
FACULTY OF MATHEMATICS, PHYSICS AND COMPUTER
SCIENCE

INSTITUTE OF MATHEMATICS

Discrete Approximation of Feasible Sets
and Direct Methods for Optimal Control

Problems with State Constraints

Diploma Thesis
by

Benjamin Hell

Date: 14.4.2010 Supervisor:
Prof. Dr. Frank Lempio

Dr. Robert Baier

FACULTY OF MATHEMATICS, PHYSICS AND COMPUTER
SCIENCE

INSTITUTE OF MATHEMATICS

Discrete Approximation of Feasible Sets
and Direct Methods for Optimal Control

Problems with State Constraints

Diploma Thesis
by

Benjamin Hell

Date: 14.4.2010 Supervisor:
Prof. Dr. Frank Lempio

Dr. Robert Baier

Acknowledgements:
At this point I would like to thank Prof. Frank Lempio for his great support for this
diploma thesis and the whole time of my studies at the university of Bayreuth. I am
also very greatful for the great amount of time Robert Baier spent with me on talking
about the content of this article and a lot more. It has really been a pleasure for me to
work with him and I hope this will continue sometime in the future. Additionally my
thanks go to Jürgen Pannek, who has been a great help for the programming part of
this thesis. Thank you all.

3

Table of Contents

1 Introduction 7

2 Preliminaries and Basic Tools 8
2.1 Overview . 8
2.2 Basic Notations . 9
2.3 Optimal Control Problem (continuous) . 13

2.3.1 Basic Form of the Optimal Control Problem (Bolza-Problem) . . 13
2.3.2 Mayer-Form of the Optimal Control Problem (Mayer-Problem) . 15
2.3.3 Set-Valued Form of the Mayer-Problem 17

2.4 Discretization . 20
2.4.1 The Grid . 20
2.4.2 Discrete Mayer-Problem . 21
2.4.3 Set-Valued Euler’s Method . 24
2.4.4 Discrete Set-Valued Mayer-Problem 25

2.5 Norm and Convergence Discussion . 26
2.5.1 Norm Definitions . 26
2.5.2 Norm Properties . 28
2.5.3 Convergence . 30
2.5.4 Hausdorff-distance . 30

2.6 Differential Inclusion Theory . 33
2.6.1 Theorem (Uniform Boundedness) 33
2.6.2 Theorem (Uniform Lipschitz Continuity) 36
2.6.3 Theorem (Discrete Uniform Boundedness) 37
2.6.4 Theorem (Discrete Uniform Lipschitz Continuity) 40

3 Convergence Theorem (Problem Specific Approach) 41
3.1 Overview . 41
3.2 Detailed Estimation Process . 44

3.2.1 Theorem (Approximation Property) 44
3.2.2 Theorem (Value Convergence) . 45
3.2.3 Theorem (Inverse Stability Property) 46
3.2.4 Theorem (Adjusted Inverse Stability Property) 48
3.2.5 Corollary to Theorem 3.2.4 (Applied Inverse Stability Property) . 51
3.2.6 Theorem (Compatibility Property) 53
3.2.7 Corollary to Theorem 3.2.6 (Applied Compatibility Property) . . 54
3.2.8 Convergence Theorem . 55

4 Convergence Theorem (General Approach) 57
4.1 Overview . 57
4.2 Estimation Process (General Form) . 58

4.2.1 Approximation Property (General Form) 59
4.2.2 Theorem (Value Convergence, General Form) 59
4.2.3 Corollary to Theorem 4.2.2 (Extended Value Convergence) 61
4.2.4 Inverse Stability Property (General Form) 62

4

4.2.5 Theorem (Local Convergence) . 62
4.2.6 Compatibility Property (General Form) 63
4.2.7 Convergence Theorem (General Form) 65

5 Approximation Property 66
5.1 Overview . 66
5.2 Approximation Property for the unconstrained case 68

5.2.1 Convergence Theorem for convex Differential Inclusions 70
5.2.2 Filippovs Relaxation Theorem . 70
5.2.3 Convergence Theorem for convex discrete Differential Inclusions . 71
5.2.4 Theorem (Convergence Result for the unconstrained case) 72

5.3 Approximation Property for the constrained case 72
5.3.1 Theorem . 75
5.3.2 Theorem . 75
5.3.3 Theorem (Convergence Result for the constrained case) 76
5.3.4 Multidimensional State Constraints 79

5.4 Proof of the Convergence Theorem for Convex Discrete Differential In-
clusions . 82
5.4.1 Notations for the proof . 82
5.4.2 Some results from convex analysis 83
5.4.3 Passing properties of F on to F̃ and coF̃ 84
5.4.4 Overview of the proof . 85
5.4.5 Theorem (reduction of convexification for constant sets) 85
5.4.6 Lemma (convex deviation) . 86
5.4.7 Theorem (consecutive convex deviation) 87
5.4.8 Concluding the proof of the Convergence Theorem for convex dis-

crete Differential Inclusions . 88
5.4.9 Proof of Theorem 5.4.5 . 91

6 Examples 101
6.1 Overview . 101

6.1.1 details on calculations and notations 101
6.1.2 optimization routines . 105

6.2 Simple OCP without state constraints . 105
6.2.1 obtaining the solution analytically 106
6.2.2 applying the convergence theorem 108
6.2.3 convergence analysis . 111

6.3 Simple multidimensional state constraints 116
6.3.1 obtaining the solution analytically 116
6.3.2 applying the convergence theorem 121
6.3.3 convergence analysis . 124

6.3.3.1 first approach . 124
6.3.3.2 second approach . 125

6.4 High peak with multidimensional state constraints 133
6.4.1 notes on constructing the example 133
6.4.2 Problem 1: tracing the state constraint curves 135

5

6.4.2.1 deriving the optimal state and control 135
6.4.2.2 applying the convergence theorem 137
6.4.2.3 convergence analysis . 140

6.4.3 Problem 2: detaching state . 147
6.4.3.1 deriving the optimal state and control 147
6.4.3.2 applying the convergence theorem 150
6.4.3.3 convergence analysis . 152

6

Abbreviations:

ODE: ordinary differential equation
OCP: optimal control problem

DI: differential inclusion
DIC: constrained differential inclusion
DDI: discrete differential inclusion

DDIC: constrained discrete differential inclusion

1 Introduction

This thesis is about delivering convergence results for a pretty wide class of optimal
control problems, when using direct methods for discretization. Those control problems
may include pure state constraints, which is one of the major difficulties. The majority
of this article deals with convergence of the discrete solution for the state. But it is the
authors strong believe, that the methods presented here can be used to show convergence
of the discrete solution for the control, too.

This document is made up of five core chapters:
Chapter 2 introduces the class of control problems considered in quite some variants.
Each of these forms has its theoretical advantages and disadvantages, but the Mayer-
Form builds the basis for most investigations. Chapter 2 also introduces the notations
used throughout the paper and a lot of basic tools, that will play a great role in the
following chapters but are not really part of the core concept.
Chapter 3 then derives the central convergence result of this thesis for the problem class
presented in chapter 2. The strategy, used for deriving that result, might be applied to
other problem classes, that are not presented in this article. Showing that this might
be possible was the intention of creating chapter 4, which takes a look at the methods
used in chapter 3 in a more general way. In fact showing how flexible the modularized
approach is, is the main goal of that part of the article. Chapter 4 is presented after
chapter 3, because it is the authors opinion, that the concept is easier to understand in
a more or less concrete case. Although quite some things are repeated in chapter 3, the
statements made are usually more general and do involve less assumptions.
One major role plays the so called Approximation Property, which is a statement about
the approximation of feasible sets. The result delivered is already needed in chapter 3,
but as the property is the core of this thesis, a whole chapter has been devoted to it. This
chapter contains some of the most interesting parts of the whole article. For example,
the way state constraints can be handled is included there. That also contains some yet
unproven claims for multidimensional state constraints, an interesting aspect in current
research.
The thesis concludes with chapter 6, which is a large chapter on examples. A majority
of the work has been put into that chapter, because calculating discrete solutions for
the examples shown is no easy task. The chapter itself is intended to shed some light
on how the whole theory presented before may be applied to concrete problems. This
includes showing how to obtain an inverse stability property, verifying central properties
for the constraints to know that the Approximation Property holds and of course a lot

7

of numerical results, that should give more insight to what assumptions are actually
needed. For some examples, properties needed to apply the theory do not hold, but
good convergence results can be obtained anyway. By means of such results, ways on
explaining the observed behavior are presented.

2 Preliminaries and Basic Tools

2.1 Overview

This section covers the basic tools and definitions, which the following chapters will
make use of. The main part is describing the class of optimal control problems nearly
the whole thesis is about. The only exception will be chapter 4, which may be applied
to even more generalized problems. The first thing to do will be to present some
basic notations, which includes funcitons, sets vectors and constants, that will be
used throughout this article. Afterwards some variants of the continuous OCP will be
introduced. Then the process of discretization will be discussed, which will conclude
in a directly discretized version of the continuous OCP. The final section of this
chapter will be a discussion about convergence, which of course includes discussion
about appropriate distance measures and norms. Let us start with the basic notations.

Preliminaries and
Basic Tools

tools

Differential
Inclusions

Discrete
Differential
Inclusions

Mayer formulation
of an optimal

control problem
Set Valued

Euler's Method

Optimal Control Problem (OCP)
(Bolza-Form)

Mayer-Form of the OCP

transformation of the ODE

direct discretization

Discrete Mayer-Problem

outline of deriving the different forms of the OCP in this chapter

8

2.2 Basic Notations

The listing of all the functions below is intended to serve as a reference to come back to
later on. The functions will soon make sense, when the actual OCP will be introduced
in 2.3. .̃ marks functions and constants that will be altered, when the form of the OCP
will be changed to this articles needs. This change will take place in the section about
the continuous OCP (2.3), when transforming the Bolza-Problem into a Mayer-Problem.
Because there will be an Extension of the state variable involved, there might be a bit of
confusion about the use of the indices n− 1 and n, when just looking at the declarations
in this section. In general I recommend not to pay too much attention to the exact
indices occurring below for now. They will make sense, when this chapter is done. Let’s
start with the definitions and declarations.

I = [t0, T] shall be the time interval for the optimization.

The following functions represent the control function and the state function:

u(.) ∈ L∞(I)m (m-dimensional control function)

x̃(.) ∈ AC(I)n−1 ((n-1)-dimensional state function (Bolza-Formulation))

z(.) ∈ AC(I) (extension of the state, see 2.3.2)

x(.) =

(
x̃(.)

z(.)

)
∈ AC(I)n (n-dimensional state function (Mayer-Formulation))

Where AC(I) is the space of absolutely continous functions on I.

The optimal control and optimal state are denoted using .̂ :

û(.) ∈ L∞(I)m (m-dimensional optimal control function)

ˆ̃x(.) ∈ AC(I)n−1 ((n-1)-dimensional optimal state function (Bolza-Formulation))

ẑ(.) ∈ AC(I) (extension of the state, see 2.3.2)

x̂(.) =

(
ˆ̃x(.)

ẑ(.)

)
∈ AC(I)n (n-dimensional optimal state function (Mayer-Formulation))

The following vectors will occur in general as a placeholder for the control u(.) and the
state x(.) at a certain time:

u ∈ Rm (placeholder for control at a certain time)

x̃ ∈ Rn−1 (placeholder for state at a certain time)

x =

(
x̃

z

)
∈ Rn (placeholder for state at a certain time (Mayer-

Formulation), with z ∈ R)

9

Functions to describe a specific problem:

J̃ : AC(I)n−1 × L∞(I)m → R (objective function for the Bolza-Problem)

J : Rn−1 × Rn → R (objective function for the Mayer-Problem)

f : I × Rn−1 × Rm → R (integrand in the objective function integral term)

ϕ : Rn−1 × Rn−1 → R (pointcost term in the objective function)

ψ̃ : I × Rn−1 × Rm → Rn−1 (right-hand side of the ODE for the Bolza-Problem)

ψ : I × Rn−1 × Rm → Rn (right-hand side of the ODE for the Mayer-Problem)

g : I × Rn−1 × Rm → Rng (mixed control-state constraints)

s : I × Rn−1 → Rns (pure state constraints)

U : I × Rn−1 → Rm (mixed control-state constraints, set form)

Sets used in conjunction with the ODE:

X̃0 ⊂ Rn−1 (set of all initial values for the state x for the Bolza-Problem)

X0 ⊂ Rn (set of all initial values for the state x for the Mayer-Problem)

X̃(T, t0, X0) ⊂ AC(I)n
(set of all feasible solutions to the unrestricted
(no pure state constraints) differential inclusion on
I = [t0, T] in the Bolza-Problem)

X̃Θ(T, t0, X0) ⊂ AC(I)n−1 (set of all feasible solutions to the restricted differen-
tial inclusion on I = [t0, T] in the Bolza-Problem)

X(T, t0, X0) ⊂ AC(I)n
(set of all feasible solutions to the unrestricted
(no pure state constraints) differential inclusion on
I = [t0, T] in the Mayer-Problem)

XΘ(T, t0, X0) ⊂ AC(I)n
(set of all feasible solutions to the restricted differen-
tial inclusion on I = [t0, T] in the Mayer-Problem)

S ⊂ Rn
(compact set with x(t) ∈ S for all x(.) ∈ X(T, t0, X0)

and t ∈ [t0, T]; Theorem 2.6.1 proves that such a set
exists)

U ⊂ Rm (set such that u(t) ∈ U for all admissible controls u(.)
of the OCP)

Set-valued functions (see 2.3.3):

F : I ×Rn ⇒ Rn (set-valued right-hand side of the ODE)

Θ : I ⇒ Rn (set-valued mapping representing pure state constraints)

10

Special notation for the discrete case (see 2.4):

N ∈ N (the number of steps).

GN = (t0, . . . , tN) ∈ RN+1 (grid on the interval I, used for discretization)

.N (“discrete function” on the grid GN)

ρN : V k → R(N+1)k (ordinary restriction operator to the grid, V:
function space)

X̃N (tj , t0, X0) ⊂ R(j+1)(n−1)
(set of all feasible discrete solutions to the un-
restricted (no pure state constraints) differen-
tial inclusion on [t0, tj] in the Bolza-Problem)

X̃N
Θ (tj , t0, X0) ⊂ R(j+1)(n−1)

(set of all feasible discrete solutions to the re-
stricted differential inclusion on [t0, tj] in the
Bolza-Problem)

XN (T, t0, X0) ⊂ R(N+1)n

(set of all feasible discrete solutions to the
unrestricted (no pure state constraints) dif-
ferential inclusion on I = [t0, T] in the discrete
Mayer-Problem)

XN
Θ (T, t0, X0) ⊂ R(N+1)n

(set of all feasible discrete solutions to the re-
stricted differential inclusion on I = [t0, T] in
the discrete Mayer-Problem)

XN (T, t0, X0)(tj) ⊂ Rn
(set of all reachable points of the discretized
unrestricted (no pure state constraints) diffe-
rential inclusion on {t0, . . . , tj} in the discrete
Mayer-Problem)

XN
Θ (T, t0, X0)(tj) ⊂ Rn

(set of all feasible discrete solutions to the re-
stricted differential inclusion on {t0, . . . , tj} in
the discrete Mayer-Problem)

S̃ ⊂ Rn
(compact set with xNj ∈ S̃ for all xN ∈
XN

Θ (T, t0, X0), j ∈ {0, . . . , N} and N ∈ N; Theo-
rem 2.6.3 proves that such a set exists)

Discrete control and state (see 2.4.2):

uN = (uN0 , . . . , u
N
N) ∈ R(N+1)m (discrete control)

x̃N = (x̃N0 , . . . , x̃
N
N) ∈ R(N+1)(n−1) (discrete state)

zN = (zN0 , . . . , z
N
N) ∈ RN+1 (extension of the discrete state)

xN =
((x̃N0
zN0

)
, . . . ,

(
x̃NN
zNN

))
∈ R(N+1)n (discrete state (Mayer-Formulation))

11

The optimal discrete control and optimal state are denoted using .̂ :

ûN ∈ R(N+1)m (m-dimensional optimal discrete control func-
tion)

ˆ̃xN ∈ R(N+1)(n−1) (optimal discrete state function (Bolza-
Formulation))

ẑN ∈ RN+1 (extension of the discrete state for ˆ̃xN and ˆ̃uN ,
see 2.3.2)

x̂N =
((ˆ̃xN0
ẑN0

)
, . . . ,

(
ˆ̃xNN
ẑNN

))
∈ R(N+1)n (n-dimensional optimal state function

(Mayer-Formulation))

Constants:

M :
uniform upper bound of all feasible solutions x(.) ∈ X(T, t0, X0) to
the continuous problem

M̃ :
uniform upper bound of all feasible solutions xN ∈ XN (T, t0, X0) to
the discrete problem; does not depend on N

L :
uniform Lipschitz constant of all feasible solutions x(.) ∈ X(T, t0, X0)

to the continuous problem

L̃ :
uniform Lipschitz constant of all feasible solutions xN ∈ X(T, t0, X0)

to the discrete problem; does not depend on N

L∆x : L∆x := 2L

LJ :
Lipschitz constant of the objective function J(., .) with respect to
both arguments and the supremum norm

Lψ :
Lipschitz constant of the ODE function ψ(., ., .) with respect to all
three arguments and the supremum norm

The following functions map solutions to a continuous problem on solutions of a discrete
problem respectively the other way round. They appear in conjunction with the so called
Approximation Property (see section 3.2.1)

πN :XN
Θ (T, t0, X0)→ XΘ(T, t0, X0) (feasible discrete solution mapping)

δN :XΘ(T, t0, X0)→ XN
Θ (T, t0, X0) (feasible solution mapping)

12

2.3 Optimal Control Problem (continuous)

This subchapter starts with the basic form of an OCP, that will be considered throughout
this article. Due to theoretical reasons this form will be altered afterwards to finally reach
the shape, that will be used later on.
The class of optimal control problems considered in this article may be described the
following way.

2.3.1 Basic Form of the Optimal Control Problem (Bolza-Problem)

Bolza-Problem

Minimize : J̃(x̃(.), u(.)) = ϕ(x̃(t0), x̃(T)) +

T∫
t0

f(t, x̃(t), u(t))dt (1)

with respect to :

˙̃x(t) = ψ̃(t, x̃(t), u(t)) a.e. (2)

x̃(t0) ∈ X̃0 (3)

gi(t, x̃(t), u(t))

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
a.e. (4)

si(t, x̃(t))

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)
a.e. (5)

u(t) ∈ U(t, x̃(t)) a.e. (6)

with x̃(.) ∈ AC(I)n−1 and u(.) ∈ L∞(I)m

Remarks:

• a.e. means almost everywhere and occurs because of the specific function spaces
for the state and the control

• (1) is the objective function. It consists of two terms. The first one only depends
on the state on the boundary of the time interval I and is sometimes called the
pointcost term. The second one is an integral. This special form is related to models
from physics or engineering.

• (2) is the system equation, which is an ODE parametrized by the control u(.).

• (3) are the initial value conditions, where X̃0 is the set of all allowed initial values
for the state.

13

• (4) are mixed control-state constraints.

• (5) are pure state constraints. They are treated separately from 4, to allow more
complicated constraints like differential-algebraic equations. They are also trea-
ted separately for theoretical purposes that appear in conjunction with treating
differential inclusions (see Definition 3).

• (6) is an alternative description for mixed control-state constraints or pure control
constraints. This description uses a set constraint.

Definition 1:

The set of all feasible solutions to this problem will be called X̃Θ(T, t0,X0).
So X̃Θ(T, t0, X0) is the set of all functions x̃(.) ∈ AC(I)n−1 with:

˙̃x(t) = ψ̃(t, x̃(t), u(t)) a.e.

x̃(t0) ∈ X̃0

gi(t, x̃(t), u(t))

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
a.e.

si(t, x̃(t))

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)
a.e.

u(t) ∈ U(t, x̃(t)) a.e.

u(.) ∈ L∞(I)m

The set of all feasible solutions to this problem without pure state cons-
traints will be called X̃(T, t0,X0). So X̃(T, t0, X0) is the set of all functions
x̃(.) ∈ AC(I)n−1 with:

˙̃x(t) = ψ̃(t, x̃(t), u(t)) a.e.

x̃(t0) ∈ X̃0

gi(t, x̃(t), u(t))

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
a.e.

u(t) ∈ U(t, x̃(t)) a.e.

u(.) ∈ L∞(I)m

This should give the reader an outline of the structure of an OCP this article deals with.
As this is in no way an introduction to optimization problems, the reader is referred to
a wide range of publications on that topic for further reading (for example [1], chapter
3).

14

2.3.2 Mayer-Form of the Optimal Control Problem (Mayer-Problem)

The main goal with this kind of formulation is to get an objective function that only de-
pends on the state evaluated at the first and the last timepoint, i.e. t0 and T . To achieve
this, the state variable itself has to be extended by one component. The special form
of the objective function will be advantageous, more precisely very important, for the
theoretical investigation in chapter 3. The reason for this is that the objective funciton
will be the same in the discrete case as in the continuous case.
The transformation from the Bolza-Form to the Mayer-Form is no difficult task. Nevert-
heless the author recommends paying attention to the exact definitions of the functions
used. The basic notations can be found in 2.2. Let’s start with extending the state va-
riable, which will directly lead to the new form of the OCP afterwards.

Transformation:
The basic concept is to subordinate the integral term of the objective funciton J̃ to the
state function by expanding the ODE. This comes down to adding one component to
the state function vector. This additional state vector component shall be called z(.) and
is defined the following way:

z(t) :=

t∫
t0

f(τ, x̃(τ), u(τ))dτ (t ∈ [t0, T] = I)

This is equivalent to:

ż(t) := f(t, x̃(t), u(t)) (for almost all t ∈ I) ∧ z(t0) := 0

So we get one additional state vector component and two additional equations. The first
equation will extend the ODE, the second one is an initial value condition. This leads to
redefining the state x̃(.) to x(.), the ODE right-hand side ψ̃(., x̃(.), u(.)) to ψ(., x̃(.), u(.)),
the initial value set X̃0 to X0 and finally the objective function J̃(x̃(.), u(.)) to J(., .).

x(t) :=

(
x̃(t)

z(t)

)
∈ Rn (1)

ψ(t, x̃(t), u(t)) :=

(
ψ̃(t, x̃(t), u(t))

f(t, x̃(t), u(t))

)
∈ Rn (2)

X0 :=

{(
v

0

)
: v ∈ X̃0

}
⊂ Rn (3)

J(x̃(t0), x(T)) := ϕ(x̃(t0), x̃(T)) + z(T) (4)

The other functions g, s and U stay untouched. These definitions correspond to the
listing in 2.2.

Important remark for easier notations:
For the sake of simplicity x̃(t) (the first (n − 1) components of the vector x(t)) will no
longer be passed explicitly as an argument to one of the functions J , ψ, g, s, r and U .

15

Instead the whole vector x(t) will be used and implicitly only the first n− 1 components
(which correspond to x̃(t)) will be taken into account. For example the function s(., .)

takes only an (n− 1)-dimensional vector as its second argument. But instead of passing
x̃(t), the whole vector x(t) will be passed and s(t, x(t)) shall be implicitly understood
as s(t, x̃(t)). To give the reader a bit more of a view behind the scenes, the functions
ψ and J defined above only take the full vector x(t) where needed, otherwise only x̃(t)

has been passed. For example the function J(., .) (see (4)) just needs all n components
in its second argument, not in its first one. So the function J has been defined to map
from Rn−1 × Rn to R. The alternative would have been to define it as a function from
Rn × Rn to R, but this would have suggested, that the the n-th component of the first
argument would have some influence, which it does not. But nevertheless the notation
will be J(x(t0), x(T)) from now on, which shall be understood as J(x̃(t0), x(T)).

Taking the transformation and the note about easier notations into account, we arrive
at the Mayer-Formulation of the OCP:

Mayer-Problem

Minimize : J(x(t0), x(T)) = ϕ(x̃(t0), x̃(T)) + z(T)

with respect to :

ẋ(t) = ψ(t, x(t), u(t)) a.e.

x(t0) ∈ X0

gi(t, x(t), u(t))

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
a.e.

si(t, x(t))

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)
a.e.

u(t) ∈ U(t, x(t)) a.e.

with x(.) ∈ AC(I)n and u(.) ∈ L∞(I)m

Remarks:

• Take in account the remark about easier notations above.

• The objective function now just depends on the state x(.) evaluated at t0 and T .
To achieve that the state vector itself had to be changed (see (1)).

• The integral term of the objective function is now represented by the n-th compo-
nent of the ODE (see (2)).

• The Mayer-Problem stated above is just another formulation of the Bolza-Problem
(see 2.3.1). So the above form represents the same OCP.

16

Definition 2:

The set of all feasible solutions to this problem will be called XΘ(T, t0,X0).
So XΘ(T, t0, X0) is the set of all functions x(.) ∈ AC(I)n with:

ẋ(t) = ψ(t, x(t), u(t)) a.e.

x(t0) ∈ X0

gi(t, x(t), u(t))

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
a.e.

si(t, x(t))

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)
a.e.

u(t) ∈ U(t, x(t)) a.e.

u(.) ∈ L∞(I)m

The set of all feasible solutions to this problem without pure state cons-
traints will be called X(T, t0,X0). So X(T, t0, X0) is the set of all functions
x(.) ∈ AC(I)n with:

ẋ(t) = ψ(t, x(t), u(t)) a.e.

x(t0) ∈ X0

gi(t, x(t), u(t))

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
a.e.

u(t) ∈ U(t, x(t)) a.e.

u(.) ∈ L∞(I)m

Remarks: XΘ(T, t0, X0) is the same as X̃Θ(T, t0, X0) with one exception. Any ele-
ment of XΘ(T, t0, X0) has the additional component z(.) defined in the Transforma-
tion section above.

We have now almost arrived at the final form of the OCP, that will be used later
on this article. The only thing left is packing the feasible controls combined with the
parametrized ODE in a set-valued formulation.

2.3.3 Set-Valued Form of the Mayer-Problem

There are only two things left to do.
The first one is to transform the parametrized ODE into a so called Differential
Inclusion.

17

Definition 3:

A Differential Inclusion (DI) can be described as a differential equation with
set-valued right-hand side and a set of feasible initial values. With the notations
of this section (which will be introduced later on) the differential inclusion looks
like:

(DI)
ẋ(t) ∈ F (t, x(t)) a.e.

x(t0) ∈ X0

In our case this Differential Inclusion will include pure state constrains repre-
sented by a set-valued mapping Θ(.) defined in this section. The Constrained
Differential Inclusion (DIC) then looks like this:

(DIC)

ẋ(t) ∈ F (t, x(t)) a.e.

x(t0) ∈ X0

x(t) ∈ Θ(t) a.e.

So the first thing that needs to be done is to create a set-valued mapping, whose image
consists of all feasible (without taking pure state constraints into account) right-hand
sides of the ODE. This mapping will be called F .
The second one is to replace the pure state constraints s(., .) by a set-valued map Θ,
which will give all feasible states at a given time t. Let’s start with the right-hand side
of the ODE.

Creating the set-valued right-hand side:
The set-valued right-hand side F will depend on the time t and the state at that time
x(t). In fact F consists of all feasible right-hand sides ψ(t, x(t), u(t)). This leads to F
subsuming all constraints concerning the control u. In general, F is defined in the
following way:

F : I ×Rn ⇒ Rn

F (t, x) := { ψ(t, x, u) :

gi(t, x, u)

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)

u ∈ U(t, x)

}

Note: The “⇒” signalises that the mapping is set-valued, i.e. the image is a set.

18

Creating the set-valued pure state constraint mapping:
Θ(t) should be the set of all feasible states at the time t according to the pure state
constraints s(., .). So defining the set Θ is straighforward:

Θ : I ⇒ Rn

Θ(t) := { x ∈ Rn :

si(t, x)

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)

}

Note: The “⇒” signalises that the mapping is set-valued, i.e. the image is a set. As one
can see, the last component of the vector x, i.e. z, is not restricted in any way. This
is because there are no restrictions to the integral term of the objective function
from the Bolza-Problem.

Those two modifications applied to the Mayer-Problem given in 2.3.2 delivers the final
form.

Set-Valued Mayer-Problem

Minimize : J(x(t0), x(T))

with respect to :

ẋ(t) ∈ F (t, x(t)) a.e.

x(t0) ∈ X0

x(t) ∈ Θ(t) a.e.

with x(.) ∈AC(I)n and u(.) ∈ L∞(I)m

Remarks:

• The control u(.) does not appear directly in the optimization problem above. Ne-
vertheless it is an optimization variable, all the terms containing u(.) are just
included in the right-hand side of the ODE F . See definition of F above.

• Though this problem looks way easier than the Mayer-Problem(2.3.2) it is ab-
solutely identical. The crucial point really is the defintion of the right-hand side
F of the ODE above. So the set of all feasible solutions to the problem above
is XΘ(T, t0, X0), defined in Definition 2. With the formulation of the set-valued

19

Mayer-Problem we now get another way of defining the sets XΘ(T, t0, X0) and
X(T, t0, X0):

XΘ(T, t0, X0) is the set of all functions x ∈ AC(I)n with:

ẋ(t) ∈ F (t, x(t)) a.e.

x(t0) ∈ X0

x(t) ∈ Θ(t) a.e.

The set of all feasible solutions to this problem without pure state cons-
traints will be called X(T, t0,X0). So X(T, t0, X0) is the set of all functions
x ∈ AC(I)n with:

ẋ(t) ∈ F (t, x(t)) a.e.

x(t0) ∈ X0

The form of the OCP above is the final form, that will be used later on in this article.
This subchapter started with introducing the Bolza-Problem. Then the Bolza-Problem
has been transformed into a Mayer-Problem, which then has been slightly modified to
represent the parametrized ODE as a differential inclusion. We have now reached the
point where we can turn to discretizing the OCP.

2.4 Discretization

This article is about using direct discretization methods for the numerical approxima-
tion. This means that the optimal control problem itself is taken and every occurring
function gets discretized without any further diversion. The same thing will be done
with the ODE. The really crucial point will be the method used to do this. In this pa-
per Euler’s Method will be chosen for a number of reasons. One of them being that
Euler’s Method allows pretty weak assumptions for several results or even makes them
possible in the first place. The goal of this section is to provide discrete versions of the
Mayer-Problem (2.3.2) and the set-valued version of the Mayer-Problem (2.3.3). To get
the latter one, the concept of the Set-Valued Euler’s Method will be introduced.
The first thing to do will be to choose an appropriate grid for the discretization pro-
cess. So this subchapter starts with a description of that grid and introduces some basic
notations specific to the discretized problem afterwards. This is all that’s needed to
discretize the continuous Mayer-Problem (2.3.2). After doing so, the Set-Valued Euler’s
Method for solving the parametrized ODE will be introduced. Having those tools ready,
the Set-Valued Mayer-Problem (2.3.3) will be discretized.

2.4.1 The Grid

Discretization takes place with respect to the time variable t. So we have to split up the
interval I into appropriate fragments. This will be done by specifying an equidistant grid
GN . As the name suggests, this grid will depend on the number of steps N chosen for
the discretization, but it will remain equidistant for all the investigations done in this
article later on. So the grid presented in this subsection will be the grid used throughout

20

the whole thesis. The following definitions are all straightforward.

Definitions:
Let N be the number of steps, then:

hN :=
T − t0
N

(steplength)

tj := t0 + j · hN (j = 0 . . . , N) (discrete time points)

GN := (t0, t1, . . . , tN) (the grid)

From the definition of tj it follows directly that tN = T . To stress the fact, that T is a
grid point, later on tN will be used in some places instead of T .

To restrict a function to the grid, the so called ordinary restriction operator ρN is
introduced:

ρN : V k → R(N+1)k

Where V is an appropriate function space operating on I (for example V = L∞(I) for
the control u(.)).
Let f(.) ∈ V k, then:

ρN (f(.)) := (f(t0), f(t1), . . . , f(tN)) ∈ R(N+1)k

Applying ρN to Ṽ ⊂ V shall also be permitted:

ρN (Ṽ) :=
{
ρN (f(.))

∣∣∣ f(.) ∈ Ṽ
}

2.4.2 Discrete Mayer-Problem

Notations:
A superscript N (.N) denotes a “discrete function”, i.e. a vector in R(N+1)k with k repre-
senting the space dimension. For example a discrete state would be called xN . Written
according to the grid, this would give xN = (xN0 , . . . , x

N
N) with xj ∈ Rn (j = 0, . . . , N). So

xN could be seen as a function evaluated on the grid. Once again: Space dimension of
the state is n due to the extension process described in the Transformation section of
2.3.2. Furthermore according to 2.3.2(2) we define x̃N = (x̃N0 , . . . , x̃

N
N) (x̃Nj ∈ Rn−1 for

j = 0, . . . , N) and zN = (zN0 , . . . , z
N
N) (zNj ∈ R for j = 0, . . . , N) such that xNj =

(x̃Nj
z
N
j

)
for

j = 0, . . . , N .

By now we have everything we need to apply the method of direct discretization to the
Mayer-Problem (see 2.3.2).
The optimization variables will be represented by xN = (xN0 , . . . , x

N
N) ∈ R(N+1)n and

uN = (uN0 , . . . , u
N
N)) ∈ R(N+1)m. As already mentioned one major advantage of the

objective function of the Mayer-Problem is the fact that it has to be evaluated just at
discrete points even in the continuous case. So the objective function does not change in
the process of discretization. For the discretization of the ODE Euler’s Method will
be used. The continuous constraints will be restricted to the grid GN which will result
in lots of constraints depending on the number of steps N . So the directly discretized
version of the Mayer-Problem looks like this:

21

Discrete Mayer-Problem

Minimize : J(xN0 , x
N
N) = ϕ(x̃N0 , x̃

N
N) + zNN

with respect to :

xNj+1 = xNj + hN · ψ(tj , x
N
j , u

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

gi(tj , x
N
j , u

N
j)

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
(j = 0, . . . , N)

si(tj , x
N
j)

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)
(j = 0, . . . , N)

uNj ∈ U(tj , x
N
j) (j = 0, . . . , N)

with xN ∈ R(N+1)n and uN ∈ R(N+1)m

Remarks:

• The objective function is the same as in the continuous case, but notation for the
discrete functions changes the exact expression (see “Notations” above).

• Taking a closer look at the restrictions above yields: There are (N + 1) · ng mixed
control-state constraints, (N+1)·ns pure state constraints, (N+1) set-valued mixed
control-state constraints and one set-valued constraint for the initial state. This
sums up to (N + 1) · (ng + ns) single scalar and (N + 2) set-valued constraints. The
latter ones have to be treated separately when counting the number of constraints,
because they each may consist of a lot of constraints.

22

Definition 4:

The set of all feasible solutions to this problem will be called XN
Θ (T, t0,X0).

So XN
Θ (T, t0, X0) is the set of all discrete functions xN ∈ R(N+1)n with:

xNj+1 = xNj + hN · ψ(tj , x
N
j , u

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

gi(tj , x
N
j , u

N
j)

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
(j = 0, . . . , N)

si(tj , x
N
j)

{
≤ 0 (i = 1, . . . , n′s)

= 0 (i = n′s + 1, . . . , ns)
(j = 0, . . . , N)

uNj ∈ U(tj , x
N
j) (j = 0, . . . , N)

uN ∈ R(N+1)m

The set of all feasible solutions to this problem without pure state cons-
traints will be called XN(T, t0,X0). So XN (T, t0, X0) is the set of all discrete
functions xN ∈ R(N+1)n with:

xNj+1 = xNj + hN · ψ(tj , x
N
j , u

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

gi(tj , x
N
j , u

N
j)

{
≤ 0 (i = 1, . . . , n′g)

= 0 (i = n′g + 1, . . . , ng)
(j = 0, . . . , N)

uNj ∈ U(tj , x
N
j) (j = 0, . . . , N)

uN ∈ R(N+1)m

The only thing that’s missing to start with the discretization process of the Set-Valued
Mayer-Problem is the method to discretize the set-valued ODE, in other words the
differential inclusion. To solve the ODE we will use Euler’s Method again, which can be
easily adjusted to differential inclusions. The method is then called “Set-Valued Euler’s
Method”.

23

2.4.3 Set-Valued Euler’s Method

To work with sets we need to introduce addition and scalar multiplication of sets. The
way this article understands addition and multiplication by a scalar is the following:

Let λ ∈ R and let A,B ⊂ Rk nonempty for arbitrary k ∈ N.
Then addition is defined by the so called “Minkowski Sum”, which is a straightforward
definition:

A+B := {a+ b ∈ Rk : a ∈ A, b ∈ B} (Addition)

Multiplication is defined as one might guess:

λA = {λa : a ∈ A} (Scalar Multiplication)

With these definitions one can easily transfer the concept of Euler’s method to it’s
set-valued form:

xNj+1 ∈ x
N
j + hN · F (tj , x

N
j) (j = 0, . . . , N − 1)

Definition 5:

To stress the set-valued character of the above expression we introduce
XN (T, t0, X0)(tj) (j = 0, . . . , N) as the set of all reachable points delivered by Eu-
ler’s method with starting set X0 on {t0, . . . , tj}. Then XN (T, t0, X0)(tj) fulfills the
following recursion:

XN (T, t0, X0)(t0) = X0

XN (T, t0, X0)(tj+1) =
⋃

x∈XN (T,t0,X0)(tj)

(
x+ hN · F (tj , x)

)
(j = 0, . . . , N − 1)

Including pure state constraints represented by the restriction set Θ in the above
recursion delivers:

XN
Θ (T, t0, X0)(tj+1) =

⋃
x∈XNΘ (T,t0,X0)(tj)

(
x+ hN · F (tj , x)

)
∩Θ(tj+1) (j = 0, . . . , N − 1)

Where XN
Θ (T, t0, X0)(tj) is the same as XN (T, t0, X0)(tj) with the addition that every

element in XN
Θ (T, t0, X0)(tj) obeys the pure state constraints represented by the set

Θ(tj), i.e. XN
Θ (T, t0, X0)(tj) ⊂ Θ(tj) (j=0,. . . ,N)

This definition won’t be used later on, but the sets mentioned above shall give the
reader a better idea on how the set valued theory works.

24

2.4.4 Discrete Set-Valued Mayer-Problem

Obtaining the directly discretized of the Set-Valued Mayer-Problem (2.3.3) involves the
same process as for the discrete Mayer-Problem 2.4.2. The only difference is the use of
the set-valued Euler’s method 2.4.3. So we finally obtain:

Discrete Set-Valued Mayer-Problem

Minimize : J(xN0 , x
N
N)

with respect to :

xNj+1 ∈ x
N
j + hN · F (tj , x

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

xNj ∈ Θ(tj) (j = 0, . . . , N)

with xN ∈ R(N+1)n and uN ∈ R(N+1)m

Remarks

• The discrete control uN does not appear directly in the optimization problem
above. Nevertheless it is an optimization variable. All the terms containing parts
of uN are just included in the right-hand side of the ODE F . See definition of F
in the section about the set-valued Mayer-Problem 2.3.3.

• Though this problem looks way easier than the discrete Mayer-Problem (2.4.2) it
is absolutely identical. The crucial point really is the set-valued Euler’s Method.
So the set of all feasible solutions to the problem above is XΘ(T, t0, X0), defined in
Definition 2. With the formulation of the discrete set-valued Mayer-Problem we
now get another way of defining the sets XN

Θ (T, t0, X0) and XN (T, t0, X0):

XN
Θ (T, t0, X0) is the set of all discrete functions xN ∈ R(N+1)n with:

xNj+1 ∈ x
N
j + hN · F (tj , x

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

xNj ∈ Θ(tj) (j = 0, . . . , N)

And XN (T, t0, X0) is the set of all discrete functions xN ∈ R(N+1)n with:

xNj+1 ∈ x
N
j + hN · F (tj , x

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

25

Let’s conclude with the definition of the so called Discrete Differential Inclusion,
which is the discrete analog of a Differential Inclusion and appears in the set-valued
Mayer-Problem.

Definition 6:

A discretized Differential Inclusion (see Definition 3) is called Discrete Differen-
tial Inclusion (DDI) and looks like this for xN ∈ R(N+1)n:

xNj+1 ∈ x
N
j + hN · F (tj , x

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

A Constrained Discrete Differential Inclusion (DDIC) includes pure state
constraints, in our case represented by the set-valued mapping Θ(.):

xNj+1 ∈ x
N
j + hN · F (tj , x

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

xNj ∈ Θ(tj) (j = 0, . . . , N)

2.5 Norm and Convergence Discussion

Concerning convergence analysis it is essential to consider appropriate norms. In infinite
dimensional spaces norms are not equivalent. So convergence with respect to a certain
norm might not lead to convergence in another one or vice versa. This will also be the
case for convergence analysis concerning discrete optimal solutions and their continous
counterparts. To understand that, one has to know in what sense the word convergence
has to be understood. This is what this section is all about.
First off norms used in this article will be defined. Then some basic properties of these
norms will be presented. Afterwards some light will be shed on the phrase “convergence
of optimal solutions”. The last part will be about how to measure distance between
sets, which will lead to the Hausdorff-distance. The chapter about the Approxima-
tion Property will make heavy use of that definition, because theory about differential
inclusions plays a great role there. So let’s start with the definitions.

2.5.1 Norm Definitions

case Rn:
Let v = (v1, . . . , vn) ∈ Rn, then:

‖v‖∞ = max
i=1,...,n

|vi|

‖v‖p =

(
n∑
i=1

vpi

)1/p

(1 ≤ p <∞)

26

continuous case:
According to the occuring function spaces we have to consider the following Lp-norms:

‖f(.)‖∞ = ess sup |f(.)| = inf{K ∈ R : ‖f(t)‖∞ ≤ K for almost all t ∈ I} (for f(.) ∈ L∞(I)n)

‖f(.)‖∞ = ess sup |f(.)| = sup
t∈I
‖f(t)‖∞ (for f(.) ∈ C(I)n)

‖f(.)‖p =

(∫ T

t0

‖f(t)‖pp dt

)1/p

(for f(.) ∈ Lp(I)n)

Remarks:

• ‖.‖∞ is the L∞-norm and ‖.‖p the Lp-norm.

• An alternate definition of the essential supremum ess sup is

ess sup |f(.)| = inf
N is null set

{
sup
t∈I\N

‖f(t)‖∞

}
For f(.) ∈ C(I)n the distinction between null sets falls away and one arrives
directly at the expression given above for a continuous function f(.).

discrete case:
For the discrete case we use the discrete Lp-norms, which are directly derived from the
Lp-norms presented above. Let fN = (f0, . . . , fN) ∈ R(N+1)n, then:

‖fN‖∞ = sup
j=0,...,N

‖fj‖∞

‖fN‖p =

N−1∑
j=0

hN · ‖fj‖
p
p

1/p

(1 ≤ p <∞)

Note: The discrete Lp-norm can be derived from the continuous case by taking the
Riemann Sum of the Integral.

27

set case:
To deal with Differential Inclusions (see Definition 3) we need to define what we under-
stand by the norm of a set.
Let V be a Banach space with norm ‖.‖V and M ⊂ V then

‖M‖V := sup
v∈M
‖v‖V

Remarks:

• It is easy to prove that this is a norm on the vector space of subsets of
V. Addition and scalar multiplication for these sets is defined as in the
section about the set-valued Euler’s Method (see 2.4.3).

• We will need this norm definition among others for getting an upper
bound of any valid initial value. Let’s say the set of initial values X0 ⊂ Rn

is bounded by a constant C, i.e. for any vector v ∈ X0 it holds ‖v‖∞ ≤ C.
Then ‖X0‖∞ = sup

v∈X0

‖v‖∞ ≤ C.

2.5.2 Norm Properties

This section just highlights a few properties concerning the norms defined in 2.5.1, which
are useful in terms of convergence analysis.

Let v ∈ Rn and f(.) ∈ L∞(I)n, then:

1. In finite dimensional spaces norms are equivalent. Only two estimations used later
on will be presented here:

‖v‖2 =

(
n∑
i=1

v2
i

)1/2

≤

(
n∑
i=1

‖v‖2∞

)1/2

= ‖v‖∞

(
n∑
i=1

1

)1/2

=
√
n ‖v‖∞

and (without loss of generality let ‖v‖∞ = |vn|)

‖v‖2 =

(
n∑
i=1

v2
i

)1/2

=

(
‖v‖2∞ +

n−1∑
i=1

v2
i

)1/2
monotonicity

≥
of
√
.

√
‖v‖2∞ = ‖v‖∞

2. ∃C > 0 with ‖f(.)‖p ≤ C · ‖f(.)‖∞

This means, that the L∞-norm is “stronger” than the Lp-norm.
Proof :

‖f(.)‖p =

(∫ T

t0

‖f(t)‖pp dt

)1/p

≤

(∫ T

t0

n · ‖f(t)‖p∞ dt

)1/p

≤

(
n ·
∫ T

t0

‖f(.)‖p∞ dt

)1/p

=
p
√
n ·

(
‖f(.)‖p∞ ·

∫ T

t0

1 dt

)1/p

=
p
√
n · (T − t0)︸ ︷︷ ︸

C:=

·‖f(.)‖∞ �

This inequality also shows that L∞(I)n ⊂ Lp(I)n.

28

3. The other way round is not true, i.e. @C > 0 with ‖f(.)‖∞ ≤ C · ‖f(.)‖p for all f(.) ∈ L∞(I)n.
Proof :

This can be easily shown by giving a counterexample.

Let fk(t) := max
(

(t− t0) ·
(
− k
T−t0

)
+ 1 , 0

)
. Then ‖fk‖∞ = 1 ∀k ∈ N.

But ‖fk‖p → 0 (k → ∞). So, for every C > 0 there ∃k̃ ∈ N such that
‖fk̃‖∞ > C · ‖fk̃‖p. �

The discrete norms behave like their continuous counterparts. This is no sur-
prise, because they are directly derived from them.

Let fN = (f0, . . . , fN) ∈ R(N+1)n, then:

4. ∃C > 0 independent of N with ‖fN‖p ≤ C · ‖f
N‖∞

This means, that the discrete L∞-norm is “stronger” than the discrete
Lp-norm.
Proof :

‖fN‖p =

N−1∑
j=0

hN · ‖fj‖
p
p

1/p

≤

N−1∑
j=0

hN · n · ‖fj‖
p
∞

1/p

≤

n · N−1∑
j=0

hN · ‖f
N‖p∞

1/p

=
p
√
n ·

‖fN‖p∞ · N−1∑
j=0

hN

1/p

=
p
√
n · (T − t0)︸ ︷︷ ︸

C:=

·‖fN‖∞ �

5. The other way round is not true, i.e. @C > 0 independent of N with
‖fN‖∞ ≤ C · ‖f

N‖2 for all f(.)N ∈ R(N+1) and N ∈ N.
Proof : Analog to the continuous case. Just evaluate fk(.) on the grid. �

The following calculation shall illustrate, that in any estimation of the
form ‖fN‖∞ ≤ C · ‖f

N‖p for fixed N the constant C > 0 depends on N .
In fact, C → ∞ (N → ∞). Due to the specific definition of the ‖.‖p-norm
(which does not take fN into account), fN will also be cut off on the left
side. (Note: One could have defined the ‖.‖∞ to be more comparable to the
‖.‖p-norm by leaving fN out. But as those two norms are not equivalent
anyway and for some purposes later on this isn’t such a good idea.

‖(f0, . . . , fN−1)‖∞ = sup
j=0,...,N−1

‖fj‖∞ ≤ sup
j=0,...,N−1

‖fj‖p ≤

N−1∑
j=0

‖fj‖
p
p

1/p

=
1

p
√
hN
·

hN N−1∑
j=0

‖fj‖
p
p

1/p

=
p

√
N

T − t0︸ ︷︷ ︸
C:=

‖fN‖p

29

2.5.3 Convergence

The phrase “the discrete solution fN converges to the continuous one f(.)” shall be
understood as:

lim
N→∞

‖fN − ρN (f(.))‖ = 0 (discrete convergence)

Where ‖.‖ is an appropriate discrete norm (for example the discrete ‖.‖∞-norm or the
discrete ‖.‖2-norm defined in 2.5.1). ρN , as defined in 2.4, is the ordinary restriction
operator to the grid.
Let’s consider the discrete norm properties 2.5.2.4 and 2.5.2.5. As a direct consequence
of these properties the following holds:

• lim
N→∞

‖fN − ρN (f(.))‖∞ = 0
2.5.2.4⇒ lim

N→∞
‖fN − ρN (f(.))‖2 = 0.

So convergence in the discrete L∞-norm leads to convergence in the discrete
L2-norm.

• From 2.5.2.5 it follows directly, that the other way round is not true. So convergence
in the discrete L2-norm does not lead to convergence in the discrete L∞-norm.

2.5.4 Hausdorff-distance

As already stated the right-hand side of the ODE occurring in the considered class of
optimal control problems will in general be parametrized by the control. This, as shown
in 2.3.3, leads to considering set-valued right-hand sides in the ODE, which is then called
a differential inclusion. Dealing with this set-valued approach will include measuring the
distance between sets. This will be done using the Hausdorff-distance. In general the
Hausdorff-distance is defined the following way:

general Hausdorff-distance:
Let (M, d̃) be a metric space with metric d̃. Let furthermore be A,B ⊂M . Then the one
sided distance d of the sets A and B is defined in the following way:

d(A,B) := sup
a∈A

dist(a,B)

Where dist(x, Z) = inf
z∈Z

d̃(x, z) for x ∈M and C ⊂M .

This definition is not symmetrical, i.e. in general it holds d(A,B) 6= d(B,A). The
Hausdorff-distance dH of the sets A and B adds symmetry by taking the maximum:

dH(A,B) := max (d(A,B), d(B,A))

Note: dH(A,B) = 0 does not mean that A = B, but it means, that Ā = B̄. The bar .̄
denotes the closure of a set.

30

One property of the Hausdorff-distance is the triangular inequality:

Triangular Inequality
Let A,B,Z ⊂M . Then it holds:

dH(A,B) ≤ dH(A,Z) + dH(Z,B)

Proof :

The idea of the proof is to start with the triangular inequality for the dist-function and
derive the triangle inequality for d. This result then leads to the triangle inequality of the
Hausdorff-distance. Because of d(A,B) = sup

a∈A
dist(a,B) we are taking a look at dist(a,B)

first. Via the triangular inequality for the dist-function one gets:

¬ dist(a,B) ≤ dist(a, {z}) + dist(z,B)
Def. of d
≤ dist(a, {z}) + d(Z,B) ∀z ∈ Z

From the definition of the dist-function we get:

­ d(a, Z) = inf
z∈Z

dist(a, {z})⇒ ∃ (zk)k∈N ⊂ Z such that dist(a, zk)
k→∞−−−−→ dist(a, Z)

As ¬ holds for all z in Z this leads to:

¬ dist(a,B)
¬
≤ dist(a, {zk}) + d(Z,B)

k→∞−−−−→ dist(a, Z) + d(Z,B)

So we have:

¬ dist(a,B) ≤ dist(a, Z) + d(Z,B)

Applying the definition of d leads to:

® d(A,B) = sup
a∈A

dist(a,B)
¬
≤ sup

a∈A
dist(a, Z)+d(Z,B) = d(A,Z)+d(Z,B)

Def. dH
≤ dH(A,Z)+dH(Z,B)

Of course A and B can be interchanged, which gives:

¯ d(B,A)
®
≤ d(B,Z)+d(Z,A)

Def. dH
≤ dH(B,Z)+dH(Z,A)

dH symmetric
= dH(A,Z)+dH(Z,B)

Alltogether we have:

dH(A,B)
Def. dH= max (d(A,B), d(B,A))

®,¯
≤ dH(A,Z) + dH(Z,B)

�

One goal of this section is to use this concept to measure the distance between the
sets XN (T, t0, X0) and X(T, t0, X0) respectively the sets XN

Θ (T, t0, X0) and XΘ(T, t0, X0).
Recall, that XN (T, t0, X0) is the set of all feasible solutions to the discrete Mayer-
Problem respectively X(T, t0, X0) the set of all feasible solutions to the continuous

31

Mayer-Problem, both without pure state constraints Θ. XN
Θ (T, t0, X0) is the set of all

feasible solutions to the discrete Mayer-Problem respectively XΘ(T, t0, X0) the set of
all feasible solutions to the continuous Mayer-Problem with pure state constraints.
XN (T, t0, X0) and XN

Θ (T, t0, X0) are treated in 2.4.3.
Measuring the distance between a set X ⊂ AC(I)n and XN ∈ R(N+1)n will always be
done on the grid. This means that the set X will be restricted to the grid by using
the ordinary restriction operator ρN (see 2.4.1) and afterwards the Hausdorff-distance
will be applied. So the Hausdorff-distance of X and XN has to be understood as
dH(ρN (X), XN).

Of course the above definition of the Hausdorff-distance depends on the metric d̃,
which will always be a norm in this article. Three special cases, that will be considered
throughout this article are:

distN∞(b, A) := inf

{
sup

j=0,...,N
‖b− a‖2 : a ∈ A

}
(A ⊂ R(N+1)n, b ∈ R(N+1)n)

dist∞(b, A) := inf {‖b− a‖∞ : a ∈ A} (A ⊂ (M, ‖.‖∞), b ∈ (M, ‖.‖∞))

dist2(b, A) := inf {‖b− a‖2 : a ∈ A} (A ⊂ (M, ‖.‖2), b ∈ (M, ‖.‖2))

This dist-functions lead directly to the definition of the corresponding Hausdorff-
distances.

dNH,∞(A,B) := max

(
sup
a∈A

distN∞(a,B), sup
b∈B

distN∞(b, A)

)
(A,B ⊂ R(N+1)n)

dH,∞(A,B) := max

(
sup
a∈A

dist∞(a,B), sup
b∈B

dist∞(b, A)

)
(A,B ⊂ (M, ‖.‖∞))

dH,2(A,B) := max

(
sup
a∈A

dist2(a,B), sup
b∈B

dist2(b, A)

)
(A,B ⊂ (M, ‖.‖2))

So for X ⊂ AC(I)n and XN ∈ R(N+1)n we have:

dNH,∞(ρN (X), XN) = max

(
sup

x(.)∈X
distN∞(ρN (x), XN), sup

x
N∈XN

distN∞(xN , ρN (X))

)

For X,Y ⊂ AC(I)n we get:

dH,∞(X,Y) = max

(
sup

x(.)∈X
dist∞(x(.), Y), sup

y(.)∈Y
dist∞(y(.), X)

)

And as a last example for X,Y ⊂ Rn the above definitions deliver:

dH,2(X,Y) = max

(
sup
x∈X

dist2(x, Y), sup
y∈Y

dist2(y,X)

)

Note: The examples above have been chosen to represent usage of the Hausdorff-
distance later on. The Hausdorff-distances occur especially in chapter 5. That chapter
is based on [2]. Note that dH,∞ used in [2] corresponds to dNH,∞ in this thesis.

32

2.6 Differential Inclusion Theory

This section presents some basic results concerning differential inclusions. These
results will play a great role in chapter 5. That chapter is about the so called
Approximation Property and delivers one of the major results in this thesis, i.e.
a relation of the solution set of the Constrained Differential Inclusion and the
solution set of the Constrained Discrete Differential Inclusion. In chapter 3 the
results about Lipschitz-continuity of solutions of Differential Inclusions with glo-
bal Lipschitz constant are needed to get the so called Compatibility Property
(3.2.6). The uniform boundedness theorems are essential for restricting Lipschitz-
continuity premises on compact sets (see Theorem 3.2.2 and Theorem 3.2.4). Let’s
begin with a few assumptions. Recall the definition of the norm of a set (for example
‖F (t, x)‖2 = sup

y∈F (t,x)

‖y‖2, see 2.5.1) and the definition of the Hausdorff-distance (see 2.5.4).

Assumptions:

(A1’) F satisfies a linear growth condition in integrable form, i.e.:
There exists a nonnegative function CF (.) ∈ L1(I) such that with t ∈ I and
x ∈ Rn it holds

‖F (t, x)‖2 ≤ CF (t) (‖x‖2 + 1)

(A1) F satisfies a linear growth condition, i.e.:
There exists a constant CF ≥ 0 such that with t ∈ I and x ∈ Rn it holds

‖F (t, x)‖2 ≤ CF (‖x‖2 + 1)

Note: It should be easy to see that the assumption (A1’) is a weaker formulation of
(A1), i.e. (A1) implies (A1’).

These assumptions are enough to obtain the following results concerning the bounded-
ness and Lipschitz-continuity of feasible solutions to the Differential Inclusions.

2.6.1 Theorem (Uniform Boundedness)

Let the set of all valid initial values X0 be bounded and let (A1’) be fulfilled.
Then all solutions x(.) of the Differential Inclusion presented in Definition 3, i.e.
x(.) ∈ X(T, t0, X0), are uniformly bounded by the constant M := (‖X0‖2 + CL)eCL

with CL := ‖CF (.)‖1.

Note: This shows that there exists a compact set S ∈ Rn such that x(t) ∈ S for all
x(.) ∈ XΘ(T, t0, X0) and t ∈ [t0, T].

Proof :

The strategy for this proof is exactly the same as for the well known Gronwall Lemma.
The only difference is the occurrence of the time dependent constant CF (.).

33

Let x(.) ∈ X(T, t0, X0). This means that ẋ(t) ∈ F (t, x(t)) a.e. and x(t0) ∈ X0. So we get:

¬

‖x(t)‖2 = ‖x(t0) +

∫ t

t0

ẋ(τ) dτ‖2 ≤ ‖x(t0)‖2 +

∫ t

t0

‖ẋ(τ)‖2 dτ
Def. ‖F (t,x(t))‖2

≤

‖x(t0)‖2 +

∫ t

t0

‖F (τ, x(τ))‖2 dτ
(A1’)

≤ ‖x(t0)‖2 +

∫ t

t0

CF (τ) (‖x(τ)‖2 + 1) dτ ≤

‖X0‖2 +

∫ t

t0

CF (τ) dτ +

∫ t

t0

CF (τ) ‖x(τ)‖2 dτ
CF (.) nonegative

≤

‖X0‖2 + CL︸ ︷︷ ︸
C̃:=

+

∫ t

t0

CF (τ) ‖x(τ)‖2 dτ (t ∈ I)

Due to x(.) being continuous on I there exists a constant Cx ≥ 0 with ‖x(t)‖2 ≤ Cx
(t ∈ I) (which means x(.) is bounded on I). Note that the constant Cx depends on the
specific function x(.). This proof is about showing that there exists a constant M, which
is an upper bound to ‖x(.)‖∞ for all x(.) ∈ X(T, t0, X0), so we have to be careful not to
mix that up. From combining ‖x(t)‖2 ≤ Cx (t ∈ I) with ¬ we get:

­ ‖x(t)‖2
¬
≤ C̃ +

∫ t

t0

CF (τ) ‖x(τ)‖2 dτ
‖x(τ)‖2≤Cx
≤ C̃ + Cx

∫ t

t0

CF (τ) dτ

Placing ­ in ¬ leads to:

® ‖x(t)‖2
¬
≤ C̃ +

∫ t

t0

CF (τ) ‖x(τ)‖2 dτ
­
≤ C̃ + C̃

∫ t

t0

CF (τ) dτ + Cx

∫ t

t0

CF (τ1)

∫ τ1

t0

CF (τ2) dτ2dτ1

Using the above inequality and placing it into ¬ and repeating that process k-times
gives us the following estimation:

®

‖x(t)‖2 ≤ C̃ + C̃

∫ t

t0

CF (τ) dτ + · · ·+ C̃

∫ t

t0

CF (τ1) . . .

∫ τk−1

t0

CF (τk) dτk . . . dτ1︸ ︷︷ ︸
k nested integral terms

+ Cx

∫ t

t0

CF (τ1) . . .

∫ τk

t0

CF (τk+1) dτk+1 . . . dτ1︸ ︷︷ ︸
k+1 nested integral terms

(t ∈ I, k ∈ N)

The right-hand side of the estimation depends on Cx. To reach our goal we have to get
rid of that dependency. It should be clear, that we have to deal with the nested integral
terms of the form

∫ t
t0
CF (τ1) . . .

∫ τk−1

t0
CF (τk) dτk . . . dτ1. Via simple integration by parts

one gets:∫ t

t0

CF (τ1)

∫ τ1

t0

CF (τ2) dτ2dτ1 =

(∫ t

t0

CF (τ)dτ

)2

−
∫ t

t0

CF (τ1)

∫ τ1

t0

CF (τ2) dτ2dτ1

⇔
∫ t

t0

CF (τ1)

∫ τ1

t0

CF (τ2) dτ2dτ1 =
1

2

(∫ t

t0

CF (τ)dτ

)2

34

This gives the idea for completing the proof. Indeed it holds:

¯
∫ t

t0

CF (τ1) . . .

∫ τk−1

t0

CF (τk) dτk . . . dτ1 =
1

k!

(∫ t

t0

CF (τ)dτ

)k
It is easy to show that result via induction. The initial step has already been done. So
we consider ¯ to be true for k̃ ∈ N, then it follows:

∫ t

t0

CF (τ1) . . .

∫ τk̃

t0

CF (τk̃+1) dτk̃+1 . . . dτ1
inductive

=
assumption

1

k̃!

∫ t

t0

CF (τ1)

(∫ τ1

t0

CF (τ2)dτ2

)k̃
dτ1

With integration by parts we get:

∫ t

t0

CF (τ1)

(∫ τ1

t0

CF (τ2)dτ2

)k̃
dτ1 =

(∫ t

t0

CF (τ)dτ

)k̃+1

− k̃
∫ t

t0

CF (τ1)

(∫ τ1

t0

CF (τ2)dτ2

)k̃
dτ1

⇔
∫ t

t0

CF (τ1)

(∫ τ1

t0

CF (τ2)dτ2

)k̃
dτ1 =

1

k̃ + 1

(∫ t

t0

CF (τ)dτ

)k̃+1

Combining both results we complete the induction step:

∫ t

t0

CF (τ1) . . .

∫ τk̃

t0

CF (τk̃+1) dτk̃+1 . . . dτ1 =
1

(k̃ + 1)!

(∫ t

t0

CF (τ)dτ

)k̃+1

Together, the initial step and the induction step prove, that ¯ ist true.

Combining ® and ¯ yields:

®
‖x(t)‖2 ≤ C̃ + C̃

∫ t

t0

CF (τ) dτ + · · ·+ C̃
1

k!

(∫ t

t0

CF (τ) dτ

)k
+ Cx

1

(k + 1)!

(∫ t

t0

CF (τ) dτ

)k+1

= C̃

k∑
l=0

1

l!

(∫ t

t0

CF (τ) dτ

)l
+ Cx

1

(k + 1)!

(∫ t

t0

CF (τ) dτ

)k+1

(t ∈ I, k ∈ N)

To obtain a uniform upper bound for all x(.) ∈ X(T, t0, X0) we still need to get rid of
Cx. But as the above inequality holds for all k ∈ N we can take the limit of k → ∞ on
the right-hand side. From investigation of the exponential series it then follows:

k∑
l=0

1

l!

(∫ t

t0

CF (τ) dτ

)l
→ e

(
∫ t
t0
CF (τ) dτ)

and Cx
1

(k + 1)!

(∫ t

t0

CF (τ) dτ

)k+1

→ 0 (k →∞)

So we finally got rid of Cx and obtain the final result:

® ‖x(t)‖2 ≤ C̃e
(
∫ t
t0
CF (τ) dτ) ≤ C̃eCL = (‖X0‖2 + CL) eCL︸ ︷︷ ︸

M :=

(t ∈ I)

�

35

As a simple result of the Uniform Boundedness Theorem 2.6.1 we get that all soluti-
ons x(.) ∈ X(T, t0, X0) are uniformly Lipschitz-continuous, i.e. Lipschitz-continuous with
uniform Lipschitz constant. We will call that Lipschitz constant L.

2.6.2 Theorem (Uniform Lipschitz Continuity)

Let the set of all feasible initial values X0 be bounded and let (A1) be fulfilled.
Then all feasible solutions of the Differential Inclusion presented in Definition 3, i.e.
x(.) ∈ X(T, t0, X0), are uniformly Lipschitz-continuous with Lipschitz constant L

(with respect to the ‖.‖2-norm).
Proof : Let x(.) ∈ X(T, t0, X0) and t̃, t ∈ I with t ≥ t̃ then:

‖x(t)− x(t̃)‖2 = ‖
∫ t

t̃

ẋ(τ) dτ‖2 ≤
∫ t

t̃

‖ẋ(τ)‖2 dτ
Def. ‖F (t,x(t))‖2

≤
∫ t

t̃

‖F (τ, x(τ))‖2 dτ

(A1)

≤ CF

∫ t

t̃

‖x(τ)‖2 + 1 dτ
Theorem 2.6.1

≤ CF (M + 1) (t− t̃) t≥t̃= CF (M + 1) |t− t̃|

For t < t̃ we get with the above inequality:

‖x(t)− x(t̃)‖2 = ‖x(t̃)− x(t)‖2 ≤ CF (M + 1) (t̃− t) t<t̃= CF (M + 1) |t− t̃|

So overall we have for x(.) ∈ X(T, t0, X0) and t̃, t ∈ I:

‖x(t)− x(t̃)‖2 ≤ CF (M + 1)︸ ︷︷ ︸
L:=

|t− t̃|

�

For the discrete case we get similar results with the assumptions (A1) and (A1’). The
only thing that needs to be strengthened is that we need CF (.) to be Riemann integrable
instead of “just” Lebesgue integrable. For our future investigations in the following
chapters, it will be of extreme importance that these results deliver a uniform upper
bound and an uniform Lipschitz constant independent of the grid, i.e. independent
of N . Let’s take a look at the discrete analog of the Uniform Boundedness Theorem
2.6.1 on the next page.

36

2.6.3 Theorem (Discrete Uniform Boundedness)

Let the set of all valid initial values X0 be bounded and let (A1’) be fulfilled. In addi-
tion let CF (.) be Riemann integrable. Then all solutions xN of the Discrete Differential
Inclusion presented in Definition 6, i.e. xN ∈ XN (T, t0, X0), are uniformly bounded by
the constant M̃ := (‖X0‖2 +CR)eCR independent of N with CR being the upper bound
of all Riemann sums hN

∑N−1
k=0 CF (tk) (this means hN

∑N−1
k=0 CF (tk) ≤ CR ∀N ∈ N). This

means that ‖xNj ‖2 ≤ M̃ (j = 0, . . . , N) for all xN ∈ XN (T, t0, X0) and N ∈ N.

Remarks:

• Be aware, that in general M̃ 6= M . This is because CR is an upper bound to
all Riemann sums hN

∑N−1
k=0 CF (tk) (N ∈ N), which in general does not coincide

with ‖CF (.)‖1 = CL.

• This theorem shows that there exists a compact set S̃ ∈ Rn such that xNj ∈ S̃
for all xN ∈ XN

Θ (T, t0, X0), j ∈ {0, . . . , N} and N ∈ N.

Proof :

The ideas of this proof are exactly the same as for the proof of Theorem 2.6.1. The
major difference is that we have to deal with Riemann sums instead of integrals.

Let xN ∈ XN (T, t0, X0). This means that there exists ξNl ∈ F (tl, x
N
l) such that xNl+1 =

xNl + hNξ
N
l . This leads to:

¬

‖xNj ‖2 = ‖xN0 + hN

j−1∑
l=0

ξNl ‖2 ≤ ‖x
N
0 ‖2 + hN

j−1∑
l=0

‖ξNl ‖2 dτ
Def. ‖F (tl,ξ

N
l)‖2

≤

‖xN0 ‖2 + hN

j−1∑
l=0

‖F (tl, ξ
N
l)‖2

(A1’)

≤ ‖xN0 ‖2 + hN

j−1∑
l=0

CF (tl)
(
‖xNl ‖2 + 1

)
≤

‖X0‖2 + hN

j−1∑
l=0

CF (tl) + hN

j−1∑
l=0

CF (tl) ‖x
N
l ‖2

CF (.) Riemann

≤
integrable

‖X0‖2 + CR︸ ︷︷ ︸
C̃:=

+hN

j−1∑
l=0

CF (tl) ‖x
N
l ‖2

Note: There exists CR with hN
∑N−1
j=0 CF (tj) ≤ CR ∀N ∈ N because the Riemann sums

hN
∑N−1
j=0 CF (tj) converge for (N →∞). That’s why we needed CF (.) to be Riemann

integrable for this proof.

Let C
x
N := ‖xN‖2 ≥ ‖x

N
l ‖2 (l ∈ {0, . . . , N}). We then get:

­ ‖xNj ‖2 ≤ C̃ + hN

j−1∑
l=0

CF (tl) ‖x
N
l ‖2 ≤ C̃ + C

x
N hN

j−1∑
l=0

CF (tl)

37

Placing ­ in ¬ leads to:

® ‖xNj ‖2
¬,­
≤ C̃ + C̃ hN

j−1∑
l1=0

CF (tl1) + C
x
N h2

N

j−1∑
l1=0

CF (tl1)

l1−1∑
l2=0

CF (tl2)


Using the above inequality and placing it into ¬ and repeating that process k-times
gives us the following estimation:

®

‖xNj ‖2 ≤ C̃ + C̃ hN

j−1∑
l1=0

CF (tl1) + · · ·+ C̃ hkN

j−1∑
l1=0

CF (tl1) · · ·
lk−1−1∑
lk=0

CF (tlk)


︸ ︷︷ ︸

k nested sums

+ C
x
N hk+1

N

j−1∑
l1=0

CF (tl1) · · ·
lk−1−1∑
lk=0

CF (tlk)


︸ ︷︷ ︸

k nested sums

(j ∈ {0, . . . , N}, k ∈ N)

Note:
∑k
l al = 0 if k < l. This occurs in the inequality above, especially if the nesting

depth is greater than j + 1.

Again, our goal is to get rid of C
x
N . Unlike the proof in the continuous case, we have to

deal with nested sums instead of nested integral terms here. The idea now is to work
with the formula for integrals we have already from ¯ in the proof of Theorem 2.6.1,
i.e.:

¯
∫ t

t0

f(τ1) . . .

∫ τk−1

t0

f(τk) dτk . . . dτ1 =
1

k!

(∫ t

t0

f(τ)dτ

)k
(f ∈ L1(I))

To use it the idea is to rewrite the sums occurring in ® as integrals. To do so we
introduce:

CNF (t) :=

N−1∑
l=0

CF (tl)χ[tl,tl+1[(t)

with χ being the characteristic function, i.e.:

χ[tl,tl+1[(t) :=

{
1 t ∈ [tl, tl+1[

0 else

So it holds:

°
∫ tj

t0

CNF (τ) dτ = hN

j−1∑
l=0

CF (tl)

To get the connection to ¯ just replacing the sums in ® via the formula above is not
enough.

38

We need an additional estimation to work with ¯:
Let k̃ ∈ {0, . . . , N} and let C+ be Lebesgue integrable with C+(t) ≥ 0 for all t ∈ I, then:

± hN

k̃−1∑
l=0

CF (tl)

∫ tl

t0

C+(τ) dτ ≤
∫ tk̃

t0

CNF (t)

∫ t

t0

C+(τ) dτdt

This follows directly from

hN

k̃−1∑
l=0

CF (tl)

∫ tl

t0

C+(τ) dτ =

∫ tk̃

t0

k̃−1∑
l=0

CF (tl)

(∫ tl

t0

C+(τ) dτ

)
χ[tl,tl+1[(t)

 dt

and inspection of the integrand

k̃−1∑
l=0

CF (tl)

(∫ tl

t0

C+(τ) dτ

)
χ[tl,tl+1[(t)

C
+

nonnegative

≤
k̃−1∑
l=0

CF (tl)

(∫ t

t0

C+(τ) dτ

)
χ[tl,tl+1[(t)

Def. C
N
F (.)

= CNF (t)

(∫ t

t0

C+(τ) dτ

)
(t ∈ I)

With

CNF (t)

∫ t

t0

CNF (τ1) . . .

∫ τk−1

t0

CNF (τk) dτk . . . dτ1︸ ︷︷ ︸
k nested integrals

≥ 0 (t ∈ I, k ∈ N ∪ {0})

By successively applying ± we get the result we were looking for to be able to use ¯:

hkN

j−1∑
l1=0

CF (tl1) · · ·
lk−1−1∑
lk=0

CF (tlk)


︸ ︷︷ ︸

k nested sums

±
≤
∫ tj

t0

CNF (τ1) . . .

∫ τk−1

t0

CNF (τk) dτk . . . dτ1 =̄

1

k!

(∫ tj

t0

CNF (τ)dτ

)k
°
=

1

k!

(
hN

j−1∑
l=0

CF (tl)

)k
(j ∈ {0, . . . , N}, k ∈ N)

In the final step we applied ¯ which transforms the integral representation back into
the sums representation. This result can now be substituted in ® to get an exponential
series like in Theorem 2.6.1:

®

‖xNj ‖2 ≤ C̃ + C̃ hN

j−1∑
l1=0

CF (tl1) + · · ·+ C̃
1

k!

(
hN

j−1∑
l=0

CF (tl)

)k
+ C

x
N

1

(k + 1)!

(
hN

j−1∑
l=0

CF (tl)

)k+1

= C̃

k∑
i=0

1

i!

(
hN

j−1∑
l=0

CF (tl)

)i
+ C

x
N

1

(k + 1)!

(
hN

j−1∑
l=0

CF (tl)

)k+1

(j ∈ {0, . . . , N}, k ∈ N)

To obtain a uniform upper bound for all xN ∈ XN (T, t0, X0) we still need to get rid of
C
x
N . But as the above inequality holds for all k ∈ N we can take the limit of k → ∞ on

39

the right-hand side. From investigation of the exponential series it then follows:

k∑
i=0

1

i!

(
hN

j−1∑
l=0

CF (tl)

)i
→ e(hN

∑j−1
l=0 CF (tl)) and C

x
N

1

(k + 1)!

(
hN

j−1∑
l=0

CF (tl)

)k+1

→ 0 (k →∞)

So we finally got rid of C
x
N and obtain the final result:

®
‖xNj ‖2 ≤ C̃e(

hN
∑j−1
l=0 CF (tl)) ≤ C̃eCR = (‖X0‖2 + CR) eCR︸ ︷︷ ︸

M̃ :=

(j ∈ {0, . . . , N})

�

Like in the continuous case we get that all solutions xN ∈ XN (T, t0, X0) (N ∈ N) are uni-
formly Lipschitz-continuous, i.e. Lipschitz-continuous with uniform Lipschitz constant
independent of N . We will call that Lipschitz constant L̃.

2.6.4 Theorem (Discrete Uniform Lipschitz Continuity)

Let the set of all feasible initial values X0 be bounded and let (A1) be fulfilled. Then
all feasible solutions of the Discrete Differential Inclusion presented in Definition 6,
i.e. xN ∈ XN (T, t0, X0), are uniformly Lipschitz-continuous with Lipschitz constant
L̃ (with respect to the ‖.‖2-norm).
Proof :

Note: (A1) implies that C(.) is Riemann integrable, because it is assumed to be con-
stant. So Theorem 2.6.3 can be applied in the proof.

Let xN ∈ XN (T, t0, X0) and let l > k:

‖xNl − x
N
k ‖2 = hN ‖

l−1∑
j=k

1

hN
(xNj+1 − x

N
j)‖2 ≤ hN

l−1∑
j=k

‖

∈F (tj ,x
N
j)︷ ︸︸ ︷

1

hN
(xNj+1 − x

N
j) ‖2

Def. ‖F (tj ,x
N
j)‖2

≤ hN

l−1∑
j=k

‖F (tj , x
N
j)‖2

(A1)

≤ CF hN

l−1∑
j=k

(‖xNj ‖2 + 1)

Theorem 2.6.3
≤ CF (M̃ + 1) (l − k)hN

l>k
= CF (M̃ + 1) |tl − t̃k|

For l < k we get with the above inequality:

‖xNl − x
N
k ‖2 = ‖xNk − x

N
l ‖2 ≤ CF (M̃ + 1) (k − l)hN

l<k
= CF (M̃ + 1) |tl − tk|

So overall we have for xN ∈ XN (T, t0, X0) and k, l ∈ {0, . . . , N}:

‖xNl − x
N
k ‖2 ≤ CF (M̃ + 1)︸ ︷︷ ︸

L̃:=

|tl − tk|

�

40

3 Convergence Theorem (Problem Specific Approach)

3.1 Overview

In this chapter the main result ‖x̂N − ρN(x̂(.))‖∞ ≤ Ch
1/2
N is shown, where x̂N is the

optimal solution to the discrete Mayer-Problem 2.4.2 respectively 2.4.4, x̂(.) the optimal
solution to the continuous Mayer-Problem 2.3.2 respectively 2.3.3 and C some constant
independent of N . Recall that ρN is the ordinary restriction operator to the grid (see
2.4.1). The approach presented here makes use of results specific to the problem class
itself and the chosen numerical method. A more general view on the approach used
in this chapter is presented in chapter 4. That chapter is included to give the reader
a better sense on how modular and flexible the method used here really is. In fact
there is the core concept of using Value Convergence in conjunction with a so called
Approximation Property, a Compatibility Property and an Inverse Stability
Property. All these properties are modules, which need to deliver certain results, but
may be interchanged to fit to specific problems and discretization methods.
We will start off directly with examining ‖x̂N −ρN (x̂(.))‖∞. The key to success is to bear
in mind that we ultimately want to make use of Value Convergence (convergence of the
objective function).
To give the reader an idea of the whole concept, the whole estimation will directly
be presented, which involves the 4 major steps mentioned above. These steps will be
explained later on in detail, but for now a short overview of these steps shall be given:

1. The Approximation Property ensures, that for any valid discrete solution xN

for the state of problem 2.4.2 there exists a solution πN (xN)(.) to the continous
problem 2.3.2 close enough to xN (on the grid) and vice versa. Although it might
seem that only the first mentioned direction is needed, we will see (when conside-
ring Value Convergence) that indeed both directions are the key to success. The
result we exploit here is ‖xN − ρN(πN(xN)(.))‖∞ ≤ chN . As the reader might
see, this is the major component for connecting the discrete and the continuous
case.

2. The Compatibility Property ensures, that the value of the discrete L∞-
norm of a L∞-function f(.) ∈ L∞(I)k restricted to the grid is close enough
to the value of the L∞-norm of f(.). With the additional property of
Lipschitz-continuity for the function f(.) (with Lipschitz-constant Lf) one gets
|‖ρN(f(.))‖∞ − ‖f(.)‖∞| ≤ LfhN . Together with the Approximation Property
this result will serve as a bridge between the discrete and the continuous ca-
se. In our case the function f(.) will be πN (x̂N)(.) − x̂(.) and the corresponding
Lipschitz-constant will be denoted by L∆x.

41

3. The Inverse Stability Property serves as a connection between the di-
stance of a feasible state to the optimal state together with the distan-
ce of a feasible control to the optimal control and the difference of the
corresponding values of the objective function. That’s the point, where se-
cond order sufficient optimality conditions come into play. The final re-

sult we will exploit here is α
(
‖πN(x̂N)(.)− x̂(.)‖∞ + ‖π̃N(ûN)− x̂(.)‖2

)2

≤

J(πN(x̂N)(t0), πN(x̂N)(T))−J(x̂(t0), x̂(T)), where πN (x̂N)(.) is an appropriate
solution for the state to the continuous problem according to the Approximation
Property. π̃N (ûN) is a corresponding feasible control to the state πN (x̂N)(.) and
α > 0. Note the use of the different norms, which is crucial here.

4. Value Convergence is convergence of the value of the objective function
J(x̂N0 , x̂

N
N) to J(x̂(t0), x̂(T)) for N → ∞. Asuming Lipschiz-continuity of J (with

corresponding Lipschitz-constant LJ) leads to |J(x̂N0 , x̂
N
N)−J(x̂(t0), x̂(T))| ≤ LJ chN .

Based on that Value Convergence and the Approximation Property we will later
on obtain the result J(πN(x̂N)(t0), πN(x̂N)(T))− J(x̂(t0), x̂(T)) ≤ 2LJ chN .
Together with the Inverse Stability Property this yields the important result

‖πN(x̂N)(.)− x̂(.)‖∞ ≤
√

2LJ c
α

√
hN .

Remember, the following estimation shall just serve as a starting point to see where this
chapter is going. The details crucial for understanding the whole picture will be pre-
sented later on. Nevertheless the whole estimation process will be shown. To estimate
‖x̂N − ρN (x̂(.))‖∞ we start off by using the Approximation Property, then the Compa-
tibility Property and finally the Inverse Stability Property in conjunction with Value
Convergence, i.e. the result in 4. So the whole process looks the following way:

‖x̂N − ρN (x̂(.))‖∞
choose πN (x̂

N
)(.)

≤
according to 1.

‖x̂N − ρN (πN (x̂N)(.))‖∞ + ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖∞

1.
≤ chN + ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖∞

2.
≤ chN + L∆xhN + ‖πN (x̂N)(.))− x̂(.)‖∞

3.,4.

≤ (c+ L∆x)hN +

√
2LJ c

α

√
hN

hN≤1

≤

(
c+ L∆x +

√
2LJ c

α

)
︸ ︷︷ ︸

C:=

√
hN

The only reason for presenting the estimation process this way is that it is much more
readable. The way following the ideas, which lead to the final result, would be the
other way round. If we would go that way, we’d have to start with the inverse stability
combined with Value Convergence, because Value Convergence is the result we want to
make use of. And that is exactly what will be done in the next section. To understand
the ideas behind the approach above the estimation process will be presented in detail
there.

42

The following figure shows the estimation process of the following section in detail.

Main Result

tools

Approximation
Property

Norm
Approximation
(Compatibility
Property)

transition from
discrete to
continuous case

Inverse
Stability

second order
optimality

conditions

first order
optimality

conditions

Objective
Function Value
Convergence

state convergence

triangle inequality

first term second term

supremum norm

2-Norm

Objective Function Value Difference

Assumptions

existence of
Approximation
Property

existence of
Inverse Stability
Property

Objective Function is
Lipschitz continuous

right-hand side of the ODE
is Lipschitz-continuous

estimation process

43

3.2 Detailed Estimation Process

In the previous section, in order to give a quick overview, only the surface of the concept
has been touched. This section deals with the details.

The central idea is based on the assumption of Value Convergence, i.e. convergence of
the value of the objective function J(x̂N0 , x̂

N
N) to J(x̂(t0), x̂(T)) for N → ∞. If this is the

case, there is hope that the corresponding states and maybe even controls will converge
with respect to a certain discrete norm, too. For this to happen there is the need for
some sort of Inverse Stability Property, but more on that topic later.
Indeed under certain circumstances Value Convergence can be proven, but to do so we
need one major result, the so called Approximation Property. As we will see later on in
the prove of Value Convergence (see 3.2.2) there will be a need for a feasible solution to
the continuous Mayer-Problem (see 2.3.2 respectively 2.3.3) close enough to the optimal
discrete solution of the discrete Mayer-Problem (see 2.4.2 respectively 2.4.4) and vice
versa. So before taking a look at Value Convergence we shall consider the Approximation
Property. This property builds the core of the whole estimation process and is in no way
a trivial result. That’s why the whole chapter 5 of this thesis has been devoted to it. For
now only the result shown in chapter 5 will be presented.

3.2.1 Theorem (Approximation Property)

Recall Definition 2 (definition of feasible solution sets to the Mayer-Problem). Let
x(.) ∈ XΘ(T, t0, X0), xN ∈ XN

Θ (T, t0, X0) and let all the assumptions from chapter 5
((A1), (A2), (A3), (C1) and (C2)) be satisfied. Then ∃Ñ ∈ N, such that for any
N ∈ N with N ≥ Ñ there exist functions πN : XN

Θ (T, t0, X0)→ XΘ(T, t0, X0) and
δN : XΘ(T, t0, X0)→ XN

Θ (T, t0, X0), such that:

‖ρN (πN (xN)(.))− xN‖∞ ≤ chN
‖δN (x(.))− ρN (x(.))‖∞ ≤ chN

Remarks:

• Note the image sets of the functions. They indicate that πN (xN)(.) is a feasible
solution to the continuous Mayer-Problem and δN (x(.)) a feasible solution to the
discrete Mayer-Problem.

• An alternative description of the Approximation Property without introducing the
functions πN and δN would be by using the Hausdorff-distance dNH,∞: defined in
2.5.4

dNH,∞

(
ρN (XΘ(T, t0, X0)), XN

Θ (T, t0, X0)
)
≤ chN

• As this is a general result for differential inclusions with certain properties it also
applies to the solution sets X̃Θ(T, t0, X0) and X̃N

Θ (T, t0, X0) defined in Definition 1.
But we just need it for the solution sets to the Mayer-Problem.

44

Now we are ready to take a closer look at Value Convergence of the Mayer-Problem
objective function. Indeed the only reason for using the Mayer-Problem formulation in
this article is that with only one additional assumption we get Value Convergence for
this special kind of objective function. The key components will be the Approximation
Property described above, the optimality of the discrete solution x̂N in the discrete
case and the optimality of x̂(.) in the continuous case.

3.2.2 Theorem (Value Convergence)

Consider the objective function J of the Mayer-Problem 2.3.2 respectively 2.3.3. Let
J(., .) be Lipschitz-continous in both arguments on X0 × (S ∪ S̃) (with Lipschitz-
constant LJ with respect to the supremum norm) and let all the assumptions of
Theorem 3.2.1 (Approximation Property) be fulfilled. Then it holds:∣∣∣J(x̂N0 , x̂

N
N)− J(x̂(t0), x̂(T))

∣∣∣ ≤ LJ chN
Note: Lipschitz-continuity of J(., .) is only needed on X0×(S∪S̃). S ⊂ Rn is the compact

set that contains all vectors x(t) for t ∈ [t0, T] and x(.) ∈ XΘ(T, t0, X0) (see Theorem
2.6.1). S̃ is the discrete counterpart to S, so it contains xNj for all j ∈ {0, . . . , N} and
xN ∈ XN

Θ (T, t0, X0) for all N ∈ N (see Theorem 2.6.3).

Proof :

We will estimate J(x̂N0 , x̂
N
N) − J(x̂(t0), x̂(T)) in both directions. To get the desired result

we make use of the optimality of x̂N respectively x̂(.), i.e.:

J(x̂N0 , x̂
N
N) ≤ J(xN0 , x

N
N) ∀xN ∈ XN

Θ (T, t0, X0)

respectively

J(x̂(t0), x̂(T)) ≤ J(x(t0), x(T)) ∀x(.) ∈ XΘ(T, t0, X0)

From the Approximation Property (see 3.2.1) we get the existence of

δN (x̂(.)) ∈ XN
Θ (T, t0, X0) and πN (x̂N)(.) ∈ XΘ(T, t0, X0)

with

‖δN (x̂(.))− ρN (x̂(.))‖∞ ≤ chN and ‖ρN (πN (x̂N)(.))− x̂N‖∞ ≤ chN

45

Combining both properties we get:

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) ≤ J(δN (x̂(.))0, δN (x̂(.))N)− J(x̂(t0), x̂(T))

J Lipschitz

≤ LJ ‖(δN (x̂(.))0, δN (x̂(.))N)− (x̂(t0), x̂(T))‖∞

≤ LJ ‖δN (x̂(.))− ρN (x̂(.))‖∞ ≤ LJ chN
and

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) ≥ J(x̂N0 , x̂

N
N)− J(πN (x̂N)(t0), πN (x̂N)(T))

J Lipschitz

≥ − LJ ‖(x̂
N
0 , x̂

N
N)− (πN (x̂N)(t0), πN (x̂N)(T))‖∞

≥ − LJ ‖x̂
N − ρN (πN (x̂N)(.))‖∞ ≥ −LJ chN

which leads to

|J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))| ≤ LJ chN

Note: The estimation above is only possible, because the objective function in the
Mayer-Problem and the objective function in the discrete Mayer-Problem are the
same. That way we could make use of the Lipschitz-continuity of J here.

�

Now that we can make use of Value Convergence, the question of how to deduce con-
vergence of the corresponding states x̂N and x̂(.) arises. The answer is to use some sort
of Inverse Stability Property, hence the name of the next property being introduced.
Specifically we will make use of second order sufficient optimality conditions in
this chapter. This is not the only way one could go for an inverse stability result, but
maybe the best in most cases. First order sufficient optimality conditions would deliver
an even better result, but unfortunately they do not apply in most cases. Again, a
more general way will be explained in chapter 4. The following is a well known result
from optimization theory in function spaces. We will first take a look at this form of
the second order sufficient optimality conditions and then adjust it slightly according
to our needs.

3.2.3 Theorem (Inverse Stability Property)

Let second order sufficient optimality conditions be fulfilled for the continuous problem.
Then ∃α̃ > 0 and ε > 0 such that

α̃
(
‖x(.)− x̂(.)‖22 + ‖u(.)− û(.)‖22

)
= α̃ ‖(x(.), u(.))− (x̂(.), û(.))‖22 ≤ J(x(t0), x(T))− J(x̂(t0), x̂(T))

46

for all admissible pairs (x(.), u(.)) with ‖u(.)− û(.)‖∞ ≤ ε and ‖x(.)− x̂(.)‖∞ ≤ ε

Remarks

• The main part in second order sufficient optimality conditions is that
L′′(x̂, û)((v, w), (v, w)) ≥ β‖(v, w)‖22 has to be fulfilled for all (v, w) ∈ L(Σ, (x̂, û)).
Notations: L is the Lagragian, L′′ its second Fréchet and L(Σ, (x̂, û)) the so
called linearizing cone of the feasible set Σ. For further information see [1].

• The whole chapter deals only with Mayer-Problems, and indeed the above ine-
quality is needed for the extended state x(.). For verifying sufficient optimality
conditions it might be advantageous to stick with the Bolza-Problem and show
that the sufficient conditions hold. If the integrand of the objective function
f(., ., .) is Lipschitz-continuous in all of its arguments on the feasible set, the de-
sired inverse stability property for the extended state can be obtained from the
inverse stability property delivered by analyzing the Bolza-Problem. Note that
the Lipschitz-continuity of f(., ., .) follows directly from the Lipschitz-continuity
of ψ(., ., .), which will be postulated in Theorem 3.2.4 anyway. So needing the
Lipschitz-continuity of f(., ., .) is no additional restriction. For details see 6.1.1
in the examples chapter. For an example of how to verify second order opti-
mality conditions see section 6.2.2 about applying the Convergence Theorem
to Example 6.2.

• This result might be obtained for another norm than the L2-norm, which would
be fine. But the L2-norm is the natural norm for proving that second order
sufficient optimality conditions are fulfilled. This has to do with the fact, that
the second Fréchet derivative of the Lagrangian is a bilinear form.

• Consider the different kind of norms used here. The phenomenon appearing
here is the so called Two-Norm-Discrepancy (in our case L2- and L∞-norm).
Also norms might be altered to some extent in the above statement, they may
not be easily exchanged by each other. The reason for that has to do with
existence of Fréchet derivatives with respect to certain norms. For example,
this result is only valid on an ε-ball with respect to the L∞-norm with center
(x̂(.), û(.)). It would be much more preferable to have that result with respect
to an Lp-norm (1 ≤ p <∞) than to the L∞-norm. This would widen the range
of pairs (x(.), u(.)) for which the above inequality holds. But to the author’s
knowledge such a result has not been proven yet. For further details on second
order optimality conditions in function spaces and the Two-Norm-Discrepancy
see [1].

Remember the final result ‖x̂N − ρN (x̂(.))‖∞ ≤ Ch
1/2
N we want to prove in this chapter.

This result states convergence in the discrete L∞-norm. When considering the above
second order optimality condition 3.2.3, at first sight one might think that the result
is too weak to use it to prove convergence of the state in the discrete L∞-norm. And
indeed, just looking at the inequality given in 3.2.3 supposes only convergence in the
discrete L2-norm. This is because the left-hand side only delivers convergence in the

47

L2-norm, which is in general weaker than the L∞-norm, and the L2-norm is related to
the discrete L2-norm, not the discrete L∞-norm (see 2.5.2). Also we haven’t yet made
any connection between the optimal discrete solution x̂N and the optimal solution for
the continuous case x̂(.), a gut feeling or maybe a look in the overview section of this
chapter should tell us that we can’t proceed directly with the result given above if
we actually want to obtain the convergence result with respect to the L∞-norm. But
fortunately the fact that ẋ(t) = ψ(t, x(t), u(t)) a.e. for feasible states of our problem
2.3.2, i.e. x(.) ∈ XΘ(T, t0, X0), will help us out. With the additional assumption of
Lipschitz-continuity of ψ in all of its arguments, we will be able to estimate ‖x(.)− x̂(.)‖∞
by ‖(x(.), u(.))− (x̂(.), û(.))‖2 (see the proof of the following Theorem), which leads us to
the stronger result we need.

3.2.4 Theorem (Adjusted Inverse Stability Property)

Let all the assumptions of 3.2.3 be fulfilled, let ẋ(t) = ψ(t, x(t), u(t)) a.e. and ˙̂x(t) =

ψ(t, x̂(t), û(t)) a.e. and let ψ(., ., .) be Lipschitz-continuous in all of its arguments on
[t0, T]× S × U (with Lipschitz-constant Lψ with respect to the supremum norm).

Note: Lipschitz-continuity of ψ(., ., .) is only needed on [t0, T] × S × U . U ⊂ Rm has to
be chosen in such a way that u(t) ∈ U for all admissible controls u(.). S ⊂ Rn is the
compact set that contains all vectors x(t) for t ∈ [t0, T] and x(.) ∈ XΘ(T, t0, X0) (see
Theorem 2.6.1).

Then with α̃ and ε from 3.2.3 it holds:

α (‖x(.)− x̂(.)‖∞ + ‖u(.)− û(.)‖2)
2 ≤ J(x(t0), x(T))− J(x̂(t0), x̂(T))

with

α =
α̃(√

1
T−t0

+ 2Lψ
√
T − t0 + 1

)2

for all admissible pairs (x(.), u(.)) with ‖u(.)− û(.)‖∞ ≤ ε and ‖x(.)− x̂(.)‖∞ ≤ ε

Note: The Lipschitz-continuity of ψ stands in close relation to the assumption (A3) for
the Approximation Property (see chapter 5). So this is not much of an additional
requirement.

Proof :

Our main goal is to estimate ‖x(.)− x̂(.)‖∞ by ‖x(.)− x̂(.)‖2 and ‖u(.)− û(.)‖2. The result
we want looks like ‖x(.)− x̂(.)‖∞ ≤ C‖(x(.), u(.))− (x̂(.), û(.))‖2 with some constant C.
Let t ∈ I, then:

¬

‖x(t)− x̂(t)‖∞ = ‖x(t0) +

∫ t

t0

ψ(τ, x(τ), u(τ)) dτ − x̂(t0)−
∫ t

t0

ψ(τ, x̂(τ), û(τ)) dτ‖∞

≤ ‖x(t0)− x̂(t0)‖∞︸ ︷︷ ︸
­

+ ‖
∫ t

t0

ψ(τ, x(τ), u(τ))− ψ(τ, x̂(τ), û(τ)) dτ‖∞︸ ︷︷ ︸
®

48

We start off with estimating the second term (®). The result we will get will also prove
useful to estimate the first term (­).

®

‖
∫ t

t0

ψ(τ, x(τ), u(τ))− ψ(τ, x̂(τ), û(τ)) dτ‖∞ ≤
∫ t

t0

‖ψ(τ, x(τ), u(τ))− ψ(τ, x̂(τ), û(τ))‖∞ dτ

t∈I
≤ Lψ

∫ T

t0

‖(x(τ), u(τ))− (x̂(τ), û(τ))‖∞
ψ Lipschitz

≤ Lψ

∫ T

t0

‖(x(τ), u(τ))− (x̂(τ), û(τ))‖∞ dτ

2.5.2.1.
≤ Lψ

∫ T

t0

‖(x(τ), u(τ))− (x̂(τ), û(τ))‖2 dτ

Hölder
≤ Lψ

(∫ T

t0

‖(x(τ), u(τ))− (x̂(τ), û(τ))‖22 dτ

)1/2(∫ T

t0

1 dτ

)1/2

= Lψ
√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

Summary:

‖
∫ t

t0

ψ(τ, x(τ), u(τ))− ψ(τ, x̂(τ), û(τ)) dτ‖∞ ≤ Lψ
√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

We are now equipped to estimate ­. We start with the same equality used at the
beginning of the prove, but as we want to estimate ­ we use the triangle inequality of
the norm in the other direction. So we get for all t ∈ I:

­

‖x(t)− x̂(t)‖∞ = ‖x(t0) +

∫ t

t0

ψ(τ, x(τ), u(τ)) dτ − x̂(t0)−
∫ t

t0

ψ(τ, x̂(τ), û(τ)) dτ‖∞

≥ ‖x(t0)− x̂(t0)‖∞ − ‖
∫ t

t0

ψ(τ, x(τ), u(τ))− ψ(τ, x̂(τ), û(τ)) dτ‖∞

®
≥ ‖x(t0)− x̂(t0)‖∞ − Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

Using this result and taking a closer look at ‖x(.)− x̂(.)‖2 yields:

‖x(.)− x̂(.)‖2 =

(∫ T

t0

‖x(τ)− x̂(τ)‖22 dτ

)1/2

≥

(∫ T

t0

‖x(τ)− x̂(τ)‖2∞ dτ

)1/2

≥
(
‖x(t0)− x̂(t0)‖∞ − Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

)(∫ T

t0

1 dτ

)1/2

=
√
T − t0

(
‖x(t0)− x̂(t0)‖∞ − Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

)

So we get the following estimation for ‖x(t0)− x̂(t0)‖∞:

‖x(t0)− x̂(t0)‖∞ ≤

√
1

T − t0
‖x(.)− x̂(.)‖2 + Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

49

Turning back to ¬ and estimating further with the results of ­ and ® yields for all
t ∈ I:

¬
‖x(t)− x̂(t)‖∞ ≤ ‖x(t0)− x̂(t0)‖∞ + ‖

∫ t

t0

ψ(τ, x(τ), u(τ))− ψ(τ, x̂(τ), û(τ)) dτ‖∞

­,®
≤

√
1

T − t0
‖x(.)− x̂(.)‖2 + 2Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

Once again, this result is true for all t ∈ I, which gives us:

¯ ‖x(.)− x̂(.)‖∞ ≤

√
1

T − t0
‖x(.)− x̂(.)‖2 + 2Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2

We now have the estimation we wanted for ‖x(.) − x̂(.)‖∞. To obtain the result
stated in this theorem we just need to take a look at (‖x(.)− x̂(.)‖∞ + ‖u(.)− û(.)‖2)

2,
apply the above result, estimate a little further and involve α̃ to use Theorem 3.2.3.

Note: We will make use of the trivial estimates ‖u(.)− û(.)‖2 ≤ ‖(x(.), u(.))− (x̂(.), û(.))‖2
and ‖x(.)− x̂(.)‖2 ≤ ‖(x(.), u(.))− (x̂(.), û(.))‖2.

(‖x(.)− x̂(.)‖∞ + ‖u(.)− û(.)‖2)
2 ¯
≤(√

1

T − t0
‖x(.)− x̂(.)‖2 + 2Lψ

√
T − t0 ‖(x(.), u(.))− (x̂(.), û(.))‖2 + ‖u(.)− û(.)‖2

)2

≤

(√
1

T − t0
+ 2Lψ

√
T − t0 + 1

)2

‖(x(.), u(.))− (x̂(.), û(.))‖22

By involving α̃ from Theorem 3.2.3 this leads to:

α̃(√
1

T−t0
+ 2Lψ

√
T − t0 + 1

)2

︸ ︷︷ ︸
α :=

(‖x(.)− x̂(.)‖∞ + ‖u(.)− û(.)‖2)
2

≤ α̃ ‖(x(.), u(.))− (x̂(.), û(.))‖22
Theorem 3.2.3

≤ J(x(t0), x(T))− J(x̂(t0), x̂(T))

�

The result from Theorem 3.2.4 definitely brings us one step closer to the final result
of this chapter. Now we would like to combine the Adjusted Inverse Stability Property
with Value Convergence, which we have already proven. Again, taking a closer look
yields that this is not directly possible. This is because on the left hand side of
the inequality in Theorem 3.2.4 we have to deal with functions from the continuous
problem. There is no way to replace x(.) by x̂N in that equality, but we can substitute
x(.) with a function that is close to xN on the grid GN . And this is the point, where the

50

Approximation Property appears for the second time (the first time was in the proof
of Value Convergence). Recall the name of the function we are looking for is πN (x̂N)(.)

and it holds ‖x̂N − ρN (πN (x̂N)(.))‖∞ ≤ chN . With that estimation and the Adjusted
Inverse Stability Property (that we can make use of with πN (x̂N)(.)), there is hope that
we can combine both estimations to gain the final result. Indeed this will be possible,
but to do so we have to overcome the obstacle that one estimate involves the discrete
L∞-norm and the other one the L∞-norm. But more on that later. Let’s deal with
fitting πN (x̂N)(.) into Theorem 3.2.4 first. The only problem with this is that we need
linear convergence for the difference of the objective functions on the right-hand side of
the inequality. But this shouldn’t be hard to prove, because we can make use of Value
Convergence, the Approximation Property and Lipschitz-continuity of the objective
function J (see prove of the following Corollary). So all this considerations lead us to
the important result below.

3.2.5 Corollary to Theorem 3.2.4 (Applied Inverse Stability Property)

Let’s consider the Mayer-Problem (2.3.2) and the discrete Mayer-Problem(2.4.2) again.
Let all the assumptions of Theorem 3.2.1 (Approximation Property), Theorem 3.2.2 (Va-
lue Convergence) and Theorem 3.2.4 (Adjusted Inverse Stability Property) be fulfilled.
Then with α and ε from 3.2.4 it holds:

α
(
‖πN (x̂N)(.)− x̂(.)‖∞ + ‖π̃N (ûN)(.)− û(.)‖2

)2

≤ J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T))

≤ 2LJ chN

as soon as ‖π̃N (ûN)(.)− û(.)‖∞ ≤ ε and ‖πN (x̂N)(.)− x̂(.)‖∞ ≤ ε.

This implies for ‖πN (x̂N)(.)− x̂(.)‖∞:

‖πN (x̂N)(.)− x̂(.)‖∞ ≤ ‖πN (x̂N)(.)− x̂(.)‖∞ + ‖π̃N (ûN)(.)− û(.)‖2 ≤
√

2LJ chN
α

as soon as ‖π̃N (ûN)(.)− û(.)‖∞ ≤ ε and ‖πN (x̂N)(.)− x̂(.)‖∞ ≤ ε

Remarks:

• πN (x̂N)(.) is a feasible state for the continuous problem according to the Approxi-
mation Property and π̃N (ûN)(.) denotes a corresponding feasible control.

• The additional condition inherited from Theorem 3.2.4 ‖π̃N (ûN)(.) − x̂(.)‖∞ ≤ ε

and ‖πN (x̂N)(.) − x̂(.)‖∞ ≤ ε is unfortunately present. ε depends on the specific
problem, so this leads to an additional assumption one has to make. As already
mentioned in a note for Theorem 3.2.3 it would be desirable to only have to make
that assumption with respect to an Lp-norm (1 ≤ p <∞). There are investigations
using an L2+β-norm (with β > 0) going on, but these are not part of this thesis.

51

Proof :

The only thing that needs to be proven is that

J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) ≤ 2LJ chN

This is a direct consequence of the Approximation Property (Theorem 3.2.1), Value Con-
vergence (Theorem 3.2.2) and the Lipschitz-continuity of J postulated in Theorem 3.2.2:

J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) = J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂N0 , x̂
N
N)︸ ︷︷ ︸

¬

+ J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))︸ ︷︷ ︸

­

The first term (¬) can be estimated using the Lipschitz-continuity and the Approxima-
tion Property:

¬
J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂N0 , x̂

N
N) ≤ LJ ‖(πN (x̂N)(t0), πN (x̂N)(T))− (x̂N0 , x̂

N
N)‖∞

≤ LJ ‖ρN (πN (x̂N)(.))− x̂N‖∞ ≤ LJ chN

The second term (­) can be estimated directly using the Value Convergence Theorem:

­ |J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))| ≤ LJ chN ⇒ J(x̂N0 , x̂

N
N)− J(x̂(t0), x̂(T)) ≤ LJ chN

Due to the fact that πN (x̂N)(.) ∈ XΘ(T, t0, X0) is a feasible solution of the Mayer-Problem
2.3.2 and x̂(.) ∈ XΘ(T, t0, X0), it holds:

J(πN (x̂N)(t0), πN (x̂N)(T)) ≥ J(x̂(t0), x̂(T))⇔ 0 ≤ J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T))

This, of course, follows directly from the second order sufficient optimality conditions,
too.

So overall we get:

0 ≤ J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) = J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂N0 , x̂
N
N)

+J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))

¬,­
≤ LJ chN + LJ chN = 2LJ chN

�

So let’s sum things up. We are now left with two major results. The first one is the
Approximation Property result ‖x̂N − ρN (πN (x̂N)(.))‖∞ ≤ chN . The second one is the

result from the corollary above, i.e. ‖πN (x̂N)(.) − x̂(.)‖∞ ≤
√

2LJ chN
α . The goal now

is to combine those results to gain ‖x̂N − ρN (x̂(.))‖∞ ≤ ChN with some constant C
independent of N. The only problem doing so is that we have to deal with the discrete
L∞-norm in ‖x̂N − ρN (πN (x̂N)(.))‖∞ and the L∞-norm in ‖πN (x̂N)(.) − x̂(.)‖∞. To be
able to combine them, the idea is to prove that ‖πN (x̂N)(.) − x̂(.)‖∞ is close enough
to ‖ρN (πN (x̂N)(.)) − ρN (x̂(.))‖∞ to be able to work with ‖ρN (πN (x̂N)(.)) − ρN (x̂(.))‖∞

52

instead of ‖πN (x̂N)(.)− x̂(.)‖∞. We are now going to introduce that result, which will be
called Compatibility Property, in its general form and show afterwards, that it applies
to the function (πN (x̂N)(.) − x̂(.)). It’s then trivial to apply the triangle inequality to
‖πN (x̂N)(.)− x̂(.)‖∞ and then use the two major results wrapped up before.

3.2.6 Theorem (Compatibility Property)

Let f(.) : I → Rk (k ∈ N) be Lipschitz-continuous (with Lipschitz-constant Lf with
respect to the supremum norm). Then it holds:∣∣∣‖ρN (f(.))‖∞ − ‖f(.)‖∞

∣∣∣ ≤ LfhN
Proof :

As f(.) is continuous on I there exits t̃ ∈ I such that ‖f(.)‖∞ = |fi(t̃)| for some i ∈ {1, . . . , k}
(see definition of the ‖.‖∞-norm for f(.) ∈ C(I)k). With t̃ ∈ I there exists j ∈ {0, . . . , N−1}
such that t̃ ∈

[
tj , tj+1

]
. The Lipschitz-continuity of f(.) then delivers:

¬ |fi(t̃)| − |fi(tj)| ≤ |fi(t̃)− fi(tj)| ≤ ‖f(t̃)− f(tj)‖∞ ≤ Lf |t̃− tj | ≤ LfhN

From the definition of the discrete L∞-norm and the ordinary restriction operator to
the grid ρN , it directly follows that:

­ ‖ρN (f(.))‖∞ = sup
j=0,...,N

‖f(tj)‖∞ = sup
j=0,...,N

(
sup

l=1,...,k
|fl(tj)|

)
≥ |fi(tj)|

Combining ¬ and ­ leads to:

‖f(.)‖∞ − ‖ρN (f(.))‖∞ = |fi(t̃)| − ‖ρN (f(.))‖∞
­
≤ |fi(t̃)| − |fi(tj)|

¬
≤ LfhN

Due to {t0, . . . , tN} ⊂ I we get by considering the norm definitions that

‖f(.)‖∞ − ‖ρN (f(.))‖∞ ≥ 0

So overall we have:

0 ≤ ‖f(.)‖∞ − ‖ρN (f(.))‖∞ ≤ LfhN

�

53

Let’s apply the result of the compatibility property to the function (πN (x̂N)(.)− x̂(.)).

3.2.7 Corollary to Theorem 3.2.6 (Applied Compatibility Property)

Let assumption (A1) from section 2.6 be fulfilled, which leads to the fact that Theo-
rem 2.6.2 (Uniform Lipschitz Continuity) and Theorem 2.6.4 (Discrete Uniform Lipschitz
Continuity) hold.

Then ∣∣∣‖ρNπN (x̂N)(.)− ρN x̂(.)‖∞ − ‖πN (x̂N)(.)− x̂(.)‖∞
∣∣∣ ≤ L∆xhN

with

L∆x = 2L (with L from section 2.6)

Proof :

This is actually pretty simple, because the hard work already has been done in Theo-
rem 2.6.2 (Uniform Lipschitz Continuity) and Theorem 3.2.6 (Compatibility Property).
So we just need to show that (πN (x̂N)(.) − x̂(.)) is Lipschitz continuous with Lipschitz
constant 2L.
Let t, t̃ ∈ I, then:

‖
(
πN (x̂N)(t)− x̂(t)

)
−
(
πN (x̂N)(t̃)− x̂(t̃)

)
‖∞ ≤ ‖πN (x̂N)(t)− πN (x̂N)(t̃)‖∞ + ‖x̂(t)− x̂(t̃)‖∞

2.5.2.1
≤ ‖πN (x̂N)(t)− πN (x̂N)(t̃)‖2 + ‖x̂(t)− x̂(t̃)‖2

Theorem 2.6.2
≤ L|t− t̃|+ L|t− t̃| = 2L|t− t̃|

We can now replace f(.) in Theorem 3.2.6 with (πN (x̂N)(.)− x̂(.)) and are done. �

Finally we have reached the point, where we have all major results ready to prove the
main result of this chapter, i.e. ‖x̂N − ρN (x̂(.))‖∞ ≤ Ch

1/2
N . So let’s wrap things up:

The initial idea was to use Value Convergence (Theorem 3.2.2) in conjunction with
Inverse Stability (Theorem 3.2.3) to deduce convergence of the corresponding states
from convergence of the objective function values. This did not lead to the final result,
but brought us to Corollary 3.2.5, which is pretty close. To get a connection to the
discrete norm, Corollary 3.2.7 came in handy. And finally one can make use of the Ap-
proximation Property (Theorem 3.2.1) to fill in the gap between x̂N and ρN (πN (x̂N)(.)).
This describes the whole estimation process from right to left, but it is not convenient
to write things down that way. It is way better to go from left to right. So we start
directly with estimating ‖x̂N − ρN (x̂(.))‖∞ while bearing in mind, that we ultimately

want to apply the result of Corollary 3.2.5, i.e. ‖πN (x̂N)(.)− x̂(.)‖∞ ≤
√

2LJ chN
α .

The first step is getting πN (x̂N)(.) into play:

¬ ‖x̂N − ρN (x̂(.))‖∞ ≤ ‖x̂
N − ρN (πN (x̂N)(.))‖∞ + ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖∞

The first term can be estimated by using the Approximation Property (Theorem 3.2.1):

54

­ ‖x̂N − ρN (πN (x̂N)(.))‖∞ ≤ chN

The second term ‖ρN (πN (x̂N)(.)) − ρN (x̂(.))‖∞ is close to ‖πN (x̂N)(.) − x̂(.)‖∞, which is
guaranteed by Corollary 3.2.7 (Applied Compatibility Property):

®

∣∣∣‖ρNπN (x̂N)(.)− ρN x̂(.)‖∞ − ‖πN (x̂N)(.)− x̂(.)‖∞
∣∣∣ ≤ 2LhN

⇒ ‖ρNπN (x̂N)(.)− ρN x̂(.)‖∞ ≤ 2LhN + ‖πN (x̂N)(.)− x̂(.)‖∞

So finally the term ‖πN (x̂N)(.) − x̂(.)‖∞ occurs, for which we have from Corollary 3.2.5
(Applied Inverse Stability):

¯ ‖πN (x̂N)(.)− x̂(.)‖∞ ≤
√

2LJ chN
α

Combining ­ and ® with ¬ and finally using ¯ delivers:

‖x̂N − ρN (x̂(.))‖∞
¬
≤ ‖x̂N − ρN (πN (x̂N)(.))‖∞ + ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖∞

­
≤ chN + ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖∞

®
≤ chN + 2LhN + ‖πN (x̂N)(.))− x̂(.)‖∞

¯
≤ (c+ 2L)hN +

√
2LJ c

α

√
hN

hN≤1

≤

(
c+ 2L+

√
2LJ c

α

)
︸ ︷︷ ︸

C:=

√
hN

Note: In the last step we assumed hN ≤ 1 so that hN ≤
√
hN . So the estimation above

holds for N ≥ T − t0.

So overall we have proven the following major result.

3.2.8 Convergence Theorem

Let all the assumptions from chapter 5 (X0 bounded, (A1), (A2), (A3), (C1) and (C2))
be satisfied. This leads to the fact, that the Approximation Property 3.2.1 holds with
constant c. From (A1) we also get that the Applied Compatibility Property (Corollary
3.2.7) can be used with constant L∆x = 2L. Also let the objective function J(., .) be
Lipschitz-continuous on X0× (S∪ S̃) in both arguments with Lipschitz constant LJ . This
leads to Value Convergence (Theorem 3.2.2). Furthermore, let second order sufficient
optimality conditions be fulfilled (see Theorem 3.2.3) and let the right-hand side of the
ODE ψ(., ., .) be Lipschitz-continuous in all of its arguments on the set [t0, T] × S × U
with Lipschitz constant Lψ. This implies that the Adjusted Inverse Stability Property
(Theorem 3.2.4) applies with constant α.

55

With all these assumptions it then holds:

‖x̂N − ρN (x̂(.))‖∞ ≤

(
c+ 2L+

√
2LJ c

α

)
︸ ︷︷ ︸

C:=

√
hN

Remarks:

• This result only holds for sure as soon as ‖π̃N (ûN)(.) − û(.)‖∞ ≤ ε and
‖πN (x̂N)(.)− x̂(.)‖∞ ≤ ε. For details on that matter and the constant ε see Theo-
rem 3.2.3 (Inverse Stability Property) and Corollary 3.2.5 (Applied Inverse
Stability Property).

• Lipschitz-continuity of J(., .) is only needed on X0 × (S ∪ S̃). S ⊂ Rn is the
compact set that contains all vectors x(t) for t ∈ [t0, T] and x(.) ∈ XΘ(T, t0, X0)

(see Theorem 2.6.1). S̃ is the discrete counterpart to S, so it contains xNj for
all j ∈ {0, . . . , N} and xN ∈ XN

Θ (T, t0, X0) (see Theorem 2.6.3).

• Lipschitz-continuity of ψ(., ., .) is only needed on [t0, T]× S ×U . U ⊂ Rm has to
be chosen in such a way that u(t) ∈ U for all admissible controls u(.).

As this chapter presented the whole concept for a specific class of optimal control
problems, the reader should be somehow familiar with the techniques used. This should
make following along the more abstract view presented in the next chapter easier.

56

4 Convergence Theorem (General Approach)

4.1 Overview

This chapter presents the estimation process of chapter 3 in a more general, hence pro-
blem independent, way. We are no longer talking directly about the Mayer-Problem
presented in 2.3.2 here. Chapter 3 has been presented before this one, because in the
author’s opinion the core concepts are easier to understand when working with a specific
problem class, which makes it possible to obtain distinct results. In the more general
approach we will just be able to make the assumptions for achieving certain goals, but
we won’t be able to prove that they are fulfilled without considering a specific problem
class. This chapter is only about presenting certain modules, usually in a weaker form
than in chapter 3, that will lead to a convergence result. Again, whether these modules
can be applied or not depends on the specific problem considered. The essential modules
are the Approximation Property, the Inverse Stability Property and the Compatibility
Property. In the previous chapter these were theorems we were able to prove under cer-
tain conditions. Now these are modules making weaker statements, which should make
it possible to apply them to a wider range of problem classes. Of course these weaker
statements will lead to weaker results. Especially assumptions on convergence will be
weaker than the results obtained in chapter 3. In general we will just presume conver-
gence with respect to a certain norm, whereas we were able to obtain linear convergence
for most modules when considering the specific problem 2.3.2.
The problems we are talking about in this chapter will just be called continuous pro-
blem and discrete problem. To get an idea of what those problems may look like, the
reader is strongly advised to take a look at the continuous Mayer-Problem 2.3.2 and its
directly discretized counterpart, the discrete Mayer-Problem 2.4.2.
This time we will gain a weaker result, which is

lim
N→∞

‖x̂N − ρN(x̂(.))‖ = 0

where x̂(.) is the optimal solution to the continuous problem, x̂N the optimal solution to
the discrete problem and ‖.‖ an appropriate discrete norm. Choice of this norm heavily
depends on the Inverse Stability Property and the Compatibility Property available.

57

In general all notations will stay the same, except the following ones.

Notations:

As we are talking about general optimal control problems in this chapter it makes
sense not to use the same notation for solution sets, although notation will be
pretty similar:

X: Set of all feasible solutions to the continuous problem.

XN : Set of all feasible solutions to the discrete problem.

Note that we are not distinguishing between pure state constraints included or not
(which was denoted by a subscript Θ) in this chapter. This makes sense, because
there is no specific problem considered here.

‖.‖: Appropriate norm. Depends on the Inverse Stability Property and the
Compatibility Property available. The corresponding (relating to the
Compatibility Property) discrete norm will be denoted the same way.
The arguments make clear which norm is meant.

|||.|||: Another appropriate norm. Usually stronger than ‖.‖.
For example ‖.‖ might be the L2-norm and |||.||| the L∞-norm.

Once again, the following section essentially presents a similar estimation process as
section 3.2 in the previous chapter. All the ideas are exactly the same. This chapter
builds upon the previous one so the basic ideas will be explained way shorter. The
reader is strongly advised to read Chapter 3 first.

4.2 Estimation Process (General Form)

The main idea of the whole concept is making use of Value Convergence of the objec-
tive function J(., .), which shall look like the objective function of the Mayer-Problem
presented in the last chapter. It is essential that the objective function does not change
when switching from the continuous to the discrete case. This is because both functions
need to be comparable. In fact, it would be possible to consider an objective function
that depends on the state at an arbitrary number of time points, but it is convenient to
let J just depend on the state at t0 and T respectively t0 and tN (the first and the last
time point). As shown in the previous chapter this can be easily achieved for objective
functions with integral term by using the Mayer formulation.
To obtain Value Convergence we need some sort of Approximation Property, which we
have to premise here. It will be postulated in a weaker form than in 3.2.1 so that it is
more likely to be fulfilled. For obtaining the result in 3.2.1 the optimal control problem
had to fit quite a lot of needs (see chapter 5).

58

4.2.1 Approximation Property (General Form)

Recall the Notation about solution sets in this chapter. Let x(.) ∈ X, xN ∈ XN . Then
∃Ñ ∈ N, such that for any N ∈ N with N ≥ Ñ there exist functions πN : XN → X and
δN : X → XN , such that:

lim
N→∞

‖ρN (πN (xN)(.))− xN‖∞ = 0

lim
N→∞

‖δN (x(.))− ρN (x(.))‖∞ = 0

Remarks:

• Note the image sets of the functions. This means, that πN (xN)(.) is a feasible
solution to the continuous problem and δN (x(.)) a feasible solution to the discrete
problem.

• Unfortunately this proposition has to be made with respect to the ‖.‖∞-norm to
obtain Value Convergence of the objective function.

• An alternative description of the Approximation Property without introducing the
functions πN and δN would be

lim
N→∞

dH,∞

(
ρN (X), XN

)
= 0

where dH,∞ is the applied Hausdorff-distance defined in 2.5.4.

The Approximation Property helps us gain Value Convergence.

4.2.2 Theorem (Value Convergence, General Form)

Consider the objective function J(., .) : as described before. Let J(., .) be continuous
and let the Approximation Property 4.2.1 be fulfilled. Then it holds:

lim
N→∞

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) = 0

Proof :

We will estimate J(x̂N0 , x̂
N
N) − J(x̂(t0), x̂(T)) in both directions. To get the desired result

we make use of the optimality of x̂N respectively x̂(.), i.e.:

J(x̂N0 , x̂
N
N) ≤ J(xN0 , x

N
N) ∀xN ∈ XN

respectively

J(x̂(t0), x̂(T)) ≤ J(x(t0), x(T)) ∀x(.) ∈ X

From the Approximation Property 4.2.1 we get the existence of δN (x̂(.)) ∈ XN and
πN (x̂N)(.) ∈ X with lim

N→∞
‖ρN (πN (xN)(.))− xN‖∞ = 0 and lim

N→∞
‖δN (x(.))− ρN (x(.))‖∞ = 0.

Together with the optimality, this will deliver the statement of this theorem.

59

For the first direction we get:

¬

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) ≤ J(δN (x̂(.))0, δN (x̂(.))N)− J(x̂(t0), x̂(T))

From the Approximation Property 4.2.1 we get:

‖(δN (x̂(.))0, δN (x̂(.))N)− (x̂(t0), x̂(T))‖∞ ≤ lim
N→∞

‖δN (x̂(.))− ρN (x̂(.))‖∞
N→∞−−−−→
4.2.1

0

With J(., .) being continuous this leads to

J(δN (x̂(.))0, δN (x̂(.))N)− J(x̂(t0), x̂(T))→ 0 (N →∞)

So taking the limit in the inequality for the first direction delivers:

lim sup
N→∞

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) ≤ 0

And for the second direction:

­

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) ≥ J(x̂N0 , x̂

N
N)− J(πN (x̂N)(t0), πN (x̂N)(T))

From the Approximation Property 4.2.1 we get:

‖(x̂N0 , x̂
N
N)− (πN (x̂N)(t0), πN (x̂N)(T))‖∞ ≤ lim

N→∞
‖x̂N − ρN (πN (x̂N)(.))‖∞

N→∞−−−−→
4.2.1

0

With J(., .) being continuous this leads to

J(x̂N0 , x̂
N
N)− J(πN (x̂N)(t0), πN (x̂N)(T))→ 0 (N →∞)

So taking the limit in the inequality for the second direction delivers:

lim inf
N→∞

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) ≥ 0

Combining both directions ¬ and ­ leads to:

lim
N→∞

J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T)) = 0

Note: The estimation above is only possible, because the objective function in the
continuous problem and the objective function in the discrete problem are the same.
That way we could make use of the continuity of J here.

�

Again we want to deduce convergence of the corresponding states from Value Conver-
gence. To do so we need some sort of Inverse Stability Property. With results from
optimization theory in mind, like second order sufficient optimality conditions presented
in 3.2.3, it makes sense to take a look at J(πN (x̂N)(t0), πN (x̂N)(T)) − J(x̂(t0), x̂(T)) first.
With Theorem 4.2.2 we get the following corollary.

60

4.2.3 Corollary to Theorem 4.2.2 (Extended Value Convergence)

Let J(., .) be continuous and let the Approximation Property 4.2.1 be fulfilled. Then
it holds:

lim
N→∞

J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) = 0

Proof :

This is a direct consequence of the Approximation Property (Theorem 4.2.1), Value
Convergence (Theorem 4.2.2) and the continuity of J postulated in Theorem 4.2.2:

J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) = J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂N0 , x̂
N
N)︸ ︷︷ ︸

¬

+ J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))︸ ︷︷ ︸

­

For the first term (¬) we make use of the Approximaiton Property and the continuity
of J .

¬

From the Approximation Property 4.2.1 we get:

‖(x̂N0 , x̂
N
N)− (πN (x̂N)(t0), πN (x̂N)(T))‖∞ ≤ lim

N→∞
‖x̂N − ρN (πN (x̂N)(.))‖∞

N→∞−−−−→
4.2.1

0

With J(., .) being continuous this leads to

J(x̂N0 , x̂
N
N)− J(πN (x̂N)(t0), πN (x̂N)(T))→ 0 (N →∞)

The second term (­) is directly covered by the Value Convergence Theorem 4.2.2:

­ J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))

N→∞−−−−→
4.2.2

0

Combining ¬ and ­ delivers:

lim
N→∞

J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) = 0

�

We are now able to formulate an abstract Inverse Stability Property, which should
guarantee ‖πN (x̂N)(.)− x̂(.)‖ → 0 (N →∞) at least locally. The reader is strongly advised
to take a look at the Inverse Stability Property shown in the last chapter, which makes
use of second order sufficient optimality conditions.

61

4.2.4 Inverse Stability Property (General Form)

It exists a function σ : I → R such that:

• For |||πN (x̂N)(.) − x̂(.)||| ≤ ε and |||π̃N (ûN)(.) − û(.)||| ≤ ε with ε > 0 chosen appro-
priately it holds:

σ
(
‖πN (x̂N)(.)− x̂(.)‖

)
≤ J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T))

where |||.||| is a usually stronger norm than ‖.‖.

• σ is strictly monotonously increasing, hence invertible. In addition its inverse
is continuous. This property may be restricted to the interval [0, a] with a :=

sup
N∈N

{
‖πN (x̂N)(.)− x̂(.)‖

∣∣∣ |||πN (x̂N)(.)− x̂(.)||| ≤ ε
}

Remarks:

• πN (x̂N)(.) is a feasible state for the continuous problem according to the Approxi-
mation Property and π̃N (ûN)(.) denotes a corresponding feasible control.

• |||πN (x̂N)(.) − x̂(.)||| ≤ ε and |||π̃N (ûN)(.) − û(.)||| ≤ ε represent the local restriction
of the Inverse Stability Property. Unfortunately results from optimization theo-
ry usually include such constraints. Second order sufficient optimality conditions
presented in 3.2.3 shall serve as an example.

• The reason why σ needs to be continuously invertible can be seen in the next
theorem.

Combining Extended Value Convergence (4.2.3) with the general Inverse Stability
Property (4.2.4) assures ‖πN (x̂N)(.)− x̂(.)‖ → 0 (N →∞) locally:

4.2.5 Theorem (Local Convergence)

Let all assumptions of the Extended Value Convergence Theorem (4.2.3) and let the
general Inverse Stability Property be fulfilled. Then it holds:

lim
N→∞

‖πN (x̂N)(.)− x̂(.)‖ = 0

As long as there exists Ñ ∈ N such that |||πN (x̂N)(.)−x̂(.)||| ≤ ε and |||π̃N (ûN)(.)−û(.)||| ≤ ε
for all N ≥ Ñ , with ε from the Inverse Stability Property 4.2.4.

Proof :

Let |||πN (x̂N)(.)− x̂(.)||| ≤ ε and |||π̃N (ûN)(.)− û(.)||| ≤ ε.
From the Inverse Stability Property 4.2.4 we get

σ
(
‖πN (x̂N)(.)− x̂(.)‖

)
≤ J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T))

With σ being strictly monotonously increasing it follows that

62

¬ ‖πN (x̂N)(.)− x̂(.)‖ ≤ σ−1
(
J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T))

)
From Extended Value Convergence (4.2.3) we have

­ lim
N→∞

J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T)) = 0

As σ−1 was premised to be continuous in the Inverse Stability Property 4.2.4 we get
from combining ¬ and ­ that

‖πN (x̂N)(.)− x̂(.)‖
¬
≤ σ−1

(
J(πN (x̂N)(t0), πN (x̂N)(T))− J(x̂(t0), x̂(T))

)
N→∞−−−−−→
4.2.4, ­

0

So we have
lim
N→∞

‖πN (x̂N)(.)− x̂(.)‖ = 0

�

The only thing left now is to connect ‖x̂N − ρN (x̂(.))‖ with ‖πN (x̂N)(.) − x̂(.)‖ via the
Approximation Property 4.2.1. To do so we need a connection between the norm in the
continuous case ‖.‖ and its “corresponding” discrete norm, which we called ‖.‖, too. The
discrete norm appears in ‖x̂N − ρN (x̂(.))‖ and the continuous one in ‖πN (x̂N)(.) − x̂(.)‖
which can be clearly distinguished by the arguments being functions respectively
vectors with a finite number of components. What connects the discrete norm and
the norm in the continuous case is the so called Compatibility Property. With the
Local Convergence Theorem 4.2.5 we have lim

N→∞
‖πN (x̂N)(.) − x̂(.)‖ = 0 with respect to

a certain norm. Depending on the kind of Compatibility Property available we have to
choose the corresponding discrete norm, which then leads to a convergence result for
‖πN (x̂N)(.)− x̂(.)‖ in that specific discrete norm. So let’s take a look at the last module
we need.

4.2.6 Compatibility Property (General Form)

For f(.) := πN (x̂N)(.)− x̂(.) it holds:

lim
N→∞

∣∣∣‖ρN (f(.))‖ − ‖f(.)‖
∣∣∣ = 0

Note: If we know, that f is Lipschitz-continuous then we get from Theorem 3.2.6 that∣∣∣‖ρN (f(.))‖∞ − ‖f(.)‖∞
∣∣∣ ≤ LfhN

This should lead to a similar result for the ‖.‖-norm, which we are considering here.
Once again, the specific norm that is represented by ‖.‖ in this chapter, depends on
the Inverse Stability Property available.

63

Now we have all the modules ready for use. The whole process then looks like:

The first step is getting πN (x̂N)(.) into play:

¬ ‖x̂N − ρN (x̂(.))‖ ≤ ‖x̂N − ρN (πN (x̂N)(.))‖+ ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖

For the first term we get by directly using the Approximation Property 4.2.1:

­ ‖x̂N − ρN (πN (x̂N)(.))‖ → 0 (N →∞)

The second term ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖ is close to ‖πN (x̂N)(.)− x̂(.)‖, which is gua-
ranteed by the general Compatibility Property 4.2.6:

®

∣∣∣‖ρNπN (x̂N)(.)− ρN x̂(.)‖ − ‖πN (x̂N)(.)− x̂(.)‖
∣∣∣ ≤ ϕ(N)

⇒ ‖ρNπN (x̂N)(.)− ρN x̂(.)‖ ≤ ϕ(N) + ‖πN (x̂N)(.)− x̂(.)‖

with ϕ(N)→ 0 (N →∞)

So finally the term ‖πN (x̂N)(.)− x̂(.)‖ occurs, for which we have from the Local Conver-
gence Theorem 4.2.5:

¯ ‖πN (x̂N)(.)− x̂(.)‖ → 0 (N →∞)

As long as there exists Ñ ∈ N such that |||πN (x̂N)(.)−x̂(.)||| ≤ ε and |||π̃N (ûN)(.)−û(.)||| ≤ ε
for all N ≥ Ñ , with ε from the Inverse Stability Property 4.2.4.

Combining ­ and ® with ¬ and finally using ¯ delivers:

‖x̂N − ρN (x̂(.))‖
¬
≤ ‖x̂N − ρN (πN (x̂N)(.))‖+ ‖ρN (πN (x̂N)(.))− ρN (x̂(.))‖

®
≤ ‖x̂N − ρN (πN (x̂N)(.))‖︸ ︷︷ ︸

N→∞−−−−→
­

0

+ ϕ(N)︸ ︷︷ ︸
N→∞−−−−→

®
0

+ ‖πN (x̂N)(.))− x̂(.)‖︸ ︷︷ ︸
N→∞−−−−→

¯
0

N→∞−−−−→ 0

This means it holds:

lim
N→∞

‖x̂N − ρN (x̂(.))‖ = 0

�

64

So overall we have shown that the following theorem holds.

4.2.7 Convergence Theorem (General Form)

Assume that the Approximation Property 4.2.1 holds and let J(., .) be continuous in both
arguments. This leads to Value Convergence in the form of Theorem 4.2.2. Furthermore
let the Inverse Stability Property 4.2.4 and the compatibility property 4.2.6 be fulfilled.

With all these assumptions it then holds:

lim
N→∞

‖x̂N − ρN (x̂(.))‖ = 0

Note: This result only holds if there exists Ñ ∈ N such that |||πN (x̂N)(.)− x̂(.)||| ≤ ε and
|||π̃N (ûN)(.)− û(.)||| ≤ ε for all N ≥ Ñ . For details on that matter and the constant ε
see Theorem 4.2.4 (general Inverse Stability Property).

Chapter 3 and 4 do rely heavily on some sort of Approximation Property for the feasible
solution sets. The next chapter shows that under certain circumstances such a property
really does exist.

65

5 Approximation Property

5.1 Overview

This chapter is intended to prove the Approximation Property presented in 3.2.1. It is
based on article [2]. However we won’t need any convexity assumptions, which is quite
an improvement. The idea for proving results without the need of convexity is based on
[4] and [5].
We will consider the solution sets to the Constrained Differential Inclusion introduced
in Definition 3 and the Constrained Discrete Differential Inclusion introduced in
Definition 6 with bounded starting set X0. Recall that they are denoted by XΘ(T, t0, X0)

respectively XN
Θ (T, t0, X0). X0 being bounded is needed to apply the theorems of

section 2.6. Furthermore the reader should be aware of the fact, that the Constrained
Differential Inclusions involve pure state constraints, which is a major difficulty. This
makes obtaining the desired result, already presented in Theorem 3.2.1, way more
complex.

Note: The notations in this chapter are the same as in the set-valued Mayer-Problem
sections of chapter 2.

The proof consists of two major parts. The first one is about proving the result
without pure state constraints. The second one is the part based on [2], which
uses the result without state constraints and combines it with a result obtained
for the state constrained case. Both parts are in no way trivial and this thesis
cannot cover any detail. This chapter is intended to wrap up all the results that
lead to 3.2.1. One thing, that will be explored in detail, is the extension of the
result from [3] to get rid of the convexity assumption made in [3]. For the approach
to obtain the Approximation Property in this chapter the set-valued right-hand
side F of the Differential Inclusion needs to fulfill the following assumptions:

Assumptions:

(A1) F satisfies a linear growth condition, i.e.:
There exists a constant CF ≥ 0 such that with t ∈ I and x ∈ Rn it holds

‖F (t, x)‖2 ≤ CF (‖x‖2 + 1)

(A2) F has nonempty compact images.

(A3) F is Lipschitz-continuous in (t,x) for all t ∈ I and x ∈ Rn with Lipschitz
constant LF with respect to the Hausdorff-distance, i.e.

dH,2
(
F (t, x), F (t̃, y)

)
≤ LF (|t− t̃|+ ‖x− y‖2) (t, t̃ ∈ I, x, y ∈ Rn)

The figure on the next side shows the whole concept and even some results only
presented in [2].

66

Ap
pr

ox
im

at
io

n
Pr

op
er

ty

to
ol

s

D
iff

er
en

tia
l

In
cl

us
io

ns
 (D

I)

D
iff

er
en

tia
l

In
cl

us
io

ns
w

ith
 s

ta
te

co
ns

tra
in

ts
(D

IC
)

G
ro

nw
al

l-F
ili

pp
ov

-
W

az
ew

sk
i T

he
or

em
U

ni
fo

rm
Bo

un
de

dn
es

s
U

ni
fo

rm
Li

ps
ch

itz
-c

on
tin

ui
ty

D
is

cr
et

e
D

iff
er

en
tia

l
In

cl
us

io
ns

 (D
D

I)

D
is

cr
et

e
D

iff
er

en
tia

l
In

cl
us

io
ns

w
ith

 s
ta

te
co

ns
tra

in
ts

(D
D

IC
)

D
is

cr
et

e
G

ro
nw

al
l-F

ili
pp

ov
-

W
az

ew
sk

i T
he

or
em

D
is

cr
et

e
U

ni
fo

rm
Bo

un
de

dn
es

s
D

is
cr

et
e

U
ni

fo
rm

Li
ps

ch
itz

-c
on

tin
ui

ty

M
ai

n
R

es
ul

t

di
st

an
ce

 re
su

lt
fo

r t
he

 u
nc

on
st

ra
in

ed
 c

as
e

Fi
lip

po
v-

W
az

ew
sk

i R
el

ax
at

io
n

Th
eo

re
m

D
on

ch
ev

,F
ar

kh
i

Sa
nd

be
rg

Ap
pr

ox
im

at
io

n
Th

eo
re

m
s

fo
r

th
e

co
ns

tr
ai

ne
d

ca
se

co
nt

in
uo

us
di

sc
re

te

As
su

m
pt

io
ns

rig
ht

-h
an

d
si

de
 F

(.,
.)

gr
ow

th
 c

on
di

tio
n

no
ne

m
pt

yn
es

s
an

d
co

m
pa

ct
ne

ss
 o

f i
m

ag
es

Li
ps

ch
itz

 c
on

di
tio

n

st
at

e
co

ns
tra

in
ts

lo
ok

 a
nd

 s
m

oo
th

ne
ss

co
nd

iti
on

s

st
ric

t
in

w
ar

dn
es

s
co

nd
iti

on
(e

xi
st

en
ce

 o
f d

ec
en

t d
ire

ct
io

ns
)

Approximation Property

67

5.2 Approximation Property for the unconstrained case

This section proves the Approximaiton Property for the case without pure state cons-
traints. So the solution sets one has to consider here are X(T, t0, X0) (see Definition 2)
for the Differential Inclusion introduced in Definition 3 and XN (T, t0, X0) (see Definition
4) for the Discrete Differential Inclusion introduced in Defintion 6. The final result of
this section will be:

dNH,∞

(
ρN (X(T, t0, X0)), XN (T, t0, X0)

)
≤ c̃hN

where dNH,∞ is the Hausdorff-distance introduced in 2.5.4.

Note: As mentioned in a remark to the Theorem 3.2.1 this way of representing the
Approximation Property is completely identical to the way used in 3.2.1, which
involved the introduction of the functions πN (.) and δN (.).

This section on its own involves three major results. The first and the second one (both
presented in [3]) are well known in literature and will be presented without proof. The
third one was published by Mattias Sandberg with proof in paper [4] and [5]. This thesis
presents a slightly alternated proof. This proof won’t go for convergence of reachable
sets, which makes it a lot more readable.
The core of this concept will be the convergence result from [3] which needs the images
of F to be convex, which this chapter tries to avoid. So we introduce the following
Differential Inclusions and corresponding solution sets, which are the same as in
Definition 3 and Definition 6 apart from the fact that the right-hand side has been
convexified.

68

Definition 8:

Xco(T, t0,X0) shall be the solution set to the following Differential Inclusion with
x ∈ AC(I)n:

ẋ(t) ∈ co F (t, x(t)) a.e.

x(t0) ∈ X0

XN
co(T, t0,X0) shall be the solution set to the following Discrete Differential Inclu-

sion with xN ∈ R(N+1)n:

xNj+1 ∈ x
N
j + hN · co F (tj , x

N
j) (j = 0, . . . , N − 1)

xN0 ∈ X0

Remarks:

• co delivers the convex hull of a set.

• If the images of F are already convex, it of course holds co F (t, x) = F (t, x),
which leads to Xco(T, t0, X0) = X(T, t0, X0) and XN

co(T, t0, X0) = XN (T, t0, X0)

69

With this definition, the convergence result with convex right-hand sides looks like this:

5.2.1 Convergence Theorem for convex Differential Inclusions

Let (A1), (A2) and (A3) be fulfilled. Then it holds:

dNH,∞

(
ρN (Xco(T, t0, X0)), XN

co(T, t0, X0)
)
≤ CDhN

Proof : For a proof see [3].

The goal now is to obtain a similar estimation for dNH,∞ (ρN (X(T, t0, X0)), ρN (Xco(T, t0, X0)))

and dNH,∞

(
XN
co(T, t0, X0), XN (T, t0, X0)

)
and then use the triangular inequality of the

Hausdorff distance (see 2.5.4), i.e. in this case:

dNH,∞

(
ρN (X(T, t0, X0)), XN (T, t0, X0)

)
≤ dNH,∞

(
ρN (X(T, t0, X0)), ρN (Xco(T, t0, X0))

)
︸ ︷︷ ︸

¬

+

dNH,∞

(
ρN (Xco(T, t0, X0)), XN

co(T, t0, X0)
)

︸ ︷︷ ︸
­

+ dNH,∞

(
XN
co(T, t0, X0), XN (T, t0, X0)

)
︸ ︷︷ ︸

®

For ¬, i.e. dNH,∞ (ρN (X(T, t0, X0)), ρN (Xco(T, t0, X0))), one can directly use Filippovs rela-
xation theorem, a result well known in literature (see [6]).

5.2.2 Filippovs Relaxation Theorem

Let (A2) and (A3) be fulfilled. Then for every x(.) ∈ Xco(T, t0, X0) and ε > 0 there exists
y(.) ∈ X(T, t0, X0) such that

‖x(.)− y(.)‖∞ ≤ ε

which is equivalent, to

dH,∞ (X(T, t0, X0), Xco(T, t0, X0)) = 0

Note: The equivalence follows from:
For every x(.) ∈ X(T, t0, X0) and ε > 0 there exists y(.) ∈ Xco(T, t0, X0) such that

‖x(.)− y(.)‖∞ = 0

which is a trivial result, due to F (t, x) ⊂ co F (t, x) (t ∈ I, x ∈ Rn) leading to
X(T, t0, X0) ⊂ Xco(T, t0, X0). Together with the relaxation theorem this leads to
X̄(T, t0, X0) = X̄co(T, t0, X0), where the bar .̄ denotes the closure of a set (in this
case the closure with respect to the supremum norm). When the closure of two sets
is equal, the Hausdorff-distance is 0.

From dH,∞ (X(T, t0, X0), Xco(T, t0, X0)) = 0 it follows directly by the definition of dH,∞
and dNH,∞ that dNH,∞ (ρN (X(T, t0, X0)), ρN (Xco(T, t0, X0))) = 0.
Proof : See [6].

70

We now have sufficient estimations for the Hausdorff-distances ¬ and ­. The only
term left now is ®, which will be explored in detail. The result we need is the same as
Filippovs Relaxation Theorem, but this time for discrete convex Differential Inclusions.
The proof will be quite lengthy and at the beginning pretty technical. But the core
concept is nevertheless quite interesting.

5.2.3 Convergence Theorem for convex discrete Differential Inclusions

Let the set of initial values X0 be bounded and let (A1), (A2) and (A3) be fulfilled.
Then for every xN ∈ XN

co(T, t0, X0) there exists yN ∈ XN (T, t0, X0) such that

sup
j=0,...,N

‖xNj − y
N
j ‖2 ≤ CShN

which is equivalent to

dNH,∞

(
XN
co(T, t0, X0), XN (T, t0, X0)

)
≤ CShN

Note: The equivalence follows like in Theorem 5.2.2:
Due to

F (t, x) ⊂ co F (t, x) (t ∈ I, x ∈ Rn)

one gets XN (T, t0, X0) ⊂ XN
co(T, t0, X0). So d(XN (T, t0, X0), XN

co(T, t0, X0)) = 0, with d

defined in 2.5.4.

Proof :

The proof of this theorem is based on [4] and [5]. It will be presented in detail in
section 5.4.

71

Jumping back to the triangular inequality presented at the beginning of the section and
using Theorem 5.2.2 to estimate ¬, Theorem 5.2.1 to estimate ­ and Theorem 5.2.3 to
estimate ® we get the final result for this section.

5.2.4 Theorem (Convergence Result for the unconstrained case)

Let the set of initial values X0 be bounded and let (A1), (A2) and (A3) be fulfilled.
Then it holds:

dNH,∞

(
ρN (X(T, t0, X0)), XN (T, t0, X0)

)
≤ c̃hN

Proof :

The proof is a simple consequence of Theorem 5.2.2, Theorem 5.2.1 and Theorem 5.2.3:

dNH,∞

(
ρN (X(T, t0, X0)), XN (T, t0, X0)

)
≤ dNH,∞

(
ρN (X(T, t0, X0)), ρN (Xco(T, t0, X0))

)
+

dNH,∞

(
ρN (Xco(T, t0, X0)), XN

co(T, t0, X0)
)

+ dNH,∞

(
XN
co(T, t0, X0), XN (T, t0, X0)

)
5.2.2, 5.2.1, 5.2.3

≤ 0 + CDhN + CShN = (CD + CS)︸ ︷︷ ︸
c̃:=

hN

�

5.3 Approximation Property for the constrained case

This section extends the result of section 5.2 for the constrained case, which means that
pure state constraints are involved. So the sets considered in this section are XΘ(T, t0, X0)

and XN
Θ (T, t0, X0). The main result of this chapter will be

dNH,∞

(
ρN (XΘ(T, t0, X0)), XN

Θ (T, t0, X0)
)
≤ chN

To deal with the constrained case in addition to (A1), (A2) and (A3), some quite re-
strictive assumptions are needed. They might be weakened, but for the proofs in [2]
they are indespensible. These assumptions will make sense when looking at the proofs
of Theorem 3.1 and Theorem 3.2 in [2].

Assumptions:

(C1) Θ : I ⇒ Rn has nonempty images explicitly given by

Θ(t) :=
{
x ∈ RN | s(t, x) ≤ 0

}
with s(., .) ∈ C1,L(I ×Rn) being a single scalar function.
Furthermore x ∈ ∂Θ(t)⇔ s(t, x) = 0 shall be fulfilled.

(C2) The boundary of Θ(.) fulfills the “strict inwardness condition”. This means
that there exist α, µ > 0 such that for all (t, x) ∈ Bµ(graph ∂Θ(.)) ∩ (I × Rn) it
holds

min
v∈F (t,x)

〈∇s(t, x),
(

1
v

)
〉 ≤ −α

72

Remarks:

• ∂Θ(t) is the boundary of Θ(t).

• C1,L(I×Rn) is the space of all differentiable functions, whose partial derivatives are
Lipschitz-continuous. So with s(., .) ∈ C1,L(I × Rn), ∇s(., .) is Lipschitz-continuous
on I × Rn. Let the corresponding Lipschitz-constant be L∇s.

• The postulation that s(., .) has to be a single scalar function is very restrictive.
After analyzing the proof of Theorem 3.2 in [2] it is the authors strong believe
that this restriction is not needed. The proof of that theorem might be extended
to fit the multidimensional case, but it would be even more lengthy and technical
than the proof for the single scalar case already is. So it won’t be presented in
this thesis. Nevertheless there will be a short section on ideas on how to treat the
multidimensional case, which involves extending (C1) and (C2) (see the extended
variants (C1E) and (C2E) below or 5.3.4 for further details on the multidimensional
case).

• x ∈ ∂Θ(t)⇔ s(t, x) = 0 has to be postulated, because this is in general not the case.
With s(., .) being continuos it holds that x ∈ ∂Θ(t)⇒ s(t, x) = 0. But the other way
round does not have to be true even if s(., .) ∈ C1,L(I ×Rn).
For example with

s(t, x) :=


−(x+ 1)2 x ≤ 1

0 x ∈ (−1, 1]

(x− 1)2 x > 1

we have ∂Θ(t) = {1} (t ∈ I), but s(t, x) = 0 (x ∈ [−1, 1], t ∈ I).

• Bµ is a ball with radius µ with respect to the ‖.‖2-norm, i.e.

Bµ := {(t, x) ∈ I × Rn
∣∣ ‖(t, x)‖2 ≤ µ}

• graph ∂Θ(.) = {(t, x) ∈ I × Rn
∣∣ x ∈ ∂Θ(t)}

• The “strict inwardness condition” makes it possible to “redirect” any feasible
solution that comes close to the boundary of Θ(.) inwards. One might also
say that the condition delivers a valid direction of descent at “critical” points
(those close to the boundary of Θ(.)). The idea of the proof of Theorem 3.2
in [2] is to redirect a solution of the unconstrained Differential Inclusion (DI)
to get a solution of the constrained Differential Inclusion (DIC).

For multidimensional state constraints s(., .) the following assumptions should be
enough to deliver the desired results from the following theorems. It is the authors
strong believe, that replacing (C1) with (C1E) and (C2) with (C2E) will make the
statements of Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.3 available for the
case involving more than one single scalar function for the state constraints. But
as there are no formulated proofs available yet, the following extended assumptions
should be considered “experimental”. For details see the following section 5.3.4.

73

Assumptions:

(C1E) Θ : I ⇒ Rn has nonempty images explicitly given by

Θ(t) =

ns⋂
i=1

Θi(t)

with ns ∈ N and

Θi(t) :=
{
x ∈ RN

∣∣ si(t, x) ≤ 0
}

(i = 1, . . . , ns)

where

si(., .) ∈ C
1,L(I ×Rn) (i = 1, . . . , ns)

Furthermore x ∈ ∂Θi(t)⇔ si(t, x) = 0 (i = 1, . . . , ns) shall be fulfilled.

(C2E) The boundary of Θ(.) fulfills the “strict inwardness condition”. This means
that there exist α, µ > 0 such that for each i ∈ {1, . . . , ns} it holds:
For all (t, x) ∈ Bµ(graph ∂Θi(.))∩Bµ(graph ∂Θ(.))∩ (I×Rn) the following inequa-
lity applies:

min
v∈F (t,x)

〈∇si(t, x),
(

1
v

)
〉 ≤ −α

The central idea of this section is to make use of Theorem 5.2.4, which is the main
result from section 5.2.
This result will be applied to a solution x(.) ∈ XΘ(T, t0, X0)) to obtain x̃N ∈ XN (T, t0, X0),
which is close to x(.) on the grid. Though being close to x(.) the solution x̃N may
not obey the pure state constraints, but it definitely does not harm them too much.
Assuming that (C1) and (C2) hold, we shall see in this section that for such a solution
x̃N there exists a solution xN ∈ XN

Θ (T, t0, X0) (so xN obeys the pure state constraints
represented by Θ), which is close enough to x̃N on the grid to give the desired estimation.
The other way round, i.e. starting with a solution xN ∈ XN

Θ (T, t0, X0) and finding a
solution x(.) ∈ XΘ(T, t0, X0)) uses the same method as described above, but a different
result for finding a feasible solution that obeys the pure state constraints Θ(.) will
be required. This is because after applying Theorem 5.2.4 one has to deal with the
continuous case.
The two following theorems will provide these results. As already mentioned the proofs
are rather lengthy and technical, so they won’t be provided here. For further details
see [2].

The first one will help us gain a solution x(.) ∈ XΘ(T, t0, X0) when we already have a
solution x̃(.) ∈ X(T, t0, X0) that is close to fulfilling the pure state constraints represented
by Θ(.). The dist2-function is the distance function based on the ‖.‖2-norm (see 2.5.4).

74

5.3.1 Theorem

Consider the constrained differential inclusion (DIC) (see Definition 3). Assume that
(A1), (A2), (A3) and in addition (C1) and (C2) hold.
Then there exists Cc > 0 such that for every x0 ∈ X0∩Θ(t0) and x(.) ∈ X(T, t0, {x0}) there
exists y(.) ∈ XΘ(T, t0, {x0}) with

sup
t∈[t0,T]

‖x(t)− y(t)‖2 ≤ Cc sup
t∈[t0,T]

dist2(x(t),Θ(t))

Note: x0 ∈ X0 ∩ Θ(t0) just expresses the fact, that the initial value has to be feasible.
This is automatically fulfilled for any solution y(.) ∈ XΘ(T, t0, X0) but not for any
solution x(.) ∈ X(T, t0, X0). So this has to be postulated seperately.

Proof :

For further details see Theorem 3.1 in [2].

The second one will help us gain a solution xN ∈ XN
Θ (T, t0, X0) when we already have

a solution x̃N ∈ XN (T, t0, X0) that is close to fulfilling the pure state constraints
represented by Θ(.).

5.3.2 Theorem

Consider the constrained discrete differential inclusion (DIC) (see Definition 6). Assume
that (A1), (A2), (A3) and in addition (C1) and (C2) hold.
Then there exists N0 ∈ N and Cd > 0 such that for every x0 ∈ X0 ∩ Θ(t0), N ≥ N0 and
xN ∈ XN (T, t0, {x0}) there exists yN ∈ XN

Θ (T, t0, {x0}) with

sup
j=0,...,N

‖xNj − y
N
j ‖2 ≤ Cd

(
hN + sup

j=0,...,N
dist2(xNj ,Θ(tj))

)

Note: x0 ∈ X0 ∩ Θ(t0) just expresses the fact, that the initial value has to be feasible.
This is automatically fulfilled for any solution yN ∈ XN

Θ (T, t0, X0) but not for any
solution xN ∈ XN (T, t0, X0). So this has to be postulated seperately.

Proof :

For further details see Theorem 3.2 in [2].

75

Combining Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.2.4 then delivers the final
result. The only major step to proof that will be to estimate sup

{
dist2(x(t),Θ(t))

∣∣ t ∈
[t0, T]

}
and sup

{
dist2(xNj ,Θ(tj))

∣∣ j ∈ {0, . . . , N}}.

5.3.3 Theorem (Convergence Result for the constrained case)

Let the set of initial values X0 be bounded. Furthermore let (A1), (A2), (A3) and in
addition (C1) and (C2) be fulfilled. Then there exists N0 ∈ N such that for all N ≥ N0

it holds:

dNH,∞

(
ρN (XΘ(T, t0, X0)), XN

Θ (T, t0, X0)
)
≤ chN

Note: Once again: The major difference between Theorem 4.2 in [2] and this Theorem
is that for the latter one the images of F must not be convex. This can be seen by
comparing assumption (A2) in this thesis to assumption (H2) in [2]. This is due to
the fact that [2] uses the result of Dontchev Farkhi (this is Theorem 5.2.1), which
needs convexity. In section 5.2 this result has been extended for the nonconvex case
without the need for additional assumptions, which lead to Theorem 5.2.4.

Proof :

First direction:
Let us first consider a solution y(.) ∈ XΘ(T, t0, {x0}) with x0 ∈ X0. The goal now is to
obtain a solution yN ∈ XΘ(T, t0, {x0}) which is close enough to y(.) on the grid. The key
to success is the use of Theorem 5.2.4 in conjunction with Theorem 5.3.2.
For y(.) Theorem 5.2.4 delivers ηN ∈ XN (T, t0, {x0}) (for N ≥ N0) with

¬ sup
j=0,...,N

‖y(tj)− η
N
j ‖2 ≤ c̃hN

Theorem 5.3.2 guarantees the existence of yN ∈ XN
Θ (T, t0, {x0}) with

­ sup
j=0,...,N

‖ηNj − y
N
j ‖2 ≤ Cd

(
hN + sup

j=0,...,N
dist2(ηNj ,Θ(tj))

)
Analyzing dist2(ηNj ,Θ(tj)) (j = 0, . . . , N) by using the fact that y(tj) ∈ Θ(tj) (j = 0, . . . , N)

delivers

® dist2(ηNj ,Θ(tj)) ≤ ‖η
N
j − y(tj)‖2 + dist2(y(tj),Θ(tj)) = ‖ηNj − y(tj)‖2 (j = 0, . . . , N)

Combining ¬, ­ and ® yields for j ∈ {0, . . . , N} that

‖y(tj)− y
N
j ‖2 ≤ ‖y(tj)− η

N
j ‖2 + ‖ηNj − y

N
j ‖2

¬,­
≤ c̃hN + Cd

(
hN + sup

j=0,...,N
dist2(ηNj ,Θ(tj))

)
®
≤ c̃hN + Cd

(
hN + sup

j=0,...,N
‖ηNj − y(tj)‖2

)¬
≤ (c̃+ Cd(1 + c̃))hN

76

So we have the desired result for the first direction, i.e.:
For any y(.) ∈ XΘ(T, t0, {x0}) there exists yN ∈ XΘ(T, t0, {x0}) with N ≥ N0 such that

sup
j=0,...,N

‖y(tj)− y
N
j ‖2 ≤ (c̃+ Cd(1 + c̃))hN

Second direction:
This time we start off with yN ∈ XΘ(T, t0, {x0}) and try to get y(.) ∈ XΘ(T, t0, {x0}),
where x0 ∈ X0 ∩Θ(t0). For this direction the key to success is the use of Theorem 5.2.4
in conjunction with Theorem 5.3.1.
For yN Theorem 5.2.4 delivers η(.) ∈ X(T, t0, {x0}) with

¯ sup
j=0,...,N

‖yNj − η(tj)‖2 ≤ c̃hN

Theorem 5.3.1 then guarantees the existence of y(.) ∈ XΘ(T, t0, {x0}) with

° sup
t∈[t0,T]

‖η(t)− y(t)‖2 ≤ Cc sup
t∈[t0,T]

dist2(η(t),Θ(t))

So this time we have to estimate dist2(η(t),Θ(t)) for all t ∈ [t0, T] instead of
dist2(ηNj ,Θ(tj)) (j = 0, . . . , N). This is more complicated, because we only have
yNj ∈ Θ(tj) (j = 0, . . . , N) as a reference. To bring yNj ∈ Θ(tj) (j = 0, . . . , N) into play
we need to use reference points on the grid. This gives us the following estimation for
t ∈ [tj , tj+1) and all j ∈ {0, . . . , N − 1}

±
dist2(η(t),Θ(t)) ≤ ‖η(t)− η(tj)‖2 + ‖η(tj)− y

N
j ‖2 + dist2(yNj ,Θ(t))

2.6.2,¯
≤ L|t− tj |+ c̃hN + dist2(yNj ,Θ(t)) ≤ (L+ c̃)hN + dist2(yNj ,Θ(t))

So all that’s left to do is to estimate dist2(yNj ,Θ(t)) for t ∈ [tj , tj+1). Although
yNj ∈ Θ(tj) (j = 0, . . . , N) this turns out to by quite tricky.
The central idea is the following:
If yN ∈ Bµ(graph ∂Θ(.)) use (C2) to create a function yN (.) on [tj , tj+1) with yN (t) ∈ Θ(t)

and ‖yN (t) − yNj ‖2 ≤ ChN for t ∈ [tj , tj+1) and C > 0. Then we can make use of
dist2(yNj ,Θ(t)) ≤ ‖yNj − y

N (t)‖2 ≤ ChN for t ∈ [tj , tj+1).
If yNj /∈ Bµ(graph ∂Θ(.)) then yNj is far enough in the interior of Θ(tj) such that for
N ≥ N0 and t ∈ [tj , tj+1) it still holds yNj ∈ Θ(t). Hence dist2(yNj ,Θ(t)) = 0 for t ∈ [tj , tj+1).
So we have to consider the following two cases:

• Let’s begin with the case that yNj /∈ Bµ(graph ∂Θ(.)). The goal is to show that
s(t, yNj) ≤ 0 for t ∈ [tj , tj+1). Let’s assume the opposite, i.e. it exists t̃ ∈ [tj , tj+1)

such that s(t̃, yNj) > 0. Because of s(tj , y
N
j) ≤ 0 it exists t̂ ∈ [tj , t̃] such that γ(t̂) = 0,

where γ(t) := s(t, yNj). This follows directly from the intermediate value theorem.
So yNj ∈ Θ(t̂), which means (t̂, yNj) ∈ graph ∂Θ(.). With N0 chosen high enough this
leads to

dist2((tj , y
N
j), graph ∂Θ(.)) ≤ ‖(tj , y

N
j)− (t̂, yNj)‖2 = |t̂− tj | ≤ hN

N≥N0

≤ µ

77

Note: If we have already set N0 high enough such that Theorem 5.3.2 holds,
hN ≤ µ is already fulfilled. This can be seen by taking a look at (3.5) in
the proof of Theorem 3.2 in [2], which is a postulation. Theorem 3.2 in [2]
corresponds to Theorem 5.3.2 in this thesis.

So the above inequality leads to a contradiction to yNj /∈ Bµ(graph ∂Θ(.)). This
means that indeed s(t, yNj) ≤ 0 for t ∈ [tj , tj+1). So for yNj /∈ Bµ(graph ∂Θ(.)) we have
yNj ∈ Θ(t), hence dist2(yNj ,Θ(t)) = 0 (for t ∈ [tj , tj+1)).

• If yNj ∈ Bµ(graph ∂Θ(.)) it follows from (C2) that there exists vj ∈ F (tj , y
N
j) such

that
〈∇s(tj , y

N
j),

(1
vj

)
〉 ≤ −α

With yN (t) := yNj + (t− tj)vj for t ∈ [tj , tj+1) we get for t ∈ [tj , tj+1) that

s(t, yN (t)) = s(tj , y
N
j) +

t∫
tj

d

dτ
s(τ, yN (τ)) dτ

≤
t∫

tj

d

dτ
s(τ, yN (τ)) dτ =

t∫
tj

〈∇s(τ, yN (τ)),
(1
vj

)
〉 dτ

=

t∫
tj

〈∇s(tj , y
N
j),

(1
vj

)
〉 dτ +

t∫
tj

〈∇s(τ, yN (τ))−∇s(tj , y
N
j),

(1
vj

)
〉 dτ

(C2)

≤
Schwarz

−α(t− tj) +

t∫
tj

‖∇s(τ, yN (τ))−∇s(tj , y
N
j)‖2 ‖

(1
vj

)
‖2 dτ

With

‖∇s(τ, yN (τ))−∇s(tj , y
N
j)‖2 ‖

(1
vj

)
‖2

Lipschitz

≤ L∇s

(
|τ − tj |+ ‖y

N (τ)− yNj ‖2
) (

1 + ‖vj‖2
)

= L∇s
(
|τ − tj |+ |τ − yj | ‖vj‖2

) (
1 + ‖vj‖2

)
|τ−tj |≤hN
≤ L∇shN

(
1 + ‖vj‖2

)2 vj∈F (tj ,y
N
j)

≤ L∇shN

(
1 + ‖F (tj , y

N
j)‖2

)2

(A1)

≤ L∇shN

(
1 + CF (1 + ‖yNj ‖2)

)2 2.6.3
≤ L∇s

(
1 + CF (1 + M̃)

)2

hN

Combining those two inequalities we get

s(t, yN (t)) ≤ −α(t− tj) +

t∫
tj

‖∇s(τ, yN (τ))−∇s(tj , y
N
j)‖2 ‖

(1
vj

)
‖2 ds

≤ −α(t− tj) + L∇s

(
1 + CF (1 + M̃)

)2

hN (t− tj)
N≥N0

≤ −α
2

(t− tj) ≤ 0

So we have yN (t) ∈ Θ(t) for t ∈ [tj , tj+1) which leads to

dist2(yNj ,Θ(t)) ≤ ‖yNj − y
N (t)‖2 = (t− tj)‖vj‖2 ≤ CF (1 + M̃)hN (t ∈ [tj , tj+1))

78

Combining both cases delivers

dist2(yNj ,Θ(t)) ≤ CF (1 + M̃)hN (t ∈ [tj , tj+1), j = 0, . . . , N − 1)

So with ± we get

² dist2(η(t),Θ(t)) ≤
(
L+ c̃+ CF (1 + M̃)

)
hN (t ∈ [t0, T])

Using the triangular inequality and applying ¯, ° and ² leads to

‖yNj − y(tj)‖2 ≤ ‖y
N
j − η(tj)‖2 + ‖η(tj)− y(tj)‖2

¯,°
≤ c̃hN + Cc dist2(η(t),Θ(t))

²
≤
(
c̃+ Cc

(
L+ c̃+ CF (1 + M̃)

))
hN (j = 0, . . . , N)

As the above inequality holds for all j ∈ {0, . . . , N} we get for the second direction

sup
j=0,...,N

‖yNj − y(tj)‖2 ≤
(
c̃+ Cc

(
L+ c̃+ CF (1 + M̃)

))
hN

Combining the first and the second direction
Combining the results from the first and the second direction delivers

dNH,∞

(
ρN (XΘ(T, t0, X0)), XN

Θ (T, t0, X0)
)
≤ max

(
c̃+ Cd(1 + c̃), c̃+ Cc

(
L+ c̃+ CF (1 + M̃)

))
︸ ︷︷ ︸

c:=

hN

�

Let’s conclude this section with ideas on how to handle multidimensional state cons-
traints.

5.3.4 Multidimensional State Constraints

As already mentioned in the remarks to the assumptions (C1) and (C2), the fact that
they only allow a single scalar state constraint is very restrictive. Even very simple
examples involve more than one scalar state constraint (see chapter 6). It is more than
desirable to get rid of that restriction. The core concept is to adjust (C1) and (C2) in
such a way, that the proofs of Theorem 5.3.1 and Theorem 5.3.2 presented in [2] can
be slightly altered to cover the multidimensional case. As this thesis does not cover this
proofs, this section will focus on modifying (C1) and (C2) instead of explaining the
modifications, that need to be done in the proofs, in detail.

modifying (C1)
The first thing to do should be obvious: The definition of Θ(.) will stay the same, but
we will allow s(., .) ∈

(
C1,L(I × Rn)

)ns with ns ∈ N. So ns functions in C1,L(I × Rn) are
allowed to describe the pure state constraints Θ(.). So we have:

Θ(t) :=
{
x ∈ RN

∣∣ si(t, x) ≤ 0 (i = 1, . . . , ns)
}

with s(., .) ∈
(
C1,L(I ×Rn)

)ns

79

Defining

Θi(t) :=
{
x ∈ RN

∣∣ si(t, x) ≤ 0
}

with si(., .) ∈ C
1,L(I ×Rn) (i = 1, . . . , ns)

leads to

Θ(t) =

ns⋂
i=1

Θi(t)

This definition comes in handy when replacing the postulation of when x ∈ ∂Θ(t). We
now postulate that

x ∈ ∂Θi(t)⇔ si(t, x) = 0 (i = 1, . . . , ns)

This means for ∂Θ(t):

¬ x ∈ ∂Θ(t)⇔
(
∃i ∈ {1, . . . , ns} with si(t, x) = 0 and x ∈ Θ(t)

)
This property is important for the second direction in the proof of Theorem 5.3.3:
Let’s say we have yNj ∈ Θ(t) with yNj /∈ Bµ(graph ∂Θ(.)). Furthermore there exists
t̃ ∈ [tj , tj+1) such that si(t̃, y

N
j) > 0 (i ∈ I) with ∅ 6= I ⊂ {1, . . . , ns}. Then there exist

t̃i (i ∈ I) with si(t̃i, y
N
j) = 0 and at least one index ĩ ∈ I with yNj ∈ Θ(t̃̃i). So from ¬ we

get that yNj ∈ ∂Θ(t̃̃i).

So we have arrived at an extended form of (C1), which should be suitable for
the multidimensional case. It shall be called (C1E), where E means extended.

(C1E) Θ : I ⇒ Rn has nonempty images explicitly given by

Θ(t) =

ns⋂
i=1

Θi(t)

with ns ∈ N and

Θi(t) :=
{
x ∈ RN

∣∣ si(t, x) ≤ 0
}

(i = 1, . . . , ns)

where

si(., .) ∈ C
1,L(I ×Rn) (i = 1, . . . , ns)

Furthermore x ∈ ∂Θi(t)⇔ si(t, x) = 0 (i = 1, . . . , ns) shall be fulfilled.

80

An alternate description for (C1E) would be:

(C1E) Θ : I ⇒ Rn has nonempty images explicitly given by

Θ(t) =
{
x ∈ RN

∣∣ si(t, x) ≤ 0 (i = 1, . . . , ns)
}

with ns ∈ N and s(., .) ∈
(
C1,L(I ×Rn)

)ns .
Furthermore

x ∈ ∂Θ(t)⇔
(
∃i ∈ {1, . . . , ns} with si(t, x) = 0 and x ∈ Θ(t)

)
shall be fulfilled.

modifying (C2)
When extending (C2) for the multidimensional case, the concept of active constraints
comes into play. A constraint i, represented by Θi(.) =

{
x ∈ RN

∣∣ si(t, x) ≤ 0
}
, is called

active when (t, x) ∈ Bµ(graph ∂Θi(.))∩ (I×Rn). The strict inwardness condition, stated in
(C2), shall serve as an opportunity to redirect a solution that is close to the boundary
of Θ(.) inwards. So for (t, x) ∈ I × Rn this condition is only needed for constraints being
active at that point. In addition the inward steering condition just needs to hold on
Bµ(graph ∂Θ(.))∩(I×Rn). This is because points, which do not obey the state constraints,
i.e. points (t, x) with x /∈ Θ(t), do not have to be considered for redirecting solutions of
the Differential Inclusion.
So for each i ∈ {1, . . . , ns} it must hold: For all (t, x) ∈ Bµ(graph ∂Θi(.))∩Bµ(graph ∂Θ(.))∩
(I × Rn) the following condition is fulfilled:

min
v∈F (t,x)

〈∇si(t, x),
(

1
v

)
〉 ≤ −α

So we have arrived at an extended form of (C2), which should be suitable for the
multidimensional case. It shall be called (C2E), where E means extended.

(C2E) The boundary of Θ(.) fulfills the “strict inwardness condition”. This means
that there exist α, µ > 0 such that for each i ∈ {1, . . . , ns} it holds:
For all (t, x) ∈ Bµ(graph ∂Θi(.))∩Bµ(graph ∂Θ(.))∩ (I×Rn) the following inequa-
lity applies:

min
v∈F (t,x)

〈∇si(t, x),
(

1
v

)
〉 ≤ −α

extending the proofs
The proofs that need to be adjusted are the ones that belong to the Theorems involving
pure state constraints. These are Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.3. In
modifying (C1) it has already been explained how to apply (C1E) to the proof of the
Convergence Result given in 5.3.3. In general it is crucial for the proofs of the Theorems
involving the discrete case, that the maximum step length is chosen small enough. The

81

way to choose this maximum steplength usually involves the constants max
i=1...,ns

{L∇si} and

max
i=1...,ns

{ max
(t,x)∈I×S

‖∇si(t, x)‖}. For a single scalar state constraint there was no need to use

the maximum. Those constants also play a great role in many estimations appearing in
the proofs the mentioned theorems. Those estimations have to be done for every scalar
state constraint involved and constants have to be chosen to fit all those cases. But the
general way to proof things does not have to be altered.

5.4 Proof of the Convergence Theorem for Convex Discrete Differen-
tial Inclusions

This section contains the proof of Theorem 5.2.3.

5.4.1 Notations for the proof

To proof of the result involves quite a few steps. For the sake of readability, the following
notations are introduced:
For easier function definitions it makes sense to take a look at a modified version of
the Differential Inclusion (DI) introduced in Definition 3, which shall be named (DIE)
(extended Differential Inclusion):

(DIE)

z(t) := (t, x(t)) ∈ R× Rn and fulfills

ż(t) ∈ F̃ (z(t)) := {1} × F (t, x(t))

z(t0) ∈ {t0} ×X0 := Z0

with corresponding solution set Z(T, t0, Z0)

This is essentially the same Differential Inclusion as (DI), except for the extension by the
time variable. The corresponding discrete Differential Inclusion will be named (DDIE)
and looks like:

(DDIE)

zNj = (tj , x
N
j) ∈ R× Rn (j = 0, . . . , N) and fulfills

zNj+1 ∈ z
N
j + hN F̃ (zj) (F̃ (zj) = {1} × F (tj , x

N
j))

zN0 = z0 ∈ {t0} ×X0 := Z0

with corresponding solution set ZN(T, t0, Z0)

The corresponding convexified discrete Differential Inclusion named (CDDIE) then
looks like:

(CDDIE)

zNj = (tj , x
N
j) ∈ R× Rn (j = 0, . . . , N) and fulfills

zNj+1 ∈ z
N
j + hN coF̃ (zj) (F̃ (zj) = {1} × F (tj , x

N
j))

zN0 = z0 ∈ {t0} ×X0 := Z0

with corresponding solution set ZNco(T, t0, Z0) and co delivering the convex hull

82

The advantage of packing the time variable in z lies in the fact that the timepoint does
not have to be passed explicitly to the following functions, which represent one step
in Euler’s Method in (DDIE) and the corresponding convexified discrete Differential
Inclusion (CDDIE).

A lot of the following results depend on the space dimension of the space in which F̃ (z)

is included. In this article the space dimension is n + 1, but as the results do hold in
general we introduce

ñ := n+ 1

and work with ñ from here on.

Let z ∈ Rñ, A ⊂ Rñ and i ∈ N then:

Φ(z) := z + hN F̃ (z)

Ψ(z) := z + hN coF̃ (z)

Φ(A) :=
⋃
z∈A

Φ(z) Ψ(A) :=
⋃
z∈A

Ψ(z)

Φi(z) := Φ ◦ · · · ◦ Φ ◦ Φ︸ ︷︷ ︸
i-times

(z) Ψi(z) := Ψ ◦ · · · ◦Ψ ◦Ψ︸ ︷︷ ︸
i-times

(z)

The unit ball in Rñ with respect to the ‖.‖2-norm will be called B:

B := {z ∈ Rñ | ‖z‖2 ≤ 1}

Amongst others we will have to analyze (CDDIE), which involves convexified right-hand
sides coF̃ . To deal with coF̃ some results from convex analysis are needed.

5.4.2 Some results from convex analysis

Theorem
With the Minkowski Sum and scalar multiplication for sets defined in 2.4.3 it holds for
a convex set A and α, β ≥ 0:

(α+ β)A = αA+ βA

Proof :

(α+ β)A ⊂ αA+ βA should be clear.
The other way round follows from:

αA+ βA = (α+ β)

(
α

α+ β
A+

β

α+ β
A

) α
α+β+ β

α+β=1

⊂ (α+ β)A

Theorem (Carathéodory)
For A ⊂ Rd it holds

coA =

{
d+1∑
i=1

λiai

∣∣∣∣∣ ai ⊂ A,
d+1∑
i=1

λi = 1

}
A proof can be found in [7].

83

Theorem
For any nonempty compact subsets A,B ⊂ Rd it holds:

dH,2(coA, coB) ≤ dH,2(A,B)

For a proof see [8].

For this proof we introduced F̃ , which replaces F in this proof. Introducing F̃ would be
worthless, if we could not make use of the properties of F . As the next section shows,
the properties of F can be transferred one to one even to coF̃ . The only thing that
needs to be adjusted are the constants.

5.4.3 Passing properties of F on to F̃ and coF̃

If (A1) and (A2) hold for F , then it should be clear, that they hold for F̃ , too. In this
section some boundedness and Lipschitz-continuity results will be derived.

Boundedness
From the uniform boundedness of yN ∈ XN (T, t0, X0) (see 2.6.3) and (A1) it follows that
for j ∈ {0, . . . , N}

‖F̃ (zNj)‖2 = ‖(1, F (tj , y
N
j))‖2 ≤ 1 + ‖F (tj , y

N
j)‖2

(A1)

≤ 1 + CF (‖yNj ‖2 + 1)
2.6.3
≤ 1 + CF (M̃ + 1)︸ ︷︷ ︸

K:=

This means that F̃ is bounded for all valid solutions of (DDIE) by a constant
K, which is independent of N .

To gain the same boundedness for coF̃ we first have to consider coF . Any ξ ∈ coF (t, x)

can be represented by

ξ =

k∑
i=1

λiηi

(
ηi ∈ F (t, x) (i = 1, . . . , k),

k∑
i=1

λi = 1, λi ≥ 0 (i = 1, . . . , k), k ∈ N

)

So with (A1’) we get

‖ξ‖2 ≤
k∑
i=1

λi‖ηi‖2
(A1
′
)

≤
k∑
i=1

(λiCF (t)(‖x‖2 + 1)) = CF (t)(‖x‖2 + 1)

k∑
i=1

λi = CF (t)(‖x‖2 + 1)

Hence
‖coF (t, x)‖2 = sup

ξ∈coF (t,x)

‖ξ‖2 ≤ CF (t)(‖x‖2 + 1)

So with the proof of Theorem 2.6.3 we get that for xN ∈ XN
co(T, t0, X0) it holds ‖xNj ‖2 ≤ M̃ .

This means that XN
co(T, t0, X0) is bounded by the same constant as XN (T, t0, X0).

Let xN ∈ XN
co(T, t0, X0) and zNj = (tj , y

N
j) (j = 0, . . . , N). Considering the fact that

coF̃ (zNj) = (1, coF (tj , x
N
j)) we then get the same estimation for ‖coF̃ (zNj)‖2 as we al-

ready have for ‖F̃ (zNj)‖2:
Let j ∈ {0, . . . , N} then

‖coF̃ (zNj)‖2 = ‖(1, coF (tj , x
N
j))‖2 ≤ 1+‖coF (tj , x

N
j)‖2 ≤ 1+CF (‖xNj ‖2+1)

2.6.3
≤ 1+CF (M̃+1) = K

84

This means that F̃ is bounded for all valid solutions of (CDDIE) by the constant
K, which is independent of N .

Lipschitz-continuity
The Lipschitz-continuity property (A3) of F leads to Lipschitz-continuity of F̃ , but with
Lipschitz constant LF̃ =

√
2LF . This follows from:

Let z̃ = (t̃, y), z = (t, x), t, t̃ ∈ I and x, y ∈ Rn, then:

dH,2

(
F̃ (z), F̃ (z̃)

)
Def.F̃

= dH,2
(
(1, F (t, x)), (1, F (t̃, y))

)
= dH,2

(
F (t, x), F (t̃, y)

)
≤ LF (|t− t̃|+ ‖x− y‖2) = 2LF (

1

2

√
|t− t̃|2 +

1

2

√
‖x− y‖22)

concavity of
√
.

≤

2LF

(
1

2
|t− t̃|2 +

1

2
‖x− y‖22

)1/2

=
√

2LF

(
|t− t̃|2 + ‖x− y‖22

)1/2

=
√

2LF︸ ︷︷ ︸
LF̃ :=

‖z − z̃‖2

One additional property that is needed for the proof, concerns the Lipschitz-continuity
of coF̃ . Indeed, it follows directly from the Hausdorff-distance property in 5.4.2 that

dH,2

(
coF̃(z), coF̃(z̃)

) 5.4.2
≤ LF̃‖z− z̃‖2

We are now ready to start with the core part of the proof.

5.4.4 Overview of the proof

The basic idea is to use the general result: (d+ 1) coA = d coA+A (for any set A ⊂ Rd).
In this case A will be F̃ (z0) and the result from above will be applied repeatedly. It
won’t be possible, of course, to do this directly, because one step of the Euler scheme in
(CDDIE) is represented by zNj+1 ∈ z

N
j +hN co F̃ (zj) (F̃ has different arguments, only z0 in

the first step). But with the properties (A1) to (A3) for F̃ one can derive the deviation
result coF̃ (Ψi(z0)) ⊂ coF̃ (z0) + iKLF̃ hNB with B being the unit ball with respect to the
‖.‖2-norm.

The base of the whole proof will be the following result.

5.4.5 Theorem (reduction of convexification for constant sets)

Let A ⊂ Rd, then:
(d+ 1) coA = d coA+A

Proof :

The proof is quite lengthy and technical. In the author’s view it would disturb the flow
of reading to present it at this juncture. That is why the proof has been postponed to
the end of this section (see Proof of 5.4.5).

85

This result applied to A = F̃ (z0) ⊂ Rñ delivers

5.4.6 Lemma (convex deviation)

Ψñ+1(z) ⊂ Ψñ(Φ(z)) +KLF̃ ñ(ñ+ 1)h2
NB for any z ∈ Rñ

Note: The structure of the above expression reflects Theorem 5.4.5: On the left hand
side we have the convexified Euler step applied ñ+1 times whereas on the right-hand
side it is only applied ñ times and in the first step the not convexified Euler step is
used. The term KLF̃ ñ(ñ+1)h2

NB is the deviation term that appears because F̃ is not
constant. In fact this term represents the deviation from Euler’s Method with the
constant set F̃ (z).

Proof :

From the fact that F̃ (Ψi(z)) ⊂
⋃

z∈Ψ
i
(z)

F̃ (z) for i ∈ {1, . . . , N} it follows from the definition

of Ψ that:

¬ Ψñ+1(z) = z + hN coF̃ (z) + hN coF̃ (Ψ(z)) + · · ·+ hN coF̃ (Ψñ(z))

From the boundedness of F̃ we get

Ψi(z) ⊂ Ψi−1(z) +KhN ⇒ dH,2(Ψi(z),Ψi−1(z)) ≤ KhN

Combining this result with the triangular inequality of the Hausdorff-distance (see 2.5.4)
we get

dH,2(Ψk(z), z) ≤
k∑
i=1

dH,2(Ψi(z),Ψi−1(z)) ≤ kKhN

To use this result for estimating ¬ we make use of the Lipschitz-continuity of coF̃ (see
5.4.3), which yields

­
dH,2

(
coF̃ (Ψk(z)), coF̃ (z)

)
≤ LF̃ dH,2(Ψk(z), z) ≤ LF̃ kKhN

⇒ coF̃ (Ψk(z)) ⊂ coF̃ (z) + kLF̃KhNB

Applying this result to ¬ delivers

Ψñ+1(z)
­
⊂ z + (ñ+ 1)hN coF̃ (z) +

ñ∑
k=1

kLF̃Kh
2
NB =

z + (ñ+ 1)hN coF̃ (z) +
ñ(ñ+ 1)

2
LF̃Kh

2
NB

86

This can now be further modified by applying Theorem 5.4.5

®
Ψñ+1(z) ⊂ z + (ñ+ 1)hN coF̃ (z) +

ñ(ñ+ 1)

2
LF̃Kh

2
NB

5.4.5
=

z + hN F̃ (z) + ñ hN coF̃ (z) +
ñ(ñ+ 1)

2
LF̃Kh

2
NB

Like in the derivation of ­ we obtain

¯ coF̃ (z) ⊂ coF̃
(
Ψk(Φ(z))

)
+ (k + 1)LF̃KhNB

Note: k + 1 appears due to the fact that Ψk(Φ(z)) represents k + 1 Euler steps. Also
recall that the Lipschitz constants of coF̃ and F̃ are the same.

Applying ¯ to ® delivers

Ψñ+1(z)
®
⊂ z + hN F̃ (z) + ñ hN coF̃ (z) +

ñ(ñ+ 1)

2
LF̃Kh

2
NB

¯
⊂ z + hN F̃ (z) + hN

ñ−1∑
k=0

(
coF̃

(
Ψk(Φ(z))

)
+ (k + 1)LF̃KhNB

)
+
ñ(ñ+ 1)

2
LF̃Kh

2
NB

=

(
z + hN F̃ (z) +

ñ−1∑
k=0

hN coF̃
(
Ψk(Φ(z))

))
+ ñ(ñ+ 1)LF̃Kh

2
NB

= Ψñ(Φ(z)) + ñ(ñ+ 1)LF̃Kh
2
NB

�(Proof of Lemma 5.4.6)

Extending this result a little further gives us an essential result for this proof.

5.4.7 Theorem (consecutive convex deviation)

For z ∈ Rñ and ε > 0 it holds

Ψ
(
Ψñ(z) + εB

)
⊂ Ψñ(Φ(z)) +

(
KLF̃ ñ(ñ+ 1)h2

N + ε(1 + LF̃hN)
)
B

Proof :

Like in the proof of Lemma 5.4.6 we obtain for A ⊂ Rñ

dH,2

(
coF̃

(
A+ εB

)
, coF̃

(
A
))
≤ LF̃ dH,2 (A+ εB, A) = LF̃ ε

So we have for A = Ψñ(z)

¬ dH,2

(
coF̃

(
Ψñ(z) + εB

)
, coF̃

(
Ψñ(z)

))
≤ LF̃ ε

87

Using this result after applying Ψ to Ψñ(z) + εB delivers

Ψ
(
Ψñ(z) + εB

)
= Ψñ(z) + εB + hNcoF̃

(
Ψñ(z) + εB

)
¬
⊂ Ψñ(z) + εB + hN

(
coF̃

(
Ψñ(z)

)
+ LF̃ εB

)
=
(

Ψñ(z) + hNcoF̃
(
Ψñ(z)

))
+ ε(1 + LF̃hN)B

= Ψñ+1(z) + ε(1 + LF̃hN)B

Applying Lemma 5.4.6 to the result above delivers

Ψ
(
Ψñ(z) + εB

)
⊂ Ψñ+1(z) + ε(1 + LF̃hN)B

5.4.6
⊂ Ψñ(Φ(z)) + ñ(ñ+ 1)LF̃Kh

2
NB + ε(1 + LF̃hN)B

= Ψñ(Φ(z)) +
(
KLF̃ ñ(ñ+ 1)h2

N + ε(1 + LF̃hN)
)
B

�(Proof of Theorem 5.4.7)

By considering solution paths and using Theorem 5.4.7 for going one Euler step further,
it is now possible to conclude the proof.

5.4.8 Concluding the proof of the Convergence Theorem for convex discrete
Differential Inclusions

Let (ηNk)k∈{1,...,N} be a solution to (CDDIE) with starting point ηN0 = z0 ∈ Z0. In other
words (ηN ∈ ZNco(T, t0, {z0}). What needs to be proven is that there exists a solution
(ξNk)k∈{1,...,N} to (DDIE) such that ‖ηNk − ξ

N
k ‖2 ≤ CShN (k = 1, . . . , N). This will be done

using induction. It makes sense to choose the same starting point for ξN as for ηN , so
we have ξN ∈ ZN (T, t0, {z0}).

Due to the fact that (ηNk)k∈{1,...,N} is a solution of (CDDIE) we have

ηNj ∈ Ψj(z0) (j ∈ {0, . . . , N})

Initial Step
So we have for j = ñ

ηNñ ∈ Ψñ(z0) + ε0B with ε0 := 0

From Theorem 5.4.7 it then follows that

ηNñ+1 ∈ Ψ(ηNñ) ⊂ Ψ
(
Ψñ(z0) + ε0B

) ξN0 =ξ
N
0= Ψ

(
Ψñ(ξN0) + ε0B

)
5.4.7
⊂ Ψñ(Φ(ξN0)) +

(
KLF̃ ñ(ñ+ 1)h2

N + ε0(1 + LF̃hN)
)
B

= Ψñ(Φ(ξN0)) +KLF̃ ñ(ñ+ 1)h2
N︸ ︷︷ ︸

ε1:=

B

So there exsits ξN1 ∈ Φ(ξN0) such that

ηNñ+1 ∈ Ψñ(ξN1) + ε1B

88

This serves as the initial step. Next will be the induction step.
Induction Step
Suppose that

ηNñ+k ∈ Ψñ(ξNk) + εkB (εk ≥ 0, ξNk ∈ Rñ)

Then it follows from Theorem 5.4.7 as in the case k = 0 above that

ηNñ+k+1 ∈ Ψ(ηNñ+k+1) ⊂ Ψ
(
Ψñ(ξNk) + εkB

) ξN0 =ξ
N
0= Ψ

(
Ψñ(ξN0) + ε0B

)
5.4.7
⊂ Ψñ(Φ(ξNk)) +

(
KLF̃ ñ(ñ+ 1)h2

N + εk(1 + LF̃hN)
)

︸ ︷︷ ︸
εk+1:=

B

So there exsits ξNk+1 ∈ Φ(ξNk) such that

ηNñ+k+1 ∈ Ψñ(ξNk+1) + εk+1B

Combining the initial step and the induction step we obtain that there exists ξN ∈
ZN (T, t0, {z0}) such that for k ∈ {0, . . . , N − ñ} it holds

¬ ηNñ+k ∈ Ψñ(ξNk) + εkB

with

ε0 = 0

εk+1 = KLF̃ ñ(ñ+ 1)h2
N + εk(1 + LF̃hN)

With the equations for (εk)k∈{0,1,...,N−ñ} above one gets directly by analyzing the
recursion that

­

εk = KLF̃ ñ(ñ+ 1)h2
N

k−1∑
i=0

(1 + LF̃hN)i = KLF̃ ñ(ñ+ 1)h2
N

(1 + LF̃hN)k − 1

LF̃hN

≤ Kñ(ñ+ 1)hN

(
eLF̃hN

)k Def. hN= Kñ(ñ+ 1)eLF̃ k(T−t0)/NhN
k≤N
≤ Kñ(ñ+ 1) eLF̃ (T−t0)hN︸ ︷︷ ︸

ε∞:=

Next we are going to estimate dH,2(Ψñ(ξNk), ξNk) to obtain an estimation of ‖ηNñ+k − ξ
N
k ‖2

from ¬.
As already shown at the beginning of the proof of Lemma 5.4.6 it follows from the
boundedness of coF̃ respectively F̃ that

®
dH,2(Ψl(z), z) ≤

l∑
i=1

dH,2(Ψi(z),Ψi−1(z)) ≤ lKhN (l ∈ {1, . . . , N}, z ∈ Rñ)

dH,2(Φl(z), z) ≤
l∑
i=1

dH,2(Φi(z),Φi−1(z)) ≤ lKhN (l ∈ {1, . . . , N}, z ∈ Rñ)

89

Combining ® and ­ with ¬ by choosing z = ξNk and l = ñ in ® delivers

¯ ηNñ+k

¬
∈ Ψñ(ξNk) + εkB

®
⊂ ξNk + ñKhNB + εkB

­
⊂ ξNk + (ñKhN + ε∞)B (k ∈ {0, . . . , N − ñ})

⇒ ‖ηNñ+k − ξ
N
k ‖2 ≤ ñKhN + ε∞ (k ∈ {0, . . . , N − ñ})

As a direct consequence of ­ one also gets by setting z = ξNk and considering that
ξNk+ñ ∈ Φñ(ξNk)

° ‖ξNk+ñ − ξ
N
k ‖2

­
≤ ñKhN (k ∈ {0, . . . , N − ñ})

Combining ¯ and ° and using the definition of ε∞ then yields

‖ηNk+ñ − ξ
N
k+ñ‖2 ≤ ‖ηNk+ñ − ξ

N
k ‖2 + ‖ξNk+ñ − ξ

N
k ‖2

¯,°
≤ ñKhN +Kñ(ñ+ 1) eLF̃ (T−t0)hN + ñKhN

=
(

2 + (ñ+ 1) eLF̃ (T−t0)
)
ñKhN (k ∈ {0, . . . , N − ñ})

So we have the indices j = ñ, . . . , N covered and are only missing j = 0, . . . , ñ − 1. For
these cases one easily obtains by using ­ that

‖ηNj − ξ
N
j ‖2 ≤ ‖η

N
j − η

N
0 ‖2 + ‖ξNj − ξ

N
0 ‖2

η
N
0 =ξ

N
0 =z0= ‖ηNj − z0‖2 + ‖ξNj − z0‖2

­
≤ jKhN + jKhN

j<ñ
< 2ñKhN ≤

(
2 + (ñ+ 1) eLF̃ (T−t0)

)
ñKhN (j ∈ {0, . . . , ñ− 1})

Combining the results for j = ñ, . . . , N and j = 0, . . . , ñ− 1 we get

±
‖ηNj − ξ

N
j ‖2 ≤

(
2 + (ñ+ 1) eLF̃ (T−t0)

)
ñKhN (j ∈ {0, . . . , N})

⇔ sup
j=0,...,N

‖ηNj − ξ
N
j ‖2 ≤

(
2 + (ñ+ 1) eLF̃ (T−t0)

)
ñKhN

From the notations section 5.4.1 we know that any element ηN ∈ ZNco(T, t0, {z0}) can be
identified with an element xN ∈ XN

co(T, t0, {z0}) by

ηNj = (tj , x
N
j) (j = 0, . . . , N)

Also any element ξN ∈ ZN (T, t0, {z0}) can be identified with an element yN ∈
XN (T, t0, {z0}) by

ξNj = (tj , y
N
j) (j = 0, . . . , N)

90

This leads to the final statement:
For any xN ∈ XN

co(T, t0, {z0}) there exists yN ∈ XN (T, t0, {z0}) such that

sup
j=0,...,N

‖xNj − y
N
j ‖2 ≤ sup

j=0,...,N
‖ηNj − ξ

N
j ‖2

±
≤
(

2 + (ñ+ 1) eLF̃ (T−t0)
)
ñK︸ ︷︷ ︸

CS:=

hN

�(Proof of Theorem 5.2.3)

Due to its length, the proof of Theorem 5.4.5 has been postponed to the end of this
section.

5.4.9 Proof of Theorem 5.4.5

The proof is heavily based on Carathéodorys Theorem 5.4.2. From this theorem we
obtain that

coA =
⋃
{Ad}

coAd

Where {Ad} ⊂ A denotes a set with at most d+ 1 elements.
It is then sufficient to show that (d+ 1) coAd = d coAd +Ad, because with that result and
the representation of coA from above we get:

(d+ 1) coA =
⋃
{Ad}

(d+ 1) coAd =
⋃
{Ad}

(d coAd +Ad) = d
⋃
{Ad}

coAd +
⋃
{Ad}

Ad = d coA+A

Where (d + 1) coA =
⋃
{Ad}(d + 1) coAd has to do with the fact that α coA + β coA =

(α + β) coA, which has been proven in 5.4.2. From this point on the proof is pretty
straightforward, but quite technical and lengthy.

So let us consider an arbitrary set Ad = {z1, . . . , zd+1} ⊂ A consisting of d + 1 elements.
It then holds:

(d+ 1) coAd = d coAd +Ad ⇐⇒



For (λi,j)
i=1,...,d+1
j=1,...,d+1 with

d+1∑
j=1

λi,j = 1 (i = 1, . . . , d+ 1)

and λi,j ≥ 0 (i, j = 1, . . . , d+ 1)

there exists

(λ̃i,j)
i=1,...,d
j=1,...,d+1 with

d+1∑
j=1

λ̃i,j = 1 (i = 1, . . . , d)

and λ̃i,j ≥ 0 (i = 1, . . . , d; j = 1, . . . , d+ 1)

such that
d+1∑
i=1

(
d+1∑
j=1

λi,j zj

)
=

d∑
i=1

(
d+1∑
j=1

λ̃i,j zj

)
+ zd+1



91

Remarks:

• Without loss of generality the index d+ 1 is chosen in such a way that

¬
d+1∑
i=1

λi,d+1 ≥ 1

otherwise reorder the elements of Ad. This is only possible because at least
d+1 elements are summed up. This is the reason, why this theorem just
holds for (d+ 1) coA or the same with any higher scalar than d+ 1. The
fact that such an index exists can be easily shown:
Suppose such an index does not exist, i.e.:

d+1∑
i=1

λi,j < 1 (j = 1, . . . , d+ 1)

This leads to
d+1∑
j=1

(
d+1∑
i=1

λi,j

)
< d+ 1

which is obviously a contradiction to

d+1∑
j=1

λi,j = 1 (i = 1, . . . , d+ 1)⇒
d+1∑
i=1

d+1∑
j=1

λi,j = d+ 1

• The case that Ad consists of k < d + 1 elements does not have to be considered
separately, because it is represented by setting λi,j = 0 (i = 1, . . . , d + 1; j =

k + 1, . . . , d+ 1).

A more optically appealing way of the new represenation introduced above is:

λ1,1

+
...
+

λd,1
+

λd+1,1


z1 + · · ·+



λ1,d

+
...
+

λd,d
+

λd+1,d


zd +



λ1,d+1

+
...
+

λd,d+1

+

λd+1,d+1


zd+1 =


λ̃1,1

+
...
+

λ̃d,1

 z1 + · · ·+


λ̃1,d

+
...
+

λ̃d,d

 zd +


λ̃1,d+1

+
...
+

λ̃d,d+1

 zd+1 + zd+1

92

From this we can directly derive the central equations that have to be fulfilled with (λ̃i,j)

by comparing both sides for each vector zj (j = 1, . . . , d+ 1):

­
d+1∑
i=1

λi,j =

d∑
i=1

λ̃i,j (j = 1, . . . , d)

and for the index d+ 1, which should be handled separately

®
d+1∑
i=1

λi,d+1 =

d∑
i=1

λ̃i,d+1 + 1

All that is left to do now is to change the weights (λi,j), while keeping balance, i.e.
fulfilling the equaitons in ­ and ®.

Let’s start with ® first. The idea is to look at a slightly different form of ®, i.e.:

d∑
i=1

λi,d+1 =

d∑
i=1

λ̃i,d+1 + (1− λd+1.d+1)

Then “transfer” the weights from the left to the right side:
Start with λ1,d+1 and look if it is smaller or equal than 1−λd+1,d+1. If so, set λ̃1,d+1 := 0.
Then take a look at λ2,d+1. If it is smaller or equal than 1−λd+1,d+1−λ1,d+1 set λ̃2,d+1 := 0.
For the next one, one has to compare to 1− λd+1,d+1 −

∑2
i=1 λi,d+1. This procedure shall

be carried on till the index ĩ is reached at which λĩ,d+1 > 1 − λd+1,d+1 −
∑ĩ−1
i=1 λi,d+1.

At that point set λ̃ĩ,d+1 := λĩ,d+1 −
(

1− λd+1,d+1 −
∑ĩ−1
i=1 λi,d+1

)
. That is all that was to

“transfer”. From ĩ + 1 on leave λi,d+1 as is, which means λ̃i,d+1 := λi,d+1. The whole
process is described via the following definition:

¯ λ̃i,d+1 := λi,d+1 −min

(
λi,d+1, 1− λd+1,d+1 +

i−1∑
k=1

µk,d+1

)
(i = 1, . . . , d)

Where

µi,j := λ̃i,j − λi,j (i, j = 1, . . . , d+ 1)

What is left to do is choose λ̃i,j (i, j = 1, . . . , d) in such a way, that ­ is fulfilled and∑d+1
j=1 λ̃i,j = 1 (i = 1, . . . , d) holds. That this is possible should be more clearly when

looking at the following coherence, which follows directly from the properties of the
weights:

d∑
i=1

λi,d+1 −
d∑
i=1

λ̃i,d+1
®
= 1− λd+1,d+1 =

d∑
j=1

λd+1,j

This means that the difference of the weights, that occurred when achieving ®, can be
compensated by adding λd+1,j to λi,j (i = 1, . . . , d) for arbitrary but fixed j ∈ {1, . . . , d}.

93

That way the goal of fulfilling ­ and
∑d+1
j=1 λ̃i,j = 1 (i = 1, . . . , d) can be achieved.

The idea is going through the whole system line by line (i = 1, . . . , d) starting each line
at j = 1. While going through the lines we add as much as we can to each weight,
obeying the following rules: In each line i, the total amount added to the weights has
to be smaller than λi,d+1 − λ̃i,d+1 = −µi,d+1 and the total amount added in each row j

has to be smaller than λd+1,j. These rules are applied successively to each of the weights
λi,j (i, j = 1, . . . , d) which then gives the desired λ̃i,j (i, j = 1, . . . , d). As the procedure is
somehow similar to the one we already used for obtaining the weights for ®, the result
looks a bit like ¯. But instead of subtracting, which has been done before, we this time
add to the weights. Doing so we get the following formula for successively obtaining
λ̃i,j (i, j = 1, . . . , d):

° λ̃i,j = λi.j + min

(
−µi,d+1 −

j−1∑
k=1

µi,k, λd+1,j −
i−1∑
k=1

µk,j

)
(i, j = 1, . . . , d)

With ¯ and ° we have definitions for λ̃i,j (i = 1, . . . , d; j = 1, . . . , d+ 1). But we have yet
to prove that these definitions indeed fulfill ­, ® and that we are indeed dealing with
convex combinations. The latter one means that λ̃i,j ≥ 0 (i = 1, . . . , d; j = 1, . . . , d + 1)

and
∑d+1
j=1 λ̃i,j = 1 (i = 1, . . . , d) have to be shown. This will be the starting point for the

quite lenghty, but always straightforward proof.

Assertion:

λ̃i,j ≥ 0 (i = 1, . . . , d; j = 1, . . . , d+ 1)

Proof :

From ° it directly follows that

i∑
k=1

µk,j
°
=

i−1∑
k=1

µk,j + min

(
λi,d+1 −

j−1∑
k=1

µi,k, λd+1,j −
i−1∑
k=1

µk,j

)
≤ λd+1,j

⇔ λd+1,j −
i∑

k=1

µk,j ≥ 0 (i, j = 1, . . . , d)

and

j∑
k=1

µi,k
°
=

j−1∑
k=1

µi,k + min

(
λi,d+1 −

j−1∑
k=1

µi,k, λd+1,j −
i−1∑
k=1

µk,j

)
≤ λi,d+1

⇔ λi,d+1 −
j∑

k=1

µi,k ≥ 0 (i, j = 1, . . . , d)

Combining those two results with ° then delivers:

˜λi,j = λi.j + min

(
λi,d+1 −

j−1∑
k=1

µi,k︸ ︷︷ ︸
≥0

, λd+1,j −
i−1∑
k=1

µk,j︸ ︷︷ ︸
≥0

)
≥ λi,j ≥ 0 (i, j = 1, . . . , d)

94

The desired result for j = d+ 1 can be easily obtained from ¯:

λ̃i,d+1 = λi,d+1 −min

(
λi,d+1, 1− λd+1,d+1 +

i−1∑
k=1

µk,d+1

)
≥ λi,d+1 − λi,d+1 = 0 (i = 1, . . . , d)

Combining both results delivers the desired statement for i = 1, . . . , d and j = 1, . . . , d+ 1.
�(Proof of Assertion)

As a byproduct of this proof we got that

± λd+1,j −
i∑

k=1

µk,j ≥ 0 and λi,d+1 −
j∑

k=1

µi,k ≥ 0 (i, j = 1, . . . , d)

When proving properties of ° this will turn out to be quite useful.
As already mentioned the next step of the proof is to show that

∑d+1
j=1 λ̃i,j = 1 (i =

1, . . . , d). The idea is to show that

²
d+1∑
j=1

λ̃i,j =

d+1∑
j=1

λi,j = 1 (i = 1, . . . , d)

This will be done using induction starting with i = 1 as the initial step.

Assertion:

³

For i = 1, . . . , d there exists j̃ ∈ {1, . . . , d} such that

λi,d+1 −
j̃−1∑
k=1

µi,k ≤ λd+1,j̃ −
i−1∑
k=1

µk,j̃

which leads directly to ² being fulfilled with λ̃i,j (i = 1, . . . , d; j = 1, . . . , d+ 1)

Proof :

The proof uses induction. So we start with the case i = 1.
Initial Step: The statement holds for i = 1.
Let’s suppose the opposite, i.e.

−µ1,d+1 −
j−1∑
k=1

µ1,k > λd+1,j (j = 1, . . . , d)

Then we get from ° and ¯, that

d∑
k=1

µ1,k
°
=

d∑
k=1

λd+1,k = 1− λd+1,d+1

¯
≥ −µ1,d+1 ⇒ −µ1,d+1 −

d−1∑
k=1

µ1,k ≤ µ1,d

° also delivers:

µ1,d
°
= min

(
−µ1,d+1 −

d−1∑
k=1

µ1,k, λd+1,d

)
≤ λd+1,d

95

Combining those results we get:

−µ1,d+1 −
d−1∑
k=1

µ1,k ≤ λd+1,d

So for j = d we get a contradiction to the assumption not being true, which means it
has to be true.
With ³ being true for i = 1 it is possible to prove that ² holds for i = 1:
Let’s choose j̃ as in ³ for i = 1. Combining ° and ³ for i = 1 then delivers

µ1,j̃
°
= min

−µ1,d+1 −
j̃−1∑
k=1

µ1,k, λd+1,j̃

³
= −µ1,d+1 −

j̃−1∑
k=1

µ1,k ⇔ −µ1,d+1 =

j̃∑
k=1

µ1,k

If j̃ = d, this is ² for i = 1, so we are done. For j̃ < d one gets µ1, ˜j+1 = 0 and so forth by
successively applying °. This leads to

−µ1,d+1 =
d∑
k=1

µ1,k

So overall we get that λ̃1,j (j = 1, . . . , d+ 1) fulfills ² for i = 1.
�(i = 1, initial step)

Next comes the induction step:
Induction Step: Let ² be fulfilled for λi,j (i = 1, . . . , ĩ − 1; j = 1, . . . , d + 1). Then the
statement holds for ĩ.
The way to go is almost the same as for the case i = 1, it just involves the inductive
assumption:
Let’s suppose that the inductive assumption is true, but the statement does not hold
for i = ĩ, i.e.

−µĩ,d+1 −
j−1∑
k=1

µĩ,k > λd+1,j −
ĩ−1∑
k=1

µk,j (j = 1, . . . , d)

It then follows directly from ° that

µĩ,j = λd+1,j −
ĩ−1∑
k=1

µk,j (j = 1, . . . , d)

The inductive assumption can be written as

d∑
j=1

µĩ,j = −µi,d+1 (i = 1, . . . , ĩ− 1)

These two results and ¯ deliver

d∑
j=1

µĩ,j
°
=

d∑
j=1

λd+1,j −
ĩ−1∑
k=1

d∑
j=1

µk,j
inductive

=
assumption

d∑
j=1

λd+1,j +

ĩ−1∑
k=1

µk,d+1 =

1− λd+1,d+1 −
ĩ−1∑
k=1

µk,d+1

¯
≥ −µĩ,d+1 ⇒ −µĩ,d+1 −

d−1∑
j=1

µĩ,j ≤ µĩ,d

96

° delivers:

µĩ,d
°
= min

λĩ,d+1 −
d−1∑
k=1

µĩ,k, λd+1,d −
ĩ−1∑
k=1

µk,d

 ≤ λd+1,d −
ĩ−1∑
k=1

µk,d

Combining those results we get:

−µĩ,d+1 −
d−1∑
j=1

µĩ,d ≤ λd+1,d −
ĩ−1∑
k=1

µk,d

So for j = d we get a contradiction to the statement not being true for i = ĩ, supposed
that the inductive assumption holds. This means it has to be true. So if the inductive
assumption holds we get ³ for i = ĩ.

With ³ for i = ĩ it is possible to prove that ² holds for i = ĩ:
Let’s choose j̃ as in ³ for i = ĩ. Combining ° and ³ with j = j̃ then delivers

µĩ,j̃
°
= min

−µĩ,d+1 −
j̃−1∑
k=1

µĩ,k, λd+1,j̃ −
ĩ−1∑
k=1

µk,j̃

³
= −µĩ,d+1 −

j̃−1∑
k=1

µĩ,k ⇔ −µĩ,d+1 =

j̃∑
k=1

µĩ,k

If j̃ = d, this is ² for i = ĩ, so we are done. For j̃ < d one gets µĩ,j̃+1 = 0 and so forth by
successively applying °. This leads to

−µĩ,d+1 =

d∑
k=1

µĩ,k

So overall we get that λ̃ĩ,j (j = 1, . . . , d+ 1) fulfills ².
�(̃i− 1 to ĩ, induction step)

The initial step together with the induction step deliver the assertion.
�(Proof of the Assertion)

As a byproduct of the above assertion we have proven, that ² indeed holds with the
definitions of λ̃i,j (i = 1, . . . , d; j = 1, . . . , d + 1). Of course ² is the result we wanted to
prove, but ³ is the central idea for reaching that goal.

After having shown that λ̃i,j ≥ 0 (i = 1, . . . , d; j = 1, . . . , d + 1) and
∑d+1
j=1 λ̃i,j = 1(i =

1, . . . , d) the “only” thing left to show is that ­ and ® hold for λ̃i,j (i = 1, . . . , d; j =

1, . . . , d + 1). Let’s start with ®, which can be shown by taking a look at column d + 1.
The reason for starting with ® instead of ­ is that on the right-hand side of definition ¯

λ̃i,j does not appear. In ° this is not the case. And indeed we need the following result
to go on with proving ­.

97

Assertion

´

∃ĩ ∈ {1, . . . , d} such that

1− λd+1,d+1 +

ĩ−1∑
k=1

µk,d+1 ≤ λĩ,d+1

Proof :

Let’s suppose the opposite, i.e.

1− λd+1,d+1 +

i−1∑
k=1

µk,d+1 > λi,d+1 (i = 1, . . . , d)

Then we get from ¯ and ¬, that

d−1∑
k=1

µk,d+1 =̄ −
d−1∑
k=1

λk,d+1

¬
≤ −1 + λd+1,d+1 + λd,d+1 ⇒ 1− λd+1,d+1 +

d−1∑
k=1

µk,d+1 ≤ λd,d+1

So for i = d we get a contradiction to the assumption not being true, which means
it has to be true. �(proof of ´)

Choosing ĩ like in ´ and combining ´ with ¯ delivers:

µĩ,d+1 =̄ −min

λĩ,d+1, 1− λd+1,d+1 +

ĩ−1∑
k=1

µk,d+1

 =́ −1 + λd+1,d+1 −
ĩ−1∑
k=1

µk,d+1

⇔ λd+1,d+1 −
ĩ∑

k=1

µk,d+1 = 1

If ĩ = d this is ®. For ĩ < d we get µĩ+1,d+1 = 0 and so forth, so again we get

λd+1,d+1 −
d∑
k=1

µk,d+1 = 1

So λ̃i,d+1 (i = 1, . . . , d) fulfills ®.

We are now ready to prove that ­ is fulfilled. The central idea is the same as for proving
², but this time we look at the definitions column by column (j fixed) instead of line
by line (i fixed).

Assertion:

µ

For j ∈ {1, . . . , d} there exists ĩ ∈ {1, . . . , d} such that

λd+1,j −
ĩ−1∑
k=1

µk,j ≤ −µĩ,d+1 −
j−1∑
k=1

µĩ,k

98

Proof :

Assume that the assertion does not hold, i.e.

λd+1,j −
i−1∑
k=1

µk,j > −µi,d+1 −
j−1∑
k=1

µi,k (i = 1, . . . , d)

From this inequality one directly obtains with °

µi,j
°
= −µi,d+1 −

j−1∑
k=1

µi,k ⇔ −µi,d+1 = µi,j +

j−1∑
k=1

µi,k (i = 1, . . . , d)

Let’s choose ĩ as in ´. From the equation above and ´ we then get

− µĩ,d+1 −
j−1∑
k=1

µĩ,k =̄ min

λĩ,d+1, 1− λd+1,d+1 +

ĩ−1∑
k=1

µk,d+1

− j−1∑
k=1

µĩ,k =́

1− λd+1,d+1 +

ĩ−1∑
k=1

µk,d+1 −
j−1∑
k=1

µĩ,k = 1− λd+1,d+1 −
ĩ−1∑
k=1

µk,j −
ĩ−1∑
k=1

j−1∑
l=1

µk,l −
j−1∑
k=1

µĩ,k =

d∑
k=1

λd+1,k −
ĩ−1∑
k=1

µk,j −
j−1∑
l=1

ĩ∑
k=1

µk,l ≥ λd+1,j −
ĩ−1∑
k=1

µk,j +

j−1∑
k=1

λd+1,k −
j−1∑
l=1

ĩ∑
k=1

µk,l
±
≥

λd+1,j −
ĩ−1∑
k=1

µk,j +

j−1∑
k=1

λd+1,k −
j−1∑
l=1

λd+1,l = λd+1,j −
ĩ−1∑
k=1

µk,j

So overall we have

λd+1,j −
ĩ−1∑
k=1

µk,j ≤ −µĩ,d+1 −
j−1∑
k=1

µĩ,k

So the case i = ĩ delivers a contradiction to the assumption of the assertion not being
true. So it has to be true. �(proof of µ)

µ leads directly to ­ being fulfilled with λ̃i,j (i, j = 1, . . . , d). The idea to show that
should be familiar by now:
Choose ĩ as in µ, then it follows from ° that

µĩ,j
°
= min

−µĩ,d+1 −
j−1∑
k=1

µĩ,k, λd+1,j −
ĩ−1∑
k=1

µk,j

µ
= λd+1,j −

ĩ−1∑
k=1

µk,j ⇔ λd+1,j −
ĩ∑

k=1

µk,j = 0

If ĩ = d this is ­. For ĩ < d we get µĩ+1,j = 0 and so forth and finally obtain

λd+1,j −
d∑
k=1

µk,j = 0

The fact that for any j ∈ {1, . . . , d} there exists such an index ĩ leads to λ̃i,j (i, j = 1, . . . , d)

fulfilling ­ for j = 1, . . . , d.

99

So overall with ¯ and ° we found a solution to

d+1∑
j=1

λ̃i,j = 1 (i = 1, . . . , d)

λ̃i,j ≥ 0 (i = 1, . . . , d; j = 1, . . . , d+ 1)

d+1∑
i=1

d+1∑
j=1

λi,j zj

 =

d∑
i=1

d+1∑
j=1

λ̃i,j zj

+ zd+1

�(Proof of Theorem 5.4.5)

100

6 Examples

6.1 Overview

In this section some examples are presented, which either substantiate the results from
chapter 3 or explore theoretically only partially covered cases of this article. This invol-
ves simple cases of multidimensional state constraints and some investigations on the
assumption (C2) from 5.3.

6.1.1 details on calculations and notations

Form of the optimization problem
All problems are presented in Bolza form (see 2.3.1). The discrete solution is obtained
using numerical algorithms to solve the Discrete Mayer-Problem 2.4.2. The error that
occurs when solving the Discrete Mayer-Problem via a certain optimization algorithm
is not taken into account, but is of course present. This should be kept in mind when
considering the following numerical results.
The software used solves exactly the Discrete Mayer-Problem described in this paper.
The ODE is also solved using the forward Euler Method, so despite some numerical
errors, the computed results should exactly represent the solution (x̂N , ûN) from this
paper. Nevertheless there are some minor differences. First, because of Euler’s method,
it does not make sense to calculate the optimal control on the last point of the grid. So
all control vectors are missing the last m components. The second thing is that the form
of the constraints is a bit altered to compensate for the lack of the last component of
the control vectors. But these are just minor differences and should not have any real
impact on the final result.
The reader of this chapter should also be aware that x̂N splits up into ˆ̃xN and ẑN (see
Notations in 2.4.2), where ˆ̃xN is the optimal discrete state function to the discrete Bolza-
Problem. The directly discretized Bolza-Problem has not been introduced in this thesis,
because it is almost the same as the Discrete Mayer-Problem presented in 2.4.2 and the
theoretical focus lies on the Mayer form of the optimization problem. The only thing
to do to obtain the Discrete Bolza-Problem from the Discrete Mayer-Problem is to wri-
te down what zN exactly represents. That way one directly sees that usage of Euler’s
Method in the Discrete Mayer-Problem to obtain zN directly transfers into a Riemann
sum for the integral term in the objective function, when considering the Discrete Bolza-
Problem.
All convergence results in chapter 3 are given for the extended state variable for the
Mayer-Problem. But as x(.) = (x̃(.), z(.)), convergence of the state of the Mayer-Problem
leads to convergence of the state of the Bolza-Problem. In addtion it deliveres conver-
gence of the objective function integral terms. This can be easily seen by looking at the
following inequality with appropriate norm ‖.‖ and constants C, p ∈ R:

‖x̂N − ρN (x̂(.))‖ = ‖

(
ˆ̃xN

ẑN

)
− ρN

((
ˆ̃x(.)

ẑ(.)

))
‖ ≤ C hpN

⇒ ‖ˆ̃xN − ρN (ˆ̃x(.))‖ ≤ C hpN and ‖ẑN − ρN (ẑ(.))‖ ≤ C hpN

101

The convergence of the integral term of the objective function follows from the fact that
the difference of the integral terms of the discrete and the continuous case corresponds
to |ẑNN − ẑ(T)|.

obtaining the exact solution
It is in general preferable to obtain the exact solution analytically, so that an exact
comparison can be done. The alternative would be to “trust” the numerical results and
take the solution obtained for the maximum number of steps used in the calculation
process as the exact solution. To obtain the solution analytically the so called maximum
principle is used. This is usually not possible for complex problems. There is a lot of
literature on that basic topic in infinite dimensional optimization. This article refers
to [1].

norms used
For the convergence analysis done it is essential which norm to use. In most cases this
will be the discrete L∞-norm for the state and the discrete L2-norm or L∞-norm for the
control. Calculation of these norms is straightforward.
In some special cases the continuous L2-norm or the continuous L∞-norm will be used.
In that case the discrete solution is interpolated using a linear spline. The linear spline
for the discrete optimal state data shall be called ˆ̃xN (.), the one for the discrete optimal
control data ûN (.). For calculating the L2-norm numerical integration is used to integrate
the difference between the optimal function of the continuous problem and the spline
created from the discrete data. This process, of course, involves some numerical errors.
The L∞ is calculated using numerical maximization routines.
Taking a look at ‖ˆ̃xN (.)− ˆ̃x(.)‖∞, when actually trying to gather information about the
convergence rate of ‖ˆ̃xN −ρN (ˆ̃x(.))‖∞ makes sense because of the following cosiderations:
From Theorem 2.6.4 we know that ˆ̃xN (.) is Lipschitz-continuous with Lipschitz constant
L̃. Like in the proof of Theorem 3.2.7 we get that ˆ̃xN (.)− ˆ̃x(.) is Lipschitz-continuous with
Lipschitz constant L̃ + L with respect to the supremum norm. From the Compatibility
Property 3.2.6 we then get that∣∣∣‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ − ‖ˆ̃x

N (.)− ˆ̃x(.)‖∞
∣∣∣ ≤ (L̃+ L)hN

⇒ ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ ≤ (L̃+ L)hN + ‖ˆ̃xN (.)− ˆ̃x(.)‖∞

So if we get an estimation for the convergence rate p̃ of ‖ˆ̃xN (.)− ˆ̃x(.)‖∞, i.e we suppose
that ‖ˆ̃xN (.)− ˆ̃x(.)‖∞ ≤ Ch

p̃
N , the above inequality delivers:

‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ ≤ (L̃+ L)hN + Chp̃N
hN≤1

≤ (L̃+ L+ C)h
min(1,p̃)
N

So we get an estimation of the convergence rate p of ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ by setting p =

min (1, p̃).

verifying sufficient optimality conditions
For verifying sufficient optimality conditions it might be advantageous to stick with
the Bolza-Problem and show that the sufficient conditions hold. If the integrand of the
objective function f(., ., .) is Lipschitz-continuous in all of its arguments on the feasible
set the desired inverse stability property for the extended state can be obtained from the
inverse stability property delivered by analyzing the Bolza-Problem. Note that that the

102

Lipschitz-continuity of f(., ., .) follows directly from the Lipschitz-continuity of ψ(., ., .),
which is needed for Theorem 3.2.4 anyway. So needing the Lipschitz-continuity of f(., ., .)

is no additional restriction.
As an example, which shows the idea on how to transfer inverse stability properties
for the Bolza-Problem to inverse stability properties for the Mayer-Problem, once again
second order sufficient optimality condtions and the resulting inverse stability property
will be used.
Let’s suppose that second order sufficient optimality condtitions hold for the Bolza-
Problem. From optimization theorey we then get that the following inverse stability
property holds:

¬ γ ‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22 ≤ J̃(x̃(.), u(.))− J̃(ˆ̃x(.), û(.))

The goal is to obtain:

α̃ ‖(x(.), u(.))− (x̂(.), û(.))‖22 ≤ J(x(t0), x(T))− J(x̂(t0), x̂(T))

We start with estimating the left side of the above inequality.

­
‖(x(.), u(.))− (x̂(.), û(.))‖22 = ‖x(.)− x̂(.)‖22 + ‖u(.)− û(.)‖22 =

∥∥∥∥∥
(
x̃(.)

z(.)

)
−

(
ˆ̃x(.)

z̃(.)

)∥∥∥∥∥
2

2

+ ‖u(.)− û(.)‖22

= ‖x̃(.)− ˆ̃x(.)‖22 + ‖z(.)− ẑ(.)‖22 + ‖u(.)− û(.)‖22

So we have “extracted” ‖z(.) − ẑ(.)‖22, which we will now estimate using the Lipschitz-
continuity of f :

®

‖z(.)− ẑ(.)‖22 =

T∫
t0

 t∫
t0

f(τ, x̃(τ), u(τ))− f(τ, ˆ̃x(τ), û(τ)) dτ

2

dt

≤
T∫
t0

 t∫
t0

|f(τ, x̃(τ), u(τ))− f(τ, ˆ̃x(τ), û(τ))| dτ

2

dt

f Lipschitz

≤
T∫
t0

 t∫
t0

‖(x̃(τ), u(τ))− (ˆ̃x(τ), û(τ))‖∞ dτ

2

dt

≤
T∫
t0

 T∫
t0

‖(x̃(τ), u(τ))− (ˆ̃x(τ), û(τ))‖2 dτ

2

dt

Hölder
≤

T∫
t0

(T − t0) ‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22 dt

= (T − t0)2 ‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22

103

Combining ® and ¬ delivers

‖(x(.), u(.))− (x̂(.), û(.))‖22 ≤ ‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22 + (T − t0)2 ‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22

=
(

1 + (T − t0)2
)
‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22

This leads directly to

¯
γ

1 + (T − t0)2 ‖(x(.), u(.))− (x̂(.), û(.))‖22 ≤ γ ‖(x̃(.), u(.))− (ˆ̃x(.), û(.))‖22

As J̃(x̃(.), u(.))− J̃(ˆ̃x(.), û(.)) = J(x(t0), x(T))−J(x̂(t0), x̂(T)) placing ¯ in ¬ yields the final
result

γ

1 + (T − t0)2︸ ︷︷ ︸
α̃

‖(x(.), u(.))− (x̂(.), û(.))‖22 ≤ J(x(t0), x(T))− J(x̂(t0), x̂(T))

estimation of the convergence rate
Estimation of the convergence rate is done using logarithmic analysis of the data in
conjunction with calculation of the corresponding regression line. Let’s consider the
convergence analysis for the optimal state in a certain norm ‖.‖ as an example. It is
assumed that the following inequality holds with the constants C and p:

‖x̂N − ρN (x̂(.))‖ ≤ C hpN

With the data calculated for certain numbers of steps N1, . . . , Nk we know the left-hand
side for those number of steps. The goal is to obtain C and above all the convergence
rate p. Therefore we set

‖x̂N − ρN (x̂(.))‖ ≈ C hpN

Applying the natural logarithm then yields

ln ‖x̂N − ρN (x̂(.))‖ ≈ ln (C hpN) = lnC + p lnhN

The line that fulfills the above equation best is the regression line corresponding to the
points

(
lnhNi , ln ‖x̂

Ni − ρNi(x̂(.))‖
)

(i = 1, . . . , k). The slope of that line is then considered
to be an approximation to p.
To obtain an estimation for C the regression line should be moved up till all the points(
lnhNi , ln ‖x̂

Ni − ρNi(x̂(.))‖
)

(i = 1, . . . , k) lie below it. Evaluating the moved line at 0 then
should give a rough approximation of lnC. There are also some other tweaks that could
be applied to the line to obtain supposedly better results for C and p. But these are all
heuristics that are not needed in this article. Unless otherwise noted, only unmodified
regression lines are used for the convergence analysis.

explanation of the plots
The plots were done using mathematica. In the state and control plots the blue line
represents the exact solution. The read dots depict the discrete solution, which is inter-
polated by a linear spline, which in turn is represented by green lines. An orange line

104

marks the maximum distance from the discrete to the exact solution. In the logarithmic
plots the blue line represents the regression line and the red dots represent the distance
values, which depend on the norm used. The values shown at the axes in the double
logarithmic plot do not have the logarithm applied, the logarithmic plotting just affects
the scaling.

6.1.2 optimization routines

The author of this thesis has done quite some research on different optimizers and quite
a number adjustments in terms of optimizer settings have been made to get good results.
The most significant impacts come from the optimizers accuracy settings and the way
derivatives of the objective function are calculated. The preferred way of course is to pass
exact derivatives to the optimizer. The software used for computation has been extended
by the author to work with exact derivatives. There are lots of details to care about,
when programming the software to deal with optimization problems. Those are not part
of this article, because it would be kind of off-topic. The main optimizer for solving finite
dimensional problems used in this thesis is from Björn Sachsenberger from the University
of Bayreuth and is called NLPIP. It essentially combines Interior Point mechanics with
an SQP method. For literature on that Optimizer see [10]. Another optimizer used is from
Klaus Schittkowski, also from the University of Bayreuth, and is called NLPQLP. For
further information see [11]. The software package, that encapsulates these optimizers
has been developed by Jürgen Pannek. It has been adjusted by the author to work
with Optimal Control Problems, whereas its native domain is Model Predictive Control.
This whole package serves as a framework in C++ and provides classes for defining
the optimization problem itself (in the continuous form), solving the ODE, calculating
approximated and exact derivatives, discretizing the continuous problem and wrapping
the optimizers (which have been written in Fortran). Literature on and the software
package itself can be found taking a look at [12].

6.2 Simple OCP without state constraints

This example is based on Example 8.2 in [?]. It is an example that involves box
constraints for the control, but no state constraints. The optimal solution will be
obtained analytically using the maximum principle (see 5.1.2 in [1]). Having the exact
solution makes a precise error analysis possible. It is also pretty simple to verify that
all necessary assumptions for the convergence proposition in chapter 3 are fulfilled. The
example looks like this:

105

Problem

Minimize : J̃(x̃(.), u(.)) = −
2∫

0

2x̃(t)− 3u(t)− u2(t)dt

with respect to :

˙̃x(t) = x̃(t) + u(t)

x̃(0) = 5

u(t) ∈ [0, 2] a.e.

with x̃(.) ∈ AC([0, 2]) and u(.) ∈ L∞([0, 2])

Note: As this is the Bolza form of the OCP, the state has been named x̃ to be consistent
with the notations of chapter 2.

6.2.1 obtaining the solution analytically

The initial condition can be written as r(x̃(0), x̃(2)) := (x(0)− 5) = 0.
From Theorem 5.1.2 from [1], i.e. the global maximum principle, it then follows with
the notations from [1] that:

¬ Hu(t, ˆ̃x, û(t), p(t))(û(t)− u) ≥ 0 (for all u ∈ [0, 2] and almost all t ∈ [0, 2])

where

H(t, x̃(t), u(t), p(t)) = p?(t)ψ(t, x̃(t), u(t))− f(t, x̃(t), u(t))

= p(t)(x̃(t) + u(t)) + 2x̃(t)− 3u(t)− u2(t)

p(t) =

2∫
t

Hx(τ, ˆ̃x(τ), û(τ), p(τ)) dτ

p(0) = lR rx0
(x̃(0), x̃(2)) = lR

p(2) = 0

With Hx = (t, x̃(t), u(t), p(t)) = p(t) + 2 we get for p(t):

­
p(t) =

2∫
t

p(τ) + 2 dτ ⇒ ṗ(t) = −p(t)− 2⇔ p(t) = −2 + Ce−t

p(2) = 0⇒ C = 2e2 ⇒ p(t) = 2e2−t − 2

106

With Hu(t, ˆ̃x, û(t), p(t)) = p(t)− 3− 2û(t) we get by analyzing ¬:

Hu(t, ˆ̃x, û(t), p(t)) > 0
¬⇒ û(t) = 2⇒ p(t)− 3− 2û(t) = −9 + 2e2−t > 0⇒ t < 2− ln(9

2)

Hu(t, ˆ̃x, û(t), p(t)) < 0
¬⇒ û(t) = 0⇒ p(t)− 3− 2û(t) = −5 + 2e2−t < 0⇒ t > 2− ln(5

2)

Hu(t, ˆ̃x, û(t), p(t)) = 0⇒ p(t)− 3− 2û(t) = 2⇒ û(t) =
1

2
(p(t)− 3)

û(t)∈[0,2]⇒ 0 ≤ 1

2
(2e2−t − 5) ≤ 2⇒ 2− ln(9

2) ≤ t ≤ 2− ln(5
2)

So overall we got for û(t):

® û(t) =


2 0 ≤ t < 2− ln(9

2)

e2−t − 5
2 2− ln(9

2) ≤ t ≤ 2− ln(5
2)

0 2− ln(5
2) < t ≤ 2

From the ODE ˙̃x(t) = x̃(t) + û(t) we are now able to obtain the optimal state ˆ̃x(.)

with ®. Obtaining one specific solution for 0 ≤ t < 2 − ln(9
2) and 2 − ln(5

2) < t ≤ 2 is
pretty easy, because û(.) is constant there. So setting x̃(t) = −û(t) solves the ODE on
[0, 2− ln(9

2)) ∪ (2− ln(5
2), 2]. For 2− ln(9

2) ≤ t ≤ 2− ln(5
2) we set x̃(t) = Ce2−t + 5

2 . Inserting
the expression in the ODE delivers −Ce2−t = Ce2−t + e2−t, which leads to C = − 1

2 . So
the specific solution we were looking for is x̃(t) = − 1

2e
2−t + 5

2 . So overall we have for ˆ̃x(.):

¯ ˆ̃x(t) =


C1e

t − 2 0 ≤ t < 2− ln(9
2)

C2e
t − 1

2e
2−t + 5

2 2− ln(9
2) ≤ t ≤ 2− ln(5

2)

C3e
t 2− ln(5

2) < t ≤ 2

The constants C1, C2 and C3 are determined by the initial value ˆ̃x(0) = 5 and the fact
that ˆ̃x(.) is continuous. From ¯ and ˆ̃x(0) = 5 we get

5 = C1 − 2⇔ C1 = 7

From ˆ̃x(.) being continuous and ¯ it then follows that

ˆ̃x(2− ln(9
2)) = 7e2−ln(9

2) − 2 =
14

9
e2 − 2

⇒ 14

9
e2 − 2 =

2

9
e2C2 −

1

2
eln(9

2) +
5

2
⇔ −9

4
= (C2 − 7)

2

9
e2 ⇔ C2 = −81

8
e−2 + 7

⇒ ˆ̃x(2− ln(5
2)) = (7− 81

8
e−2)e2−ln(5

2) − 1

2
eln(

5
2) +

5

2
=

14

5
e2 − 81

20
+

5

4
=

14

5
e2 − 14

5
=

14

5
(e2 − 1)

⇒ 14

5
(e2 − 1) = C3 e

2−ln(5
2) =

2

5
e2C3 ⇔ C3 = 7(1− e−2)

So overall we have the following result for the optimal state:

ˆ̃x(t) =


7et − 2 0 ≤ t < 2− ln(9

2)

(7− 81
8 e
−2) et − 1

2e
2−t + 5

2 2− ln(9
2) ≤ t ≤ 2− ln(5

2)

7(1− e−2) et 2− ln(5
2) < t ≤ 2

107

0.5 1.0 1.5 2.0

10

20

30

40

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0
optimal state ˆ̃x(.) optimal control û(.)

t t

x u

Figure 1: optimal state and control (Example 6.2)

Knowing ˆ̃x and û(.) delivers the minimal objective function value:

J̃(ˆ̃x(.), û(.)) = −
2∫

0

2ˆ̃x(t)− 3û(t)− û2(t)dt =
1

4

(
236− 56e2 − 25 log

(
9

5

)
− 56 log

(
9

2

))
≈ −69.1775356

6.2.2 applying the convergence theorem

For this example it is pretty easy to check if the premises of the Convergence Theorem
3.2.8 are fulfilled. As there are no pure state constraints present, the assumptions
(C1) and (C2) from chapter 5 do not have to be considered. Showing that (A1),
(A2) and (A3) apply implies considering the set-valued form of the corresponding
Mayer-Problem, i.e.

108

Problem (set-valued Mayer form)

Minimize : J(x(0), x(2)) = z(2)

with respect to :

ẋ(t) ∈ F (t, x(t)) =
{(x̃(t) + u

−2x̃(t) + 3u+ u2

) ∣∣ u ∈ [0, 2]
}

x(0) =

(
5

0

)

with x(.) ∈ AC([0, 2])2 and u(.) ∈ L∞([0, 2])

We can now examine F from above:

• The following shows that (A1) is fulfilled.

‖F (t, x)‖2 = max
u∈[0,2]

∥∥∥∥∥
(

x̃+ u

−2x̃+ 3u+ u2

)∥∥∥∥∥
2

≤ max
u∈[0,2]

(
|x̃+ u|+ | − 2x̃+ 3u+ u2|

)
≤ max
u∈[0,2]

(
|x̃|+ |u|+ |2x̃|+ |3u+ u2|

)
≤ 3|x̃|+ 12 ≤ 12(|x̃|+ 1) ≤ 12(‖x‖2 + 1)

• (A2) is also fulfilled, which follows from the following considerations:
It should be obvious, that the images of F are not empty. The mapping

G(u) :=

(
x̃+ u

−2x̃+ 3u+ u2

)

is continuous. As [0, 2] is compact it follows that F (t, x) = G([0, 2]) is compact.

• (A3) follows from:

Let v ∈ F (t̃, y). Then there exists ũ ∈ [0, 2] such that v =

(
ỹ + ũ

−2ỹ + 3ũ+ ũ2

)
with

ỹ representing the first component of y. We have to prove now that there exists
w ∈ F (t, x) and LF independent of t, t̃, x, y and ũ such that

‖w − v‖2 ≤ LF (|t− t̃|+ ‖x− y‖2) (t, t̃ ∈ I, x, y ∈ Rn)

As w =

(
x̃+ u

−2x̃+ 3u+ u2

)
with u ∈ [0, 2] it holds:

‖w − v‖2 =

∥∥∥∥∥
(

x̃+ u

−2x̃+ 3u+ u2

)
−

(
ỹ + ũ

−2ỹ + 3ũ+ ũ2

)∥∥∥∥∥
2

set u=ũ
=

∥∥∥∥∥
(

x̃− ỹ
−2(x̃− ỹ)

)∥∥∥∥∥
2

≤ |x̃− ỹ|+ 2|x̃− ỹ| = 3|x̃− ỹ|
|x̃−ỹ|≤‖x−y‖2

≤ 3 (|t− t̃|+ ‖x− y‖2)

109

The other way round, i.e. finding v ∈ F (t̃, y) for given w ∈ F (t, x) such that a similar
result to the one above holds, involves exactly the same calculation as done above
and delivers the same result. So overall it has been shown that (A3) holds with
LF = 3.

The next thing is to show that J(., .) is Lipschitz-continuous in both arguments. This is
very easy due to the simple form of J : Let x, y, a, b ∈ R2 with

x =

(
x1

x2

)
, y =

(
y1

y2

)
, a =

(
a1

a2

)
, b =

(
b1
b2

)

Then

|J(x, y)− J(a, b)| = |y2 − b2| ≤ ‖y − b‖∞ ≤ ‖(x, y)− (a, b)‖∞

Which means that J(., .) is Lipschitz-continuous with Lipschitz constant LJ = 1

with respect to the supremum norm. With (A1), (A2) and (A3) being fulfilled the
Approximation Property 3.2.1 holds. Together with J being Lipschitz-continuous
the premises of the Value Convergence Theorem 3.2.2 are met. This means that the
objective function values converge with at least rate one.
ψ(., ., .) is Lipschitz-continuous in all arguments on the feasible set. Indeed, the
Lipschitz-continuity is only needed there (for details see 3.2.4). The Lipschitz-continuity
can be shown the following way: First, ψ(., ., .) does not explicitly depend on the time t.
Second, ψ(., ., .) is linear with respect to x. Finally u is bounded.

The last thing needed to apply the Convergence Theorem 3.2.8 is some sort of inverse
stability property. We will make use of second order sufficient optimality conditions
here, which have to be verified. This is consistent with the Inverse Stability Property
3.2.3. Another way would be to go for first order sufficient optimality conditions,
which would deliver the better convergence rate of 1 instead of 1/2 in the Convergence
Theorem 3.2.8.
We have to show that L′′(ˆ̃x(.), û(.))(v(.), w(.))(v(.), w(.)) ≥ γ‖(v(.), w(.))‖22 for all
(v(.), w(.)) ∈ L

(
Σ, (ˆ̃x(.), û(.))

)
, where L′′ is the second Fréchet derivative of of the

Lagrange function and L
(
Σ, (ˆ̃x(.), û(.))

)
is the linearizing cone of the feasible set Σ in

(ˆ̃x(.), û(.)). For details, see [1]. For this example we won’t need the restriction to the
linearizing cone, because of the simple structure of the problem. As all constraints are
linear, the second derivative of the Lagrange function is the second derivative of the
objective function:

¬ L′′
(
(ˆ̃x(.), û(.))

)
(v(.), w(.))(v(.), w(.)) =

2∫
0

2w2(t) dt = 2‖w(.)‖22

Because of the linear structure of the ODE it is easy to estimate ‖v(.)‖2 = ‖x̃(.)− ˆ̃x(.)‖2
by ‖w(.)‖2 = ‖u(.)− û(.)‖2. The general solution to the ODE is:

x̃(t) = 5 et + et
t∫

0

e−τ u(τ) dτ

110

So we have

‖x̃(.)− ˆ̃x(.)‖2 ≤
√

2‖x̃(.)− ˆ̃x(.)‖∞ ≤
√

2 e2

2∫
0

e−τ︸︷︷︸
≤1

‖u(τ)− û(τ)‖∞ dτ

≤
√

2 e2

2∫
0

‖u(τ)− û(τ)‖2 dτ
Hölder
≤ 2 e2 ‖u(.)− û(.)‖2

Combining this result with ¬ yields

L′′
(
(ˆ̃x(.), û(.))

)
(v(.), w(.))(v(.), w(.)) = 2‖w(.)‖22 ≥ ‖w(.)‖22 +

1

4
e−4‖v(.)‖22

≥ 1

4
e−4

(
‖w(.)‖2 + ‖v(.)‖2

)
=

1

4
e−4︸ ︷︷ ︸
γ:=

‖(v(.), w(.))‖22

So overall we have shown, that the Value Convergence Theorem holds, which leads
to convergence of the objective function values with at least rate one. Furthermore
the Convergence Theorem 3.2.8 can be applied with convergence rate 1/2. So from
the numerical results at least convergence rate 1 for the objective function values and
convergence rate 1/2 for the optimal state with respect to the discrete L∞-norm can be
expected.

As a note it shall be mentioned, that for this simple example there exist results, that
deliver at least convergence rate 1 for the optimal discrete state and convergence rate
1 for the optimal discrete controls, both with respect to the discrete supremum norm.
For details, see [13]. But the assumptions needed to obtain those results are way more
restrictive, than the ones presented in this article. Furthermore the concept shown here
is far more flexible, which can be seen by taking a look at chapter 4.

6.2.3 convergence analysis

The last section about applying the convergence theorem delivers that we can at
least expect convergence rate one for the optimal state and the optimal control. The
results for this section have all been calculated using the NLPIP optimizer and exact
derivatives, which provided the best results out of several scenarios. The term best in
this case means that the calculated discrete solutions were closest to the exact optimal
solutions derived in 6.2.1. As computing power does not really matter for this example
it is convenient to use a power function for increasing the number of steps. For this
example powers of 2 were used. That way the stepsizes are equidistant in a logarithmic
plot.

state convergence
As this thesis is for the most part about convergence of the discrete optimal
state, we take a look at some plots containing the optimal state of the conti-
nuous problem (blue) and the optimal state of the directly discretized problem
(red points). The discrete solution is presented by red points and interpolated
using a linear spline, which is shown in green color. The orange line shows whe-
re the maximum distance of the discrete solution to the exact solution appears.

111

So for the state the length of the orange bar corresponds to ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞.

0.5 1.0 1.5 2.0

10

20

30

40

0.5 1.0 1.5 2.0

10

20

30

40

0.5 1.0 1.5 2.0

10

20

30

40

N = 4 N = 8 N = 32

t t t

x x x

Figure 2: discrete optimal state ˆ̃xN (Example 6.2)

For N ≥ 256 there is not really an optical difference between the two curves left.

Applying the logarithmic analysis explained in the overview section 6.1 yields the
following LogLogPlot (logarithmic logarithmic plot). Note that the values shown on the
axis, which correspond to the calculated points, have no logarithm applied. They just
represent the distance ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ for a given steplength hN = 1/N .

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

1
2048

1
4096

17.934

10.862

6.0703

3.2294

1.6677

0.84793

0.42776

0.21479

0.10762

0.053870

0.026950

0.013478

hN

‖ˆ̃xN−ρN (ˆ̃x(.))‖∞

Figure 3: double logarithmic plot of ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ for N = 2k (k = 2, . . . , 13)

(Example 6.2)

112

The regressionline r(.) (blue) is defined by the following expression:

r(t) = 3.83364607 + 0.958591079 t

This means that the estimation of the convergence rate is 0.958591079. This is pretty
close to the expected convergence rate, i.e. 1.

control convergence
For the controls results look pretty much as good as for the state, but due to the slightly
more complex appearance of the control the result for N = 4 is way worse. In that
case the optimizer generated a warning, that the line search could not be terminated
successfully after the maximum number of iterations. This has to be expected for such
a small number of steps N . As already mentioned in the overview of this chapter the
calculated discrete control vector lacks the vector corresponding to the optimal control
at the last grid point, which in this case is tN = 2.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0
N = 4 N = 8 N = 32

t t t

u u u

Figure 4: discrete optimal control ûN (Example 6.2)

As for the state for N ≥ 256 there is hardly any viewable difference between the two
curves left.

113

Applying the logarithmic analysis explained in the overview section 6.1 yields the fol-
lowing LogLogPlot (logarithmic logarithmic plot). Note that the values shown on the
axis, which correspond to the calculated points, have no logarithm applied. They just
represent the distance ‖ûN − ρN (û(.))‖∞ for a given steplength hN = 1/N .

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

1
2048

1
4096

1.9817
1.4299

0.82845

0.44927

0.23445

0.11983

0.060584

0.030613

0.015351

0.0076874

0.0038483

0.0019295

hN

‖ûN−ρN (û(.))‖∞

Figure 5: double logarithmic plot of ‖ûN − ρN (û(.))‖∞ for N = 2k (k = 2, . . . , 13)

(Example 6.2)

The regressionline r(.) appearing in this plot (blue) is defined by the following expression:

r(t) = 1.80085114 + 0.93810558 t

This means that the estimation of the convergence rate for the controls is 0.93810558.
This is not quite as good as the estimation for the state convergence rate, but still pretty
close to the expected convergence rate, i.e. 1.

objective function value convergence
The objective funciton values are also expected to be converging with at least rate 1.
The corresponding double logarithmic plot for this example is

114

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

1
2048

1
4096

28.170
17.796

10.177

5.4725

2.8422

1.4490

0.73164

0.36763

0.18427

0.092250

0.046154

0.023084

hN

|J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

Figure 6: double logarithmic plot of |J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))| for N = 2k (k = 2, . . . , 13)

(Example 6.2)

The regressionline r(.) appearing in this plot (blue) is:

4.33944057 + 0.950699286 t

This means that the estimation of the convergence rate for the controls is 0.950699286.
Again, this is pretty close to the expected convergence rate, i.e. 1.

Summary
Although the estimations of the convergence values are all slightly below one, this is
a really good result. Using the regression line approach just delivers a guess for the
convergence rate. Also a very good sign is, that all the double logarithmic plots show
nearly straight lines. Overall these are the computed values:

stepsize ‖ûN−ρN (û(.))‖2 ‖ûN−ρN (û(.))‖∞ ‖x̂N−ρN (x̂(.))‖∞ |J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

1/2 1.618698 1.981689 17.934330 28.169723

1/4 0.941112 1.429931 10.862134 17.796303

1/8 0.502039 0.828453 6.070301 10.177303

1/16 0.260061 0.449271 3.229420 5.472450

1/32 0.132335 0.234455 1.667662 2.842170

1/64 0.066804 0.119832 0.847926 1.448962

1/128 0.033577 0.060584 0.427759 0.731635

1/256 0.016860 0.030613 0.214792 0.367630

1/512 0.008439 0.015351 0.107624 0.184271

1/1024 0.004222 0.007687 0.053870 0.092250

1/2048 0.002112 0.003848 0.026950 0.046154

1/4096 0.001056 0.001930 0.013478 0.023084

115

6.3 Simple multidimensional state constraints

This example is based on Problem 6.4.7 in [14]. It’s about the flow of water involving
two water boxes, but this shall not be the concern here. The minimization problem is
the following:

Problem

Minimize : J̃(x̃(.), u(.)) = −
10∫

0

(10− t)u1(t) + t u2(t)dt

with respect to :

˙̃x(t) =

(
−u1(t)

u1(t)− u2(t)

)
a.e.

x̃(0) =

(
4

4

)

s1(t, x̃(t)) = −x1(t) ≤ 0

s2(t, x̃(t)) = −x2(t) ≤ 0

u(t) ∈ [0, 1]2 a.e.

with x̃(.) =

(
x1(.)

x2(.)

)
∈ AC([0, 10])2 and u(.) =

(
u1(.)

u2(.)

)
∈ L∞([0, 10])2

Note: As this is the Bolza form of the OCP, the state has been named x̃ to be consistent
with the notations of chapter 2.

6.3.1 obtaining the solution analytically

The initial conditions can be written as r(x̃(0), x̃(10)) := (x1(0)− 4, x2(0)− 4) = 0R2 . From
Theorem 5.1.2 from [1], i.e. the global maximum principle, it then follows with the
notations from [1] that:

¬ Hu(t, ˆ̃x, û(t), p(t))(û(t)− u) ≥ 0 (for all u ∈ [0, 1]2 and almost all t ∈ [0, 10])

116

where

H(t, x̃(t), u(t), p(t)) = p?(t)ψ(t, x̃(t), u(t))− f(t, x̃(t), u(t))

p(t) =

(
p1(t)

p2(t)

)
=

10∫
t

Hx(τ, ˆ̃x(τ), û(τ), p(τ)) dτ +

10∫
t

sx(τ, ˆ̃x(τ)) dµs(τ)

p(0) = lR rx0
(x̃(0), x̃(10)) = lR

p(10) = 0

and

ˆ̃x(.) =

(
x̂1(.)

x̂2(.)

)
and û(.) =

(
û1(.)

û2(.)

)

are the optimal state respectively control variables.

From the fact that

ψ(t, x̃(t), u(t)) =

(
−u1(t)

u1(t)− u2(t)

)
f(t, x̃(t), u(t)) = (t− 10)u1(t)− t u2(t)

we get that H(t, x̃(t), u(t), p(t)) does not depend on x̃, so we get Hx(t, x̃(t), u(t), p(t)) = 0.
In addition we get from the definition of s(., ., .) that

sx(t, x̃(t)) =

(
−1 0

0 −1

)

Using those results and the equation for p(t) we get:

­ p(t) =

10∫
t

dµs(τ) = µs(10)− µs(t) =

(
µs1(10)− µs1(t)

µs2(10)− µs2(t)

)

Analyzing ¬ further and using

ψu(t, x̃, u(t)) =

(
−1 0

1 −1

)
and fu(t, x̃, u(t)) = −(10− t, t)

yields

¬
Hu(t, ˆ̃x, û(t), p(t))(û(t)− u) =

(
p?(t)

(
−1 0

1 −1

)
+ (10− t, t)

)
(û(t)− u) =

(p2(t)− p1(t) + 10− t,−p2(t) + t) (û(t)− u) ≥ 0 (for all u ∈ [0, 1]2 and almost all t ∈ [0, 10])

From this we can conclude the following:
Set u2 = û2(t). Then ¬ is

(p2(t)− p1(t) + 10− t)(û1(t)− u1) ≥ 0 (for all u1 ∈ [0, 1] and almost all t ∈ [0, 10])

117

So we get that for p2(t)−p1(t)+10− t > 0 it holds û1(t) = 1 and for p2(t)−p1(t)+10− t < 0

it holds û1(t) = 0. So we have

® û1(t) =

{
0 for p2(t)− p1(t) + 10− t < 0

1 for p2(t)− p1(t) + 10− t > 0
a.e.

Arguing the same way for û2 delivers

® û2(t) =

{
0 for − p2(t) + t < 0

1 for − p2(t) + t > 0
a.e.

Considering û1

µsi (i = 1, 2) is monotonously increasing and the starting point may be chosen ar-
bitrarily. So we set µs = 0R2 . From the complementary slackness condition, i. e.∫ 10

0
−x̂?(t) dµs(t) = 0 it follows that for x̂i > 0 on [τ1, τ2] it holds µsi = const. on [τ1, τ2]

(i = 1, 2). So it holds
∫ τ2
τ1
−x?(t) dµs(t) = 0 for all x(.) ∈ AC([0, 10])2.

So let’s suppose that x̂1(t) > 0 for all t ∈ [0, 10]. Then µs1(t) ≡ 0 on [0, 10]. From ­ we
then get p1(t) = µs1(10)− µs1(t) ≡ 0 on [0, 10]. Thus it holds:

p2(t)− p1(t) = p2(t) = µs2(10)− µs2(t)
µs2

mon.

≥
increasing

0 > t− 10 (t ∈ [0, 10))

So with ® we have û1(t) = 1 for almost all t ∈ [0, 10). Using the connection of û1(.) and
x̂1(.) via the ODE we get

x̂1(t) = 4−
t∫

0

û1(τ) dτ ≤ 0 (t ∈ [4, 10])

which is a contradiction to the assumption that x̂1(t) > 0 for all t ∈ [0, 10]. So considering
that x̂1(0) = 4 > 0 we have that there exists t ∈ [0, 10] with x̂1(t) = 0.

Let’s set

t̃ := min{t ∈ [0, 10]
∣∣ x̂1(t) = 0}

Because of x̂1(0) = 4 > 0 and x̂1(.) being continuous it holds by the definition of t̃ that
x̂1(t) > 0 for t ∈ [0, t̃). So we have µs1(t) ≡ 0 on [0, t̃), but this time µs1(10) must not be
0. Using ­ this leads to p2(t)− p1(t) = µs2(10)− µs2(t)− µs1(10), which is monotonously
decreasing. Because of t−10 being strictly monotonously increasing there is at most one
point t1 ∈ [0, t̃) with p2(t1)− p1(t1) = t1 − 10. If this point exists it then holds

p2(t)− p1(t)

{
> t− 10 for t ∈ [0, t1)

< t− 10 for t ∈ (t1, t̃)

So we have û1(t) ≡ 1 almost everywhere on [0, t1). Using the ODE then leads to

x̂1(t1) = 4−
t1∫

0

û1(τ) dτ = 0

118

With t1 < t̃ this is a contradiction to the definition of t̃.
As p2(t) − p1(t) < t − 10 for all t ∈ [0, 10] would lead to x̂1(t) ≡ 4 > 0 on [0, 10], this
cannot be the case. So with the monotonicity considerations made before we know that
p2(t) − p1(t) > t − 10 on [0, t̃). So we have û1(t) = 1 for almost all t ∈ [0, t̃). This leads
directly to t̃ = 4 via applying the ODE. Furthermore we get

0 ≤ x̂1(t) = 4−
4∫

0

û1(τ) dτ −
t∫

4

û1(τ) dτ = −
t∫

4

û1(τ) dτ (t ∈ [4, 10])

Together with the fact that u1(t) ≥ 0 we have û1(t) = 0 for almost all t ∈ [t̃, 10]. So overall
the optimal control û1(.) is:

¯ û1(t) =

{
1 for t ∈ [0, 4)

0 for t ∈ [4, 10]
a.e.

The fact that u1(t) ≥ 0 for all t ∈ [0, 10], x̂1(t̃) = 0 and that x̂(t) ≥ 0 on [0, 10] together
with the ODE then delivers that x̂1(t) = 0 on [t̃, 10] and û1(t) = 0 for almost all t ∈ [t̃, 10].

Considering û2

Pretty much the same considerations that were made for obtaining û1(.) will be used
to obtain û2(.). From what we already know from ® this should be easier than for û1(.)

because only p2(.) will be involved. Although the second component of the ODE looks
a bit more complicated at first sight this is not the case because we already know û1(.),
hence it has been deduced before analyzing û2(.).
p2(t) = µs2(10)−µs2(t) is monotonously decreasing. t is strictly monotonously increasing.
So there exists at most one point t̂ ∈ [0, 10] with p2(t̂) = t̂. Because p2(10) = 0 there is
exactly one such point. From p2(t) > t for t ∈ [0, t̂) and p2(t) < t for t ∈ (t̂, 10] we get from
® that

° û2(t) =

{
0 for t ∈ [0, t̂)

1 for t ∈ (t̂, 10]
a.e.

All that is left to do now is find t̂.
Combining the ODE with ¯ delivers

± x̂2(t) = 4 +

t∫
0

û1(τ)− û2(τ) dτ =̄

{
4 + t−

∫ t
0
û2(τ)dτ for t ∈ [0, 4)

8−
∫ t

0
û2(τ)dτ for t ∈ [4, 10]

Let’s suppose that x̂2(t) > 0 for all t ∈ [0, 10]. Then from the complementary slackness
condition it follows that p2(t) ≡ 0 on [0, 10]. This means that t̂ = 0. With ° it then holds
that û2(t) = 1 for almost all t ∈ [0, 10]. ± then delivers that x̂2(t) < 0 for t ∈ (8, 10], which
violates the state constraints. So x̂2(t) > 0 for all t ∈ [0, 10] cannot hold, which means
that there exists t1 ∈ [0, 10] such that x̂2(t) = 0.
From ± we know that t1 ∈ [8, 10]. Let’s suppose that t1 ∈ (8, 10). Due to x̂2(t) ≥ 0 for all
t ∈ [0, 10] it then holds that û2(t) = 0 for almost all t ∈ (t1, 10]. This is a contradiction to

119

°. So t1 = 10 which means x̂2(10) = 0.
Combining x̂2(10) = 0, ° and ± delivers

0 = x̂2(10)
°,±

= 8−
10∫
t̂

1(τ) dτ = −2 + t̂⇔ t̂ = 2

So from ° we get

²
û2(t) =

{
0 for t ∈ [0, 2)

1 for t ∈ (2, 10]
a.e.

The corresponding optimal state can be easily obtained from the ODE by using ¯ and
². So overall we have

³

û1(t) =

{
1 for t ∈ [0, 4)

0 for t ∈ [4, 10]
a.e.

û2(t) =

{
0 for t ∈ [0, 2)

1 for t ∈ (2, 10]
a.e.

x̂1(t) =

{
4− t for t ∈ [0, 4)

0 for t ∈ [4, 10]

x̂2(t) =


4 + t for t ∈ [0, 2)

6 for t ∈ [2, 4)

10− t for t ∈ [4, 10]

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
û1(.) û2(.)

t t

u u

Figure 7: optimal control (Example 6.3)

120

2 4 6 8 10

1

2

3

4

2 4 6 8 10

1

2

3

4

5

6
ˆ̃x1(.) ˆ̃x2(.)

t t

x x

Figure 8: optimal state (Example 6.3)

Knowing û(.) delivers the minimal objective function value:

J̃(ˆ̃x(.), û) = J̃(û(.)) = −
10∫

0

(10− t) û1(t) + t û2(t)dt = −80

6.3.2 applying the convergence theorem

Checking if the premises of the Convergence Theorem 3.2.8 are fulfilled has been done
in detail for example 6.2 in section 6.2.2. The major difference to that example is, that
this time there are simple state constraints present. Although these constraints are
simple they are not fully covered by the theory of this thesis. This is because (C1) and
(C2) from 5.3 only allow a single scalar state constraint. So this section will argue with
(C1E) and (C2E). which are the assumptions for the case including multidimensional
state constraints (see 5.3.4).
For investigations we need the Mayer form of the problem, which is:

121

Problem (set-valued Mayer form)

Minimize : J(x(0), x(10)) = z(10)

with respect to :

ẋ(t) ∈ F (t, x(t)) =
{ −u1

u1 − u2

−(10− t)u1 − t u2

 ∣∣ u =

(
u1

u2

)
∈ [0, 1]2

}
a.e

s1(t, x̃(t)) = −x1(t) ≤ 0

s2(t, x̃(t)) = −x2(t) ≤ 0

x(0) =

4

4

0


u(t) ∈ [0, 1]2 a.e.

with x(.) ∈ AC([0, 10])2 and u(.) ∈ L∞([0, 10])

Showing that (A1), (A2) and (A3) apply is pretty easy: First, F (t, x) does not depend
on x here. Second, t ∈ [0, 10] and u(t) ∈ [0, 1]2, which means they are bounded. Those
two facts directly lead to the desired result.
Showing that J(., .) is Lipschitz-continuous is also straightforward and works exactly
the same way as in 6.2.2. It should also be clear that ψ(., ., .) is Lipschitz-continuous in
all of it’s arguments on I ×S×U (see Theorem 3.2.4) because the controls are bounded.

It is left to show that (C1E) and (C2E) are fulfilled. For details and notations see 5.3
and 5.3.4. Obviously s(., .) ∈ C1,L([0, 1] × R3)2 and x ∈ ∂Θi(t) ⇔ si(t, x) = 0 (i = 1, 2).
So (C1E) holds. We will now show, that (C2E) holds for s2(.), but not for s1(.). So
overall (C2E) won’t be fulfilled for this example. Nevertheless taking a look at the
exact optimal solution for the state reveals, why violating (C2E) still leads to pleasant
convergence results. Those results are presented in detail in the next section.
Let x =

(
x̃
z

)
. As si(., .) (i = 1, 2) does not depend on z, the last component of

∇si(t, x) (i = 1, 2) equals 0. As s1(.) just depends on x1 and s2(.) just depends on x2 we
have:

∇s1(t, x) =


0

∂
∂x1

s1(t, x)

0

0

 =


0

−1

0

0

 and ∇s2(t, x) =


0

0
∂
∂x2

s2(t, x)

0

 =


0

0

−1

0


With the first and the second component of F (t, x) not depending on (t, x) we know that

min
v∈F (t,x)

〈∇si(t, x),
(

1
v

)
〉 (i = 1, 2) is independent of (t,x). Both expressions just depend on

u ∈ [0, 1]2.

122

So for the first constraint (i =1) we have for all (t, x) ∈ [0, 1]× R3:

min
v∈F (t,x)

〈∇s1(t, x),
(

1
v

)
〉 = min

u1∈[0,1]

∂

∂x1

s1(t, x)(−u1) = min
u1∈[0,1]

u1 ≥ 0

This violates (C2E).
For the second constraint (i =2) we have for all (t, x) ∈ [0, 1]× R3:

min
v∈F (t,x)

〈∇s2(t, x),
(

1
v

)
〉 = min

u∈[0,1]
2

∂

∂x2

s2(t, x)(u1 − u2) = min
u∈[0,1]

2
u2 − u1 = −1 < 0

So the second constraint does not pose any problems for the “inward steering” process,
used in the proof of Theorem 5.3.2.
The following plots show the problematic region (red) and the one that does not pose any
difficulties (green). The gray arrows symbolize the gradients of s1(.) and s2(.). The blue
curve is the exact solution and the red dots (interpolated with a green linear spline) show
the optimal discrete state. Although (C2E) is clearly violated and the optimal solution
stays in the critical (red) zone for about half the time, this does not seem to affect the
optimal discrete solution negatively. This probably has to do with the simple structure
of the problem, which leads to the fact, that the ODE solver does not have to do any
redirection of the solution towards the feasible set Θ(.) ≡ {x ∈ R3 | x1 ≥ 0, x2 ≥ 0}.

-1 1 2 3 4

-1

1

2

3

4

5

6

-1 1 2 3 4

-1

1

2

3

4

5

6

optimal state ˆ̃x(.) ˆ̃xN for N = 16

t t

x x

Figure 9: left: red shows the problematic area for (C2E), green the one where no
problems occur; right: the optimal discrete solution shows no negative influence

(Example 6.3)

The last thing to do is obtain an inverse stability property. Second order sufficient
optimality conditions do not hold, because all second Fréchet derivatives vanish. Also
first order optimality conditions do not hold. So we are leaving this as an unsolved issue.

123

6.3.3 convergence analysis

The results for this section have all been calculated using the NLPQLP optimizer (see
[11]) and exact derivatives, which provided the best results out of several scenarios. The
term best in this case means that the calculated discrete solutions were closest to the
exact optimal solutions derived in 6.2.1.

6.3.3.1 first approach

As computations for this example are more memory and calculation power consuming
than for example 6.2, the first approach to get an estimation for the convergence rage
may be to use multiples of 20 for the number of steps. The following double logarithmic
plot of the state distances shows that this is not such a good idea.

1
2

1
4

1
6

1
8

1
10

1
12

1
14

1
16

1
18

1
20

10-30

10-26

10-22

10-18

10-14

hN

‖ˆ̃xN−ρN (ˆ̃x(.))‖∞

Figure 10: double logarithmic plot of ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ for N = 20 k (k = 1, . . . , 10)

(Example 6.3)

To shed some light on that result we take a look at the discrete state for N = 5, i.e. a
really small stepsize. Again, the blue line represents the exact optimal solution whereas
the red dots depict the discrete solution. The green line is the interpolation of the discrete
solution with a linear spline.

124

2 4 6 8 10

1

2

3

4

2 4 6 8 10

1

2

3

4

5

6
ˆ̃x1(.) ˆ̃x2(.)

t t

x x

Figure 11: discrete optimal state for N = 5 (Example 6.3)

So even for such a small number of steps the discrete solution points lie pretty much
exactly on the curve of the optimal state ˆ̃x(.). This has to do with two things. First,
the optimal solution is progressively linear. Second, the switching points of the optimal
control û(.) are t = 4 for û1(.) and t = 2 for û2(.). So if the number of steps N is a multiple
of 5, these switching points lie on the grid. This leads to Euler’s Method being able to
deliver an exact solution to the ODE. If the optimizer is now supposed to deliver an exact
solution to the directly discretized problem (see 2.4.2), the numerical solution is exact
for N = 5 k (k ∈ N). Of course the numerical errors are not avoidable and the accuracy
of the optimizer has been set to 10−8. This should explain Figure 13. The consequence
of this behavior is to use no multiple of 5 for the number of steps.

6.3.3.2 second approach

One way to avoid multiples of 5 for N , that will be used here, is to set N = 2k (k ∈ N)

like in example 6.2. This time we will just investigate N = 2k (k = 2, . . . , 9).

state convergence
For N = 8 the discrete optimal state looks the following way:

125

2 4 6 8 10

1

2

3

4

2 4 6 8 10

1

2

3

4

5

6
ˆ̃x1(.) ˆ̃x2(.)

t t

x x

Figure 12: discrete optimal state for N = 8 (Example 6.3)

As one can see the discrete points pretty much lie on the exact curve again. This can be
observed for the other cases (N = 2k (k = 2, . . . , 9)), too. Again, this is a really good result,
but is not that great for convergence analysis, because the results are kind of too good.
Nevertheless, the double logarithmic plot of the state distances (calculated with respect
to the discrete supremum norm) shows a better result now than for the first approach.

5
2

5
4

5
8

5
16

5
32

5
64

5
128

5
256

1 ´ 10-18

5 ´ 10-18

1 ´ 10-17

5 ´ 10-17

1 ´ 10-16

5 ´ 10-16

1 ´ 10-15

hN

‖ˆ̃xN−ρN (ˆ̃x(.))‖∞

Figure 13: double logarithmic plot of ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ for N = 2k (k = 2, . . . , 9)

(Example 6.3)

126

The regressionline r(.) (blue) is defined by the following expression:

r(t) = −36.4071456 + 1.3674625 t

Principally this is a perfect result. But as the distance values are that small and relatively
seen wide spread this result can’t be taken too serious.
To get a more convincing result, considering figure 12 leads to the idea of comparing
the linear spline (green curve) to the exact curve using the L∞-norm. The linear spline,
connecting the discrete solution points, shall be named ˆ̃xN (.). The L∞-norm is calculated
by max(‖ˆ̃xN (2)− ˆ̃x(2)‖∞, ‖ˆ̃x

N (4)− ˆ̃x(4)‖∞). The fact that t = 2 and t = 4 are the switching
points for the control means they are the buckling points for the state. As already
shown, numerical analysis delivers that ‖ˆ̃xN − ρN (ˆ̃x(.))‖ is almost zero. This means, that
the discrete solution points pretty much lie on the exact curve. So the maximum distance
has to occur at t = 2 or t = 4.
Taking a look at ‖ˆ̃xN (.)− ˆ̃x(.)‖∞, when actually trying to gather information about the
convergence rate of ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ makes sense because the Compatibility Property
3.2.6 delivers:

‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ ≤ ChN + ‖ˆ̃xN (.)− ˆ̃x(.)‖∞

This is explained in more detail in 6.1.1 in the discussion about norms. And in fact, the
double logarithmic plot associated with ‖ˆ̃xN (.)− ˆ̃x(.)‖∞ for N = 2k (k = 2, . . . , 9) shows a
way more convincing result.

5
2

5
4

5
8

5
16

5
32

5
64

5
128

5
256

0.005

0.010

0.050

0.100

0.500

1.000

hN

‖ˆ̃xN (.)−ˆ̃x(.)‖∞

Figure 14: double logarithmic plot of ‖ˆ̃xN (.)− ˆ̃x(.)‖∞ for N = 2k (k = 2, . . . , 9)

(Example 6.3)

The corresponding regressionline r(.) (blue) is defined by the following expression:

r(t) = −1.42711636 + 1.00000000 t

127

This really is a perfect result. So according to the norms discussion in 6.1.1, the estima-
tion for the regression rate p would be p = min(1, 1.00000000) = 1.

Overall the following values have been obtained for the state distances:

steps stepsize ‖x̂N−ρN (x̂(.))‖∞ ‖x̂N (.)−x̂(.)‖∞

4 5/2 8.881784 · 10−16 0.600000

8 5/4 1.942890 · 10−16 0.300000

16 5/8 1.387779 · 10−17 0.150000

32 5/16 1.387779 · 10−17 0.075000

64 5/32 9.992007 · 10−16 0.037500

128 5/64 8.673617 · 10−19 0.018750

256 5/128 8.673617 · 10−19 0.009375

512 5/256 8.673617 · 10−19 0.004688

control convergence
As the optimal control jumps at t = 2 and t = 4, it is very likely that the discrete
controls won’t converge in the discrete supremum. This is a fact well known in
optimal control theory. The following plots of the control substantiate that forecast.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
û1(.) û2(.)

t t

u u

Figure 15: discrete optimal control for N = 8 (Example 6.3)

The single discrete point sitting near the switching point of the control does not vanish
when using greater number of steps.

128

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
û1(.) û2(.)

t t

u u

Figure 16: discrete optimal control for N = 64 (Example 6.3)

The double logarithmic plot of the discrete supremum norm shows that the distances
are not decreasing. Instead they have somewhat random values in [0, 1], which is
expected from the control plots above.

5
2

5
4

5
8

5
16

5
32

5
64

5
128

5
256

0.50

0.30

0.70

hN

‖ûN−ρN (û(.))‖∞

Figure 17: double logarithmic plot of ‖ûN − ρN (û(.))‖∞ for N = 2k (k = 2, . . . , 9)

(Example 6.3)

129

The discrete L2-norm should deliver different results. This is because each point is weigh-
ted by the steplength. So the one point, that ruined it all in the case of applying the
supremum norm, plays more and more less of a role when the stepsize decreases. This
leads to the following result:

5
2

5
4

5
8

5
16

5
32

5
64

5
128

5
256

0.10

1.00

0.50

0.20

0.30

0.15

0.70

hN

‖ûN−ρN (û(.))‖2

Figure 18: double logarithmic plot of ‖ûN − ρN (û(.))‖2 for N = 2k (k = 2, . . . , 9)

(Example 6.3)

The regressionline r(.) appearing in this plot (blue) is:

−0.531431733 + 0.458216964 t

This suggests a convergence rate for the controls with respect to the discrete L2-norm
with rate p = 0.458216964 ≈ 1/2.
As the plots in Figure 15 and 16 suggest, comparing the exact curve û(.) and the green
linear spline ûN (.) using the L2-norm should deliver good results for the convergence
analysis. In deed, comparing the calculated values delivers

‖ûN − ρN (û(.))‖2 ≤ ‖û
N (.)− û(.)‖2 (N = 2k (k = 2, . . . , 9))

So estimating the convergence rate of ‖ûN (.)− û(.)‖2 should deliver a good guess for the
convergence rate of ‖ûN − ρN (û(.))‖2.

130

The double logarithmic plot is even more convincing:

5
2

5
4

5
8

5
16

5
32

5
64

5
128

5
256

0.10

1.00

0.50

0.20

0.30

0.15

1.50

0.70

hN

‖ûN (.)−û(.)‖2

Figure 19: double logarithmic plot of ‖ûN (.)− û(.)‖2 for N = 2k (k = 2, . . . , 9)

(Example 6.3)

The regressionline r(.) appearing in this plot (blue) is:

0.0529738111 + 0.484072793 t

So the estimation of the convergence rate p = 0.484072793 ≈ 1/2 is pretty much identical
to the estimation we got from the regression line of the control distances with respect
to the discrete L2-norm.

Overall the following values have been obtained for the control distances:

steps stepsize ‖ûN−ρN (û(.))‖∞ ‖ûN−ρN (û(.))‖2 ‖ûN (.)−û(.)‖2

4 5/2 0.400000 0.632456 1.505680

8 5/4 0.800000 0.894427 1.236931

16 5/8 0.800000 0.632456 0.891628

32 5/16 0.600000 0.335410 0.606218

64 5/32 0.400000 0.158114 0.419821

128 5/64 0.800000 0.223607 0.309233

256 5/128 0.800000 0.158114 0.222907

512 5/256 0.600000 0.083853 0.151554

131

objective function value convergence
For comparison of the objective funciton values only the absolute value comes into play.
No other norms need to be considered.

5
2

5
4

5
8

5
16

5
32

5
64

5
128

5
256

0.05

0.10

0.50

1.00

5.00

hN

|J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

Figure 20: double logarithmic plot of |J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))| for N = 2k (k = 2, . . . , 9)

(Example 6.3)

The regressionline r(.) appearing in this plot (blue) is:

0.810248484 + 1.03935746 t

So the estimated convergence rate of the objective function values is p = 1.03935746 ≈ 1.

Summary
The convergence rate for the state has been estimated to be p = 1. For the control we
got p = 0.484072793 ≈ 1/2 and for the objective function values p = 1.03935746 ≈ 1. Even
though (C2E) is violated and sufficient order optimality conditions do not hold, we get
pretty good convergence results.
The decisive values for obtaining these results are:

steps stepsize ‖ûN (.)−û(.)‖2 ‖x̂N (.)−x̂(.)‖∞ |J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

4 5/2 1.505680 0.600000 6.250000

8 5/4 1.236931 0.300000 2.812500

16 5/8 0.891628 0.150000 1.328125

32 5/16 0.606218 0.075000 0.644531

64 5/32 0.419821 0.037500 0.317383

128 5/64 0.309233 0.018750 0.157471

256 5/128 0.222907 0.009375 0.078430

512 5/256 0.151554 0.004688 0.039139

132

6.4 High peak with multidimensional state constraints

This example has been constructed by the author to present another example
with multidimensional state constraints, which is all about two pretty steep
curves, that built a huge peek. This example is not very easy to handle for
the optimizers and shows some interesting, yet unmentioned, results. Presen-
tation of this example will be devided into two parts. Those parts use slight-
ly different parameters for the following parametrized optimization problem.

Problem

Minimize : J̃(x̃(.), u(.)) = −
1∫

0

x̃(t)dt

with respect to :

˙̃x(t) = u3(t) a.e

x̃(0) = 1/2

s1(t, x̃(t)) = x̃(t)− e10d + 7e10t − 8

e10d − 1
≤ 0

s2(t, x̃(t)) = x̃(t)− 7e
10d(t−1)
d−1 + e10d − 8

e10d − 1
≤ 0

u(t) ∈ [umin, umax] a.e.

with x̃(.) = ∈ AC([0, 1]) and u(.) ∈ L∞([0, 1])

As can be seen the free parameters are d, umin and umax. d determines the timepoint
the peak appears, but more on that in the next section.

6.4.1 notes on constructing the example

constructing the state constraints Let’s take a look at the constraints
first, which make up the main part of constructing the problem. The idea is
to construct s̃1(.) and s̃2(.) with x(t) ≤ s̃1(t) and x(t) ≤ s̃2(t) for t ∈ [0, 1].
For d = 1/2 the relevant part of the plot of the constraints looks the follo-
wing way (note the scaling of the axis, the curves are actually much steeper):

133

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10
s̃1(.) and s̃2

t

x

Figure 21: state constraints (gray) and feasible set (light gray) for d = 1/2

(Example 6.4)

Despite the fact of having two dimensional constraints it is desired to fulfill (C1), so
s(., .) ∈ C1,L([0, 1] × R2) should hold. Therefore s̃1(.) and s̃2(.) should be in C1,L(I). The
approach taken here is using exponential functions for s̃1(.) and s̃2(.). Starting point is
setting

s̃1(t) = b1e
a1t + c1

s̃2(t) = b2e
a2(−t+1) + c2

with free parameters b1, b2, a1, a2, c1 and c2.
Those functions should also fulfill the following conditions:

s̃1(0) = s̃2(1) = hs

s̃1(d) = s̃2(d) = hc

So d is the timepoint at which the two curves intersect at hc. The other new parameter
is hs. Setting c1 = c2 =: c leads to b1 = b2 =: b and a2 = d

1−da1. Let’s set a := a1. Further
calculation then leads to

b =
hc − hs
ead − 1

and c =
hse

ad − hc
ead − 1

The final state constraint is then represented by

s(t, x(t)) =

(
s1(t, x(t))

s2(t, x(t))

)
=

(
x(t)− s̃1(t)

x(t)− s̃2(t)

)
=

(
x(t)− b eat − c

x(t)− b e
d

1−da(−t+1) − c

)

Setting the starting height hs = 1, the crossing height hc = 8 and the steepness control
a = 10 leaves only d as a free parameter. This is the form used for this example.

134

objective function and ODE
The objective function has been chosen in such a way, that the state will try to reach the
highest values possible obeying the constraints. The slope of the state x̃(.) is represented
pretty much directly by the control u(.), which can be seen by taking a look at the ODE.
The exponent 3 for the control has just been chosen instead of an exponent 1 to make the
discretized example nonlinear. As we will see later on this simple nonlinearity is enough
to let the approach of using approximated derivatives in the computation process fail.
Because of the simple structure of the ODE, umin and umax directly determine if the
state will be able to reach the peak of the mountain (i.e. the point hc = 8 for t = d) or
not. If 3

√
umax ≤ max

t∈[0,d]

˙̃s1(t) or if 3
√
umin ≤ min

t∈[d,1]

˙̃s2(t), this will not be possible. In Problem

6.4.2 the state will reach the peak, in Problem 6.4.3 it will not. Instead of reaching the
top, the state will detach from s̃1(.) and connect to s̃2(.) some time later on.

6.4.2 Problem 1: tracing the state constraint curves

In this subexample the free parameters are set to d = 1/
√

3, umin = −5 and umax = 5.
So the state constraints are:

s1(t) = x(t)− s̃1(t) = x(t)− 7e10t − 8 + e10/
√

3

e10/
√

3 − 1
≤ 0

s2(t) = x(t)− s̃2(t) = x(t)− 7e
10
√

3(t−1)√
3−3 − 8 + e10/

√
3

e10/
√

3 − 1
≤ 0

d = 1/
√

3 has been chosen, so that no point on the grid will ever coincide with the
position of the peak. That way a better convergence analysis is possible.

6.4.2.1 deriving the optimal state and control

This time there is no detailed calculation needed to obtain the optimal solution for the
control and the state. As already mentioned the objective function favors high values
for the state x̃(.). So the optimal state will be the one getting as high as possible while
obeying the constraints. It starts at ˆ̃x(0) = 1/2, because that is the starting value for the
ODE. It will then try to rise up as fast as possible (this means û = umax) till it reaches
the first state constraint s̃1(.) at the time t̃. To obtain t̃ we have to solve the following
equation:

1

2
+ u3

max t = s̃1(t)⇔ 1

2
+ 125 t =

7e10t − 8 + e10/
√

3

e10/
√

3 − 1

The exact solution to this equation is pretty complicated. The approximated value is
t̃ ≈ 0.004. All calculations in analyzing the data have been done using the exact value.
From t̃ on the exact optimal solution for the state follows s̃1(.) till it reaches the peak
at t = d. Reaching the peak is possible because the maximum of the derivative of s̃1(.)

is smaller than u3
max = 125 and the minimum of the derivative of s̃2(.) is bigger than

u3
min = −125. The ladder condition is important for not violating s2(t, x(t)) ≤ 0 after

having arrived at the peak. As the derivatives of s̃1(.) and s̃2(.) are strictly monotonously

135

increasing it holds:

max
t∈[t̃,d]

˙̃s1(t) = ˙̃s1(d) = − 70 e10/
√

3

1− e10/
√

3
≈ 70.2182981 < 125

min
t∈[d,1]

˙̃s2(t) = ˙̃s2(d) =
70 e10/

√
3

√
3
(
1− 1/

√
3
) (

1− e10/
√

3
) ≈ −95.919979 > −125

So overall we know that the optimal state ˆ̃x(.) rises up with maximum derivative
u3

max = 125 on [0, t̃], then traces s̃1(.) on [t̃, d] and finally traces s̃2(.) on [d, 1]. So the
optimal state is:

ˆ̃x(t) =


1
2 + 125 t for t ∈ [0, t̃)

s̃1(t) for t ∈ [t̃, d)

s̃2(t) for t ∈ [d, 1]

with

s̃1(t) =
7e10t − 8 + e10/

√
3

e10/
√

3 − 1
and s̃2(t) =

7e
10
√

3(t−1)√
3−3 − 8 + e10/

√
3

e10/
√

3 − 1

As ˙̂
x̃(t) = û3(t) a.e. the optimal control can be directly deduced from the optimal state

û(t) =


5 for t ∈ [0, t̃)

3

√
˙̃s1(t) for t ∈ [t̃, d)

3

√
˙̃s2(t) for t ∈ [d, 1]

with

˙̃s1(t) = − 70e10t

1− e10/
√

3
and ˙̃s2(t) =

70e
10(1−t)√

3(1−1/
√

3)

√
3
(

1− 1√
3

)(
1− e10/

√
3
)

Knowing ˆ̃x(.) delivers the minimal objective function value:

J̃(ˆ̃x(.), û(.)) = J̃(ˆ̃x(.)) = −
1∫

0

ˆ̃x(t) dt ≈ −2.18960398

The exact solution to the integral is too long to present it here.

136

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

ˆ̃x(.) û(.)

t

t

x

u

Figure 22: optimal state and control (blue) with constraints (gray) (Example 6.4.2)

6.4.2.2 applying the convergence theorem

Checking if the premises of the Convergence Theorem 3.2.8 are fulfilled has been done
in detail for example 6.2 in section 6.2.2. The major difference to that example is,
that this time there are multidimensional state constraints present. As in example 6.3
those are not completely covered by the theorey of chapter 5 about the Approximation
Property. So again we are using the “experimental” theory for the multidimensional
case. This means we need to verify (C1E) and (C2E). Verification of (C2E) depends on
the values chosen for the free parameters of the problem. For this problem (Problem 1)
we will see, that (C1E) and (C2E) hold. But let’s take a look at the other assumptions
needed to apply theorem 3.2.8 first.

137

For investigations we need the Mayer form of the problem, which is:

Problem (set-valued Mayer form)

Minimize : J(x(0), x(1)) = z(1)

with respect to :

ẋ(t) ∈ F (t, x(t)) =
{(u3

−x̃(t)

) ∣∣ u ∈ [umin, umax]
}

a.e

x̃(0) =

(
1/2

0

)

s1(t, x̃(t)) = x̃(t)− e10d + 7e10t − 8

e10d − 1
≤ 0

s2(t, x̃(t)) = x̃(t)− 7e
10d(t−1)
d−1 + e10d − 8

e10d − 1
≤ 0

u(t) ∈ [umin, umax] a.e.

with x(.) ∈ AC([0, 1])2 and u(.) ∈ L∞([0, 1])

Taking a look at F should make clear, that (A1), (A2) and (A3) hold. As the objective
function of the Bolza-Problem just consists of the integral term it is once again obvious,
that J is Lipschitz-continuous as needed for the Value Convergence Theorem 3.2.2.
It should also be clear that ψ(., ., .) is Lipschitz-continuous in all of it’s arguments on
I × S × U (see Theorem 3.2.4) because the controls and the states are bounded.

It is left to show that (C1E) and (C2E) are fulfilled. For details and notations see 5.3
and 5.3.4. Obviously s(., .) ∈ C1,L([0, 1] × R2)2 and x ∈ ∂Θi(t) ⇔ si(t, x) = 0 (i = 1, 2). So
(C1E) holds. Let (t, x) ∈ [0, 1]×R2. As 0 ∈ [umin, umax] we know that ṽ =

(
0
ṽ2

)
∈ F (t, x). Let

x =
(
x̃
z

)
. As si(., .) (i = 1, 2) does not depend on z, the last component of ∇si(t, x) (i = 1, 2)

equals 0.
So for the first constraint (i =1) we have for all (t, x) ∈ [0, 1]× R2:

min
v∈F (t,x)

〈∇s1(t, x),
(

1
v

)
〉 ≤ 〈∇s1(t, x),

(
1
ṽ

)
〉 =

∂

∂t
s1(t, x) = − ˙̃s1(t) =

70e10t

1− e10/
√

3
≤ 70

1− e10/
√

3
< 0

138

For the second constraint things are a bit more complicated, because setting ṽ =
(

0
ṽ2

)
∈

F (t, x) won’t do the trick any more. Instead we will use the smallest value for u availa-
ble and use v̄ =

(−125
ṽ2

)
for the estimation process. This time it is essential to do

the estimation only for (t, x) ∈ Bµ(graph ∂Θ2(.)) ∩ Bµ(graph ∂Θ(.)) ∩ ([0, 1] × R2), where
µ > 0 is yet to be determined. So for the second constraint (i =2) we have for all
(t, x) ∈ Bµ(graph ∂Θ2(.)) ∩Bµ(graph ∂Θ(.)) ∩ ([0, 1]× R2):

min
v∈F (t,x)

〈∇s2(t, x),
(

1
v

)
〉 ≤ 〈∇s2(t, x),

(
1
v̄

)
〉 =

∂

∂t
s2(t, x) +

∂

∂x̃
s2(t, x)(−125) = − ˙̃s2(t)− 125

= − 70e
10(1−t)√

3(1−1/
√

3)

√
3
(

1− 1√
3

)(
1− e10/

√
3
) − 125 ≤ − 70e

10(1−(d−µ))√
3(1−1/

√
3)

√
3
(

1− 1√
3

)(
1− e10/

√
3
) − 125

The last inequality holds because − ˙̃s2(.) is monotonously decreasing and

min
{
t
∣∣ (t, x) ∈ Bµ(graph ∂Θ2(.)) ∩Bµ(graph ∂Θ(.)) ∩ ([0, 1]× R2)

}
= d− µ

So µ has to be chosen such that

d > d− µ > min

t ∣∣∣ − 70e
10(1−t)√

3(1−1/
√

3)

√
3
(

1− 1√
3

)(
1− e10/

√
3
) − 125 ≤ 0

︸ ︷︷ ︸
β:=

⇔ 0 < µ < d− β

Calculating β yields:

β = −−10
√

3− 3 log(2) +
√

3 log(2) + 6 log(5)− 2
√

3 log(5)− 3 log(7) +
√

3 log(7)

10
√

3

−
3 log

(√
3− 1

)
−
√

3 log
(√

3− 1
)

+ 3 log
(
e

10√
3 − 1

)
−
√

3 log
(
e

10√
3 − 1

)
10
√

3
≈ 0.557965604

As d = 1/
√

3 > β selecting an appropriate µ is possible. The smaller µ is chosen the bigger
γ > 0 can be chosen such that for all (t, x) ∈ Bµ(graph ∂Θ2(.))∩Bµ(graph ∂Θ(.))∩([0, 1]×R2)

the following inequality holds:

min
v∈F (t,x)

〈∇s2(t, x),
(

1
v

)
〉 ≤ −γ

Finally setting α = min
(

70

1−e10/
√

3
, γ
)

shows that (C2E) holds.

As (A1), (A2), (A3), (C1E) and (C2E) hold, the Approximation Property 3.2.1 fulfilled.
As we additionaly have the Lipschitz-continuity of J(., .) we know that the Value Con-
vergence Theorem 3.2.2 holds. This means that the objective function values converge
with at least rate one.

The thing still missing is the Inverse Stability Property. It is the author’s believe, that
second order sufficient optimality conditions hold for this example. But this won’t be
discussed here. For an example on obtaining second order sufficient optimality condi-
tions, see 6.2.2. However in this example, verifying second order optimality conditions
involves dealing with the multiplicator p(.), which corresponds to the ODE. This makes
things more difficult.

139

6.4.2.3 convergence analysis

Numerical computations have been done using the NLPIP optimizer with exact deriva-
tives. In this pretty demanding example for the optimizer using exact derivatives has
proven to be essential for obtaining useful results. Of course the liability of the optimizer
for errors in the derivatives plays a great role here. The authors investigation so far and
the experience of the developer of the NLPIP optimizer Björn Sachsenberger show, that
the NLPIP optimizer has quite some weaknesses on that area and is outperformed by
the NLPQLP optimizer, when using approximated derivatives. But NLPIP was able to
handle the calculations for this example pretty well when using exact derivatives, while
NLPQLP was not.
Like in the examples before the solutions for the number of steps N = 2k (k = 2, . . . , 9)

have been computed.

state convergence
To get an impression of what is going on some plots of the discrete state will be presented
first. As already mentioned, no gridpoint can conincide with d = 1/

√
3, so the discrete

solution will never fully reach the peak. Again, the blue line represents the exact soluti-
on, the gray lines the state constraints, the green curve the linear interpolating spline,
the red points the computed data and the orange line the maximum distance. Note the
scaling of the axes.

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

N = 8 N = 16 N = 32

t t t

x x x

Figure 23: discrete optimal state (Example 6.4.2)

As one can see the discrete points pretty much lie on the exact curve. This can be ob-
served for the other cases (N = 2k (k = 2, . . . , 9)), too. Again, this is a really good result,
but is not that great for convergence analysis, because the results are kind of too good.

140

Nevertheless, the double logarithmic plot of the state distances (calculated with re-
spect to the discrete supremum norm) shows a result, that is not completely useless.

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

10-10

10-8

10-6

10-4

0.01

1

hN

‖ˆ̃xN−ρN (ˆ̃x(.))‖∞

Figure 24: double logarithmic plot of ‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ for N = 2k (k = 2, . . . , 9)

(Example 6.4.2)

The regressionline r(.) (blue) is defined by the following expression:

−6.62680774 + 0.822327355 t

Principally this is a good result. But as the distance values are, relatively seen, wide
spread this result can’t be taken too serious.
To get a more convincing result, considering figure 23 leads to the idea of comparing
the linear spline (green curve) to the exact curve using the L∞-norm. The linear spline,
connecting the discrete solution points, shall be named ˆ̃xN (.). The L∞-norm is calculated
using numerical maximization routines. Taking a look at ‖ˆ̃xN (.)− ˆ̃x(.)‖∞, when actually
trying to gather information about the convergence rate of ‖ˆ̃xN−ρN (ˆ̃x(.))‖∞ makes sense
because the Compatibility Property 3.2.6 delivers:

‖ˆ̃xN − ρN (ˆ̃x(.))‖∞ ≤ ChN + ‖ˆ̃xN (.)− ˆ̃x(.)‖∞

This is explained in more detail in 6.1.1 in the discussion about norms.

141

And in fact, the double logarithmic plot associated with ‖ˆ̃xN (.)− ˆ̃x(.)‖∞ for N = 2k (k =

2, . . . , 9) shows a way more convincing result.

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

0.001

0.01

0.1

1

hN

‖ˆ̃xN (.)−ˆ̃x(.)‖∞

Figure 25: double logarithmic plot of ‖ˆ̃xN (.)− ˆ̃x(.)‖∞ for N = 2k (k = 2, . . . , 9)

(Example 6.4.2)

The corresponding regressionline r(.) (blue) is defined by the following expression:

r(t) = 4.89486298 + 1.62442965 t

So according to the norms discussion in 6.1.1, the estimation for the regression rate p

would be p = min(1, 1.62442965) = 1.

Overall the following values have been obtained for the state distances:

steps stepsize ‖x̂N−ρN (x̂(.))‖∞ ‖x̂N (.)−x̂(.)‖∞

4 1/4 3.218001 7.000000

8 1/8 8.000089 · 10−11 3.520517

16 1/16 0.895439 1.537000

32 1/32 0.353583 1.178255

64 1/64 6.400049 · 10−10 0.118302

128 1/128 1.280009 · 10−9 0.113911

256 1/256 0.000136 0.102034

512 1/512 0.013396 0.000504

142

control convergence
As the optimal control jumps at t = t̃ ≈ 0.004 and t = d = 1/

√
3, it is very likely that the

discrete controls won’t converge in the discrete supremum. This is a fact well known
in optimal control theory. The following plots of the control substantiate that forecast.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

N = 8 N = 32 N = 64

t t t

u u u

Figure 26: discrete optimal control (Example 6.4.2)

The discrete points sitting near the switching points and not lying on the exact curve
of the control do not vanish when using greater number of steps.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

N = 128 N = 256

t t

u u

Figure 27: discrete optimal control for higher number of steps (Example 6.4.2)

143

The double logarithmic plot of the discrete supremum norm shows that the distances are
not decreasing. Instead they have somewhat random values in [0, 8], which is expected
from the control plots above.

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1.0

5.0

2.0

3.0

1.5

7.0

hN

‖ûN−ρN (û(.))‖∞

Figure 28: double logarithmic plot of ‖ûN − ρN (û(.))‖∞ for N = 2k (k = 2, . . . , 9)

(Example 6.3)

The discrete L2-norm should deliver different results. This is because each point is weigh-
ted by the steplength. So the few points, that ruined it all in the case of applying the
supremum norm, play more and more less of a role when the stepsize decreases. This
leads to the following result:

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

0.10

1.00

0.50

0.20

2.00

0.30

0.15

1.50

0.70

hN

‖ûN−ρN (û(.))‖2

Figure 29: double logarithmic plot of ‖ûN − ρN (û(.))‖2 for N = 2k (k = 2, . . . , 9)

(Example 6.4.2)

144

The regressionline r(.) appearing in this plot (blue) is:

1.95010309 + 0.65576042 t

This suggests a convergence rate for the controls with respect to the discrete L2-norm
with rate p = 0.65576042 ≈ 1/2.
As the plots in Figure 15 and 16 suggest, comparing the exact curve û(.) and the green
linear spline ûN (.) using the L2-norm should deliver good results for the convergence
analysis. So estimating the convergence rate of ‖ûN (.) − û(.)‖2 should deliver a good
guess for the convergence rate of ‖ûN − ρN (û(.))‖2.
The double logarithmic plot is even more convincing:

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

0.10

1.00

0.50

0.20

0.30

0.15

0.70

hN

‖ûN (.)−û(.)‖2

Figure 30: double logarithmic plot of ‖ûN (.)− û(.)‖2 for N = 2k (k = 2, . . . , 9)

(Example 6.4.2)

The regressionline r(.) appearing in this plot (blue) is:

0.923803152 + 0.441718091 t

So the estimation of the convergence rate p = 0.441718091 ≈ 1/2 is consistent with the
estimation we got from the regression line of the control distances with respect to the
discrete L2-norm.

145

Overall the following values have been obtained for the control distances:

steps stepsize ‖ûN−ρN (û(.))‖∞ ‖ûN−ρN (û(.))‖2 ‖ûN (.)−û(.)‖2

4 1/4 3.740079 2.757310 1.232240

8 1/8 3.357035 1.392250 0.866261

16 1/16 7.295549 2.181487 0.931825

32 1/32 6.341561 1.341855 0.713832

64 1/64 1.817403 0.236735 0.367844

128 1/128 0.995275 0.097895 0.261696

256 1/256 3.488371 0.223840 0.193459

512 1/512 3.117195 0.210850 0.172823

objective function value convergence
For comparison of the objective funciton values only the absolute value comes into play.
No other norms need to be considered.

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

0.001

0.01

0.1

1

hN

|J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

Figure 31: double logarithmic plot of |J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))| for N = 2k (k = 2, . . . , 9)

(Example 6.4.2)

The regressionline r(.) appearing in this plot (blue) is:

2.0025268 + 1.60535163 t

So the estimated convergence rate of the objective function values is p = 1.60535163 ≈ 3/2.

Summary
The convergence rate for the state has been estimated to be p = 1. For the control we
got p ≈ 1/2 and for the objective function values p = 1.60535163 ≈ 3/2.

146

The decisive values for obtaining these results are:

steps stepsize ‖ûN (.)−û(.)‖2 ‖x̂N (.)−x̂(.)‖∞ |J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

4 1/4 1.232240 7.000000 1.314604

8 1/8 0.866261 3.520517 0.151577

16 1/16 0.931825 1.537000 0.118575

32 1/32 0.713832 1.178255 0.038016

64 1/64 0.367844 0.118302 0.004407

128 1/128 0.261696 0.113911 0.002195

256 1/256 0.193459 0.102034 0.001013

512 1/512 0.172823 0.000504 0.000562

6.4.3 Problem 2: detaching state

When choosing umax small and umin high enough the optimal state ˆ̃x(.) won’t be able to
reach the peak any more. Instead, the optimal state will detach from the curve s̃1(.) at
some point and reconnect some time later on to the curve s̃2(.). This will be the major
difference to 6.4.2. For this problem we set umax = 2, umin = 2 and for the sake of
simplicity d = 1/2. The reason for setting d = 1/

√
3 in Problem 1 was to be able to do a

better convergence analysis. It is not intended to do a detailed analysis for this problem
again. With d = 1/2 the state constraints are:

s1(t) = x(t)− s̃1(t) = x(t)− 7e10t − 8 + e5

e5 − 1
≤ 0

s2(t) = x(t)− s̃2(t) = x(t)− 7e10−10t − 8 + e5

e5 − 1
≤ 0

6.4.3.1 deriving the optimal state and control

Obtaining the exact solution follows pretty much the way of 6.4.2.1. This time there is
also no detailed calculation needed to obtain the optimal solution for the control and
the state. The main difference to Problem 1 is, that the optimal solution detaches from
s̃1(.) at a certain time d− d̃ and reconnects to s̃2(.) at d+ d̃, with some d̃ ∈ [0, d). Because
of d = 1/2 the functions s̃1(.) and s̃2(.) are symmetrical with respect to the axis t = 1/2.
This leads to ˙̃s1(d − d̃) = − ˙̃s2(d + d̃) and explains why we only needed to introduce one
new parameter d̃.
So let’s start at the beginning: As already mentioned the objective function favors high
values for the state x̃(.). So the optimal state will be the one getting as high as possible
while obeying the constraints. It starts at ˆ̃x(0) = 1/2, because that is the starting value
for the ODE. It will then try to rise up as fast as possible (this means û = umax) till
it reaches the first state constraint s̃1(.) at the time t̃. To obtain t̃ we have to solve the
following equation:

1

2
+ u3

max t = s̃1(t)⇔ 1

2
+ 125 t =

7e10t − 8 + e5

e5 − 1

The exact solution to this equation is pretty complicated. The approximated value is
t̃ ≈ 0.0683179563. All calculations in analyzing the data have been done using the exact

147

value.
From t̃ on the exact optimal solution for the state follows s̃1(.) till it the reaches the
point t = 1/2− d̃, with d̃ > 0. This means that reaching the peak is not possible because
the maximum of the derivative of s̃1(.) is bigger than u3

max = 8. As s̃1(.) is strictly
monotonously increasing it follows that d̃ may be obtained by the following equation,
which has exactly one solution:

˙̃s1(d− d̃) =
70e10(d−d̃)

e5 − 1
= u3

max = 8⇔ d− d̃ =
1

10

(
2 log(2)− log(5)− log(7) + log

(
e5 − 1

))
≈ 0.282418555

The point of connecting to s̃2(.) (the point where the constraints get active again) is

d+ d̃ = 2d− (d− d̃) = 1− 1

10

(
2 log(2)− log(5)− log(7) + log

(
e5 − 1

))
≈ 0.717581445

After connecting to s̃2(.) the constraint stays active, i.e. ˆ̃x(.) traces s̃2(.). The only thing
left to find out is how the optimal solution behaves on [d − d̃, d + d̃]. To do so we once
again make use of the maximum principle (for details and the notation of operators see
Theorem 5.1.2 in [1]) for this problem without state constraints, because we already
know, that they won’t turn active on [d− d̃, d+ d̃]:
For this problem the Hamiltonian H is

H(t, x(t), u(t), p(t)) = p(t)u3(t) + x(t)

The maximum principle then reads

Hu(t, x(t), u(t), p(t))(u− û(t)) = (3 p(t)u2(t))(u− û(t)) ≤ 0 a.e. for all u ∈ [−2, 2]

Let’s suppose it exists [a, b] ⊂ [d− d̃, d+ d̃] with a < b and û(t) = 0 on [a, b]. Then obviously

ũ(t) :=

{
2 for t ∈ [a, a+b

2)

−2 for t ∈ [a+b
2 , b]

is a better feasible solution on [a, b] than û(t) ≡ 0, so û(t) 6= 0 a.e. on [d− d̃, d+ d̃].
So we have

û(t) :=

{
2 for p(t) > 0

−2 for p(t) < 0

Considering the boundary conditions x(d− d̃) = s̃1(d− d̃) and x(d+ d̃) = s̃1(d− d̃) and the
fact that Hx(t, x(t), u(t), p(t)) = 1 delivers that p(t) = −(lR)2 + b− t for t ∈ (d− d̃, d+ d̃]. So
there is at most one point c ∈ (d− d̃, d+ d̃] with p(c) = 0. For x(d− d̃) = x(d+ d̃) = s̃1(d− d̃)

being fulfilled it must hold c = d. As p(.) is monotonously decreasing it follows that:

û(t) :=

{
2 for t ∈ [d− d̃, d)

−2 for t ∈ [d, d+ d̃]

148

So overall we know that the optimal state ˆ̃x(.) rises up with maximum derivative u3
max = 8

on [0, t̃], then traces s̃1(.) on [t̃, d− d̃] then detaches with keeping maximum derivative 8

till t = d. Afterwards it decreases with minimum derivative −8 till t = d + d̃ and finally
traces s̃2(.) on [d+ d̃, 1]. So the optimal state is:

ˆ̃x(t) =



1
2 + 8 t for t ∈ [0, t̃)

s̃1(t) for t ∈ [t̃, d− d̃)

s̃1(d− d̃) + 8 (t− (d− d̃)) for t ∈ [d− d̃, d)

s̃1(d− d̃) + 8 d̃− 8 t for t ∈ [d, d+ d̃)

s̃2(t) for t ∈ [d+ d̃, 1]

with

s̃1(t) =
7e10t − 8 + e5

e5 − 1
, s̃2(t) =

7e10−10t − 8 + e5

e5 − 1
, t̃ ≈ 0.0683179563, d = 1/2

and d̃ =
1

2
+

1

10

(
−2 log(2) + log(5) + log(7)− log

(
e5 − 1

))
≈ 0.217581445

As ˙̂
x̃(t) = û3(t) a.e. the optimal control can be directly deduced from the optimal state

ˆ̃x(t) =



8 for t ∈ [0, t̃)

3

√
˙̃s1(t) for t ∈ [t̃, d− d̃)

8 for t ∈ [d− d̃, d)

−8 for t ∈ [d, d+ d̃)

3

√
˙̃s2(t) for t ∈ [d+ d̃, 1]

with

˙̃s1(t) = −70e10t

1− e5 and ˙̃s2(t) =
70e10(1−t)

1− e5

Knowing ˆ̃x(.) delivers the minimal objective function value:

J̃(ˆ̃x(.), û(.)) = J̃(ˆ̃x(.)) = −
1∫

0

ˆ̃x(t) dt ≈ −1.81298124

The exact solution to the integral is too long to present it here.

149

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

ˆ̃x(.)
û(.)

t

t

x

u

Figure 32: optimal state and control (blue) with constraints (gray) (Example 6.4.3)

6.4.3.2 applying the convergence theorem

The situation here is pretty much the same as for 6.4.2. So most statements made in
6.4.2.2 are true for this problem, too. But the Verification of (C2E) depends on the
values chosen for the free parameters of the problem. For this problem (Problem 2) we
will see, that (C1E) is fulfilled, but contrary to Problem 1 (C2E) does not hold.
The fact that (A1), (A2) and (A3) hold, that J is Lipschitz-continuous as needed for
the Value Convergence Theorem 3.2.2 that ψ(., ., .) is Lipschitz-continuous in all of it’s
arguments and that (C1E) is fulfilled has been shown in 6.4.2.2.
It is left to show that (C2E) holds. As already mentioned, this part differs from 6.4.2.2.
For details and notations see 5.3 and 5.3.4.
As As 0 ∈ [umin, umax] the first part of verifying (C2E) stays the same (except of the exact
values appearing in the estimation process): Let (t, x) ∈ [0, 1]×R2. As 0 ∈ [umin, umax] we
know that ṽ =

(
0
ṽ2

)
∈ F (t, x). Let x =

(
x̃
z

)
. As si(., .) (i = 1, 2) does not depend on z, the

last component of ∇si(t, x) (i = 1, 2) equals 0.
So for the first constraint (i =1) we have for all (t, x) ∈ [0, 1]× R2:

min
v∈F (t,x)

〈∇s1(t, x),
(

1
v

)
〉 ≤ 〈∇s1(t, x),

(
1
ṽ

)
〉 =

∂

∂t
s1(t, x) = − ˙̃s1(t) =

70e10t

1− e5 ≤
70

1− e5 < 0

For the second constraint things are more complicated, because setting ṽ =
(

0
ṽ2

)
∈ F (t, x)

won’t do the trick any more. Instead we will use the smallest value for u available and
so use v̄ =

(−8
ṽ2

)
for the estimation process.

This time it is essential to do the estimation only for (t, x) ∈ Bµ(graph ∂Θ2(.)) ∩
Bµ(graph ∂Θ(.)) ∩ ([0, 1] × R2), where µ > 0 is yet to be determined. So for the second

150

constraint (i =2) we have for all (t, x) ∈ Bµ(graph ∂Θ2(.)) ∩Bµ(graph ∂Θ(.)) ∩ ([0, 1]× R2):

min
v∈F (t,x)

〈∇s2(t, x),
(

1
v

)
〉 = 〈∇s2(t, x),

(
1
v̄

)
〉 =

∂

∂t
s2(t, x) +

∂

∂x̃
s2(t, x)(−8) = − ˙̃s2(t)− 8

= −70e10(1−t)

1− e5 − 8 ≥ −70e10(1−d)

1− e5 − 8 = − 70e5

1− e5 − 8 > 0

So (C2E) does not hold for all (t, x) ∈ Bµ(graph ∂Θ2(.))∩Bµ(graph ∂Θ(.))∩([0, 1]×R2). And
that is exactly why the detaching case is presented. As the optimal solution coincides
with the solution reaching maximum height while obeying the constraints it has to lie on
the boundary of the feasible set of all solutions XΘ(1, 0, {1/2}). Because of that, verifying
(C2E) will always fail, if the optimal solution does not reach the peak. This is because in
that case (C2E) does not hold for all (t, x) ∈ Bµ(graph ∂Θ2(.))∩Bµ(graph ∂Θ(.))∩([0, 1]×R2),
it just holds for (t, x) ∈ ([0, 1]× R2) ∩ [d− d̃, 1]× R2.
But as we know the feasible set XΘ(1, 0, {1/2}), we can weaken (C2E) to (C2EW):

(C2EW) The boundary of Θ(.) fulfills the “strict inwardness condition”. This means that
there exist α, µ > 0 such that for each i ∈ {1, . . . , ns} it holds:
For all (t, x) ∈ Bµ(graph ∂Θi(.)) ∩ Bµ(graph ∂Θ(.)) ∩ Bε

(
graph(XΘ(T, t0, X0))

)
the fol-

lowing inequality applies:

min
v∈F (t,x)

〈∇si(t, x),
(

1
v

)
〉 ≤ −α

with graph(XΘ(T, t0, X0)) :=
{

(t, x) ∈ graph(x(.))
∣∣ x(.) ∈ XΘ(T, t0, X0)

}
For this example it would for example be sufficient, that (C2E) only holds on the violet
areas:

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

s̃1(.) and s̃2

t

x

Figure 33: Verification of (C2E): area for (C2E) to be fulfilled on (violet), exact
solution (blue), state constraints (gray), postulated area for (C2E) to hold (light gray)

(Example 6.4.3)

151

But even though this way of proceeding may give an idea of why the computed solutions
for this problem actually converge (see next section), even (C2EW) is not fulfilled for this
problem. The problematic area is the environment of the reconnecting point t = d + d̃.
Despite that checking a problem for (C2EW) is usually not possible in practice, because
usually the set XΘ(T, t0, X0) is unknown.
Nevertheless the reader should be aware, that all the assumptions for the Approxima-
tion Property are sufficient, but in general not necessary. So (C2E) being violated for
this problem is no death sentence for any kind of convergence, which the next section
suggests.

The thing still missing is the Inverse Stability Property. It is the author’s believe, that
second order sufficient optimality conditions hold for this example. But this won’t be
discussed here. For an example on obtaining second order sufficient optimality condi-
tions, see 6.2.2. However in this example, verifying second order optimality conditions
involves dealing with the multiplicator p(.), which corresponds to the ODE. This makes
things more difficult.

6.4.3.3 convergence analysis

Numerical computations have been done using the NLPIP optimizer with exact
derivatives. In this pretty demanding example for the optimizer, using exact derivatives
has proven to be essential for obtaining useful results as well. Of course the liability
of the optimizer for errors in the derivatives plays a great role here. The authors
investigation so far and the experience of the developer of the NLPIP optimizer Björn
Sachsenberger show, that the NLPIP optimizer has quite some weaknesses on that area
and is outperformed by the NLPQLP optimizer, when using approximated derivatives.
But NLPIP was able to handle the calculations for this example pretty well when using
exact derivatives, while NLPQLP was not.
Like in the examples before the solutions for the number of steps N = 2k (k = 2, . . . , 9)

have been computed. As already mentioned, the results are pretty similar to the ones
in the convergence analysis of Problem 1 in 6.4.2.3. The major difference is that for
simplicity reasons (symmetry), d = 1/2 has been set for Problem 2 instead of d = 1/

√
3

like in Problem 1. When using powers of 2 for the number of steps, this leads to the
fact, that this time t = d lies on the grid for every computation done. So there won’t
be no additional error from the peak this time. As the optimal solution is linear in the
“detached phase” and otherwise corresponds to the one from Problem 1, pretty small
error values and a pretty rough convergence analysis have to be expected. But all this
analysis should show here is, that despite the fact of (C2E) being violated the solutions
seem to converge. This may have to do with the tiny area on which (C2E) does not
hold, i.e. where no “inward steering” can take place.

state convergence
As the following plots show, the optimal solution to the discrete problem is pretty close
to the exact solution even for a small number of steps. One major reason for that is
the linear structure, when the constraints are not active (in the sense of the optimal
solution delivers s1(t, ˆ̃x(t)) = 0 or s2(t, ˆ̃x(t)) = 0). Again, the blue line represents the exact
solution, the gray lines the state constraints, the green curve the linear interpolating
spline, the red points the computed data and the orange line the maximum distance

152

(which is hardly visible here, because it is pretty small). Note the scaling of the axes.

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

N = 8 N = 16 N = 32

t t t

x x x

Figure 34: discrete optimal state (Example 6.4.3)

As one can see the discrete points pretty much lie on the exact curve. This can
be observed for almost all other cases (N = 2k (k = 3, . . . , 9)), too. The only excep-
tion is N = 4. Of course, for such a small number of steps a reasonable solution
can’t be expected. Instead the optimizer seems to deliver another local minimum:

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

N = 4

t

x

Figure 35: discrete optimal state (Example 6.4.3)

So the case N = 4 will be excluded from any further calculations. The results for
the state with respect to the discrete supremum and the L∞-norm (see 6.1.1) are the
following.

steps stepsize ‖x̂N−ρN (x̂(.))‖∞ ‖x̂N (.)−x̂(.)‖∞

8 1/8 0.037841 0.208640

16 1/16 0.041229 0.041229

32 1/32 0.032544 0.032544

64 1/64 0.000054 0.025606

128 1/128 0.062446 0.062424

256 1/256 0.031196 0.031196

512 1/512 0.000025 0.000038

153

As one can see, there is no big difference between the discrete supremum and the
L∞-norm this time. This was expected, because the critical point d = 1/2 lies on the
gird for all number of steps used. The values show that there is small tendency, which
indicates convergence, present.

control convergence
As the optimal control jumps at t = t̃ ≈ 0.0683179563 and t = d = 1/2, it is very likely that
the discrete controls won’t converge in the discrete supremum. This is a fact well known
in optimal control theory. Despite that, results are pretty close to the exact optimal con-

trol. 0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

N = 8 N = 32 N = 64

t t t

u u u

Figure 36: discrete optimal control (Example 6.4.3)

The discrete points sitting near the switching points and not lying on the exact curve
of the control do in general not vanish when using greater number of steps.

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

N = 128 N = 256

t t

u u

Figure 37: discrete optimal control for higher number of steps (Example 6.4.2)

154

So there will be definitely no convergence of the controls with respect to the discrete
supremum norm. Nevertheless the distance values are included in the following chart. As
in the other examples treated so far it contains the discrete L2-norm and the L2-norm
for the interpolated case (for details see the control convergence section of 6.3.3).

steps stepsize ‖ûN−ρN (û(.))‖∞ ‖ûN−ρN (û(.))‖2 ‖ûN (.)−û(.)‖2

8 1/8 0.306036 0.211394 0.629175

16 1/16 0.961777 0.320819 0.489191

32 1/32 1.070153 0.230116 0.378115

64 1/64 0.467540 0.063700 0.238663

128 1/128 2.005366 0.250524 0.208463

256 1/256 2.039708 0.187273 0.162490

512 1/512 0.012554 0.003240 0.084031

As one can see only the values for ‖ûN (.)− û(.)‖2 show a real tendency towards conver-
gence. The values for ‖ûN − ρN (û(.))‖2 just a very slight one.

objective function value convergence
For comparison of the objective funciton values only the absolute value comes into play.
No other norms need to be considered.

1
8

1
16

1
32

1
64

1
128

1
256

1
512

5 ´ 10-4

0.001

0.002

0.005

0.010

hN

|J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

Figure 38: double logarithmic plot of |J(x̂N0 , x̂
N
N)− J(x̂(t0), x̂(T))| for N = 2k (k = 3, . . . , 9)

(Example 6.4.3)

The regressionline r(.) appearing in this plot (blue) is:

−3.31580587 + 0.669307853 t

So the estimated convergence rate of the objective function values is p = 0.669307853 ≈
1/2. This value is not equal or higher as 1, which has to be expected from the value
convergence theorem. But nevertheless this might be an indicator, that the Approxima-
tion Property (see 3.2.1) and with it the Value Convergence Theorem 3.2.2 itself still do
apply.

155

Summary
Despite the fact that (C2E) does not hold, we still got some indicators for properly
convergent solutions.
The decisive values for this statement are:

steps stepsize ‖ûN (.)−û(.)‖2 ‖x̂N (.)−x̂(.)‖∞ |J(x̂
N
0 ,x̂

N
N)−J(x̂(t0),x̂(T))|

8 1/8 0.629175 0.208640 0.014038

16 1/16 0.489191 0.041229 0.002012

32 1/32 0.378115 0.032544 0.008156

64 1/64 0.238663 0.025606 0.001462

128 1/128 0.208463 0.062424 0.001646

256 1/256 0.162490 0.031196 0.001092

512 1/512 0.084031 0.000038 0.000474

acknowledgement

Literature

[1] Frank Lempio, DYNAMIC OPTIMIZATION, lecture notes, university of Bayreuth

[2] R.Baier, I.Chahma and F. Lempio, Stability and convergence of Euler’s method for
state-constrained differential inclusions, SIAM J. OPTIM. Vol. 18 (2007), No. 3,
pp. 1004-1026

[3] A. L. Dontchev and E. M. Farkhi, Error estimates for discretized differential inclu-
sions, Computing, 41 (1989), pp. 349358

[4] Mattias Sandberg, Convergence of the forward Euler method for nonconvex diffe-
rential inclusions, SIAM J. NUMER. ANAL. Vol. 47 (2008), No. 1, pp. 308-320

[5] Mattias Sandberg, The forward Euler Scheme for nonconvex Lipschitz Differential
Inclusions converges with rate one, (2009)

[6] J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren Math. Wiss. 264
(1984), Springer, Berlin

[7] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer (2006),
Berlin

[8] R. Webster, Convexity, Oxford Sci. Publ. (1994), Clarendon Press, Oxford Univer-
sity Press, New York

[9] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Methods, Ma-
thematical and Computational Biology Series No. 15 (2007), Chapman&Hall/CRC,
Boca Raton Florida

[10] B. Sachsenberg, An sqp interior point algorithm for solving large scale nonlinear
optimization problems, Department of Computer Science University of Bayreuth
(2008)

156

[11] K. Schittkowski, NLPQLP: A Fortran Implementation of a Sequential Quadratic
Programming Algorithm with Distributed and Non-Monotone Line Search, Depart-
ment of Computer Science University of Bayreuth (2007)

[12] J. Pannek, Receding Horizon Control: A Suboptimality–based Approach, University
of Bayreuth (2009), www.nonlinearmpc.com

[13] A. L. Dontchev, Error Estimates For a Discrete Approximation to Constrained
Control Problems, SIAM J. NUMER. ANAL. Vol. 18 No.3 (1981)

[14] Matthias Gerdts, Optimal Control of Ordinary Differential Equations and
Differential-Algebraic Equations, Habilitation Thesis (2006), Department of Ma-
thematics at the University of Bayreuth

157

I hereby declare that I wrote the thesis at hand by myself and with
the sole help of the specified sources and auxiliaries. This thesis has
never been presented to any other examination board in neither the
present nor any similar form.

