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Chapter 1

Introduction

This work concerns itself with optimal control of one-dimensional stochastic processes by
controlling the associated probability density functions using a Receding Horizon Model
Predictive Control scheme.

In the 1960s, Hestenes and Pontrjagin laid the foundation for optimal control theory, which
deals with maximizing or minimizing functionals, i.e. mappings from a set of functions to
real numbers, with side conditions determined by differential equations [23], [24]. Since the
1970s, controlling systems governed by partial differential equations (PDEs) is of interest
[21] and it is becoming an increasingly active research field. Obtaining an open-loop optimal
control for PDE-constrained problems is treated e.g. in [16], [21], and [30].

When it comes to designing closed-loop controllers, Model Predictive Control (MPC) is very
appealing, especially for nonlinear problems. Because of its robustness properties and the
ability to easily accommodate control- and state constraints, MPC is utilized in a variety
of applications, e.g. chemical process control, electro-mechanical systems, aerospace appli-
cations, and many more [11], [25].

Alongside, in the last few decades, researchers have concerned themselves more and more
with the modeling and control of uncertainty. This is not surprising, considering the wide
range of applications. Much more recently, in 2011, Annunziato and Borz̀ı presented a
framework which connects both the optimal control of systems governed by partial differential
equations and the control of stochastic processes [3]. To this end, the Fokker-Planck equation,
a parabolic PDE, is used to model the evolution of the probability density function (PDF)
of certain stochastic processes. Since often the desired outcome can be formulated in terms
of the PDF, this approach is viable. This way, the problem is transformed from stochastic to
deterministic. A Receding Horizon Model Predictive Control scheme is then used to obtain
an optimal closed-loop controller.

The thesis aims to contribute to the above framework in two ways. First, by examining
the influence of the horizon length in the MPC scheme on the optimal control. In [3]
and [4], only the shortest possible horizon is considered. The question at hand is whether
increasing the horizon length yields better results. It is shown numerically that increasing the
horizon may substantially improve results under certain circumstances. Yet, it seems more
important to cover a certain absolute time frame in the MPC scheme. The second objective



2 Chapter 1: Introduction

is to investigate the effects of a space-dependent control in contrast to a space-independent
one. Numerical experiments show that a space-dependent control can improve the tracking
of the desired probability density function tremendously; under certain circumstances, the
computed probability density function barely deviates from the desired one. In order to run
these numerical simulations, discretization and optimization algorithms were implemented,
constituting the practical part of the thesis.
This work is structured as follows. In Chapter 2 the Fokker-Planck (FP) control framework
is presented. The connection between optimal control of certain stochastic processes and
the Fokker-Planck equation is established. After discussing existence and uniqueness results
for the FP equation, the corresponding optimal control problems (OCPs) are introduced.
Existence of optimal solutions is addressed, however briefly, and necessary optimality condi-
tions are derived formally. Chapter 3 gives a brief presentation on MPC and shows how to
translate the FP optimal control problems into the MPC framework. Chapter 4 describes
the discretization and optimization techniques used to obtain numerical results. In Chapter
5 the focus is on the implementation of the presented framework. The numerical results are
presented in Chapter 6; Chapter 7 concludes.



Chapter 2

The Fokker-Planck Control
Framework

In this chapter, the Fokker-Planck Control Framework for one-dimensional stochastic pro-
cesses is introduced. The focus is on Markov processes, which are discussed in Section 2.1
along with stochastic differential equations (SDEs). Instead of trying to control these pro-
cesses directly, an alternative approach is pursued by controlling the respective probability
density functions (PDFs). This approach is viable when the collective behavior of the process
is of interest.

The state PDF of a Markov process can be obtained by several ways. One way is to employ
averaging or interpolation strategies in the stochastic models, see [8], [18]. Another way
was discussed by Annunziato and Borz̀ı in [3] and [4]: Starting from a given initial state
PDF, the Fokker-Planck (FP) equation is used to model the evolution of the state PDF.
This relationship is derived in Section 2.2. Furthermore, results concerning existence and
uniqueness of (non-negative) solutions of the FP equation are provided. The Fokker-Planck
equation is a partial differential equation (PDE) of parabolic type [28], connecting both
the control of stochastic processes and the optimal control of systems governed by PDEs,
thereby reformulating the problem from stochastic to deterministic. The corresponding
optimal control problem is treated in Section 2.3, along with a discussion of existence and
uniqueness of optimal controls. In addition, the necessary optimality conditions are derived
using the formal Lagrange technique introduced in [30].

2.1 Stochastic Processes and Differential Equations

A stochastic process is a collection of random variables, used to describe the evolution of
these variables (or a subset thereof) over time. Formally, it is defined as follows:

Definition 2.1 (Stochastic process)
Let (Ω,F , P ) be a probability space, where Ω is the space of outcomes, F is the σ-algebra of
events in Ω and P : Ω→ [0, 1] is a probability measure. Further, let (Z,Z) be a measurable
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space and I a totally ordered set. A family X = (Xt)t∈I of measurable functions

Xt : Ω→ Z, t ∈ I

is called stochastic process (with state space Z).

The focus is on continuous-time stochastic processes, i.e. I is an interval with I ⊆ R≥0,
e.g. I = R≥0. A particularly important one for this work is the Wiener Process, also called
standard Brownian motion.

Definition 2.2 (Wiener Process, Brownian motion)
A stochastic process W = (Wt)t≥0 is called Wiener process (or Brownian motion), if the
following conditions hold:

1. W0 = 0 almost surely.
2. (Wt)t≥0 has independent increments with Wt −Ws ∼ N (0, t − s), 0 ≤ s < t, i.e. the

increments are normally distributed with mean 0 and variance t− s.
3. (Wt)t≥0 is a continuous process, i.e. almost all paths (functions t 7→ Wt) of (Wt)t≥0 are

continuous.

The Wiener Process is omnipresent in scientific literature when it comes to modeling uncer-
tainty. It also appears in the models considered in this work. These models are described by
so-called Itô stochastic differential equations, a probabilistic extension of ordinary differential
equations.

Definition 2.3 (Stochastic differential equation)
Let n ∈ N. Given functions b, σ : Rn × R≥0 → R and a Wiener process (Wt)t≥0, an (Itô)
stochastic differential equation (SDE) is given by

dXt = b(Xt, t) dt+ σ(Xt, t) dWt, (2.1)

which is a shorter notation for the integral equation

Xt = X0 +

t∫
0

b(Xτ , τ) dτ +

t∫
0

σ(Xτ , τ) dWτ . (2.2)

The first integral is interpreted as a Lebesgue integral, the second as a so-called Itô integral.

Remark 2.4
The function b is called drift function, σ is the diffusion function. While the drift term shifts
the state Xt, the diffusion term indicates the spreading of the state.

In a next step, the control u is added. Only one-dimensional, continuous-time stochastic
processes described by the following SDE and initial condition are considered:

dXt = b(Xt, t;u) dt+ σ(Xt, t) dWt

Xt0 = X0

(2.3)
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with Xt, Xt0 ∈ R, b, σ : R×R≥0 → R. The control u is either a (given) function of time, i.e.
t 7→ u(t) ∈ R, or a (given) function of time and space: (x, t) 7→ u(x, t) ∈ R. (2.3) is a so-
called Markov process. More information regarding Markov processes, stochastic processes
in general and Itô integrals can be found e.g. in [9] and [19].
In order to ensure existence and uniqueness of solutions Xt of (2.3), certain requirements
need to be satisfied. Therefore, the following assumption on b and σ is made, cf. [9], [19]:

Assumption 2.5
Let T > 0. The functions b and σ in (2.3) satisfy the following conditions for a given
realization of Wt: ∃C > 0 ∀x, y ∈ R, t ∈ [0, T ], u ∈ R :

|b(x, t;u)− b(y, t;u)|+ |σ(x, t)− σ(y, t)| ≤ C|x− y| (global Lipschitz condition for b, σ)

|b(x, t;u)|2 + |σ(x, t)|2 ≤ C2(1 + |x|2) (at most linear growth)

The processes relevant to this work are illustrated below. Notice that if u is bounded,
Assumption 2.5 only has to hold for the relevant values, i.e. all u with |u| ≤M for a suitable
M > 0.

Example 2.6
(a) The Ornstein-Uhlenbeck Process with Additive Control is defined by

b(x, t;u) := −µx+ u

σ(x, t) ≡ σ̃

with µ, σ̃ > 0. It describes the velocity Xt of a massive particle immersed in a viscous
fluid subject to random collisions with other molecules of the fluid and the consequential
fluctuations. An external force field induces a momentum u and thus influences the
velocity of the particle. The values µ and σ̃ indicate the impact of the current speed Xt

and the randomness Wt on the rate of change dXt, respectively.
If the control u is a function of time, i.e. u(t), and u is bounded, Assumption 2.5 holds:

|b(x, t;u(t))− b(y, t;u(t))|+ |σ(x, t)− σ(y, t)|
= | − µx+ u(t) + µy − u(t)|+ |σ̃ − σ̃|
≤ |µ||x− y| = µ|x− y| = C1|x− y|

with C1 := µ. Furthermore,

|b(x, t;u(t))|2 + |σ(x, t)|2 = | − µx+ u(t)|2 + |σ̃|2

≤ (|µx|+ |u(t)|)2 + |σ̃|2 = |µx|2 + 2|µx||u(t)|︸ ︷︷ ︸
≤|µx|2+|u(t)|2

+|u(t)|2 + |σ̃|2

≤ 2|µ|2|x|2 + 2|u(t)|2 + |σ̃|2 = 2µ2|x|2 + 2|u(t)|2 + σ̃2 ≤ C2
2(1 + |x|2)

with C2 := max

{√
2µ,

√
2
(

max
t
|u(t)|2

)
+ σ̃2

}
. Define C := max{C1, C2}.
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For u(x, t), this is not as simple, even with a bounded control. In this case, it is sufficient
to additionally assume u being (globally) Lipschitz-continuous:

|b(x, t;u(x, t))− b(y, t;u(y, t))|+ |σ(x, t)− σ(y, t)|
= | − µx+ u(x, t) + µy − u(y, t)|
≤ |µ||x− y|+ |u(x, t)− u(y, t)|︸ ︷︷ ︸

!
≤L|x−y| for some L>0 and all t∈[0,T ]

≤ (|µ|+ L)|x− y| = (µ+ L)|x− y| = C1|x− y|

with C1 := µ+ L and, analogously to u(t),

|b(x, t;u(x, t))|2 + |σ(x, t)|2 = | − µx+ u(x, t)|2 + |σ̃|2

≤ 2µ2|x|2 + 2|u(x, t)|2 + σ̃2 ≤ C2
2(1 + |x|2)

with C2 := max

{
√

2µ,

√
2

(
max
x,t
|u(x, t)|2

)
+ σ̃2

}
and C := max{C1, C2}.

(b) The Geometric-Brownian Process with Additive Drift Control is defined by

b(x, t;u) := (µ+ u)x

σ(x, t) := σ̃x

with µ ∈ R, σ̃ > 0. It can be used to model a controlled portfolio consisting of risky
assets that evolve at a varying, possibly negative interest rate, and bonds, which offer a
risk-free return. In this case, Xt represents the wealth, µ is the mean return and σ̃ is
the volatility parameter. The control u is a portion of the portfolio invested in bonds.
For a time-dependent and bounded control u(t), Assumption 2.5 holds:

|b(x, t;u(t))− b(y, t;u(t))|+ |σ(x, t)− σ(y, t)|
= |(µ+ u(t))x− (µ+ u(t))y|+ |σ̃(x− y)|
≤ (|µ|+ |σ̃|+ |u(t)|)|x− y| ≤ C1|x− y|

where C1 :=
(
|µ|+ σ̃ + max

t
|u(t)|

)
and

|b(x, t;u(t))|2 + |σ(x, t)|2 = |(µ+ u(t))x|2 + |σ̃x|2

≤ |µ+ u(t)|2|x|2 + |σ̃|2|x|2 =
(
(µ+ u(t))2 + |σ̃|2

)
|x|2

=
(
µ2 + 2µu(t)︸ ︷︷ ︸

≤µ2+u(t)2

+u(t)2 + σ̃2
)
|x|2 ≤

(
2µ2 + 2u(t)2 + σ̃2

)
|x|2 ≤ C2

2(1 + |x|2),

where C2 :=

√
2µ2 + 2

(
max
t
u(t)2

)
+ σ̃2 and C := max{C1, C2}.
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Unfortunately, this is not true for u(x, t):

|b(x, t;u(x, t))− b(y, t;u(y, t))|+ |σ(x, t)− σ(y, t)|
= |(µ+ u(x, t))x− (µ+ u(y, t))y|+ |σ̃(x− y)|
= |µ(x− y) + u(x, t)x− u(y, t)y|+ |σ̃(x− y)|.

Even for simple, Lipschitz continuous functions like u(x, t) := x, the condition is not
met:

|µ(x− y) + u(x, t)x− u(y, t)y|+ |σ̃(x− y)|
= |µ(x− y) + x2 − y2|+ |σ̃(x− y)|
= |(µ+ x+ y)||x− y|+ |σ̃||x− y|
≥ |µ+ x+ y + σ̃|︸ ︷︷ ︸

>L for any L>0 and suitable x,y∈R

|x− y|.

However, if only localized systems are of interest, i.e. |x|, |y| ≤M for some M > 0, then
a bounded and Lipschitz continuous function u(x, t) is sufficient to satisfy Assumption
2.5 for the relevant values:

|µ(x− y) + u(x, t)x− u(y, t)y|+ |σ̃(x− y)|
= |(µ+ x+ y)||x− y|+ |σ̃||x− y|
≤ |µ||x− y|+ |u(x, t)x− u(y, t)y|+ σ̃|x− y|
= (|µ|+ σ̃) |x− y|+ |u(x, t)x− u(y, t)x+ u(y, t)x− u(y, t)y|
≤ (|µ|+ σ̃) |x− y|+ |x|︸︷︷︸

≤M

|u(x, t)− u(y, t)|︸ ︷︷ ︸
≤L|x−y| for some L>0 and all t∈[0,T ]

+|u(y, t)||x− y|

≤ (|µ|+ σ̃ +ML+ |u(y, t)|) |x− y| ≤ C1|x− y|

with C1 :=

(
|µ|+ σ̃ +ML+ max

y,t
|u(y, t)|

)
. Furthermore,

|b(x, t;u(t))|2 + |σ(x, t)|2 = |(µ+ u(x, t))x|2 + |σ̃x|2

= |µ+ u(x, t)|2|x|2 + σ̃2|x|2 =
(
(µ+ u(x, t))2 + σ̃2

)
|x|2

=
(
µ2 + 2µu(x, t)︸ ︷︷ ︸

≤µ2+u(x,t)2

+u(x, t)2 + σ̃2
)
|x|2 ≤

(
2µ2 + 2u(x, t)2 + σ̃2

)
|x|2 ≤ C2

2(1 + |x|2),

with C2 :=

√
2µ2 + 2

(
max
x,t

u(x, t)2

)
+ σ̃2 and C := max{C1, C2}.

(c) The Shiryaev Process is defined by

b(x, t;u) := u+ µx

σ(x, t) := σ̃x
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with µ ∈ R, σ̃ > 0. This setting is similar to the Geometric-Brownian Process, the
difference being that the control u is no longer factored by Xt. In this case, u can be
interpreted as the sum of absolute fixed income from bonds and outcome consumption.
For bounded u(t), Assumption 2.5 is satisfied:

|b(x, t;u(t))− b(y, t;u(t))|+ |σ(x, t)− σ(y, t)|
= |µx+ u(t)− µy − u(t)|+ |σ̃(x− y)|
≤ (|µ|+ |σ̃|) |x− y| = C1|x− y|

with C1 := |µ|+ σ̃ and

|b(x, t;u(t))|2 + |σ(x, t)|2 = |µx+ u(t)|2 + |σ̃x|2

= (µx)2 + 2µxu(t)︸ ︷︷ ︸
≤(µx)2+u(t)2

+u(t)2 + σ̃2|x|2

≤
(
2µ2 + σ̃2

)
|x|2 + 2u(t)2 ≤ C2

2(1 + |x|2)

with C2 := max

{√
2µ2 + σ̃2,

√
2 max

t
u(t)2

}
and C := max{C1, C2}.

As in (a), a Lipschitz-continuous control u(x, t) is assumed in order to satisfy Assump-
tion 2.5 for bounded u(x, t):

|b(x, t;u(x, t))− b(y, t;u(y, t))|+ |σ(x, t)− σ(y, t)|
= |µx+ u(x, t)− µy − u(y, t)|+ |σ̃(x− y)|
≤ (|µ|+ |σ̃|) |x− y|+ |u(x, t)− u(y, t)|︸ ︷︷ ︸

!
≤L|x−y| for some L>0 and all t∈[0,T ]

≤ (|µ|+ |σ̃|+ L) |x− y| = C1|x− y|

with C1 := |µ|+ σ̃ + L and, analogously to u(t),

|b(x, t;u(x, t))|2 + |σ(x, t)|2 = |µx+ u(x, t)|2 + |σ̃x|2

≤
(
2µ2 + σ̃2

)
|x|2 + 2u(x, t)2 ≤ C2

2(1 + |x|2)

with C2 := max

{√
2µ2 + σ̃2,

√
2 max

x,t
u(x, t)2

}
and C := max{C1, C2}.

2.2 The Fokker-Planck Equation

As mentioned in the beginning of this chapter, the evolution of the state probability density
function of a Markov process can be modeled by the Fokker-Planck equation. To this end,
let y(x, t) be the probability density to find the process Xt at x ∈ Ω ⊂ R at time t ≥ 0.
Since the evolution of the PDF is of interest, a function describing the transition density
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PDF for the Markov process to move from z ∈ Ω at time s ≥ 0 to x ∈ Ω at time t ≥ s is
employed. Let this function be denoted by ŷ(x, t; z, s). This implies

ŷ(x, s; z, s) = δ(x− z),

where δ is the Dirac delta function. Both y and ŷ depict probabilities and therefore have
the following properties:

y(x, t) ≥ 0, (x, t) ∈ Ω× [0,∞[,∫
Ω

y(x, t) dx = 1, t ∈ [0,∞[,

ŷ(x, t; z, s) ≥ 0, x, z ∈ Ω, s, t ∈ [0,∞[, t ≥ s,∫
Ω

ŷ(x, t; z, s) dx = 1, z ∈ Ω, s, t ∈ [0,∞[, t ≥ s.

Note that the focus is on localized systems and Ω is chosen large enough such that the
conditions

y(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞[,

ŷ(x, t; z, s) = 0, x ∈ ∂Ω, z ∈ Ω, s, t ∈ [0,∞[, t ≥ s

can be assumed with a negligible error made by disregarding R \ Ω. The evolution of the
transition probability density ŷ is modeled by the Fokker-Planck equation:

Definition 2.7 (Fokker-Planck equation for the transition probability density)
Let x, z ∈ Ω ⊂ R, s, t ∈ [0,∞[ with t > s. The Fokker-Planck equation (for ŷ) at x at time
t is defined as follows:

∂tŷ(x, t; z, s)− 1

2
∂2
xx

(
σ(x, t)2ŷ(x, t; z, s)

)
+ ∂x

(
b(x, t;u(x, t))ŷ(x, t; z, s)

)
= 0 (2.4)

ŷ(x, s; z, s) = δ(x− z) (2.5)

where b, σ : R × R≥0 → R are functions associated with the considered stochastic process in
(2.3), u : R × R≥0 → R is the given control function, (2.5) is the initial condition and ŷ is
the unknown.

For a given initial PDF of the process at time s, ρ(z, s), the probability density of the process
at x at time t > s is given by

y(x, t) =

∫
Ω

ŷ(x, t; z, s)ρ(z, s) dz. (2.6)

Of course ρ must be a non-negative function and be normalized to one after integration over
Ω.
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Solving equations (2.4)-(2.5), one obtains the PDF y of the stochastic process for every initial
distribution ρ using (2.6). However, this is as complex as to compute a Green function of a
PDE. By assuming that the initial condition ρ is given, (2.4) and (2.5) can be reformulated
into a Fokker-Planck equation that is much easier to solve, yielding the PDF y only for a
certain initial distribution ρ. Additionally, the focus of this work is on localized systems,
see above. Ultimately, the problem can therefore be reformulated as the following initial
boundary value problem (IBVP).

Definition 2.8 (Fokker-Planck Initial Boundary Value Problem for the PDF)
Let Ω ⊂ R be a bounded and open interval. Further, let TE > 0, Q := Ω×]0, TE[ and
Σ := ∂Ω×]0, TE[. The Fokker-Planck Initial Boundary Value Problem (for the PDF) is
defined as follows:

∂ty(x, t)− 1

2
∂2
xx

(
σ(x, t)2y(x, t)

)
+ ∂x

(
b
(
x, t;u(x, t)

)
y(x, t)

)
= 0 in Q (2.7)

y(x, 0) = ρ(x) in Ω (2.8)

y(x, t) = 0 in Σ (2.9)

where b, σ : Q → R are given functions associated with the considered stochastic process in
(2.3), u : Q → R is the given control function, ρ : Ω → R is the initial distribution and
y : Q̄→ R is the unknown.

Remark 2.9
(a) (2.7) is a linear PDE of parabolic type.
(b) If the drift term b vanishes, the FP equation (2.7) becomes the heat equation. If σ

vanishes, (2.7) becomes the transport equation.
(c) If u(x, t) ≡ c ∈ R then the control is interpreted as a given parameter c.
(d) The problem (2.7)-(2.9) differs from a classical parabolic problem since the solution y

needs to be non-negative and to comply with conservation laws, i.e.

y(x, t) ≥ 0, (x, t) ∈ Q,
∫
Ω

y(x, t) dx = 1, t ≥ 0. (2.10)

Next, the existence and uniqueness of solutions of the IBVP (2.7)-(2.9) is addressed.

2.2.1 Existence and Uniqueness of Solutions

This section requires some knowledge of PDE theory. In particular, readers should be fa-
miliar with weak solutions, Sobolev spaces and the W (0, TE) space. These preliminaries are
established in Appendix A.
The aim is to prove existence and uniqueness of solutions of the Fokker-Planck IBVP
(2.7)-(2.9). Since classical solutions may not exist, the focus is on weak solutions in the
W (0, TE;H,V ) space with V := H1

0 (Ω) and H := L2(Ω). In the following, W (0, TE;H,V )
will be denoted by W (0, TE), since neither V nor H will change.
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It is helpful to write (2.7) in divergence form, i.e.

0 = ∂ty(x, t)− ∂x
(
α(x, t) ∂xy(x, t)

)
+ β(x, t;u(x, t)) ∂xy(x, t) + γ(x, t;u(x, t)) y(x, t) (2.11)

for suitable coefficient functions α, β, γ. To this end, re-write (2.7) as follows:

0 = ∂ty(x, t)− 1

2
∂2
xx

(
σ(x, t)2y(x, t)

)
+ ∂x

(
b
(
x, t;u(x, t)

)
y(x, t)

)
= ∂ty −

1

2
∂x
(
2σ ∂xσ y + σ2∂xy

)
+ ∂xb y + b ∂xy

= ∂ty − ∂x
(
σ ∂xσ y

)
− ∂x

(
1

2
σ2︸︷︷︸

=:α(x,t)

∂xy

)
+
(
D1(b) +D3(b) ∂xu

)
y + b ∂xy

= ∂ty −
(
(∂xσ)2 + σ ∂2

xxσ
)
y − σ ∂xσ ∂xy − ∂x (α ∂xy)

+
(
D1(b) +D3(b) ∂xu

)
y + b ∂xy

= ∂ty − ∂x (α ∂xy) + (b− σ ∂xσ)︸ ︷︷ ︸
=:β(x,t;u(x,t))

∂xy +
(
D1(b) +D3(b) ∂xu− (∂xσ)2 − σ ∂2

xxσ
)︸ ︷︷ ︸

=:γ(x,t;u(x,t))

y.

(2.12)

Example 2.10
For σ, b given by the stochastic processes in Example 2.6, the coefficient functions are:
(a) Ornstein-Uhlenbeck Process with Additive Control:

α(x, t) :=
1

2
σ̃2

β(x, t;u(x, t)) := b(x, t;u(x, t)) = −µx+ u(x, t)

γ(x, t;u(x, t)) := −µ+ ∂xu(x, t)

(b) Geometric-Brownian Process with Additive Drift Control:

α(x, t) :=
1

2
σ̃2x2

β(x, t;u(x, t)) := (µ+ u(x, t))x− σ̃2x = (µ+ u(x, t)− σ̃2)x

γ(x, t;u(x, t)) := µ+ u(x, t) + x ∂xu(x, t)− σ̃2

(c) Shiryaev Process:

α(x, t) :=
1

2
σ̃2x2

β(x, t;u(x, t)) := u(x, t) + µx− σ̃2x = u(x, t) + (µ− σ̃2)x

γ(x, t;u(x, t)) := µ+ ∂xu(x, t)− σ̃2

Note that σ and b are sufficiently regular w.r.t. x in the three stochastic processes discussed
here. Therefore, the existence of ∂xσ, ∂

2
xxσ and D1(b) is not an issue. However, the existence

of ∂xu(x, t) is a strong requirement. In cases where u does not depend on x, the ∂xu terms
vanish.
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Remark 2.11
For σ(x, t) 6= 0 the Fokker-Planck equation (2.7) is uniformly parabolic1, cf. Definition A.35.
In particular, (2.7) is uniformly parabolic in the case of the Ornstein-Uhlenbeck process.
Furthermore, if Ω ⊂ ]0,∞[, (2.7) is uniformly parabolic for the remaining two stochastic
processes introduced in Example 2.6.

The following result guarantees the existence and uniqueness of a weak solution under ap-
propriate assumptions, particularly on the coefficient functions.

Theorem 2.12 (Existence and uniqueness)
Let Ω ⊂ R be open and bounded, α, β, γ ∈ L∞(Q) as in (2.12), ρ ∈ L2(Ω) and σ(x, t) 6=
0, (x, t) ∈ Q. Then the Fokker-Planck IBVP (2.7)-(2.9) has a unique weak solution y ∈
W (0, TE) (in the sense of Definition A.37) and satisfies the energy estimate

‖y(t)‖2
L2(Ω) + ‖y‖2

L2(0,TE ;H1
0 (Ω)) + ‖y′‖2

L2(0,TE ;H1
0 (Ω)∗) ≤ C ‖ρ‖2

L2(Ω) , t ∈ ]0, TE[,

where C > 0 depends only on C1 > 0, C2 ≥ 0 given by

a(v, v; t) + C2 ‖v‖2
L2(Ω) ≥ C1 ‖v‖2

H1
0 (Ω) , v ∈ H1

0 (Ω) and almost all t ∈ ]0, TE[

with a(·, ·, t) : H1
0 (Ω)×H1

0 (Ω)→ R being a bilinear form for almost all t ∈ ]0, TE[ given by

a(v1, v2, t) :=

∫
Ω

α(t) ∂xv1 ∂xv2 + β(t) ∂xv1 v2 + γ(t) v1 v2 dx,

where the dependence on x has been omitted.

Proof. This Theorem is a special case of [16, p. 46, Corollary 1.1].

Remark 2.13
Note that the initial condition (2.8) makes sense, since W (0, TE) is continuously embedded
in C([0, TE], L2(Ω)), cf. Theorem A.32.

The regularity of the solution y can be further improved under appropriate conditions:

Theorem 2.14 (Improved regularity)
(a) Let ρ ∈ H1

0 (Ω) and suppose y ∈ W (0, TE) is a solution of the Fokker-Planck IBVP
(2.7)-(2.9). Then

y ∈ L2(0, TE;H2(Ω)) ∩ L∞(0, TE;H1
0 (Ω)), y′ ∈ L2(0, TE;L2(Ω))

with the estimate

ess sup
t∈[0,TE ]

‖y(t)‖H1
0 (Ω) + ‖y‖L2(0,TE ;H2(Ω)) + ‖y′‖L2(0,TE ;L2(Ω)) ≤ C ‖ρ‖H1

0 (Ω)

and C > 0 depending only on Ω, TE, and the coefficient functions α, β, and γ.

1More precisely, the operator ∂
∂t + L in Definition A.35 is uniformly parabolic.
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(b) If, in addition, ρ ∈ H2(Ω), then

y ∈ L∞(0, TE;H2(Ω)),

y′ ∈ L∞(0, TE;L2(Ω)) ∩ L2(0, TE;H1
0 (Ω)),

y′′ ∈ L2(0, TE;H1
0 (Ω)∗)

with the estimate

ess sup
t∈[0,TE ]

(
‖y(t)‖H2(Ω) + ‖y′(t)‖L2(Ω)

)
+‖y′‖L2(0,TE ;H1

0 (Ω))+‖y
′′‖L2(0,TE ;H1

0 (Ω)∗) ≤ C ‖ρ‖H2(Ω) .

Proof. This is a special case of [7, p. 382, Theorem 5].

Until now, nothing has been said about the positivity and conservativeness of the weak
solution of (2.7)-(2.9). The latter property results from the fact that the FP equation can be
written in flux form [4]. The former property requires some assumptions on σ and b, which
were introduced in [5] to prove nonnegativity of solutions of linear parabolic equations. They
differ from the assumptions in Theorem 2.12, partly because of the slightly different notion
of a weak solution and the consideration of linear parabolic PDEs of the form

0 = ∂ty(x, t)− ∂x
(
α(x, t) ∂xy(x, t) + α̃(x, t) y(x, t)

)
− β̃(x, t;u(x, t)) ∂xy(x, t)− γ̃(x, t;u(x, t)) y(x, t)

instead of the divergence form (2.11). In this setting, the coefficient functions are given by

α(x, t) :=
1

2
σ(x, t)2,

α̃(x, t) := σ(x, t) ∂xσ(x, t),

β̃(x, t;u(x, t)) := −b(x, t;u(x, t)),

γ̃(x, t;u(x, t)) := −
(
D1(b)(x, t;u(x, t)) +D3(b)(x, t;u(x, t)) ∂xu(x, t)

)
.

(2.13)

Remark 2.15
If u does not depend on x, then γ̃(x, t;u(x, t)) = ∂xb(x, t;u(t)).

To satisfy the assumptions on the coefficient functions α, α̃, β̃ and γ̃ made in [5] and adopted
in [4], it is sufficient to impose the following requirements.

Assumption 2.16
(i) ∀ξ ∈ R and almost all (x, t) ∈ Q :

� α(x, t)ξ2 ≥ θξ2 for some constant 0 < θ <∞,
� |α(x, t)| ≤M for some constant 0 < M <∞.

(ii) α̃, β̃ ∈ Lq(0, TE;Lp(Ω)) with 2 < p, q ≤ ∞ and 1
2p

+ 1
q
< 1

2
.

(iii) γ̃ ∈ Lq(0, TE;Lp(Ω)) with 1 < p, q ≤ ∞ and 1
2p

+ 1
q
< 1.
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Remark 2.17
For bounded α(x, t) defining a uniformly parabolic operator (cf. Definition A.35) and α̃, β̃, γ̃ ∈
L∞(Q), Assumption 2.16 is immediately satisfied.

With these assumptions, it is possible to prove the following result.

Theorem 2.18 (Existence of non-negative solutions)
Suppose α, α̃, β̃ and γ̃ in (2.13) satisfy Assumption 2.16. Let ρ ∈ L2(Ω).
⇒ ∃1y ∈ L2(0, TE;H1

0 (Ω)) ∩ L∞(0, TE;L2(Ω)) :

TE∫
0

∫
Ω

−y ∂tϕ+ α ∂xy ∂xϕ+ α̃ y ∂xϕ− β̃ ∂xy ϕ− γ̃ y ϕ dx dt = 0, ϕ ∈ C1
0(Q), (2.14)

lim
t→0

∫
Ω

y(·, t) ϕdx =

∫
Ω

ρ ϕ dx, ϕ ∈ C1
0(Ω). (2.15)

Moreover, if 0 ≤ ρ ≤ m almost everywhere in Ω, then

0 ≤ y(x, t) ≤ m(1 + Ck) in Q,

where

k :=

 TE∫
0

∫
Ω

|α̃(x, t)|p dx

q/p

dt


1/q

+

 TE∫
0

∫
Ω

|γ̃(x, t)|p dx

q/p

dt


1/q

,

and the constant C > 0 depends only on TE, Ω, and the structure of the Fokker-Planck
operator, i.e. on the coefficient functions α, α̃, β̃, and γ̃.

Proof. This is a special case of [5, p. 634, Theorem 1].

Since the setting in Theorem 2.18 differs from the one in Theorems 2.12 and 2.14, the
question remains whether the unique weak solution y ∈ W (0, TE) – which exists according
to Theorem 2.12 – is indeed non-negative. To this end, the three above theorems are brought
together.

Corollary 2.19
Let Ω ⊂ R be open and bounded. Furthermore, let

σ2, b, σ ∂xσ,D1(b) +D3(b) ∂xu, (∂xσ)2 + σ ∂2
xxσ ∈ L∞(Q) (2.16)

and
σ(x, t) 6= 0, (x, t) ∈ Q. (2.17)

Additionally, let ρ ∈ H1
0 (Ω) be a probability density function, i.e.

ρ(x) ≥ 0 in Ω and

∫
Ω

ρ(x) dx = 1.
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Then the Fokker-Planck IBVP (2.7)-(2.9) has a unique non-negative weak solution y in the
sense of Definition A.37 with

y ∈ L2(0, TE;H2(Ω)) ∩ L∞(0, TE;H1
0 (Ω)),

y′ ∈ L2(0, TE;L2(Ω)).
(2.18)

In particular, y ∈ C([0, TE];L2(Ω)). Moreover, the following estimate holds:

ess sup
t∈[0,TE ]

‖y(t)‖H1
0 (Ω) + ‖y‖L2(0,TE ;H2(Ω)) + ‖y′‖L2(0,TE ;L2(Ω)) ≤ C ‖ρ‖H1

0 (Ω) (2.19)

with C > 0 depending only on Ω, TE, and the coefficient functions α, β, and γ defined as in
(2.12).

Proof. From (2.16) it follows that the coefficient functions α,β, and γ defined in (2.12) are
L∞(Q) functions. With (2.17) and ρ ∈ H1

0 (Ω) the remaining conditions of Theorem 2.12
are satisfied as well. Theorem 2.12 now ensures the existence and uniqueness of a weak
solution y ∈ W (0, TE) (in the sense of Definition A.37). Applying Theorem A.32 results in
y ∈ C([0, TE];L2(Ω)). Moreover, since ρ ∈ H1

0 (Ω), Theorem 2.14 guarantees (2.18) and the
estimate (2.19).

Additionally, from (2.16) it follows that the coefficient functions α, α̃, β̃, and γ̃ defined in
(2.13) are L∞(Q) functions and thus satisfy Assumption 2.16. Note that because of (2.17),
Assumption 2.16(i) holds in particular.

Since all conditions of Theorem 2.18 hold, it remains to show that the unique weak solution
y obtained from Theorem 2.12 satisfies (2.14)-(2.15). Then from the uniqueness property
in Theorem 2.18 and (2.18), the non-negativity of the unique weak solution in the sense
of Definition A.37 follows. To this end, the equivalent formulation of a weak solution of
a parabolic PDE is used, cf. Definition A.38. According to Definition A.38, the following
holds:

0 =

TE∫
0

∫
Ω

∂ty v dx dt+

TE∫
0

∫
Ω

α ∂xy ∂xv + β ∂xy v + γ y v dx dt

=

TE∫
0

∫
Ω

∂ty v dx dt+

TE∫
0

∫
Ω

α ∂xy ∂xv dx dt+

TE∫
0

∫
Ω

b ∂xy v dx dt−
TE∫
0

∫
Ω

σ ∂xσ ∂xy v dx dt

+

TE∫
0

∫
Ω

(D1(b) +D3(b) ∂xu) y v dx dt−
TE∫
0

∫
Ω

(
(∂xσ)2 + σ ∂2

xxσ
)
y v dx dt

for all v ∈ L2(0, TE;H1
0 (Ω)) and therefore, for all v ∈ C1

0(Q) in particular. For v ∈ C1
0(Q),

the formula for integration by parts is used for the first (w.r.t. t) and the fourth integral



16 Chapter 2: The Fokker-Planck Control Framework

(w.r.t. x), resulting in

0 =

TE∫
0

∫
Ω

∂ty v dx dt+

TE∫
0

∫
Ω

α ∂xy ∂xv dx dt+

TE∫
0

∫
Ω

b︸︷︷︸
=−β̃

∂xy v dx dt

−
TE∫
0

∫
Ω

σ ∂xσ v ∂xy dx dt+

TE∫
0

∫
Ω

(D1(b) +D3(b) ∂xu)︸ ︷︷ ︸
=−γ̃

y v dx dt

−
TE∫
0

∫
Ω

(
(∂xσ)2 + σ ∂2

xxσ
)
y v dx dt

=

TE∫
0

∫
Ω

−y ∂tv dx dt+

TE∫
0

∫
Ω

α ∂xy ∂xv dx dt−
TE∫
0

∫
Ω

β̃ ∂xy v dx dt

+

TE∫
0

∫
Ω

∂x (σ ∂xσ v)︸ ︷︷ ︸
=((∂xσ)2+σ ∂2

xxσ)v+σ ∂xσ ∂xv

y dx dt−
TE∫
0

∫
Ω

γ̃ y v dx dt

−
TE∫
0

∫
Ω

(
(∂xσ)2 + σ ∂2

xxσ
)
y v dx dt

=

TE∫
0

∫
Ω

−y ∂tv + α ∂xy ∂xv − β̃ ∂xy v + σ ∂xσ︸ ︷︷ ︸
=α̃

∂xv y − γ̃ y v dx dt,

which is exactly (2.14). Notice that no additional terms appear since v ∈ C1
0(Q). Obviously,

y satisfies condition (2.15), concluding the proof.

Remark 2.20
If the control u does not depend on x, no ∂xu terms appear. This makes the requirements
in Corollary 2.19 much easier to cope with, especially in light of optimal control. Often
the control is assumed to be less regular, e.g. a piecewise constant function w.r.t. time t or
u ∈ L2(Q).

For every fixed control function u, Corollary 2.19 guarantees a unique non-negative weak
solution under certain regularity assumptions. It is therefore meaningful to formulate optimal
control problems. This is done in the next section.

2.3 The Fokker-Planck Optimal Control Problem

Instead of fixing the control, the task now is to find a control u such that, starting with
a certain initial probability density function ρ, the stochastic process evolves such that a
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sequence of desired target probability densities is matched as good as possible at given
terminal times within the time interval ]0, TE[, cf. Definition 2.8. Consider terminal times of
the form nTs with Ts > 0 and n ∈ N and partition ]0, TE[ into M pieces of equal length Ts,
i.e. ]tn, tn + Ts[ with tn := nTs, n = 0, ...,M − 1.
At first, only one such interval is looked at at a time. To formulate the optimal control
problem, define Q := Ω×]tn, tn + Ts[. Analogously, using the same notation as in Definition
2.8, Σ := ∂Ω×]tn, tn + Ts[. For yd ∈ L2(Q) denoting the desired probability density function
the first optimal control problem is given by:

min
u∈U

J(y, u) :=
1

2
‖y(·, tn + Ts)− yd(·, tn + Ts)‖2

L2(Ω) +
λ

2
|u|2, (2.20)

with a so-called regularization parameter λ > 0, subject to

∂ty(x, t)− 1

2
∂2
xx

(
σ(x, t)2y(x, t)

)
+ ∂x

(
b
(
x, t;u

)
y(x, t)

)
= 0 in Q

y(x, tn) = ρ(x) in Ω

y(x, t) = 0 in Σ

(2.21)

and
u ∈ Uad := {u ∈ U | ua ≤ u ≤ ub} ⊂ U := R, (2.22)

where
ua, ub ∈ R. (2.23)

In this case, the control u is simply a real value. The optimal control problem (2.20)-(2.23)
is solved on ]0, Ts[, i.e. for n = 0. Then the next interval is looked at, i.e. n is increased
and the OCP is solved on ]t1, t1 + Ts[ = ]Ts, 2Ts[, and so on. This is exactly the problem
considered in [3]. The question is whether the numerical results in [3] can be improved by
considering N ∈ {2, ...,M} consecutive intervals at a time instead of one.2 To this end,
the time interval is extended to ]tn, tn + (N − 1)Ts[. Hence, Q := Ω×]tn, tn + (N − 1)Ts[
and Σ := ∂Ω×]tn, tn + (N − 1)Ts[. The idea is still to track a sequence of desired target
probability densities. For sufficiently high M or, equivalently, for sufficiently low Ts, this
task is (approximately) captured by the following optimal control problem:

min
u∈U

J(y, u) :=

tn+(N−1)Ts∫
tn

1

2
‖y(·, t)− yd(·, t)‖2

L2(Ω) +
λ

2
u(t)2 dt, (2.24)

with λ > 0, subject to

∂ty(x, t)− 1

2
∂2
xx

(
σ(x, t)2y(x, t)

)
+ ∂x

(
b
(
x, t;u(t)

)
y(x, t)

)
= 0 in Q

y(x, tn) = ρ(x) in Ω

y(x, t) = 0 in Σ

(2.25)

2Why this might lead to better results is explained in Chapter 3.
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and

u ∈ Uad ⊂ U (2.26)

with
U := L2(]tn, tn + (N − 1)Ts[),

Uad := {u ∈ U | ua ≤ u ≤ ub a.e. in ]tn, tn + (N − 1)Ts[} ,
(2.27)

where

ua, ub ∈ L∞(]tn, tn + (N − 1)Ts[). (2.28)

The control u is now depending on time, but not on the space x. For a given time t, the
same control value is applied on the whole space domain Ω. Intuitively, one expects better
results if u is depending on x. Therefore, the next step is to introduce a space-dependent
control. For Q and Σ as in (2.20)-(2.23), this leads to

min
u∈U

J(y, u) :=
α

2
‖y(·, tn + Ts)− yd(·, tn + Ts)‖2

L2(Ω) +
λ

2
‖u‖2

L2(Ω) , (2.29)

with α, λ > 0, subject to

∂ty(x, t)− 1

2
∂2
xx

(
σ(x, t)2y(x, t)

)
+ ∂x

(
b
(
x, t;u(x)

)
y(x, t)

)
= 0 in Q

y(x, tn) = ρ(x) in Ω

y(x, t) = 0 in Σ

(2.30)

and

u ∈ Uad ⊂ U (2.31)

with
U := L2(Ω),

Uad := {u ∈ U | ua ≤ u ≤ ub almost everywhere in Ω} ,
(2.32)

where

ua, ub ∈ L∞(Ω). (2.33)

The additional parameter α is introduced to vary the weight of the state penalty term. The
ratio of α and λ is more important than the value of α itself. However, for numerical reasons,
it is beneficial not to lower λ too much, cf. Chapter 6. The solution is then to increase α
instead.
Eventually, for Q and Σ as in (2.24)-(2.28), the optimal control problem is given by

min
u∈U

J(y, u) :=

tn+(N−1)Ts∫
tn

α

2
‖y(·, t)− yd(·, t)‖2

L2(Ω) +
λ

2
‖u(·, t)‖2

L2(Ω) dt

=
α

2
‖y(·, t)− yd(·, t)‖2

L2(Q) +
λ

2
‖u(·, t)‖2

L2(Q) ,

(2.34)
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with α, λ > 0, subject to

∂ty(x, t)− 1

2
∂2
xx

(
σ(x, t)2y(x, t)

)
+ ∂x

(
b
(
x, t;u(x, t)

)
y(x, t)

)
= 0 in Q

y(x, tn) = ρ(x) in Ω

y(x, t) = 0 in Σ

(2.35)

and

u ∈ Uad ⊂ U (2.36)

with
U := L2(Q),

Uad := {u ∈ U | ua ≤ u ≤ ub almost everywhere in Q} ,
(2.37)

where

ua, ub ∈ L∞(Q). (2.38)

Remark 2.21
In (2.29)-(2.33) and (2.34)-(2.38), the set of admissible controls Uad consists of L2 functions.
However, in order to prove that a solution of the Fokker-Planck equation exists, additional
regularity of u was needed, cf. Subsection 2.2.1. In particular, the existence of ∂xu was
required. Ultimately, u has to meet the most restrictive demand.

It is questionable whether each of the optimal control problems (2.20)-(2.23), (2.24)-(2.28),
(2.29)-(2.33), and (2.34)-(2.38) possesses a (unique) optimal control u∗. Even if u∗ exists,
the next question is how to obtain it. These two problems are addressed in the two following
subsections.

2.3.1 Existence and Uniqueness of Optimal Solutions

One possible way to prove existence and uniqueness of optimal solutions is illustrated in [30]:
After the existence and uniqueness of solutions of the PDE have been established, the state
y in the cost functional can be eliminated formally by replacing it with a solution operator
S, i.e. y = S(u). This “new” cost functional is called the reduced cost functional. Then,
for quadratic cost functionals like (2.34) and linear and continuous (i.e. linear and bounded)
S, one can prove that – under certain technical assumptions3 – an optimal solution exists.
Moreover, it is unique if λ > 0. The linearity and continuity of S and the convexity of the
reduced cost functional4 are crucial.
However, for the optimal control problems (2.20)-(2.23), (2.24)-(2.28), (2.29)-(2.33), and
(2.34)-(2.38), clearly the mapping u 7→ S(u) is not linear and the (reduced) cost functional
is non-convex. Therefore, the above statement does not necessarily hold. A remedy is

3These assumptions are not relevant here as they are not critical; they are satisfied for the Fokker-Planck
optimal control problems introduced above.

4The convexity property holds for quadratic cost functionals like (2.34) and linear and continuous S.
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provided in [16, Section 1.5], where the theorem about the existence of optimal solutions is
extended to (general) nonlinear problems

min
(y,u)∈Y×U

J(y, u) (2.39)

subject to
e(y, u) = 0,

u ∈ Uad,
y ∈ Yad,

(2.40)

where J : Y × U → R and e : Y × U → Z are continuous, Z is a Banach space and U, Y are
reflexive Banach spaces (e.g. real Hilbert spaces). Then, under the following assumptions,
an optimal solution of (2.39)-(2.40) exists, cf. [16, p. 55, Theorem 1.45]:

Assumption 2.22
(i) ∅ 6= Uad ⊂ U is convex, bounded and closed.

(ii) Yad ⊂ Y is convex and closed, such that (2.39)-(2.40) has a feasible point.
(iii) The state equation (i.e. the PDE) e(y, u) = 0 has a bounded solution operator Uad 3

u 7→ S(u) ∈ Y .
(iv) Y × U 3 (y, u) 7→ e(y, u) ∈ Z is continuous under weak convergence.
(v) J is sequentially weakly lower continuous.

Remark 2.23
(a) Since Uad is not necessarily compact (“bounded” and “closed” does not imply “com-

pact” in infinite dimensional spaces like L2(Q)), a detour involving the notion of weak
convergence must be taken. For more details, see e.g. [16] or [30].

(b) Out of the five assumptions in Assumption 2.22, (iv) and (v) are of particular importance
in order to incorporate the more general setting.

(c) To facilitate the verification of Assumption 2.22(iv), often compact embeddings Y ↪→↪→
Ỹ are utilized to convert weak convergence in Y to strong convergence in Ỹ [16].

In [4, Section 3] existence and uniqueness of optimal solutions of a Fokker-Planck OCP
similar to (2.20)-(2.23) have been discussed. In the case of the Ornstein-Uhlenbeck process,
cf. Example 2.6, (2.20)-(2.23) is included in the considered problem. In all other cases
considered in this thesis, an existence result regarding optimal control is yet to be provided.
To this end, one could try to verify Assumption 2.22. However, this task is not tackled in
this work and remains an open question. In the following, the existence of a unique optimal
solution is assumed whenever needed.

2.3.2 Necessary Optimality Conditions

As in finite-dimensional optimization, an optimal control is obtained by deriving and then
verifying necessary (and sufficient) optimality conditions. To this end, in the case of optimal
control problems in infinite-dimensional spaces, differentiability in Banach spaces is needed.
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This leads to the notion of Gâteaux- and Fréchet differentiability, cf. [16], [30]. The reduced
cost functional is then differentiated w.r.t. u, yielding the so-called variational inequality.
This necessary condition is subsequently simplified by introducing the adjoint state p, which
is characterized by a terminal boundary value problem that is connected to the IBVP in the
side conditions of the optimal control problem. The adjoint state p can be interpreted as
the Lagrangian multiplier of the original IBVP. If the reduced cost functional is convex, the
necessary condition is sufficient and characterizes a global minimum.

This course of action has been taken in [4] to derive an optimality system that, after solv-
ing, yields a local minimum. The (non-convex) optimal control problem considered in the
theoretical part of that paper is similar to (2.20)-(2.23). It includes (2.20)-(2.23) in case of
the Ornstein-Uhlenbeck process, cf. Example 2.6.

Another possible way to determine the necessary conditions rigorously is to employ the
Karush-Kuhn-Tucker theory for optimization in Banach spaces. The problem here is to
coordinate operators, functionals and suitable function spaces: Some differentiability of the
given variables is needed in certain function spaces, adjoint operators need to be determined
and the Lagrangian multipliers must exist in some specified spaces. For more details, see
e.g. [30, Chapter 6] and the references therein.

Keeping this in mind, if one’s intention is not to prove the necessary conditions but to
quickly get an impression of how they and the adjoint equation in particular look like,
the formal Lagrange technique introduced in [30] is well-suited. It is based on the Karush-
Kuhn-Tucker theory, but ignoring any technical difficulties like heeding the different function
spaces. Instead, it is assumed that the state y, the Lagrangian multipliers, and all occurring
derivatives are L2 functions. The idea is to take the cost functional and incorporate the
“complicated” side conditions, i.e. the PDE and possibly the boundary conditions, into the
Lagrange function and use the Lagrange principle to determine the necessary conditions.
Note that neither does this technique prove the existence of an optimal solution, nor does it
prove that the conditions derived with this technique are indeed necessary. Still, it provides
a starting point for a rigorous derivation.

In the following, this technique is employed for the four optimal control problems introduced
above. As already mentioned in Subsection 2.3.1, these problems are non-convex. Because
of this, one is content with a local minimum. Note further that, even if the conditions
derived using this technique are correct, they are only necessary. Yet, numerical results look
promising and indicate that these conditions are indeed appropriate to find a local minimum,
cf. Chapter 6.

Example 2.24
Consider the optimal control problem (2.20)-(2.23) with Ω := ]xL, xR[. Define the Lagrange
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function by

L(y, u, p) = J(y, u)−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt

=
1

2

∫
Ω

(
y(·, tn + Ts)− yd(·, tn + Ts)

)2
dx+

λ

2
|u|2︸︷︷︸
=u2

−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt

Since the condition u ∈ Uad is not included in the Lagrange function, the variational inequal-
ity

DuL(ȳ, ū, p)(u− ū) ≥ 0, u ∈ Uad (2.41)

follows from the Lagrange principle, where ū and ȳ denote the optimal control and the cor-
responding state, respectively. Due to the initial and boundary conditions y(·, tn) = ρ and
y|Σ = 0, which too have not been incorporated into the Lagrange function, it follows analo-
gously that

DyL(ȳ, ū, p)(y − ȳ) ≥ 0

for all y with y(·, tn) = ρ and y|Σ = 0. Substituting y := y − ȳ yields DyL(ȳ, ū, p)y ≥ 0 for
all y with y(·, tn) = 0 and y|Σ = 0. Another substitution y := −y then finally results in

DyL(ȳ, ū, p)y = 0, y with y(·, tn) = 0 and y|Σ = 0. (2.42)

In a next step, DuL(ȳ, ū, p)(u− ū) and DyL(ȳ, ū, p)y are computed.

DuL(ȳ, ū, p)(u− ū) =

λū− ∫∫
Q

∂x

(
∂b

∂u
ȳ

)
p dx dt

 (u− ū) ≥ 0, u ∈ Uad.

The Lagrangian multiplier p has not been characterized yet. (2.42) helps in that matter:

DyL(ȳ, ū, p) y =

∫
Ω

(
ȳ(·, tn + Ts)− yd(·, tn + Ts)

)
y(tn + Ts) dx

−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt.

(2.43)

Note that the derivative of a linear continuous mapping y 7→ y(·, tn + Ts) is the mapping
itself. Plugging in (2.43) in (2.42) and integrating by parts w.r.t. t in ∂ty and w.r.t. x in
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∂2
xx(σ

2y) (twice) and ∂x(b y) yields

0 =

∫
Ω

(
ȳ(·, tn + Ts)− yd(·, tn + Ts)

)
y(·, tn + Ts) dx

+

∫∫
Q

∂tp y dx dt−
∫
Ω

(y p)|tn+Ts
tn

dx

+

∫∫
Q

1

2
σ2y ∂2

xxp dx dt+

tn+Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt−
tn+Ts∫
tn

(
1

2
σ2y ∂xp

)∣∣∣∣xR
xL︸ ︷︷ ︸

=0

dt

+

∫∫
Q

b y ∂xp dx dt−
tn+Ts∫
tn

(p b y)|xRxL︸ ︷︷ ︸
=0

dt

=

∫
Ω

(
ȳ(·, tn + Ts)− yd(·, tn + Ts)

)
y(·, tn + Ts)− y(·, tn + Ts) p(·, tn + Ts) dx

−
∫∫
Q

−∂tp y −
1

2
σ2y ∂2

xxp− b y ∂xp dx dt+

tn+Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt

=

∫
Ω

(
ȳ(·, tn + Ts)− yd(·, tn + Ts)− p(·, tn + Ts)

)
y(·, tn + Ts) dx

−
∫∫
Q

(
−∂tp−

1

2
σ2∂2

xxp− b ∂xp
)
y dx dt+

tn+Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt

(2.44)

for all sufficiently smooth y with y(·, tn) = 0 and y|Σ = 0. Choosing y ∈ C∞0 (Q) results in

0 = −
∫∫
Q

(
−∂tp−

1

2
σ2∂2

xxp− b ∂xp
)
y dx dt, y ∈ C∞0 (Q).

Since C∞0 (Q) is dense in L2(Q), it follows

−∂tp−
1

2
σ2∂2

xxp− b ∂xp = 0 in Q, (2.45)

i.e. the integral over Q in (2.44) vanishes. Next, the requirement y(·, tn+Ts) = 0 is dropped,
resulting in

0 =

∫
Ω

(
ȳ(·, tn + Ts)− yd(·, tn + Ts)− p(·, tn + Ts)

)
y(·, tn + Ts) dx.
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Analogously5, this yields

p(·, tn + Ts) = ȳ(·, tn + Ts)− yd(·, tn + Ts) in Ω. (2.46)

Finally, (∂xy)|Σ = 0 is dropped. Therefore,

0 =

tn+Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt,

and, consequently,

p = 0 in Σ, (2.47)

hold for all sufficiently smooth y with y(·, tn) = 0 and y|Σ = 0. Thus, p is characterized by
(2.45), (2.46), and (2.47).
In summary, the optimality system consists of the original IBVP

∂ty −
1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
)

= 0 in Q,

y(·, tn) = ρ in Ω,

y = 0 in Σ,

(2.48)

the corresponding adjoint problem

−∂tp−
1

2
σ2∂2

xxp− b ∂xp = 0 in Q,

p(·, tn + Ts) = y(·, tn + Ts)− yd(·, tn + Ts) in Ω,

p = 0 in Σ,

(2.49)

and the variational inequalityλū− ∫∫
Q

∂x

(
∂b

∂u
y

)
p dx dt

 (u− ū) ≥ 0, u ∈ Uad. (2.50)

Solving the optimality system (2.48)-(2.50) yields a candidate for an optimal control ū with
corresponding state y and adjoint state p.6 This process is applied to the other control
problems as well.

Example 2.25
Consider the optimal control problem (2.24)-(2.28) with Ω := ]xL, xR[. The Lagrange function

5The fact that the possible values for y(·, tn + Ts) and ∂νy (cf. the last integral term in (2.44)) are dense
in L2(Ω) and L2(Σ), respectively, is used without proof in this formal derivation.

6The bar above y is omitted intentionally.
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is given by

L(y, u, p) =
1

2

∫∫
Q

(y − yd)2 dx dt+
λ

2

tn+(N−1)Ts∫
tn

u2 dt

−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt.

Then

DuL(ȳ, ū, p)(u− ū) =

tn+(N−1)Ts∫
tn

λū (u− ū) dt−
∫∫
Q

∂x
(
D3(b) ȳ

)
p (u− ū) dx dt

=

tn+(N−1)Ts∫
tn

λū− ∫
Ω

∂x
(
D3(b) ȳ

)
p dx

 (u− ū) dt

and

DyL(ȳ, ū, p) y =

∫∫
Q

(ȳ − yd) y dx dt−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt.

Therefore, analogous to (2.44),

0 = DyL(ȳ, ū, p) y = −
∫
Ω

p(·, tn + (N − 1)Ts) y(·, tn + (N − 1)Ts) dx

−
∫∫
Q

(
−(ȳ − yd)− ∂tp−

1

2
σ2∂2

xxp− b ∂xp
)
y dx dt

+

tn+(N−1)Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt

(2.51)

for all sufficiently smooth y with y(·, tn) = 0 and y|Σ = 0. Using the same arguments as in
Example 2.24, the adjoint problem is determined. Eventually, the optimality system is given
by

(2.48) with adjusted Q and Σ and ū = ū(t), (2.52)

the corresponding adjoint problem

−∂tp−
1

2
σ2∂2

xxp− b ∂xp = y − yd in Q,

p(·, tn + (N − 1)Ts) = 0 in Ω,

p = 0 in Σ,

(2.53)
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and the variational inequality

tn+(N−1)Ts∫
tn

λū− ∫
Ω

∂x
(
D3(b) y

)
p dx

 (u− ū) dt ≥ 0, u ∈ Uad. (2.54)

Example 2.26
Consider the optimal control problem (2.29)-(2.33) with Ω := ]xL, xR[. The Lagrange function
is defined by

L(y, u, p) =
α

2

∫
Ω

(
y(·, tn + Ts)− yd(·, tn + Ts)

)2
dx+

λ

2

∫
Ω

u2 dx

−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt

Compared to the other two examples, it is harder to determine DuL(ȳ, ū, p)(u− ū) since the
control u = u(x) is now space-dependent. The problem is the ∂x

(
b y
)

or, more precisely, the
resulting ∂xu term: Since

∂x
(
b y
)

= (D1(b) +D3(b) ∂xu) y + b ∂xy,

it follows

DuL(ȳ, ū, p)(u− ū)

=

∫
Ω

λū (u− ū) dx−Du

∫∫
Q

[(D1(b) +D3(b) ∂xu) y + b ∂xy] p dx dt

∣∣(y,u)=(ȳ,ū)

(u− ū).

Because of

Du

∫∫
Q

∂xu dx dt

 (u− ū) =

∫∫
Q

∂x (u− ū) dx dt,

it is not possible to factor out u− ū. However, this will be essential later, e.g. when the gra-
dient of the reduced cost functional is sought, cf. (2.69). This difficulty can be circumvented
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by integrating by parts:

DuL(ȳ, ū, p)(u− ū)

=

∫
Ω

λū (u− ū) dx−Du

∫∫
Q

∂x
(
b y
)
p dx dt

∣∣(y,u)=(ȳ,ū)

(u− ū)

=

∫
Ω

λū (u− ū) dx

−Du

−∫∫
Q

b y ∂xp dx dt+

tn+Ts∫
tn

(b y p)|xRxL︸ ︷︷ ︸
=0

dt

∣∣(y,u)=(ȳ,ū)

(u− ū)

=

∫
Ω

λū+

tn+Ts∫
tn

D3(b) ȳ ∂xp dt

 (u− ū) dx.

(2.55)

Apart from the factor α, L(y, u, p) is identical to the Lagrange function in Example 2.24.
Hence,

0 = DyL(ȳ, ū, p) y =

∫
Ω

(
α
(
ȳ(·, tn + Ts)− yd(·, tn + Ts)

)
− p(·, tn + Ts)

)
y(·, tn + Ts) dx

−
∫∫
Q

(
−∂tp−

1

2
σ2∂2

xxp− b ∂xp
)
y dx dt+

tn+Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt

for all sufficiently smooth y with y(·, tn) = 0 and y|Σ = 0. Analogously to Example 2.24,
the adjoint problem is determined. Eventually, the result is the following optimality system,
which consists of

(2.48) with ū = ū(x), (2.56)

the corresponding adjoint problem

−∂tp−
1

2
σ2∂2

xxp− b ∂xp = 0 in Q,

p(·, tn + Ts) = (y(·, tn + Ts)− yd(·, tn + Ts))α in Ω,

p = 0 in Σ,

(2.57)

and the variational inequality

∫
Ω

λū+

tn+Ts∫
tn

D3(b) y ∂xp dt

 (u− ū) dx ≥ 0, u ∈ Uad. (2.58)
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Example 2.27
Consider the optimal control problem (2.34)-(2.38) with Ω := ]xL, xR[. The Lagrange function
is given by

L(y, u, p) =
α

2

∫∫
Q

(y − yd)2 dx dt+
λ

2

∫∫
Q

u2 dx dt

−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt.

Determining DuL(ȳ, ū, p)(u− ū) is analogous to Example 2.26, i.e.

DuL(ȳ, ū, p)(u− ū) =

∫∫
Q

(
λū+D3(b) ȳ ∂xp

)
(u− ū) dx dt. (2.59)

DyL(ȳ, ū, p) y is almost the same as in Example 2.25:

DyL(ȳ, ū, p) y = α

∫∫
Q

(ȳ − yd) y dx dt−
∫∫
Q

(
∂ty −

1

2
∂2
xx

(
σ2y
)

+ ∂x
(
b y
))

p dx dt.

Therefore,

0 = −
∫
Ω

p(·, tn + (N − 1)Ts) y(·, tn + (N − 1)Ts) dx

−
∫∫
Q

(
−α(ȳ − yd)− ∂tp−

1

2
σ2∂2

xxp− b ∂xp
)
y dx dt+

tn+(N−1)Ts∫
tn

(
1

2
p ∂x

(
σ2y
))∣∣∣∣xR

xL

dt.

As before, the adjoint problem is determined, resulting in the following optimality system:

(2.48) with adjusted Q and Σ and ū = ū(x, t), (2.60)

the corresponding adjoint problem

−∂tp−
1

2
σ2∂2

xxp− b ∂xp = (y − yd) α in Q,

p(·, tn + (N − 1)Ts) = 0 in Ω,

p = 0 in Σ,

(2.61)

and the variational inequality∫∫
Q

(
λū+D3(b) y ∂xp

)
(u− ū) dx dt ≥ 0, u ∈ Uad. (2.62)
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Remark 2.28
The adjoint problems (2.49), (2.53), (2.57), and (2.61) evolve backwards in time. However,
they can be rewritten such that the time ordering is reversed. Exemplarily, this is done below
for (2.61).
Let T := tn + (N − 1)Ts. Then by the time transformation

τ := T − t

and by defining

p̃(x, τ) := p(x, T − τ︸ ︷︷ ︸
=t

),

σ̃(x, τ) := σ(x, T − τ),

b̃(x, τ ; ũ(x, τ)) := b(x, T − τ ;u(x, T − τ)),

ỹ(x, τ) := y(x, T − τ),

ỹd(x, τ) := yd(x, T − τ),

the time ordering is reversed, resulting in the following IBVP:

∂τ p̃(x, τ)− 1

2
σ̃2(x, τ)∂2

xxp̃(x, τ)− b̃(x, τ ; ũ(x, τ)) ∂xp̃(x, τ) = (ỹ(x, τ)− ỹd(x, τ)) α in Q

p̃(·, 0) = 0 in Ω

p̃ = 0 in Σ

Note that
Dτ p̃(x, τ) = Dτp(x, T − τ) = −Dtp(x, t).

Similar to Theorem 2.12, [16, p. 46, Corollary 1.1] ensures a unique solution p̃ of the
transformed adjoint problem. Backward substitution by p(x, t) = p̃(x, τ) yields the adjoint
state p.

The optimality systems (2.48)-(2.50), (2.52)-(2.54), (2.56)-(2.58), and (2.60)-(2.62) derived
with the help of the formal Lagrange technique are used to solve the optimal control problems
(2.20)-(2.23), (2.24)-(2.28), (2.29)-(2.33), and (2.34)-(2.38), respectively. However, it is not
clear how to algorithmically process the variational inequalities (2.54), (2.58), and (2.62), i.e.
if u is a function of time (and space). The solution is to formulate a point-wise variational
inequality in R instead. Exemplarily, this is done below for (2.62). However, the same
arguments apply to (2.54) and (2.58).
The point-wise variational inequality in the case of (2.62) is given by(

λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)
)

(v − ū(x, t)) ≥ 0 (2.63)

for all v ∈ [ua(x, t), ub(x, t)] and almost all (x, t) ∈ Q. Moreover, the following Lemma7

holds.
7This Lemma and its proof are based on [30, Lemma 2.26] and the proof thereof.
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Lemma 2.29
The following statements are equivalent:

(i) (2.62) holds

(ii) ū(x, t)


= ua(x, t), if λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) > 0

∈ [ua(x, t), ub(x, t)], if λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) = 0

= ub(x, t), if λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) < 0

(iii) (2.63) holds for all v ∈ [ua(x, t), ub(x, t)] and almost all (x, t) ∈ Q.

Proof. (i)⇒ (ii): (Proof by contradiction.) Assume (ii) does not hold. Define the measurable
sets

A+(ū) := {(x, t) ∈ Q | λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) > 0} ,
A−(ū) := {(x, t) ∈ Q | λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) < 0} ,

where ū, ua, and ub are each arbitrary but fixed representatives of their respective equivalence
class. Since (ii) does not hold, there exists a set E+ ⊂ A+(ū) with |E+| > 0 and ū(x, t) >
ua(x, t) for all (x, t) ∈ E+ or there exists a set E− ⊂ A−(ū) with |E−| > 0 and ū(x, t) <
ub(x, t) for all (x, t) ∈ E−. Define

u(x, t) :=


ua(x, t), (x, t) ∈ E+,

ub(x, t), (x, t) ∈ E−,
ū(x, t), (x, t) ∈ Q \ (E+ ∪ E−).

Then from (i) follows∫∫
Q

(
λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)

)
(u(x, t)− ū(x, t)) dx dt

=

∫∫
E+

(
λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)

)
︸ ︷︷ ︸

>0

(ua(x, t)− ū(x, t))︸ ︷︷ ︸
<0

dx dt

+

∫∫
E−

(
λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)

)
︸ ︷︷ ︸

<0

(ub(x, t)− ū(x, t))︸ ︷︷ ︸
>0

dx dt < 0,

which contradicts (i).
(ii) ⇒ (iii): From (ii) follows ū(x, t) = ua(x, t) almost everywhere in A+(ū) and therefore,
v − ū(x, t) ≥ 0 for all v ∈ [ua(x, t), ub(x, t)]. Hence,(

λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)
)

︸ ︷︷ ︸
>0

(v − ū(x, t))︸ ︷︷ ︸
≥0

≥ 0

almost everywhere in A+(ū). Analogously, the same inequality holds almost everywhere in
A−(ū). Almost everywhere in Q \ (A+(ū) ∪ A−(ū)) this inequality obviously holds as well:
there, (

λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)
)

= 0
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holds. Therefore, (2.63) holds for all v ∈ [ua(x, t), ub(x, t)] and almost all (x, t) ∈ Q.

(iii) ⇒ (i): Let u ∈ Uad. Since ū(x, t) ∈ [ua(x, t), ub(x, t)] almost everywhere in Q, with
v := u(x, t) it follows from (iii) that(
λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)

)
(u(x, t)− ū(x, t)) ≥ 0, almost all (x, t) ∈ Q.

Integrating this inequality yields (i).

In the case of

λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) 6= 0

Lemma 2.29(ii) determines ū(x, t). If

λū(x, t) +D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) = 0,

then

ū(x, t) = −1

λ
D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t) (2.64)

at least indicates how the control ū(x, t) should be chosen. If D3(D3(b)) ≡ 0 then (2.64) is
an explicit formula for ū(x, t). For D3(D3(b)) ≡ 0, the different cases can be subsumed by
the explicit projection formula

ū(x, t) = P[ua(x,t),ub(x,t)]

{
−1

λ
D3(b)(x, t; ū(x, t)) y(x, t) ∂xp(x, t)

}
(2.65)

for almost all (x, t) ∈ Q, where P[a,b] with a ≤ b ∈ R is the projection of R onto [a, b], i.e.

P[a,b](u) := min {b,max {a, u}} ,

cf. Figure 2.1.

Remark 2.30
D3(D3(b)) ≡ 0 holds for all stochastic processes considered in this work, cf. Example 2.6.

a

b
u

P[a,b](u)

Figure 2.1: Exemplary projection
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For completeness, the projection formulas for Examples 2.24, 2.25, and 2.26, respectively,
are given below:

ū = P[ua,ub]

1

λ

∫∫
Q

∂x

(
∂b

∂u
(x, t; ū) y(x, t)

)
p(x, t) dx dt

 , (2.66)

ū(t) = P[ua(t),ub(t)]

1

λ

∫
Ω

∂x
(
D3(b)(x, t; ū(t)) y(x, t)

)
p(x, t) dx

 , (2.67)

ū(x) = P[ua(x),ub(x)]

−1

λ

tn+Ts∫
tn

D3(b)(x, t; ū(x)) y(x, t) ∂xp(x, t) dt

 . (2.68)

Remark 2.31
It is also possible to use integration by parts to “transfer” the derivative w.r.t. x to p in
(2.66) and (2.67), resulting in formulas that highlight the similarity to (2.68) and (2.65).

As mentioned in the beginning of this subsection, the variational inequalities can also be
obtained by replacing the state y in the cost functional J(y, u) with a solution operator S,
i.e. y = S(u), which leads to the reduced cost functional Ĵ(u) = J(S(u), u), cf. Subsection
2.3.1. Differentiating it w.r.t. u yields the variational inequality

〈Ĵ ′(ū), u− ū〉U∗,U ≥ 0, u ∈ Uad ⊂ U,

where 〈·, ·〉 is the duality pairing, cf. Definition A.2. By the Riesz Representation Theorem
A.4 the derivative can be identified with the gradient ∇Ĵ(u) by means of

〈Ĵ ′(ū), u− ū〉U∗,U =
(
∇Ĵ(ū), u− ū

)
U
, u ∈ Uad ⊂ U. (2.69)

Remark 2.32
In the literature, sometimes Ĵ ′(u) is written for the gradient ∇Ĵ(u). The difference between
Ĵ ′(u) and ∇Ĵ(u) is that Ĵ ′(u) is an element in U∗, the dual space of U , while the Riesz
representative ∇Ĵ(u) is an element in U .

Notice that the inner product in U is used on the right-hand side of (2.69). In the optimal
control problems (2.20)-(2.23), (2.24)-(2.28), (2.29)-(2.33), and (2.34)-(2.38), U is either
some L2 space or the space of real values, R. In either case, assuming the corresponding
optimality systems derived in Examples 2.24-2.27 are correct, ∇Ĵ(ū) can be written as

∇Ĵ(ū) = λū−
∫∫
Q

∂x

(
∂b

∂u
y

)
p dx dt (2.70)

in the case of (2.20)-(2.23). Analogously,

∇Ĵ(ū) = λū−
∫
Ω

∂x
(
D3(b) y

)
p dx (2.71)
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in the case of (2.24)-(2.28),

∇Ĵ(ū) = λū+

tn+Ts∫
tn

D3(b) y ∂xp dt (2.72)

in the case of (2.29)-(2.33), and

∇Ĵ(ū) = λū+D3(b) y ∂xp (2.73)

in the case of (2.34)-(2.38). Notice that for ∇Ĵ(ū) = 0 and D3(D3(b)) ≡ 0, one can solve
(2.70)-(2.73) for ū. Doing so yields the arguments of the above projection formulas (2.66)-
(2.68) and (2.65).
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Chapter 3

Model Predictive Control

Model predictive control is an optimization based method for the feedback control of (non-
linear) systems [11]. In contrast to open-loop optimal control problems, such as, for example
(2.34)-(2.38), where the control u is optimized once on the whole time interval (i.e. the whole
optimization horizon), MPC computes a closed-loop control. One advantage of a closed-loop
controller is the ability to incorporate disturbances that may shift the state. In addition,
the main benefits of MPC are 1) the ability to deal with infinite optimization horizon, 2)
the anticipation of future events in the current optimization step and 3) the possibility to
easily implement control and state constraints.
In this thesis, MPC is used to compute an optimal control for the Fokker-Planck equation
with the objective to track a sequence of target probability density functions, trying to match
the respective densities as good as possible at given times. This has already been done in
[3] and [4] with a space-independent control. However, only the shortest possible horizon
was considered. The horizon length is a key parameter to tune in the MPC algorithm, cf.
Section 3.1. In many cases, satisfying results can only be achieved by a high enough horizon,
which entails more computing time. Therefore, an analysis whether a longer horizon yields
better results is conducted in this work. To this end, a short introduction to MPC is given in
Section 3.1. Stability of MPC is briefly discussed in Section 3.2. Details and many results,
especially concerning stability of MPC, can be found in [11] and [26]. Afterwards, in Section
3.3, the MPC scheme is applied to solve the above tracking problem.

3.1 Introduction to Model Predictive Control

In the MPC setting, the considered systems are the following.

Definition 3.1 (Nonlinear discrete time control system)
Let Z,U be metric spaces and f : Z × U → Z. The nonlinear discrete time control system
is defined as follows:

z(n+ 1) = f(z(n), u(n)) (3.1)
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Notation
� U := {u | u : N0 → U} is the space of control sequences.
� The solution trajectory for given initial state z0 and control sequence (u(n))n∈N0 ⊆ U

is denoted by zu(·) = zu(·; z0).

The main idea behind MPC is to truncate the original optimization horizon, solve the optimal
control problem only on a smaller, finite horizon and thereby obtain an optimal control
sequence. The horizon length is defined by a parameter N ∈ N≥2. Then, instead of simply
implementing the sequence, only the first value of the sequence is implemented. Afterwards,
the optimization (or prediction) horizon is shifted in time so that the new (measured) state
becomes the present state. Based on this state, another optimal control problem is solved
on the new horizon, and so on, until a terminal time TE is reached. This process is depicted
in Figure 3.1. In the literature, MPC is also denoted by Receding Horizon Control (RHC)
for its moving horizon characteristic. By only implementing a part of the optimal control
sequence and measuring the current state of the system, disturbances in the state and new,
possibly unexpected information regarding the reference trajectory are accounted for when
optimizing.
The optimization problem that needs to be solved in every time step is given by

min
u(·)∈U

JN(z0, u(·)) :=
N−1∑
k=0

l(zu(k; z0), u(k)) s.t.

zu(0; z0) = z0,

zu(k + 1; z0) = f(zu(k; z0), u(k)),

(OCPN)

where l : Z × U → R≥0 is a continuous function defining the so-called stage costs and f is
given by the nonlinear discrete time control system, cf. Definition 3.1.
By following the above procedure, an MPC-Feedback µN : Z → U and the corresponding
solution trajectory zµN of the closed-loop system

zµN (n+ 1; z0) = f(zµN (n; z0), µN(zµN (n; z0))) (3.2)

is obtained. This iterative process is specified in the following algorithm.

Algorithm 3.2 (MPC Algorithm)
Fix some N ∈ N≥2. At each time tn, n = 0, 1, 2, . . .

1. Measure the state z(n) ∈ Z of the system.
2. Set z0 := z(n) and solve (OCPN) in order to obtain the optimal control sequence

denoted by u∗(0), . . . , u∗(N − 1).
3. Set µN(zµN (n; z0)) := u∗(0), compute zµN (n + 1; z0) according to (3.2), set n := n + 1

and go to 1.

Remark 3.3
Only the first value of the optimal control sequence u∗(0), ..., u∗(N−1) is used. However, the
other values may be used as initial guesses for the new optimal control in the next optimization
step.
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Reference0trajectory
Predicted0state
Measured0state
Predicted0control
Past0control

(Prediction)0Horizon0N

Sample0time

Past Future
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n n+1 n+2

Reference0trajectory
Predicted0state
Measured0state
Predicted0control
Past0control

(Prediction)0Horizon0N

Past Future

t

0 1 2 N-1...

n n+1 n+2
0 1 2 N-1...

Figure 3.1: MPC scheme (discrete times n (top) and n+1 (bottom)) (Template source: http:
//commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg, retrieved on October 24,
2013)

3.2 Stability

As already mentioned in the introduction of this chapter, MPC is used to compute an optimal
control for the Fokker-Planck equation with the objective to track a sequence of target
probability density functions. More generally, the goal of MPC is to control the state z(n) of
a (nonlinear) system toward a reference trajectory and keep it close to this reference [11], cf.
Figure 3.1. Under certain assumptions theoretical results guarantee that the MPC feedback
law µN does exactly that, i.e. the closed-loop system (3.2) is “asymptotically stable”. Hence,
in the following, stability of nonlinear discrete systems

z(n+ 1) = f(z(n)) (3.3)
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with f : Z → Z and Z being a metric space is scrutinized. In the discussion to follow, only
constant reference trajectories are considered. For time-varying reference trajectories, see
[11].
If the reference trajectory is constant, i.e. if convergence to a certain state z∗ ∈ Z is sought,
it is desirable for z∗ to be an equilibrium point.

Definition 3.4 (Equilibrium point)
A point z∗ ∈ Z is an equilibrium point of (3.3) :⇔

(
z(0) = z∗ ⇒ z(n) = z∗ for all n ∈ N0

)
,

i.e. z∗ = f(z∗).

If convergence to a state z∗ is impossible, one might be content with convergence to a set
A ⊂ Z. In this case, it is desirable that once the set is reached, the system stays in that set.
This property is called positive invariance.

Definition 3.5 (Positive invariant set)
A set A ⊂ Z is positive invariant for (3.3) :⇔

(
z ∈ A ⇒ f(z) ∈ A

)
.

So-called comparison functions provide a convenient way to define stability properties of
nonlinear systems.

Definition 3.6 (K,K∞,L and KL functions)
The following sets each define a class of comparison functions.

K := {α : R≥0 → R≥0 | α continuous and strictly monotonically increasing with α(0) = 0}
K∞ := {α : R≥0 → R≥0 | α ∈ K, α unbounded}

L :=
{
δ : R≥0 → R≥0

∣∣∣ δ continuous, strictly monotonically decreasing and lim
t→∞

δ(t) = 0
}

KL := {β : R≥0 × R≥0 → R≥0 | β continuous, β(·, t) ∈ K, β(r, ·) ∈ L}

Furthermore, the following notation is used in the definition of stability.

Notation
Let Z be a metric space.

|z1|z2 := dZ(z1, z2) denotes the distance between z1 ∈ Z and z2 ∈ Z.
Bη(z

∗) :=
{
z ∈ Z

∣∣ |z|z∗ < η
}

is the open ball around z∗ ∈ Z with radius η.

Additionally, the trajectory of (3.3) for a given initial state z0 is denoted by z(·) = z(·; z0).

Definition 3.7 (Asymptotic stability)
Let z∗ ∈ Z be an equilibrium point of (3.3).
(a) z∗ is locally asymptotically stable :⇔ ∃η > 0, β ∈ KL ∀z0 ∈ Bη(z

∗), n ∈ N0 :

|z(n; z0)|z∗ ≤ β(|z0|z∗ , n).
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(b) z∗ ∈ A is asymptotically stable on a positive invariant set A ⊂ Z
:⇔ ∃β ∈ KL ∀z0 ∈ A, n ∈ N0 :

|z(n; z0)|z∗ ≤ β(|z0|z∗ , n).

(c) z∗ ∈ A is globally asymptotically stable :⇔ z∗ is asymptotically stable on A = Z.

This notion of stability contains two properties, the Lyapunov stability, and attraction; both
are expressed by the KL function β. Again, for more details, see [11]. With Definition 3.7
in mind, the problem of proving stability of the closed-loop system (3.2) is tackled.

Definition 3.8 (Optimal value function)
Consider the cost functional JN in (OCPN). The corresponding optimal value function is
defined as

VN(z0) := inf
u∈U

JN(z0, u).

Definition 3.9 (Relaxed Lyapunov inequality)
The relaxed Lyapunov inequality holds :⇔ ∃α ∈ ]0, 1] ∀z ∈ Z :

VN(f(z, µN(z))) ≤ VN(z)− α l(z, µN(z)), (3.4)

where VN is the optimal value function.

The relaxed Lyapunov inequality is a key ingredient to ensure stability. The interpretation
is that the optimal value function has to decrease in time by some ratio of the stage costs in
the current time step. If the stage costs are chosen carefully, this entails the state (slowly)
approaching the desired state. To achieve this inequality, certain requirements are posed on
the system and on the optimization horizon. One possible requirement is the exponential
controllability of the system.

Definition 3.10 (Exponential controllability w.r.t. stage costs l)
The system (3.1) is exponentially controllable with respect to stage costs l
:⇔ ∃C ≥ 1, σ ∈ ]0, 1[ ∀z0 ∈ Z ∃uz ∈ U :

l(zuz(n; z0), uz(n)) ≤ Cσn min
u∈U

l(z0, u)︸ ︷︷ ︸
=:l∗(z0)

, n ∈ N0. (3.5)

The second requirement is imposed on the MPC horizon N and is formulated in the following
stability theorem.

Theorem 3.11 (Stability Theorem)
Let the controllability condition (3.5) hold with C ≥ 1 and σ ∈ ]0, 1[. Choose N such that
the stability condition

αN := 1− (γN − 1)
∏N

i=2(γi − 1)∏N
i=2 γi −

∏N
i=2(γi − 1)

> 0
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holds with

γi := C

i−1∑
n=0

σn = C
1− σi

1− σ
.

⇒ ∀z ∈ Z : The relaxed Lyapunov inequality (3.4) holds with α = αN .
Let, additionally, η, η ∈ K∞ satisfy

η(‖z − z∗‖) ≤ l∗(z) and η(‖z − z∗‖) ≥ VN(z), z ∈ Z

with z∗ ∈ Z being an equilibrium point.
⇒ The trajectory generated by the closed-loop system (3.2) is asymptotically stable. In
particular, it converges to the equilibrium z∗ as n→∞.

Proof. The first result follows directly from [11, Theorem 6.14] and [11, Proposition 6.17].
The second result is then a direct consequence of [11, Theorem 4.11].

3.3 MPC for the Fokker-Planck Equation

The various Fokker-Planck optimal control problems introduced in Section 2.3 all stemmed
from the desire to find a control u such that, starting with an initial probability density
function ρ, the stochastic process evolves such that a sequence of desired target probability
densities is matched as good as possible at certain times. This task perfectly matches the
idea of MPC. Therefore, the aim of this section is to explain the details on how to apply an
MPC scheme to the Fokker-Planck optimal control problems (2.20)-(2.23) and (2.29)-(2.33).
First, since the time in the Fokker-Planck equation is continuous, the PDE needs to be
translated into a discrete system. This is done by sampling: The idea is to define a discrete
system such that the trajectory of it coincides with the continuous solution of the PDE
in some pre-defined sample times, cf. Figure 3.2. These systems are called sample data
systems. For simplicity, only equidistant sampling times tn := nTs, n ∈ N0 for a given Ts > 0
are considered.

t

z

t0 t1 t2 t3 t4 tN

u(0)

u(1)
u(2)

u(3)
u(4)

v(t)

zu(n;z0)

φ(t;v,z0)
z0

Figure 3.2: Sample data system

Let ϕ(x, t; v, ρ) be the solution of the Fokker-Planck equation (2.7)-(2.9) with a control v.
Furthermore, let Ts > 0. Define

z(n+ 1) := ϕ(x, Ts;u(n), z(n))
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with z(0) := ρ. The discrete control u can then be defined as

u(n) := v(·, t+ nTs)|[nTs,(n+1)Ts]

with u ∈ L∞([0, TE[,R) for (2.20)-(2.23) and u ∈ L∞([0, TE[, L2(Ω)) for (2.29)-(2.33). Hence,
the discrete time n corresponds to the continuous time nTs, i.e.

z(n) = y(·, nTs) ∈ H1
0 (Ω) =: Z.

Next, the stage costs l need to be defined. In Section 2.3, the idea was to partition the
time interval ]0, TE[ and solve optimal control problems of type (2.20)-(2.23) on small time
intervals, one by one, until the whole time interval ]0, TE[ is covered. This coincides with
applying an MPC scheme on ]0, TE[ with the shortest possible horizon and l defined as
follows:

l(z(n), u(n)) :=
1

2
‖y(·, nTs)− yd(·, nTs)‖2

L2(Ω) +
λ

2
|v(nTs)|2. (3.6)

As mentioned in Section 3.1, the shortest possible horizon length is N = 2. Hence, in each
MPC optimization step (step 2 in Algorithm 3.2), the cost functional JN in (OCPN) results
in

J2(z0, ũ(·)) =
1∑

k=0

l(zũ(k; z0), ũ(k)) = l(zũ(0; z0)︸ ︷︷ ︸
=z0=z(n)

, ũ(0)︸︷︷︸
=u(n)

) + l(zũ(1; z0)︸ ︷︷ ︸
=z(n+1)

, ũ(1)︸︷︷︸
u(n+1)

)

=
1

2
‖y(·, nTs)− yd(·, nTs)‖2

L2(Ω) +
λ

2
|v(nTs︸︷︷︸

=tn

)|2

+
1

2
‖y(·, (n+ 1)Ts)− yd(·, (n+ 1)Ts)‖2

L2(Ω) +
λ

2
|v((n+ 1)Ts︸ ︷︷ ︸

=tn+Ts

)|2

=
1

2
‖y(·, tn)− yd(·, tn)‖2

L2(Ω) +
λ

2
|v(tn)|2

+
1

2
‖y(·, tn + Ts)− yd(·, tn + Ts)‖2

L2(Ω) +
λ

2
|v(tn + Ts)|2,

which does not coincide with (2.20). However, the first term, 1
2
‖y(·, tn)− yd(·, tn)‖2

L2(Ω), is
constant because tn is the current initial time, i.e. y(·, tn) is a given. Constant terms in the
cost functional do not change the optimum and can therefore be omitted. The last term,
λ
2
|v(tn+Ts)|2, is zero: It is always optimal to choose ũ(1) = v(tn+Ts) = 0 because the control

value v(tn +Ts) only influences the state y for t ≥ tn +Ts, but the currently considered time
frame is ]tn, tn + Ts[. Therefore, only

λ

2
|v(tn)|2 +

1

2
‖y(·, tn + Ts)− yd(·, tn + Ts)‖2

L2(Ω) (3.7)

is of relevance. In particular, the only parameter to optimize is v(tn) = ũ(0), a real value.
Since this is exactly (2.20), the optimal control problem (OCPN) defined by the above
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discrete system and stage costs (3.6) is solved by solving the corresponding optimality system
(2.48)-(2.50).
One aim of this thesis is to analyze the impact of the horizon length N . Increasing N while
keeping the stage costs (3.6) leads to

JN(z0, ũ(·)) =
N−1∑
k=0

l(zũ(k; z0)︸ ︷︷ ︸
=z(n+k)

, ũ(k)︸︷︷︸
=u(n+k)

)

=
N−1∑
k=0

(
1

2
‖y(·, (n+ k)Ts)− yd(·, (n+ k)Ts)‖2

L2(Ω) +
λ

2
|v((n+ k)Ts)|2

)

≈ 1

Ts

tn+(N−1)Ts∫
tn

1

2
‖y(·, t)− yd(·, t)‖2

L2(Ω) +
λ

2
|v(t)|2 dt,

which is (2.24), short of the factor 1
Ts

. More precisely,

Ts JN(z0, ũ(·)) =

tn+(N−1)Ts∫
tn

1

2
‖y(·, t)− yd(·, t)‖2

L2(Ω) +
λ

2
|v(t)|2 dt+O(Ts).

Since multiplying a cost functional by a real number does not change the optimum, the
factor 1

Ts
(or Ts) may as well be ignored. Therefore, for small Ts, the cost functional JN

approximates (2.24). Hence, the optimality system (2.52)-(2.54) is used to compute the
optimal MPC feedback law µN .
Another aim of this work was to compare space-dependent controls with space-independent
ones. Similar to (3.6), the stage costs are defined as

l(z(n), u(n)) :=
α

2
‖y(·, nTs)− yd(·, nTs)‖2

L2(Ω) +
λ

2
‖v(nTs)‖2

L2(Ω) . (3.8)

Then, by the same reasoning as above, JN with stage costs (3.8) is equivalent to (2.29)
for N = 2 and approximates the cost functional (2.34) for higher N and small Ts > 0.
Consequently, the optimal solution of (OCPN) is obtained by solving the optimality system
(2.56)-(2.58) in the former case and (2.60)-(2.62) in the latter.

Remark 3.12
If a terminal time TE is fixed, employing an MPC scheme with N > 2 results in computing
an optimal solution while considering the (desired) states after TE. These, however, are
not of interest. There are two ways to deal with this nuisance: Either change the horizon
accordingly or leave it constant. The first approach results in a termination of the MPC
algorithm as soon as the horizon is shortened for the first time. The reason behind this
is simple: Since the reference trajectory and the predicted states up until TE have already
been taken into account in the computation of the optimal control sequence and since no
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disturbances appear in the model, the whole sequence can be applied. The second approach
on the other hand is more in line with the aim to obtain an asymptotically stable closed-loop
system, cf. Section 3.2.

Remark 3.13
In the MPC literature, the minimal horizon length often is 2, despite the additional terms
in the cost functional JN that are either constant or zero. The upside of this notation is
the ability to easily add so-called terminal costs to the stage costs in (OCPN). These costs,
however, are not the topic of this work. Furthermore, in the implementation of MPC for the
Fokker-Planck equation, only the relevant terms appear in the cost functionals, cf. Chapter 5.
Therefore, in the following chapters, the horizon parameter N is reinterpreted as the number
of controls to be optimized in (OCPN), rendering N = 1 the smallest possible value. In this
case, the above cost functionals can be reformulated into

JN(z0, ũ(·)) =
N−1∑
k=0

(
1

2
‖y(·, (n+ k + 1)Ts)− yd(·, (n+ k + 1)Ts)‖2

L2(Ω)

+
λ

2
|v((n+ k)Ts)|2

) (3.9)

and

JN(z0, ũ(·)) =
N−1∑
k=0

(
α

2
‖y(·, (n+ k + 1)Ts)− yd(·, (n+ k + 1)Ts)‖2

L2(Ω)

+
λ

2
‖v((n+ k)Ts)‖2

L2(Ω)

)
,

(3.10)

depending on whether the control is space-dependent or not. N still represents the horizon:
A value of 1 means that only one step ahead is calculated, i.e. starting from zµ1(n; z0) (or,
equivalently, y(·, tn)), only zµ1(n+ 1; z0) (or y(·, tn + Ts)) is computed.

One topic that has not been discussed in this section is the stability of the closed-loop system
(3.2) for the Fokker-Planck equation and the above stage costs (3.6) and (3.8). The tools
introduced in Section 3.2 – Theorem 3.11 in particular – provide a good starting point for a
theoretical investigation. Using these tools, a similar analysis for the linear heat equation and
a constant reference trajectory has been conducted in [2]. In this thesis, however, stability
of the closed-loop system (3.2) remains an open question. The focus is on numerical results
instead. On that account, the next chapter is about solving the Fokker-Planck optimal
control problems numerically.
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Chapter 4

Discretization of the Fokker-Planck
Optimality Systems

In this chapter, the Fokker-Planck optimal control problems are tackled numerically. More
precisely, it is discussed how to discretize the optimality systems (2.48)-(2.50), (2.52)-(2.54),
(2.56)-(2.58), and (2.60)-(2.62). These systems each contain two PDEs that need to be
solved. In some cases, the solution of the Fokker-Planck equation is known in closed form;
for example, if the control u is simply a real value and the stochastic process at hand is the
Ornstein-Uhlenbeck process, cf. Example 2.6. In the vast majority of practically relevant
situations, however, the solution can only be obtained numerically. In this work, this is
accomplished by a Finite Differences approach, which is presented in Section 4.1. Having
solved both PDEs numerically, the (point-wise) variational inequality needs to hold. This
leads to iterative optimization algorithms like the Projected Gradient method and a Newton
method with a primal-dual active set strategy. Both are presented in Section 4.2.

4.1 Discretization of the Fokker-Planck Equation

The line of action in this section can be outlined as follows: First, the spatial domain
Ω ⊂ R is discretized by a grid Ωh. On this grid, the derivatives w.r.t. x in the Fokker-Planck
equation are approximated by Finite Differences, incorporating the boundary conditions into
these approximations. Since the time is still continuous, this approach leads to a system of
ordinary differential equations (ODEs) as large as the number of grid points. The ODE
system is then discretized and solved using common ODE solvers like the Euler method.

For Ω = ]xL, xR[⊂ R, define the grid with a spatial mesh size h > 0 by

Ωh := {x ∈ R | x := xj = j h, j ∈ Z} ∩ Ω.

It is assumed that h is chosen such that the boundaries of Ω coincide with the grid points,
i.e.

∃j1, j2 ∈ Z : xL = j1 h and xR = j2 h.
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Ωh is the set of interior grid points, Γh is the set of the two boundary points, i.e. Γh = {xL, xR}
and Ω̄h = Ωh ∪ Γh is called the mesh.

xL xRh

Ωh

Γh

Figure 4.1: Exemplary grid

The next step is to approximate the spatial derivatives of functions f defined on Ωh. The idea
of Finite Differences is to approximate these derivatives by means of difference quotients.
For example, f ′(xj) with xj ∈ Ωh can be approximated by the forward difference

(∂+
x f)(xj) :=

f(xj+1)− f(xj)

h

or the backward difference

(∂−x f)(xj) :=
f(xj)− f(xj−1)

h
,

cf. [12]. These approximations are of first order. A common approximation of f ′′(xj) of
second order is given by the so-called three-point stencil

(∆hf)(xj) := (∂−x ∂
+
x f)(xj) =

f(xj+1)− 2f(xj) + f(xj−1)

h2
.

In the case of the Fokker-Planck equation (2.7), this is(
∆h

(
σ2y
))

(xj, t) =
σ(xj+1, t)

2y(xj+1, t)− 2σ(xj, t)
2y(xj, t) + σ(xj−1, t)

2y(xj−1, t)

h2
(4.1)

for a fixed time t. While (4.1) is suited for approximating the diffusion term ∂2
xx(σ

2y) in the
Fokker-Planck equation, one has to be sensitive about the advection term ∂x(b y), since the
conservation of the probability must be preserved, cf. (2.10). To this end, with the help of
[29], an approximation that fits these requirements was derived in [3] for time-independent
drift functions b and the control u being a real value; see the respective references for details.

The resulting formula for a viable approximation of ∂x

(
b(x, u) y(x, t)

)
for a fixed time t and

a given control u can be written as(
∂Cx (b y)

)
(xj, t) :=

1

12h

[(
b(xj−2;u) +B

)
y(xj−2, t)

−4
(
2b(xj−1;u) +B

)
y(xj−1, t)

+6B y(xj, t)

+4
(
2b(xj+1;u)−B

)
y(xj+1, t)

−
(
b(xj+2;u)−B

)
y(xj+2, t)

]
,

(4.2)
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where
B := max

x∈Ω
|b(x;u)| (4.3)

for given u. In a discretized setting, this translates to

B = max
x∈Ωh

|b(x;u)|.

In both (4.1) and (4.2) the homogeneous boundary conditions (2.9), i.e. y|Σ = 0, are taken
into account. Whenever needed, functions are extended by 0 outside the mesh. This is no
limitation because of the homogeneous boundary conditions and the vanishing fluxes at the
boundaries resulting from the properties of a probability density function, cf. (2.10). For
the three relevant stochastic processes, cf. Example 2.6, b does not depend on t directly.
However, if u is a function of time, time does play a role. In these cases, (4.2) is extended
in the following way:
First of all, once again, the time t is fixed; only the spatial discretization matters for now.
B in (4.3) is calculated by

B(t) := max
x∈Ωh

|b(x, t;u(x, t))|.

Notice that the values of the control u are known on the grid Ωh. The approximation of

∂x

(
b(x, t;u(x, t)) y(x, t)

)
for a fixed time t is then given by

(
∂Cx (b y)

)
(xj, t) :=

1

12h

[(
b(xj−2, t;u(xj−1, t)) +B(t)

)
y(xj−2, t)

−4
(
2b(xj−1, t;u(xj−1, t)) +B(t)

)
y(xj−1, t)

+6B(t) y(xj, t)

+4
(
2b(xj+1, t;u(xj+1, t))−B(t)

)
y(xj+1, t)

−
(
b(xj+2, t;u(xj+1, t))−B(t)

)
y(xj+2, t)

]
,

(4.4)

In practice, this procedure yields good numerical results, cf. Chapter 6. With (4.1) and (4.4),
the spatial derivatives are approximated on Ωh, i.e.

∂ty(xj, t) ≈
1

2
∆h

(
σ(xj, t)

2y(xj, t)
)
− ∂Cx

(
b(xj, t;u(xj, t)) y(xj, t)

)
(4.5)

for xj ∈ Ωh and fixed t. (4.5) with “=” defines an ODE on every grid point xj ∈ Ωh. Since
the solution on Σ is already given, only the inner grid points are of interest. Let these be
numbered in ascending order, i.e. x1 < ... < xM . Define

ỹ(t) := (ỹ1(t), ..., ỹM(t))T := (y(x1, t), ..., y(xM , t))
T .

Then “(4.5) with ‘=’ for every grid point Ωh” can be subsumed by the ODE system

˙̃y(t) :=
d

dt
ỹ(t) = A(t)ỹ(t) (4.6)
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with A(t) defined by

A :=
1

12h2


−2α1 − 6hB α2 + 4hδ2 −hε3
α1 + 4hγ1

. . . . . . . . .

−hβ1
. . . . . . . . . −hεM
. . . . . . . . . αM + 4hδM

−hβM−2 αM−1 + 4hγM−1 −2αM − 6hB

 ,

where the dependence on t has been omitted and

αj(t) := 6σ(xj, t)
2,

βj(t) := B(t) + b(xj, t;u(xj, t)),

γj(t) := B(t) + 2b(xj, t;u(xj, t)),

δj(t) := B(t)− 2b(xj, t;u(xj, t)),

εj(t) := B(t)− b(xj, t;u(xj, t)).

The initial condition (2.8) becomes

ỹ(t0) = (ρ(x1), ..., ρ(xM))T (4.7)

with t0 = 0. The initial value problem (4.6)-(4.7) can then be solved using standard algo-
rithms, e.g. Runge-Kutta methods, cf. [10]. The most simple is the (explicit) Euler method:
Given an initial value problem (4.6)-(4.7) and a time discretization step size δt > 0, the next
step in time ỹ(tk+1) is calculated by

ỹ(tk+1) = ỹ(tk) + δtA(tk)ỹ(tk) (4.8)

for tk := t0 + k · δt. This corresponds to using the forward difference approximation of the
time derivative, which is only a first order approximation. A second order approximation in
time and space is discussed in [4]. However, (4.8) in conjunction with (4.2), both used in
[3], yield already good numerical results if δt and h are chosen carefully, cf. Remark 4.1. In
particular, the conservation of probability seems to hold for all times.
The scheme can be employed analogously for the adjoint problems (2.49), (2.53), (2.57), and
(2.61). With the time transformation described in Remark 2.28, only little adjustments need
to be made: Since the coefficient functions σ2 and b are now factors in front of the respective
derivatives, the difference approximations (4.1) and (4.4) become

(∆hy) (xj, t) =
y(xj+1, t)− 2y(xj, t) + y(xj−1, t)

h2

and (
∂Cx y

)
(xj, t) :=

1

12h

[(
1 + 1

)
y(xj−2, t)− 4

(
2 + 1

)
y(xj−1, t) + 6y(xj, t)

+4
(
2− 1

)
y(xj+1, t)−

(
1− 1

)
y(xj+2, t)

]
=

1

12h
[2y(xj−2, t)− 12y(xj−1, t) + 6y(xj, t) + 4y(xj+1, t)] .
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Therefore, A(t) in (4.6) reads

A :=
1

12h2


−2α1 + 3hζ1 α1 + 2hζ1

α2 − 6hζ2
. . . . . .

hζ3
. . . . . . . . .
. . . . . . . . . αM−1 + 2hζM−1

hζM αM − 6hζM −2αM + 3hζM

 ,

where the dependence on t has been omitted and

ζj(t) := 2b(xj, t;u(xj, t)).

In case of (2.53) and (2.61), the respective right-hand side is added to the right-hand side
in (4.6). For example, the ODE system in case of (2.53) is given by

˙̃y(t) = A(t)ỹ(t) + (ỹ(t)− ỹd(t)) ,

where ỹd(t) is defined analogously to ỹ(t).

Remark 4.1
To ensure convergence of the numerical scheme as a whole, the discretization step sizes h and
δt have to be chosen carefully. In particular, the ratio of δt to h2 is important, cf. [27]. For
the three stochastic processes considered in this work, the values for h and δt were adapted
from [3].

4.2 Nonlinear Optimization Algorithms

Once both the original IBVP and the adjoint problem are solved by means of the algorithms
presented in Section 4.1, the variational inequality in the respective optimality systems
(2.48)-(2.50), (2.52)-(2.54), (2.56)-(2.58), and (2.60)-(2.62) can be evaluated. With the help
of Lemma 2.29, each variational inequality can be replaced by its point-wise equivalent.
Then, in order to verify the inequality, the gradient of the reduced cost functional, ∇Ĵ(u), is
evaluated (point-wise). This leads to common nonlinear optimization techniques. A simple
method that is easy to implement is the Gradient, or Steepest Descent method. Starting
from an initial value u0, the next iterative is computed using the negative gradient. Due
to restrictions on u, i.e. u ∈ Uad, a projection onto Uad is needed, leading to the Projected
Gradient method:

Algorithm 4.2 (Projected Gradient)
Let u0 with ua ≤ u0 ≤ ub and set k := 0. While some stopping criteria are violated (see
below), do

1. Calculate the state yk for the control uk.
2. Calculate the corresponding adjoint state pk.
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3. Calculate the search direction dk := −∇Ĵ(uk) (using yk, pk).
4. (Optional) Obtain a step length sk from one of the linesearch methods below. Alterna-

tively, set sk := 1.
5. Set uk+1 := P[ua,ub] {uk + skdk} and set k := k + 1.

End while.

Remark 4.3
Even though step 4 in Algorithm 4.2 is marked as optional, a linesearch needs to be performed
when trying to prove convergence of the algorithm, see below. However, in practice, this
comes at the cost of computation time. Therefore, in the implementation, the user decides
whether to perform a linesearch or not.

There are several possible stopping criteria and methods to obtain a suitable step length.
Typical stopping criteria include (a) a maximum number of steps, i.e.

k ≥ kmax (4.9)

and (b) a vanishing gradient, i.e.
‖∇Ĵ(uk)‖U= 0.

In practice, the latter condition becomes

‖∇Ĵ(uk)‖U< ε (4.10)

with a small ε > 0. However, one cannot expect the gradient to vanish in general because
of the control constraints. To deal with active control constraints, the following stopping
criterion was introduced in [15, Ch. 9]:∥∥uk − P[ua,ub] {uk + dk}

∥∥
U
≤ τr

∥∥u0 − P[ua,ub] {u0 + d0}
∥∥
U

+ τa (4.11)

with 0 < τr < 1 and 0 < τa � 1.
Finding a suitable rule to determine a “good” step length is no easy task and requires
numerical experience. The purpose of the step length is to not increase uk too much and
miss the optimum, but at the same time, to not choose a step length so little that no progress
is visible. The Armijo condition

Ĵ(uk + skdk) ≤ Ĵ(uk) + δ sk

(
∇Ĵ(uk), dk

)
U

(4.12)

together with the Wolfe condition(
∇Ĵ(uk + skdk), dk

)
U
> σ

(
∇Ĵ(uk), dk

)
U
, (4.13)

where 0 < δ < σ < 1
2
, ensure convergence of the Steepest Descent method if, for given

α ∈ ]0, 1[, sk ∈
{
αl | l ∈ N0

}
is the largest step length that satisfies (4.12) and (4.13), cf. [6,

p. 43].1

1One does not necessarily need to choose the largest step length. However, a “substantial” reduction in
the objective function must be achieved, cf. [22] for details.
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Another possible condition used in [15, Ch. 9] is given by

J(P[ua,ub] {uk + skdk})− J(uk) ≤ −
σ̃

sk

∥∥uk − P[ua,ub] {uk + skdk}
∥∥2

U
, (4.14)

where σ̃ ∈ ]0, 1[. As above, the condition is subsequently tested for sk := αl for a chosen
α ∈ ]0, 1[ with increasing l ∈ N0 until (4.14) is satisfied.
A typical feature of the Projected Gradient method is its good progress in reducing the cost
functional in the initial iterations, while slowing down significantly in later iterations [13].
To counteract this, another method is introduced – the (semi-smooth) Newton method with
primal-dual active set strategy. This technique was presented e.g. in [13] and [17] and works
as follows. First, rewrite (

∇Ĵ(ū), u− ū
)
U

in (2.69) using Lagrange multipliers in the following, equivalent form:

∇Ĵ(ū) + µb − µa = 0 (4.15a)

µa ≥ 0, ua − ū ≤ 0, µTa (ua − ū) = 0

µb ≥ 0, ū− ub ≤ 0, µTb (ū− ub) = 0
(4.15b)

Just as the variational inequality, (4.15) is understood in a point-wise almost everywhere
sense in the domain E where the control is tracked, e.g. the space-time cylinder E := Q in the
case of (2.60)-(2.62). (4.15) can be reformulated by introducing µ := µb − µa and merging
(4.15b) into one equation:

∇Ĵ(ū) + µ = 0 (4.16a)

max {0, µ+ c (ū− ub)}+ min {0, µ+ c (ū− ua)} − µ = 0 (4.16b)

with c > 0. Again, min and max are understood in a point-wise sense. The constant
c does not change the fact that (4.16) is equivalent to (4.15), cf. [13]. However, the in-
troduced constant is very beneficial: Equation (4.16b) is not differentiable in the classical
sense. Therefore, classical Newton methods are theoretically inapplicable to solve (4.16).
However, (4.16b) has the so-called Newton differentiability property for c = λ, where λ is
the regularization parameter in the cost functional of the optimal control problem. Hence,
one can apply a so-called semi-smooth Newton method. To this end, the Jacobian of (4.16)
is needed. It depends on the subsets of E on which the max or min in (4.16b) is attained
[13]. These subsets form the so-called active and inactive sets. At an iterate (uk, µk) they
are defined by

A+
k := {x ∈ E | µk + c (uk − ub) > 0} , Ak := A+

k ∪ A
−
k ,

A−k := {x ∈ E | µk + c (uk − ua) < 0} , Ik := E \ Ak.

The Newton direction (δu, δµ)T for (4.16b) at (uk, µk) is then given by(
∇2Ĵ(uk) I
c 1Ak

−1Ik

)(
δu
δµ

)
= −

(
∇Ĵ(uk) + µk

c 1A+
k

(uk − ub) + c 1A−k
(uk − ua)− 1Ikµk

)
,
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which can be reformulated into a symmetric form(
∇2Ĵ(uk) 1Ak

1Ak
0

)(
δu
δµ|Ak

)
= −

(
∇Ĵ(uk) + µk

1A+
k

(uk − ub) + 1A−k
(uk − ua)

)
. (4.17)

In the latter formulation, µk+1 is set to zero on Ik. The system (4.17) is then solved itera-
tively, yielding the new search direction. This results in the following algorithm.

Algorithm 4.4 (Newton method with primal-dual active set strategy)
Let u0 be the initial guess and let µ0. Set k := 0. While some stopping criteria are violated
(see below), do

1. Calculate the state yk for the control uk.
2. Calculate the corresponding adjoint state pk.
3. Evaluate the reduced gradient ∇Ĵ(uk) (using yk, pk).
4. Compute the active sets Ak.
5. Solve the Newton system (4.17) iteratively.
6. (Optional) Obtain a step length sk from one of the above linesearch methods. Alterna-

tively, set sk := 1.
7. Set

uk+1 := uk + sk δu,

µk+1|Ak
:= uk|Ak

+ sk δu|Ak
,

µk+1|Ik := 0,

k := k + 1.

End while.

A reasonable stopping criterion is∥∥∥∥∥−
(

∇Ĵ(uk) + µk
1A+

k
(uk − ub) + 1A−k

(uk − ua)

)∥∥∥∥∥
U

< ε, (4.18)

which is used in combination with a maximum number of steps (4.9) in the implementation.

Remark 4.5
(a) Often one tries to avoid the computation of the Hessian ∇2Ĵ(uk). Instead, it is approxi-

mated to reduce the computation time. This leads to (semi-smooth) Quasi-Newton meth-
ods, one of which is the so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
For details regarding the BFGS algorithm, see [22].

(b) In Algorithm 4.4, the linesearch is really not needed if the Hessian ∇2Ĵ(uk) is known.
However, when employing the BFGS algorithm, linesearch methods do play a role. There-
fore, in the implementation, the decision whether to perform a linesearch is delegated to
the user.
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(c) Newton methods usually only converge locally, but offer a higher convergence rate than
e.g. the Projected Gradient method. Both techniques can be combined in order to exploit
the benefits of each algorithm. This is done by first employing the Projected Gradient
method and after some iterations, switch to the (Quasi-)Newton approach, e.g. the BFGS
method.

(d) It has not been specified how to solve the linear system (4.17). To this end, standard
techniques like the Conjugated Gradient (CG) method are employed, cf. [14].

Remark 4.6
In the algorithms above, information about the gradient is required. An efficient way to obtain
this information is by solving two PDEs, the original IBVP and the corresponding adjoint
problem, as stated in the respective algorithms. However, it is also possible to compute the
gradient by analyzing the effects of small disturbances in each component of u. For u being a
real value, i.e. if u consists of only one component, the gradient is approximated as follows:

∇Ĵ(u) ≈ J(u)− J(u− hu)
hu

. (4.19)

Since this approach entails solving two original IBVPs for each component of u, it is very
inefficient, especially if u is space- (and time-)dependent. Even so, it does not require knowl-
edge of the adjoint problem. Therefore, it can be used to test whether the adjoint problem is
indeed correct. Also, one could always resort to it at the expense of computing time.
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Chapter 5

PDE-MPC

The program “PDE-MPC” is the practical centerpiece of this thesis. It is written in C++
and is used to solve the Fokker-Planck optimal control problems introduced in Section 2.3
numerically by means of Model Predictive Control, cf. Chapter 3 and Section 3.3 in partic-
ular. Due to its modular structure, it is not restricted to these problems. The motivation
behind choosing such a structure was to provide a convenient way to expand the program
in several manners. For instance, PDEs other than the Fokker-Planck equation might be
of interest. In addition, different algorithms might be more in line with certain problems.
Therefore, one should not be confined to the already implemented algorithms.

In this chapter, the emphasis is on the structure of “PDE-MPC” and on the program flow. If
one is interested in a description of every single method and its arguments, a documentation
is provided along with the source code on the enclosed CD-ROM.

5.1 Basic Structure and Program Flow

The program flow already became apparent from the previous chapters: Employing the
MPC Algorithm 3.2, one needs to solve the optimal control problem (OCPN) on a certain
time interval, implement the first value of the calculated optimal control sequence, move
the considered time interval, solve (OCPN) on this new interval, and so on, until a terminal
time TE is reached. The time interval is determined by the horizon parameter N , which the
user must choose. If N is not the shortest possible horizon, (desired) states after TE might
be considered in the computation of an optimal control sequence, cf. Remark 3.12. In this
case, N is still left constant. The MPC algorithm is implemented in the MPC class. Note that
since (OCPN) has not been specified yet, the implementation is independent of the optimal
control problem and the PDE in particular.

To be able to deal with general PDE-constrained optimal control problems, an abstract
Optimizer object is used as a placeholder. To this end, ProjectedGradient and BFGS

are available, both subclasses of Optimizer. As the name suggests, ProjectedGradient is
a realization of the Projected Gradient method, cf. Algorithm 4.2. The stopping criteria
used are: (4.9) in conjunction with (4.10) if no control constraints are active and (4.9) in
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conjunction with (4.11) if some control constraints are. BFGS consists of the BFGS method, a
Quasi-Newton method based on Algorithm 4.4, where the Hessian is only approximated, cf.
Remark 4.5(a). In this case, the stopping criterion is determined by (4.18) and a maximum
number of steps (4.9). The two linesearch strategies (4.12)-(4.13) and (4.14) are implemented
in both classes. For practical reasons, a maximum number of linesearch steps is added. It is
up to the user whether to perform the linesearch or not. Furthermore, it is possible to mix
the two algorithms, cf. Remark 4.5(c).
The abstract Optimizer class allows to select a nonlinear optimization algorithm at run time.
Different as the suitable algorithms may be, most of them, if not all, require information
about the gradient. To this end, the derivation of the optimality systems in Subsection 2.3.2
illustrated two things: One, the gradient of the reduced cost functional, ∇Ĵ(u), depends
not only on the cost functional, but also on the PDE at hand. Two, once the formula is
known, one needs to solve the original IBVP and the corresponding adjoint problem in order
to evaluate it. Consequently, the optimizer has to delegate the evaluation of the gradient.
First, the formula for ∇Ĵ(u) needs to be known. This information is retrieved from the
abstract Model class, which is introduced below. Second, the two PDEs are to be solved.
An alternative approach to obtain information about the gradient has been introduced in
Remark 4.6: Instead of using the formula for ∇Ĵ(u) and solving the adjoint problem, one
could simply analyze the effects of small disturbances in each component of the control, cf.
Remark 4.6 and (4.19). This resort has been implemented in both the ProjectedGradient

and the BFGS classes. In this case, two original IBVPs need to be solved for each component
of the control. Either way, solutions of PDEs need to be obtained.
One possible approach to solve these PDEs has been introduced in Section 4.1. The idea is to
only discretize the spatial domain, e.g. by Finite Differences, while the time is kept continuous
at first. This approach results in a (possibly large) system of ordinary differential equations.
Assuming the spatial discretization for a given time t is known, it remains to solve the ODE
system. To this end, OdeSolver, another abstract class, is introduced. Each realization
thereof consists of a method to solve such a system. The explicit Euler method (4.8) and the
implicit Euler method, cf. [10], are implemented in the ExplEuler and ImplEuler classes,
respectively.
In contrast, the discretization in space is handled by the Model class. As the name suggests,
the Model class consists of a certain model, including the PDE at hand, e.g. the Fokker-Planck
equation. Since the spatial discretization depends on the PDE and the considered spatial
domain, it makes sense to move this job to the Model class. In addition, all information
regarding (MPC) cost functionals, possible control and state constraints and – as mentioned
above – the form of the gradient of the reduced cost functional are expected to be found
in the Model class or rather in its subclasses. Currently, only the Fokker-Planck optimal
control problems considered in this work are implemented in the FokkerPlanck1D class, a
subclass of Model. Here, the cost functional is determined by the relevant terms in either one
of the stage costs (3.6) or (3.8). The resulting cost functionals are given by (3.9) for space-
independent control and (3.10) in the case of space-dependent control. As stated in Section
3.3, the resulting optimal control problems of type (OCPN) coincide or at least approximate
the optimal control problems (2.20)-(2.23), (2.24)-(2.28), (2.29)-(2.33), and (2.34)-(2.38).
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Thus, the corresponding optimality systems derived in Subsection 2.3.2 are solved and the
related reduced gradients (2.70)-(2.73) are used in the above optimization algorithms. The
derivatives in these gradients are approximated by either a forward or a backward difference.
All occurring L2 norms and all integrals in general are computed by trapezoidal formulas.
Furthermore, depending on the chosen algorithms, it might be necessary to solve a linear
system, e.g. the Newton system (4.17). Also, a linear system needs to be solved if the implicit
Euler method is used. To this end, direct and iterative solvers can be implemented as derived
classes of the abstract LesSolver class. For now, only the Conjugate Gradient (CG) Method
is available, cf. [14]. It is implemented in the CGMethod class. A preconditioned variant of
the CG Method, PCGMethod, has been added for testing purposes. Given a linear system
Ax = b with A ∈ Rn×n, the preconditioner matrix equals the diagonal matrix D−1 with
Djj = Ajj, j = 1, ..., n.
Lastly, for the sake of convenience, the FPMPCConfig class encapsules all parameters and
settings that are needed by the currently implemented classes, e.g. model parameters, MPC
settings, discretization step sizes, error tolerances, and many more. The advantage is having
all (relevant) parameters in one place. The downside is the loss of consistency regarding
the modular structure. However, since the FPMPCConfig class is not required at all in order
for the other classes to function, its presence does not influence the expandability of the
program.
The program generates several files in which for example the state y, the control u, and the
adjoint state p are stored. For more details, see Table 5.1.
Figure 5.1 depicts all currently existing classes and their subclasses in the program on the
left. It also illustrates the program flow described above. On the right, one can find the
main purpose(s) of the respective classes. The FPMPCConfig class is separated since it is a
special auxiliary class that is not necessarily needed.

Filename Description

adjTrajectory.txt Contains the values of the adjoint state p on the mesh.
config.txt Stores the relevant configuration parameters for further use.
config-detailed.txt Stores the relevant configuration parameters in a more readable form.
control.txt Contains the control values u on the mesh.
controlcosts.txt Stores the control costs, which are a part of the stage costs, for each

implemented MPC step.
stagecosts.txt Stores the stage costs for each implemented MPC step.
statecosts.txt Stores the state costs, which are a part of the stage costs, for each

implemented MPC step.
totalcosts.txt Contains the (weighted) sum of all implemented state-, control-, and

stage costs.
trajectory.txt Contains the values of the state y on the mesh.
xCoords.txt Contains the spatial discretization of Ω.

Table 5.1: Files generated by PDE-MPC.
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MPC

Optimizer
- ProjectedGradient
- BFGS

Model
- FokkerPlanck1D

LesSolver
- CGMethod
- PCGMethod

OdeSolver
- ExplEuler
- ImplEuler

MPCuAlgorithm

solveu(OCPN)

solveutheuODEusystem

-uspatialudiscretization
-ucostufunctional
-ugradientuinformation
-ucontroluandustateuconstraints

solveusystemsuofulinearuequations

FPMPCConfig storeualluparametersuandusettings

Figure 5.1: Program structure
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Numerical Results

In this chapter, numerical simulations are performed to answer the questions posed at the
very beginning of this thesis: First, what impact does the MPC horizon have on the control
of the Fokker-Planck equation? And second, how does a space-dependent control affect the
results?
As explained in Chapter 2, the Fokker-Planck equation is used to model the evolution of
a probability density function of certain stochastic processes. The three stochastic pro-
cesses considered in this work are the same processes that are considered in [3]. They were
introduced in Example 2.6: the Ornstein-Uhlenbeck Process with Additive Control, the
Geometric-Brownian Process with Additive Drift Control, and the Shiryaev Process. Since
the results presented in [3] motivated this analysis, a comparison of the numerical results in
this work to those in [3] is self-evident. To this end, in a first step, the numerical results in
[3] are reproduced in Section 6.1. The optimal control problem considered in [3] is given by
(2.20)-(2.23). This corresponds to employing an MPC scheme with the cost functional (3.9)
and N = 1, cf. Remark 3.13.1 In a next step, the effects of increasing N are analyzed for
space-independent control. Afterwards, space-dependent control is treated in Section 6.2.
All numerical results were obtained by the program “PDE-MPC” introduced in Chapter
5. There are some parameters that do not change throughout this chapter, unless stated
otherwise. These are summarized in Table 6.1. The parameter tolopt is the error tolerance
in the optimization algorithms, i.e. the ε in (4.10) and (4.18). Unless stated otherwise, the
gradient ∇Ĵ(u) is computed by solving the original IBVP and, subsequently, the adjoint
problem. If the gradient is computed by analyzing small disturbances in the control instead,
then hu is the corresponding “step size”, cf. (4.19). The parameters τr and τa appear in
(4.11).

6.1 Space-independent Control

As the title suggests, space-independent control of the Fokker-Planck equation is tackled in
this section. The MPC cost functional is given by (3.9) in this case.

1Note that the notation suggested in Remark 3.13 is used in this chapter.
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Parameter Value

tolopt 1e-5
tolles 1e-12
hu 1e-6
τr 1e-5
τa 1e-5

Table 6.1: Standard parameter values for the numerical simulations.

6.1.1 The Ornstein-Uhlenbeck Process with Additive Control

The Fokker-Planck equation describing the evolution of the probability density function of
the Ornstein-Uhlenbeck process with additive control is given by

0 = ∂ty(x, t)− 1

2
∂2
xx

(
σ̃2y(x, t)

)
+ ∂x

(
(−µx+ u) y(x, t)

)
= ∂ty(x, t)− 1

2
σ̃2∂2

xxy(x, t) + ∂x
(
(−µx+ u) y(x, t)

) (6.1)

with µ, σ̃ > 0, cf. Example 2.6. If the MPC horizon N is the shortest possible, i.e. N = 1,
then the control u is a real value in each MPC optimization step. For N > 1, the control is
a function of time, i.e. u = u(t).2 Table 6.2 depicts the standard parameter values for the
Ornstein-Uhlenbeck process. Unless specifically mentioned, these values were used in the
numerical simulations.
At first, N is set to 1 to see whether the results in [3] can be reproduced. This is of particular
interest since the results in [3] were obtained without solving the corresponding optimality
system. Instead, a bisection minimization scheme was employed. Due to u being a simple
real value, this method is viable and does not require the knowledge of the gradient of the
(reduced) cost functional or knowledge of the adjoint problem. In this work, however, all
results were computed using nonlinear optimization algorithms, cf. Chapters 4 and 5. Cases
in which ∇Ĵ(u) is obtained by solving the original IBVP and, subsequently, the adjoint
problem, serve as a test whether the derived optimality system is correct.
Figure 6.1 depicts the computed probability density function y, the initial PDF y0 = ρ, and
the desired PDF yd for N = 1. The corresponding optimal control function u is illustrated in
Figure 6.2. The adjoint state p is shown in Figure 6.3. Notice that by receding the horizon,
technically, the adjoint state is only defined on time intervals [tn, tn+Ts]. Since on each time
interval, there is a new adjoint problem, there are at least two possible values for p(·, tn) as
n increases. In Figure 6.3 and in all following figures that show the adjoint state, only the
state that was used to compute u∗(0) in the MPC algorithm is illustrated, cf. Algorithm 3.2.
Detailed results can be found in Table 6.3.
While the state y follows the desired state yd in time fairly well, it never reaches the desired
height. Instead, it is much more diffused at all times. The initial PDF and the desired PDF

2The MPC algorithm yields an optimal control sequence, which can be interpreted as a piecewise constant
function in time.
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Parameter Value

µ 1
σ̃ 0.8
Ω ]-5, 5[
h 0.05
δt 1.6e-3
ua -4
ub 4
λ 0.1
TE 5
Ts 0.5

ρ(x)
1√

2π · 0.12
exp

(
− x2

2 · 0.12

)

yd(x, t)

exp

(
− [x− 2 sin(πt/5)]2

2 · 0.22

)
√

2π · 0.22

Table 6.2: Standard parameter values for the Ornstein-Uhlenbeck process with additive
control.

are both Gaussian distributions. The computed PDF looks like a Gaussian distribution as
well, only with a higher variance. Since only images of the numerical results are provided in
[3], only qualitative statements can be made. Comparing the state and the control figures, it
seems that the solutions coincide. Therefore, it appears the optimality system (2.48)-(2.50)
is correct and solving it leads to a (local) minimum.

t u 1
2
‖y(·, t+ Ts)− yd(·, t+ Ts)‖2

L2(Ω)
λ
2
|u|2

0 1.28441 0.231499 0.082486
0.5 1.67205 0.312326 0.139788
1 1.91661 0.352848 0.183669
1.5 1.99161 0.368928 0.198325
2 1.88367 0.362372 0.177412
2.5 1.5885 0.340495 0.126167
3 1.12412 0.315046 0.0631827
3.5 0.538068 0.296092 0.0144758
4 -0.103586 0.289337 0.000536506
4.5 -0.729877 0.296354 0.026636

Table 6.3: Optimal control of the Ornstein-Uhlenbeck process for N = 1: Detailed results.

In a next step, the horizon N is to 2. The main difference is that now, the optimality system
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Figure 6.1: Optimal control of the Ornstein-Uhlenbeck process for N = 1: The computed
PDF y, the initial PDF y0, and the desired PDF yd.

Figure 6.2: Optimal control of the Ornstein-Uhlenbeck process for N = 1: The optimal
control function.
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Figure 6.3: Optimal control of the Ornstein-Uhlenbeck process for N = 1: The adjoint state
p (max |p(x, t)| = 0.320421).

(2.52)-(2.54) has to be solved. Figures 6.4-6.6 show the computed PDF y, the initial PDF
y0, the desired PDF yd, the computed optimal control function u and the adjoint state p.

t u 1
2
‖y(·, t+ Ts)− yd(·, t+ Ts)‖2

L2(Ω)
λ
2
|u|2

0 2.08881 0.278171 0.218156
0.5 1.7981 0.266235 0.161657
1 2.12477 0.283338 0.225732
1.5 2.1403 0.297415 0.229044
2 1.93228 0.309518 0.186685
2.5 1.51752 0.319868 0.115143
3 0.950163 0.326336 0.0451404
3.5 0.297442 0.325674 0.00442359
4 -0.373778 0.316994 0.0069855
4.5 -1.00231 0.303888 0.0502309

Table 6.4: Optimal control of the Ornstein-Uhlenbeck process for N = 2: Detailed results.
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Figure 6.4: Optimal control of the Ornstein-Uhlenbeck process for N = 2: The computed
PDF y, the initial PDF y0, and the desired PDF yd.

Figure 6.5: Optimal control of the Ornstein-Uhlenbeck process for N = 2: The optimal
control function.
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Figure 6.6: Optimal control of the Ornstein-Uhlenbeck process for N = 2: The adjoint state
p (max |p(x, t)| = 0.360579).

Comparing Figure 6.5 to Figure 6.2, one finds that the computed optimal controls look
different in the first few steps. However, this does not lead to better results. On the
contrary, comparing the norms in Table 6.4 to those in Table 6.3 shows that the shorter
horizon N = 1 yields a much better performance. This seems surprising at first, as one
usually expects better results with increasing N . The problem is probably twofold: The first
problem is the discrepancy between the cost functional assumed in the optimality system
and the actual cost functional. As mentioned in Section 3.3, the MPC cost functional is
a good approximation of the one in the optimality system for small values of Ts. A value
of 0.5 seems too high. The second problem lies in the implementation of the optimality
system: In the adjoint PDE in (2.53), y− yd appears on the right-hand side. Since the PDE
is defined in Q, the right-hand side needs to be updated as often as the left-hand side in the
numerical scheme, e.g. every δt units in time. However, it is only updated every Ts units
in time for technical reasons. Since Ts = 0.5 is a relatively high value, one cannot expect a
good approximation.
A remedy is to compute the gradient directly by analyzing the effects of perturbed controls,
cf. Remark 4.6. Doing so yields better results compared to solving the optimality system,
cf. Table 6.5. In that table, “adj.” indicates that the adjoint problem and the optimality



66 Chapter 6: Numerical Results

system were used, while “num.” stands for the alternative computation of the gradient. In
order to compare the results, the total costs are evaluated. They are given by the sum over
all stage costs of actually measured states and implemented controls. The total costs are
then weighted by Ts. This renders possible a comparison of different numerical simulations
with different sampling rates Ts. The weighted total costs are denoted by Ctotal,w.

N Computation of the gradient Ctotal,w

1 adj. 2.08899
2 adj. 2.13532
2 num. 2.03251
5 adj. 2.16759
5 num. 2.03337

Table 6.5: Optimal control of the Ornstein-Uhlenbeck process: Weighted total costs for
various N .

The slight increase in the costs from N = 2 to N = 5 is plausible, since desired states after
the terminal time TE are taken into account when computing the optimal control sequence,
cf. Remark 3.12. Again, the effect is noticeable since the value of Ts is high.

Lowering Ts should mitigate the effects of a bad approximation of the cost functional and
the effects of considering the (desired) states after TE. The following results show that this
expectation is justified. Table 6.6 depicts the weighted total costs for various combinations
of sampling rates Ts and horizons N .

Ts N Computation of the gradient Ctotal,w

0.05 1 adj. 3.71696
0.05 1 num. 3.72166
0.05 10 adj. 1.99609
0.05 10 num. 1.99282
0.0625 8 adj. 1.99772
0.0625 8 num. 1.99471
0.1 5 adj. 2.0081
0.1 5 num. 2.00564
0.25 2 adj. 2.04803
0.25 2 num. 2.03402

Table 6.6: Optimal control of the Ornstein-Uhlenbeck process: Weighted total costs for
various N and Ts.

First of all, it is notable that the method of computing the gradient does not influence the
results distinctly for lower Ts, i.e. Ts ≤ 0.1. This is to be expected, since the approximation
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of the cost functional becomes better and the right-hand side of the adjoint PDE is updated
more often.
Furthermore, the expected MPC behavior surfaces: While for Ts = 0.05 and N = 1, the
results are useless, the situation changes with higher N , cf. Figure 6.7. Note that only the
states at times tn = 0.5n, n = 0, ..., 10 are shown in this figure. Intermediate states are
omitted where necessary. The same holds true for all following figures.
Another interesting result emerges when looking at Table 6.6: Except for N = 1, Ts ·N = 0.5,
i.e. a time frame of 0.5 is covered in each MPC step. In all of these cases, decent and similar
results are obtained. It seems that the combination of Ts and N is important, rather than
just the horizon N . The slight improvements for increasing N and lowering Ts probably
stem from the possibility to adjust the control values more often, cf. Figure 6.8.

(a) N = 1 (b) N = 10

Figure 6.7: Optimal control of the Ornstein-Uhlenbeck process for Ts = 0.05 and varying N :
The computed PDF y, the initial PDF y0, and the desired PDF yd.

In conclusion, decent results are obtained in cases where Ts ·N ≥ 0.5 and Ts is sufficiently low
such that the cost functional of the corresponding optimality system is approximated well
enough and the right-hand side of the adjoint equation is updated often enough. Increasing
the horizon while decreasing Ts at the same time yields the best results. Also, it is reasonable
to assume that the optimality systems (2.48)-(2.50) and (2.52)-(2.54) are correct and solving
these systems yields a (local) minimum. At the same time, increasing the horizon does
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(a) N = 1 (b) N = 10

Figure 6.8: Optimal control of the Ornstein-Uhlenbeck process for Ts = 0.05 and varying N :
The optimal control function.

(a) N = 1,max |p(x, t)| = 1.49361 (b) N = 10,max |p(x, t)| = 0.252011

Figure 6.9: Optimal control of the Ornstein-Uhlenbeck process for Ts = 0.05 and varying N :
The adjoint state p.

not solve the problem of the computed PDF exhibiting a too high variance compared to
the desired PDF. Since the control determines the shifting of the state, a space-dependent
control likely improves the results tremendously by shifting every single point individually.
Whether this proves true is discussed in Section 6.2.
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6.1.2 Geometric-Brownian Process with Additive Drift Control

The second stochastic process examined in this work is the Geometric-Brownian process
with additive drift control. The corresponding Fokker-Planck equation is given by

0 = ∂ty(x, t)− 1

2
∂2
xx

(
(σ̃x)2y(x, t)

)
+ ∂x

(
(µ+ u)x y(x, t)

)
= ∂ty(x, t)− 1

2
σ̃2∂2

xx

(
x2y(x, t)

)
+ (µ+ u)∂x

(
x y(x, t)

) (6.2)

with µ ∈ R and σ̃ > 0, cf. Example 2.6. For N = 1 the control u is a real value in each MPC
optimization step; for N > 1 it is a function of time, i.e. u = u(t). Unless state otherwise,
the parameter values used in the numerical simulations in this subsection are given in Table
6.7. Here, both the initial PDF ρ and the desired PDF yd are log-normal distributions.

Parameter Value

µ 1
σ̃ 0.1
Ω ]0, 25[
h 0.0625
δt 2.4752e-4
ua -1
ub 0.5
λ 0.1
TE 2.5
Ts 0.25

ρ(x)
1

x
√

2π · 0.12
exp

(
−(log(x)− 0.8)2

2 · 0.12

)

yd(x, t)

exp

(
− [log(x)− 1− sin(πt/5)]2

2 · 0.12

)
x
√

2π · 0.12

Table 6.7: Standard parameter values for the Geometric-Brownian process with additive
drift control.

The procedure and the notation are the same as in the Ornstein-Uhlenbeck case. First,
N = 1 is considered. The results are depicted in Figures 6.10-6.12 and Table 6.8.
Again, the state y follows the desired state yd decently. With time, however, the diffusion
becomes a problem. Not only is the height of the desired PDF not met, but also the computed
PDF diffuses in time much faster than desired. At t = TE = 2.5, it is questionable whether
the computed PDF meets the user’s requirements. Also, notice the jump in the control values
in the first two steps. Without a good enough initial guess for the first two control values,
the BFGS algorithm yields worse results in terms of costs. Therefore, in each MPC step,
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Figure 6.10: Optimal control of the Geometric-Brownian process for N = 1: The computed
PDF y, the initial PDF y0, and the desired PDF yd.

Figure 6.11: Optimal control of the Geometric-Brownian process for N = 1: The optimal
control function.
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Figure 6.12: Optimal control of the Geometric-Brownian process for N = 1: The adjoint
state p (max |p(x, t)| = 0.234792).

t u 1
2
‖y(·, t+ Ts)− yd(·, t+ Ts)‖2

L2(Ω)
λ
2
|u|2

0 0.400988 0.00920641 0.00803957
0.25 -0.342515 0.0155605 0.00586584
0.5 -0.399993 0.0212408 0.00799971
0.75 -0.44157 0.0255997 0.00974919
1 -0.493676 0.0291417 0.0121858
1.25 -0.556354 0.0323978 0.0154765
1.5 -0.62822 0.035872 0.019733
1.75 -0.70778 0.0400275 0.0250476
2 -0.793652 0.0452798 0.0314942
2.25 -0.884473 0.0519928 0.0391146

Table 6.8: Optimal control of the Geometric-Brownian process for N = 1: Detailed results.
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the first few iterations are computed using the Projected Gradient method. Even though
the results as a whole might seem disappointing, compared to the figures in [3], the results
are qualitatively identical.
In a next step, the horizon is increased. Figures 6.13-6.15 illustrate the numerical results;
detailed numbers are found in Table 6.9.

Figure 6.13: Optimal control of the Geometric-Brownian process for N = 2: The computed
PDF y, the initial PDF y0, and the desired PDF yd.

When comparing Figure 6.13 to Figure 6.10, the target PDF at time TE is reached somewhat
better in the N = 2 case, since the peak values of both the target and the computed PDF are
attained at about the same x. In contrast to the Ornstein-Uhlenbeck process, the control
does not change significantly when switching from N = 1 to N = 2, cf. Figure 6.14 and
Table 6.9. Notice, however, a lower value of Ts is used in this experiment. This and the fact
that the costs for the Geometric-Brownian process are generally low (< 0.1) might mitigate
the approximation errors. In addition, the system dynamics play an important role: The
control u affects the drift term µ additively, i.e. the shift of the computed PDF depends on
the value of µ+ u. Since µ = 1, the uncontrolled Fokker-Planck equation would shift to the
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Figure 6.14: Optimal control of the Geometric-Brownian process for N = 2: The optimal
control function.

Figure 6.15: Optimal control of the Geometric-Brownian process for N = 2: The adjoint
state p (max |p(x, t)| = 0.108432).

right by its own. This falls into place with the desired PDF, which also shifts to the right
as t increases, cf. e.g. Figure 6.10. Therefore, only little adjustments are needed in order
to improve the tracking of yd. Thus, the right-hand side in the adjoint equation is small,
such that approximation errors become hardly noticeable. On that account, notice that the
maximum absolute value of p is 0.108432 for N = 2. Table 6.10 backs this claim: The
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t u 1
2
‖y(·, t+ Ts)− yd(·, t+ Ts)‖2

L2(Ω)
λ
2
|u|2

0 0.402697 0.00911289 0.00810825
0.25 -0.2665 0.0217662 0.00355111
0.5 -0.410663 0.0257687 0.00843221
0.75 -0.453266 0.0289298 0.0102725
1 -0.516805 0.0308815 0.0133544
1.25 -0.589932 0.0323257 0.017401
1.5 -0.671984 0.0336894 0.0225781
1.75 -0.761056 0.0352797 0.0289603
2 -0.855321 0.0373284 0.0365787
2.25 -0.952884 0.0400399 0.0453994

Table 6.9: Optimal control of the Geometric-Brownian process for N = 2: Detailed results.

weighted total costs are almost the same, regardless of whether the gradient was computed
by solving the optimality system or not. As in the previous example, results obtained by
solving the optimality system yield higher weighted total costs. In this case, however, the
difference is hardly noticeable. Similar to the Ornstein-Uhlenback process, the raise in N
does not necessarily lead to lower total costs. Instead, higher costs are observed due to
the anticipation of events after TE and the consideration thereof in the computation of the
optimal control sequence, cf. Remark 3.12.

N Computation of the gradient Ctotal,w

1 adj. 0.120256
2 adj. 0.12244
2 num. 0.115704
5 adj. 0.123297
5 num. 0.118729

Table 6.10: Optimal control of the Geometric-Brownian process: Weighted total costs for
various N .

In conclusion, it seems hardly worthwhile to increase N for Ts = 0.25. However, this changes
when lowering Ts. To this end, the weighted total costs for various combinations of sampling
rates Ts and horizons N are depicted in Table 6.11.
There are several observations to be made. First, the total costs for N = 1 and Ts = 0.025 are
much higher than for N = 10 and unchanged Ts, i.e. increasing the MPC horizon is sensible.
Figures 6.16-6.18 show the differences in the state, the control, and the adjoint state between
N = 1 and N = 10. For N = 1 and tn ≥ 1.25 the computed PDF does not resemble at all
the shape of the desired PDF. Second, the best results are gained for N = 2 and Ts = 0.125,
i.e. increasing the horizon any further while lowering Ts does not pay off. This behavior is
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Ts N Computation of the gradient Ctotal,w

0.025 1 adj. 0.428949
0.025 1 num. 0.427031
0.025 10 adj. 0.161421
0.025 10 num. 0.161393
0.03125 8 adj. 0.159497
0.03125 8 num. 0.159361
0.05 5 adj. 0.154168
0.05 5 num. 0.153631
0.125 2 adj. 0.138042
0.125 2 num. 0.134475

Table 6.11: Optimal control of the Geometric-Brownian process: Weighted total costs for
various N and Ts.

(a) N = 1 (b) N = 10

Figure 6.16: Optimal control of the Geometric-Brownian process for Ts = 0.025 and varying
N : The computed PDF y, the initial PDF y0, and the desired PDF yd.

strange and might occur due to numerical reasons, as the absolute values of the costs are
close to zero and the changes minimal. Furthermore, it is seemingly more important to cover
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(a) N = 1 (b) N = 10

Figure 6.17: Optimal control of the Geometric-Brownian process for Ts = 0.025 and varying
N : The optimal control function.

(a) N = 1,max |p(x, t)| = 1.41499 (b) N = 10,max |p(x, t)| = 0.14504

Figure 6.18: Optimal control of the Geometric-Brownian process for Ts = 0.025 and varying
N : The adjoint state p.

a certain time interval in the MPC algorithm rather than just increasing the horizon, just
as in the Ornstein-Uhlenbeck case. The last observation is that it virtually does not matter
whether to solve the optimality system or to calculate the gradient differently. Therefore,
once again, it is reasonable to assume that the two optimality systems given by (2.20)-(2.23)
and (2.24)-(2.28) are correct and solving these systems yields a (local) minimum.
As before, the diffusion of the PDF is a problem that cannot be solved by space-independent
control. Whether a space-dependent control is a solution is discussed in Section 6.2.



6.1. SPACE-INDEPENDENT CONTROL 77

6.1.3 The Shiryaev Process

The Shiryaev process is the third stochastic process considered in this thesis. Plugging in
the corresponding coefficient functions b and σ from Example 2.6 into the Fokker-Planck
equation yields

0 = ∂ty(x, t)− 1

2
∂2
xx

(
(σ̃x)2y(x, t)

)
+ ∂x

(
(u+ µx) y(x, t)

)
= ∂ty(x, t)− 1

2
σ̃2∂2

xx

(
x2y(x, t)

)
+ ∂x

(
(u+ µx) y(x, t)

) (6.3)

with µ ∈ R, σ̃ > 0, and u being either a real value in each MPC optimization step if N = 1
or a function of time, i.e. u = u(t), if N > 1. The standard values used for the numerical
experiments are almost the same as in the Geometric-Brownian case, cf. Table 6.7. The
modifications are depicted in Table 6.12.

Parameter Value

µ 0.5
ub 3

Table 6.12: Standard parameter values for the Shiryaev process differing from Table 6.7.

First, N is set to 1 in order to reproduce the results in [3]. Figures 6.19-6.21 illustrate the
computed PDF y, the initial PDF y0, the desired PDF yd, the optimal control u, and the
adjoint state p. Qualitatively, the results coincide with the ones in [3]. Detailed information
about the control values and the stage costs are found in Table 6.13.

t u 1
2
‖y(·, t+ Ts)− yd(·, t+ Ts)‖2

L2(Ω)
λ
2
|u|2

0 1.93507 0.0498337 0.187224
0.25 0.666244 0.0117792 0.0221941
0.5 0.386913 0.0102034 0.00748506
0.75 0.238202 0.0117858 0.00283701
1 0.10297 0.0133056 0.000530143
1.25 -0.0301808 0.0174462 4.55439e-005
1.5 -0.151709 0.0311941 0.00115078
1.75 -0.239592 0.0635277 0.00287022
2 -0.259613 0.11857 0.00336994
2.25 -0.193784 0.184277 0.00187761

Table 6.13: Optimal control of the Shiryaev process for N = 1: Detailed results.

In addition to the diffusion problems that are familiar by now, the computed PDF moves
too far to the right for t ≥ 2. Also, the control exhibits a noticeable jump from tn = 0
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Figure 6.19: Optimal control of the Shiryaev process for N = 1: The computed PDF y, the
initial PDF y0, and the desired PDF yd.

Figure 6.20: Optimal control of the Shiryaev process for N = 1: The optimal control
function.
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Figure 6.21: Optimal control of the Shiryaev process for N = 1: The adjoint state p
(max |p(x, t)| = 0.413842).

to tn = 0.25. In the numerical experiments, the time frames [0, 0.25] and [2, 2.5] take
particularly long to optimize. This is resembled by Figures 6.19 and 6.20: Starting with the
initial distribution ρ, a suitable control needs to be found in order to move the computed
PDF to the right such that the desired PDF is reached. Once y is near the desired state
yd, it seems relatively easy to stay near since the desired PDF does not change very much.
After a while, though, the diffusion makes it increasingly difficult to attain the shape of the
desired PDF. Whether an increased horizon provides a remedy is examined next.

The numerical results illustrated in Figures 6.22-6.24 show that increasing the horizon toN =
2 leads to a significantly worse performance. This is particularly striking since this did not
occur in the Geometric-Brownian case, where the same initial distribution and target PDF
were used. Consequently, the answer must lie in the different system dynamics. The control u
still influences the drift, but in a different way, as it is not factored by x anymore. This results
in much higher values of p than in the Geometric-Brownian case, especially for t = 0, cf.
Figures 6.24 and 6.15. Therefore, the same argument applies as in the Ornstein-Uhlenbeck
process: For N = 2 and Ts = 0.25, the approximation errors are too big. Numerical
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Figure 6.22: Optimal control of the Shiryaev process for N = 2: The computed PDF y, the
initial PDF y0, and the desired PDF yd.

Figure 6.23: Optimal control of the Shiryaev process for N = 2: The optimal control
function.
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Figure 6.24: Optimal control of the Shiryaev process for N = 2: The adjoint state p
(max |p(x, t)| = 0.484314).

t u 1
2
‖y(·, t+ Ts)− yd(·, t+ Ts)‖2

L2(Ω)
λ
2
|u|2

0 0.179319 0.601528 0.00160777
0.25 0.470791 0.444718 0.0110822
0.5 0.843601 0.264584 0.0355832
0.75 0.949546 0.123439 0.0450819
1 0.721821 0.0494279 0.0260513
1.25 0.34269 0.0211148 0.00587184
1.5 -0.0465469 0.0187774 0.000108331
1.75 -0.369046 0.037421 0.00680974
2 -0.552653 0.0798171 0.0152713
2.25 -0.530164 0.144643 0.0140537

Table 6.14: Optimal control of the Shiryaev process for N = 2: Detailed results.
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simulations performed without computing the gradient with the help of the adjoint state
result in much better performance, cf. Table 6.15.

N Computation of the gradient Ctotal,w

1 adj. 0.185377
2 adj. 0.486748
2 num. 0.175844
5 adj. 0.223223
5 num. 0.167452

Table 6.15: Optimal control of the Shiryaev process: Weighted total costs for various N .

In conclusion, increasing the horizon for Ts = 0.25 does not pay off. Yet, as expected, this is
different for lower values of Ts. Figures 6.25-6.27 display the numerical results for Ts = 0.025
and varying horizons N . Further results are depicted in Table 6.16.

(a) N = 1 (b) N = 10

Figure 6.25: Optimal control of the Shiryaev process for Ts = 0.025 and varying N : The
computed PDF y, the initial PDF y0, and the desired PDF yd.

The same arguments as in the Ornstein-Uhlenbeck case apply here: Smaller values of Ts
lead to smaller approximation errors of the cost functional and at the same time, the right-
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(a) N = 1 (b) N = 10

Figure 6.26: Optimal control of the Shiryaev process for Ts = 0.025 and varying N : The
optimal control function.

(a) N = 1,max |p(x, t)| = 1.53539 (b) N = 10,max |p(x, t)| = 0.195778

Figure 6.27: Optimal control of the Shiryaev process for Ts = 0.025 and varying N : The
adjoint state p.

hand side in the adjoint equation is updated more often. Increasing N up to a certain
point for low Ts yields a better performance. After a certain threshold, however, no further
improvements are noticeable. The covering of a certain time frame seems more important
than the value of N by itself, i.e. the discretization of the control function plays only a minor
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Ts N Computation of the gradient Ctotal,w

0.025 1 adj. 0.59592
0.025 1 num. 0.63888
0.025 10 adj. 0.214732
0.025 10 num. 0.214846
0.03125 8 adj. 0.213354
0.03125 8 num. 0.213124
0.05 5 adj. 0.210722
0.05 5 num. 0.208683
0.125 2 adj. 0.23012
0.125 2 num. 0.194129

Table 6.16: Optimal control of the Shiryaev process: Weighted total costs for various N and
Ts.

role. Furthermore, as long as Ts is sufficiently low, solving the optimality systems is a viable
way to get (locally) optimal controls.
Yet, even for Ts = 0.025 and N = 10, the results are underwhelming. For t ≥ 2, the
computed PDF differs too much from the desired PDF yd, cf. Figure 6.25. In the previous
examples, at least the peak values were roughly at the same x. In order to negate the
drifting to the right at the end, a low control value is needed. Apparently, it is too expensive
to employ lower values of u. The solution is to reduce the regularization parameter from
λ = 0.1 to λ = 0.001 and to extend the admissible controls, i.e. setting ua = −3 instead of
−1. The results in the case of N = 2 and Ts = 0.125 are illustrated in Figures 6.28-6.29. It is
shown that with this configuration, the peak values are approximately at the same position.
As in the previous examples, the diffusion of the PDF is an unsolvable problem for space-
independent control. The following section will shine light on whether a space-dependent
control is the solution to this problem.

6.2 Space-dependent Control

In this section, the control in each MPC optimization step is either a function of space,
i.e. u = u(x), or a function of time and space, i.e. u = u(x, t), depending on whether
N = 1 or N > 1. All three processes considered in this work exhibited the same property
for space-independent control: a too high variance, i.e. compared to the desired PDFs, the
computed PDFs were too widespread. Since the control influences the drift of the PDF,
controlling the drift in every single point individually sounds promising. In this case, the
MPC cost functional is given by (3.10). The parameter α in the new cost functional is set
to 1 throughout this section, unless stated otherwise.
Notice that in this case, one should determine the gradient ∇Ĵ(u) by solving the adjoint
problem whenever possible, as it is much more efficient than analyzing perturbed controls.
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(a) y, y0, yd (b) p,max |p(x, t)| = 0.0715941

Figure 6.28: Optimal control of the Shiryaev process for N = 2, Ts = 0.125, λ = 0.001, and
ua = −3: The computed PDF y, the initial PDF y0, the desired PDF yd, and the adjoint
state p.

Figure 6.29: Optimal control of the Shiryaev process for N = 2, Ts = 0.125, λ = 0.001, and
ua = −3: The optimal control function.
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6.2.1 The Ornstein-Uhlenbeck Process with Additive Control

The Fokker-Planck equation for the Ornstein-Uhlenbeck process and space-dependent control
is the same as for space-independent control, i.e. it is given by (6.1). Unless stated otherwise,
the default values of the occurring parameters are the same as in the space-independent case,
cf. Table 6.2. Following the structure of the previous numerical experiments, N is set to 1
first and increased afterwards.

(a) N = 1 (b) N = 2

Figure 6.30: Optimal space-dependent control of the Ornstein-Uhlenbeck process for varying
N : The computed PDF y, the initial PDF y0, and the desired PDF yd.

Figures 6.30-6.32 depict the computed PDF y, the initial PDF y0, the desired PDF yd, the
control u, and the adjoint state p for N = 1 and N = 2, respectively. As expected, a space-
dependent control does influence the diffusion: For N = 1 and t = TE, the computed PDF
looks more similar to the desired one than in the space-independent case, cf. e.g. Figure
6.2. However, it is debatable whether for interim times a space-dependent control yields
better results, since a second, smaller peak emerges. In addition, the same problems as
in the space-independent case are encountered when setting N = 2: For Ts = 0.5, the
discrepancy between the MPC cost functional and the cost functional in the optimality
system that is solved in order to obtain gradient information is too high. This highly affects
the computation of the optimal control. Self-evidently, detailed control values in this case
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(a) N = 1,max |u(x, t)| = 4 (b) N = 2,max |u(x, t)| = 3.83484

Figure 6.31: Optimal space-dependent control of the Ornstein-Uhlenbeck process for varying
N : The optimal control function.

cannot be provided in a table. However, looking at Figure 6.31, differences in the control
when N is increased to 2 are easily observed.

Since space-dependent control was not considered in [3] or [4], there are no reference values
that could be used for comparison purposes. However, Figure 6.30 shows that solving the
optimality systems yields a control that is likely to be a (local) minimum, since the MPC
algorithm obviously tries to compute a control sequence such that the desired trajectory is
reached as good as possible. For testing purposes, additional simulations were run where
the gradient information has been obtained by analyzing the effects of small changes in the
control, cf. Remark 4.6. The results are presented in Table 6.17 and Figures 6.33-6.34.

First of all, Table 6.17 shows that obtaining the gradient by solving the adjoint problem
yields higher costs, even for N = 1. However, the higher differences for N > 1 support
the reasoning above, i.e. the discrepancy between the cost functionals seems too high. The
increase in cost from 1.82967 for N = 1 to 2.0627 for N = 2 backs this argument. Also, it
always pays off to increase the horizon if the gradient is not obtained by solving the adjoint
problem, even when future states after TE influence the computation. However, N = 2
seems to provide already good results, cf. Figure 6.33, and further increase in N leads to
only slight reduction in the total costs. With these numbers, however, one might wonder
whether it is viable at all to use the derived optimality systems. To this end, a comparison of
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(a) N = 1,max |p(x, t)| = 0.752818 (b) N = 2,max |p(x, t)| = 0.565058

Figure 6.32: Optimal space-dependent control of the Ornstein-Uhlenbeck process for varying
N : The adjoint state p.

N Computation of the gradient Ctotal,w

1 adj. 1.82967
1 num. 1.73789
2 adj. 2.0627
2 num. 1.44323
5 adj. 1.94317
5 num. 1.36755

Table 6.17: Optimal space-dependent control of the Ornstein-Uhlenbeck process: Weighted
total costs for various N .

Figure 6.33 to Figure 6.30 shows that the qualitative results coincide for N = 1. Therefore,
the optimality system (2.56)-(2.58) seems suitable. To conclude the same for the optimality
system (2.60)-(2.62), smaller values of Ts are needed in order to mitigate the above discussed
errors. Hence, in a next step, Ts is reduced from 0.5 to 0.05.

Figures 6.35-6.37 illustrate the numerical results for Ts = 0.05, N = 10, and varying α.
The parameter α is introduced in order to reduce the control costs relatively to the state
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(a) N = 1 (b) N = 2

Figure 6.33: Optimal space-dependent control of the Ornstein-Uhlenbeck process for varying
N (num.): The computed PDF y, the initial PDF y0, and the desired PDF yd.

costs. This can also be achieved by lowering the value of the regularization parameter λ.
However, in practice, handling a low value of λ proves to be difficult for the optimization
algorithms, since ultimately, this procedure is equivalent to evaluating the corresponding
projection formulas, e.g. (2.65), in which λ appears in the denominator. Therefore, instead
of reducing λ by a factor of 10, α is multiplied by this factor. For α = 1, the results
are qualitatively the same as for (Ts, N) = (0.5, 1), implicating that solving the optimality
system (2.60)-(2.62) is indeed viable. Increasing α to 10 yields an even better tracking of
the desired PDF, cf. Figure 6.35.

Numerical simulations for low values of Ts and N = 1 have been omitted, since it has already
been shown in Section 6.1 that for low values of Ts, increasing the horizon N improves the
results significantly.

On another note, in all situations in which the box constraints of the control are not active,
i.e. max |u(x, t)| < 4, the resulting control functions appear to be smooth w.r.t. x, cf. Figures
6.31, 6.34, and 6.36. In particular, one can assume that ∂xu exists in the classical sense,
which is required in order to prove existence and uniqueness of solutions of the Fokker-Planck
equation for space-dependent control, cf. Subsection 2.2.1. If, in addition, u is Lipschitz-
continuous w.r.t. x, then applying this control in the stochastic setting is meaningful as well,
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(a) N = 1,max |u(x, t)| = 3.0315 (b) N = 2,max |u(x, t)| = 3.26975

Figure 6.34: Optimal space-dependent control of the Ornstein-Uhlenbeck process for varying
N (num.): The optimal control function.

cf. Assumption 2.5 and Example 2.6.

To conclude the numerical experiments for the Ornstein-Uhlenbeck process, a last test is
undertaken in order to see how effective the control can be. It has been mentioned several
times now that covering a certain time interval is more important than the value of the
horizon itself. Therefore, in the following setting, the parameter Ts is set to its default value
0.5 and the horizon N is set to 1 to put this statement to a test. From Figure 6.35 it seems
that the limiting factor for a very good tracking are the control costs. To remove this limit,
λ is set to 0.01 and α is set to 100. In this experiment, the gradient information is obtained
by analyzing the effects of small changes in the control. The results are depicted in Figures
6.38 and 6.39. The control in Figure 6.39 exhibits a strange behavior at the right boundary,
probably the result of some numerical effects, e.g. the use of first order approximations
of derivatives by Finite Differences. However, Figure 6.38 shows no observable deviation
from the desired PDF. Although for standard parameter values, increasing the horizon N
from 1 to 2 is beneficial (when not solving the adjoint equation in order to obtain gradient
information), it seems that N = 1 already guarantees satisfactory results in this setting.

In conclusion, space-dependent control is superior to space-independent control. The desired
PDF can be tracked with virtually no deviation. Also, obtaining the optimal control by
solving the optimality systems is a viable and efficient option, keeping the computation
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(a) α = 1 (b) α = 10

Figure 6.35: Optimal space-dependent control of the Ornstein-Uhlenbeck process for N = 10
and varying α: The computed PDF y, the initial PDF y0, and the desired PDF yd.

times at acceptable levels.
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(a) α = 1,max |u(x, t)| = 3.8357 (b) α = 10,max |u(x, t)| = 4

Figure 6.36: Optimal space-dependent control of the Ornstein-Uhlenbeck process for N = 10
and varying α: The optimal control function.

(a) α = 1,max |p(x, t)| = 0.41233 (b) α = 10,max |p(x, t)| = 1.11771

Figure 6.37: Optimal space-dependent control of the Ornstein-Uhlenbeck process for N = 10
and varying α: The adjoint state p.
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Figure 6.38: Optimal space-dependent control of the Ornstein-Uhlenbeck process for N =
1, α = 100, and λ = 0.01 (num.): The computed PDF y, the initial PDF y0, and the desired
PDF yd.
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Figure 6.39: Optimal space-dependent control of the Ornstein-Uhlenbeck process for N =
1, α = 100, and λ = 0.01 (num.): The optimal control function (max |u(x, t)| = 4).
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6.2.2 Geometric-Brownian Process with Additive Drift Control

The Fokker-Planck equation for the Geometric-Brownian process and space-dependent con-
trol is given by

0 = ∂ty(x, t)− 1

2
∂2
xx

(
(σ̃x)2y(x, t)

)
+ ∂x

(
(µ+ u)x y(x, t)

)
= ∂ty(x, t)− 1

2
σ̃2∂2

xx

(
x2y(x, t)

)
+ ∂x

(
(µ+ u)x y(x, t)

) (6.4)

with µ ∈ R and σ̃ > 0. Notice that in contrast to (6.2), µ+u cannot be factored out. Unless
specifically mentioned, the default values of the occurring parameters are the same as in the
space-independent case, cf. Table 6.7.

This process is much harder to handle numerically than the Ornstein-Uhlenbeck process.
In fact, employing the BFGS algorithm with the first few iterations being computed by the
Projected Gradient method often results in errors when trying to obtain gradient information
by solving the adjoint equation. This happened for various configurations and linesearch
parameters. Therefore, the first numerical results are gained by computing the gradient of
the cost functional by means of Remark 4.6. The results for N = 1 and N = 2 are depicted in
Figures 6.40 and 6.41. In case of N = 1 the error tolerance opttol needed to be reduced from
1e− 5 to 5e− 5 in order to achieve convergence (within a reasonable number of iterations).

In both cases, the desired probability density function yd is tracked well for t ≥ 1.5. After-
wards, the computed PDF y deviates more and more from the desired one. Furthermore, it
is unclear whether conservation of probability is ensured at all times. In fact, this is not the
case: ∫

Ω

y(x, TE) dx ≈

{
0.8337715555 if N = 1,

0.8875854545 if N = 2.

A larger domain Ω would help ensuring this property. However, it would not improve the
tracking results. Yet, increasing the horizon seems to help improve these results somewhat,
cf. Table 6.18. An additional simulation for N = 5 has been run with a reduced error
tolerance tolopt = 5e − 5. It shows a small raise in the costs compared to N = 2, which is
probably due to the consideration of the desired PDF at times t > TE.

To examine the effects for various α and lower Ts values, the gradient needs to be obtained
efficiently, i.e. by solving the adjoint problem. A combination of the BFGS method and the
Projected Gradient method did not converge. Thus, solely the Projected Gradient method is
employed. In particular, the stopping criteria are different, cf. Chapter 5. Figures 6.42-6.44
show the computed PDF y, the initial PDF y0, the target PDF yd, the computed optimal
control u, and the adjoint state p for Ts = 0.025, N = 10, and various α values.

Although Figures 6.42(a) and 6.40(a) look alike, the conservation of probability is satisfied
in the former case: ∫

Ω

y(x, TE) dx ≈

{
0.9999999795 if α = 1,

1.000000369 if α = 10.
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(a) N = 1 (b) N = 2

Figure 6.40: Optimal space-dependent control of the Geometric-Brownian process for varying
N (num.): The computed PDF y, the initial PDF y0, and the desired PDF yd.

N Computation of the gradient Ctotal,w

1 adj. n/a
1 num. 0.125933
2 adj. n/a
2 num. 0.103104
5 adj. n/a
5 num. 0.106761

Table 6.18: Optimal space-dependent control of the Geometric-Brownian process: Weighted
total costs for various N .

Furthermore, these figures indicate once more that the derived optimality system (2.60)-
(2.62) is correct and solving it yields reasonable results. As in the Ornstein-Uhlenbeck
process, the control costs limit the tracking of the desired PDF. By weighting the state
costs by a high enough factor, tracking results can be improved significantly, such that
the computed PDF barely deviates from the desired one, cf. Figure 6.42(b). Compared
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(a) N = 1,max |u(x, t)| = 0.920015 (b) N = 2,max |u(x, t)| = 1

Figure 6.41: Optimal space-dependent control of the Geometric-Brownian process for varying
N (num.): The optimal control function.

to space-independent control, much better tracking is achieved, cf. e.g. Figure 6.16(b).3

The controls in Figure 6.43 highlight the (numerical) difficulties of the Geometric-Brownian
process. Especially for t = 0, the control seems irregular, not even continuous. As time
passes, however, the control function seems almost smooth. This is resembled by the state
in Figure 6.42(b): for t = 0.25, the desired PDF is not attained as well as for later times.
Maybe the results can be improved further by more sophisticated algorithms and linesearch
strategies in particular. However, with these kinds of control functions, it is questionable
whether they can be used in a stochastic setting as they are clearly not Lipschitz-continuous,
at least not for t = 0. The steep descents at t = TE add nothing good to that cause. Yet,
looking from the PDE-constrained optimization perspective, satisfactory results have been
obtained.

3A numerical experiment with space-independent control and α = 10 resulted in virtually the same
computed PDF as in Figure 6.16(b).
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(a) α = 1 (b) α = 10

Figure 6.42: Optimal space-dependent control of the Geometric-Brownian process forN = 10
and varying α: The computed PDF y, the initial PDF y0, and the desired PDF yd.
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(a) α = 1,max |u(x, t)| = 1 (b) α = 10,max |u(x, t)| = 1

Figure 6.43: Optimal space-dependent control of the Geometric-Brownian process forN = 10
and varying α: The optimal control function.

(a) α = 1,max |p(x, t)| = 0.140537 (b) α = 10,max |p(x, t)| = 1.30928

Figure 6.44: Optimal space-dependent control of the Geometric-Brownian process forN = 10
and varying α: The adjoint state p.
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6.2.3 The Shiryaev Process

The last process considered is the Shiryaev process. The corresponding Fokker-Planck equa-
tion coincides with the one for space-independent control, cf. (6.3). Once again, the default
parameter values are the same as in the space-independent case, cf. Subsection 6.1.3, unless
stated otherwise.
Similar to the Geometric-Brownian process with space-dependent control, the usual ap-
proach, i.e. solving the optimality system (2.56)-(2.58) with a combination of the BFGS
method and the Projected Gradient method failed; various configurations have been used.
Therefore, the first results are gained by calculating the gradient of the reduced cost func-
tional as in Remark 4.6. These are illustrated in Figures 6.45-6.46.

(a) N = 1 (b) N = 2

Figure 6.45: Optimal space-dependent control of the Shiryaev process for varying N (num.):
The computed PDF y, the initial PDF y0, and the desired PDF yd.

Neither the control nor the computed PDF change significantly when increasing N from 1
to 2. Table 6.19 backs the figures; an increase in N leads to only slight improvements in
the costs. However, the diffusion at the terminal time t = TE is not prevented. Moreover,
the computed PDFs now have a tail on the left, which seems even worse than the space-
independent control results, cf. e.g. Figure 6.19. It remains to be seen whether better tracking
results can be achieved. To this end, as in the previous subsections, the α value is increased
next. The following results have been obtained by employing only the Projected Gradient
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(a) N = 1,max |u(x, t)| = 1.86649 (b) N = 2,max |u(x, t)| = 2.05304

Figure 6.46: Optimal space-dependent control of the Shiryaev process for varying N (num.):
The optimal control function.

N Computation of the gradient Ctotal,w

1 adj. n/a
1 num. 0.193211
2 adj. n/a
2 num. 0.1744
5 adj. n/a
5 num. 0.165513

Table 6.19: Optimal space-dependent control of the Shiryaev process: Weighted total costs
for various N .

method. Also, the solution is obtained by solving the corresponding optimality system
(2.60)-(2.62).
Figures 6.47-6.49 display the numerical results for Ts = 0.025, N = 10, and varying α values.
First of all, the results for α = 1 are qualitatively the same as for Ts = 0.25 and N = 1,
cf. Figure 6.45(a). Like in the previous stochastic processes, this fortifies the assumption
that the derived optimality system (2.60)-(2.62) characterizes (local) minima. As before,
the target PDF is attained better for α = 10. Aside from the little tails on the left, the
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(a) α = 1 (b) α = 10

Figure 6.47: Optimal space-dependent control of the Shiryaev process for N = 10 and
varying α: The computed PDF y, the initial PDF y0, and the desired PDF yd.

computed PDF for α = 10 provides good tracking results that, in some respects, are better
than the ones obtained with space-independent control, cf. Figure 6.25(b). In particular, the
peak value of y coincides with that of yd for a longer period of time. However, at t = TE, the
computed PDF strides away from the desired PDF. Looking at the controls in Figure 6.48,
the limiting factor is the set of admissible controls Uad: The lower bound ua = −1 is maxed
out. The same behavior was observed in the space-independent case. Reducing ua to −3
helped in that matter: While the diffusion remained a problem, at least the peak values of y
and y0 were at the same position x. Consequently, the same measure should lead to better
results for space-dependent control as well. Before this experiment is conducted, however, it
should be noted that the control in Figure 6.48(b) is non-continuous for t = 0, just as in the
Geometric-Brownian case. In particular, the control does not meet the requirements of the
theorems concerning the existence and uniqueness of solutions of the Fokker-Planck equation,
cf. Subsection 2.2.1. Yet, the solution gained by numerical simulation looks meaningful. The
reason for the irregularity of the control probably lies in the irregularities appearing in the
adjoint state p for t = 0, cf. Figure 6.49(b). If these occur due to numerical reasons, a more
sophisticated or finer discretization of the adjoint state might help getting rid of the jumps
in p and result in a more regular control function.
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(a) α = 1,max |u(x, t)| = 3 (b) α = 10,max |u(x, t)| = 3

Figure 6.48: Optimal space-dependent control of the Shiryaev process for N = 10 and
varying α: The optimal control function.

Eventually, the lower bound ua is lowered to −4 to see whether the desired probability
density function can be attained better, especially for t = TE. As in the Ornstein-Uhlenbeck
process, the last simulation is run with α = 100, λ = 0.01, N = 1, and Ts = 0.25 to see
once again whether the shortest possible horizon is sufficient to provide satisfactory results
under these conditions. The gradient of the reduced cost functional is obtained by means of
Remark 4.6. The preferred combination of the BFGS and the Projected Gradient method
does converge in this case. Figure 6.50 shows the computed PDF y, the initial PDF y0, and
the desired PDF yd. The corresponding control is illustrated in Figure 6.51. Just like in the
Ornstein-Uhlenbeck case, the computed PDF virtually coincides with the desired one. With
the lowest control value being u(x, t) = −3.98719, the additional freedom due to the reduced
lower bound ua = −4 is almost used up completely, cf. Figure 6.51.
The conclusion is analogous to those in the two previous subsections: Space-dependent
control can help achieving much better tracking results, i.e. the probability density function
virtually does not deviate from the target PDF. Also, solving the optimality system (2.60)-
(2.62) in order to find the optimal control is a viable option. If the gradient of the reduced cost
functional can be obtained by solving the corresponding adjoint problem, the computation
times are acceptable.
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(a) α = 1,max |p(x, t)| = 0.167978 (b) α = 10,max |p(x, t)| = 1.95255

Figure 6.49: Optimal space-dependent control of the Shiryaev process for N = 10 and
varying α: The adjoint state p.
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Figure 6.50: Optimal space-dependent control of the Shiryaev process for N = 1, α =
100, ua = −4, and λ = 0.01 (num.): The computed PDF y, the initial PDF y0, and the
desired PDF yd.
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Figure 6.51: Optimal space-dependent control of the Shiryaev process for N = 1, α =
100, ua = −4, and λ = 0.01 (num.): The optimal control function (max |u(x, t)| = 3.98719).



Chapter 7

Concluding Remarks

The aim of this thesis was to contribute to the Fokker-Planck control framework for stochastic
processes introduced by Annunziato and Borz̀ı [3], [4], by studying the impact of the horizon
parameter in the MPC scheme and by examining the effects of employing a space-dependent
control instead of a space-independent one. To this end, existence and uniqueness results
concerning the Fokker-Planck equation for space-dependent controls have been provided.
Necessary optimality conditions were derived using the formal Lagrange technique, resulting
in an optimality system for each of the considered optimal control problems. These conditions
were not derived rigorously, i.e. from the theoretical point of view, it remains unclear whether
these conditions lead to a stationary point, not to mention a (local) minimum. However,
the numerical results suggest that these optimality systems are indeed suitable to find an
optimal control.

In order to be able to run the numerical simulations, discretization and optimization methods
have been implemented along with the MPC scheme. The outcome is a program, which, due
to its modular structure, is easily expandable, such that new problems can be tackled and
more sophisticated algorithms can be added to the program in order to deal with numerical
difficulties.

The three stochastic processes considered in this work are the Ornstein-Uhlenbeck Process
with Additive Control, the Geometric-Brownian Process with Additive Drift Control, and
the Shiryaev Process. For each of these processes, numerical simulations have been run with
space-independent and space-dependent control. In all of these cases, increasing the horizon
improved the results significantly only under certain circumstances. As long as a certain time
interval was captured in each MPC step, reasonable results were obtained. Thus, it seems
that the combination of the sampling rate Ts and the MPC horizon N is more important
than the horizon parameter by itself. Even though only the shortest possible horizon is
considered in [3], combining it with the high value of Ts yielded results in [3] which are hard
to improve with space-independent control. Yet, the desired probability density functions
are rarely attained by the computed PDFs. This is due to the too high diffusion of the
computed probability density functions compared to the diffusion of the desired ones.

Significantly better results can be achieved with a space-dependent control, as the diffusion
can then be handled. For every stochastic process, a setting was found in which a (near)
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perfect tracking is obtained, often even with the shortest possible MPC horizon. Even so,
this comes at the cost of (much) higher computation times, which highlights the importance
of adjoint-based methods to compute the gradient of the (reduced) cost functional. Doing
so, only two PDEs need to be solved in each iteration of the optimization algorithm. If the
gradient is obtained by analyzing the effects of perturbed controls, however, a multitude of
PDEs is to be solved in each iteration of the optimization algorithm. Especially for space-
dependent control, computation times might quickly reach unacceptable levels. To this end,
different algorithms and/or more efficient linesearch strategies might reduce the computing
time significantly.
Several open questions and tasks remain regarding the Fokker-Planck optimal control frame-
work. First of all, existence and uniqueness of optimal controls have not been proven theo-
retically. If this step is undertaken successfully, the next step is to rigorously derive necessary
optimality conditions, and, if possible, sufficient optimality conditions. Another challenging
problem is to study the relation of the MPC sampling rate and the MPC horizon analytically.
The question is whether the numerical findings can be forecast by theoretical results.
Nevertheless, the results in this thesis provide a good starting point in regard of these
problems.



Appendix A

Preliminaries regarding PDE theory

When trying to prove existence and uniqueness results regarding solutions of PDEs, so-called
classical solutions often do not exist in practical relevant situations. These are solutions
that are sufficiently smooth, e.g. twice continuously differentiable with respect to x and
continuously differentiable w.r.t. t in the Fokker-Planck case (2.7)-(2.9). However, weaker
solution concepts can be used to provide satisfactory results. To this end, several function
spaces primarily discussed in functional analysis are utilized. This section tries to very
briefly present the concept of weak solutions and the corresponding spaces, especially in
light of optimal control. It is assumed that basics about real vector spaces, norms and linear
operators are known to the reader. For more information and details, [30] and [16] are
recommended; the information for this part was taken or adapted from these works.
First, the functional spaces that are key to the theory concerning PDEs are introduced.

Definition A.1 (Banach space)
A normed real vector space {X, ‖·‖} is called (real) Banach space :⇔ X is complete, i.e. any
Cauchy sequence (un) ⊂ X has a limit u ∈ X, i.e.:

If lim
m,n→∞

‖um − un‖ = 0 ⇒ ∃u ∈ X : lim
n→∞

‖un − u‖ = 0.

Definition A.2 (Linear functional, dual space, duality pairing)
Let X be a Banach space.
(a) A continuous linear operator u∗ : X → R, i.e. u∗ ∈ L(X,R), is called a continuous linear

functional on X.
(b) Let u ∈ X. The space X∗ := L(X,R) is called dual space of X. The corresponding

norm is given by
‖u∗‖X∗ := sup

‖u‖X=1

|u∗(u)|.

(c) Let u ∈ X, u∗ ∈ X∗. The notation

〈u∗, u〉X∗,X := u∗(u)

is called the duality pairing of X∗ and X.



110 Chapter A: Preliminaries regarding PDE theory

Definition A.3 (Hilbert space)
A real vector space H with inner product (·, ·), {H, (·, ·)}, and associated norm ‖u‖ :=√

(u, u) is called Hilbert space :⇔ H is complete under its norm ‖u‖.

Theorem A.4 (Riesz representation theorem)
The dual space H∗ of a Hilbert space H is isometric to H itself. More precisely, for every
v ∈ H the linear functional u∗ defined by

〈u∗, u〉H∗,H := (v, u)H , u ∈ H

is in H∗ with norm ‖u∗‖H∗ = ‖v‖H . Vice versa, for every u∗ ∈ H∗ there exists a unique
v ∈ H such that

〈u∗, u〉H∗,H = (v, u)H , u ∈ H

and ‖u∗‖H∗ = ‖v‖H . In particular, H∗ can be identified with H.

Proof. Cf. [1, p. 166f]

Definition A.5 (Lp spaces)
Let E ⊂ Rn be a nonempty, bounded and Lebesgue measurable set.
(a) Let 1 ≤ p < ∞. Lp(E) is the function space consisting of (equivalence classes of)

(Lebesgue) measurable functions y : E → R with∫
E

|y(x)|p dx <∞.

The Lp norm is defined by

‖y‖Lp(E) :=

∫
E

|y(x)|p dx

1/p

.

(b) L∞(E) is the function space consisting of (equivalence classes of) functions y : E → R
that are uniformly bounded almost everywhere, i.e. uniformly bounded up to a set of
measure zero. The norm is defined as follows:

‖y‖L∞(E) := ess sup
x∈E

|y(x)| := inf
|F |=0

(
sup
x∈E\F

|y(x)|

)

where |F | is the n-dimensional Lebesgue measure of the set F .
(c) Let 1 ≤ p ≤ ∞. Lploc(E) is the function space consisting of (equivalence classes of)

(Lebesgue) measurable functions y : E → R with y ∈ Lp(K) for all compact K ⊆ E.

Remark A.6
Let 1 ≤ p ≤ ∞ and Ω ⊂ Rn. Then Lp(Ω) ⊂ L1

loc(Ω).
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The Lp function spaces play an important role in the PDE theory: They replace Ck(Ω̄),
the function space of k ∈ N0 ∪ {∞} times continuously partially differentiable functions on
open Ω ⊂ Rn that can be extended continuously on Ω̄, the closure of Ω. This is done by
introducing weak derivatives, which are motivated by the formula for integration by parts.
To this end, the space Ck

0 is needed.

Definition A.7 (Ck
0 functions and support)

Let Ω ⊂ Rn and k ∈ N0 ∪ {∞}. The set Ck
0 (Ω) consists of functions in Ck(Ω) that have

compact support in Ω, i.e.

Ck
0 (Ω) :=

{
y ∈ Ck(Ω) | supp(y) ⊂ Ω is compact

}
where

supp(y) := {x ∈ Ω | y(x) 6= 0}

is the support of y.

Definition A.8 (Weak partial derivative)
Let Ω ⊂ Rn be open, y ∈ L1

loc(Ω) and α ∈ Nn
0 be a multi index. A function w ∈ L1

loc(Ω) is
called the α-th weak partial derivative of y :⇔

∀v ∈ C∞0 (Ω) :

∫
Ω

y(x)Dαv(x) dx = (−1)|α|
∫
Ω

w(x)v(x) dx.

In this case, Dαy := w.

Remark A.9
If the α-th weak partial derivative of y exists, it is uniquely determined (up to a set of measure
zero), see [16, Lemma 1.5].

A weak partial derivative does not necessarily exist. If it does exist, however, it can certainly
belong to spaces like Lp(Ω) rather than only L1

loc(Ω). This motivates the following definition.

Definition A.10 (Sobolev space)
Let Ω ⊂ Rn be open. For k ∈ N0 and 1 ≤ p ≤ ∞, the Sobolev space W k,p(Ω) is defined by

W k,p(Ω) := {y ∈ Lp(Ω) | y has weak derivatives Dαy ∈ Lp(Ω) for all |α| ≤ k} .

The corresponding norm is given by

‖y‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαy‖pLp(Ω)

1/p

, 1 ≤ p <∞,

‖y‖Wk,∞(Ω) :=
∑
|α|≤k

‖Dαy‖L∞(Ω) .
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Remark A.11
Let Ω ⊂ Rn be open, k ∈ N0, and 1 ≤ p ≤ ∞.
(a) The Sobolev spaces W k,p(Ω) are Banach spaces, see [16, Theorem 1.11] and [31].
(b) The space Hk(Ω) := W k,2(Ω) (p = 2) becomes a Hilbert space by introducing the inner

product

(y, v)Hk(Ω) :=
∑
|α|≤k

(Dαy,Dαv)L2(Ω).

In particular,
H1(Ω) =

{
y ∈ L2(Ω)

∣∣Diy ∈ L2(Ω), i = 1, ..., n
}

with norm

‖y‖H1(Ω) =

∫
Ω

(y2 + |∇y|2) dx

1/2

where |∇y|2 =
n∑
i=1

(Diy)2 and inner product

(y, v)H1(Ω) =

∫
Ω

y v dx+

∫
Ω

∇y · ∇v dx

is a Hilbert space, see [16, Theorem 1.11] and [30, p. 23].

In cases where no classical solutions of a PDE exist, the Sobolev spaces allow for resorting
to a weaker concept of solutions with the help of weak derivatives. The idea is to take the
PDE, multiply it by a so-called test function, integrate over the whole space-time cylinder
and use the formula for integration by parts. In the following, this procedure is done step
by step for the following problem:

∂ty(x, t)− 1

2
∂2
xxy(x, t) + ∂xy(x, t) = 0 in Q (A.1)

y(x, 0) = ρ(x) in Ω (A.2)

y(x, t) = 0 in Σ (A.3)

where the space-time cylinder Q is defined by Q := Ω×]0, TE[ with Ω ⊂ R being an open
interval, i.e. Ω := ]xL, xR[, and TE > 0. Σ is given by Σ := ∂Ω×]0, TE[. ρ : Ω → R is given
and y : Q̄→ R is the unknown.
First, a classical solution y is assumed, so all integrals below exist. In particular, y is assumed
to be continuous on Q̄. For simplicity, the arguments are omitted in the following.
The PDE (A.1), a special case of the Fokker-Planck equation (2.7), is multiplied by a smooth
test function v(x, t), i.e. v ∈ C1(Q̄), and integrated over Q:

TE∫
0

∫
Ω

∂ty v dx dt−
TE∫
0

∫
Ω

1

2
∂2
xxy v dx dt+

TE∫
0

∫
Ω

∂xy v dx dt = 0.
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After partially integrating the second and third integral w.r.t. x, one gets

0 =

TE∫
0

∫
Ω

∂ty v dx dt−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt+

TE∫
0

∫
Ω

1

2
∂xy ∂xv dx dt

+

TE∫
0

(y v)|xRxL dt−
TE∫
0

∫
Ω

y ∂xv dx dt.

Next, the boundary condition (A.3) is implemented, resulting in

0 =

TE∫
0

∫
Ω

∂ty v dx dt−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt+

TE∫
0

∫
Ω

1

2
∂xy ∂xv dx dt

+

TE∫
0

(y v)|xRxL dt

︸ ︷︷ ︸
=0

−
TE∫
0

∫
Ω

y ∂xv dx dt

=

TE∫
0

∫
Ω

∂ty v dx dt−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt+

TE∫
0

∫
Ω

(
1

2
∂xy − y

)
∂xv dx dt.

(A.4)

Remark A.12
Using the integration by parts formula for the third integral was not necessary. Since the
existence of ∂xy and ∂xv is required anyway, an additional ∂xy or ∂xv term does not influence
the regularity of y or v.

The main advantage of this new formulation is that only first-order derivatives of y are
required – and only in the weak sense, cf. Definition A.8. However, several problems arise:

1. In the above derivation, a classical solution y has been used, allowing for simply incor-
porating the boundary conditions (A.3). However, the aim is to obtain a meaningful
formulation for functions in Sobolev spaces, i.e. functions which are uniquely deter-
mined only up to a set of measure zero. The question therefore is how to interpret the
boundary conditions in the new setting.

2. While the derivatives w.r.t. x are symmetrically distributed between the solution y and
the test function v, it is unclear whether to keep ∂ty or use the formula for integration
by parts to obtain ∂tv instead. In either case, one function needs to be more regular
than the other.

Both issues are tackled in the following. It is helpful to focus on the space domain Ω first. A
possible way to deal with ∂Ω at least for homogeneous boundary conditions is to incorporate
them into the function space.
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Definition and Remark A.13 (The W k,p
0 (Ω) space)

Let Ω ⊂ Rn be open, k ∈ N0, and 1 ≤ p ≤ ∞.
(a) Denote by W k,p

0 (Ω) the closure of C∞0 (Ω) in W k,p(Ω), i.e. for any y ∈ W k,p
0 (Ω) there

exists a sequence (vi) ⊂ C∞0 (Ω) with lim
i→∞
‖y − vi‖Wk,p(Ω) = 0. The norm is the same as

in W k,p(Ω).
(b) W k,p

0 (Ω) is a Banach space, cf. [31], and Hk
0 (Ω) := W k,2

0 (Ω) is a Hilbert space, see [16,
p. 21].

For general boundary values, a requirement on Ω ⊂ Rn and on its boundary ∂Ω in particular
needs to be met.

Definition A.14 (Ck,1 boundary, Lipschitz domain)
Let n ∈ N with n ≥ 2 and k ∈ N0 Further, let Ω ⊂ Rn be a bounded domain with boundary
∂Ω. Ω has a Ck,1 boundary :⇔ ∃ finitely many local coordinate systems S1, ..., SM , functions
h1, ..., hM and constants a, b > 0:

(i) All hi are k times continuously differentiable with Lipschitz continuous derivatives of
order k on the closed (n− 1)-dimensional cube

Q̄n−1 :=
{
y = (y1, ..., yn−1) ∈ Rn−1 | |yi| ≤ a, i = 1, ..., n− 1

}
(ii) ∀P ∈ ∂Ω ∃i ∈ {1, ...,M} : P can be written as P = (y, hi(y)), y ∈ Qn−1 in the

coordinate system Si.
(iii) In the local coordinate system Si, the following holds:

(y, yn) ∈ Ω⇔ y ∈ Q̄n−1, hi(y) < yn < hi(y) + b

(y, yn) /∈ Ω⇔ y ∈ Q̄n−1, hi(y)− b < yn < hi(y),

i.e. locally, Ω lies only on one side of the boundary.
If k = 0, Ω has a Lipschitz boundary and is called Lipschitz domain.

Theorem A.15 (Trace Theorem)
Let Ω ⊂ Rn be a bounded Lipschitz domain. Further, let 1 ≤ p ≤ ∞. Then there exists a
unique bounded linear operator τ : W 1,p(Ω)→ Lp(∂Ω) such that

∀y ∈ W 1,p(Ω) ∩ C(Ω̄) : (τy)(x) = y(x) for almost all x ∈ ∂Ω.

Proof. Cf. [1], [7], or [31].

Definition and Remark A.16 (Trace)
(a) τy is called the trace of y on ∂Ω.
(b) (τy)(x) coincides with y|∂Ω

on ∂Ω for continuous functions y. For simplicity, instead of
τy, often the notation y|∂Ω

is used.

The Trace Theorem gives a meaning to the values on ∂Ω for functions that are uniquely
determined only up to a set of measure zero. The next step is to deal with the time dimension.
For parabolic PDEs, the common function spaces are the W 1,0

2 (Q) and W 1,1
2 (Q) spaces.
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Definition and Remark A.17 (The W 1,0
2 (Q) space)

Let Ω ⊂ Rn be open, TE > 0, and Q := Ω×]0, TE[.

(a) The space W 1,0
2 (Q) is defined by

W 1,0
2 (Q) :=

{
y ∈ L2(Q)

∣∣ Diy ∈ L2(Q), i = 1, ..., n
}
,

where Diy is the first weak derivative of y w.r.t. xi. The corresponding norm is given by

‖y‖W 1,0
2 (Q) :=

 TE∫
0

∫
Ω

(
y(x, t)2 + |∇xy(x, t)|2

)
dx dt

1/2

,

where ∇x is the gradient w.r.t. x. In this context, the subscript x often is omitted, i.e.
∇ is written instead of ∇x.

(b) By introducing the inner product that arises from the above norm, W 1,0
2 (Q) becomes a

Hilbert space, see [30, p. 111]. W 1,0
2 (Q) is therefore often denoted by H1,0(Q).

Definition and Remark A.18 (The W 1,1
2 (Q) space)

Let Ω ⊂ Rn be open, TE > 0, and Q := Ω×]0, TE[.

(a) The space W 1,1
2 (Q) is defined by

W 1,1
2 (Q) :=

{
y ∈ L2(Q)

∣∣ yt ∈ L2(Q) and Diy ∈ L2(Q), i = 1, ..., n
}
,

where Diy is the first weak derivative of y w.r.t. xi. The corresponding norm is given by

‖y‖W 1,1
2 (Q) :=

 TE∫
0

∫
Ω

(
y(x, t)2 + |∇xy(x, t)|2 + yt(x, t)

2
)
dx dt

1/2

,

where ∇x is the gradient w.r.t. x. In this context, the subscript x often is omitted, i.e.
∇ is written instead of ∇x.

(b) By introducing the inner product that arises from the above norm, W 1,1
2 (Q) becomes a

Hilbert space, see [30, p. 111]. W 1,1
2 (Q) is therefore often denoted by H1,1(Q).

The difference between these two spaces obviously is the derivative w.r.t. time t. The usual
approach in PDE theory is to use the formula for integration by parts to transfer the time
derivative to the test function. Consequently, starting from (A.4) and using the initial
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condition (A.2), one gets

0 =

TE∫
0

∫
Ω

∂ty v dx dt−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt+

TE∫
0

∫
Ω

(
1

2
∂xy − y

)
∂xv dx dt

=

∫
Ω

(y v)|TE0 dx−
TE∫
0

∫
Ω

y ∂tv dx dt−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt

+

TE∫
0

∫
Ω

(
1

2
∂xy − y

)
∂xv dx dt

=

∫
Ω

y(x, TE)v(x, TE) dx−
∫
Ω

y(x, 0)︸ ︷︷ ︸
=ρ(x)

v(x, 0) dx−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt

+

TE∫
0

∫
Ω

(
1

2
∂xy − y

)
∂xv − y ∂tv dx dt

=

∫
Ω

y(x, TE)v(x, TE) dx−
∫
Ω

ρ(x)v(x, 0) dx−
TE∫
0

(
1

2
∂xy v

)∣∣∣∣xR
xL

dt

−
TE∫
0

∫
Ω

y ∂tv −
(

1

2
∂xy − y

)
∂xv dx dt.

(A.5)

As before, a classical solution y is assumed so that all above integrals exist. This way, the
first so-called variational formulation of (A.1)-(A.3) has been derived. However, the aim is
to obtain a meaningful variational formulation even for functions y ∈ W 1,0

2 (Q), which are
not necessarily continuous, i.e. y(x, 0) and y(x, TE) are not necessarily well-defined. For
y(x, 0) the initial condition (A.2) can be plugged in.1 However, the term y(x, TE) needs to
be handled as well. A trick helps to get rid of y(x, TE): The test function is assumed to be
smooth, i.e. v ∈ C1(Q̄). However, the above steps are valid also for v ∈ W 1,1

2 (Q). v(x, 0) and
v(x, TE) are still well-defined – as traces in L2(Ω), see [20]. Simply asking v(x, TE) = 0 is
therefore meaningful and eliminates y(x, TE).
If the focus is on PDE theory, i.e. on existence and uniqueness results, the spaces W 1,0

2 (Q)
and W 1,1

2 (Q) and the above procedure are adequate. However, when it comes to optimal
control, the test function will become the so-called adjoint state. Requiring the adjoint to be
more regular than the solution y is implausible, as is the demand for v(·, TE) = 0. Therefore,
a slightly different approach is needed, in which y is considered as a Banach space valued
function

[0, TE] 3 t 7→ y(t) ∈ H1
0 (Ω).

1It remains to show that this condition makes sense.
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To this end, the notion of so-called abstract functions and their integrability and weak
differentiability is necessary. Only abstract functions that are defined on a compact interval
[a, b] ⊂ R are considered.

Definition A.19 (Abstract function)
A mapping from [a, b] ⊂ R to a Banach space X is called an abstract function.

Example A.20
Let X := H1(Ω) and y : [0, TE] → H1(Ω). Then for each t ∈ [0, TE], y(t) is an element in
H1(Ω), i.e. a function depending on x ∈ Ω. Therefore, for fixed t ∈ [0, TE], y(t) = y(·, t) is
an element in H1(Ω).

In order to ensure that y(·, 0) and y(·, TE) are well-defined, continuity of the abstract function
y is needed.

Definition A.21 (Continuity for abstract functions)
Let {X, ‖·‖X} be a real Banach space.
(a) An abstract function y : [a, b]→ X is continuous in t ∈ [a, b] :⇔

lim
τ→t
‖y(τ)− y(t)‖X = 0 for τ ∈ [a, b].

(b) The Banach space consisting of all continuous (abstract) functions y : [a, b] → X is
denoted by C([a, b], X). The norm is given by

‖y‖C([a,b],X) := max
t∈[a,b]

‖y(t)‖X .

Analogously, the space Ck([a, b], X), k ∈ N, consists of k times continuously differentiable
functions on [a, b].
The next concern is integrability. Similar to real-valued functions, Lp spaces consisting of
(equivalence classes of) abstract functions can be established.

Definition A.22 (Step function)

Let y : [a, b] → X be an abstract function, [a, b] =
m⋃
i=1

Mi,m < ∞,Mi ⊂ [a, b] Lebesgue-

measurable with Mi ∩Mj = ∅ for i 6= j, and yi ∈ X, i = 1, ...,m. y is called step function
:⇔ ∀t ∈Mi, i = 1, ...,m : y(t) = yi.
In this case, y can be written as

y(t) =
m∑
i=1

1Mi
(t) yi,

where 1Mi
is the characteristic function on Mi, i.e.

1Mi
(t) :=

{
1 if t ∈Mi

0 otherwise
.
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Definition A.23 (Measurable function)
An abstract function y : [a, b]→ X is called measurable :⇔
∃{yk}∞k=1 sequence of step functions yk : [a, b]→ X : y(t) = lim

k→∞
yk(t) for almost all t ∈ [a, b].

Definition A.24 (Lp(a, b;X))
Let X be a Banach space.
(a) Let 1 ≤ p < ∞. Lp(a, b;X) is the linear space consisting of (equivalence classes of)

measurable abstract functions y : [a, b]→ X with

b∫
a

‖y(t)‖pX dt <∞.

The corresponding norm is defined by

‖y‖Lp(a,b;X) :=

 b∫
a

‖y(t)‖pX dt

1/p

.

(b) L∞(a, b;X) is the linear space consisting of (equivalence classes of) measurable abstract
functions y : [a, b]→ X with

‖y‖L∞(a,b;X) := ess sup
[a,b]

‖y(t)‖X <∞.

Remark A.25
(a) Identical to the usual Lp spaces (cf. Definition A.5), functions in Lp(a, b;X) that differ

only on sets of measure zero belong to the same equivalence class, i.e. y(a) and y(b) are
not well-defined.

(b) For 1 ≤ p ≤ ∞, Lp(a, b;X) and C([a, b], X) are Banach spaces and L1(a, b;X) ⊃ ... ⊃
L∞(a, b;X) ⊃ C([a, b], X).

Example A.26
Let Ω ⊂ Rn be open, TE > 0 and Q := Ω×]0, TE[. Consider the space L2(0, TE;H1(Ω)). On
the one hand, a function y ∈ L2(0, TE;H1(Ω)) is an abstract function: For every t ∈ [0, TE],
y(t) is an element in H1(Ω). On the other hand, y can be interpreted as a real-valued function
depending on x and t, i.e. y = y(x, t). The norm, given by

‖y‖L2(0,TE ;H1(Ω)) =

 TE∫
0

‖y(t)‖2
H1(Ω) dt

1/2

=

 TE∫
0

∫
Ω

y(x, t)2 + |∇xy(x, t)|2 dx dt

1/2

,

is the same as the norm for the W 1,0
2 (Q) space, cf. Definition A.17. Unsurprisingly, a

function y ∈ W 1,0
2 (Q), after possibly changing the function values on a set of measure zero,

belongs to L2(0, TE;H1(Ω)) and vice versa, i.e.

W 1,0
2 (Q) ∼= L2(0, TE;H1(Ω)),

cf. [30, p. 115].
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While the spaces W 1,0
2 (Q) and L2(0, TE;H1(Ω)) are isometrically isomorphic, the space of

abstract functions makes way for a slightly different approach: Instead of integrating (A.1)
over Q, the PDE is integrated only over Ω, while the time t is fixed. Consequently, the test
function (A.1) is multiplied by is now v ∈ H1(Ω). The dependence on x is omitted in the
following derivation. First, one gets∫

Ω

∂ty(t) v dx =

∫
Ω

1

2
∂2
xxy(t) v dx−

∫
Ω

∂xy(t) v dx.

Partially integrating the first integral on the right-hand side2 results in∫
Ω

∂ty(t) v dx =

(
1

2
∂xy(t) v

)∣∣∣∣xR
xL

−
∫
Ω

1

2
∂xy(t) ∂xv dx−

∫
Ω

∂xy(t) v dx

=

(
1

2
∂xy(t) v

)∣∣∣∣xR
xL

−
∫
Ω

1

2
∂xy(t) ∂xv + ∂xy(t) v dx

(A.6)

for almost all fixed t ∈ [0, TE]. However, the above derivation is only formal: the meaning
of ∂ty(t) is still unclear. As above, only the existence of the above integrals is required.
In particular, the time derivative of y needs to exist only in some weak sense, similar to
weak partial derivatives in Definition A.8, only for abstract functions. It is no longer needed
to require v(x, TE) = 0. To check whether the new approach yields any advantages, the
meaning of ∂ty(t) needs to be explained. In particular, the notion of weak partial derivatives
for abstract functions needs to be established. Therefore, the next step is to concern oneself
with integrability of abstract functions in Lp(a, b;X). To this end, the so-called Bochner
integral is introduced. For X = R, this is the analogon of the Lebesgue integral.

Definition A.27 (Bochner integral)
(a) Let y : [a, b] → R be a step function. The Bochner integral (for step functions) is then

defined by
b∫

a

y(t) dt :=
m∑
i=1

yi µ(Mi),

where µ(Mi) is the Lebesgue measure of the set Mi. The integral is an element in X.
(b) An abstract function y : [a, b]→ R is Bochner-integrable :⇔
∃{yk}∞k=1 sequence of step functions such that yk(t)→ y(t) for almost all t ∈ [a, b] and

b∫
a

‖yk(t)− y(t)‖X dt→ 0 as k →∞.

2Again, the decision whether to use the integration by parts formula for the whole right-hand side or not
was arbitrary, cf. Remark A.12.
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(c) Let y be Bochner-integrable. The Bochner integral is then defined by

b∫
a

y(t) dt := lim
k→∞

b∫
a

yk(t) dt.

The Bochner integral is used to define the weak derivative for abstract functions.

Definition A.28 (Weak derivative (for abstract functions))
Let y ∈ L1(a, b;X). v ∈ L1(a, b;X) is the weak derivative of y :⇔

∀ϕ ∈ C∞0 (]a, b[) :

b∫
a

ϕ′(t) y(t) dt = −
b∫

a

ϕ(t) v(t) dt.

In this case, ∂ty := v. In this context, ∂ty is often denoted by y′. The weak derivative is also
called a distributional derivative or a derivative in the distributional sense.

Both (A.6) and Definition A.28 give clues for a suitable function space for solutions of (A.1)-
(A.3). For elliptic PDEs, H1(Ω) and H1

0 (Ω) are commonly used. As already mentioned, the
W 1,0

2 (Q) space is not a practical choice for optimal control problems that are governed by
parabolic PDEs. However, one could say it is pretty close: In Example A.26 it has been
shown that

W 1,0
2 (Q) ∼= L2(0, TE;H1(Ω)).

It might be tempting to just require y ∈ L2(0, TE;H1(Ω)). Then from Remark A.25 and
Definition A.28 it follows that ∂ty ∈ L1(0, TE;H1(Ω)), assuming the weak derivative of the
abstract function y exists. However, when looking at (A.6), one realizes that for almost all
fixed t ∈ [0, TE], every v ∈ H1(Ω) is mapped onto a real number. This mapping is linear
and continuous. Therefore, for almost all fixed t ∈ [0, TE], the right-hand side of (A.6) is a
linear and continuous functional F = F (t) applied to v ∈ H1(Ω), i.e.∫

Ω

∂ty(t) v dx = F (t)v for almost all t ∈ [0, TE].

Since F = F (t) ∈ H1(Ω)∗, i.e. F (t) is an element of the dual space of H1(Ω), the same holds
for the left-hand side of (A.6), leading to ∂ty(t) ∈ H1(Ω)∗ for almost all t ∈ [0, TE]. If one
could show ∫ TE

0

‖F (t)‖2
H1(Ω)∗ dt <∞,

i.e. F ∈ L2(0, TE;H1(Ω)∗), then ∂ty ∈ L2(0, TE;H1(Ω)∗) would follow. The question then is
how to handle having ∂ty ∈ L2(0, TE;H1(Ω)∗) on the one hand and ∂ty ∈ L1(0, TE;H1(Ω))
on the other. This eventually leads to a new space, the so-called W (0, TE) space. To this
end, a sequence of continuous and dense embeddings, called the Gelfand triple, is needed.
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Definition A.29 (Gelfand triple)
Let H and V be separable Hilbert spaces with a continuous and dense embedding V ↪→ H.
According to Riesz (cf. Theorem A.4), H can be identified with its dual H∗. Doing so results
in the continuous and dense embeddings

V ↪→ H = H∗ ↪→ V ∗,

which is called Gelfand triple. The embedding H ↪→ V ∗ is given by

y ∈ H 7→ (y, ·)H ∈ H∗ ⊂ V ∗.

Example A.30
Let V := H1

0 (Ω) and H := L2(Ω). V and H are separable Hilbert spaces. Each u ∈ H can
be interpreted as an element in V ∗ by the following mapping:

v 7→ (u, v)H ∈ R, v ∈ V.

Moreover, according to Theorem A.4, the dual space H∗ can be identified with H. Therefore,
the following embeddings

H1
0 (Ω) ↪→ L2(Ω) ↪→ H1

0 (Ω)∗

hold, where each embedding is continuous and dense.

The Gelfand triple helps handling the above situation, i.e. having ∂ty = y′ ∈ L2(0, TE;H1(Ω)∗)
and y′ ∈ L1(0, TE;H1(Ω)) at the same time. It has been shown that it is possible to re-
gard an abstract function y ∈ L2(0, TE;H1(Ω)) as an abstract function in L2(0, TE;H1(Ω)∗).
Doing so results in y′ ∈ L1(0, TE;H1(Ω)∗), cf. Definition A.28. Since L1(0, TE;H1(Ω)∗) ⊃
L2(0, TE;H1(Ω)∗), cf. Remark A.25, requiring y′ ∈ L2(0, TE;H1(Ω)∗) is more restrictive and
is therefore sufficient to guarantee y′ ∈ L1(0, TE;H1(Ω)∗). For more general V and H, this
leads to the W (0, TE) or, more precisely, the W (0, TE;H,V ) space:

Definition and Remark A.31 (The W (0, TE;H,V ) space)
Let V ↪→ H = H∗ ↪→ V ∗ be a Gelfand triple.

(a) The W (0, TE;H, V ) space is defined by

W (0, TE;H, V ) := {y ∈ L2(0, TE;V ) | y′ ∈ L2(0, TE;V ∗)}

with norm

‖y‖W (0,TE ;H,V ) :=

 TE∫
0

‖y(t)‖2
V + ‖y′(t)‖2

V ∗ dt

1/2

.

The arguments H and V are often omitted if the choice of V and H is clear. The space
is then denoted by W (0, TE).



122 Chapter A: Preliminaries regarding PDE theory

(b) The W (0, TE) space becomes a Hilbert space by introducing the inner product

(u, v)W (0,TE) :=

TE∫
0

(u(t), v(t))V dt+

TE∫
0

(u′(t), v′(t))V ∗ dt.

The inner product (F,G)V ∗ is defined by (J F, J G)V , where J : V ∗ → V is the duality
mapping which maps every functional F ∈ V ∗ onto the function f ∈ V whereby F is
identified, cf. Theorem A.4.

One obstacle that has not yet been overcome is that for y ∈ W (0, TE;H,V ), it is unknown
whether y(0) (and y(TE)) are well-defined. The following theorem takes care of that.

Theorem A.32
Let V ↪→ H ↪→ V ∗ be a Gelfand triple. Then W (0, TE;H,V ) is continuously embed-
ded in C([0, TE], H), i.e. every function y ∈ W (0, TE;H,V ) can be seen as an element
of C([0, TE], H) – after possibly changing the function values on a set of measure zero.

Proof. Cf. [16, Theorem 1.32] and the references therein.

In the W (0, TE) space, the integration by parts formula holds:

Theorem A.33
Let V ↪→ H ↪→ V ∗ be a Gelfand triple and y, v ∈ W (0, TE;H,V ). Then the integration by
parts formula holds:

TE∫
0

〈y′(t), v(t)〉V ∗,V dt = (y(TE), v(TE))H − (y(0), v(0))H −
TE∫
0

〈v′(t), y(t)〉V ∗,V dt,

where 〈·, ·〉V ∗,V is the duality pairing introduced in Definition A.2.

Proof. Cf. [16, Theorem 1.32] and the references therein.

Corollary A.34
In the situation of Theorem A.33 the following holds:

TE∫
0

〈y′(t), y(t)〉V ∗,V dt =
1

2
‖y(TE)‖2

H −
1

2
‖y(0)‖2

H .

Proof. Choose v := y in Theorem A.33.

In conclusion, the W (0, TE) space is a suitable space for solutions of optimal control problems
governed by parabolic PDEs. The final part of this chapter is dedicated to define the notion
of a weak solution of (uniformly) parabolic PDEs, e.g. of (A.1)-(A.3). This particularly
involves finding a weaker, variational formulation of the PDE at hand. Up until now, only
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the model problem (A.1)-(A.3) has been looked at. In the thesis, however, the focus is
on a more general setting, cf. Definition 2.8. Moreover, defining weak solutions of even
more general parabolic PDEs comes at virtually no additional cost. Therefore, the following
setting is considered:
Let Ω ⊂ Rn be a bounded domain, TE > 0 and define the usual space-time cylinder Q :=
Ω×]0, TE[. Furthermore, let Σ := ∂Ω×]0, TE[. Consider the initial boundary value problem

∂ty + L y = f in Q,

y(·, 0) = y0 in Ω,

y = 0 in Σ,

(A.7)

where f : Q → R and y0 : Ω → R are given and y : Q̄ → R is the unknown. For each time
t ∈ [0, TE], the operator L = L(t) is a second order partial differential operator

L y := −
n∑

i,j=1

∂xj (aij(x, t)∂xiy) +
n∑
i=1

bi(x, t)∂xiy + c0(x, t)y (A.8)

in the so-called divergence form with aij, bi, c0 : Q→ R, i, j = 1, ..., n.

Definition A.35 (Uniformly Parabolic Operator)
The partial differential operator ∂

∂t
+ L with L given in (A.8) is called uniformly parabolic

:⇔ ∃θ > 0 :

n∑
i,j=1

aij(x, t)ξiξj ≥ θ ‖ξ‖2 for almost all (x, t) ∈ Q and all ξ ∈ Rn.

As mentioned above, only uniformly parabolic PDEs are looked at. Additionally, it is as-
sumed that

aij, bi, c0 ∈ L∞(Q), i, j = 1, ..., n (A.9)

and

y0 ∈ L2(Ω), f ∈ L2(0, TE;H1
0 (Ω)∗). (A.10)

Example A.36
If ρ ∈ L2(Ω), the model problem (A.1)-(A.3) is a special case of (A.7) with

n = 1, a11 ≡
1

2
, b1 ≡ 1, c0 ≡ 0, f ≡ 0, y0 = ρ.

Obviously, the resulting operator ∂
∂t

+L is uniformly parabolic and satisfies (A.9) and (A.10).

Weak solutions are searched for in the W (0, TE;H,V ) space with

H := L2(Ω) and V := H1
0 (Ω),
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where the Gelfand triple is given by

H1
0 (Ω) ↪→ L2(Ω) ↪→ H1

0 (Ω)∗.

In (A.6), the time was fixed and instead of integrating over Q, the PDE was integrated only
over Ω. This makes sense, since for almost all t ∈ [0, TE], (A.7) yields the following boundary
value problem:

L(t)y(t) = f(t)− ∂ty(t) in Ω,

y(t) = 0 in ∂Ω.

Integrating by parts w.r.t. x resulted in a promising, yet formal expression (A.6), since
the meaning of the derivative w.r.t. time t was not clear. Having solved this problem, the
above ansatz is now refined and used for fairly general problems (A.7). In this setting, the
integration by parts is expressed by the bilinear form

a(y(t), v; t) :=

∫
Ω

(
n∑

i,j=1

aij(t)∂xiy(t) ∂xjv +
n∑
i=1

bi(t)∂xiy(t) v + c0(t) y(t) v

)
dx (A.11)

with y(t), v ∈ H1
0 (Ω), where the dependence on x has been omitted. For (A.1)-(A.3), the

bilinear form (A.11) covers the right-hand side of (A.6). Notice that since y(t), v ∈ H1
0 (Ω),

no additional terms appear. To subsequently incorporate the left-hand side is to require the
variational equality

a(y(t), v; t) = 〈f(t), v〉H1
0 (Ω)∗,H1

0 (Ω) − 〈∂ty(t), v〉H1
0 (Ω)∗,H1

0 (Ω), v ∈ H1
0 (Ω) (A.12)

to hold for almost all t ∈ [0, TE], where a(·, ·; t) is given by (A.11). Note that, according to
the Riesz representation theorem (Theorem A.4), there exists a unique element in H1

0 (Ω)
such that 〈∂ty(t), v〉H1

0 (Ω)∗,H1
0 (Ω) can be identified using this element. However, this entails

using the inner product in H1
0 (Ω) instead of the inner product in H = L2(Ω), which was

used in (A.6). However, a functional F ∈ V ∗ can be continuously continued on H (starting
from the smaller space V ) if and only if it can be written as

F (v) = (f, v)H ,

where f ∈ H is fixed. In the case at hand this results in

F (v) =

∫
Ω

f(x) v(x) dx = (f, v)L2(Ω)

for all v ∈ V = H1
0 (Ω). Therefore,

〈∂ty(t), v〉H1
0 (Ω)∗,H1

0 (Ω) = (∂ty(t), v)L2(Ω) =

∫
Ω

∂ty(t) v dx

and, consequently, (A.12) is (A.6) for v ∈ H1
0 (Ω) and y ∈ W (0, TE;L2(Ω), H1

0 (Ω)). This
motivates the following definition.
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Definition A.37 (Weak solution of a parabolic PDE)
Let Ω ⊂ Rn be a bounded domain and let the coefficients satisfy (A.9). Consider with

H := L2(Ω) and V := H1
0 (Ω)

the Gelfand triple

H1
0 (Ω) ↪→ L2(Ω) ↪→ H1

0 (Ω)∗.

Then for f, y0 satisfying (A.10), a function

y ∈ W (0, TE;H,V )

is a weak solution of the initial boundary value problem (A.7)

:⇔ For almost all t ∈ [0, TE], the variational equation

〈∂ty(t), v〉H1
0 (Ω)∗,H1

0 (Ω) + a(y(t), v; t) = 〈f(t), v〉H1
0 (Ω)∗,H1

0 (Ω), v ∈ V (A.13)

with a(·, ·; t) defined by (A.11) holds and the initial condition

y(0) = y0 in Ω

is satisfied.

Instead of requiring the variational equation (A.13) to hold for almost all t ∈ [0, TE], it
may be more convenient to integrate (A.13) w.r.t. time t and require v ∈ L2(0, TE;H1

0 (Ω)),
arriving at the following, equivalent, definition.

Definition A.38 (Weak solution of a parabolic PDE; equivalent formulation)
Let the same assumptions hold as in Definition A.37 and use the same notation. Then
y ∈ W (0, TE;H,V ) is a weak solution of the initial boundary value problem (A.7)

:⇔ ∀v ∈ L2(0, TE, V ) :

TE∫
0

〈∂ty(t), v(t)〉H1
0 (Ω)∗,H1

0 (Ω) dt+

TE∫
0

a(y(t), v(t); t) dt =

TE∫
0

〈f(t), v(t)〉H1
0 (Ω)∗,H1

0 (Ω) dt (A.14)

y(0) = y0 in Ω (A.15)

with a(·, ·; t) defined by (A.11).

Theorem A.39
Definitions A.37 and A.38 are equivalent.

Proof. Cf. [16, p. 42].
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Example A.40
Consider the problem (A.1)-(A.3) with Ω ⊂ R being a bounded, open interval. Then, for all
v ∈ L2(0, TE, H

1
0 (Ω)), equation (A.14) reads:

TE∫
0

〈∂ty(t), v(t)〉H1
0 (Ω)∗,H1

0 (Ω) dt+

TE∫
0

∫
Ω

1

2
∂xy(t) ∂xv(t) + ∂xy(t) v(t) dx dt = 0,

or, following the above argument,

TE∫
0

∫
Ω

∂ty(t) v(t) dx dt+

TE∫
0

∫
Ω

1

2
∂xy(t) ∂xv(t) + ∂xy(t) v(t) dx dt = 0,

cf. Example A.36. Again, the dependence on x has been omitted.

The notion of weak solutions has eventually been established. The reason why weak solutions
were introduced in the first place was the non-existence of classical solutions in practical
relevant situations. However, it is yet unclear whether the above definitions really help:
Not a single result regarding existence and uniqueness of weak solutions has been quoted or
derived yet. For the Fokker-Planck equation discussed in this work, this is covered in Section
2.2.1. For more general problems, [30], [16], [7], and the references therein are recommended.



Appendix B

Contents of the CD-ROM

The enclosed CD-ROM contains four main folders. Aside from the PDF file of the Mas-
ter’s thesis and the source code and the documentation of PDE-MPC, all numerical results
brought up in this work are included, along with the Maple worksheets that were used to
generate the respective plots. In addition, animated versions of these plots are stored on the
CD-ROM. An overview of the contents is provided in Table B.1.

Folder Description

thesis It contains the PDF file of the Master’s thesis.
pde-mpc This folder contains two sub-folders, src and docu. The source code of PDE-

MPC is found in the src folder. The corresponding documentation is provided
in the docu folder. Furthermore, the CodeBlocks project file is included.

results Here, the output files of every numerical simulation brought up in this work
are included. A description of the individual files can be found in Table
5.1. The results are sub-divided into three sub-folders ex1-ou, ex2-gb, and
ex3-shiryaev, each indicating a stochastic process considered in this the-
sis. The outcomes for the Ornstein-Uhlenbeck process are found in ex1-ou.
Analogously, the results in the case of the Geometric-Brownian process and
the Shiryaev process are found in ex2-gb and ex3-shiryaev, respectively.
Each of the three sub-folders contains more sub-folders. The structure of
these is described below. Furthermore, two files, ut-all-images.html and
uxt-all-images.html, can be found in each of the folders ex1-ou, ex2-gb,
and ex3-shiryaev. They show all animated plots for the corresponding
stochastic process on one page, either for space-independent (ut) or space-
dependent control (uxt).

maple This folder contains the Maple worksheets that were employed to generate the
plots used in this work and animated versions thereof from the output files of
PDE-MPC.

Table B.1: Contents of the enclosed CD-ROM.
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The structure of ex1-ou, ex2-gb, and ex3-shiryaev is as follows. Each of these folders
consists of several sub-folders of the form Ctrl mpcSteps-Steps N-Horizon, where

� Ctrl ∈ {ut, uxt} indicates whether a space-independent control (ut) or a space-
dependent control (uxt) is used;

� Steps is the number of MPC steps performed, i.e. for TE = 5 and Ts = 0.5 the number
of MPC steps is 10;

� Horizon is the MPC horizon N ∈ N, where the notation introduced in Remark 3.13
is used, i.e. N = 1 is the shortest possible horizon.

The suffix num in the folder name indicates that the gradient of the reduced cost functional
is obtained by means of Remark 4.6. Deviations of standard parameters are also signaled by
suffixes. For example, if α is set to 10, it is denoted by alpha-10 at the end of the folder
name.
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