yj+1 in the following way:

yj+1 = ρy0 + εj (7.1)

Note, that the parameter t is not a time subscript any more, but rather an
index denoting the number of an element of the sample data.
After having generated the sample data for y, we will now have a closer look
at the formulas for k and c. Remember the original formulas:

kj+1 = eyjAkj
α − cj

cj = (1− αβ)Aeyjkα
j

For our problem those formulas become:

kj+1 = ey0Ak0
α − c0 (7.2)

cj+1 = (1− αβ)Aeyjkα
1 (7.3)

Note that the randomness just comes into the formula for cj+1 by yj, because
for the calculation of kj+1 all parameters and initial values are fix. Thus we
will not have to calculate sample data for k. The sample data for cj+1 are
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given by the above formula.
After obtaining all our datas we can now look at our asset price character-
istics. At first we must find an expected value for m. The equation for m
changes slightly in order to get sample data for m.

mj = β
c0

cj+1

(7.4)

E[m] =
1

N

N∑
j=1

mj (7.5)

The next adjustment we have to make is in the return formula. The price
formula can be used in the same way we used it beforehand. Based on the
same principle the return equation becomes:

Rj =
cj+1 + pj+1

p0

(7.6)

E[R] =
1

N

N∑
j=1

Rj (7.7)

These are all changes we have to make. From here we can use the original
formulas for the calculation of the Sharpe Ratio. Table 7.1 shows the results
for Sharpe Ratios and other financial characteristics, such as the risk-free
interest rate, again dependent on different initial values. By comparison of
this tabular with Table 6.1 that gives the results for the random variable
approach, one can see, that all values are nearly identical, which tells us,
that the programme set-up in general was correct. It also tells us that the
pseudo random variables cannot be held responsible for the differences in the
outcomes we detected beforehand.
Thus we have to verify both approaches for differences.
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Initial values: k(0) = 0.1
y(0) = 0 y(0) = −0.32 y(0) = 0.32

E[m] 0.4814 0.5198 0.4458
Rf 2.0772 1.9237 2.2430

E[R] 2.0774 1.238 2.2432
SB 0.0080 0.0080 0.0080
SR 0.0080 0.0080 0.0080

Initial values: k(0) = 9.0
y(0) = 0 y(0) = −0.32 y(0) = 0.32

E[m] 1.3214 1.4269 1.2238
Rf 0.7567 0.7008 0.8172

E[R] 0.7568 0.7008 0.8172
SB 0.0080 0.0080 0.0080
SR 0.0080 0.0080 0.0080

Initial values: k(0) = 2.0
y(0) = 0 y(0) = −0.32 y(0) = 0.32

E[m] 0.9429 1.0182 0.8732
Rf 1.0606 0.9821 1.1452

E[R] 1.0606 0.9822 1.1453
SB 0.0080 0.0080 0.0080
SR 0.0080 0.0080 0.0080

Table 7.1: Sharpe Ratios as an outcome of the control programme SR control

7.2 Correlations

The first thing we will do in this analysis is looking at the correlations be-
tween the random variables and compare the results of both programmes. In
this context the correlation coefficient indicates the strength and direction of
a linear relationship between two random variables. Thus correlation refers
to the departure of two variables from independence. As one can easily see
by looking at the formula for consumption there is an interdependence of
y, kα and c. The bivariate plot given in Figure 7.1 shows the linear depen-
dence of z and c. If one tries to fit a single straight line through the dots it
would have a positive slope. Thus we would also expect a positive relation-
ship between those parameters. The correlation coefficient ρX,Y between two
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Figure 7.1: point pairs (z,c)

random variables was already defined in chapter 2.1 in definition 2.1.10. We
can use this formula for the random variable approach. For the time series
model the formula becomes:

ρz,c =
1
N

∑N−1
t=0 ((zt − E[z])(ct − E[c]))√

1
N

∑N−1
t=0 ((zt − E[z])2

√
1
N

∑N−1
t=0 ((ct − E[c])2

(7.8)

This equation obviously holds for all other time series as well. Table 7.2
shows correlations in the time series model.

Let us now look at the correlations in the random variable model. Note
again, that this approach only looks one time step ahead from the initial
values when calculating the expectations, variances and covariances. It just
integrates by using the density function of ε
Remember the formula for k1.

k1 = ey0Ak0
α − c0

It is obvious that there is no stochastic influence. All values that are needed
for its calculation are initial values. Thus the expected value E[k1] is equal
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Initial values: k(0) = 0.1
Cor[·, ·] y(0) = 0 y(0) = −0.32 y(0) = 0.32

[z, c] 0.9608 0.9832 0.9226
[z, p] 0.9608 0.9832 0.9226
[z, k] 0.8309 0.8918 0.7476
[kα, c] 0.8894 0.9126 0.8682

Initial values: k(0) = 9.0
Cor[·, ·] y(0) = 0 y(0) = −0.32 y(0) = 0.32

[z, c] 0.9634 0.9634 0.9664
[z, p] 0.9634 0.9634 0.9664
[z, k] 0.5845 0.5023 0.7456
[kα, c] 0.8922 0.8379 0.9549

Initial values: k(0) = 2.0
Cor[·, ·] y(0) = 0 y(0) = −0.32 y(0) = 0.32

[z, c] 0.9882 0.9886 0.9871
[z, p] 0.9882 0.9886 0.9871
[z, k] 0.8940 0.8973 0.8873
[kα, c] 0.9518 0.9527 0.9487

Table 7.2: Correlations depending on initial values

to k1 itself, which means that its variance is 0. This in turn does not allow
us to calculate the correlations between k and other variables, because we
would have to divide by zero. Whenever it is not possible to compute the
correlation we will look at the covariance, since it already tells us if there is
any kind of relationship between those variables.
Since the degree of the relationship between all parameters does not change
with the initial values, Table 7.3 shows all correlations and covariances that
turn up in this model.

As we have already expected by looking at the random variable model set-up,
there is no linear relationship in the stochastic sense of k and z, and kα and
c. This is the main difference between both models, because for every pair
of initial values there is always a positive linear relationship between those
variables in the time series approach. At a closer look one even finds that in
every case, there is not only a relationship but also a strong one. Hence the
results for the Sharpe Ratio differ between both programmes.
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Cor[·, ·] (y0, k0)
[z, c] 1.0000
[z, p] 1.0000

Cov[·, ·]
[z, k] 0
[kα, c] 0

Table 7.3: Correlations and Covariances in the RV model

Considering that the influences vary that much between those models it is
remarkable that the Sharpe Ratios are still quite close to each other. The
small variance of ε might account for this fact.

7.3 σε and Model Outcomes

In order to figure out what impact the chosen variance of ε does have on
both models and especially on the different outcomes we will now vary the
variance of ε in both programmes. Before we can calculate the Sharpe Ratios
we have to figure out the interval for the random variable approach. Figure
7.2 shows the density function, when σε = 0.01. Thus we take the interval
[−0.05, 0.05] for all calculations in the random variable approach.
The following Table 7.4 shows the Sharpe Ratio and other characteristics,
when ε ∼ N(0, 0.01) and the time horizon N in the time series approach is
set to 50000.

Figure 7.2: density function of ε in [−0.5, 0.5], σε = 0.01
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Initial Values
(0, 2) (−0.32, 2) (0.32, 2)

RV TS RV TS RV TS
E[m] 0.9430 0.9501 1.0183 0.9501 0.8733 0.9501
Rf 1.0604 1.0526 0.9820 1.0526 1.1451 1.0526

E[R] 1.0605 1.0527 0.9821 1.0527 1.1452 1.0527
Cov[R,m] -0.00010 -0.00013 -0.00010 -0.00013 -0.00010 -0.00013

SB 0.0100 0.0112 0.0100 0.0112 0.0100 0.0115
SR cov 0.0100 0.0112 0.0100 0.0112 0.0100 0.0113

SR stand 0.0099 0.0112 0.0099 0.0112 0.0099 0.0113

Initial Values
(0, 0.1) (0, 9) (−0.32, 9)

RV TS RV TS RV TS
E[m] 0.4815 0.9500 1.3216 0.9501 1.4271 0.9501
Rf 2.0770 1.0526 0.7567 1.0526 0.7007 1.0526

E[R] 2.0772 1.0527 0.7567 1.0527 0.7008 1.0527
Cov[R,m] -0.00010 -0.00013 -0.00010 -0.00013 -0.00010 -0.00013

SB 0.0100 0.0115 0.0100 0.0114 0.0100 0.0114
SR cov 0.0100 0.0113 0.0100 0.0113 0.0100 0.0114

SR stand 0.0099 0.0113 0.0099 0.0113 0.0099 0.0114

Table 7.4: Results for the Sharpe Ratio, σε = 0.01, N = 50000, ε ∈
[−0.05, 0.05]
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We notice that the results for both approaches are different to the results we
found in chapter 5 and 6 in Table 5.1 and 6.1. For both models the Sharpe
Ratios are higher. Thus changing the variance to a higher level seems to result
in higher Sharpe Ratios. Looking at values in Table 7.4 more thoroughly we
also find that that all characteristics, except the upper bound and the Sharpe
Ratio, are equal to the numbers we found in chapter 5 and 6. That means the
reason for the different results can only be found in the standard deviations
of R and m. Consider for example the initial values (y0, k0) = (0, 2). With
σε = 0.008 we find σm = 0.0085 and σR = 0.0095 and with σε = 0.01 we find
σm = 0.0106 and σR = 0.0119. Looking at the formulas (3.6),(3.7) and (3.9).
we can account the change in the standard deviations for the change in the
results for the upper bound and the Sharpe Ratio.

In order to analyse the impact of the standard deviation σε on the Sharpe
Ratios thoroughly more results are needed. Table 7.5 shows the results for
different standard deviations.

σε = 0.008
ε ∈ [−0.032, 0.032]

RV TS
E[m] 0.9430 0.9500
Rf 1.0604 1.0526

E[R] 1.0605 1.0527
SB 0.0080 0.0091
SR 0.0080 0.0091

σε = 0.01
ε ∈ [−0.05, 0.05]

RV TS
E[m] 0.9430 0.9501
Rf 1.0604 1.0526

E[R] 1.0605 1.0527
SB 0.0100 0.0112
SR 0.0099 0.0112
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σε = 0.05
ε ∈ [−0.25, 0.25]

RV TS
E[m] 0.9441 0.9515
Rf 1.0592 1.0510

E[R] 1.0618 1.0543
SB 0.0500 0.0550
SR 0.0499 0.0548

σε = 0.10
ε ∈ [−0.45, 0.45]

RV TS
E[m] 0.9477 0.9559
Rf 1.0552 1.0462

E[R] 1.0658 1.0595
SB 0.1002 0.1076
SR 0.0992 0.1064

σε = 0.5
ε ∈ [−2.5, 2.5]
RV TS

E[m] 1.0685 1.0880
Rf 0.9359 0.9191

E[R] 1.2017 1.2660
SB 0.5329 0.4724
SR 0.4151 0.3619

σε = 0.05
ε ∈ [−5, 5]

RV TS
E[m] 1.5546 1.5242
Rf 0.6432 0.6561

E[R] 1.7484 2.3957
SB 1.3095 0.8752
SR 0.4827 0.3428

Table 7.5: Sharpe Ratios depending on σε, N = 50000, (y0, k0) = (0, 2)

So far, we are not able to compare the results with each other. Remember
that we want to find out what impact has the standard deviation of ε on the
difference between the results for the Sharpe Ratios in both approaches. We
will therefore look at the outcome ratios.

σε Ratio SRRV
SRT S

0.008 0.8791
0.01 0.8839
0.05 0.5030
0.1 0.9323
0.5 1.1470
1 1.4081

Table 7.6: Sharpe Ratio ratios

For the first four ratios we get the impression that the higher we choose
the standard deviation for ε the closer the outcomes get to each other. The
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smaller Sharpe Ratio of the random variable approach seems to react stronger
on the higher standard deviation than the Sharpe Ratio of the random vari-
able model. But as soon as we choose σε to be ”really” high we observe that
the gap between the outcome of the time series approach and of the random
variable becomes larger again and finally percentage wise is even larger than
it was at the beginning. Thus for high standard deviations the impact of σε is
stronger on the time series approach than on the random variable approach.



Chapter 8

Asset Pricing with Loss
Aversion

Since reality shows that consumption based models do not fit financial market
characteristics to time series data, in this chapter we will adjust our stochastic
growth model for loss aversion. The main idea behind asset pricing models
with loss aversion is, that someone who has experienced much losses on risky
assets in his past, will become even more careful with handling risky assets
in the future than he has already been beforehand. Thus we will now look
at a model taking one’s past experiences into consideration. The model we
introduce in this chapter is based on the paper by Grüne and Semmler, [8].
As for the basic consumption based model they used the stoachstic dynamic
programming approach to solve for Sharpe Ratios.

8.1 Our Reference Model and Loss Aversion

Look back at the model set-up of our reference stochastic growth in chapter
4. We will now adjust that model for the loss aversion. Thus, in this chapter
we want to maximize over

Et[
∞∑

t=0

(βtu(ct) + btβ
t+1ν(Xt+1, St, rt))] (8.1)
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u(ct): denotes the utility over consumption. As usual we take
u(c) = ln c.
β: is again the discount factor
Xt+1: is the change of wealth
St: the value of the agent’s risky assets
rt: a variable, measuring the agent’s gains or losses prior to period
t, denoted as a fraction of St. The economic interpretation of zt is
that it expresses the way of how the agent has experienced gains
or losses in the past affecting his or her willingness to take risks.
Rt: is again the return on the risky asset
Rf : is still the risk-free interest rate as the case may be the return
on a risk-free asset.

More precisely we have:

1. The change in wealth is calculated as

Xt+1 = StRt − StR
f (8.2)

The difference Rf −Rt can be positive, zero or negative.

2. Although rt can be greater, equal or smaller than one, with rt = 1 and
thus with

ν(Xt+1, St, 1) =

 Xt+1 for Xt+1 ≥ 0

λXt+1 for Xt+1 < 0.
(8.3)

λ > 1 defined as follows:

λ(zt) = λ + k(rt − 1), (8.4)

k > 0. This models the fact that a loss is more severe than a gain. For
rt+1 we have:

rt+1 = ηzt
R

Rt+1

+ (1− η), (8.5)

η ∈ [0, 1] and R fixed, denoting the long time average of the risk-free
interest rate.
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3. The last parameter we have to discuss is bt, which is related to aggregate
consumption

∼
ct in the following way:

bt = b0
∼
ct

−1
, (8.6)

∼
ct will be specified so as to hold the price-dividend ratio and the risky
asset premium stationary. One important paramter is b0, which points
the relevance of financial wealth on utility gains or losses relative to
consumption out. With b0 = 0 we obtain the usual consumption based
model.

This is our reference model adjusted for loss aversion. Now, we have to take
a closer look at the formulas that we need for the calculation of the asset
price characteristics.

8.2 Loss Aversion and Financial Measures

Since our maximization problem changed due to the adjustment for risk
aversion, we would also expect our formulas to change at least slightly. Since
the utility function remains unchanged, the stochastic discount factor m for
the risk free interest rate does not change. We still have:

mf,t+1 = β

∼
ct
∼

ct+1

Thus Rf remains 1
E[m]

. The first considerable change can be found in a
characterization for the risky asset. Remember in the consumption based
model we had E[mR] = 1 for the same reason that E[mRf ] = 1, see chapter
3 (3.3). Now, we have:

1 = βEt[Rt+1

∼
ct
∼

ct+1

]︸ ︷︷ ︸
=Et[mf,t+1Rt+1]

+b0βEt[
∧
ν (Rt+1, rt)] (8.7)
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with

∧
ν (Rt+1, rt) =



Rt+1 −Rf
t , Rt+1 ≥ rtR

f
t and rt ≤ 1

(rt − 1)Rf
t + λ(Rt+1 − rtR

f
t ), Rt+1 < rtR

f
t and rt ≤ 1

Rt+1 −Rf
t , Rt+1 ≥ Rf

t and rt > 1

λ(rt)(Rt+1 −Rf
t ), Rt+1 ≥ Rf

t and rt > 1

The second term of equation (1.7) expresses the risk of greater losses the
agent is exposed to if he or she consumes less today and invests in risky
assets instead of it.
Using that in this model the dividend dt+1 is chosen equal to

∼
ct+1 as before-

hand, and then using the return function for the risky asset, that is:

Rt+1 =
pt+1 + ct+1

pt

.

Thus our basic pricing equations becomes:

Pt =



Et[
mf,t+1+βb0
1+βb0Rf ,t

(
∼

ct+1 +Pt+1)] for Rt+1 ≥ rtR
f
t and rt ≤ 1

Et[
mf,t+1+βb0λ

1+βb0((λ−1)rt+1)Rf ,t
(
∼

ct+1 +Pt+1)]for Rt+1 < rtR
f
t and rt ≤ 1

Et[
mf,t+1+βb0

1+βb0Rf
t

(
∼

ct+1 +Pt+1)] for Rt+1 ≥ Rf
t and rt > 1

Et[
mf,t+1+βb0λ(rt)

1+βb0λ(rt)R
f
t

(
∼

ct+1 +Pt+1)] for Rt+1 < Rf
t and rt > 1

(8.8)

We can calculate the Sharpe Ratio as usual.

SR =

∣∣∣∣E[R]−Rf

σR

∣∣∣∣
8.3 Solution

Now that we have re-defined all necessary formulas we can begin to look for
a solution to this model. We use the reference model of chapter 4 to generate
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the consumption
∼

ct+1, that is:

max
∼
ct

E[
∞∑

t=0

βt ln
∼
ct]

subject to the dynamics

kt+1 =ztAkα
t − ct

ln zt+1=ρ ln zt + εt

εt is still an i.i.d. random variable, A = 5, α = 0.34, ρ = 0.9 and β = 0.95,
see chapter 4, (4.1). The control function remains

∼
ct= (1− αβ)Aztk

α
t .

The parameters for the loss aversion model are chosen to be

λ = 10, η = 0.9 and k = 3.

Since the sets of datas for the stock return Rt+1 and Rf
t+1 are given, and

those datas were generated with DP simulations, the standard deviation σε

was restricted to the interval [−0.032, 0.032].
The MATLAB codes reading the parameters out of the file and based on
those datas calculating the Sharpe Ratios and other characteristics are given
in Appendix A.6.. The data sets are on the CD. We obtain E[R], E[Rf ] and
σR by the following equations:

E[R] =
1

N

N∑
t=1

Rt+1 (8.9)

E[R] =
1

N

√√√√ N∑
t=1

(Rt+1 − E[R])2 (8.10)

E[Rf ] =
1

N

N∑
t=1

Rf
t+1, (8.11)

where N is the number of datas for Rt+1 or Rf
t+1., i.e. N = 50343.

We will now, vary the parameter b0 and then calculate the different Sharpe
Ratios and other financial measures. The results are given in Table 7.1..
Please note that for b0 = 0 we obtain the basic consumption model as given
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b0 0 0.01 0.05 0.1 0.5 3 10
E[R] 1.0527 1.0527 1.0537 1.0543 1.0563 1.0575 1.0577
σR 0.0089 0.0089 0.0091 0.0093 0.0100 0.0105 0.0106
Rf 1.0527 1.0527 1.0527 1.0527 1.0527 1.0527 1.0527
SR 0.0059 0.0033 0.1033 0.1735 0.3548 0.4499 0.4683

Table 8.1: Results for varying b0

in our reference model. First thing we note is that even for b0 = 0, which
should be the ususal consumption based model we used throughout chapter
5 to 7, we do not get the same results. Remember the Sharpe Ratio for the
time series approach was 0.0091 and for the random variable approach it was
0.0080. The difference between the Sharpe Ratio we get in this context and
the others must be due to the fact that another method for generating the
returns was used. This can also be seen very easily in the expected value for
the return of the risky asset.

We will now look at the outcomes for varying b0 as can be found in Grüne
and Semmler, [8], p.12. and represented in Table 8.2.. As we have already

b0 0 0.01 0.05 0.1 0.5 3 10
E[R] 1.05273 1.05282 1.05362 1.05396 1.05419 1.05338 1.05297

V ar[R] 0.00840 0.00840 0.00848 0.00855 0.00858 0.00879 0.00842
Rf 1.05273 1.05273 1.05273 1.05273 1.05273 1.05273 1.05273
SR 0.00798 0.01114 0.10516 0.14453 0.17072 0.07438 0.02919

Table 8.2: Results for varying b0 as in Güne and Semmler

seen in the past chapter, the results we get by time series approaches vary
considerably from results obtained by the stochastic dynamic programming
approach.



Chapter 9

Summary and Conclusion

The objective of this thesis was to compare three different methods for solving
a stochastic growth model for asset price characteristics with each other.
The results yielded by the time series and the random variable methods were
generated in this thesis in chapter 5 and 6 respectively, but the ones of the
stochastic dynamic programming approach were taken out of the paper by
Grüne and Semmler, Solving Asset Pricing Models with Stochastic Dynamic
Programming, [7]

By comparison we figured out that the values we get when applying the
time series method to our model differ to the values we get when we use the
random variable or the stochastic dynamic programmming approach. In the
latter two models we find equal results.

When analyzing the random variable and time series approach for differences
we also compared the impact of the dynamics to our optimal control function.
To express those relationships we calculated the correlations and covariances.
As a result we found that the differences were rather large. Whereas a strong
stochastic relationship between the capital and the consumption path could
be found in the time series approach we do not find such a thing in the
random variable approach. In fact, for the latter method we do not find any
stochastic relationship between capital and consumption.

After looking for differences we studied the impact of the standard deviation
of our shock variable on the model outcomes. As a result we figured out
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that for small increases in its standard deviation the outcomes improve. But
we also see that this behaviour does not hold for large standard deviations,
because then the time series results start to underestimate the Sharpe Ratios.

Finally, we adjusted our stochastic growth model for loss aversion. In this
context we just compared the results given by the time series approach and
the stochastic dynamic programming approach and again figured out that
those results differ.



Appendix A

Matlab Codes

The following MATLAB codes are based on the algorithms for generat-
ing pseudo random varibles as listed in ”Finanzderivate mit MATLAB” by
Günther and Jüngel. [10].

A.1 MATLAB codes for Path k

The following lagged Fibonacci-generator code gives us identically distributed
random variables which is the first step to the identically and normally dis-
tributed random variables we need in the algorithms for the pictures of our
reference model as well as for the solution of it.

function [dU]= RWfibonacci path(nu,mu,M,N,anzahl)
%--------------------------------------------------------------------
%Generator for Pseudo Random Variables, uniformly distributed on the
%interval [0,1]
%RWfibonacci path(nu,mu,M,N)
%nu∼=mu, M: Modulofactor, N: Time horizon
%--------------------------------------------------------------------
max=max(mu,nu);
X=M*rand(anzahl,max); %Matrix with random numbers
%--------------------------------------------------------------------
for i=1:anzahl

for j=1+max:N+max

66
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X(i,j)=mod(X(i,j-mu)-X(i,j-nu),M);
dU(i,j-max)=X(i,j)/M;

end
end

The random variables of the lagged Fibonacci-generator work as an input
to the Box-Muller algorithm used to derive standardnormally distributed
random variables with mean 0 and standard deviation 0.008.

function [Eps]= boxmuller path(nu,mu,M,N)
%--------------------------------------------------------------------
%generates N(0,1)-distributed random variables
%boxmuller(nu,mu,M,N)
%nu =mu, M: Modulofactor, N: Time horizon
%--------------------------------------------------------------------
DU1=RWfibonacci path(nu,mu,M,N,anzahl);
DU2=RWfibonacci path(nu,mu,M,N,anzahl);
fori=1:anzahl

Z(i,:)=sqrt(-2*log(DU1(i,:))).*cos(2*pi*DU2(i,:));
Eps(i,:)=0.008.*Z(i,:); %garantees standard deviation 0.008

end

We need those standard normally distributed random variables for the k-
paths of our reference model in chapter 5. The path to the stochastic process
z, i.e. the labour process, is generated by the following MATLAB code.

function [z]= Refz path(anzahl,N,y0)
%--------------------------------------------------------------------
%Paths for z based on our reference model
%Refz path(anzahl,N,y0)
%N: Time horizon
%anzahl: Number of paths
%y0: Start value for y=log(z)
%--------------------------------------------------------------------
rho=0.9; %parameter out of the

reference model
%--------------------------------------------------------------------
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rho=0.9;
M=2048; nu=17; mu=5;
Epsilon=boxmuller path(nu,mu,M,N,anzahl); %matrix with random

variables
fori=1:anzahl

y2(i,1)=y0; %every path starts
with the staring value

forj=1:N-1
y2(i,j+1)=rho*y2(i,j)+Epsilon(i,j);

end
end
z=exp(y2);

The plots for paths k in chapter 5 are generated by the following MATLAB
code. z is used as an input variable.

function [c]= Refk picture(anzahl,N,k01,k02,y01,y02,y03)
%--------------------------------------------------------------------
%Paths for k based on our reference model
%Refk(anzahl,N,k01,k02,y01,y02,y03)
%N: Time horizon
%anzahl: Number of paths
%k01,k02: start values for k
%y01,y02,y03: Start values for y=log(z)
%--------------------------------------------------------------------
A=5; alpha=0.34; rho=0.9; beta=0.95;
%--------------------------------------------------------------------
%Computation of k11 and k12 (start value y01)
for i=1:anzahl

k11(i,1)=k01;
z1=Refz path(anzahl,N,y01);
for j=1:N

c11(i,j)=(1-alpha*beta)*A*z1(i,j)*k11(i,j)^alpha;
k11(i,j+1)=z1(i,j)*A*k11(i,j)^alpha-c11(i,j);

end
k12(i,1)=k02;
z2=Refz path(anzahl,N,y01);
for j=1:N

c12(i,j)=(1-alpha*beta)*A*z2(i,j)*k12(i,j)^alpha;
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k12(i,j+1)=z2(i,j)*A*k12(i,j)^alpha-c12(i,j);
end

end
%Building the ’’average’’ path
if anzahl==1

k11=k11;
k12=k12;

else
k11=1/(anzahl+1)*sum(k11);
k12=1/(anzahl+1)*sum(k12);

end;
%--------------------------------------------------------------------
%Computation of k21 and k22 (start value y02)
for i=1:anzahl

k21(i,1)=k01;
z1=Refz path(anzahl,N,y02);
for j=1:N

c21(i,j)=(1-alpha*beta)*A*z1(i,j)*k21(i,j)^alpha;
k21(i,j+1)=z1(i,j)*A*k21(i,j)^alpha-c21(i,j);

end
k22(i,1)=k02;
z2=Refz path(anzahl,N,y02);
for j=1:N

c22(i,j)=(1-alpha*beta)*A*z2(i,j)*k22(i,j)^alpha;
k22(i,j+1)=z2(i,j)*A*k22(i,j)^alpha-c22(i,j);

end
end
%Building the ’’average’’ path
if anzahl==1

k21=k21;
k22=k22;

else
k21=1/(anzahl+1)*sum(k21);
k22=1/(anzahl+1)*sum(k22);

end;
%--------------------------------------------------------------------
%Computation of k31 and k32 (start value y03)
for i=1:anzahl

k31(i,1)=k01;
z1=Refz path(anzahl,N,y03);
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for j=1:N
c31(i,j)=(1-alpha*beta)*A*z1(i,j)*k31(i,j)^alpha;
k31(i,j+1)=z1(i,j)*A*k31(i,j)^alpha-c31(i,j);

end
k32(i,1)=k02;
z2=Refz path(anzahl,N,y03);
for j=1:N

c32(i,j)=(1-alpha*beta)*A*z2(i,j)*k32(i,j)^alpha;
k32(i,j+1)=z2(i,j)*A*k32(i,j)^alpha-c32(i,j);

end
end
%Building the ’’average’’ path
if anzahl==1

k31=k31;
k32=k32;

else
k31=1/(anzahl+1)*sum(k31);
k32=1/(anzahl+1)*sum(k32);

end;
%-------------------------------------------------------------------
%Plots
subplot(311)
plot(0:N),k11,’r-’,(0:N),k12,’k:’)
subplot(312)
plot(0:N),k21,’r-’,(0:N),k22,’k:’)
subplot(313)
plot(0:N),k31,’r-’,(0:N),k32,’k:’)

A.2 MATLAB codes for the Time Series so-

lution

For the Time Series solution of our basic stochastic growth model we will just
need to evaluate one path for k and z due to convergence reasons. Therefore
it is possible to simplify the above algorithms.

function [dU]= RWfibonacci(nu,mu,M,N)
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%--------------------------------------------------------------------
%Generator for Pseudo Random Variables, uniformly distributed on the
%interval [0,1]
%RWfibonacci(nu,mu,M,N)
%nu =mu, M: Modulofactor, N: Time horizon
%--------------------------------------------------------------------
rand(’seed’,2)
max=max(mu,nu);
X=M*rand(1,max); %(1 x max)-Matrix

with random variables
%--------------------------------------------------------------------
for j=1+max:N+max

X(j)=mod(X(j-mu)-X(j-nu),M);
dU(j-max)=X(j)/M ;

end

The random variables of the lagged Fibonacci-generator work as an input
to the Box-Muller algorithm used to derive standardnormally distributed
random variables with mean 0 and standard deviation 0.008.

function [Eeps]= boxmuller(nu,mu,M,N)
%--------------------------------------------------------------------
%generates N(0,1)-distributed random variables
%boxmuller(nu,mu,M,N)
%nu =mu, M: Modulofactor, N: Time horizon
%--------------------------------------------------------------------
DU1=RWfibonacci(nu,mu,M,N);
DU2=RWfibonacci(nu,mu,M,N);
Z=sqrt(-2*log(DU1).*cos(2*pi*DU2);
Eps=0.008.*Z;
Eeps=Eps;

function [z]= Refz(N,y0)
%--------------------------------------------------------------------
%Paths for z based on our reference model
%Refz(N,y0)
%N: Time horizon
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%y0: Start value for y=log(z)
%--------------------------------------------------------------------
rho=0.9; %parameter out of the

reference model
M=2048; nu=17; mu=5;
Epsilon=boxmuller(nu,mu,M,N); %matrix with random

variables
%--------------------------------------------------------------------
y2(1)=y0; %every paths starts at the

starting value
for j=1:N

y2(j+1)=rho*y2(j)+Epsilon(j);
end
z=exp(y2);

function [c]= Refk(N,k0,y0)
%-------------------------------------------------------------------
%evaluates path k according to the refence model
%Refk(N,k0,y0)
%Rahel Berkemann
%
%N: time horizon
%k0: start value for path k
%y0: start value for path y
%-------------------------------------------------------------------
A=5; alpha=0.34; rho=0.9; beta=0.95;
%-------------------------------------------------------------------
%Calculating k by the use of the control function c
k(1)=k0;
z=Refz1(N,y0);
for j=1:N

c(j)=(1-alpha*beta)*A*z(j)*k(j)^alpha;
k(j+1)=z(j)*A*k(j)âlpha-c(j);

end
c(N+1)=(1-alpha*beta)*A*z(N+1)*k(N+1)^alpha;

We get the consumption path as the output variable, because the consump-
tion path is what we need to calculate prices and returns and so the Sharpe
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Ratio. The main MATLAB code we need for our analysis is the following,
where we calculate the Upper Bound and the Sharpe Ratio.

function SR(N,k0,y0)
%--------------------------------------------------------------------
%Computation of the upper bound SB and the Sharpe Ratio for the
%Time Series approach
%SR(N,k0,y0)
%Rahel Berkemann
% %N: Time horizon
%k0: start value for k
%y0: Start value for y=log(z)
%--------------------------------------------------------------------
A=5; alpha=0.34; rho=0.9; beta=0.95;
%--------------------------------------------------------------------
%Computation of c
c=Refk(N,k0,y0);
%--------------------------------------------------------------------
%Computation of m(x)with x=(k,z)
for i=1:N-1

m t(i)=beta*c(i)/c(i+1);
end
%--------------------------------------------------------------------
% Computation of E(m(x))
Exp m=1/(N-1)*sum(m t);
%--------------------------------------------------------------------
%Computation of the risk-free interest rate R f(x)
R f=1./Exp m;
%--------------------------------------------------------------------
%Computation of the Variance of m(x)
Var m t=(m t-Exp m*ones(1,N-1)).2̂;
Var m=1/(N-1)*sum(Var m t)
%--------------------------------------------------------------------
%Computation of the Standard deviation of m(x)
SD m=sqrt(Var m);
%--------------------------------------------------------------------
%Computation of the Upper Bound SB
SB=SD m/Exp m;
%--------------------------------------------------------------------
%Computing Sharpe Ratios
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%Computation of p(x) with d(x)=c(x)
p=beta/(1-beta)*c;
%--------------------------------------------------------------------
%Computation of R(x)
for i=1:N-1

R t(i)=(c(i+1)+p(i+1))./p(i);
end
%--------------------------------------------------------------------
%Computing E(R(x))
Exp R=1/(N-1)*sum(R t);
%--------------------------------------------------------------------
%Comptation of the Covariance of R(x) and m(x);
Cov R m t=(R t-Exp R*ones(1,N-1)).*m t-Exp m*ones(1,N-1));
Cov R m=1/(N-1)*sum(Cov R m t);
%Computation of Var(R(x)) and SD(R(x))
Var R t=(R t-Exp R*ones(1,N-1).^2;
Var R=1/(N-1)*sum (Var R t);
SD R=sqrt(Var R);
%---------------------------------------------------------------------
%Computation of the Sharpe Ratio via the Covariance formula
SR Cov=(-R f*Cov R m)/SD R
%---------------------------------------------------------------------
%Computation of the Sharpe Ratio via the standard formula
SR stand=(Exp R-R f)/SD R

A.3 MATLAB codes for the Random Vari-

able solution

The second approach for solving the reference model was to look at the
variable m(x) as being a random variable itself. The MATLAB codes to that
approach are given in this section. I start with the main code for the Sharpe
Ratio analysis. All additional functions, i.e. the codes for the computation of
the expectations, variances and covariances, are listed afterwards. Since we
need this programme in chapter 7 as well when we look for different outcomes
depending on σε we include a variable s for the standard deviation and a for
the interval boundarys.
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I start with the programme for figuring out the interval boundarys, which
just worked by looking at the plot computed by the following programme.

function density(s,a)
%-------------------------------------------------------------------
%plots the density function for epsilon
%density(s,a)
%s: standard deviation for epsilon
%a: interval boundary
%-------------------------------------------------------------------
m=a/20;
epsilon=(-a:m:a);
density=1/(sqrt(2*pi)*s).*exp(-1/2*(epsilon.^2./(s^2)));
plot(epsilon,density,’r’)
ylabel(’f(epsilon)’)
xlabel(’epsilon’)

Now, the main programme for calculating the Sharpe Ratios in the random
variable model is given. ”quad” is a MATLAB internal routine that calculates
the integral by using Simpson’s Quadrature. The command scale=quad(@Exp m,-
a,a,1.e-9,[],y0,k0,s); loads the programme Exp m, it calculates the integral in
the intrval [−a, a], 1.e-9 is the accuracy that quad should use for computa-
tion, y0, k0 are the initial values and s is the parameter for the standard
variable.

function RV(y0,k0,s,a)
%---------------------------------------------------------------------
%Computing random variable m
%RV(y0,k0)
%Rahel Berkemann
%
%y0: start value for y
%k0: start value for k
%---------------------------------------------------------------------
beta=0.95; alpha=0.34; rho=0.9; A=5;
%---------------------------------------------------------------------
scale=quad(@Exp m,-a,a,1.e-9,[],y0,k0,s);
Exp m=quad(@Exp m,-a,a,1.e-9,[],y0,k0,s,scale)
Var m=quad(@Var m,-0.032,0.032,1.e-9,[],y0,k0,s,scale,Exp m);
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SD m=sqrt(Var m);
R f=1/Exp m
Exp R=quad(@Exp R,-a,a,1.e-9,[],y0,k0,s,scale)
Var R=quad(@Var R,-a,a,1.e-9,[],y0,k0,s,scale,Exp R);
SD R=sqrt(Var R);
%---------------------------------------------------------------------
%Computing the Upper Bound
SB=SD m/Exp m
%---------------------------------------------------------------------
%Computing the Sharpe Ratio
%1. SR Cov
Cov R m=quad(@Cov R m,-a,a,1.e-9,[],y0,k0,s,scale,Exp m,Exp R);
SR Cov=(-R f*Cov R m)/SD R
%2. SR stand
SR stand=abs((Exp R-R f/SD R)

The following programmes that are listed are the ones evoked by the main
programm.

function [m]= Exp m(x,y0,k0,s,scale)
%---------------------------------------------------------------------
beta=0.95; alpha=0.34; rho=0.9; A=5;
%---------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
m=beta*c0./c1.*(1/sqrt(2*pi)*s).*(1/scale)

.*exp(-(x.^2./(2*s^2))));

function [m]= Var m(x,y0,k0,s,scale,Exp m)
%---------------------------------------------------------------------
beta=0.95; alpha=0.34; rho=0.9; A=5;
%---------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
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m=(beta*c0./c1-Exp m).^2.*(1/scale)
.*(1/sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [R]= Exp R(x,y0,k0)
%---------------------------------------------------------------------
beta=0.95; alpha=0.34; rho=0.9; A=5;
%---------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
p0=beta/(1-beta)*c0;
p1=beta/(1-beta)*c1;
R=(c1+p1)./p0.*(1/sqrt(2*pi)*0.008).*

(1/scale).*exp(-(x.^2./(2*0.008^2))));

function [R]= Var R(x,y0,k0,Exp R)
%---------------------------------------------------------------------
beta=0.95; alpha=0.34; rho=0.9; A=5;
%---------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
p0=beta/(1-beta)*c0;
p1=beta/(1-beta)*c1;
R=((c1+p1)./p0-Exp R).^2.*(1/scale)

.*(1/sqrt(2*pi)*0.008).*exp(-(x.^2./(2*0.008^2))));

function [R]= Cov R m(x,y0,k0,Exp m,Exp R)
%---------------------------------------------------------------------
beta=0.95; alpha=0.34; rho=0.9; A=5;
%---------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
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p0=beta/(1-beta)*c0;
p1=beta/(1-beta)*c1;
R=(((c1+p1)./p0-Exp R).*(beta*c0./c1-Exp m)).*(1/scale)

.*(1/sqrt(2*pi)*0.008).*exp(-(x.^2./(2*0.008^2))));

A.4 MATLAB codes for the Check

The programme to check for correctness as discussed in chapter 7.1 looks
similar to the programme used in chapter 5. The only things we change were
already discussed in chapter 7.1.

function SR control(N,y0,k0)
%--------------------------------------------------------------------
%checks for correctness of the code SR(N,y0,k0)
%Time Series approach
%SR(N,k0,y0)
%Rahel Berkemann
% %N: Time horizon
%k0: start value for k
%y0: Start value for y=log(z)
%--------------------------------------------------------------------

%Lagged Fibonacci
M=2048; nu=17; mu=5;
rand(’seed’,2);
X1=M*rand(1,max(mu,nu));
X2=M*rand(1,max(mu,nu));
for i=max(mu,nu)+1:N+max(mu,nu)

X1(i)=mod(X1(i-mu)-X1(i-nu),M);
U1(i-max(mu,nu))=X1(i)/M;
X2(i)=mod(X2(i-mu)-X2(i-nu),M);
U2(i-max(mu,nu))=X2(i)/M;

end
%--------------------------------------------------------------------

%boxmuller Z=sqrt(-2*log(U1)).*cos(2*pi*U2);
E Z=1/N*sum(Z);
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Var Z=1/N*sum((Z-E Z*ones(1,N)).^2);
SD Z=sqrt(Var Z);
%--------------------------------------------------------------------

%RV with mean 0 and SD 0.008
Eps=0.008*Z;
E Eps=1/N*sum(Eps);
Var Eps=1/N*sum((Eps-E Eps*ones(1,N)).^2);
SD Eps=sqrt(Var Eps);
%--------------------------------------------------------------------

%Initialising parameters for the stochastic growth model
beta=0.95; alpha=0.34; rho=0.9; A=5;
%--------------------------------------------------------------------

%Calculating path z
y(1)=y0;
for t=1:N

y(t+1)=rho*y0+Eps(t);
end
z=exp(y);
%--------------------------------------------------------------------

%Computing k and c
k(1)=k0;
c(1)=(1-alpha*beta)*z(1)*A*k(1)^alpha;
k(2)=exp(y0)*A*k0^alpha-c(1);
for t=2:N

c(t)=(1-alpha*beta)*z(t)*A*k(2)^alpha;
end
%--------------------------------------------------------------------

%Computing m
for t=1:N

m t(t)=beta*(c(1)/c(t+1));
end
Exp m=1/N*sum(m t)
Var m=1/N*sum((m t-Exp m*ones(1,N)).^2);
SD m=sqrt(Var m)
%--------------------------------------------------------------------
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%Computing the Upper Bound S B
S B=SD m/Exp m
%--------------------------------------------------------------------

%Risk-free interest rate
R f=1/Exp m
%--------------------------------------------------------------------

%Computing p(x) with d(x)=c(x)
p=beta/(1-beta)*c;
%--------------------------------------------------------------------

%Computing R(x)
for i=1:N

R t(i)=(c(i+1)+p(i+1))/p(1);
end
%--------------------------------------------------------------------

%Computing E(R(x))
Exp R=1/N*sum(R t);
%--------------------------------------------------------------------

%Computing Covariances
Cov R m t=(R t-Exp R*ones(1,N)).*(m t-Exp m*ones(1,N));
Cov R m=1/N*sum(Cov R m t);
%--------------------------------------------------------------------

%Computing Var(R(x)) and SD(R(x))
Var R t=(R t-Exp R*ones(1,N)).^2;
Var R=1/N*sum(Var R t);
SD R=sqrt(Var R);
%--------------------------------------------------------------------

%Computing Sharpe Ratio via Covariance
SR cov=(-R f*Cov R m)/SD R
%--------------------------------------------------------------------

%Computing Sharpe Ratio with standard formula
SR stand=abs((Exp R-R f)/SD R)
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A.5 MATLAB codes for Correlations

We have one main programm giving us the Correlations and Covariances for
our analysis in chapter 7. The first part of the following programm gives
us the Correlations and Covariances for the time series case, whereas the
second part gives us the ones for the random variable approach. For the
latter additional programmes are used for computing the integrals needed
for the calculation of covariances in the random variable case. The input
paramter s for the standard deviation needed in the random variable part is
set to 0.008. When we calculate correlations for another standard deviation
the boxmuller.m programme used in the time series part needs to be adjusted,
i.e. 0.008*Z has to be changed to s*Z.

function cor(N,y0,k0,s,a)
%--------------------------------------------------------------------
%Calculates correlations between time series %cor(N,k0,y0,s,a)
%Rahel Berkemann
% %N: Time horizon
%k0: start value for k
%y0: Start value for y=log(z)
%--------------------------------------------------------------------

%Initialising parameters for the stochastic growth model
beta=0.95; alpha=0.34; rho=0.9; A=5;
%--------------------------------------------------------------------

%Expectation and Variance of Epsilon
M=2048; nu=17; mu=5;
Eps=boxmuller(nu,mu,M,N);
E Eps=1/N*sum(Eps);
V Eps=1/N*sum((Eps-E Eps).^2);
%--------------------------------------------------------------------

%Covariance of z and c
z=Refz(N,y0);
E z=1/(N+1)*sum(z);
Var z t=(z-E z*ones(1,N+1)).^2;
Var z=1/(N+1)*sum((z-E z*ones(1,N+1)).^2);

c=Refk(N,k0,y0);
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E c=1/(N+1)*sum(c);
Var c=1/(N+1)*sum((c-E c*ones(1,N+1)).^2);

Cov z c t=(z-E z*ones(1,N+1)).*(c-E c*ones(1,N+1));
Cov z c=1/(N+1)*sum(Cov z c t);

Cor z c=Cov z c/(sqrt(Var z)*sqrt(Var c))

%--------------------------------------------------------------------

%Covariance of k and z
k2(1)=k0;
fort=1:N

k2(t+1)=A*z(t)*k2(t)^alpha-c(t);
end
E k=1/(N+1)*sum(k2);
Var k=1/(N+1)*sum((k2-E k*ones(1,N+1)).^2);

Cov z k t=(z-E z*ones(1,N+1)).*(k2-E k*ones(1,N+1));
Cov z k=1/(N+1)*sum(Cov z k t);

Cor z k=Cov z k/(sqrt(Var z)*sqrt(Var k))
%--------------------------------------------------------------------

%Covariance of p and z
%Berechung von p(x) mit d(x)=c(x)
p=beta/(1-beta)*c;
E p=1/(N+1)*sum(p);
Var p=1/(N+1)*sum((p-E p*ones(1,N+1)).^2);
Cov z p t=(z-E z*ones(1,N+1)).*(p-E p*ones(1,N+1));
Cov z p=1/(N+1)*sum(Cov z p t);

Cor z p=Cov z p/(sqrt(Var z)*sqrt(Var p))
%--------------------------------------------------------------------

%Covariance of k^alpha and c
k alpha=k2.^alpha;
E k alpha=1/(N+1)*sum(k alpha);
Var k alpha=1/(N+1)*sum((k alpha-E k alpha*ones(1,N+1)).^2);

Cov k alpha c t=(c-E c*ones(1,N+1)).*(k alpha-E k alpha*ones(1,N+1));
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Cov k alpha c=1/(N+1)*sum(Cov k alpha c t);

Cor k alpha c=Cov k alpha c/(sqrt(Var c)*sqrt(Var k alpha))
%--------------------------------------------------------------------
%--------------------------------------------------------------------

%Covariance in the random variable case
scale = quad(@scale,-a,a,1.e-15,[],s);

%Exp Eps= quad(@Exp Eps,-0.032,0.032,1.e-9,[],y0,k0)
%Covariance of z and c
Exp z= quad(@Exp z,-a,a,1.e-9,[],y0,k0,s,scale);
Var z= quad(@Var z,-a,a,1.e-9,[],y0,k0,s,scale,Exp z);
Exp c= quad(@Exp c,-a,a,1.e-9,[],y0,k0,s,scale);
Var c= quad(@Var c,-a,a,1.e-9,[],y0,k0,s,scale,Exp c);
Cov z c = quad(@Cov z c,-a,a,1.e-9,[],y0,k0,s,scale,Exp z,Exp c);

Cor2 z c=Cov z c/(sqrt(Var z)*sqrt(Var c))
%-------------------------------------------------------------------

%Covariance of k and z
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
k1=exp(y0)*A*k0^alpha-c0;
Exp k=k1;
Var k=(k1-Exp k);
Cov z k = quad(@Cov z k,-a,a,1.e-9,[],y0,k0,s,scale,Exp z,Exp k)
%-------------------------------------------------------------------

%Covariance of p and z
Exp p=beta/(1-beta)*Exp c;
Var p = (beta/(1-beta))^2*Var c;
Cov z p= quad(@Cov z p,-a,a,1.e-9,[],y0,k0,s,scale,Exp z,Exp p);

Cor2 z p=Cov z p/(sqrt(Var z)*sqrt(Var p))
%--------------------------------------------------------------------

%Covariance of k^alpha and c
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
k1=exp(y0)*A*k0^alpha-c0;
Exp k alpha=k1^alpha;
Var k alpha=k1^alpha-Exp k alpha;
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Cov k alpha c =quad(@Cov k alpha c,-a,a,1.e-9,[],y0,k0,s,scale,
Exp c,Exp k alpha)

%--------------------------------------------------------------------

Next, the additional programmes needed in the random variable case, are
listed. These programmes are loaded by the same commands that were ex-
plained in appendix A.3.

function [y]= Exp z(x,y0,k0,s,scale)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
y=exp(y1).*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [y]= Var y(x,y0,k0,s,scale,Exp z)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
y=(exp(y1)-Exp z).^2

.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [c]= Exp c(x,y0,k0,s,scale)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
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c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
c=c1.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [c]= Var c(x,y0,k0,s,scale,Exp c)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
c=(c1-Exp c).^2

.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [y]= Cov z c(x,y0,k0,s,scale,Exp z,Exp c)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
y=(exp(y1)-Exp z).*(c1-Exp c)

.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [y]= Cov z k(x,y0,k0,s,scale,Exp z,Exp k)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
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k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
y=(exp(y1)-Exp z).*(k1-Exp k)

.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [y]= Cov z p(x,y0,k0,s,scale,Exp z,Exp p)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
y=(exp(y1)-Exp z).*(beta/(1-beta)*c1-Exp p)

.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

function [y]= Cov k alpha c(x,y0,k0,s,scale,Exp c,Exp k alpha)
%-------------------------------------------------------------------
%Initialisierungen
beta=0.95; alpha=0.34; rho=0.9; A=5;
%-------------------------------------------------------------------
c0=(1-alpha*beta)*A*exp(y0)*k0^alpha;
y1=rho*y0+x;
k1=exp(y0)*A*k0^alpha-c0;
c1=(1-alpha*beta)*A*exp(y1)*k1^alpha;
y=(c1-Exp c).*(k1.^alpha-Exp k alpha)

.*(1/scale).*(1/(sqrt(2*pi)*s).*exp(-(x.^2./(2*s^2))));

A.6 MATLAB code for the Loss Aversion model

The following MATLAB codes calculate the return of risky assets and the
risk-free return by loading a file where the given return datas are stored.
This is done by the command ’load’. Since the only thing that is varied is
the factor b0, just one ”example” programme is given in this chapter. The
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paramter j, j ∈ {0, 001, 005, 01, 05, 3, 10}, therefore denotes the factor used
for b0, where for example 001 means 0.01. In order to load the files as stated in
the programme, they have to be stored in the same folder as the programme.
All programmes and files are on the included CD.

function bj
T = load(’bj Reihe.asc’);
R t=T(:,8);
R f t=T(:,9);
N=length(R t);
%----------------------------------------------------------
%Computing E(R(x));
Exp R=1/N*sum(R t)
Var R t=(R t-Exp R*ones(N,1)).^2;
Var R=1/N*sum(Var R t);
SD R=sqrt(Var R)
%----------------------------------------------------------
%Computing R f
R f=1/N*sum(R f t)
%-------------------------------------------------------
%Computing Sharpe Ratio with standard formula
SR stand=abs((Exp R-R f)/SD R)



Appendix B

The included CD

The CD included stores all relevant programmes and files used in this thesis.
The set-up as follows: main folder is called Methods for Calculating Sharpe
Ratios and contains the following folders and programms:

1. Folder Path k

(a) RWfibonacci path.m

(b) boxmuller path.m

(c) Refz path.m

(d) Refk picture.m

2. Folder Time Series approach

(a) RWfibonacci.m

(b) boxmuller.m

(c) Refz.m

(d) Refk.m

(e) SR.m

3. Folder Random Variable approach

(a) RV.m

88
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(b) density.m

(c) scale.m

(d) Exp m.m

(e) Var m.m

(f) Exp R.m

(g) Var R.m

(h) Cov R m.m

4. Folder Check

(a) SR control.m

5. Folder Correlations

(a) cor.m

(b) RWfibonacci.m

(c) boxmuller.m

(d) Refz.m

(e) Refk.m

(f) scale.m

(g) Exp z.m

(h) Var z.m

(i) Exp c.m

(j) Var c.m

(k) Cov z c.m

(l) Cov z p.m

(m) Cov z k.m

(n) Cov k alpha c.m

6. Folder Loss Aversion model

(a) data files b0 reihe, b001 reihe, b005 reihe, b01 reihe, b05 reihe,
b3 reihe and b10 reihe.

(b) programmes b0.m, b001.m, b005.m, b01.m, b05.m, b3.m and b10.m.
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[7] L. Grüne and W. Semmler, Solving Asset Pricing Models with
Stochastic Dynamic Programming, 2002.
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