
An Optimal Control Approach to
Human-Computer Interaction

Masterarbeit

von

Florian Fischer

FAKULTÄT FÜR MATHEMATIK, PHYSIK UND INFORMATIK

MATHEMATISCHES INSTITUT

Datum: 12. September 2019 Betreuung:

Prof. Dr. Lars Grüne

Prof. Dr. Jörg Müller

Abstract

In this thesis, we investigate the possibilities and limitations of the Linear-Quadratic Reg-

ulator (LQR) for modeling interactions between humans and computers, focusing on one of

the most frequently used tasks: pointing with a mouse device.

We assume that users behave optimally with respect to some cost function, whose under-

lying assumptions are explained and motivated in detail. Moreover, the LQR framework

allows us to model the underlying biomechanical apparatus through linear system dynamics.

We therefore give an overview of both motion dynamics and optimization-based models and

subsequently compose our proposed 2OL-LQR model as a combination of second-order lag

dynamics, positional error penalization, and jerk minimization. The concrete design of the

objective function is carried out in an iterative process, which makes it possible to address

problems that have arisen during the implementation of different cost structures.

In order to determine the suitability of our model, we try to reproduce experimentally ob-

served user trajectories as accurately as possible. For this purpose, our 2OL-LQR model is

provided with some easily interpretable parameters, which are for a given user trajectory

again optimized within an outer loop based on the least squares method. We show that our

model approximates the observed user behavior significantly better than the conventional

minimum-jerk and second-order models. In addition, the optimal parameters allow us to

characterize users by properties and strategies and provide a deeper insight into the vari-

ability of mouse movements.

Finally, we present a computationally less-demanding method for testing the applicability

of mathematical models to user trajectories as well as an extension of our proposed model

that, in particular, takes reaction times into account.

i

Contents

List of Tables III

List of Figures IV

1 Introduction 1

2 Control Theoretic Basics 3

2.1 Continuous Time . 3

2.2 Discrete Time . 9

3 Human Motor Control Models 15

3.1 Fitts’ law . 15

3.2 Models of Motion Dynamics . 17

3.2.1 1OL-Eq . 17

3.2.2 2OL-Eq . 20

3.2.3 Other Models . 22

3.3 Optimization-Based Models . 24

3.3.1 Minimum-Jerk Model . 27

4 2OL-LQR 33

4.1 Linear-Quadratic Regulator (LQR) . 33

4.2 Modifications and Application to Pointing Tasks 42

4.2.1 Pointing Tasks . 42

4.2.2 System Dynamics . 44

4.2.3 Optimality Criteria . 47

4.2.4 2OL-LQR and its Analytical Solution 51

4.3 A Few Generalizations . 59

4.3.1 Extension to Higher Dimensions . 60

4.3.2 Extension to Via-Point Tasks . 61

5 Parameter Fitting Process 63

5.1 Least Squares Parameter Fitting . 63

I

II CONTENTS

5.2 User Trajectories . 65

5.2.1 Pointing Dynamics Dataset . 65

5.2.2 Further Processed Trajectories . 68

5.3 2OL-LQR Algorithm . 72

6 Design of the Cost Function and Results 75

6.1 Variants of 2OL-LQR . 75

6.1.1 2OL-LQR1 . 75

6.1.2 2OL-LQR2 . 80

6.2 Main Results . 81

6.2.1 Qualitative Comparisons . 81

6.2.2 Quantitative Comparisons . 88

6.2.3 Parameter Distribution . 92

6.2.4 Mean Trajectory Analysis . 95

7 Modeling Reaction Time 99

8 Conclusion 105

Bibliography 109

List of Tables

5.1 Overview of all conditions in the Pointing Dynamics Dataset. 66

6.1 SSE and maximum error values of all models applied to a specific trial trajectory 87

6.2 Summary statistics of the SSE and maximum error values for each model

regarding trial trajectories . 91

6.3 Ratios of SSE and maximum error values between different models regarding

trial trajectories . 92

6.4 Summary statistics of the SSE values for each model: Trial vs. mean trajectories 97

6.5 Ratios of SSE values between different models: Trial vs. mean trajectories . 97

III

List of Figures

3.1 1OL-Eq trajectory . 20

3.2 Second-order trajectory without damping . 21

3.3 Spring-mass-damper system . 21

3.4 2OL-Eq trajectory . 22

3.5 VITE trajectories . 23

3.6 MinJerk trajectory . 31

4.1 Pointing task framework . 43

5.1 SG filter process . 67

5.2 Time-discrete derivatives . 67

5.3 Reaction times grouped by ID . 70

5.4 Extension of trial trajectories . 71

5.5 Least squares parameter fitting process . 73

6.1 2OL-LQR1 applied to trial trajectories . 78

6.2 MinJerk applied to a trial trajectory . 82

6.3 Surge phase identification in MinJerk . 82

6.4 2OL-Eq applied to a trial trajectory . 84

6.5 2OL-LQR2 applied to a trial trajectory . 85

6.6 Comparison of model trajectories . 87

6.7 2OL-LQR2 applied to a trajectory with an asymmetric acceleration profile . 89

6.8 SSE/maximum error comparisons between 2OL-LQR2, 2OL-Eq, and MinJerk 89

6.9 Optimal parameters of 2OL-LQR2 for trial trajectories 93

6.10 2OL-LQR2 applied to a mean trajectory . 95

6.11 Trial vs. mean trajectory . 96

6.12 Optimal parameters of 2OL-LQR2: Trial vs. mean trajectories 98

7.1 Difficulties of 2OL-LQR2 with reaction times 100

7.2 Jerk weight adjustment to model reaction times in 2OL-LQR3 101

7.3 2OL-LQR3 applied to a trial trajectory with reaction time 103

IV

LIST OF FIGURES V

Chapter 1

Introduction

“There is no reason anyone would want a computer in their home.” – Ken Olsen, co-founder

of the Digital Equipment Corporation and himself owner of a personal computer at home

at that time, hardly could have been more wrong when he spoke in 1977 about the future

of his industry. Computers, notebooks, game consoles, tablets, smartphones, smartwatches,

smartglasses, smart vending machines, and probably soon brain-computer interfaces: There

is an ever-increasing number of machines that make everyday life easier for us. According

to the Global Digital Report 2019 [15], there are 5.112 billion unique mobile users worldwide

nowadays, that is, two thirds of the world’s population. Moreover, the current growth rate

is still 2%. However, not only the number of users but also their usage behavior is taking on

astonishing dimensions: In the second and third quarter of 2018, the average internet user

spent 6 hours and 42 minutes online each day. In countries like Brazil or the Philippines it

was even well over nine hours a day.

The number of mouse clicks, screen touches, or words interchanged with Alexa or Siri in-

creases immensely. Even though these interactions with devices and artificial intelligence

have become self-evident, a scientific understanding of the complex processes of our nervous

and muscular systems is essential. Since the devices are supposed to assist us in various

situations, a clear, simple, and – above all – intuitive use is extremely important. The

human-computer interaction (HCI) research area, whose origins date back to the early

1980s, has set itself precisely this task.

However, while most improvements in this area result from observations and experiments, it

is our aim to classify and analyze fundamental properties of the interaction between humans

and machines using suitable mathematical models. For this reason, our methods and models

essentially stem from control theory, which emerged as an engineering discipline and today

is assigned to applied mathematics. The origins of this field of research reach back to the

irrigation systems in ancient Mesopotamia and the aqueducts of the ancient Romans, which

were based on controlling the water level [21]. However, the first comprehensive mathematical

description of the control of relatively complex systems took place towards the end of the

19th century in the course of the further development of the steam engine. The associated

1

2 CHAPTER 1. INTRODUCTION

work “On Governors” [41] published by James Clerk Maxwell in 1868 counts as the birth of

control theory as we know it today. Moreover, the research of manned flight, culminating in

December 1903 with the Wright brothers’ first successful tests lasting about one minute, was

based on the use of control models that were groundbreaking for the further development in

this area [54].

Since then control theory has become an integral part of our everyday lives: Whether in

heating systems, refrigerators, toilets, cars, spacecrafts, robots, or more abstract systems

such as the sustainable use of natural resources – methods of control theory have become

indispensable and are constantly adapted to countless new fields.

All these areas of application have one fundamental aspiration in common: They wish to

influence a “system” in one way or another in order to reach a specific objective. In the

above mentioned examples these objectives are, e.g., constant water level, constant operating

speed of the steam engine, steady flight altitude, smooth and precise movements of robotic

arms, efficient chemical reactions in polymer electrolyte membrane (PEM) fuel cells in order

to extend their service life [34], or the long-term preservation of energy sources and valuable

raw materials.

In this thesis, we focus on the control of a device that is fundamental for HCI: the mouse

pointer.

In Chapter 2, we give a brief insight into the basic concepts and statements of modern

control theory such as stability and controllability, first in the time-continuous, then in

the time-discrete case. An overview of the most important models of human motor con-

trol, including quantitative models such as Fitts’ law as well as dynamic models such as

2OL-Eq, can be found in Chapter 3. In addition, an introduction to optimal control

problems is given, together with a first optimization-based model, the Minimum-Jerk

(MinJerk) model. Section 4.1 contains a more mathematical part dealing with optimal

control in linear-quadratic problems, while in Section 4.2 we apply this scheme to so-

called pointing tasks by making suitable assumptions about user dynamics and defining

reasonable objectives. The proposed 2OL-LQR model is then solved analytically, and in

Section 4.3 generalized to arbitrary dimensions and via-point tasks.

Finally, we use this model to reproduce experimentally observed user trajectories. Both the

used data set and the complete 2OL-LQR algorithm, which makes use of the method of

least squares, are described in Chapter 5. In Chapter 6, the suggested variant of our algo-

rithm is motivated by an iterative design process and applied to a variety of user trajectories.

The results are presented and compared to those of 2OL-Eq and MinJerk. An extension of

our algorithm, developed specifically for trajectories including reaction times, is introduced

in Chapter 7, and the final conclusion is to be found in Chapter 8.

Chapter 2

Control Theoretic Basics

In this chapter, our aim is to introduce and explain the basic concept of control theory.

The following statements are mainly based on the standard work “Mathematical Control

Theory” by Eduardo D. Sontag [66], “Linear Optimal Control Systems” by Huibert Kwak-

ernaak and Raphael Sivan [38], and the lecture notes “Mathematische Kontrolltheorie” (in

German) by Lars Grüne [30]. Since all control models we present throughout this thesis are

based on linear system dynamics, we restrict our demonstration of the fundamental concept

of control theory to the linear case.

2.1 Continuous Time

We first assume an (uncontrolled) system given by the linear and autonomous ordinary

differential equation

ẋ(t) = Ax(t), t ∈ R. (2.1a)

Here, x(t) ∈ Rl (l ∈ N) denotes the state of the system at time t, incorporating all relevant

information about the system we wish to learn (and also affect later), and A ∈ Rl×l is

a matrix determining the development of the state x, i.e., the continuous state function

x : R −→ Rl. Given an initial state x0 ∈ Rl at an initial time t0 ∈ R, i.e.,

x(t0) = x0, (2.1b)

the system (2.1a) has a unique solution, which can be explicitly specified:

Theorem 2.1. [38, Theorem 1.1 and Theorem 1.4]

The unique solution to the initial value problem (2.1) with fixed t0 ∈ R and x0 ∈ Rl is

given by

x : R −→ Rl

t 7→ eA(t−t0)x0

(2.2)

and denoted by x(t; t0, x0) in the following.

3

4 CHAPTER 2. CONTROL THEORETIC BASICS

In particular, given the initial condition (2.1b), the states x(t; t0, x0) are uniquely determined

not only for all future times t > t0, but also for all past times t < t0. Such systems are thus

called time-reversible. However, since we are usually interested in the development of x over

a future period of time starting from t0, from now on we will restrict x to either a bounded

interval I := [t0, tf] with final time tf ∈ R, tf > t0, or a half-bounded interval I := [t0,∞[

(in this case we use tf :=∞), i.e., we rather mean x|I when writing x in the following.

In many fields of research, the development of the considered systems is typically not pre-

determined, but can be affected by some “controller”. To take this scope of action into

account, we define a control function u : I −→ Rm (m ∈ N). We only require u to be

piecewise continuous, i.e.,

∀ a, b ∈ R with [a, b] ⊂ I ∃n ∈ N, a = t0 < t1 < . . . < tn = b :

u|]ti−1,ti[is continuous and bounded ∀ i ∈ {1, . . . , n},
(2.3)

and denote the set of functions u : I −→ Rm satisfying (2.3) by U . The resulting linear

control system is then given by

ẋ(t) = Ax(t) +Bu(t), t ∈ I, (2.4a)

where the matrix A ∈ Rl×l describes how the system evolves without applied control and

the matrix B ∈ Rl×m incorporates the additional effect of the control u(t).

Together with the initial condition

x(t0) = x0, (2.4b)

analogously to the uncontrolled case, we have a unique solution:

Theorem 2.2. [38, Theorems 1.3 and 1.4]

The unique continuous solution to the initial value problem (2.4) for fixed t0 ∈ I, x0 ∈ Rl,

and u ∈ U is given by

x : I −→ Rl

t 7→ eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds.
(2.5)

This solution trajectory is denoted by x(t; t0, x0, u) in the following.

The fact that x needs to be assumed continuous to guarantee uniqueness results from the

permission of discontinuities in the control function u. Moreover, analogously to Theorem

2.1, a unique continuous extension of x to R exists for any given piecewise continuous control

function u : R −→ Rm.

There are a few interesting properties of the solution formula (2.5) we would like to examine:

2.1. CONTINUOUS TIME 5

First, the second, control-dependent term appears in addition to the solution of the uncon-

trolled initial value problem (2.1) given by (2.2), and is notably independent of the initial

value x0. In other words, (2.5) can always be divided into the solutions for two special cases

of the linear control system (2.4): Setting u ≡ 0 naturally results in only the first term and

setting x0 = 0 yields exactly the second term. Thus, the system’s own evolvement (depend-

ing on the initial value x0) and the effect of the applied control can be considered separately.

Second, taking the solution x̂ := x(τ ; t0, x0) of (2.4) at an arbitrary time τ ∈ [t0, tf [as initial

state for the new initial value problem consisting of (2.1a) and x(τ) = x̂ instead of (2.1b)

results in the same solution trajectory. This observation can be explained by the linearity

of the integral and the exponential identity eyez = ey+z applied to (2.5), and it shows that

the solution is not only unique on I, but also that there are no “solution branches” along

the way.

Third, the linear control system is not only time-reversible given t0, x0, and u, but the solu-

tion trajectories (2.5) are also independent of the initial time t0 in the sense that replacing

t0 and tf by t0 + τ and tf + τ with arbitrary τ ∈ R in (2.4), i.e., in particular starting at

the same initial state x0 at another initial time t0 + τ , and applying the same control, i.e.,

u(·−τ) rather than u(·), leads to the same solution trajectory (formally, with domain shifted

by τ). This follows directly from the form of the solution formula (in particular, no absolute

times t but only relative times t− t0 are considered).

Hence, we can assume t0 = 0 without loss of generality and denote the solution of (2.1) by

x(t;x0) := x(t; 0, x0) and the solution of (2.4) by x(t;x0, u) := x(t; 0, x0, u) in the following.1

In the following, we want to apply this control framework to pointing tasks. Since the users

aim to reach a specific target, it is of interest to us under which conditions this can be

achieved within our linear control system (2.4). For this reason, we need a few definitions.

Definition 2.3 (Stability Concepts). Let f : Rl −→ Rl be Lipschitz continuous and con-

sider the autonomous differential equation ẋ(t) = f(x(t)), t ≥ 0, together with some initial

condition x(0) = x0 ∈ Rl. Let ‖ · ‖ be an arbitrary2 norm on Rl.

(a) x∗ ∈ Rl is called equilibrium of this differential equation :⇐⇒ f(x∗) = 0.

(b) An equilibrium x∗ is called stable :⇐⇒ ∀ ε > 0 ∃ δ > 0: ‖x(t;x0) − x∗‖ < ε ∀ t ≥ 0

holds for all solutions x(·;x0) of the above initial value problem with ‖x0 − x∗‖ < δ.

(c) An equilibrium x∗ is called locally asymptotically stable :⇐⇒ x∗ is stable and

∃ δ > 0 such that limt→∞ x(t;x0) = x∗ holds for all x0 ∈ Rl with ‖x0 − x∗‖ < δ.

(d) An equilibrium x∗ is called asymptotically stable :⇐⇒ x∗ is stable and in addition

limt→∞ x(t;x0) = x∗ holds for all x0 ∈ Rl.
1For the generalized case of non-linear differential equations or control systems we use the same notation.
2Note that on finite-dimensional vector spaces such as Rl all norms are equivalent, i.e., for any two norms

‖ · ‖α, ‖ · ‖β there exist positive constants c1, c2 > 0 such that c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α holds for any x ∈ Rl.
In particular, all stability definitions are independent of the norm used.

6 CHAPTER 2. CONTROL THEORETIC BASICS

Equilibria are therefore exactly the states in which the system remains after reaching them;

in particular, the solution to the initial value problem with x(0) = x∗, where x∗ denotes an

equilibrium of the respective differential equation, is x ≡ x∗. Note that in our linear case,

i.e., f(x) := Ax, the set of equilibria is exactly the kernel of A. In particular, x∗ = 0 is

always an equilibrium.

While stability claims that solutions remain arbitrarily close to the equilibrium for all times

if only the initial value is close enough, asymptotic stability additionally implies convergence

towards this equilibrium (in the local version again only for initial values in a sufficiently

small neighborhood of the equilibrium).3 Fortunately, for the linear case there is an easily

verifiable criterion for stability:

Lemma 2.4. [38, Theorems 1.13 and 1.14]

The equilibria of the autonomous linear differential equation (2.1a) are

(a) stable⇐⇒ Re(λi) ≤ 0 for all eigenvalues λi of A, and for all eigenvalues with Re(λi) =

0 the algebraic and the geometric multiplicity coincide, and

(b) asymptotically stable ⇐⇒ Re(λi) < 0 for all eigenvalues λi of A.

In the latter case, we not only have asymptotic stability, but in fact exponential stability,

i.e.,

∃ c, σ > 0: ‖x(t;x0)‖ < ce−σt‖x0‖ ∀ t ≥ 0, x0 ∈ Rl. (2.6)

In particular, any equilibrium x∗ 6= 0 can at most be stable since 0 must be an eigenvalue of

A for its existence. Conversely, if the real parts of all eigenvalues of A have negative sign,

the solution of (2.1) thus converges exponentially fast to x∗ = 0 for any initial state x0 ∈ Rl.

The fact that this is not the case for most applications is exactly the reason for introducing

the control option in (2.4): Even though the system might not reach its steady-state by

itself, the controller has the opportunity to influence the states appropriately.

The most far-reaching impact a controller might have can be formalized as follows:

Definition 2.5 (Complete Controllability). Consider the linear control system (2.4a) with

I := [0,∞[.

(a) The reachable set at time t ≥ 0 is given by Rt := {x(t; 0, u) | u ∈ U}.

(b) The system is completely controllable in time t > 0 if Rt = Rl holds.

(c) The system is completely controllable if Rt = Rl holds for all times t > 0.

3Note that asymptotic stability only makes sense for at least half-bounded domains, i.e., I := [t0,∞[.

2.1. CONTINUOUS TIME 7

It can be shown that the reachable setsRt coincide for all times t > 0, i.e., the states that can

be reached by starting at t0 = 0 in x0 = 0 and applying some admissible control u ∈ U up to

time t > 0 can also be reached at any other positive time t > 0 by applying another control

ũ ∈ U . This immediately implies the equivalence of (b) and (c). Moreover, if complete

controllability holds, the solution formula (2.5) suggests that the analogous reachable sets

for starting at time t0 = 0 in any x0 ∈ Rl, Rt
x0

:= {x(t;x0, u) | u ∈ U} for t ≥ 0, satisfy

Rt
x0

(2.5)
= x(t;x0, 0) +Rt = x(t;x0, 0) + Rl = Rl, t > 0. (2.7)

This means that in case of complete controllability any state x ∈ Rl can be reached from

any initial state x0 ∈ Rl in arbitrarily short time by applying an appropriate control u ∈ U .

The following theorem provides an easy-to-check criterion for complete controllability of a

system.

Theorem 2.6 (Kalman-Criterion). [66, Definition 3.3.1 and Lemma 3.3.2]

The linear control system (2.4a) is completely controllable if and only if

rank(
[
B AB · · · Al−1B

]
) = l. (2.8)

However, in many cases complete controllability might be too demanding. Instead, one might

only be interested in being able to stabilize the system by applying appropriate controls in

the sense that the solution of the resulting linear control system ẋ = Ax+Bu converges to

an equilibrium x∗ of this control system4 which is possibly not stable for the uncontrolled

system ẋ = Ax (or not even an equilibrium).

For that purpose, it is reasonable to regard the control function u not as a function of time

as before, but as a function of state, i.e., we consider u(x(t)) rather than u(t).

The question whether controls are planned ahead for the whole time span or event-dependently

chosen at each time step is the basis for one of the most fundamental differentiation of control

theoretic models [17]. In the former case, the whole “control plan” is determined a priori by

the control function u : I −→ Rm mapping any considered time t ∈ I to the control applied

at this time. However, solving the control system numerically might already lead to slightly

different states x than expected analytically due to rounding errors. A control function u

that is explicitly time- and not state-dependent has not taken these deviations into account

and thus cannot compensate appropriately, which might lead to a propagation of error. In

contrast to such open-loop control models, closed-loop models assume that some informa-

tion about the current state x is fed back to the controller, which can condition its control on

this observation. The function that maps any state5 x to the corresponding control u, i.e.,

F : Rl −→ Rm, x 7→ u := F (x), is called feedback function. Another advantage of such

4A more precise formulation of this concept of equilibrium is given in Definition 2.7.
5In the more general case of imperfect observation, F only maps an observable output y(x) that depends

on the unobservable state x to the corresponding control u.

8 CHAPTER 2. CONTROL THEORETIC BASICS

models is thus, besides the ability to react to external deviations, the generally applicable

control instruction that only depends on the current state and not on the realized point in

time.

For these reasons we assume our model to be closed-loop. Consistent with our linear control

system we additionally assume the feedback function F to be also linear, i.e., u(t) = Fx(t)

holds for all t ∈ I and some matrix F ∈ Rm×l.

Under these assumptions the stabilization problem can be described as follows:

Definition 2.7. The (asymptotic) stabilization problem for the linear control system

(2.4a) is to find a linear feedback function/matrix F , so that the equilibria of the resulting

closed-loop system

ẋ(t) = (A+BF)x(t) (2.9)

are (asymptotically) stable.

As we will see, complete controllability is not necessary for the solvability of this problem.

To this end, we need another representation of the linear control system (2.4a):

Lemma 2.8. [66, Lemmas 3.3.3 and 3.3.4]

Let the system (2.4a) be not completely controllable, i.e., σ := rank(
[
B AB · · · Al−1B

]
) < l.

Then T ∈ Rl×l invertible exists, so that Â := T−1AT and B̂ := T−1B are of the form

Â =

[
A1 A2

0 A3

]
, B̂ =

[
B1

0

]
, (2.10)

with A1 ∈ Rσ×σ, A2 ∈ Rσ×(l−σ), A3 ∈ R(l−σ)×(l−σ), and B1 ∈ Rσ×m, and the system

ẏ = A1y +B1u is completely controllable.

In particular, coordinate transformation with T , i.e., z(t) := Tx(t), yields the transformed

linear control system

ż1 = A1z1 + A2z2 +B1u (2.11a)

ż2 = A3z2 (2.11b)

with z1 ∈ Rσ, z2 ∈ Rl−σ, where z2 is the state part that cannot be influenced by the

controller.

With this lemma, we can state the main result of this chapter:

Theorem 2.9 (Pole-Shifting Theorem). [66, Theorem 13 and Corollary 5.8.8]

The asymptotic stabilization problem for (2.4a) is solvable if and only if one of the following

conditions holds:

(a) (2.4a) is completely controllable.

2.2. DISCRETE TIME 9

(b) Considering the transformed linear system (2.11), all eigenvalues of A3 have negative

real part.

The stabilization problem for (2.4a) is solvable if and only if (a) or the following condition

holds:

(c) Considering the transformed linear system (2.11), all eigenvalues of A3 have non-

positive real part and for all eigenvalues with real part equal to zero the algebraic and

the geometric multiplicity coincide.

In summary: If the linear control system (2.4a) is completely controllable, i.e., every state

x ∈ Rl can be reached (even in arbitrarily short time) by applying appropriate controls u(t),

a feedback matrix F can be found so that x∗ = 0 is asymptotically stable for ẋ = (A+BF)x.

However, complete controllability is sufficient, but not necessary. With the above defined

transformation of systems that are not completely controllable into their controllable part

(2.11a) and their uncontrollable part (2.11b), it actually suffices that z∗2 = 0 is asymptotically

stable for (2.11b) respectively that the uncontrollable part z∗2 of every equilibrium x∗ of

ẋ = (A + BF)x is stable for (2.11b), which, according to Lemma 2.4, is equivalent to

condition (b) respectively to condition (c) in Theorem 2.9.

While all previous statements related to linear systems in continuous time, we transfer them

to time-discrete systems in the following section. The reason for this is the discrete form

of the experimental data we aim to simulate later, which suggests the usage of models in

discrete time.

2.2 Discrete Time

The idea behind time-discrete control systems is to sample the system’s output at a given

sequence of usually equidistant times. Here, the constant distance h > 0 between two

consecutive times is called sampling time.

To be precise, the considered6 time span I = [0, tf] is divided into N − 1 subintervals with

boundary points {(n − 1)h | n ∈ {1, . . . , N}}, where N := max{n ∈ N | (n − 1)h ≤ tf}.7
These boundary points are exactly the times at which we want to evaluate the state of the

system.

Furthermore, we assume that the controls are constant during those intervals and denote

the resulting control sequence by (un)n∈{1,...,N−1}, i.e., un = u|[(n−1)h,nh[applies for all

n ∈ {1, . . . , N − 1}.8 This is an important assumption for the subsequent considerations,

6The half-bounded case I := [0,∞[works analogously with boundary points {(n− 1)h | n ∈ N}.
7For reasons of simplification, we assume that

tf
h ∈ N, i.e., (N − 1)h = tf holds. This can be ensured

through either choosing h appropriately or restricting I to [0, (N − 1)h].
8Note that the control values at the boundary points are irrelevant in the time-continuous variant since

they are null-sets and thus can be chosen arbitrarily. Here, we decided to concatenate u right-sided contin-

uous.

10 CHAPTER 2. CONTROL THEORETIC BASICS

which implies that changes in control can only be made each h time units. However, they

may still depend on the immediately observed state at the respective time.

Returning to linear control systems, Theorem 2.2 and the second subsequent remark instantly

imply the following time-discrete update formula:

Corollary 2.10. The time-continuous linear control system with initial condition

ẋ(t) = Ãx(t) + B̃u(t), t ∈ I := [0, tf] ,

x(0) = x0,
(2.12)

with Ã ∈ Rl×l, B̃ ∈ Rl×m, x(t) ∈ Rl and u(t) ∈ Rm for all t ∈ I, tf ∈]0,∞[, and x0 ∈ Rl can

be transferred into the respective time-discrete linear control system with sampling

time h > 0 and initial condition

xn+1 = Axn +Bun, n ∈ {1, . . . , N − 1},
x1 = x̄1,

(2.13)

with

A := eÃh, B :=

∫ h

0

eÃ(h−τ)B̃ dτ, (2.14)

where N :=
tf
h

+ 1 ∈ N.

This means that for any consistent initial conditions, i.e., x̄1 = x0, and any control function

u that is constant on each sampling interval together with the corresponding time-discrete

control sequence un := u|[(n−1)h,nh[for all n ∈ {1, . . . , N − 1}, the unique solutions of (2.12)

and (2.13), which we denote by x(t;x0, u) and (x
x̄1,(u1,...,un−1)
n)n∈{1,...,N}, coincide, i.e.,

x((n− 1)h;x0, u) = xx̄1,(u1,...,un−1)
n (2.15)

holds for all n ∈ {1, . . . , N}.

With this, we can now investigate how the above statements can be transferred to time-

discrete systems. In order to avoid confusion, we use the notation of Corollary 2.10 in the

following, i.e., the matrices of time-continuous systems are denoted by Ã and B̃ (although

denoted by A and B in previous equations for reasons of simplicity) while A and B are now

reserved for the time-discrete variants.

Remark 2.11.

(a) According to the first remark after Theorem 2.2, setting u ≡ 0 in the solution for-

mula (2.5) of the time-continuous linear control system yields the solution of the time-

continuous uncontrolled system (2.1). Analogously, the uncontrolled system in discrete

time is given by (2.13) with un = 0 for all n ∈ {1, . . . , N − 1}.

2.2. DISCRETE TIME 11

(b) Similar stability criteria as in Lemma 2.4 can be found for the linear difference

equation xn+1 = Axn, n ∈ N:

An equilibrium x∗ ∈ R of this equation, i.e., Ax∗ = x∗, is

• stable⇐⇒ |λi| ≤ 1 for all eigenvalues λi of A, and for all eigenvalues with |λi| = 1

the algebraic and the geometric multiplicity coincide, and

• asymptotically stable ⇐⇒ |λi| < 1 for all eigenvalues λi of A.

This follows directly from (2.14) and some matrix exponential properties.

Note that analogously to the time-continuous case an equilibrium x∗ 6= 0 can be stable

at most since it needs to be an eigenvector of A corresponding to the eigenvalue 1.

(c) Theorem 2.6 also holds for the time-discrete case, but with time-discrete complete

controllability in the sense that for the reachable sets at time steps n ∈ {0, . . . , N−1},
R(n−1)h := {x0,u

n | u = (uk)k=1,...,n−1 ⊂ Rm}, the equality R(n−1)h = Rl only needs to

apply for n > l in general. In other words, even with complete controllability of a time-

discrete system it might take up to l time steps, with l denoting the state dimension of

the system, to reach any arbitrary state x ∈ Rl.

(d) Lemma 2.8 can be directly transferred to time-discrete systems of the form (2.13). In

particular, coordinate transformation with T , i.e., zn := Txn, yields the transformed

linear control system

zn+1
1 = A1z

n
1 + A2z

n
2 +B1un (2.16a)

zn+1
2 = A3z

n
2 (2.16b)

with zn1 ∈ Rσ, zn2 ∈ Rl−σ for all n ∈ {1, . . . , N}, where zn2 are the parts that cannot be

affected by the controller.

(e) Hence, the time-discrete version of Theorem 2.9 reads as follows: The time-discrete

(asymptotic) stabilization problem for (2.13), i.e., to find a matrix F ∈ Rm×l,

so that the equilibria x∗ of the resulting time-discrete closed-loop system

xn+1 = (A+BF)xn, (2.17)

are (asymptotically) stable, is solvable if and only if either time-discrete complete con-

trollability holds or, considering the transformed linear system (2.16), all eigenvalues

λi of A3 satisfy |λi| ≤ 1 (for stability) respective |λi| < 1 (for asymptotic stability).

We would like to close this section with a simple example to illustrate the close relationship

between time-continuous and time-discrete linear control systems, before we continue with

typical models from the field of human motor control in the next chapter.

12 CHAPTER 2. CONTROL THEORETIC BASICS

Example 2.12. Consider the time-continuous linear control system

ẋ(t) = Ãx(t) + B̃u(t), t ∈ I := [0,∞[, (2.18)

with x : I −→ R2 and u : I −→ R, where

Ã :=

[
−1 0

0 1− ρ

]
, B̃ :=

[
−1

−ε

]
, (2.19)

for given ρ, ε ∈ R.

According to Corollary 2.10, the respective time-discrete linear control system with sampling

time h > 0 is given by

xn+1 = Axn +Bun, n ∈ {1, . . . , N − 1}, (2.20)

with

A =

[
e−h 0

0 e(1−ρ)h

]
, B =



[
e−h − 1

−εh

]
, if ρ = 1.[

e−h − 1
ε

1−ρ(1− e(1−ρ)h)

]
, if ρ 6= 1.

(2.21)

The following therefore holds for x∗ = [0, 0]>:

x∗ is asymptotically stable equilibrium of ẋ(t) = Ãx(t)
2.4⇐⇒ Re(λ̃i) < 0 for all eigenvalues λ̃i of Ã

⇐⇒ ρ > 1

⇐⇒ |λi| < 1 for all eigenvalues λi of A

2.11(b)⇐⇒ x∗ is asymptotically stable equilibrium of xn+1 = Axn.

(2.22)

Analogous statements apply to stability if “<” is replaced by “≤”.

In particular, both Re(λ̃2) = 0 and |λ2| = 1 hold for the eigenvalue λ̃2 = 1− ρ of Ã and the

eigenvalue λ2 = e(1−ρ)h of A, respectively, if and only if ρ = 1 holds (note that Re(λ̃1) < 0

and |λ1| < 1 always apply). In this case, the eigenvectors x∗ = [0, c]>, c ∈ R, of both Ã

(corresponding to λ̃2 = 0) and A (corresponding to λ2 = 1) are, in addition to x∗ = [0, 0]>,

stable equilibria of both uncontrolled systems.

Conversely, if ρ < 1 applies, neither of these two properties is fulfilled, i.e., both systems are

unstable.

2.2. DISCRETE TIME 13

For statements on complete controllability, we need to consider[
B̃ ÃB̃

]
=

[
−1 1

−ε ε(ρ− 1)

]
(2.23)

respectively

[
B AB

]
=



[
e−h − 1 e−h(e−h − 1)

−εh −εhe(1−ρ)h

]
, if ρ = 1.[

e−h − 1 e−h(e−h − 1)
ε

1−ρ(1− e(1−ρ)h) ε
1−ρe

(1−ρ)h(1− e(1−ρ)h)

]
, if ρ 6= 1.

(2.24)

According to the Kalman-Criterion (Theorem 2.6), the following applies:

(2.18) is completely controllable
2.6⇐⇒ rank(

[
B̃ ÃB̃

]
) = 2

(∗)⇐⇒ ε 6= ε(ρ− 1)⇐⇒ ε 6= 0 ∧ ρ 6= 2

(∗)⇐⇒ rank(
[
B AB

]
) = 2

2.6⇐⇒ (2.20) is completely controllable.

(2.25)

Note that in our case with one-dimensional control u, (∗) already follows from the structure of

Ã: Since Ã (and thus also A) is diagonal, the two columns of
[
B AB

]
respective

[
B̃ ÃB̃

]
are linearly dependent if and only if B̃ respective B has a zero entry (⇐⇒ ε = 0) or Ã

respective A has the same diagonal entries (⇐⇒ ρ = 2).

Complete controllability is sufficient, but not necessary to solve the (asymptotic) stabilization

problems for both systems:

If ε = 0, Ã and B̃ (respectively A and B) are already of the form (2.10) with A3 = 1−ρ (re-

spectively A3 = e(1−ρ)h) and it can easily be shown that any further coordinate transformation

preserving this form cannot change the value of A3, i.e., the asymptotic stabilization problem

is solvable for (2.18) according to Theorem 2.9 and for (2.20) according to Remark 2.11(e)

if and only if ρ > 1 applies (for the stabilization problem the same applies with ρ ≥ 1).

If ρ = 2, both (2.18) and (2.20) can be transformed into a linear control system of the form

(2.11) with A3 = −1 respectively A3 = e−h, i.e., the (asymptotic) stabilization problem is

solvable for both systems, which was to be expected since the respective uncontrolled systems

were already asymptotically stable in this case according to (2.22).

However, even if the time-discrete system is completely controllable, not every x ∈ R2 must

be reachable within one step: Setting, e.g., ρ := 3, ε := 2, x̄1 := [0, 0]>, and h := 0.2 makes

it impossible to obtain x2 := [1, 1]> (i.e., Rh 6= R2), since

x2 =

[
e−0.2 − 1

e−0.4 − 1

]
u1 (2.26)

needs to hold for any arbitrary u1 ∈ R.

14 CHAPTER 2. CONTROL THEORETIC BASICS

Chapter 3

Human Motor Control Models

In this chapter, we give a brief overview of the most important models of human motor

control. Beginning with Fitts’ law, we present typical closed-loop models with up to two

integrators and distinguish these models from approaches based on an optimal control per-

spective.

3.1 Fitts’ law

One of the most famous and, above all, basic models of human movements is Fitts’ law. In

the 1950s, Paul M. Fitts was the first to establish a relationship between the difficulty of an

aimed movement and its duration, which was confirmed in various experiments [22]. Using

conventional notation from information theory, he defined the Index of Difficulty (ID) of an

arbitrary pointing task as

ID := log2

(
2D

W

)
, (3.1)

where D denotes the Euclidean distance between the starting point and the center of some

target box and W denotes the width of this target box.1 This index can be interpreted as the

information content that needs to be processed to complete the task. Since the ID is specified

in bits due to the use of the binary logarithm, both doubling the distance D and halving

the width W increase the index of difficulty by exactly 1 bit (log2(2c) = log2(2) + log2(c) =

1 + log2(c)). Using 2D instead of D also has a simple reason: ID ≥ 0 holds as long as

D ≥ W
2

, i.e., as long as the initial point is not within the target box (note that for rectangles

the Euclidean distance between target center and boundary points is at least W
2

).

1Originally, Fitts’ law was based on (highly related) one-dimensional tapping and transfer tasks. However,

for reasons of consistency we try to use the terminology of pointing tasks, which is explained in detail in

Section 4.2.1. In particular, we assume that some pointer needs to be moved from a fixed initial point to

some rectangular target box.

15

16 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

Fitts’ observation is the following: Across a range of values, the ID is directly proportional

to the average movement time (MT) in a consecutive series of trials, or in other words, the

Index of Performance (IP) given by

IP :=
ID

MT
, (3.2)

which expresses the average rate of information processed per second, is constant within

different trials.

In particular, movement times which are linear in the ID imply that pointing tasks with

virtually no distance to cover are executed in arbitrarily small time on average. However,

the target click required at the end of the movement implies additional dwell time [40], which

should be independent of the task difficulty.

Hence, Fitts proposed the following affine map with intercept a and slope b [22]:

MT = a+ b ID = a+ b log2

(
2D

W

)
. (3.3)

This simple but fundamental relation between two decisive factors, namely the distance

D and the target width W , which are combined into one ID parameter, and the average

movement duration MT was verified in many experimental observations and several linear

motor control models (see next section).

Over the years, many variants of this approach have been proposed, the most well-known

being the Wellford [69] and the Shannon [40] formulation, suggesting

ID := log2

(
D

W
+

1

2

)
(3.4)

respective

ID := log2

(
D

W
+ 1

)
. (3.5)

Note that, in contrast to the former two variants, the Shannon formulation guarantees ID ≥ 0

for any D ≥ 0 and W > 0, which could, e.g., be advantageous for on-line prediction of the

remaining movement time in movements towards the center of a target box.

An alternative to these variations of Fitts’ law which works without logarithm was proposed

by Kv̊alseth [37], suggesting the following relationship:

MT = a

(
D

W

)b
. (3.6)

This was later taken up by Meyer and further developed into his stochastic optimized

submovement model [46, 45], which proposes

MT = a+ b

(
D

W

) 1
N

, (3.7)

3.2. MODELS OF MOTION DYNAMICS 17

where N denotes the maximum number of submovements that are assumed to occur during

the execution of a specific task.2

However, while all these laws describe a general relationship between task description and

user performance, namely a linear or affine link between the task difficulty and the movement

duration, none of these models makes assumptions about underlying causal relationships that

could explain these observations. In fact, neither the (individual) task understanding of users

nor the realization of desired arm and hand movements through muscle activation processes

based on this understanding is addressed by such quantitative models. While we find that

these models provide an important initial insight into the accomplishment of pointing tasks,

in the following we will focus on qualitative motor control models, which put the main

emphasis on the kinematics and dynamics of human movements.

3.2 Models of Motion Dynamics

3.2.1 1OL-Eq

As discussed in Section 2.1, we mainly distinguish open-loop models, which assume a com-

plete pre-defined control plan that is executed straightforward, from closed-loop models,

which allow users to adjust their controls to dynamically observed system outputs on a

moment-to-moment basis.

An early attempt to model the dynamics of hand movements was made by Crossman and

Goodeve in the early 1980s [14]. They used an first-order approach, i.e., only position and

velocity terms were incorporated into their model. In addition, they assumed that users

permanently monitor their own position and the position of the target center and internally

calculate the remaining distance to determine their velocity.

This approach can be formalized in terms of the previous chapter as follows, regarding the

time-continuous case first: The states x(t) ∈ Rl correspond to the positions at times t ∈ I, in

particular l denotes the dimension of the task (e.g., one-, two- or three-dimensional pointing

tasks might be considered). The controls3 u(t) ∈ Rl denote the observed position of the

target center. For the pointing task defined and used in the following chapters, targets are

assumed to be fixed during tasks, leading to a constant “control” u. However, in theory the

model could be applied to target tracking tasks as well.

The main assumption of this model is that the velocity is directly proportional to the observed

error vector e(t) := u(t) − x(t). Thus, the resulting movement is given by the first-order

2The underlying assumption of corrective movements based on visual feedback is essentially from Cross-

man and Goodeve [14] and Keele [33].
3In order to point out similarities and differences between all the models presented, we try, whenever

possible, to use the same notation. In this model, however, u(t) is to be understood rather as an input signal

that influences human behavior than as a control option that can be freely chosen.

18 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

differential equation

ẋ(t) = ke(t) = ku(t)− kx(t) (1OL-Eq)

with positive constant k > 0. This equation obviously takes the form of a linear control

system (2.4a) with A := −kIdl and B := kIdl, where Idl denotes the l-by-l identity matrix.

However, the pre-determined choice of u makes the use of this control form and the investi-

gation on associated properties such as complete controllability less natural. Following the

argumentation of Crossman and Goodeve [14], we assume that the current position is always

observed only relative to the target center, i.e., rather xrel(t) := x(t)−u(t) than x(t) denotes

the respective state of the system. Note that e(t) = −xrel(t) holds, and thus (1OL-Eq) is

equivalent to ẋ(t) = −kxrel(t).

For tasks with constant target position T , i.e., with constant control u ≡ T , ẋrel(t) = ẋ(t)

holds and thus implies

ẋrel(t) = −kxrel(t), (3.8)

which is of the form (2.1a) with A := −kIdl. In particular, the only eigenvalue of A is

λ = −k < 0. Hence, Lemma 2.4 yields asymptotic stability of the equilibrium x∗rel = 0, i.e.,

the solution of (3.8) satisfies limt→∞ xrel(t;xrel,0) = 0 for all initial values xrel,0 ∈ Rl.

In terms of absolute coordinates, the definition of xrel(t) implies that for any initial value

x(0) = x0 ∈ Rl, the solution trajectory of (1OL-Eq) gets arbitrarily close to the target

center, i.e.,

lim
t→∞

x(t;x0, u ≡ T) = T. (3.9)

Since this is achieved by shifting the equilibrium of a simple first-order lag (“1OL”) to

x∗ = T , a general approach often called “equilibrium-control” in literature, we denote this

model – consistent with the following model names – by 1OL-Eq.

Depending on what is regarded as part of the system itself and what is regarded as con-

trol, this model can be considered as open-loop ((1OL-Eq) with control u), as closed-loop

((1OL-Eq) with control u− x), and even as uncontrolled ((3.8)). While in the first case, the

constant target coordinate u ≡ T is seen as pre-planned control, from a closed-loop perspec-

tive the users are assumed to apply the feedback control ũ(t) := u(t)− x(t) = T − x(t).

In addition to convergence, we wish to briefly show that 1OL-Eq is not only suitable for reach-

ing constant targets but also in accordance with Fitts’ law, a result presented by Crossman

and Goodeve [14]. First, we obtain

xrel(t) = e−ktxrel,0 (3.10)

3.2. MODELS OF MOTION DYNAMICS 19

from the solution formula for linear autonomous differential equations (2.2) applied to (3.8),

which for the one-dimensional case4, i.e., x(t), u(t) ∈ R, equals

ln

(
xrel(t)

xrel,0

)
= −kt. (3.11)

Evaluating this equation at the time τ at which the rectangular target box with width W is

reached first, i.e., xrel(τ) = W
2

holds if x0 ≥ T and xrel(τ) = −W
2

holds if x0 < T , yields

ln

(
W

2D

)
= −kτ, (3.12)

where the equivalence between the absolute value of xrel,0 and the distance D was used.

Basic logarithm rules thus imply

τ = k̃ log2

(
2D

W

)
, (3.13)

where k̃ := ln 2
k

, i.e., the movement time at which the target box is reached first coincides

with the prediction of Fitts’ law (3.3).

However, pointing tasks typically include the instruction of clicking at the target, which

requires additional time. In contrast to (3.3), where this is modeled through the additive

constant a, such a target-independent delay is not part of 1OL-Eq. Moreover, early inves-

tigations on Fitts’ law already suggested that (at least the originally proposed) logarithmic

relation only holds for a range of IDs (see [40] for a good overview). In very simple tasks,

e.g., it is sometimes argued that users rather tend to rely on pre-determined motor tem-

plates, which leads to a discrepancy between the effects of distance and width [25]. Similar

discrepancies were also observed in some tapping tasks with low target accuracy constraints

[70]. In each of these cases the duration of the experimentally observed trajectories differed

relatively clearly from the prediction of Fitts’ law. We therefore expect 1OL-Eq not to cap-

ture such movements reasonably well.

Furthermore, the velocity of the 1OL-Eq trajectory is proportional to the remaining distance

to the target by definition. This necessarily implies that the initial velocity can be generated

all of a sudden (requiring infinite force) and that velocity decreases linearly as the target

is approached, which can be seen in Figure 3.1. Both characteristics do not reflect typical

human behavior, as demonstrated in various pointing task experiments (see, e.g., [39], [50]

or our results presented in Chapter 6).

Therefore, it is obvious to consider higher-order models that offer more freedom for the

modeling process.

4The general case works analogously, using the absolute values of the vectors xrel(t) and xrel,0.

20 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

0 0.5 1 1.5 2

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.5 1 1.5 2

Time (s)

0

0.2

0.4

0.6

0.8

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Position (m)

0

0.2

0.4

0.6

0.8

V
el

o
ci

ty
 (

m
/s

)

(c) Phase Space Plot

Figure 3.1: Characteristic features of 1OL-Eq trajectories are both (b) a high initial velocity

and (c) a velocity profile that is linear in the remaining distance to the target.

3.2.2 2OL-Eq

In this section, an adaption of the above described 1OL-Eq model to second-order dynamics

is presented. Here, the control u (and by equating it with the target center position T , as

above, also the positional error) is proportional to the second time derivative of position, i.e.,

to the acceleration, rather than to the first time derivative, i.e., to the velocity. Formally,

such a model would be given by

ẍ(t) = ke(t) = ku(t)− kx(t) (3.14)

with spring constant k > 0. Analogously to the above discussion, for constant target T this

corresponds to the linear differential equation system[
ż1

ż2

]
=

[
0 IDl

−kIDl 0

] [
z1

z2

]
, (3.15)

where z1 is the position relative to the target and z2 is the velocity vector. Since the right-

side matrix has eigenvalues i
√
k and −i

√
k, whose real parts are both equal to zero, Lemma

2.4 yields stability but not asymptotic stability. This means that it is not possible to find an

admissible positive maximum distance between starting point and target so that the solutions

of the respective initial value problems incorporating the differential equation (3.14) with

u ≡ T converge to the target. The reason for this is quite intuitive: The acceleration

proportional to the positional error only forces a reduction of the speed change instead of

the speed itself as the target is approached, leading to oscillatory behavior (see Figure 3.2).

Hence, we need to incorporate a damping term in the second-order dynamics (3.14), which

takes the current velocity into account.

This is consistent with the widespread interpretation of the biomechanical apparatus as a

spring-mass-damper system following Granit [29] and Crossman and Goodeve [14]: As

depicted in Figure 3.3, in this model the limb’s motion is assumed to arise from the interaction

between applied force (resulting from an α-γ-coactivation loop of the agonist muscle) and a

combination of a spring and a dashpot (representing the antagonist muscle). The mass that

characterizes the inertia of the limb can be neglected because it only occurs relative to the

3.2. MODELS OF MOTION DYNAMICS 21

0 0.5 1 1.5
Time (s)

-0.5

0

0.5

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.5 1 1.5
Time (s)

-2

-1

0

1

2

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.5 1 1.5
Time (s)

-20

-10

0

10

20

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 3.2: Each time the target is reached (green lines), the second-order dynamics (3.14)

ensure that the acceleration equals zero but not the velocity. This means that the target is

always passed, resulting in the characteristic oscillatory behavior.

Figure 3.3: Interpretation of the biomechanical apparatus as a spring-mass-damper sys-

tem following Granit [29] and Crossman and Goodeve [14]. 2OL-Eq and 2OL-LQR use a

linearized version thereof as a simple model of motion dynamics.

spring stiffness and damping constants. Moreover, we argue that the limb motions required

for our pointing tasks are small relative to the length of the limb, so that the angular motion

can be linearized. In summary, this leads to the 2OL-Eq system dynamics

ẍ(t) = ke(t)− dẋ(t) = ku(t)− kx(t)− dẋ(t) (2OL-Eq)

with spring constant k > 0 and damping factor d > 0, where x again denotes the (absolute)

pointer position and u denotes the target center position, each in Cartesian coordinates.

Again, for u ≡ T this equals [
ż1

ż2

]
=

[
0 IDl

−kIDl −dIDl

] [
z1

z2

]
, (3.16)

where z1 denotes the relative position vector and z2 denotes the velocity vector.

The right-side matrix now has eigenvalues λ1 = −d+
√
d2−4k

2
, λ2 = −d−

√
d2−4k

2
, where the real

22 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

0 0.5 1 1.5 2

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.5 1 1.5 2

Time (s)

0

0.2

0.4

0.6

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.5 1 1.5 2

Time (s)

0

5

10

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 3.4: Both (b) an asymmetric velocity profile and (c) an instantaneous positive

acceleration at the beginning of the movement are characteristic of 2OL-Eq trajectories.

part of λ2 is trivially negative due to d > 0, and the same holds for λ1 since k > 0 implies

Re(λ1) < −d+
√
d2

2
= 0. Hence, according to Lemma 2.4, the additional damping term −dẋ

in (2OL-Eq) ensures asymptotic stability.

In addition, it can be shown that 2OL-Eq trajectories are also consistent with Fitts’ law

[11].

We would like to point out that one of the major drawbacks of 1OL-Eq was the unrealistic

velocity profile including a suddenly occurring initial velocity and a permanent decrease in

speed, which both cannot be explained physically. Solutions of 2OL-Eq conversely exhibit

velocity profiles whose maximum is only reached after an initial increasing phase followed by

a main decreasing phase; in particular, the velocity time series has only one local maximum.

However, the distance to the target now being proportional to the acceleration instead of the

velocity (apart from damping) has a few impacts on the acceleration profile: First, it leads

to a jump in the acceleration profile at the beginning of the movement, requiring infinitely

fast neuron firing in the muscle activation process, which is physically impossible. Second,

the acceleration strongly decreases at first5, which results in an asymmetric velocity profile,

as shown in Figure 3.4. This is contrary to experimental observations, which suggest that

typical user trajectories exhibit more symmetric and bell-shaped velocity profiles [48, 50].6

A few modifications and extensions concerning these drawbacks are briefly addressed in the

following section.

3.2.3 Other Models

One approach that manages to overcome the previously discussed problems while maintaining

the spring-mass-damper system as underlying model, is called Vector Integration To

Endpoint (VITE) [8].

5As soon as the acceleration becomes negative the resulting decrease in velocity has an opposite effect

on the acceleration due to (2OL-Eq). Therefore, a slight increase of the acceleration (for sufficient damping

towards zero) occurs with time.
6A more detailed comparison between 2OL-Eq trajectories and user trajectories as well as trajectories of

other models can be found in Section 6.2.

3.2. MODELS OF MOTION DYNAMICS 23

0 0.5 1 1.5 2

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.5 1 1.5 2

Time (s)

0

0.2

0.4

0.6

0.8

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.5 1 1.5 2
Time (s)

-2

-1

0

1

2

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 3.5: In the VITE model, choosing the GO-Function G(t) allows the generation of

different trajectories. While faster-than-linear GO-Functions (green) exhibit a bell-shaped ve-

locity profile and thus lead to more symmetric trajectories, slower-than-linear GO-Functions

(red) increase asymmetry (note that in our case the target has not yet been reached). Choos-

ing a linear GO function (blue) is essentially the same as using 2OL-Eq (in the depicted

case, the acceleration initially takes values up to 95). [k = 450, d = 120]

The idea is to dissolve the proportionality between the acceleration ẍ and the distance to

the target u − x in (2OL-Eq) by not changing the right side of the equation but rather

the meaning of ẍ. With the position and the velocity at time t denoted by p(t) and v(t),

respectively, (2OL-Eq) becomes equal to

ṗ(t) = v(t), (3.17a)

v̇(t) = ku(t)− kp(t)− dv(t). (3.17b)

While (3.17b) remains unaffected, VITE allows to modify the relation between v and p by

multiplying the positive part7 of the velocity, v+(t) := max{0, v(t)}, with a “GO”-Function

G(t) before integrating it:

ṗ(t) = G(t)v+(t),

v̇(t) = ku(t)− kp(t)− dv(t).
(VITE)

Note that while (3.17) is equivalent to (3.16) with z1 = p − u (using u ≡ T) and z2 = v,

(VITE) cannot be transformed into a linear system of differential equations due to the general

non-linearity of G (which was just desired).

While faster-than-linear GO-Functions, i.e., G(t) := ctξ with ξ > 1 and c > 0, lead to

more symmetric velocity profiles, slower-than-linear GO-Functions, i.e., G(t) := c t
1+t

, c > 0,

provide a slower decrease in speed and thus strengthen asymmetry (see Figure 3.5). Even

step response can be modeled by setting G(t) := 0 for all t ∈ [0, δ[and G(t) := 1 for all t ≥ δ

using some threshold δ > 0.

However, while we have to admit that nearly any qualitative behavior that could be observed

in user trajectories can be modeled with this enormous tool box, there is not much insight

7Since VITE models the agonist’s and the antanogist’s activity separately, it is reasonable to process only

positive “input signals” v+ in each case.

24 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

into causal relations between observed phenomena provided from such a generic model. In

particular, v and v̇ lose their simple physical interpretation as velocity and acceleration,

which in turn leads to less informative value of the underlying second-order lag equation.

Another variation of 2OL-Eq is McRuer’s Crossover model [42, 43, 44], which was orig-

inally developed for aircraft simulation. In order to be able to track moving targets, it does

not only take the positional error but also lead, i.e., the change of the positional error, into

account.

Conversely, a Bang-Bang model [1] only makes use of controls from the boundary of a

compact constraint set, i.e., only “extreme” controls are applied. For example, one might

use the sequential combination of maximum acceleration and maximum deceleration (both

determined by a gain parameter) such that the target is reached without terminal velocity

in minimum time [50].

Costello’s Surge model [12] combines the latter two models as follows: The Bang-Bang

model is applied until the remaining distance to the target reaches a certain threshold. From

this point on, the Crossover model is used to achieve the required target accuracy through

smooth movements instead of numerous ever smaller acceleration impulses.

Finally, Plamodon’s Kinematic Theory [55, 56] describes rapid arm movements through

the interaction of two muscle groups (agonist and antagonist), whose impulse responses are

assumed to follow log-normal distributions.

However, in the following section we present a wider approach which allows to implement

not only specific biomechanical dynamics but also some internal objectives of users.

3.3 Optimization-Based Models

The decisive question that remains open in qualitative models such as Fitts’ law is that

of the cause of the determined movement duration. While the models of motion dynamics

presented in Section 3.2 make more or less detailed assumptions about the biomechanical

apparatus, which considerably limits the set of possible movements, the following approach

is optimization-based:

Given a specific task whose requirements are well-known a priori, users are assumed to derive

and internalize main objectives from this task description in order to decide for one of the

(often infinitely many) possible “execution strategies” based on these objectives, which is

then implemented as a “control law”. This can be formalized as follows:

Definition 3.1 (Finite-Horizon Optimal Control Problems). [30, Def. 6.1 and Remark 6.2]

Let l,m ∈ N. Consider the time interval I := [0, tf], tf > 0, and the corresponding sampling

times with sampling rate h > 0, i.e., tn := (n− 1)h, n ∈ {1, . . . , N}, with tf = (N − 1)h.

Let the system dynamics f : Rl×Rm −→ Rl be continuous and Lipschitz continuous with

respect to its first argument, and consider a continuous cost function g : Rl×Rm −→ R≥0

and a continuous terminal cost function gN : Rl −→ R≥0.

3.3. OPTIMIZATION-BASED MODELS 25

(a) The time-continuous optimal control problem is given by

Minimize J(x, u) := gN(x(tf)) +

∫ tf

0

g(x(t), u(t)) dt

with respect to u ∈ U for all x0 ∈ Rl,

(3.18)

where x : I −→ Rl is the unique8 solution to

ẋ(t) = f(x(t), u(t)), t ∈ I,
x(0) = x0.

(b) The time-discrete optimal control problem is given by

Minimize J(x, u) := gN(xN) +
N−1∑
n=1

g(xn, un)

with respect to u := (un)n∈{1,...,N−1} ⊂ Rm for all x̄1 ∈ Rl,

(3.19)

where x := (xn)n∈{1,...,N} ⊂ Rl satisfies

xn+1 = f(xn, un), n ∈ {1, . . . , N − 1},
x1 = x̄1.

In each case, J is called objective function or total cost function of the optimization

problem.

Analogously, infinite-horizon optimal control problems can be defined by replacing tf re-

spective N with “∞” and omit the terminal costs gN
9. Moreover, we assumed autonomous

system dynamics and cost functions; in general, f , g, and gN all might explicitly depend on

the time t as well.

We would like to explicitly point out that these two variants are not equivalent in general:

Even with system dynamics f that fit to each other (Corollary 2.10 describes the “correct”

transformation in the linear case), the time-discrete variant assumes the control to be con-

stant between two consecutive sampling times while the set of admissible control functions U
consists of all piecewise continuous functions u : I −→ Rm. Interestingly, this restriction to

finitely many changes of control in the time-discrete setting is the reason for the observed

time step constraint in case of time-discrete complete controllability, which was described in

Remark 2.11.

Regardless of which of these two variants is used, the assumed task objectives of users need

8Under the given conditions it can be shown that such a unique solution exists [66, Proposition C.3.8].
9Note that with infinite horizon, the total cost function J might assume infinite values, probably even in

the infimum, both in the time-continuous and the time-discrete variant.

26 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

to be expressed through the cost functions g and gN , since it is the accumulation of g over

the entire movement time and the penalization of the final state through gN that determines

the objective function J and thus the optimal choice of u. For our pointing tasks, which are

defined in detail later, some of these objectives might be, e.g., maximum accuracy, minimum

time, minimum overshoot, minimum effort, or shortest path.

Naturally, all these objectives can be arbitrarily combined together, as we will do with some

of them in our model presented in Chapter 4. However, we explicitly point out that the

assumed objectives define the framework for later interpretations: Model trajectories may

approximate given user trajectories very well, but if the meaning of the underlying optimiza-

tion structure is unclear or implausible, little insight can be gained into the actual process

of task execution.

In many optimization problems (e.g., convex optimization problems, which also includes our

model), the optimal solution is unique. Since human behavior usually differs both among

IDs and participants (and even among multiple trials of the same participant for the same

task [50]), the different solutions only can, if at all, be assumed optimal with respect to

different cost functions.10 For this reason, it has proven useful not to consider the complete

objective function as “universally valid” but to insert some parameters λ ∈ Λ which need to

be specified to uniquely determine the optimal control problem (and thus its solution). This

means that instead of a fixed cost function g an entire family of cost functions (gλ)λ∈Λ is

considered to obtain more degrees of freedom (the same holds for the terminal cost function

gN). Such parameters λ might affect the objectives themselves as well as their respective

weights when using a combination of them as cost function.

The question of how and, above all, how many parameters should be included in the objective

function is much discussed. On the one hand, enough parameters are required to model the

just described diverse behavior sufficiently. On the other hand, too many degrees of freedom

for the choice of objectives might lead to redundant or uninterpretable parameters, whose

impact on the resulting trajectory becomes unclear.

This is, e.g., the case in Ziebart’s inverse optimal control model [72], which uses a machine

learning approach to fit a generic cost matrix with 36 parameters11 to a dataset of pointing

task trials. While this seems to be very useful for his purpose of predicting mouse movements

on-line, it is not our preferred approach as little insight is gained into users’ intents and

internal processes.

Instead, we focus on optimization models whose assumptions on the objectives are plausible

and meaningful, since the results can thus be better interpreted.

10At least within the same task and participant, it would be more reasonable to explain this movement

variability through disturbances such as sensory input noise and motor control noise [68]. However, modeling

these disturbances would require a stochastic extension of our deterministic model, which is beyond the scope

of this thesis.
11A symmetric 8× 8-matrix penalizing all combinations of position and its first three derivatives, each in

two dimensions, is used.

3.3. OPTIMIZATION-BASED MODELS 27

A relatively simple model is presented in the following section and a wide-used approach to

such optimization problems, on which our model will be based, is described in detail in the

next chapter. Finally, details on the parameter fitting process used for the approximation of

user trajectories are given in Chapter 5.

3.3.1 Minimum-Jerk Model

One of the most famous optimization models for pointing tasks is the Minimum-Jerk

model (MinJerk) introduced by Flash and Hogan [23].

Here, the only objective humans are assumed to aim for is maximum smoothness of the

movement from the initial to the target position. Flash and Hogan motivate this assumption

by “learning and practice” effects leading to smoother and more graceful movements.

In terms of motor control, smoothness is related to jerk, which is the third time derivative

of the position. With the position at time t ≥ 0 denoted by

p(t) :=
[
p1(t) . . . pl(t)

]> ∈ Rl, (3.20)

where l is the dimension of the pointing task, i.e., l provides information if the hand is

supposed to move on the line (l = 1), in the plane (l = 2) or in the space (l = 3), the jerk

at time t ≥ 0 is given by the vector

...
p(t) :=

[...
p1 . . .

...
pl
]>

:=
[

d3p1
dt3

(t) . . . d3pl
dt3

(t)
]>
∈ Rl. (3.21)

Minimizing the time integral of the squared Euclidean norm of the jerk over the entire

movement, i.e., minimizing

J(p) :=
1

2

∫ tf

0

‖...p(t)‖2
2 dt =

l∑
i=1

1

2

∫ tf

0

(
...
pi(t))

2 dt (3.22a)

with respect to p : I −→ Rl, I := [0, tf], where p satisfiesp(0)

ṗ(0)

p̈(0)

 =

p̄0

v̄0

ā0

 ∈ R3l,

p(tf)ṗ(tf)

p̈(tf)

 =

p̄tfv̄tf
ātf

 ∈ R3l (3.22b)

for given initial and terminal positions p̄0 and p̄tf , velocities v̄0 and v̄tf , and accelerations ā0

and ātf , each in Rl, then leads to the motion trajectory with maximum smoothness.

Note that both squaring the norm of
...
p(t) and multiplying it with the prefactor 1

2
does not

affect the minimizer of the optimization problem (only the value it takes), but simplifies the

further analysis. Moreover, the fact that each of the l components of
...
p(t) occurs in exactly

one addend in (3.22a) immediately implies that the jerk can be minimized separately in each

dimension.

28 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

Following the fundamental lemma of calculus of variations, the necessary condition for

x = (x1, . . . , xl) : I −→ Rl minimizing

J(x) :=

∫ tf

0

g(t, x1, . . . , xl, ẋ1, . . . , x
(r)
l) dt (3.23)

under some boundary conditions, where x1, . . . , xl are assumed to have continuous derivatives

up to the 2r-th order and g needs to be twice continuously differentiable with respect to each

of its l(r + 1) + 1 arguments, is that

∂g

∂xi
− d

dt

∂g

∂ẋi
+ · · ·+ (−1)r

dr

dtr
∂g

∂(x
(r)
i)

= 0, i ∈ {1, . . . , l}, (3.24)

holds for all t ∈ I, where the arguments were omitted for the sake of clarity. This system of

equations is a special case of the Euler-Equation [13, Chapter IV., §3].

In our case of minimizing (3.22a) under the initial and terminal conditions (3.22b), i.e., using

g(t, p1, . . . , pl, ṗ1, . . . ,
...
pl) := 1

2

∑l
i=1(

...
pi(t))

2, this leads to

− d3

dt3
∂g

∂
...
pi

(t) = −d3 ...pi
dt3

(t) = −p(6)
i (t) = 0 (3.25)

for all t ∈ I and each dimension i ∈ {1, . . . , l}. Therefore only functions p that consist of

polynomials of degree κ ≤ 5 in each dimension, i.e., pi(t) :=
∑5

j=0 c
(i)
j t

j with c
(i)
j ∈ R for all

j ∈ {0, . . . , κ} holds for each i ∈ {1, . . . , l}, remain possible solutions to our optimization

problem (3.22). Moreover, the six boundary conditions from (3.22b) are already sufficient to

clearly determine these polynomials. Since g is convex in each argument, the corresponding

p is indeed the unique solution to (3.22) (see [60, Theorem 2.9.1 and the following remark]

for details).

In the following, we would like to briefly derive these polynomials given such initial and

terminal conditions. For this purpose, we express the general polynomials in dimensionless

coordinates, i.e., we use τ(t) := t
tf
∈ [0, 1] for all t ∈ I, which leads to

pi(t) =
5∑
j=0

c̃
(i)
j (τ(t))j, i ∈ {1, . . . , l}, (3.26)

with c̃
(i)
j := c

(i)
j (tf)

j.

The first and the second derivative of these polynomials with respect to t are given by

ṗi(t) =
1

tf

5∑
j=1

jc̃
(i)
j (τ(t))j−1, i ∈ {1, . . . , l}, (3.27)

3.3. OPTIMIZATION-BASED MODELS 29

and

p̈i(t) =
1

(tf)2

5∑
j=2

j(j − 1)c̃
(i)
j (τ(t))j−2, i ∈ {1, . . . , l}. (3.28)

Because pi(0) = c̃
(i)
0 holds in (3.26), the initial position constraints from (3.22b) immediately

imply c̃
(i)
0 = p̄

(i)
0 for all i ∈ {1, . . . , l}. As can be derived from (3.27) and (3.28), analogously

ṗi(0) =
c̃
(i)
1

tf
and p̈i(0) =

2c̃
(i)
2

(tf)2
apply. Hence, the initial velocity and acceleration conditions

from (3.22b) yield c̃
(i)
1 = v̄

(i)
0 tf respective c̃

(i)
2 = ā

(i)
0

(tf)2

2
for all i ∈ {1, . . . , l}.

Even though the initial values thus need to be rescaled by tf to yield the corresponding

prefactors c̃, the implementation of the terminal conditions becomes much easier through

the use of these dimensionless times τ . In particular, the following equations result directly

from inserting τ(tf) = 1 into (3.26), (3.27), and (3.28) for all i ∈ {1, . . . , l}:

pi(tf) =
5∑
j=0

c̃
(i)
j , ṗi(tf) =

5∑
j=1

j

tf
c̃

(i)
j , p̈i(tf) =

5∑
j=2

j(j − 1)

(tf)2
c̃

(i)
j . (3.29)

Together with the terminal conditions from (3.22b), this immediately implies that c̃
(i)
3 , c̃

(i)
4 ,

and c̃
(i)
5 can be computed by solving the system of linear equations1 1 1

3 4 5

6 12 20


c̃

(i)
3

c̃
(i)
4

c̃
(i)
5

 =

p̄
(i)
tf
− c̃(i)

0 − c̃
(i)
1 − c̃

(i)
2

v̄
(i)
tf
tf − c̃(i)

1 − 2c̃
(i)
2

ā
(i)
tf

(tf)
2 − 2c̃

(i)
2

 , i ∈ {1, . . . , l}. (3.30)

In summary, this leads to the following corollary:

Corollary 3.2 (Minimum-Jerk Polynomial). Let tf > 0, I := [0, tf], and let l ∈ N denote

the state dimension. The unique function p = (p1, . . . , pl) : I −→ Rl which minimizes

J(p) :=
1

2

∫ tf

0

‖...p(t)‖2
2 dt

under the additional constraintsp(0)

ṗ(0)

p̈(0)

 =

p̄0

v̄0

ā0

 ∈ R3l,

p(tf)ṗ(tf)

p̈(tf)

 =

p̄tfv̄tf
ātf

 ∈ R3l,

is in each dimension given by the fifth-degree polynomial

pi(t) =
5∑
j=0

c̃
(i)
j (τ(t))j, i ∈ {1, . . . , l},

30 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

with τ(t) := t
tf

and



c̃
(i)
0

c̃
(i)
1

c̃
(i)
2

c̃
(i)
3

c̃
(i)
4

c̃
(i)
5


:=



p̄
(i)
0

v̄
(i)
0 tf

ā
(i)
0

(tf)2

2

10(p̄
(i)
tf
− p̄(i)

0)− 4(v̄
(i)
tf
− v̄(i)

0)tf + (ā
(i)
tf
− ā(i)

0)
(tf)2

2
− 10v̄

(i)
0 tf − ā(i)

0 (tf)
2

−15(p̄
(i)
tf
− p̄(i)

0) + 7(v̄
(i)
tf
− v̄(i)

0)tf − (ā
(i)
tf
− ā(i)

0)(tf)
2 + 15v̄

(i)
0 tf + ā

(i)
0

(tf)2

2

6(p̄
(i)
tf
− p̄(i)

0)− 3(v̄
(i)
tf
− v̄(i)

0)tf + (ā
(i)
tf
− ā(i)

0)
(tf)2

2
− 6v̄

(i)
0 tf


.

Flash and Hogan, e.g., derived the minimum-jerk polynomial for two-dimensional arm move-

ments, i.e., l = 2, assuming zero velocity and acceleration in each dimension both at the

beginning and at the end of the movement, i.e., v̄0 = v̄tf = ā0 = ātf = 0. In this case, p̄0 and

p̄tf are the only free parameters, which considerably simplifies the direct solution formulas

for p1(t) respective p2(t) (see [23]).

While the solution trajectories of this model are analyzed and compared to those of other

models in Section 6.2 (Figure 3.6 already gives a first impression), we want to point out that

given these initial and terminal constraints the solution trajectory is clearly determined. This

particularly means that there are no undetermined parameters that could explain different

behavior among different users.

One of the many extensions of this widely acknowledged MinJerk model is the Dynamic

MinJerk model introduced by Hoff and Arbib [32]. Here, the minimum-jerk trajectory

from Corollary 3.2 is computed bit by bit using an equivalent linear control system of the

form ẋ(t) = Ax(t) + Bu(t), where the states x(t) incorporate the current position, veloc-

ity, and acceleration, and the controls u(t) denote the currently perceived target position.

Hence, this model can be described as “minimum-jerk dynamics with equilibrium-control”

(see Section 3.2 for a more detailed discussion on this term). In particular, the continuous (or

time-discrete) re-computation of the remaining trajectory allows to take into account both

moving targets and sensory input effects on the perception of the target position. Moreover,

perturbations of the own position, velocity, and acceleration during the movement are com-

pensated because the minimum-jerk trajectory is permanently (or repeatedly) adjusted to

the currently observed state x(t).

Furthermore, it is possible to adapt the minimum-jerk principle to via-point tasks, i.e., to

pointing tasks with multiple targets that must be reached in a predefined order (see Sec-

tion 4.3.2). A detailed derivation based on analytical methods for optimal control problems

with interior point equality constraints, which are, e.g., described in [7, Section 3.5], can be

found in [23, Appendix C].

In Chapter 6.2, we will compare our model, which still needs to be defined, with MinJerk

among others. We implemented all models to be compared in discrete time and beginning

3.3. OPTIMIZATION-BASED MODELS 31

0 0.5 1 1.5 2

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.5 1 1.5 2

Time (s)

0

0.05

0.1

0.15

0.2

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.5 1 1.5 2

Time (s)

-0.5

0

0.5

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 3.6: Typical characteristics of the minimum-jerk trajectory with identical initial and

terminal velocity and acceleration constraints are the completely symmetric position, velocity

and acceleration profiles.

with the next chapter we will mainly switch to the time-discrete case in our analysis, too.

For reasons of consistency we thus briefly introduce the respective time-discrete notation for

MinJerk in one spatial dimension12:

As described in Section 2.2 in detail, the interval I := [0, tf] is partitioned into Ñ − 1 ∈ N
equidistant subintervals of length h. The final time tf is thus given by tf = tÑ = (Ñ − 1)h.

The polynomial is then evaluated once at the beginning of each subinterval and at the and

of the movement, i.e., at the times tn = (n− 1)h, n ∈ {1, . . . , Ñ}.
Hence, the position at the time step n ∈ {1, . . . , Ñ} is given by

pMinJerk
n := p((n− 1)h) =

5∑
j=0

c̃j

(
(n− 1)h

tf

)j
=

5∑
j=0

c̃j

(
n− 1

Ñ − 1

)j
(3.31)

with c̃j, j ∈ {0, . . . , 5}, from Corollary 3.2.

12As derived above, the polynomials for further spatial dimensions are independent of each other and have

exactly the same form.

32 CHAPTER 3. HUMAN MOTOR CONTROL MODELS

Chapter 4

2OL-LQR

In this chapter, we introduce our 2OL-LQR model, which combines parts of models pre-

sented in the preceding sections. However, at its core, our model is based on a well explored

optimization technique for a certain type of optimal control problems – the linear-quadratic

regulator (LQR), which we need to define and analyze first. In the following section, we

describe appropriate modifications of this concept for our purpose of simulating pointing

tasks, resulting in the basic structure of our proposed model. Finally, we briefly explain how

to extend this approach to more general via-point tasks.

4.1 Linear-Quadratic Regulator (LQR)

In the following, we consider a special case of the time-discrete optimal control problem

introduced in Definition 3.1:

Definition 4.1 (Linear-Quadratic Optimal Control Problem).

Consider arbitrary system dynamics matrices A ∈ Rl×l, B ∈ Rl×m and an arbitrary

finite number of discrete time steps N ∈ N.

Let the state cost matrices Qn ∈ Rl×l, n ∈ {1, . . . , N}, be symmetric and positive semidef-

inite and the control cost matrices Rn ∈ Rm×m, n ∈ {1, . . . , N − 1}, be symmetric and

positive definite.

The linear-quadratic optimal control problem with horizon N is given by

Minimize JN(x, u) :=
N∑
n=1

x>nQnxn +
N−1∑
n=1

u>nRnun

with respect to u := (un)n∈{1,...,N−1} ⊂ Rm for all x̄1 ∈ Rl,

(4.1a)

where x := (xn)n∈{1,...,N} ⊂ Rl satisfies

xn+1 = Axn +Bun, n ∈ {1, . . . , N − 1},
x1 = x̄1.

(4.1b)

33

34 CHAPTER 4. 2OL-LQR

Here, the states xn, n ∈ {1, . . . , N}, which evolve according to the linear system dynam-

ics (4.1b), are penalized quadratically by the respective state cost matrix Qn ∈ Rl×l. The

controls un, n ∈ {1, . . . , N − 1}, which uniquely determine this state sequence, are simul-

taneously penalized quadratically by the respective control cost matrix Rn. Additionally,

it would be possible to define cost matrices Mn penalizing combinations of state and cost

vectors, i.e., to add terms of the form 2x>nMnun to the objective function JN(x, u). We de-

cided to abandon this generalization, since such combined cost terms cannot be reasonably

interpreted in our model.

Note that JN(x, u) ≥ 0 holds because of the positive definiteness of the matrices Rn and the

positive semidefiniteness of the matrices Qn.

The solution to this optimal control problem can be given in general terms, which is the

main result of this section:

Theorem 4.2 (Linear-Quadratic Regulator (LQR)).

The unique solution u∗ = (u∗n)n∈{1,...,N−1} to the time-discrete linear-quadratic optimal control

problem with horizon N (4.1) is given by

u∗n := −Knxn, n ∈ {1, . . . , N − 1},
Kn = (Rn +B>Sn+1B)−1B>Sn+1A, n ∈ {1, . . . , N − 1},

(4.2)

where the symmetric matrices Sn ∈ Rl×l can be determined backwards in time by solving the

Discrete Riccati Equations:

Sn = Qn + A>Sn+1A− A>Sn+1B(Rn +B>Sn+1B)−1B>Sn+1A, n ∈ {1, . . . , N − 1},
SN = QN .

(4.3)

In particular, the optimal feedback gain matrices Kn ∈ Rm×l only depend on the system

matrices A,B,Qn, Rn, which define the underlying system dynamics and the considered ob-

jective function, i.e., they can be computed a priori without any information about the states

xn and even independent of the initial state x̄1.

Proof. (Large parts of this proof are essentially based on [7].)

Since the solution trajectory x = (xn)n∈{1,...,N} of (4.1) must satisfy the system dynamics

equation (4.1b), which is equivalent to

f(xn, un)− xn+1 = 0, f(x̂, û) := Ax̂+Bû, n ∈ {1, . . . , N − 1},
f̃(x1) = 0, f̃(x̂) := x̄1 − x̂,

adding arbitrary multiplies of (f(xn, un)−xn+1) and f̃(x1) to the objective function JN(x, u)

4.1. LINEAR-QUADRATIC REGULATOR (LQR) 35

cannot change its value for such trajectories.1 Hence, we can minimize

JλN(x, u) :=
1

2
JN(x, u) + λ>1 f̃(x1) +

N−1∑
n=1

λ>n+1(f(xn, un)− xn+1) =

=
1

2

N∑
n=1

x>nQnxn +
1

2

N−1∑
n=1

u>nRnun + λ>1 f̃(x1) +
N−1∑
n=1

λ>n (f(xn, un)− xn+1)

under the constraint (4.1b), where λ = (λn)n∈{1,...,N} ⊂ Rl denotes an (initially) arbitrary

cofactor sequence of so-called Lagrange multipliers, just as well. Note that the multipli-

cation of the objective function JN(x, u) by 1
2

in order to simplify the following calculations

also cannot change the optimal control u∗ (but the respective optimal value, of course).

The modified objective function JλN(x, u) together with (4.1b) thus represents the same op-

timization problem as JN(x, u) together with (4.1b).

Using the total differential2 of JλN , i.e.,

dJλN =
N∑
n=1

∂JλN
∂xn

dxn +
N−1∑
n=1

∂JλN
∂un

dun, (4.4)

we can take the perspective that it is only u which should affect JλN since the corresponding

states xn are for any fixed u given by the constraints (4.1b) (instead of the other way around).

In our case, the partial derivatives of JλN are given by

∂JλN
∂x1

(x, u) =
1

2

∂JN
∂x1

(x, u) + λ>1
∂f̃

∂x̂
(x1) + λ>2

∂f

∂x̂
(x1, u1) = Q1x1 + A>λ2 − λ1, (4.5)

∂JλN
∂xn

(x, u) =
1

2

∂JN
∂xn

(x, u) + λ>n+1

∂f

∂x̂
(xn, un)− λn = Qnxn + A>λn+1 − λn,

n ∈ {2, . . . , N − 1},
(4.6)

∂JλN
∂xN

(x, u) =
1

2

∂JN
∂xN

(x, u)− λN = QNxN − λN , (4.7)

∂JλN
∂un

(x, u) =
1

2

∂JN
∂un

(x, u) + λ>n+1

∂f

∂û
(xn, un) = Rnun +B>λn+1, n ∈ {1, . . . , N − 1}.

(4.8)

In particular, λ1 =
∂JλN
∂x̄1

is the rate of change of JλN as a function of the initial constraint x̄1.

Analogously, the effect of infinitesimally small changes in the system dynamics function f

on JλN is expressed by λn, n ∈ {2, . . . , N}.
1Note that in the considered case the cost matrices Qn, Rn might change at every time step, while the

system dynamics matrices A,B are assumed constant. The general case can be derived analogously by

allowing a different function fn for every n ∈ {1, . . . , N − 1}.
2This commonly used notation is mathematically correct, when, e.g., regarding dx and du as differential

forms. For further details, see, e.g., [28, Section 2.2.2.1].

36 CHAPTER 4. 2OL-LQR

Because λ was arbitrary, we are free to choose. In order to express the determination of xn
by (4.1b) for any fixed u through the Lagrange parameters, we equate (4.5), (4.6), and (4.7)

with zero, i.e., we set

∂JλN
∂xn

(x, u) = 0, n ∈ {1, . . . , N},

which yields

λn :=
1

2

∂JN
∂xn

(x, u) + λ>n+1

∂f

∂x̂
(xn, un) = Qnxn + A>λn+1, n ∈ {1, . . . , N − 1},

λN :=
1

2

∂JN
∂xN

(x, u) = QNxN .

(4.9)

The definition of the total differential (4.4) thus yields

dJλN =
N−1∑
n=1

∂JλN
∂un

dun, (4.10)

i.e., now it is only u that has an impact on the values of JλN . In fact, we have chosen the La-

grange multipliers λn appropriately depending on the states xn in order to eliminate the effect

of infinitesimally small changes in xn assuming (4.1b) applies, i.e., we have “compensated”

the overall effect of changes in xn on the objective function JN , that is, the direct effect

(via the corresponding stage costs) as well as the indirect effect (via the system dynamics

constraints).

The remaining necessary condition for u∗ being a local minimum of the considered optimiza-

tion problem (4.1) thus is

∂JλN
∂un

(x, u∗) = 0, n ∈ {1, . . . , N − 1}. (4.11)

Using (4.8), this is equivalent to

u∗n = −R−1
n B>λn+1, n ∈ {1, . . . , N − 1}. (4.12)

Moreover, the assumed positive definiteness of Rn, n ∈ {1, . . . , N − 1}, directly implies that

the sufficient condition for u∗ being a local minimum of (4.1) is satisfied:

∂2JλN
∂u2

n

(x, u∗) = Rn > 0, n ∈ {1, . . . , N − 1}. (4.13)

Thus, the optimal trajectory is given by

xn+1 = Axn −BR−1
n B>λn+1, n ∈ {1, . . . , N − 1},

x1 = x̄1,
(4.14)

4.1. LINEAR-QUADRATIC REGULATOR (LQR) 37

with

λn = Qnxn + A>λn+1, n ∈ {1, . . . , N − 1},
λN = QNxN .

(4.15)

In this form, both iteration formulas each require the complete solution of the other formula

since they are coupled and need to be solved from different time directions. Fortunately, it

is possible to decouple them, as we show for the rest of the proof.

To this end, we assume that there exist matrices Sn ∈ Rl×l, n ∈ {1, . . . , N}, so that

λn = Snxn, n ∈ {1, . . . , N}. (4.16)

holds. First, we use this assumption to specify un independent of λn:

Inserting

λn+1
(4.16)
= Sn+1xn+1

(4.1b)
= Sn+1(Axn +Bun), n ∈ {1, . . . , N − 1} (4.17)

into (4.12) yields for all n ∈ {1, . . . , N − 1}

u∗n = −R−1
n B>Sn+1(Axn +Bun)

⇐⇒ u∗n = −(Rn +B>Sn+1B)−1B>Sn+1Axn. (4.18)

Defining

Kn := (Rn +B>Sn+1B)−1B>Sn+1Axn, n ∈ {1, . . . , N − 1},

yields the first part of the solution.

Hence, for all n ∈ {1, . . . , N − 1}

Snxn
(4.16)
= λn

(4.15)
= Qnxn + A>λn+1

(4.16)
= Qnxn + A>Sn+1xn+1

(4.1b)
=

(4.1b)
= Qnxn + A>Sn+1(Axn +Bu∗n)

(4.18)
=

(4.18)
= Qnxn + A>Sn+1(Axn −B(Rn +B>Sn+1B)−1B>Sn+1Axn)

⇐⇒
(
Sn −Qn − A>Sn+1A+ A>Sn+1B(Rn +B>Sn+1B)−1B>Sn+1A

)
xn = 0

needs to hold for the states xn of the trajectory resulting from the optimal control u∗, which

is satisfied if

Sn = Qn + A>Sn+1A− A>Sn+1B(Rn +B>Sn+1B)−1B>Sn+1A (4.19)

holds for all n ∈ {1, . . . , N − 1}.
Analogously, for n = N

SNxN
(4.16)
= λN

(4.15)
= QNxN

38 CHAPTER 4. 2OL-LQR

holds if3

SN = QN . (4.20)

In particular, (4.16) holds with these matrices Sn, which are independent of all states xn,

the initial state x̄1, and all controls un but only depend on the “general setup” of the

optimization problem, i.e., on the system dynamics matrices A,B and the time-varying cost

matrices Qn, Rn. Thus, the Discrete Riccati-Equations (4.19) only need to be solved once a

priori backwards in time and the solution matrices Sn determine the unique solution of the

optimal control problem u∗ through (4.18).

Moreover, all Sn are symmetric since all Qn and Rn are assumed to be symmetric and

the terms in the recursion formula (4.19) including Sn+1 are thus symmetric by backward

induction and construction, using that sums and inverses preserve symmetry.

This finally concludes the proof.

Theorem 4.2 contains some important statements:

First, the unique minimum of JN(x, u) with respect to the linear system dynamics constraints

is assumed for any initial state x0 in the respective optimal control sequence u∗.

Second, this optimal control can be specified directly in a linear feedback form, i.e.,

u∗n = −Knxn, n ∈ {1, . . . , N − 1}, (4.21)

where the optimal feedback gain matrices Kn can be computed once a priori by solving the

Discrete Riccati Equations backwards in time. With these Kn, starting in x0, the optimal

trajectory can be derived by alternately computing the respective optimal feedback u∗n
from (4.21) and the consecutive state xn+1 from the system dynamics (4.1b), both of which

involve only matrix-vector multiplications.

In addition to Theorem 4.2, we want to give an explicit formula for the minimum value that

the objective function reaches given some initial state x0. To this end, we need to extend

Definition 4.1:

Definition 4.3. In the case of Definition 4.1, the partially cutoff (linear-quadratic)

optimal control problem with horizon K ∈ {1, . . . , N} is given by

Minimize JKN (xK−1, uK−1) :=
N∑

n=N−K+1

x>nQnxn +
N−1∑

n=N−K+1

u>nRnun

with respect to uK−1 = (un)n∈{N−K+1,...,N−1} ⊂ Rm for all x̄N−K+1 ∈ Rl,

(4.22a)

3In fact, it can be shown that (4.19) and (4.20) are even necessary conditions for the respectively derived

equations (because they need to hold for arbitrary xn ∈ Rl due to Bellman’s principle of optimality).

4.1. LINEAR-QUADRATIC REGULATOR (LQR) 39

where xK−1 := (xn)n∈{N−K+1,...,N} ⊂ Rl satisfies

xn+1 = Axn +Bun, n ∈ {N −K + 1, . . . , N − 1},
xN−K+1 = x̄N−K+1.

(4.22b)

The respective optimal value function is given by

V K
N (x̄N−K+1) := min

uK−1⊂Rm
JKN (xK−1, uK−1), x̄N−K+1 ∈ Rl. (4.23)

The partially cutoff optimal control problem with horizon K ∈ {1, . . . , N} and initial state

x̄N−K+1 := x
x̄1,(u1,...,uN−K)
N−K+1 , where xx̄1,(u1,...,uN−K) denotes the solution of (4.1b) up to time

step N −K + 1 with initial state x̄1 and applied control ū := (un)n∈{1,...,N−K}, thus exactly

corresponds to the original optimal control problem with horizon N and initial state x̄1 from

Definition 4.1, where the (not necessarily optimal) first N −K controls are determined by

ū and only the remaining K − 1 controls in uK−1 are to be optimized.

Note that the minimum in (4.23) is assumed according to Theorem 4.2, which can be applied

because each partially cutoff optimal control problem (4.22) can be brought into a separate

complete optimal control problem with horizon K of the form (4.1) by shifting indexes and

using x̄N−K+1 as initial state x̄1. Particularly, in case of K = N , (4.22) corresponds exactly

to (4.1), i.e., JNN ≡ JN holds with xN ≡ x and uN ≡ u.

Following Bellman’s principle of optimality [66, Lemma 8.1.5], the optimal value func-

tion of the optimal control problem with horizon N (4.1),

V N
N (x̄1) = min

u⊂Rm
JN(x, u), (4.24)

for each x̄1 ∈ Rl satisfies

V N
N (x̄1) = min

ũ∈Rm

[
x̄>1 Q1x̄1 + ũ>R1ũ+ V N−1

N (x
x̄1,(ũ)
2)

]
=

= x̄>1 Q1x̄1 + (ũ∗)>R1ũ
∗ + V N−1

N (x
x̄1,(ũ∗)
2),

(4.25)

where V N−1
N (x

x̄1,(ũ)
2) denotes the minimum value of the partially cutoff optimal control prob-

lem with horizon N − 1 starting in x
x̄1,(ũ)
2 = Ax̄1 + Bũ and ũ∗ is the first control of the

optimal control sequence u∗ = (u∗n)n∈{1,...,N−1} of (4.1).

More general, the optimal value function for the partially cutoff optimal control problem

(4.22) with horizon K ∈ {2, . . . , N}, i.e., beginning at N −K + 1 ∈ {1, . . . , N − 1}, which

is defined by (4.23), satisfies

V K
N (x̄N−K+1) = min

ũ∈Rm

[
x̄>N−K+1QN−K+1x̄N−K+1 + ũ>RN−K+1ũ+ V K−1

N (x
x̄N−K+1,(ũ)
N−K+2)

]
=

= x̄>N−K+1QN−K+1x̄N−K+1 + (ũ∗)>RN−K+1ũ
∗ + V K−1

N (x
x̄N−K+1,(ũ

∗)
N−K+2),

(4.26)

40 CHAPTER 4. 2OL-LQR

where V K−1
N (x

x̄N−K+1,(ũ)
N−K+2) denotes the minimum value of the partially cutoff optimal control

problem with horizon K − 1 starting in x
x̄N−K+1,(ũ)
N−K+2 = Ax̄N−K+1 + Bũ and ũ∗ is the first

control of the optimal control sequence uK−1,∗ = (u∗n)n∈{N−K+1,...,N−1} ⊂ Rm of (4.22).4

Again, the fact that the partially cutoff optimal control problem with horizon K can be

regarded as a separate complete optimal control problem with horizon K (see discussion

above) together with the linear feedback form (4.21) of the optimal control sequence u∗ from

Theorem 4.2 implies that in (4.26)

ũ∗ = −KN−K+1x̄N−K+1 (4.27)

holds for some KN−K+1 ∈ Rm×l independent of x̄N−K+1, even if x̄N−K+1 cannot be reached

at time step N −K + 1 by starting in some x̄1 ∈ Rl and applying the first N −K controls

of the sequence u∗ = (u∗n)n∈{1,...,N−1} that is optimal for horizon N .

However, if this is the case, i.e., x̄N−K+1 = x
x̄1,(u∗1,...,u

∗
N−K)

N−K+1 , then obviously ũ∗ = u∗N−K+1

holds, i.e. the single-step optimal control coincides with that of the complete trajectory.

Repeated use of this observation immediately implies that “tails of optimal trajectories are

again optimal”.

Finally,

V 1
N(x̄N) = x̄>NQN x̄N (4.28)

holds for any x̄N ∈ Rl by definition, especially for x̄N = x
x̄1,(u1,...,uN−1)
N with some initial state

x̄1 ∈ Rl and some control sequence ū := (un)n∈{1,...,N−1} ⊂ Rm.

Based on this principle, we can prove the following statement:

Theorem 4.4. For any initial state x̄1 ∈ Rl, the optimal value of the objective function J

of the optimal control problem (4.1) is given by

V N
N (x̄1) = JN(x, u∗) = x̄>1 S1x̄1 (4.29)

with optimal control sequence u∗ = (u∗n)n∈{1,...,N−1} ⊂ Rm from (4.2) and with S1 from the

solution to the Discrete Riccati Equations (4.3).

Proof. The first equality directly follows from Theorem 4.2 and Definition 4.3. We prove the

second equality (or rather V N
N (x̄1) = x̄>1 S1x̄1) by induction with respect to K ∈ {1, . . . , N}.

As can be easily seen by definition,

V 1
N(x̄N) = x̄>NQN x̄N = x̄>NSN x̄N

holds for any x̄N ∈ Rl.

We assume that for some arbitrary but fixed K ∈ {1, . . . , N − 1}

V K
N (x̄N−K+1) = x̄>N−K+1SN−K+1x̄N−K+1 (4.30)

4An alternative proof of Theorem 4.2, which does entirely without Lagrange multipliers, is mainly based

on this recursive formula (4.26) and can, e.g., be found in [38, Section 6.4.3].

4.1. LINEAR-QUADRATIC REGULATOR (LQR) 41

holds for any x̄N−K+1 ∈ Rl with symmetric SN−K+1 ∈ Rl×l from the solution to the Discrete

Riccati Equations.

Then for ũ∗ ∈ Rm first control of the optimal control sequence uK,∗ = (u∗n)n∈{N−K,...,N−1}
regarding JK+1

N (xK , uK) with xN−K = x̄N−K , i.e.,

ũ∗ = −KN−K x̄N−K (4.31)

instead of (4.27), the following holds for any x̄N−K ∈ Rl:

V K+1
N (x̄N−K)

(4.26)
= x̄>N−KQN−K x̄N−K + (ũ∗)>RN−K ũ

∗ + V K
N

(
x
x̄N−K ,(ũ

∗)
N−K+1

)
(4.30)
=

(4.30)
= x̄>N−KQN−K x̄N−K + (ũ∗)>RN−K ũ

∗ +
(
x
x̄N−K ,(ũ

∗)
N−K+1

)>
SN−K+1

(
x
x̄N−K ,(ũ

∗)
N−K+1

)
(4.1b)

=

(4.1b)
= x̄>N−KQN−K x̄N−K + (ũ∗)>RN−K ũ

∗ +
(
x̄>N−KA

> + (ũ∗)>B>
)
SN−K+1(Ax̄N−K +Bũ∗)

(4.31)
=

(4.31)
= x̄>N−K

(
QN−K + A>SN−K+1A+K>N−K(RN−K +B>SN−K+1B)KN−K−

−A>SN−K+1BKN−K −K>N−KB>SN−K+1A
)
x̄N−K

(4.2),(∗)
=

(4.2),(∗)
= x̄>N−K

(
QN−K + A>SN−K+1A+ A>SN−K+1B(RN−K +B>SN−K+1B)−1B>SN−K+1A−

−2A>SN−K+1B(RN−K +B>SN−K+1B)−1B>SN−K+1A
)
x̄N−K =

= x̄>N−K

(
QN−K + A>SN−K+1A−

−A>SN−K+1B(RN−K +B>SN−K+1B)−1B>SN−K+1A
)
x̄N−K

(4.3)
=

(4.3)
= x̄>N−KSN−K x̄N−K .

In (∗), the symmetry of SN−K+1 and the resulting symmetry of (RN−K + B>SN−K+1B),

which implies (RN−K +B>SN−K+1B)−> = (RN−K +B>SN−K+1B)−1, were used.

Hence, the induction hypothesis (4.30) is true for all K ∈ {1, . . . , N}.
The last case K = N thus yields

V N
N (x̄1) = x̄>1 S1x̄1 (4.32)

for all x̄1 ∈ Rl, which proves the claim.

However, it is important to emphasize that the definition of the optimal controls u∗n requires

perfect observation of the states xn. Even though the linear feedback form allows to compute

the optimal feedback gain matrices Kn without any information about the states xn, at

every time step n the state xn resulting from the previous state xn−1 and the last applied

control u∗n−1 needs to be available to proceed with the computation of next optimal control

u∗n = −Knxn. While, technically, in the LQR model only information about the system

dynamics matrices A and B are required to compute the following state for any chosen

42 CHAPTER 4. 2OL-LQR

control, this actually means a perfect and immediate observation, which at least in human

actions is never given. Instead, it would be more convenient to distinguish between the

system state xn ∈ Rl and the system output yn ∈ Rs, which, e.g., might also be linear in

the state, i.e., yn = Cxn holds for any C ∈ Rs×l, and to force the feedback control un ∈ Rm

to depend on yn rather than xn.

Moreover, different types of noise could easily be added, leading to the stochastic extension of

the LQR scheme, the Linear-Quadratic Gaussian Controller (LQG) (see, e.g., [2], [65],

or [7, Chapter 14]), which is able to model optimal behavior under uncertainty. However,

stochastic processes are beyond the scope of this thesis.

4.2 Modifications and Application to Pointing Tasks

In this section, we want to explain the modifications to the LQR scheme that we make in

order to use it for human-computer interaction tasks. For this reason, we first need to define

what exactly we mean by a “pointing task”, which is exemplarily used in this thesis.

4.2.1 Pointing Tasks

Pointing is a very frequently used movement of both humans and animals. Already thousands

of years ago, pointing to objects or living beings was used to draw each other’s attention

to dangers or to communicate with each other. Since the beginning of the digital age, the

field of application has changed considerably: Nowadays, we constantly move our fingers to

point to a specific display area on our smartphone or tablet and make a specific request, such

as “Open this website” or “Send the message”, to articulate our needs. While the types of

devices we interact with are becoming more diverse as digitalization progresses, the standard

device for communicating with computers is currently still the mouse.

Here, users move the physical mouse device, which is placed on the flat two-dimensional

surface of a pad or a table, in some direction. Optical sensors and accelerometers within the

device then measure the acceleration in short time intervals, i.e., with high frequency, and

transmit these information to the computer. Some filters might be applied to smoothen the

data and to get rid of noise before a tranfer function maps the observed physical acceleration

to the acceleration of the virtual mouse cursor, i.e., it defines the transformation between

physical and virtual coordinates.5 Finally, two integrators lead to the new mouse pointer

position, which the user can observe from the display. The entire interaction process is shown

graphically in Figure 4.1.

Since it is hardly possible to give a clear definition of what is regarded as a coherent pointing

task in the everyday use of computer devices, the term originates mainly from experiments

5Often, a simple control-display gain, i.e., a linear transfer function leading to a constant ratio of virtual

mouse cursor movements to physical mouse device movements, is used.

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 43

Figure 4.1: Graphical representation of the human-computer interaction process using our

pointing task as an example [50]. Here, the interpretation of the biomechanical apparatus

largely corresponds to that of the 2OL-Eq model.

in which human pointing behavior is investigated. Here, clear task instructions are required

to be able to interpret the results reasonably.

Two main types of such (experimental) pointing tasks need to be distinguished:

In isolated pointing tasks, the mouse rests at an initial position at the beginning of the

task. The target area, towards which the user is asked to move the mouse, only appears at

the beginning of the task, i.e., the user is not aware of the target position before he is asked

to move, which explicitly allows to take reaction time effects into account.

In contrast to this there are reciprocal pointing tasks [22]: Here, users are asked to move

from an initial area to the displayed target area and back again, several times in quick

succession. Thus, at least after an initial “training phase” of multiple trials, both targets

are well-known and therefore the required movement can be optimized. In particular, choice

reaction time [19, 53] in the sense of a delay due to a previously unknown target configuration

which can only be observed through received input signals should not exist in reciprocal

pointing tasks. However, it is still unclear how perceived sensory inputs are exactly processed

and combined with pre-planned movement strategies or templates [52, 10], which complicates

the interpretation of the nevertheless existing delays at the beginning of movements.

Typically, a pointing task needs to be terminated by a click within the target area, which

requires extra effort and time. Therefore, we distinguish between the main surge phase of

44 CHAPTER 4. 2OL-LQR

a movement and the subsequent correction phase.

In addition, pointing tasks can be differentiated according to the dimension used. Everyday

pointing tasks typically allow two-dimensional movements, e.g., moving the mouse device

on the surface of a table or moving the finger on the display of a smartphone. However,

both one- and three-dimensional tasks are also conceivable: While air pointing in the

three-dimensional space (e.g., in connection with virtual reality) could serve as a useful

input facility, in some experiments it might be reasonable to transfer only a one-dimensional

component of the mouse device measurements to the displayed mouse cursor, i.e., it is

physically possible to move in two orthogonal directions, but only one direction is used.

In our case, the experimental data we later use for model comparisons is based on a one-

dimensional reciprocal pointing task. Here, users are asked to move to the target, which is

displayed at a horizontal distance of D meters, as accurate and fast as possible and click on

it. The accuracy criterion is met if and only if they click within the rectangular target box,

which has a width of W meters. At the time of the click the new target box of the same

width, which surrounds the initial position, is highlighted and the entire distance needs to

be covered backwards with the same requirements. This reciprocal task is repeated several

times in a row, i.e., without any break. More details on the experiment can be found in

Section 5.2.

However, in the following we refer to a single movement between initial and target area (or

vice versa) when using the terms “pointing task” and “trial”. In addition, we formulate all

statements explicitly for the one-dimensional (1D) case, while the necessary adjustments for

the two-dimensional (2D) and three-dimensional (3D) case are attached in Section 4.3.1.

4.2.2 System Dynamics

In our model, the biomechanical apparatus of the limb is assumed to be the spring-mass-

damper system depicted in Figure 3.3. Here, the combination of an active agonist muscle,

which is assumed to directly realize the applied force, and a passive antagonist muscle mod-

eled by a spring and a dashpot, which compensates the direct force, leads to angular motions

of the limb. Again, the assumption of small movements relative to the length of the limb

allows us to linearize the model and thus feature straight motions.

Note that in the previously presented 2OL-Eq, which is described by (2OL-Eq) with u ≡ T ,

this fixed “control” u implies that the acceleration is proportional to the remaining distance

to target T − x(t) with factor k > 0, apart from the additional damping term −dẋ(t).

Regarding our model, we want to generalize this approach by omitting the “equilibrium-

control” assumption, which states that the applied force necessarily corresponds to kT . More

precisely, the underlying system dynamics of our model is the second-order lag equation

p̈(t) = u(t)− kp(t)− dṗ(t), (2OL)

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 45

where p(t) denotes the position of the mouse pointer and u(t) denotes the applied control,

each at time t ∈ I := [0, tf]. This allows us to model different behavior through different

controls u, with u(t) := kT corresponding to 2OL-Eq again. Since u(t) rather than ku(t) is

included as applied force term, this model is often referred to as direct force control rather

than equilibrium control (like the 2OL-Eq model).

Note that in our case p(t) ∈ R and thus u(t) ∈ R applies since 1D pointing tasks are regarded.

In order to transform this system into a first-order linear control system of the form (2.4),

we must include both the position p(t) and the velocity v(t) := ṗ(t) in the states x(t) of the

resulting system, i.e.,

x(t) :=

[
p(t)

v(t)

]
∈ R2, t ∈ I. (4.33)

Then, (2OL) is equivalent to

ẋ(t) = Ãx(t) + B̃u(t), t ∈ I, (4.34a)

with

Ã :=

[
0 1

−k −d

]
∈ R2×2, B̃ :=

[
0

1

]
∈ R2×1. (4.34b)

Because

rank(
[
B̃ ÃB̃

]
) = rank

([
0 1

1 −d

])
= 2

holds for each d > 0 (even for d ∈ R), this system is completely controllable according to

Theorem 2.6, i.e., starting at time t0 = 0 in some arbitrary state x0 ∈ R2 (due to (2.7)), any

state x̄ ∈ R2 can be reached in arbitrary time τ > 0 by applying the appropriate piecewise

continuous control function u ∈ U . In particular, the asymptotic stabilization problem for

(4.34) is solvable according to the Pole-Shifting Theorem (Theorem 2.9).

However, we need to slightly modify (4.34) for some technical reasons: We additionally

incorporate the constant6 target position T ∈ R in the state vectors to be able to compute

the distance to the target later. Precisely, we use the states

x(t) :=

p(t)v(t)

T

 ∈ R3, t ∈ I, (4.35)

6For pointing tasks with moving targets a non-constant target position function T (t), which is solution

to the linear differential equation Ṫ = ATT with some AT ∈ R, could be incorporated analogously.

46 CHAPTER 4. 2OL-LQR

rather than those defined in (4.33) and the respective system dynamics

ẋ(t) = Ãx(t) + B̃u(t), t ∈ I, (4.36a)

with

Ã :=

 0 1 0

−k −d 0

0 0 0

 ∈ R3×3, B̃ :=

0

1

0

 ∈ R3×1, (4.36b)

which result from (4.34) with additional zero row in Ã and B̃ due to Ṫ ≡ 0 and additional

zero column in Ã, since x(t) is not directly affected by T .

For the sake of completeness, we note that complete controllability does not hold for (4.36)

anymore because of rank(
[
B̃ ÃB̃ Ã2B̃

]
) = 2 < 3. However, this was to be expected since

the third component of any state x(t) necessarily corresponds to the fixed target position T

and thus cannot be controlled. Nevertheless, the stabilization problem for (4.36) (but not

the asymptotic stabilization problem) is solvable according to Theorem 2.9 because Ã and

B̃ are already of the form (2.10) with A3 = 0, i.e., condition (c) is fulfilled.

Since the measured mouse data is available in discrete time, we use time-discrete dynamics.

We particularly emphasize that this restricts the admissible control functions u to piecewise

constant functions, which are identified with the respective sequence of their finitely many

values, i.e., u = (un)n∈{1,...,N−1}.

However, instead of using the exact transformation formula (2.14) to define the corresponding

time-discrete control system, we approximate the time derivative on the left-hand side of

(4.36a) using forward differences, i.e., we use

ẋ(t) := lim
τ→t

x(τ)− x(t)

τ − t
≈ x(t+ h)− x(t)

h
(4.37)

with some small sampling time h > 0, which is often referred to as Euler method [9].

Moreover, we discretize the considered time interval I := [0, tf] with this sampling time, i.e.,

we evaluate x only at the times {(n − 1)h | n ∈ {1, . . . , N}}, where (N − 1)h = tf applies,

and denote the respective values by xn := x((n− 1)h), n ∈ {1, . . . , N}. Together, this yields

the time-discrete approximation of (4.36)

xn+1 = xn + h(Ãxn + B̃un), n ∈ {1, . . . , N − 1}. (4.38a)

To obtain a unique solution trajectory, x1 needs to satisfy the initial value condition

x1 = x̄1 (4.38b)

for some given x̄1 ∈ R3. Using (4.36b), the resulting time-discrete linear control system with

sampling time h > 0 is thus given by

xn+1 = Axn +Bun, n ∈ {1, . . . , N − 1},
x1 = x̄1,

(4.39a)

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 47

with

A := (ID3 + hÃ) =

 1 h 0

−hk 1− hd 0

0 0 1

 , B := hB̃ =

0

h

0

 . (4.39b)

Note that this dynamic, which is similar to the one used by Todorov [67], is nothing but

a discrete approximation of (2OL), where the states are additionally augmented by the

constant target center T .

In the next section, we make some assumptions on the used controls (un)n∈{1,...,N−1}, which

are (in contrast to those of 2OL-Eq) not yet clearly defined.

4.2.3 Optimality Criteria

The basic approach of our 2OL-LQR model is to use a combination of the second-order lag

(2OL) and an optimization-based model such as MinJerk (see Corollary 3.2). This means

that we represent the biomechanical apparatus by the (linearized) spring-mass-damper sys-

tem depicted in Figure 3.3 and assume that the controls are optimally chosen with respect

to some objective function to be defined.

Fortunately, LQR provides the suitable framework for this approach: The previously derived

system dynamics (4.39) are exactly of the required form (4.1b), and using a quadratic ob-

jective function as in (4.1a) allows us to assign appropriate objectives to both the state cost

matrices Qn, n ∈ {1, . . . , N}, and the control cost matrices Rn, n ∈ {1, . . . , N − 1}.
The following assumptions about reasonable optimality criteria for pointing tasks are mainly

based on Todorov’s extension of the Linear-Quadratic Gaussian Controller (LQG), which al-

lows to consider a variety of aspects such as visual-proprioceptive sensory input with additive

state-dependent Gaussian noise, motor control dynamics with even temporally correlated ad-

ditive and multiplicative noise, and time delays [67].7 In this thesis, however, we want to

investigate the limitations of the deterministic LQR framework.

From the considered pointing tasks, which might be summarized by instructions like “Steer

the virtual mouse cursor to the displayed rectangular target box by moving the physical

mouse device and click on the target box as fast as possible”, we believe that the following

conclusions can be drawn about the users’ understanding of the task requirements:

1. Users aim to maximize the accuracy of their movement, i.e., they aim to minimize the

distance between mouse cursor and target.

2. Users aim to minimize the duration of their movement.

3. Users aim to minimize the effort required to fulfill the task.

We now discuss these three assumptions one after another.

7The interested reader might also consider Kleinman’s model presented in [36] and explained and moti-

vated in detail in [35, 4] and Qian’s model [57], which both are based on very similar assumptions.

48 CHAPTER 4. 2OL-LQR

The accuracy assumption is quite indisputable as it can be directly derived from the task

instructions. In particular, it would be straightforward to make use of a cost function which

penalizes the distance between the mouse pointer and the target center in the following way:

Any mouse position outside the target box is penalized with the same constant weight and

any mouse position inside the target box is not penalized at all. Unfortunately, such a cost

function would necessarily be non-quadratic in the remaining distance to the target center

and even discontinuous at the boundary of the target box. Therefore, it cannot be used

in our approach, which is based on the LQR scheme because of its numerous advantages,

especially the linear feedback form of the optimal controls (4.21).

In order to obtain such a quadratic penalization of the remaining distance to the target

center, we just need to set

Qn := ωn

 1 0 −1

0 0 0

−1 0 1

 (4.40)

with weights ωn ∈ R for some desired time steps n ∈ {1, . . . , N} (for further discussions on

the concrete choice of these time steps see Section 6.1), which leads to the cost terms

x>nQnxn =
[
ωn(pn − T) 0 −ωn(pn − T)

]
·

pnvn
T

 = ωn(pn − T)2 (4.41)

in the objective function (4.1a).

It remains to define the weights ωn. One way would be to choose them proportional to the

width W of the rectangular target box, as suggested by Torodov [67]. Setting, e.g.,

ωn :=
4

W 2
, (4.42)

for each n ∈ {1, . . . , N} implies

x>nQnxn =

(
2|T − pn|

W

)2

(4.43)

for each n ∈ {1, . . . , N}, which is closely linked to the ID from (3.1) since Dn := |T − pn| is

exactly the remaining distance8 to the target center at the time step n. In particular, (4.43)

becomes one exactly when Dn = W
2

holds, i.e., when the boundary of the rectangular target

box is reached. Although the logarithm from the actual definition of the ID is missing in

this formulation9, a link to Fitts’ law (3.3) or rather Kv̊alseth’s law (3.6) can be established.

8Here and in the further course of this thesis we refer to | · | as the Euclidean norm ‖ · ‖2 (in the one-

dimensional case all p-norms coincide anyway).
9Note that even though this is due to technical requirements of the LQR scheme, the logarithm should

not be used for positions inside the target box anyway since (4.43) is less than one there, i.e., the logarithm

would yield negative values.

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 49

The state cost term (4.43) can thus be interpreted as a penalization of the task’s remaining

difficulty at the time step n, depending on the current position of the mouse.

However, the inclusion of the target width W in the cost weights would result in an increase

of the positional error costs (4.43) as the ID of the task increases. While the optimal

trajectory with respect to an objective function including only state cost terms would not

be affected by constant multiplicative weights anyway, the solution to our optimal control

problem (4.1), where particularly Rn 6= 0 needs to hold for all n ∈ {1, . . . , N}, would be

artificially biased by such weights, which cannot be justified.10 For this reason, we decided

to set ωn independent of the target configuration and, for the sake of simplicity, thus defined

ωn := 1 (4.44)

for all n ∈ {1, . . . , N}. The resulting positional cost terms are supported by prior work, for

example by Diedrichsen [16] and Shadmehr [63, 64].

Finally, we want to emphasize that such a continuous cost function penalizing the distance

to target was not only required for technical reasons, but there is also some evidence for it:

First of all, the information about the terminal position of the trajectory is kept vague, i.e.,

it is not clear whether the distance to the center or to the nearest edge of the target box

should be minimized. Intuitively, one would suspect the latter since the task instruction only

distinguishes between “inside the box” and “outside the box”. However, it is reasonable to

assume that users do not aim to stop their motion at the first possible opportunity, i.e.,

at the nearest target boundary, to not risk missing the target due to the effects of small

positional deviations (e.g., due to erroneous muscle control), which can occur even under the

assumption of perfect observation. In particular, this means that users stop their motion

within the target box (although not necessarily at its center).11 Continuous transitions of

our state cost functions at the boundaries of the target box are thus quite reasonable as

there is no “binary” objective to the users.

The second assumed objective of users during pointing tasks is the minimization of the total

duration of their movement. While in principle, it is possible to add the duration to the

objective function (as, e.g., done in continuous time in Hoff’s minimum jerk/minimum time

model [31] or in discrete time in Shadmehr’s cost of time model [64]), it is important to

clarify that, above all, the ratio of the individual summands of the objective function to

each other matters (note that multiples of the entire objective function do not change its

minimizer). This implies that reasonable weights of the other objectives characterizing their

10The additional optimization of the ratio of state costs to remaining costs as described in Section 5.1 would

allow to compensate such a bias. Then, however, it would be this ratio that increases without justification

as the ID increases.
11It was shown that at least for sufficiently large targets, users save some time by stopping at a short

fraction before the target center (but not outside the target box, of course), i.e., they slightly undershoot

the target. However, this effect is comparatively small relative to the distance between initial and target

positions [50, 22]. An alternative ID formulation taking this observation into account is presented in [26, 27].

50 CHAPTER 4. 2OL-LQR

“importance” relative to the duration of the movement need to be found. In Hoff’s model,

e.g., this is done by using a specific trade-off function that provides a relationship between

the movement duration and the jerk weight used in the objective function (given the initial

distance) in order to determine the jerk weight that matches a reasonably expected duration

and fix this weight for the considered task.

However, we decided for a different, more implicit way to take the total time of the movement

into account: Penalizing the distance to target throughout the entire movement creates an

incentive to reach (and stay at the target) sooner rather than later because x>nQnxn = 0

holds for the corresponding states xn = [T, vn, T]> with arbitrary velocity vn ∈ R (and only

vn = 0 yields xi = xn for all i ∈ {n + 1, . . . , N} according to (4.35) and (4.39), i.e., with

vn 6= 0, costs will be incurred again in the following steps).

We strongly emphasize that with such a cost structure also one of the major drawbacks of

Todorov’s approach [67] is bypassed: In his model, the overall movement duration must al-

ways be known in advance. For via-point tasks (see Section 4.3.2 for details), this assumption

might be less demanding since the via-point click times could be optimized in an additional

outer loop. However, Todorov needs to assume the same movement duration for any trial of

the same task, even of different participants (otherwise each participant would need his/her

own model). On the contrary, in our model the penalization of the remaining distance to

the target during the movement allows to interpret the still required final time step N as

the maximum permissible time step (which thus could be chosen arbitrarily large in theory),

while it is possible to “finish” the task at a much earlier time step (note that the click, which

determines the end of the movement, is usually not modeled explicitly).

Although we have already roughly anticipated the structure of the state cost terms, in Sec-

tion 6.1 we take a closer look at the effects of the different points in time at which the

positional error between the mouse pointer and the target is penalized.

The third assumed objective is the minimization of effort during the execution of the task.

The reason for this is quite self-explanatory: Among all options that lead to the same desired

result, users will always opt for the one with the least exertion.

Since our time-discrete model is based on piecewise constant controls, it is evident that large

changes between the single control values require more effort. Thus, the control cost matrices

Rn should penalize the changes in control un−un−1 rather than the controls un itself, which

leads to an objective function of the form

JN(x, u) :=
N∑
n=1

x>nQnxn +
N−1∑
n=1

(un − un−1)>Rn(un − un−1), (4.45)

where an initial reference control u0 ∈ R is required now.

There is another justification for adding these terms to the objective function:

Since our model considers the biomechanical apparatus as linearized spring-mass-damper

system, users are assumed to control the acceleration of their movements by choosing

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 51

(un)n∈{1,...,N−1} in (4.39) appropriately. However, as Todorov [67] emphasizes, if any “energy-

like” terms are minimized in order to keep some biomechanical activity12 to a minimum, it

should be terms corresponding to jerk, i.e., the time derivative of acceleration, rather than

to acceleration itself.13 In our time-discrete model with sampling time h > 0 such terms are

given by the backward differences in control divided by h, i.e., jn := un−un−1

h
. These terms

can be included in the objective function (4.45) by setting

Rn :=
rn
h2
, rn > 0, (4.46)

where rn must take positive values because of the required positive definiteness of the con-

trol cost matrices Rn (which are simply scalars in our case). Using (4.46), the third key

assumption, minimization of effort, can thus be interpreted as jerk minimization.14

Note that it is the underlying LQR scheme which, in contrast the MinJerk model introduced

in Section 3.3.1, allows us to combine these different objectives with arbitrary weights and

also make assumptions about the biomechanical system.

4.2.4 2OL-LQR and its Analytical Solution

In summary, our 2OL-LQR model can be described as a time-discrete linear-quadratic

optimal control problem with finite horizon N ∈ N, where users are assumed to optimize

accuracy, duration, and effort of their movement, and which is constrained by the approxi-

mated second-order lag dynamics (4.39) used to describe the biomechanical apparatus.

It is therefore given in its most general form by

Minimize JN(x, u) :=
N∑
n=1

x>nQnxn +
N−1∑
n=1

(un − un−1)>Rn(un − un−1)

with respect to u := (un)n∈{1,...,N−1} ⊂ R for all x̄1 ∈ R3, ū0 ∈ R,

(4.47a)

where x := (xn)n∈{1,...,N} ⊂ R3 with xn := [pn, vn, T]> satisfies

xn+1 = Axn +Bun, n ∈ {1, . . . , N − 1},
x1 = x̄1,

(4.47b)

12The question of what is actually to be influenced at the lowest level of biomechanical motor control

(neuronal firing, muscle tension, etc.) is still unclear. A good overview of the current state of research can

be found in [51].
13For a discussion on the different effects of minimizing arbitrary time derivatives of velocity, see [59].
14Actually, jerk is defined as the time derivative of the end-effector’s acceleration. However, with our

interpretation of the biomechanical apparatus, which is depicted in Figure 3.3, it is reasonable to associate

jerk with the change in applied force, i.e., the change in the control that is exerted on the system by humans.

Minimizing jerk thus corresponds to minimizing muscle excitation.

52 CHAPTER 4. 2OL-LQR

with sampling time h > 0 and system dynamics matrices

A :=

 1 h 0

−hk 1− hd 0

0 0 1

 , B :=

0

h

0

 , (4.47c)

and where u0 = ū0 applies.

The objective function J is made up of two parts:

On the one hand, there are quadratic state cost terms x>nQnxn at each step n ∈ {1, . . . , N},
where Qn is either defined by

Qn :=

 1 0 −1

0 0 0

−1 0 1

 (4.48)

or Qn is set to 0. In the former case, x>nQnxn = D2
n applies with Dn := |T − pn| as

the remaining distance to target center, i.e., the positional error at the time step n is

quadratically penalized. In the latter case, the positional error at time step n is considered

irrelevant.

On the other hand, changes in control are also quadratically penalized by some positive Rn

of the form

Rn :=
rn
h2
, rn > 0, (4.49)

which yields (un−un−1)>Rn(un−un−1) = rn(un−un−1

h
)2, i.e., the squares of the “jerk” terms

jn := un−un−1

h
are penalized with the jerk weights rn.

As previously mentioned, we will extensively discuss the concrete use of these two cost terms

at different time steps n in Section 6.1.

Our modified objective function JN , in which the change of controls instead of the controls

themselves is penalized, requires a modified solution formula. To this end, we need to

introduce information vectors In, n ∈ {1, . . . , N}, which incorporate all information that

are both available at time step n and required for the computation of the remaining optimal

controls u∗n+1, . . . , u
∗
N−1. As we will see, at each time step n ∈ {1, . . . , N} it is sufficient to

only include the most recent control un−1 in the respective information vector, i.e.,

In :=

[
xn
un−1

]
∈ R4, n ∈ {1, . . . , N}. (4.50)

Moreover, we define

Ix :=

1 0 0 0

0 1 0 0

0 0 1 0

 ∈ R3×4, Iu :=
[
0 0 0 1

]
∈ R1×4, (4.51)

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 53

which implies

IxIn = xn ∈ R3, IuIn = un−1 ∈ R, n ∈ {1, . . . , N}, (4.52)

i.e., Ix respective Iu are the matrices that extract the state xn respective the control un−1

from the information vector In for any n ∈ {1, . . . , N}.
We can rewrite both our system dynamics equations (4.47b) and our objective function

JN(x, u) in terms of information vectors, which yields the following optimal control problem

equivalent to (4.47):

Minimize JN(I, u) :=
N∑
n=1

I>nQnIn +
N−1∑
n=1

(un − un−1)>Rn(un − un−1)

with respect to u := (un)n∈{1,...,N−1} ⊂ R for all x̄1 ∈ R3, ū0 ∈ R,

(4.53a)

where I := (In)n∈{1,...,N} ⊂ R4 with In := [xn, un−1]> satisfies

In+1 = AIn + Bun, n ∈ {1, . . . , N − 1},

I1 = Ī1 :=

[
x̄1

ū0

]
,

(4.53b)

with sampling time h > 0 and system matrices

A :=

[
A 0

0 0

]
=


1 h 0 0

−hk 1− hd 0 0

0 0 1 0

0 0 0 0

 , B :=

[
B

1

]
=


0

h

0

1

 ,
Qn :=

[
Qn 0

0 0

]
, n ∈ {1, . . . , N},

(4.53c)

and where u0 = ū0 applies.

With these equivalent formulations, we can prove the following theorem:

Theorem 4.5 (2OL-LQR). The unique solution u∗ = (u∗n)n∈{1,...,N−1} to the 2OL-LQR

optimization problem (4.47) is given by

u∗n := −KnI∗n, n ∈ {1, . . . , N − 1},
Kn = (Rn + B>Sn+1B)−1(B>Sn+1A−RnIu), n ∈ {1, . . . , N − 1},

(4.54)

with A,B from (4.53c), where the symmetric matrices Sn ∈ R4×4 can be determined by

solving the Modified Discrete Riccati Equations

Sn = Qn + I>uRnIu +A>Sn+1A− (A>Sn+1B − I>uRn)(Rn + B>Sn+1B)−1(B>Sn+1A−RnIu)

(4.55a)

54 CHAPTER 4. 2OL-LQR

for n ∈ {1, . . . , N − 1} backwards in time with initial value

SN = QN , (4.55b)

where the matrices Qn, n ∈ {1, . . . , N}, are from (4.53c) and I∗n are the information vectors

that incorporate the optimal control sequence u∗ = (u∗n)n∈{1,...,N−1}.

Proof. Basically, the proof works analogously to that of Theorem 4.2 with the difference

that (4.53) is used instead of (4.1). Therefore, we decided to tag modified equations with

the same reference number supplemented by ∗.

First, the use of information vectors instead of states in the formulation of the optimal

control problem requires some adjustments. In particular, we need to consider

J λ
N(I, u) :=

1

2
JN(I, u) + λ>1 F̃(I1) +

N−1∑
n=1

λ>n+1(F(In, un)− In+1) =

=
1

2

N∑
n=1

I>nQnIn +
1

2

N−1∑
n=1

(un − IuIn)>Rn(un − IuIn) + λ>1 F̃(I1) +
N−1∑
n=1

λ>n (F(In, un)− In+1)

with F(Î, û) := AÎ + Bû and F̃(Î) := Ī1 − Î, i.e., the system dynamics (4.53b) can be

expressed through the equality constraints

F(In, un)− In+1 = 0, n ∈ {1, . . . , N − 1},
F̃(I1) = 0.

Moreover, un−1 = IuIn for each n ∈ {1, . . . , N} was used. Note that the sequence λ =

(λn)n∈{1,...,N} ⊂ R4 now consists of Lagrange multipliers of the same dimension as the infor-

mation vectors In, i.e., l +m = 4 instead of l = 3.

In the following equations, we analogously consider J λ
N ,JN ,F , F̃ instead of JλN , JN , f, f̃ and

thus need to replace the states xn by the corresponding information vectors In and the

system matrices A,B,Qn by their extensions A,B,Qn, which leads to

∂J λ
N

∂I1

(I, u) = (Q1 + I>uR1Iu)I1 − I>uR1u1 +A>λ2 − λ1, (4.5*)

∂J λ
N

∂In
(I, u) = (Qn + I>uRnIu)In − I>uRnun +A>λn+1 − λn, n ∈ {2, . . . , N − 1}, (4.6*)

∂J λ
N

∂IN
(I, u) = QNIN − λN , (4.7*)

∂J λ
N

∂un
(I, u) = Rn(un − IuIn) + B>λn+1, n ∈ {1, . . . , N − 1}. (4.8*)

In particular, the reason for the specific choice of the parameters λn, which are now given

by

λn := (Qn + I>uRnIu)In − I>uRnun +A>λn+1, n ∈ {1, . . . , N − 1},
λN := QNIN ,

(4.9*)

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 55

remains valid: Given any fixed control sequence u, the corresponding information vectors In
are uniquely determined by the constraints (4.53b), i.e., it is reasonable to demand

∂J λ
N

∂In
(I, u) = 0, n ∈ {1, . . . , N},

which exactly holds for λn from (4.9*). Note that the multipliers λn now necessarily depend

on both In and un, since the controls un−1, which have already been chosen in the previous

time step n − 1 and thus are fixed at the time step n, need to be included in the partial

derivatives with respect to In, which was achieved by using un−1 = IuIn in J λ
N(I, u).

Because (4.8*) holds instead of (4.8), consequentially, (4.12) needs to be replaced by

u∗n = IuI∗n −R−1
n B>λn+1, n ∈ {1, . . . , N − 1}. (4.12*)

Note that

∂2JN
∂u2

n

(I, u) = 2Rn

implies that the sufficient condition (4.13) for u∗ being a minimum also applies to J λ
N .

Using the dynamics (4.53b), the optimal information vectors are thus given by

I∗n+1 = AI∗n + B(IuI∗n −R−1
n B>λn+1), n ∈ {1, . . . , N − 1},

I1 = Ī1 :=

[
x̄1

ū0

]
,

(4.14*)

with

λn := (Qn + I>uRnIu)In − I>uRnun +A>λn+1, n ∈ {1, . . . , N − 1},
λN := QNIN .

(4.15*)

Assuming that

λn = SnI∗n, n ∈ {1, . . . , N} (4.16*)

holds for some matrices Sn ∈ R4×4, n ∈ {1, . . . , N},

λn+1
(4.16*)

= Sn+1I∗n+1

(4.53b)
= Sn+1(AI∗n + Bu∗n), n ∈ {1, . . . , N − 1} (4.17*)

together with (4.12*) implies

u∗n = IuI∗n −R−1
n B>Sn+1(AI∗n + Bu∗n)

⇐⇒ u∗n = (Rn + B>Sn+1B)−1(RnIu − B>Sn+1A)I∗n. (4.18*)

56 CHAPTER 4. 2OL-LQR

This yields the first part of the solution.

Hence, for all n ∈ {1, . . . , N − 1}

SnI∗n
(4.16*)

= λn
(4.15*)

= (Qn + I>uRnIu)I∗n − I>uRnu
∗
n +A>λn+1

(4.16*)
=

(4.16*)
= (Qn + I>uRnIu)I∗n − I>uRnu

∗
n +A>Sn+1I∗n+1

(4.53b)
=

(4.53b)
= (Qn + I>uRnIu)I∗n − I>uRnu

∗
n +A>Sn+1(AI∗n + Bu∗n) =

= (Qn + I>uRnIu +A>Sn+1A)I∗n + (A>Sn+1B − I>uRn)u∗n
(4.18*)

=

(4.18*)
= (Qn + I>uRnIu +A>Sn+1A)I∗n+

+(A>Sn+1B − I>uRn)(Rn + B>Sn+1B)−1(RnIu − B>Sn+1A)I∗n
⇐⇒

(
Sn −Qn − I>uRnIu −A>Sn+1A−

−(A>Sn+1B − I>uRn)(Rn + B>Sn+1B)−1(RnIu − B>Sn+1A)
)
I∗n = 0

needs to hold for the optimal information vectors I∗n resulting from the optimal control u∗

and the corresponding optimal trajectory x∗, which is (according to Bellman’s principle of

optimality) satisfied if and only if

Sn = Qn + I>uRnIu +A>Sn+1A− (A>Sn+1B − I>uRn)(Rn + B>Sn+1B)−1(B>Sn+1A−RnIu)

(4.19*)

holds for all n ∈ {1, . . . , N − 1}. Analogously, for n = N

SNI∗N
(4.16*)

= λN
(4.15*)

= QNI∗N

holds if

SN = QN . (4.20*)

The symmetry of the matrices Sn again follows recursively from (4.19*) and (4.20*) as the

matrices Qn maintain the assumed symmetry of Qn.

As we have shown, the only innovation, namely the penalization of the changes in control

instead of the controls themselves, does not prevent the linear feedback form of the optimal

control sequence u∗. However, the optimal feedback gain matrices Kn now have to be multi-

plied by the information vectors In and not by the states xn, which was to be expected since

the additional information contained in the information vectors, the last selected control

un−1, is now a decisive factor for the choice of u in terms of the resulting costs. Therefore,

compared to the Discrete Riccati Equations (4.3), the Modified Discrete Riccati Equations

(4.55) include additional terms consisting of Rn and Iu, which contain information about how

u∗n−1 affects the subsequent optimal control u∗n via the cost terms in the objective function.

4.2. MODIFICATIONS AND APPLICATION TO POINTING TASKS 57

With the linear feedback form (4.54) in terms of information vectors In it is thus possi-

ble to analogously compute the optimal feedback gain matrices Kn once a priori by solving

(4.55) and then, starting from any initial state x̄1 with any reference control ū0, alternately

compute the current information vector I∗n using (4.50), the respective optimal feedback u∗n
using (4.54), and the subsequent state xn+1 using (4.47b).15

It is particularly important for us to emphasize the impact of the choice of ū0:

Since the difference between each two consecutive controls is penalized, the initial control

ū0 does not only influence the objective function values through an additional cost term (as

the initial state x̄1 does). Much more, it directly affects the first optimal control u∗1 due

to u∗1 = −K1 [x̄1, ū0]>, and therefore it indirectly affects all following optimal controls u∗n,

n ∈ {2, . . . , N − 1}, because u∗1 contained in I∗2 influences u∗2 by the same linear feedback

form, and so on. In our application, however, a penalization of the difference between the

first applied control u1 and the reference control ū0 should be included in the objective

function, because otherwise it would be possible to apply any amount of force in the first

time step without incurring costs. This, in turn, might lead to a solution, where most of the

muscle activation required for the movement takes place in this first time step, which exactly

contradicts our assumption of effort minimization, on the basis of which we have primarily

decided to penalize changes in control at all.

Hence, the reference control ū0 should be chosen as a “direct force” that could actually be

applied at the beginning of the movement. A detailed discussion on which values might be

considered useful is to be found in Section 6.1.

Finally, we would like to derive an explicit formula for the optimal value function, analogously

to Theorem 4.4. For this purpose, we define the optimal value function for the partially

cutoff linear-quadratic control problem with horizon K ∈ {1, . . . , N} of (4.53) in terms of

information vectors (analogously to Definition 4.3) as

VKN (ĪN−K+1) := min
uK−1⊂R

J K
N (IK−1, uK−1), ĪN−K+1 ∈ R4, (4.56)

where

J K
N (IK−1, uK−1) :=

N∑
n=N−K+1

I>nQnIn +
N−1∑

n=N−K+1

(un − un−1)>Rn(un − un−1), (4.57)

and where IK−1 := (In)n∈{N−K+1,...,N} ⊂ R4 and uK−1 := (un)n∈{N−K+1,...,N−1} ⊂ R satisfy

In+1 = AIn + Bun, n ∈ {N −K + 1, . . . , N − 1},

IN−K+1 = ĪN−K+1 :=

[
x̄N−K+1

ūN−K

]
,

uN−K = ūN−K

(4.58)

15Equivalently, it is possible to alternately compute the information vectors using the dynamics (4.53b)

and the respective optimal controls using (4.54).

58 CHAPTER 4. 2OL-LQR

for some initial values x̄N−K+1 ∈ R3 and ūN−K ∈ R.

Bellman’s principle of optimality then yields for each K ∈ {2, . . . , N} and each ĪN−K+1 ∈ R4

VKN (ĪN−K+1) = Ī>N−K+1QN−K+1ĪN−K+1 + (ũ∗ − IuĪN−K+1)>RN−K+1(ũ∗ − IuĪN−K+1)+

+VK−1(I ĪN−K+1,(ũ
∗)

N−K+2),

(4.59a)

where VK−1
N (I ĪN−K+1,(ũ

∗)
N−K+2) denotes the minimum value of the partially cutoff optimal control

problem with horizon K − 1 starting in I ĪN−K+1,(ũ
∗)

N−K+2 = AĪN−K+1 + Bũ∗ and ũ∗ is the first

control of the optimal control sequence uK−1,∗ = (u∗n)n∈{N−K+1,...,N−1} ⊂ R of the considered

partially cutoff linear-quadratic control problem with horizon K, i.e.,

ũ∗ = u∗N−K+1. (4.59b)

This implies the following statement:

Theorem 4.6. For any initial information vector Ī1 ∈ R4, the optimal value of the objective

function JN of the optimal control problem (4.53) is given by

VNN (Ī1) = JN(I∗, u∗) = Ī>1 S1Ī1, (4.60)

with optimal control sequence u∗ = (u∗n)n∈{1,...,N−1} ⊂ R from (4.54) and S1 from the solution

to the Modified Discrete Riccati Equations (4.55).

Proof. The first equality follows directly from Theorem 4.5 and the definition of VNN .

Analogously to Theorem 4.4, we prove the second equality (or rather VNN (Ī1) = Ī>1 S1Ī1) by

induction with respect to K ∈ {1, . . . , N}.
As can be easily seen by definition,

V1
N(ĪN) = Ī>NQN ĪN = Ī>NSN ĪN

holds for any ĪN ∈ R4.

We assume that for some arbitrary but fixed K ∈ {1, . . . , N − 1}

VKN (ĪN−K+1) = Ī>N−K+1SN−K+1ĪN−K+1 (4.30*)

holds for any ĪN−K+1 ∈ R4 with SN−K+1 from the solution to the Modified Discrete Riccati

Equations.

Then for ũ∗ ∈ R first control of the optimal control sequence uK,∗ = (u∗n)n∈{N−K,...,N−1} of

J K+1
N (IK , uK) with IN−K = ĪN−K , i.e.,

ũ∗ = −KN−K ĪN−K (4.31*)

4.3. A FEW GENERALIZATIONS 59

the following holds for any ĪN−K ∈ R4:

VK+1
N (ĪN−K)

(4.59)
= Ī>N−KQN−K ĪN−K + (ũ∗ − IuĪN−K)>RN−K(ũ∗ − IuĪN−K)+

+VKN
(
I ĪN−K ,(ũ

∗)
N−K+1

)
(4.30*)

=

(4.30*)
= Ī>N−KQN−K ĪN−K + (ũ∗ − IuĪN−K))>RN−K(ũ∗ − IuĪN−K)+

+
(
I ĪN−K ,(ũ

∗)
N−K+1

)>
SN−K+1

(
I ĪN−K ,(ũ

∗)
N−K+1

)
(4.53b)

=

(4.53b)
= Ī>N−KQN−K ĪN−K + (ũ∗ − IuĪN−K))>RN−K(ũ∗ − IuĪN−K)+

+(Ī>N−KA> + (ũ∗)>B>)SN−K+1(AĪN−K + Bũ∗) (4.31*)
=

(4.31*)
= Ī>N−K

(
QN−K + I>uRN−KIu +A>SN−K+1A+K>N−K(RN−K + B>SN−K+1B)KN−K−

−(A>SN−K+1B − I>uRN−K)KN−K −K>N−K(B>SN−K+1A−RN−KI>u)
)
ĪN−K

(4.54),(∗)
=

(4.54),(∗)
= Ī>N−K

(
QN−K + I>uRN−KIu +A>SN−K+1A+

+(A>SN−K+1B − I>uRN−K)(RN−K + B>SN−K+1B)−1(B>SN−K+1A−RN−KIu)−

−2(A>SN−K+1B − I>uRN−K)(RN−K + B>SN−K+1B)−1(B>SN−K+1A−RN−KIu)
)
ĪN−K =

= Ī>N−K
(
QN−K + I>uRN−KIu +A>SN−K+1A−

−(A>SN−K+1B − I>uRN−K)(RN−K + B>SN−K+1B)−1(B>SN−K+1A−RN−KIu)
)
ĪN−K

(4.55)
=

(4.55)
= Ī>N−KSN−K ĪN−K .

In (∗), the symmetry of SN−K+1 and the resulting symmetry of (RN−K + B>SN−K+1B),

which implies (RN−K + B>SN−K+1B)−> = (RN−K + B>SN−K+1B)−1, were used.

Hence, the induction hypothesis (4.30*) is true for all K ∈ {1, . . . , N}.
The last case K = N thus yields

V N
N (Ī1) = Ī>1 S1Ī1 (4.32*)

for all Ī1 ∈ R4, which proves the claim.

4.3 A Few Generalizations

Although not relevant for the further proceeding, all presented optimal control problems can

easily be adapted to 2D and 3D pointing tasks as well as to so-called “via-point tasks”.

In the following, we briefly discuss the necessary adjustments to the terms used.

60 CHAPTER 4. 2OL-LQR

4.3.1 Extension to Higher Dimensions

The time-discrete linear control system with sampling time h > 0 (4.39) (and, equivalently,

the time-continuous variants (4.36) and (4.34)16) can easily be extended to 2D or 3D pointing

tasks by augmenting xn and un with the respective components for the additional dimensions,

i.e., defining

xn :=



p1
n
...

pd̂n
v1
n
...

vd̂n
T 1

...

T d̂


∈ R3d̂, n ∈ {1, . . . , N}, un :=

u
1
n
...

ud̂n

 ∈ Rd̂, n ∈ {0, . . . , N − 1},

and extending each entry of the system dynamics matrices to block matrices by multiplying

with the respective identity matrix, which leads to

A :=

 IDd̂ hIDd̂ 0

−hkIDd̂ (1− hd)IDd̂ 0

0 0 IDd̂

 ∈ R3d̂×3d̂, B :=

 0

hIDd̂

0

 ∈ R3d̂×d̂,

where d̂ ∈ {2, 3} denotes the dimension of the pointing task and, as in the entire section,

0 := 0d̂ ∈ Rd̂×d̂.

In addition, the 2OL-LQR model (4.47) requires cost matrices of matching dimension, i.e.,

Qn ∈ R3d̂×3d̂, n ∈ {1, . . . , N}, and Rn ∈ Rd̂, n ∈ {1, . . . , N − 1}. Here, each dimensional

component can be penalized on its own, but a penalization of combinations across dimensions

would also be conceivable. The easiest way, however, is to naturally extend the cost structure

of the 1D case to higher dimensions. In the d̂-dimensional case the state cost matrices (4.48)

are then given by

Qn :=

 IDd̂ 0 −IDd̂

0 0 0

−IDd̂ 0 IDd̂

 ∈ R3d̂×3d̂, (4.48*)

and the control cost matrices (4.49) are given by

Rn :=
rn
h2

IDd̂, rn > 0. (4.49*)

16In this case, of course, all target components that occur below, i.e., the last d̂ entries in xn, the last d̂

rows and columns in A, and the last d̂ rows in B, must be left out.

4.3. A FEW GENERALIZATIONS 61

The corresponding information vectors are naturally given by

In :=

[
xn
un−1

]
∈ R4d̂, n ∈ {1, . . . , N}, (4.50*)

and the extraction matrices are given by

Ix :=

IDd̂ 0 0 0

0 IDd̂ 0 0

0 0 IDd̂ 0

 ∈ R3d̂×4d̂, Iu :=
[
0 0 0 IDd̂

]
∈ Rd̂×4d̂. (4.51*)

Finally, the system matrices are extended analogously for use with the information vectors

In instead of the states xn, i.e.,

A :=

[
A 0

0 0

]
=


IDd̂ hIDd̂ 0 0

−hkIDd̂ (1− hd)IDd̂ 0 0

0 0 IDd̂ 0

0 0 0 0

 ∈ R4d̂×4d̂, B :=

[
B

IDd̂

]
=


0

hIDd̂

0

IDd̂

 ∈ R4d̂×d̂,

Qn :=

[
Qn 0

0 0

]
∈ R4d̂×4d̂, n ∈ {1, . . . , N}.

(4.53c*)

4.3.2 Extension to Via-Point Tasks

While this thesis mainly focuses on pointing tasks as defined in Section 4.2.1, it is also

possible to apply our 2OL-LQR model to more generalized pointing tasks, which can be

formalized as follows:

In a via-point task, users are asked to move the pointing device from its initial position to

a specific target on which they need to click in order to indicate the end of their movement,

with the additional condition that they need to pass and click on multiple intermediate

targets, the so-called via-points, on their way there in a specific order.

A typical example, which was, e.g., used by Todorov to investigate the curvature of the

individual partial trajectories [67], is the via-point task with several via-points arranged in

two dimensions along a zigzag line. But also the 1D reciprocal pointing task on which the

later used dataset is based (see Section 5.2 for a detailed description) could be considered

as a single via-point tasks with initial and target position as alternating via-points instead

of dividing it into multiple trials of two different pointing tasks, as we do.

There are many ways to extend our 2OL-LQR model, which was tailored to pointing tasks, to

the via-point setting. However, for each of them it is crucial to know the so-called via-point

times, i.e., the time steps at which the via-points are assumed to be passed through17, in

order to make a reasonable choice of cost matrices.

17In discrete time, we need to assume that this happens exactly at a sampled point in time.

62 CHAPTER 4. 2OL-LQR

In the following, we denote the target center positions by (Ti)i∈{1,...,P} ⊂ Rl, where P ∈ N
is the number of via-points including the final target. Note that all these target center

positions now must be included in the state vectors xn to be able to penalize distances to

them through the state cost matrices Qn. Moreover, we denote the corresponding via-point

times by (ki)i∈{1,...,P} ⊂ N, k1 ≤ . . . ≤ kP := N , and call the time spans between each two

consecutive via-point times via-point sections (of course, including the time span between

the beginning of the movement and the first via-point time). In particular, the case P = 1

exactly corresponds to a single pointing task with target center T := T1.

While the final time step N can be interpreted as the maximum admissible time to reach

the target, the remaining via-point times should, in theory, fit to the exact click times for

the following reason: Since in our model convergence towards a target is achieved by state

cost matrices Qn that penalize the remaining distance to this target, at each time step in-

formation about which target to aim at and click on next is crucial to penalize the “correct”

positional error. Unfortunately, an a priori definition of the state cost terms by cases depend-

ing on whether a particular target Ti will have been reached at time step n by the respective

trajectory is not possible, as this would violate the assumption on quadratic costs required

for any LQR-based model. The only possibility is therefore to specify the via-point times

(ki)i∈{1,...,P} in advance and define Qn depending on which via-point time follows n first. This

means that the via-point times are not the exact times at which a given trajectory passes

the via-points, as would be desirable, but the times at which the model suggests to pass the

via-points by penalizing appropriate positional errors during the movement. In particular,

even the optimal trajectory does not necessarily need to reach the via-points at the via-point

times (just as the optimal trajectory for pointing tasks does not have to be at the target

center T at time step N in general, since no boundary conditions are implemented).

In our 2OL-LQR model, we could, for example, simply replicate the cost matrices up to the

first via-point, (Qn)n∈{1,...,k1} respective (Rn)n∈{1,...,k1}, for the other via-point sections (where

in Qn the row and the column corresponding to the respective via-point must be used in each

case).18 Of course, it would also be possible to select these cost matrices basically different

between individual via-point sections, whereby different objectives (or, at least, different

weights of the objectives) are assumed for different via-point sections.

The required via-point times (ki)i∈{1,...,P} could be chosen according to experimental obser-

vations or they are derived from a specific reference trajectory, e.g., from the minimum-jerk

trajectory. However, as Todorov suggests for his extended LQG model [67], it might also

be a good idea to additionally minimize the objective function with respect to the via-point

times (ki)i∈{1,...,P} in an outer loop, i.e., to find the combination of via-point times, such that

the minimum among the optimal objective function values og all admissible combinations is

assumed in the resulting optimal trajectory.

18If these matrices non-trivially depend on n and if the via-point times are not equidistantly distributed,

a stretch or compression of the continuous extension of this sequence adjusted to the respective number of

time steps of each via-point section might be reasonable.

Chapter 5

Parameter Fitting Process

As we have shown in the previous chapter, for any system matrices A,B,Qn, Rn that meet

the required properties together with any initial state x̄1 ∈ R3 (including the fixed target

T ∈ R3) and any reference control ū0 ∈ R there is a unique solution to the optimal control

problem given by (4.47). However, trajectories1 for the same pointing task vary considerably

between different participants [50]. The main idea is thus to identify one or more parameters

that affect the system matrices in our model for a specific participant or even for a specific

trial. This parameter fitting process is described in Section 5.1, while the concrete trajectories

used for this purpose are discussed in Section 5.2. Finally, our resulting complete algorithm

is given in Section 5.3.

5.1 Least Squares Parameter Fitting

In the following, we consider admissible parameter sets of the form Λ = (λ1, . . . , λs), i.e.,

sets that consist of s ∈ N parameters λi, each from a respective admissible set Li.

Given an experimentally observed user trajectory yUSER, which can be formally described as

the successive coupling of the position, velocity, and acceleration sequences (pUSER
n)n∈{1,...,N},

(vUSER
n)n∈{1,...,N}, and (aUSER

n)n∈{1,...,N}, i.e., yUSER = (yUSER
n)n∈{1,...,3N} ⊂ Rd̂ with

yUSER
n :=


pUSER
n , if 1 ≤ n ≤ N,

vUSER
n−N , if N + 1 ≤ n ≤ 2N,

aUSER
n−2N , if 2N + 1 ≤ n ≤ 3N,

(5.1)

and given a model that yields a solution trajectory yΛ = (yΛ
n)n∈{1,...,3N} ⊂ Rd̂ of the same

form for any admissible parameter set Λ, the least squares parameter fitting (LSPF)

1While so far we have used trajectory as a synonym for the state sequence x = (xn)n∈{1,...,N}, regardless

of what information these states contain, we now specifically mean the following dynamics properties of a

motion: position, velocity and acceleration.

63

64 CHAPTER 5. PARAMETER FITTING PROCESS

problem reads as follows:

Minimize SSE(Λ) :=
3N∑
n=1

(fn(yΛ
n)− f̃n(yUSER

n))2

with respect to Λ = (λ1, . . . , λs), λi ∈ Li,
(5.2)

i.e., find the parameter set Λ∗ that minimizes the sum squared error (SSE) between

certain features of the simulation trajectory yΛ and certain features of the observed user tra-

jectory yUSER, which are given by the feature functions fn : Rd̂ −→ R respective f̃n : Rd̂ −→ R
for all n ∈ {1, . . . , 3N}, among all admissible parameter sets Λ.

Note that in general it is not possible to analytically derive the solution to (5.2) (if one exists

at all). For example, this is the case if yΛ does not linearly depend on Λ but is given by

a rather complex algorithm (as in our case described below). Instead, numerical methods

that iteratively approach a (local) minimum starting from an initial parameter set Λ0 must

be applied then. For further details about least squares problems and data fitting processes

consider, e.g., [3] or [6].

In our 2OL-LQR model given by (4.47) with dimension d̂ = 1, fixed target center T ∈ R,

sampling time h > 0, initial state x̄1, reference control ū0, with state cost matrices Qn that

are for each n ∈ {1, . . . , N} either defined by (4.48) or by setting Qn = 0 (details on the latter

two assumptions are given in Section 6.1), and with control cost matrices defined by (4.49),

the possible parameters are r1, . . . , rN , k, d. Choosing some of them (denoted by λ1, . . . , λs)

to be optimized and providing fixed admissible values for the remaining parameters, 2OL-

LQR yields, as shown above, a unique solution trajectory2 for each admissible parameter set

Λ, which we denote by yΛ in the following.3 While the concrete selection of the parameters

to be optimized is dealt with in Section 6.1, this section discusses the choice of the objective

function of the LSPF problem, i.e., the choice of the respective feature functions fn and f̃n.

At our first attempt, we decided to compare the trajectories at each time step in terms of

position, velocity, and acceleration, i.e., we used fn(yΛ
n) = yΛ

n and f̃n(yUSER
n) = yUSER

n for

each n ∈ {1, . . . , 3N}, which led to the sum squared error function

SSE(Λ) :=
N∑
n=1

[
(pΛ
n − pUSER

n)2 + (vΛ
n − vUSER

n)2 + (aΛ
n − aUSER

n)2
]
. (5.3)

Note, that the velocity sequence vΛ arises from forward differences applied to pΛ due to the

choice of the time-discrete system dynamics matrices from (4.39b) and for the acceleration

2Both pΛ and vΛ are included in the solution state vector xΛ, and aΛ can be derived from vΛ using

forward differences (except from aΛ
N , which can be neglected).

3Note that the number of considered time steps N now corresponds to the click time step of the user

trajectory to be compared. However, it would also be possible to include Ñ > N steps in the 2OL-LQR

objective function and consider only the trajectory values of the first N time steps in the SSE function.

5.2. USER TRAJECTORIES 65

sequence aΛ we proceed analogously. Thus, if forward differences applied to pUSER respective

vUSER do not coincide with vUSER respective aUSER as well4, it is not possible to reach zero

as the minimum value of (5.3) anyway, i.e., the optimal trajectory yΛ∗
and the observed

trajectory yUSER can definitely not match completely. In particular, if the optimal SSE

value is small enough, gradient-based optimization algorithms will slow down a great deal as

further reduction of positional errors leads to larger velocity and acceleration errors due to

these numerical inconsistencies and vice versa, i.e., it is unclear how to further improve the

parameter set Λ. Since already one of the three sequences of the solution trajectory clearly

determines the other two (given initial position and velocity), it is thus straightforward to

decide for exactly one LSPF criterion: Minimize either positional errors or velocity errors

or acceleration errors. For reasons of simplicity, we chose the first option, i.e., we used

fn(yΛ
n) = yΛ

n and f̃n(yUSER
n) = yUSER

n for all n ∈ {1, . . . , N} and fn(yΛ
n) = f̃n(yUSER

n) = 0 for

all n ∈ {N + 1, . . . , 3N}, or, equivalently, implemented

SSE(Λ) :=
N∑
n=1

(pΛ
n − pUSER

n)2 (5.4)

as objective function of the LSPF problem.

5.2 User Trajectories

In this section, we want to take a closer look on the specific user trajectories yUSER that

we use for our LSPF problem. All used trajectories are based on the Pointing Dynamics

Dataset by Müller, Oulasvirta, and Murray-Smith, which is described in detail in [50] and

can be accessed at http://joergmueller.info/controlpointing/. The most important

features are summarized below.

5.2.1 Pointing Dynamics Dataset

The Pointing Dynamics Dataset results from an experiment in which 12 participants (with

expert level computer experience) were asked to perform an one-dimensional reciprocal point-

ing task that can be described as follows: Two rectangular target boxes are displayed on the

screen, each with a width of W meters and a distance of D meters between their centers.

The participants need to alternately move the mouse pointer from one target box to the

other and click on it. Precisely, the participants were asked to “click on the target boxes as

fast as possible while maintaining an error rate of below 5%”. It was not possible to repeat

failed trials, i.e., after a click outside the target box the participants were asked to move

from their current position to the other target box. For a better overview, the current target

4As described in Section 5.2, it is indeed reasonable to use a Savitzky-Golay filter instead of forward

differences when deriving the velocity and acceleration sequences of user trajectories.

http://joergmueller.info/controlpointing/

66 CHAPTER 5. PARAMETER FITTING PROCESS

ID Distance D in px Width W in px

2 1275 425

2 765 255

4 1275 85

4 765 51

6 1275 20

6 765 12

8 1275 5

8 765 3

Table 5.1: Overview of all conditions in the Pointing Dynamics Dataset.

box was marked red, whereas the other one remained grey, respectively.

These individual alternating pointing tasks were performed one after the other without in-

terruption; in particular, the color switch took place as soon as the participant clicked. After

102 such successive trials, the participants were allowed to rest and relax before the complete

reciprocal pointing task was repeated with another condition, i.e., with different W and D.

It should also be mentioned that there were training phases of 22 trials for each condition

before the beginning of the experiment, i.e., the participants were already familiar with the

concrete pointing tasks within the experiment.

In addition, this experiment only contained one-dimensional pointing tasks (see Section

4.2.1), i.e., for each condition both target boxes were placed at the same vertical position

of the display, which means that only movements to the right or to the left were required.

Hence, only the x-directional components of the measured data of the mouse device were

used, i.e., movements in the y-direction had no effect.

The experiment included the same eight conditions for each participant, which had in pairs

the same ratio of distance D to width W and thus the same ID, namely 2, 4, 6, 8 using

Shannon’s formulation (3.5). An overview of all conditions (in pixels) is given in Table 5.1.

The raw position data was captured at a sampling rate of h = 2ms and then preprocessed,

i.e., the first 20 trials were omitted from each condition block in order to avoid effects

due to initially unaccustomed tasks. In addition, a finite impulse response (FIR) filter

was used to eliminate high frequency disturbances from the input data and, above all, to

ensure smooth time-discrete derivatives of the positional data, i.e., velocity and acceleration

sequences without artificial oscillations caused by disturbed positional data (see the red lines

in Figure 5.2). Müller used the Savitzky-Golay (SG) filter for this purpose, which can

be summarized as follows (see [61] for details):

Let p = (pn)n∈{1,...,N} ∈ R denote the unprocessed position sequence.

Given a frame length η ∈ {1, . . . , bN
2
c} and a polynomial degree ν ∈ {0, . . . , η − 1}, the

SG filter smoothes for any n ∈ {1, . . . , N} the partial sequence that consists of pn and the

nearest η values in both directions by choosing the ν-th degree polynomial that fits best.

5.2. USER TRAJECTORIES 67

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-15

-10

-5

0

5

10

15

P
o
si

ti
o
n

 (
m

)

(a) SG Polynomial Derivation

0 0.2 0.4 0.6

Time (s)

-10

-5

0

5

10

P
o

si
ti

o
n

 (
m

)

(b) Position Time Series

Figure 5.1: Given a position time series p ((a) circles, (b) blue line), the SG filter with

η = 3, ν = 2 calculates for each discrete time t ∈ {0.15, 0.2, . . . , 0.5} the quadratic polynomial

πn ((a) any colored line) that best approximates the associated value ((a) same colored circle)

and the three adjacent values in each direction with respect to (5.6). The resulting smoothed

sequence (πn(0)) is shown (a) by crosses of the respective color and (b) as red line.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

P
o

si
ti

o
n

 (
m

)

(a) Position Time Series

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

Figure 5.2: Comparison of (a) the position time series with (green) and without (red) ap-

plied SG filter and (b) the velocity time series either derived by applying forward differences

to the position time series with (orange) and without (red) applied SG filter or by using the

derivatives of the individual polynomials from the SG filter (green). In each case, the same

data from a representative trial of participant 1 (P1) for an ID 2 task was used.

68 CHAPTER 5. PARAMETER FITTING PROCESS

Formally, for each n ∈ {1, . . . , N} the coefficients (cni)i∈{0,...,ν} of the ν-th degree polynomial

πn(t) :=
ν∑
i=0

cni t
i, t ∈ R, (5.5)

are chosen so that (πn(j))j∈{−η,...,η} approximates (pn+j)j∈{−η,...,η} best in terms of least

squares, i.e.,

η∑
j=−η

(πn(j)− pn+j)
2 (5.6)

is minimized.5 In particular, the optimal coefficients (and thus the optimal polynomials) are

uniquely determined as ν < η is assumed.

Repeating this procedure for all6 n ∈ {1, . . . , N}, where only the central value πn(0) is

kept at each step, leads to the output sequence (πn(0))n∈{1,...,N} of the SG filter, which is a

smoothed version of the input sequence (pn)n∈{1,...,N}. The filtering process is illustrated in

Figure 5.1 using a simple exemplary sequence and setting η = 3 and ν = 2 for reasons of

clarity (which, unfortunately, only leads to a slightly smoothed position time series as can

be seen in Figure 5.1b), whereas Müller applied η = 101 and ν = 4.

However, even though the computation of the time derivative of this smoothed sequence using

numerical methods such as forward differences does not lead by far to such large oscillations

as for the respective derivative of the unprocessed raw data (see Figure 5.2b), the resulting

sequence is not arbitrarily smooth, which at least results in oscillatory behavior if the same

method is used again for the computation of higher derivatives. Instead, it is advisable to

directly use the polynomials πn for each time step n ∈ {1, . . . , N} and to compute their

derivatives up to the desired order k ∈ N at time t = 0, i.e., π
(j)
n (0) for j ∈ {1, . . . , k}, which,

moreover, essentially consist of products of the coefficients cni . The compound sequences

(π
(j)
n (0))n∈{1,...,N}, j ∈ {1, . . . , k}, then analogously yield smoothed versions of the respective

derivative sequences, as depicted in Figure 5.2b with green color.

5.2.2 Further Processed Trajectories

Fur our purposes, we decided to further process the raw data, i.e., the measured positional

data before the SG filter was applied. The concrete procedure included the removal of

reaction times from the individual trials on the one hand and the computation of average

trajectories on the other hand, and is described in detail below.

First of all, we want to motivate both modifications.

5Note that even though technical simplifications are the main reason for choosing (tj = j)j∈{−η,...,η} as

the times at which πn needs to approximate pn+j , at least the underlying assumption of equidistant time

steps is indispensable for this approach.
6Problems that arise for the first and the last η time steps, i.e., for n ∈ {1, . . . , η} ∪ {N − η + 1, . . . , N},

are discussed at the end of Section 5.2.2.

5.2. USER TRAJECTORIES 69

Assumptions and Justifications

As discussed in Section 4.2.1, in reciprocal pointing tasks it is difficult to interpret time

delays at the beginning of trials as choice reaction time [19, 53] because the participants

are already familiar with the task and, in particular, with the following target position.

However, there is a lot of variance in the duration of the time span between the click on the

preceding target, i.e., the beginning of the new trial, and the point of time at which there is

substantial acceleration first, as can be seen in Figure 5.3.7 We call this time span initial

phase of a trial in the following and formalize the above criterion by defining the first time

step nδ ∈ {1, . . . , N} that is excluded from this phase for a given accuracy barrier δ ∈ [0, 1[

as follows:

nδ := min{i ∈ {1, . . . , N} | |π(2)
i (0)|

maxj∈{1,...,N} |π(2)
j (0)|

> δ}. (5.7)

Assuming that the magnitude of acceleration is relatively small at the beginning of a trial

and then rises monotonously to its maximum, the initial phase thus ends as soon as the

ratio of the current absolute (smoothed) acceleration to the maximum absolute (smoothed)

acceleration during this trial exceeds the barrier δ for the first time. In particular, this

is reasonable for our use of the system dynamics (4.39) based on (2OL), since here the

acceleration is proportional to the applied control.

Due to the large variance of nδ among different trials and the difficulties of interpretation

mentioned above, we decided to remove these initial phases from all trials, i.e., to omit all

experimental data that might be related to reaction time phenomena.

In addition, we decided to separately average all left and all right movements that were per-

formed consecutively within a condition block by a particular participant in order to obtain

a mean trajectory for each condition, each participant, and each direction, which hopefully

maintains the “characteristic” behavior of the respective participant for the respective task.

The reason for this proceeding was that especially for computationally complex models with

many parameters and/or many time steps, it might be a much less time-consuming first

approach to concentrate only on the approximation of these few mean trajectories rather

than on the approximation of all individual trial trajectories.

However, it is not clear how much both the averaging and the smoothing of the user trajec-

tories affect their qualitative behavior, i.e., more general conclusions possibly can be drawn

from the approximation of the raw data. Therefore, most of the results we present in this

thesis relate to individual unfiltered trajectories, while mean trajectories are later dealt with

in a separate section.

7In such a box plot, the horizontal red lines mark the medians, the bottom respective top edges of the

blue boxes mark the 25th respective 75th percentiles, and the red plus signs represent outliers (see https:

//de.mathworks.com/help/stats/boxplot.html#bu180jd-Whisker for details). In our case, median and

25th percentile coincide due to the numerous trials with immediate substantial acceleration, i.e., without

“reaction time”.

https://de.mathworks.com/help/stats/boxplot.html#bu180jd-Whisker
https://de.mathworks.com/help/stats/boxplot.html#bu180jd-Whisker

70 CHAPTER 5. PARAMETER FITTING PROCESS

2 4 6 8

ID

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

re
a
c
ti

o
n

 t
im

e
 (

s)

Figure 5.3: The duration of the initial phase (nδ − 1)h, i.e., the “reaction time”, varies

considerably between different trials, especially for tasks with a higher ID (all trial trajectories

described below were used).

Concrete Procedure

The trajectories that contain one or both of the modifications described above were computed

from the Pointing Dynamics Dataset as follows:

First, we subdivided the data of each task and each participant according to the individual

trials and considered only the half that corresponds to the considered pointing task, i.e.,

either all right or all left movements. Additionally, we omitted all erroneous trials, i.e., any

trial with missed target as well as the subsequent trial (since here the initial position was

outside the initial box).8 We then skipped the initial phases of each trial, that is the first

nδ − 1 time steps, where we have chosen δ := 0.005.9

The remaining unprocessed positional sequences of each trial, i.e., the sequences without

applied SG filter, were then used as individual position time series (pUSER
n)n∈{1,...,N}. For

qualitative comparisons (but not for the optimization process itself), we additionally used

the respective smoothed10 velocity and acceleration sequences that were received by applying

the SG filter with η = 101 and ν = 4 to (pUSER
n)n∈{1,...,N}, i.e.,

(vUSER
n)n∈{1,...,N} := (π(1)

n (0))n∈{1,...,N}, (aUSER
n)n∈{1,...,N} := (π(2)

n (0))n∈{1,...,N}. (5.8)

We denote the combination of these three sequences, which exactly correspond to the respec-

tive parts of the “y”, “sgv”, and “sga” columns in Müller’s preprocessed dataset, as trial

trajectory (yUSER
n)n∈{1,...,N} in the following.

8Although this criterion is very strict, only “completely failed” trials, i.e., trials with unintentional clicks

at the beginning or in the middle of the movement, were sorted out.
9Note that the smoothed acceleration time series (π

(2)
n (0))n∈{1,...,N} required for the computation of the

time step nδ for each trial were already included in the dataset.
10See Section 5.2.1 for a discussion on a reasonable computation of time-discrete derivatives.

5.2. USER TRAJECTORIES 71

0 0.2 0.4 0.6 N 0.8

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

P
o
si

ti
o
n
 (

m
)

Figure 5.4: For the computation of mean trajectories we need to bring all considered trajec-

tories to the same length. In this example, both the blue and the yellow position sequence are

thus extended by continuing their respective last value constantly up to the duration of the

longest sequence (red), i.e., up to N . [P1, ID 4 (765,51), movements to the right]

Furthermore, we extended these positional sequences to the maximum length of all consid-

ered trials by continuing all shorter trials constantly with their last position (as shown in

Figure 5.4 exemplarily for three trajectories). The resulting sequences of the same length

were averaged component by component. Finally, the same SG filter as above was applied to

these averaged position sequences, leading to the final (smoothed) mean position sequence

along with its time derivatives. For the sake of simplicity, we call such a trajectory mean

trajectory in the following and use the existing notation, i.e., yUSER respectively pUSER,

vUSER, and aUSER.

Transient Filtering

Last but not least, we would like to point out that whenever the SG filter is applied as

described above difficulties may arise for n ∈ {1, . . . , η} ∪ {N − η + 1, . . . , N}: Here, in

at least one direction there exist less than η neighboring values of pn that can be used for

the fitting process with respect to (5.6). There are basically two ways to circumvent this

problem: On the one hand, for such time steps n a variant of the SG filter which derives

the polynomial that best fits only the available η̃ < 2η + 1 neighboring input values could

be applied. This was done for the preprocessed data of the Pointing Dynamics Dataset, for

example.11

11However, this had virtually no effect on our considered trial trajectories, since here the successively

executed movements for each condition and each participant were not split up before filtering, i.e., almost all

72 CHAPTER 5. PARAMETER FITTING PROCESS

For the mean trajectories, where we applied the SG filter ourselves, we decided for another

approach:

Since we only consider single unidirectional pointing tasks, whereas the Pointing Dynamics

Dataset is based on reciprocal pointing tasks that contain successive trials of two alternating

pointing tasks, in fact there is data available for both the starting and the terminal phase

of our pointing task: We could either use end data from the previous trial or initial data

from the following trial to fill the missing positions.12 So what we actually did for the

computation of our mean trajectories was to add η unprocessed positions both before and

after each considered trial (after extending all trials to the same maximum length), average

these sequences, and then apply the SG filter (with the above mentioned variant for the first

and the last components). Afterwards, the previously appended components were removed

again.

The advantage of this approach is what we call consistent smoothing : Each position (and

thus each velocity and acceleration) is derived by solving a least squares problem with 2η+1

neighboring values (in short, because the first and the last η values were artificially added

and could be thus omitted at the end).

5.3 2OL-LQR Algorithm

We are now able to summarize our complete approach for the simulation of pointing task

movements:

Given a trial or a mean trajectory yUSER of a specific pointing task, an initial state x̄1, a

reference control ū0, and a choice of parameters out of {r1, . . . , rN , k, d} which are to be

optimized, we want to minimize the SSE function

SSE(Λ) :=
N∑
n=1

(pΛ
n − pUSER

n)2 (5.9)

with respect to all admissible parameter sets Λ, where pΛ is from the solution to the respective

2OL-LQR problem (4.47) (or, equivalently, (4.53)), which is well defined only by the concrete

choice of parameters Λ and therefore sometimes referred to as 2OL-LQRΛ.13

In particular, k and d determine the system dynamics matrix A, whereas rn defines the

control cost matrix Rn for each n ∈ {1, . . . , N}. Solving the Modified Discrete Riccati

Equations (4.55) then yields the optimal feedback gain matrices Kn, which in turn lead to

the optimal control sequence u∗n and the corresponding information vector sequence I∗ =

(I∗n)n∈{1,...,N} including the desired position sequence pΛ = (pΛ
n)n∈{1,...,N}.

of our trajectories originate from the “middle” of the respective complete reciprocal pointing task anyway.
12We thus decided to only omit the first and the last trial for the computation of our mean trajectories to

ensure that such data is always available.
13In accordance to our pointing dataset, which was described in detail in Section 5.2, we use a sampling

time of h = 2ms.

5.3. 2OL-LQR ALGORITHM 73

LSPF

2OL-LQRΛ

JN

SSE

Λ0 Λ∗

Λ

pΛ

SSE(Λ)

I∗

Figure 5.5: Starting with an initial parameter set Λ = Λ0, the least squares parameter fit-

ting (LSPF) method obtains the sum squared error (SSE) value for the currently considered

parameter set Λ. To do this, it calls 2OL-LQRΛ, which sets up the respective optimal con-

trol problem (4.53) and obtains the solution information vector sequence I∗. The resulting

position time series pΛ is used to compute SSE(Λ), which is transmitted back to LSPF. As

an LSPF algorithm, we use MATLAB’s nonlinear least squares algorithm lsqnonlin, which

uses a gradient-based search method to obtain the next set of parameters Λ until it conver-

gences to an optimal parameter set Λ∗ with (local) minimum SSE. Finally, Λ∗ is returned

along with the respective solution information vector sequence I∗.

In summary, in each step of the LSPF problem, which aims to find the parameter set Λ that

best fits the observed trajectory yUSER with respect to (5.9), and which we solve by using

MATLAB’s nonlinear least squares algorithm lsqnonlin, an optimal control problem of the

form (4.53) needs to be solved. The complete procedure is illustrated in Figure 5.5.

Finally, it should be noted that this least-squares-based algorithm may possibly only converge

to a local minimum of the SSE function. Therefore, we executed the entire fitting process

Υ times14 with different initial parameter sets Λ0 consisting of parameters (λi)i∈{1,...,s} that

were randomly chosen from a continuous uniform distribution on the interval between 0 and

the parameter-dependent upper bound ςλi , respectively.15

This complete algorithm, which consists of optimal control problems of our 2OL-LQR model

(with JN as objective function) within an outer least squares parameter fitting process (with

SSE as objective function) again within an outer global iteration loop, is called 2OL-LQR

algorithm and summarized in Algorithm 5.1.

14According to our experience, Υ = 100 global iterations (in 2OL-LQR2 even Υ = 50) sufficed to provide

results that would not improve considerably by iterating more.
15To speed up convergence, it proved useful to choose ςr = 10−5 and ςk = ςd = 100.

74 CHAPTER 5. PARAMETER FITTING PROCESS

Input: target T , time steps N , sampling rate h, user trajectory yUSER

Output: optimal parameter set Λ∗, optimal trajectory x, optimal control sequence

u∗, approximation error SSE(Λ∗)

1 compute B, (Qn)n∈{1,...,N}, and x̄1;

2 choose Υ initial parameter sets (Λ
(i)
0)i∈{1,...,Υ};

3 for i = 1 to Υ do

// find local minimum Λ∗,(i) of SSE(Λ) starting from Λ
(i)
0 :

4 Λnew ← Λ
(i)
0 ;

5 while stopping criteria of lsqnonlin not fulfilled do

6 Λ← Λnew;

7 compute A, (Rn)n∈{1,...,N}, and ū0;

8 I∗1 ← [x̄1, ū0]T ;

9 begin // solve 2OL-LQRΛ

10 obtain (Kn)n∈{1,...,N−1} by solving the Modified Discrete Riccati Equations

backwards in time;

11 alternately compute u∗n and I∗n+1 for each n ∈ {1, . . . , N − 1};
12 end

13 extract pΛ from (I∗n)n∈{1,...,N} and compute SSE(Λ);

14 find appropriate new parameter set Λnew ; // lsqnonlin

15 end

16 Λ∗,(i) ← Λ ; // store local minimum

17 I(i) ← (I∗n)n∈{1,...,N} ; // store corresponding information vector

18 end

19 i∗ ← argmini∈{1,...,Υ} SSE(Λ∗,(i)) ; // find global minimum

20 Λ∗ ← Λ∗,(i
∗);

21 extract x and u∗ from I(i∗);

Algorithm 5.1: 2OL-LQR algorithm.

Chapter 6

Design of the Cost Function and

Results

In this chapter, we want to motivate the still outstanding concrete objective function JN of

our 2OL-LQR model given by (4.47) (and thus the actually implemented objective function

JN for the equivalent optimal control problem in information vector form (4.53)). For this

purpose, in Section 6.1 we first show the disadvantages of an obvious approach for the

selection of the cost matrices Qn and Rn, which we refer to as 2OL-LQR1. Subsequently, an

improved variant called 2OL-LQR2 is presented and, in Section 6.2, evaluated and compared

with two previously considered models, 2OL-Eq and MinJerk.

6.1 Variants of 2OL-LQR

6.1.1 2OL-LQR1

Based on our made assumptions about users’ task understanding and the resulting inter-

nalized objectives, we defined in Section 4.2.3 appropriate state cost matrices Qn by (4.48),

which quadratically penalize the remaining distance to the target center at time step n, i.e.,

x>nQnxn = (T − pn)2 (6.1)

applies to these matrices Qn.

In addition, we motivated the use of the control cost matrices Rn from (4.49) with weights

rn > 0 that penalize the jerk jn := (un−un−1)
h

at time step n, i.e.,

(un − un−1)>Rn(un − un−1) = rnj
2
n (6.2)

applies to these matrices Rn.

However, we have not yet determined the time steps n ∈ {1, . . . , N} and n ∈ {1, . . . , N −1},
respectively, at which these costs should arise.

75

76 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

In our first attempt, we decided to penalize the distance between mouse position and target

center only at the last considered time step N , i.e., we chose

Qn :=


0, if 1 ≤ n < N, 1 0 −1

0 0 0

−1 0 1

 , if n = N,
(6.3)

which leads to
N∑
n=1

xTnQnxn = xTNQNxN = (T − pN)2. (6.4)

Note that N is now crucial for the task interpretation: Since the mouse position is cost-

neutral at any other time step n ∈ {1, . . . , N − 1}, i.e., the model only creates incentives

to be close to the target at time step N , the choice of N has a substantial influence on the

duration of the actual movement, i.e., on the time step from which the trajectory remains at

the target center.1 In particular, with this cost structure it is not possible to select N rather

large and interpret it as an upper limit for the duration of the actual movement which is

then determined by the parameter fitting process. Instead, it is necessary to equate N in

advance with the duration of the user trajectory we want to approximate in order to obtain

reasonable cost matrices Qn from (6.3).2 However, the reason for using this approach as a

starting point of our iterative cost structure design process was that these state cost matrices

can be seen as a simplification of the proposed cost structure in Todorov’s application of the

LQG to via-point tasks [67].

While positional error costs are only incurred at time step N , it is straightforward to per-

manently penalize jerk with the same weight rn = r > 0 for all n ∈ {1, . . . , N − 1} since

the magnitude of rn expresses the participant’s preference for moving smoothly towards the

target, which is assumed to be constant throughout the whole trial (except from reaction

time effects, see Chapter 7). In particular, this is in line with our principle of only using a

few parameters that are, however, easy to interpret.

The resulting variant of the 2OL-LQR optimal control problem (4.47), which is denoted by

2OL-LQR1, thus has

JN(x, u) = (T − pN)2 + r
N−1∑
n=1

j2
n (6.5)

1Although the existence of such a time step cannot be proven in general, at time step N the trajectories

had usually passed the target at least once (see Figure 6.1).
2Even though we proceed in the same way for the further variants of our model, it is only with this cost

structure that a reasonable N cannot be chosen arbitrarily large but extremely depends on the considered

user trajectory.

6.1. VARIANTS OF 2OL-LQR 77

as objective function.

Because we expected the jerk weight r to be user- or even trial-dependent, we included it

together with the 2OL-parameters k and d in the least squares parameter fitting process,

i.e., Λ = (r, k, d) ∈ R3 with r, k, d > 0.

In total, we used the 2OL-LQR Algorithm described in Section 5.3, where in each step of

the least squares parameter fitting process pΛ is extracted from the solution to 2OL-LQRΛ
1

for a given choice of parameters Λ.

Once again, we would like to explicitly point out the dependency of the resulting optimal

simulation trajectory on the choice of the initial “motor template” ū0 due to its effect on the

optimal choice of the first motion-relevant control u1. In particular, penalizing positional

error only at a single time step while penalizing jerk, i.e., the differences between consecu-

tive controls un, during the whole movement further enhances this dependency since u0 = ū0

strongly affects u1, which in turn has great effects on u2, and so on.

With regard to the assumed jerk minimization, there are two reasonable ways to define ū0

and x̄1 from our point of view: task-dependent and trajectory-dependent.

In the task-dependent variant x̄1 := [T0, 0, T]> applies, i.e., only trajectories that start at

the initial position T0 ∈ R given by the task instruction3 with zero velocity are allowed. In

this case, we used ū0 := kT0 for the following reason: Here, choosing u1 cost-minimal with

regard to pure jerk penalization, i.e., u1 = u0 = ū0, would additionally lead to zero accel-

eration due to the used system dynamics (4.39) and therefore ensure that the mouse cursor

remains at the initial position, which appears to be useful for an initial reference control.4

However, the considered user trajectories are subtrajectories from the Pointing Dynamics

Dataset, which is based on reciprocal pointing tasks, i.e., none of these two “equilibrium-

start” properties has to apply at all to the user trajectories we want to approximate.

Hence, one might argue that by focusing on the parameter fitting process rather than on

hypothetical assumptions on the pointing task it is straightforward to adapt the initial values

x̄1 and ū0 to certain properties of the considered user trajectory in order to ensure optimal fit-

ting conditions. In the trajectory-dependent variant we thus set x̄1 :=
[
pUSER

1 , vUSER
1 , T

]>
and ū0 := kpUSER

1 + dvUSER
1 + aUSER

1 so that, analogously, for u1 = u0 = ū0 the initial ac-

celeration of the user trajectory aUSER
1 would now be assumed by the simulation trajectory,

since

x2
(4.39)
= Ax1 +Bu1 = Ax̄1 +Bū0 (6.6)

3In our case, T0 thus corresponds to the target center of the immediately preceding movement.
4The fact that in our model the application of a nontrivial control ū0 6= 0 is required to remain at an

initial position T0 6= 0 results from x̄1 := [T0, 0, T]
>

not being an equilibrium of the uncontrolled system

ẋ = Ãx respective xn+1 = Axn in our case, i.e., Ãx̄1 6= 0 and Ax̄1 6= x̄1 holds, respectively. Using position

coordinates relative to T0 would circumvent this problem, but then some control un 6= 0 would still be

required to remain at the target T 6= T0. Furthermore, in our experience, such coordinate shifts had no

substantial effect on the solution (apart from shifted optimal control sequences, of course).

78 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

0

0.5

1

V
el

o
ci

ty
 (

m
/s

)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-200

-100

0

100

200

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-0.5

0

0.5

1

V
el

o
ci

ty
 (

m
/s

)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-5

0

5

10

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

0 0.1 0.2 0.3 0.4

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.1 0.2 0.3 0.4

Time (s)

-0.5

0

0.5

1

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.1 0.2 0.3 0.4

Time (s)

-10

-5

0

5

10

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 6.1: 2OL-LQR1 model: Using a cost function similar to the one proposed by Todorov

results in simulation trajectories (blue) not replicating the user data (green) well.

[Top Row: P1, ID 4 (765,51), 21th movement to the right, task-dependent;

Center Row: P1, ID 4 (765,51), 21th movement to the right, traj.-dependent;

Bottom Row: P1, ID 2 (765,255), 30th movement to the right, traj.-depend.]

implies

v2 = (−hk)pUSER
1 + (1− hd)vUSER

1 + hū0 =

= (−hk)pUSER
1 + (1− hd)vUSER

1 + h(kpUSER
1 + dvUSER

1 + aUSER
1) = v1 + haUSER

1

(6.7)

and thus, using the forward Euler method to derive the initial acceleration a1,

a1 :=
v2 − v1

h
= aUSER

1 (6.8)

applies.

Results

The results of the application of both the task-dependent and the trial-dependent 2OL-LQR1

variant of our 2OL-LQR algorithm to representative trial trajectories are plotted in Figure

6.1, where the initial box5 and the target box are each represented by an error bar with

5Since the user trajectories originate from a reciprocal pointing task, they do not necessarily start from

the initial point itself but from some point within the preceding target box, that is, the initial box.

6.1. VARIANTS OF 2OL-LQR 79

length equal to the width of the box.

The most striking property of the task-dependent trajectory shown in the top row of Figure 6.1

is the nearly linear position time series (left plot). While the underlying ID 4 pointing task

is obviously already too difficult for the participants to move straight towards the target

and click immediately (green line), the simulation trajectory shows exactly this behavior

and reaches the target precisely after N time steps (blue line). Similar results were observed

for most trial and mean trajectories of each participant in the task-dependent 2OL-LQR1

variant of our 2OL-LQR algorithm and also for several trajectories in the target-dependent

variant.

The main reason for this behavior is the absence of obligation to reach the target as early as

possible due to the cost structure of 2OL-LQR1: Since Qn = 0 holds for all time steps n up to

N − 1, deviations from the target center are not penalized throughout the whole movement.

Hence, there is clearly no need to reach the target earlier than necessary, i.e., before the time

step N that corresponds to the click time of the user trajectory we want to approximate. In

other words, the cost structure of 2OL-LQR1, which was not only quite intuitive but also

inspired by Todorov’s approach [67], neglects a fundamental aspect of users’ understanding

of pointing tasks: the time minimization, or more precisely, the minimization of the duration

of the surge phase.

However, this only explains why faster movements are not forced, but not why they obviously

do not occur at all. In fact, it is the quadratic jerk penalization term in (6.5) which ensures

that (even for small r) many small changes between consecutive controls are cheaper than

one very powerful change with which the target is reached much earlier. This allows for

highly unconventional movements: Choosing the spring constant k and the damping d very

large and the jerk weight r very small leads to an optimal trajectory with respect to (6.5) that

exhibits short acceleration impulses both at the beginning and at the end of the movement

and thus has a nearly constant positive velocity time series and a nearly linear position time

series, which reaches the target center exactly at time step N (see top row of Figure 6.1).

Apparently, such an unrealistic choice of parameters6 minimizes the SSE under the given

conditions.

The trajectory-dependent variant, however, leads to qualitatively different optimal simulation

trajectories if the initial acceleration of the user trajectory (which affects ū0 in this variant) is

sufficiently different from zero: As depicted in the center row of Figure 6.1 for the same trial

trajectory as above, the resulting simulation trajectory (blue line) is now much smoother

than in the task-dependent variant and does not include any physically implausible initial

impulses. However, for the same reason explained above, this variant is also in such cases

not able to reproduce the typically long correction phase of users, in which the target is

6The spring-mass-damper system is only for reasonable small values of the spring constant k and damping

factor d a meaningful description of the biomechanical apparatus. However, we decided not to implement

any upper bounds for the parameters since their choice would always be arbitrary.

80 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

already approximated quite well, but refinements are necessary to finally steer the mouse

pointer into the relatively small target box.

While the above phenomena were observed for different user trajectories of all considered

pointing tasks with ID between 4 and 8, user trajectories of ID 2 tasks were nevertheless

approximated surprisingly well for both variants, as depicted exemplarily in the bottom

row of Figure 6.1. The reason for that is simply the lack of correction phases in user

trajectories of very simple pointing tasks. However, we cannot be satisfied with sufficiently

good approximations of under-determined tasks, while the behavior typically observed in

more difficult tasks is not replicated.

We therefore present an improved variant of our 2OL-LQR model in the following.

6.1.2 2OL-LQR2

One major problem of our previous modeling approach is that we need to use the click

time step of the specific user trajectory we wish to approximate as the final time step N ,

because otherwise there is no chance that both trajectories reach the target at the same time.

This click time cannot be justified from the task description itself (the only time-related

instruction is to complete the task “as soon as possible”) and, above all, heavily depends

on the concrete trial. While one way to bypass this problem would be an optimization

of the parameter N (similar to some of Todorov’s proposals [67]), which would involve the

solution of an integer least squares problem and thus further complicate the parameter fitting

process, we instead decided for an expansion of the positional-error-relevant time span, which

considerably reduces the impact of N .

In concrete terms, we defined

Qn :=

 1 0 −1

0 0 0

−1 0 1

 , n ∈ {1, . . . , N}, (6.9)

which immediately implies
N∑
n=1

xTnQnxn =
N∑
n=1

(T − pn)2, (6.10)

i.e., the distance between mouse position and target center is now penalized equally at every

time step.7

7Note that the first state cost term x>1 Q1x1 cannot be affected since x1 = x̄1 needs to hold. Setting, e.g.,

Q1 = 0 or, consistent with the approach for via-point tasks, analogously penalizing the distance between the

required initial position T0 and the actually implemented initial position p1 by the first state cost matrix Q1

(which would also require T0 to be included in the states xn) would thus only change the minimum value of

JN but not the optimal control sequence u∗.

6.2. MAIN RESULTS 81

Using the same jerk cost terms as in 2OL-LQR1, the objective function of this variant, which

we call 2OL-LQR2, is given by

JN(x, u) =
N∑
n=1

(T − pn)2 + r
N−1∑
n=1

j2
n. (6.11)

In contrast to the 2OL-LQR1 objective function (6.5), the additional penalization of the

distance between the respective mouse position and the target center at each time step

n ∈ {1, . . . , N − 1} implies higher values of JN , even for the optimal control u∗, but, as

can be seen below, leads to smaller optimal SSE values at the same time, i.e., to solution

trajectories of our 2OL-LQR algorithm that better adapt user behavior.

Due to the relatively small impact of the initial values x̄1 and ū0, which we observed in

this variant, from now on we concentrate only on the trajectory-dependent variant without

further reasoning.

6.2 Main Results

In this section, we evaluate our model 2OL-LQR2 by comparing it with the two pure models

whose approaches it combines – the minimum-jerk model from [23] and the second-order

lag with equilibrium control from [50], which were introduced in detail in Section 3.3.1 and

Section 3.2.2, and which we further refer to as MinJerk and 2OL-Eq, respectively. We

also investigate how the parameters of our model change with different tasks, i.e., different

IDs, and with different participants. In addition, we compare the results obtained from the

application to trial trajectories to those obtained from the application to mean trajectories.

For the sake of clarity, we present our results using particularly illustrative trajectories.

However, if not explicitly mentioned, we did not find any major qualitative differences to

the remaining trials of the considered tasks and participants.

6.2.1 Qualitative Comparisons

MinJerk

The MinJerk model yields a position time series (pMinJerk
n)n∈{1,...,Ñ} = (p((n− 1)h))n∈{1,...,Ñ}

with p : [0, tf] −→ R minimizing the total squared jerk

J(p) :=
1

2

∫ tf

0

(
...
p(t))2 dt (6.12)

with initial condition p(0)

ṗ(0)

p̈(0)

 =

p̄0

v̄0

ā0

 ∈ R3 (6.13)

82 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

0 0.2 t
f

0.6 0.8 1 1.2 1.4 1.6

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o

si
ti

o
n

 (
m

)

(a) Position Time Series

0 t
f
0.5 1 1.5

Time (s)

0

0.5

1

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 t
f
0.5 1 1.5

Time (s)

-5

0

5

10

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 6.2: For the MinJerk model, we have to decide whether we want to model the surge

well, but not reach the target (blue solid line with constant continuation after the surge’s

end at time tf), or reach the target, but not model the entire movement well (blue dotted

line). In this thesis, we decided for the former option. The better fit of this variant to the

user trajectory (green line) is quantified by the SSE: While MinJerk applied to the entire

movement, i.e., Ñ = N , exhibits an SSE value of 7.2333, the surge phase variant has an

SSE value of 0.993, which is mainly caused by the missed target at time tf (the respective

SSE value of the surge phase only, i.e., up to tf , is 0.0044). [Participant 1 (P1), ID 8

(distance: 765 px, width: 3 px), 21th movement to the right]

0 0.2 0.4 0.6 t
f

1

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.2 0.4 0.6 t
f

1

Time (s)

0

0.2

0.4

0.6

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 t
f

1

Time (s)

-2

0

2

4

6

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

(c) Acceleration Time Series

Figure 6.3: Any method for the identification of the surge phase that is based on some

characteristics of the user trajectory (such as our approach, where tf denotes the second zero-

crossing of the acceleration time series) leads to worse approximations of atypical motions

(green) using the MinJerk model. [P7, ID 6 (765,12), 30th movement to the right]

6.2. MAIN RESULTS 83

and terminal conditionp(tf)ṗ(tf)

p̈(tf)

 =

p̄tfv̄tf
ātf

 ∈ R3, tf = tÑ = (Ñ − 1)h, (6.14)

which is given by (3.31). However, originally it was derived from data of an experiment that

did not involve any corrective movements [23]. This leaves two possibilities to fit the model

to our data:

If MinJerk is used for modeling the entire movement, i.e., we set Ñ = N , the fit is very poor

(see Figure 6.2; dotted line). Instead of a quick movement towards the target with extensive

corrective movements, as in our data, the model predicts a slow, smooth movement, reaching

the target only at the time of the mouse click.8

Therefore, we use MinJerk for only the first, rapid movement towards the target, i.e., the

surge phase. We assume that the pointer does not move afterwards, which is implemented by

setting v̄tf = ātf = 0 in (6.14). Similar to [50], we determine the surge’s end tf from the data

as the second zero-crossing in the acceleration time series (see Figure 6.2c).9 The reason

for this choice of tf is the observation that in one-dimensional pointing tasks movements

are typically represented by a smooth and symmetric acceleration time series consisting of

a positive peak followed by a negative one (or vice versa for movements in the opposite

direction). If the target is not reached at the end of this “N-shaped” phase, typically the

same acceleration pattern is repeated with lower amplitude and smaller period, suggesting

our interpretation of corrective movements.

As illustrated in Figure 6.2 (blue solid line), applying MinJerk up to tf results in a fairly

good fit of the surge phase, at least for this particular data.10 However, if the target is not

reached at time tf , as it is the case for many tasks with ID > 2, the overall fit is poor, which

is reflected in a high SSE value.

We therefore conclude that although MinJerk appears to be a good model for looking purely

at the surge phase, it is not suitable for describing movements like those of the Pointing

Dynamics Dataset, which involve an extensive correction phase.11

8Note that despite the similarity to the behavior of 2OL-LQR1, the smoothness of the trajectory can be

guaranteed here since the pure jerk is minimized instead of some combination of jerk and accuracy.
9For irregular acceleration time series without second zero-crossing we set Ñ = N , i.e., in such cases both

variants coincide.
10If the movement does not exhibit a clear surge phase, i.e., the first period of the acceleration time series

is not clearly identifiable as it does not have the typical course but already contains some sort of corrective

impulses towards the end, the fit is expected to deteriorate for any threshold-based method for determining

tf . In fact, this is the case for some trials of some participants in the dataset, as shown in Figure 6.3 using

a representative trajectory.
11However, Hoff and Arbib’s Dynamic MinJerk model [32], which was briefly discussed in Section 3.3.1,

seems to be a promising approach for modeling such submovements that we did not pursue any further.

84 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

0 0.2 0.4 0.6 0.8 1

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o

si
ti

o
n

 (
m

)

(a) Position Time Series

0 0.2 0.4 0.6 0.8 1

Time (s)

0

0.2

0.4

0.6

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8 1

Time (s)

-5

0

5

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

0 0.2 0.4 0.6 0.8 1

Time (s)

2

2.5

3

3.5

4

C
o

n
tr

o
l

(m
/s

2
)

(d) Control Time Series

Figure 6.4: 2OL-Eq with constant control (blue) yields a much less symmetric surge phase

than the user data (green), particularly in velocity and acceleration. [SSE(k, d) = 0.0892

with k = 29.1, d = 8.2; P11, ID 4 (765,51), 33th movement to the right]

2OL-Eq

For the 2OL-Eq model given by (2OL-Eq) from Section 3.2.2 with u ≡ T , we optimize the

spring stiffness k and the damping factor d with the same least squares parameter fitting

process and the same SSE objective function (5.9) that we use for our 2OL-LQR model. In

particular, the admissible parameter sets are of the form Λ = (k, d) ∈]0,∞[×]0,∞[.

The behavior of 2OL-Eq is illustrated in Figure 6.4. Visually, the model captures the user

behavior comparatively well in terms of pointer position, cf. Figure 6.4a. The velocity time

series depicted in Figure 6.4b, however, is asymmetric in the 2OL-Eq case, while the user

shows a more symmetric and bell-shaped velocity profile during the surge phase. The biggest

difference appears in the acceleration time series (see Figure 6.4c). While the user, as de-

scribed above, performs a symmetric and smooth N-shaped acceleration, the acceleration of

2OL-Eq jumps instantaneously at the start of the movement, and then rapidly declines. As

a result, the details of the position time series are not reproduced exactly. In particular,

a faster increase of the position at the beginning of the movement as well as a “more bal-

anced”, that is, a less pronounced transition from the surge to the correction phase (which

in Figure 6.4 approximately starts at t = 0.7) can be observed in the position time series.

These observations can be explained by the physical interpretation of the 2OL-Eq as a spring-

mass-damper system: Since u is constant in this model, as the system is released, the spring

6.2. MAIN RESULTS 85

0 0.2 0.4 0.6 0.8

Time (s)

-0.1

-0.05

0

0.05

0.1
P

o
si

ti
o

n
 (

m
)

(a) Position Time Series

0 0.2 0.4 0.6 0.8

Time (s)

0

0.2

0.4

0.6

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8

Time (s)

-5

0

5

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

0 0.2 0.4 0.6 0.8

Time (s)

-10

-5

0

5

10

C
o

n
tr

o
l

(m
/s

2
)

(d) Control Time Series

Figure 6.5: Our second iteration model 2OL-LQR2 models the entire movement well. How-

ever, the acceleration in the surge phase is slightly less symmetric than the one of this user.

[SSE(r, k, d) = 0.0131 with r = 5.86 · 10−6, k = 73.87, d = 7.53; P11, ID 4 (765,51),

33th movement to the right]

instantaneously accelerates the system with a force that is proportional to the extension of

the spring, i.e., to the remaining distance to target. Because human muscles cannot build

up force instantaneously [62], this behavior is not physically plausible.

2OL-LQR2

The behavior of our 2OL-LQR2 algorithm is examplarily shown in Figure 6.5 for the same

representative trial trajectory we used in Figure 6.4. The solution trajectory approximates

the position time series well over the entire movement, cf. Figure 6.5a. In particular, the

characteristics both at the beginning and at the end of the surge phase are reproduced quite

accurately. More visible differences occur in the velocity time series, where our model slightly

underestimates the maximum velocity and the velocity profile is a little less symmetric than

the user’s (see Figure 6.5b). In particular, this leads to a insufficient approximation of the

second spike in velocity which can be seen as an indication of a second submovement.12

Similar effects can be observed in the acceleration time series: As can be seen in Figure 6.5c,

both the maximum acceleration and the maximum deceleration are slightly underestimated.

In addition, the acceleration profile of the simulation trajectory is less symmetric than the

12For a detailed description of this well-known phenomenon, see, e.g., [20] or [45].

86 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

0 0.1 0.2 0.3 0.4 t
f

0.5 0.6 0.7 0.8 0.9 1

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o

si
ti

o
n

 (
m

)

(a) Position Time Series

0 0.1 0.2 0.3 0.4 t
f

0.5 0.6 0.7 0.8 0.9 1

Time (s)

-0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

6.2. MAIN RESULTS 87

0 0.1 0.2 0.3 0.4 t
f

0.5 0.6 0.7 0.8 0.9 1

Time (s)

-6

-4

-2

0

2

4

6

8

10

12

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

Figure 6.6: Solution trajectories of all models considered so far applied to the same trial tra-

jectory [P1, ID 6 (765,12), 30th movement to the right], which is shown as a green

line. 2OL-LQR1 (purple line) and MinJerk with Ñ = N (grey line) approximate the user

trajectory by far the worst. 2OL-Eq (yellow line) provides a quite acceptable position time

series, but especially with regard to acceleration, large deviations from the actual user move-

ment become obvious. 2OL-LQR2 (red line) and MinJerk applied up to tf (blue line) come

closest to the actual movement, but the latter misses the target due to the omitted correction

phase, resulting in a worse overall fit.

For reasons of clarity, the extreme acceleration values of 2OL-LQR1 at the beginning (values

up to 110) and at the end (values down to −113) of the movement are truncated in (c).

Model SSE Maximum Error

2OL-LQR1 2.3433 0.1171

2OL-LQR2 0.0051 0.0074

2OL-Eq 0.0529 0.0241

MinJerk 0.0431 0.0190

MinJerk (Ñ = N) 2.7491 0.1408

Table 6.1: SSE and maximum error values of the trajectories depicted in Figure 6.6.

88 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

user’s since its surge part is not completely N-shaped, but has a more extended second half

which fluently merges into a hinted correction phase with much smaller amplitude.13 The

used optimal control sequence u∗ depicted in Figure 6.5d rises relatively fast at the beginning

in order to initiate the movement, then it increases slower over time and finally, it is nearly

constant during the correction phase.

In summary, the major improvement of our 2OL-LQR2 algorithm over MinJerk is the capture

of the entire movement within one plausible model, including an arbitrary long correction

phase. Moreover, our model explains the surge movement similarly well as MinJerk does

when applied to the surge phase only. The symmetry observed in many user acceleration

time series, however, is not quite as well captured by our 2OL-LQR2 model due to its not

perfectly N-shaped acceleration time series.

Compared to 2OL-Eq, our algorithm captures position, velocity and acceleration time series

noticeably better. The reason for this is that the control time series, in contrast to that of

2OL-Eq, is not constant, but changes optimally over time. This apparently leads to a more

N-shaped acceleration time series and a more bell-shaped velocity time series, as predicted

by Flash and Hogan [23] and widely confirmed by our user data.

These conclusions can also be seen from Figure 6.6, where the solution trajectories of all

considered models applied to the same user trajectory are presented. The respective SSE

and maximum error values can be found in Table 6.1.

Last but not least, there are some cases in which asymmetric acceleration time series do occur,

cf. Figure 6.7. Due to its two-stage optimization process including both the parameter fitting

and the minimization of an objective function corresponding to (a specific combination of)

the assumed user objectives, our 2OL-LQR2 algorithm is very flexible and thus even able

to approximate such profiles reasonably well, whereas both other models are limited to a

specific type of acceleration profiles, e.g., N-shaped acceleration profiles for MinJerk.

Moreover, we want to point out that while MinJerk requires the exact position, velocity and

acceleration of the end point, our 2OL-LQR2 model does not need this information, but

adjusts its parameters to ensure the best overall fit of the trajectory.

6.2.2 Quantitative Comparisons

In the following, we consider all14 trial trajectories of all participants and all tasks for quan-

titative comparisons. The resulting sum squared error values of all three models are shown

13Some of the irregularities in the user’s acceleration profile might be traced back to insufficiently smooth

filtering as the second derivative of our SG filter with degree ν = 4 is only composed of quadratic functions.
14In fact, we decided to remove another 30 trajectories from the usable 7732 trajectories due to numerical

instabilities of our algorithm, which were caused by extremely high optimal parameters k and d and led to

erroneous calculations of the optimal control sequence u∗. For better comparisons, we decided to omit these

trials for all considered models. However, we expect that our algorithm would give correct results if we set

a reasonable upper bound for these parameters.

6.2. MAIN RESULTS 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

-4

-2

0

2

4

6

8

10

A
c
c
e
le

ra
ti

o
n
 (

m
/s

2
)

Simulation

Data

Figure 6.7: While most movements, such as those in Figure 6.5 and Figure 6.6, have

(almost) symmetric acceleration profiles, in other cases such as this one it is more asymmet-

ric. Our 2OL-LQR2 algorithm handles both cases reasonably well. [SSE(r, k, d) = 0.0079

with r = 8.97 · 10−6, k = 50.32, d = 8.9; P7, ID 6 (1275,20), 23th movement to

the right]

2OL-LQR
2

2OL-Eq MinJerk

10
-4

10
-2

10
0

S
S
E

(a) SSE

2OL-LQR
2

2OL-Eq MinJerk

10
-3

10
-2

10
-1

M
ax

im
u

m
 E

rr
o

r

(b) Maximum Error

Figure 6.8: SSE and maximum error values of our 2OL-LQR2 algorithm compared to

2OL-Eq and MinJerk, each applied to the trial trajectories of all participants and all tasks

(logarithmic scale). The three asterisks between two models indicate that their values are

significantly different with p-value p < 0.001.

90 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

in Figure 6.8a, on a logarithmic scale. In addition, the respective arithmetic mean values,

standard deviations, and standard errors, i.e., the standard deviations divided by the square

root of the number of considered trials (in our case 7702), can be taken from the first three

columns of Table 6.2. As it appears, our model 2OL-LQR2 is able to capture human behavior

considerably better in terms of SSE than both the 2OL-Eq and MinJerk models. However,

we decided to carry out some statistical tests, which are briefly described below, to obtain a

more substantiated analysis.

Kolmogorov-Smirnov tests [18] with significance level α = 0.05 showed that the distributions

of SSE for the three models do not fit the assumption of normality, i.e., the mismatch be-

tween the SSE values and those of the normal distribution with appropriate parameters was

too large for each model (with all p-values p < 0.0001).

Thus, we carried out the non-parametric Friedman test [24], which uses the SSE value ranks

of all included 7702 trial trajectories. The main factor included in the analysis was which

model was used: 2OL-LQR2, 2OL-Eq, and MinJerk. The significance level was again set

at α = 0.05. The test indicated that the SSE between the three models was significantly

different, since the probability that the χ2-distribution with 2 degrees of freedom is greater

than or equal to the observed test statistic χ2
2 = 8661.76 amounts to less than 0.001, which

is well below the significance level α.

Additional two-sided Wilcoxon Signed Rank tests [58, 71] with Bonferroni corrections [47]

showed that the SSE was significantly lower in the 2OL-LQR2 model when compared to the

other models, since the z-score of the test statistic, i.e., the standardized sum of the signed

ranks (which was Z = −74.87 compared to 2OL-Eq and Z = −72.16 compared to MinJerk)

had in both cases an absolute value greater than the critical value z1− α̃
2

computed from

the standard normal distribution using the Bonferroni-adjusted significance level α̃ = 1
60

(p < 0.001 applied for the respective p-values).

In addition, we measured the maximum error, i.e., the maximum deviation of each of our

simulation trajectories from the corresponding user trajectory:

max
n=1,...,N

|pΛ
n − pUSER

n |. (6.15)

The findings, which are depicted in Figure 6.8b and summarized in the last three columns of

Table 6.2, are comparable to those for SSE according to the same Kolmogorov-Smirnov tests

(p < 0.0001 for each model) and the subsequent Friedman Test (χ2
2 = 9026.92, p < 0.001).

Analogously, Wilcoxon Signed Rank tests resulting in Z = −75.91 compared to 2OL-Eq

respectively Z = −72.25 compared to MinJerk (p < 0.001 applies in both cases) allows to

conclude that 2OL-LQR2 also approximates user trajectories significantly better than both

2OL-Eq and MinJerk in terms of maximum error.

It is important to emphasize that the summary statistics of both measures, given in Table 6.2

for all three models, do not allow any direct conclusions to be drawn about the average per-

formance improvement through the use of our model. To this end, we decided to compute

6.2. MAIN RESULTS 91

Model
SSE Maximum Error

Mean SD SE Mean SD SE

2OL-LQR2 0.0265 0.0991 0.0011 0.0138 0.0088 0.0001

2OL-Eq 0.1121 0.1576 0.0018 0.0301 0.0132 0.00015

MinJerk 0.2572 0.5762 0.0066 0.0373 0.0224 0.00025

Table 6.2: Arithmetic mean, standard deviation (SD), and standard error (SE) of the SSE

and maximum error values of each model applied to all considered trial trajectories.

the ratios of performance before averaging15, which led to the following findings:

While the SSE of 2OL-LQR2 was on average only 18.5% of the SSE of 2OL-Eq, the individual

SSE ratios differed considerably: At best, the SSE could be reduced by our model to 0.2%

of the respective value of 2OL-Eq. Nevertheless, there were several trial trajectories worse

approximated by our model than by 2OL-Eq, resulting in an up to 4.2-times higher SSE

value. However, this was to be expected due to the large number of trajectories considered,

including those already well approximated by 2OL-Eq. Particularly, the improvements by

our 2OL-LQR2 model regarding the SSE were naturally the least (or rather, the deteriora-

tions were the greatest) for the relatively simple ID 2 tasks, which were apparently very well

approximated by all the models considered. On the other hand, there were only six user

trajectories among all tasks with ID 4, 6, and 8, which 2OL-Eq approximated better than

our model in terms of SSE (on average of these tasks, our model reduced the SSE to 15.6%

of the respective value of 2OL-Eq).

Similar (albeit slightly weakened) results were observed with respect to the maximum error:

On average of all trials, the maximum distance between simulation and corresponding user

trajectory using our model was only 42% of the maximum distance using the 2OL-Eq model.

However, it is important to note that the simulation trajectories of both models were opti-

mized with respect to SSE rather than maximum error, that is, even better results regarding

only the maximum error may be achieved for each of the two models.

MinJerk (with extended end point from time tf as defined above) had much higher mean

and standard deviation values than 2OL-LQR2 (see Table 6.2), which is mainly due to the

different length of the correction phases that extremely bias the fit of MinJerk trajecto-

ries. In addition, the fixed method used to determine tf might not always yield the best

demarcation between the surge phase, which is approximated by MinJerk, and the neglected

correction phase.16 Both are also reasons why we could observe a ratio of the SSE value

15For the averaging process, we used the geometric mean in each case because, for example, two options

should be on average equivalent if each is twice as good as the other in one out of two cases. In fact, using

this geometric mean (as opposed to the arithmetic mean shown in Table 6.2), it makes no difference whether

the values are averaged before or after computing the respective ratio between two models.
16However, we do not expect an additional optimization of tf through an analogous parameter fitting,

which necessarily involves integer least squares, to generally produce significantly better results than our

model. For instance, the approximation of an asymmetric acceleration profile (which occurred in some cases,

see Figure 6.7) by a fully symmetric acceleration profile extended by zero cannot be highly accurate.

92 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

Compared Models
SSE Ratio Maximum Error Ratio

Mean Min Max Mean Min Max

All IDs
2OL-LQR2/2OL-Eq 0.1852 0.0021 4.1727 0.4196 0.0507 1.7854

2OL-LQR2/MinJerk 0.0951 0.0001 8.5251 0.3665 0.0166 2.2676

Only ID > 2
2OL-LQR2/2OL-Eq 0.1559 0.0029 1.7101 0.4044 0.0670 1.3937

2OL-LQR2/MinJerk 0.1510 0.0005 8.5251 0.4444 0.0300 2.2676

Table 6.3: Geometric mean, minimum, and maximum values of the SSE and maximum

error ratios between different models, either considering all trial trajectories or only those

from tasks with ID > 2.

using 2OL-LQR2 to the SSE value using MinJerk of 0.01% for some trial trajectories on the

one hand, while on the other hand there were user trajectories which the 2OL-LQR2 model

approximated 8.5-times worse than the MinJerk model. However, the average SSE ratio

of 2OL-LQR2 to MinJerk amounted to only 9.5%, i.e., the improvement of our model over

MinJerk was larger than that over 2OL-Eq.17

The results observed regarding the maximum error were little surprising: Here, the ratio of

2OL-LQR2 to MinJerk amounted to an average of 36.6%.

Most of these findings can also be seen in summarized form in Table 6.3.

In summary, our model approximated the trial trajectories of different tasks and from differ-

ent participants in most cases much better than both the 2OL-Eq and the MinJerk model.

Moreover, an average performance improvement could be clearly established: The (mean)

squared deviation between model trajectories and corresponding user trajectories18 was sig-

nificantly larger for both 2OL-Eq and MinJerk than for our model (on average more than

five times larger for 2OL-Eq and more than ten times larger for MinJerk), and also the

maximum deviation within a trial was on average about two to three times as large when

using one of the other two models.

6.2.3 Parameter Distribution

Our model does not only lead to a generally better approximation of user trajectories, but

also allows conclusions to be drawn from the optimal parameters about the abilities and

intentions of participants during task execution.

Figures 6.9a-6.9c (left) show the ranges of the three 2OL-LQR2 parameters k, d, and r,

optimized for the trial trajectories of all participants and all tasks with ID > 2, grouped

17However, this was mainly due to ID 2 tasks, which are comparatively poorly approximated by MinJerk:

Considering only tasks with ID > 2, the average SSE ratio of 2OL-LQR2 to MinJerk amounted to 15.1%,

while the average ratio of 2OL-LQR2 to 2OL-Eq amounted to 15.6%.
18Note that for any fixed user trajectory, all trajectories to be compared have the same length, i.e., an

improvement in SSE can also be interpreted as an average shorter distance between model and user trajectory.

6.2. MAIN RESULTS 93

1 2 3 4 5 6 7 8 9 10 11 12

User

0

100

200

300

400

500

k

2 4 6 8

ID

0

100

200

300

400

500

k

(a) Parameter k

1 2 3 4 5 6 7 8 9 10 11 12

User

0

10

20

30

40

50

d

2 4 6 8

ID

0

10

20

30

40

50

d

(b) Parameter d

1 2 3 4 5 6 7 8 9 10 11 12

User

10
-6

10
-4

10
-2

10
0

r

2 4 6 8

ID

10
-6

10
-4

10
-2

10
0

r

(c) Parameter r (logarithmic scale)

Figure 6.9: Parameters of our 2OL-LQR2 model, optimized for all considered trial trajecto-

ries of all participants and all tasks, grouped by participants (left, only ID 4, 6, and 8 tasks)

and by ID (right). In the plots for the parameter d, the five biggest outliers, which assumed

values between 58 and 181, were omitted for better clarity.

94 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

by participants.19 Indeed, different participants are characterized by differing parameter

sets. For example, participant 2 is characterized by high spring stiffness k, above-average

damping d, and very low jerk weight r. In contrast, participant 9 is characterized by very low

spring stiffness k, very low damping d, and very high jerk weight r. The differences between

such user-specific parameter values, however, strongly depend on the respective parameter:

While most participants have a pretty similar spring constant k, the damping factor d and

especially the jerk weight r (note the logarithmic scale) differ more clearly.

Remember that according to our definition of the “jerk” terms (jn)n∈{1,...,N−1}, a higher jerk

penalization forces less rapid changes in the control u = (un)n∈{1,...,N−1}. Since these control

values un correspond to the force applied by the user due to the used system dynamics (4.39),

the jerk weight r obtained from the parameter fitting process could be interpreted as the

effort the user is willing to put into the task (see discussion in Section 4.2.3). For example,

participant 9 could be regarded as rather lazy, while participant 2 might be most committed

to our pointing tasks.

Figures 6.9a-6.9c (right) illustrate the ranges for k, d, and r, optimized for the trial trajecto-

ries of all participants and all tasks, grouped by ID. All three parameters show characteristic

variations by ID.

The spring stiffness k increases considerably from ID 4 to ID 6, while on average there is little

difference between ID 2 and ID 4 tasks as well as between ID 6 and ID 8 tasks. The truth

is, however, that a meaningful interpretation of this observation is hardly possible. In par-

ticular, not even the effects of k on the course of the solution trajectory are well understood.

The reason for this is that, in contrast to pure motion dynamics models such as 2OL-Eq, our

model incorporates (apart from the parameter fitting) another optimization process for any

given parameter set Λ = (r, k, d), which leads to the respective used control sequence u∗. The

spring constant k therefore influences the state sequence x = (xn)n∈{1,...,N}, which is given

by (4.39) in our model, not only directly via the system matrix A but also indirectly via the

optimal control sequence u∗ (which additionally depends on d and r, further complicating

the total analysis). A plausible relationship between the stiffness k and some key properties

of the solution trajectory such as peak velocity, which, for instance, usually increases with

distance, can therefore not be inferred (in contrast to motion dynamics models including

nonlinear stiffness [49], for example).

Regarding the damping d, the observed growth in ID could possibly be logistic, but for the

same reason mentioned above it is difficult to interpret this effect within our model. How-

ever, the considerably lower damping in ID 2 tasks is consistent with the identified oscillatory

behavior of the participants (referring to the entire reciprocal movement sequence), which

results from the simplicity of such tasks.

These oscillations might also play a role in the large variance of r that we observed for ID 2

tasks. For larger IDs, however, r is virtually constant. We can thus conclude, that the effort

19The inclusion of ID 2 tasks had no qualitative effects, but only led to considerably more outliers due to

the underdetermination of the parameters in these simple tasks.

6.2. MAIN RESULTS 95

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0.1

-0.05

0

0.05

0.1
P

o
si

ti
o

n
 (

m
)

(a) Position Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

0

0.5

1

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-5

0

5

10

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-20

-10

0

10

20

C
o

n
tr

o
l

(m
/s

2
)

(d) Control Time Series

Figure 6.10: Mean trajectories are similarly well approximated by our 2OL-LQR2 model

as individual trial trajectories. [SSE(r, k, d) = 0.0046 with r = 8.51 · 10−7, k = 140.17,

d = 11.9; P1, ID 6 (765,12), mean trajectory]

the users are willing to put into the task essentially depends on the users themselves and

not on the difficulty of the task (apart from the irregularity observed for very simple tasks).

6.2.4 Mean Trajectory Analysis

In this section, we want to briefly compare the above presented results, which we obtained

from the application of the three considered models to trial trajectories, to those obtained

from the application to mean trajectories (see Section 5.2.2 for detailed explanation of these

trajectories).

First of all, for each model, the approximation of mean trajectories hardly differs qualita-

tively from that of trial trajectories. This is exemplarily shown in Figure 6.10, where we

applied our model to the mean trajectory corresponding to the trial trajectory from Fig-

ure 6.6. However, we are mainly interested in the characteristics of the mean trajectories

themselves, since we want to find out how informative a good approximation of these tra-

jectories is.

As can be seen in Figure 6.11, the differences between some trial trajectory and its corre-

sponding mean trajectory appear to be small at first glance. Looking more closely, however,

we find that most notably the second spike in the velocity time series is less clearly pro-

96 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
P

o
si

ti
o
n
 (

m
)

(a) Position Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

0

0.5

1

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-5

0

5

10

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

Figure 6.11: The trial trajectory (red line) from Figure 6.6 in direct comparison with its

corresponding mean trajectory (blue line), whose approximation by our model is shown in

Figure 6.10. Since the length of the mean trajectory corresponds to the length of the longest

respective trial trajectory, the target click time differs between both trajectories, which is why

we have drawn the target twice in the position time series (last two red error bars).

nounced (and thus the second period in the acceleration time series as well). Moreover,

the averaging process led to blurred acceleration profiles without abrupt twists and turns.20

We therefore conclude that the qualitative properties of typical user movements are not

completely lost but at least weakened through averaging.

This is also reflected in the quantitative analysis (see Tables 6.4 and 6.5):

The SSE of 2OL-LQR2 applied to mean trajectories was on average less than two-thirds of the

SSE of 2OL-LQR2 applied to trial trajectories, which suggests that mean trajectories are for

our model on average somewhat easier to approximate than “real” user trajectories. Similar

findings were observed for MinJerk, which was to be expected as the mean trajectories were

20Note that the previously depicted velocity and acceleration profiles of trial trajectories were smoothed

as well (in contrast to the respective position time series). The only difference in the derivative sequences is

therefore the preceding averaging process.

6.2. MAIN RESULTS 97

Model
SSE – Trial Trajectories SSE – Mean Trajectories

Mean SD SE Mean SD SE

2OL-LQR2 0.0265 0.0991 0.0011 0.0151 0.0130 0.0009

2OL-Eq 0.1121 0.1576 0.0018 0.1044 0.0685 0.0049

MinJerk 0.2572 0.5762 0.0066 0.1514 0.2263 0.0163

Table 6.4: Arithmetic mean, standard deviation (SD), and standard error (SE) of the SSE

values of each model, either applied to all trial trajectories or to all mean trajectories.

Compared Models
SSE Ratio – Trial Traj. SSE Ratio – Mean Traj.

Mean Min Max Mean Min Max

All IDs
2OL-LQR2/2OL-Eq 0.1852 0.0021 4.1727 0.1301 0.0121 0.7560

2OL-LQR2/MinJerk 0.0951 0.0001 8.5251 0.1340 0.0044 3.3348

Only ID > 2
2OL-LQR2/2OL-Eq 0.1559 0.0029 1.7101 0.1264 0.0296 0.3959

2OL-LQR2/MinJerk 0.1510 0.0005 8.5251 0.1210 0.0044 3.3348

Table 6.5: Geometric mean, minimum, and maximum values of the SSE ratios between

different models, each applied to either trial or mean trajectories, considering either all tasks

or only those with ID > 2.

smoothed by some SG filter and are thus advantageous for a model that is completely based

on maximum smoothness. For 2OL-Eq, however, hardly any differences could be observed

between the average approximation of trial and mean trajectories. Altogether, these findings

suggest (slightly) different model comparison results in terms of SSE, depending on whether

trial or mean trajectories are considered.

Moreover, in contrast to trial trajectories, for every mean trajectory an SSE improvement

of our model compared to 2OL-Eq could be observed, resulting in a maximum SSE ratio of

less than one. Additionally, the ratio of the SSE using 2OL-LQR2 to the SSE using 2OL-Eq

amounted to 13% on average (using the geometric mean), while for trial trajectories this

average ratio was 18.5%. Regarding the improvement over MinJerk, we could also observe

minor deviations from the results for trial trajectories, but in the opposite direction: For

mean trajectories, the average SSE ratio of 2OL-LQR2 to MinJerk was 13.4%, which means

a marginally lower improvement of our model compared to MinJerk than can be seen from

the trial trajectories (where the ratio was only 9.5%).

Similar effects were observed when considering only tasks with ID > 2: Here, the SSE of our

model made up on average 12.6% of the SSE of 2OL-Eq (15.6% for trial trajectories) and

12.1% of the SSE of MinJerk (15.1% for trial trajectories).

In addition, we were interested in the difference between the optimal parameters for indi-

vidual trials and those for mean trajectories.

To this end, we decided to group all parameter values from trials of the same participant with

98 CHAPTER 6. DESIGN OF THE COST FUNCTION AND RESULTS

0

50

100

150

200

250

k

(a) Parameter k

0

5

10

15

20

d

(b) Parameter d

10
-7

10
-6

10
-5

10
-4

r

(c) Parameter r (logarithmic scale)

Figure 6.12: The optimal parameters of our 2OL-LQR2 model for mean trajectories (green)

show clear similarities with the medians of the optimal parameters for the respective trial

trajectories (red). The damping d tends to be slightly overestimated in mean trajectories.

identical task condition and direction of movement. For each parameter, we then calculated

the median21 of each group and compared it to the parameter that fits to the corresponding

mean trajectory, i.e., the optimal parameter of our model applied to the trajectory that

consists of (arithmetic) mean values of exactly these grouped trial trajectories.

In Figure 6.12, both the median parameter values (red lines) and the parameter values for

the corresponding mean trajectories (green lines) are plotted for all participants and all tasks

with ID > 2.22 Here, both parameter values are shown directly on top of each other for each

of the resulting 144 groups (one for each combination of participant, task condition and

direction), which are sorted by ascending median parameter values.

For both the spring constant k and the jerk weight r, the two parameter values agree sur-

prisingly well in most cases. For the damping d, the damping factors that are optimal for

the mean trajectories tend to be a little higher than the respective median damping values.

Furthermore, the discrepancy between these pairs of comparable damping parameters tends

to increase the smaller their values become, with the smallest median damping not occurring

at all among the optimal damping factors for the mean trajectories. Nevertheless, the basic

tendency also matches well in terms of damping for both variants.

All in all, the results of our model comparison slightly differ depending on the type of tra-

jectories used, which in detail may lead to interpretations that are not directly transferable.

However, the main effect, i.e., the substantially better approximation of user trajectories by

our model than by 2OL-Eq and MinJerk, can be observed throughout.

21The use of the arithmetic mean instead of the median had little effect on the results discussed below,

but in some cases it led to unusually high parameter values (especially for r) due to the strong influence of

single outliers.
22We decided to omit ID 2 tasks since there are a lot of indications that the parameters are under-

determined in these cases and therefore not very meaningful.

Chapter 7

Modeling Reaction Time

In Chapter 6.2, we have shown that the 2OL-LQR2 variant of our algorithm approximates

both trial and mean trajectories sufficiently well. However, while typical pointing movements

involve an initial phase (reaction time phase) of variable length, in which the users

presumably have not yet processed the new target information and thus are at least not

moving directly towards the target (even though the upcoming target is basically known in

advance), we have eliminated these phases in all trajectories considered so far. As can be seen

in Figure 7.1 (right) using the example of a left movement of participant 5, our algorithm

with 2OL-LQR2 objective function is not able to reproduce such initial phases, which for

this specific trajectory leads to a more than 3.5-times higher SSE value than for the same

trajectory without initial phase (shown in Figure 7.1 (left)1). This means that in our previous

variant of the 2OL-LQR model, even with optimal choice of parameters Λ = (r, k, d), it is

not possible to reproduce movements that only “start” after an essential initial phase, i.e.,

that do not rush forward from the beginning. However, the use of a fixed reaction time

would not solve this problem, since the length of these initial phases varies greatly among

different users and even among different trials of the same user, even if sufficient “training

trials” of a previously unknown task have been carried out beforehand.2 For this reason, we

needed to adjust our cost function once again.

In particular, we introduced the parameter nδ ∈ {1, . . . , N} to describe the time step at which

the user mainly initializes its movement towards the target, i.e., the respective reaction time

step.3 Furthermore, we distinguished the jerk penalization weights rn depending on whether

n < nδ or n ≥ nδ applies: While in the latter case rn was set to the parameter r used so

far, we wanted to achieve rn ≈ cr for n ∈ {1, . . . , nδ − 1}, where c is a very large constant

1Here, the initial phase of the user trajectory, which was previously removed from every trial trajectory,

is additionally shown. For this reason, the simulation trajectory only starts at time (nδ − 1)h > 0, which is

indicated by a second initial point.
2This observation could, for example, be attributed to different levels of attention or commitment in

different trials [5].
3Note that the previous “definition” of this reaction time step from (5.7) is thus nullified.

99

100 CHAPTER 7. MODELING REACTION TIME

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o

si
ti

o
n

 (
m

)

Without Initial Phase

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o

si
ti

o
n

 (
m

)

With Initial Phase

(a) Position Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-2

-1.5

-1

-0.5

0

V
el

o
ci

ty
 (

m
/s

)

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-2

-1.5

-1

-0.5

0

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-20

-10

0

10

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-20

-10

0

10

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-20

-10

0

10

20

C
o

n
tr

o
l

(m
/s

2
)

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-10

-5

0

5

10

C
o

n
tr

o
l

(m
/s

2
)

(d) Control Time Series

Figure 7.1: While our 2OL-LQR2 model approximates trial trajectories starting at time step

nδ (dashed magenta lines) visibly well (left), its fit to entire trajectories including the initial

phase is clearly worse (right). [P5, ID 6 (1275,20), 30th movement to the left]

101

10 20 30 40 n 50 60 70 80 90

n

0

1

2

3

4

10
-5

Figure 7.2: The smoothed jerk weight sequence (rn)n∈{1,...,N} (blue line) first approximates

c · r (red line) and then rapidly drops down to r (green line), which is constantly assumed

from nδ. We used c = 100000 and the values of r and nδ originate from our approximation

of the trial trajectory depicted in Figure 7.3.

multiplication factor. In fact, we needed to implement a smoothed version of this piecewise

constant sequence of jerk weights c · r and r for some technical reasons.4 We thus defined

the jerk weights as

rn :=

{
f(n)r, if n ∈ {1, . . . , nδ − 1},
r, if n ∈ {nδ, . . . , N},

(7.1)

where

f(n) := exp

(
1

nδ − 1
− 1

nδ − n

)
(c− 1) + 1, n ∈ {1, . . . , nδ − 1}, (7.2)

is close to c for most of the time (see Figure 7.2).

The intrinsic jerk cost parameter r thus still indicates the weighting of smooth trajectories

relative to early target achievement, but only after an initial phase of nδ − 1 time steps in

which jerk is extremely penalized. The main reason for doing so was the assumption that in

such initial phases users are either not aware of the target position or they are temporarily

too exhausted to initiate the movement instantaneously. Whatever interpretation may ap-

ply, users have clearly no interest in changing their control extensively. Since in our model,

4Since the used least squares algorithm requires continuous parameters, arbitrarily small changes in nδ
must have an effect on the objective function in order to not get stuck for any initial parameter immediately.

We therefore decided to include nδ in the definition of the values that rn assumes for n < nδ as well.

102 CHAPTER 7. MODELING REACTION TIME

jerk corresponds to the differences between consecutive controls, a very high jerk penaliza-

tion during the initial phase (relative to the remaining jerk penalization) indeed creates an

incentive to largely maintain the initial control throughout.

In order to avoid conflicts of objectives, it is therefore logical to penalize the remaining

distance to target only after this initial phase, i.e., we set

Qn :=


0, if 1 ≤ n < nδ, 1 0 −1

0 0 0

−1 0 1

 , if nδ ≤ n ≤ N.
(7.3)

It remains to be clarified how to determine nδ:

One possibility would be to extract it directly from the respective user trajectory, e.g.,

to define it as the time step at which a given small fraction δ of the maximum assumed

acceleration is covered first (as we did in eliminating these initial phases above, see (5.7)).

However, we decided to optimize nδ together with the remaining parameters within our least

squares parameter fitting process in order to maintain a procedure that does not require

prior analysis of user trajectories, and also to provide a little more freedom to our system.5

Setting c = 100000, the resulting variant of our 2OL-LQR model (4.47), which we denote as

2OL-LQR3, thus has the following objective function:

JN(x, u) =

nδ−1∑
n=1

f(n)rj2
n +

N∑
n=nδ

(T − pn)2 +
N−1∑
n=nδ

rj2
n,

f(n) = 99999 exp

(
1

nδ − 1
− 1

nδ − n

)
+ 1, n ∈ {1, . . . , nδ − 1}.

(7.4)

We again use this cost structure within our 2OL-LQR algorithm described in Section 5.3,

where nδ is additionally optimized (as a continuous variable, rounded afterwards), i.e.,

Λ = (r, k, d, nδ) ∈ R4 with r, k, d > 0 and 1 ≤ nδ ≤ N .6 The results are discussed in the

following.

Results

Using the 2OL-LQR3 model, Figure 7.3 shows the approximation of the same randomly

selected trial trajectory (including initial phase) we previously tried to reproduce by our

2OL-LQR2 model (see Figure 7.1).

5Note that any general criterion for determining nδ from the user trajectory would be quite arbitrary and

thus not more plausible than using some parameter fitting process.
6Here, the initial parameter sets Λ0 were selected as follows: The parameters r, k, d were randomly chosen

from the continuous uniform distribution on the interval between 0 and ςr = 10−10 respective ςk = ςd = 100,

and the parameter nδ was chosen sequentially equidistant between 1 and bN3 e, which has proven to be useful.

103

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o

si
ti

o
n

 (
m

)

(a) Position Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-2

-1.5

-1

-0.5

0

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-20

-10

0

10

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

(c) Acceleration Time Series

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-50

0

50

C
o

n
tr

o
l

(m
/s

2
)

(d) Control Time Series

Figure 7.3: The additional parameter nδ of our 2OL-LQR3 model, represented by dashed

magenta lines, allows to model individual movements including reaction time.

[SSE(r, k, d, nδ) = 0.0033 with r = 4.5 · 10−10, k = 229.72, d = 17.4, nδ = 45 ∼= 88 ms;

P5, ID 6 (1275,20), 30th movement to the left]

Apparently, the enormous jerk penalization during the initial phase, i.e., up to nδ − 1,

leads to a constant control which in turn prevents changes in acceleration. Since the initial

acceleration and the initial velocity are (almost) zero, both velocity and position also remain

unchanged up to the time step nδ − 1. Hence, we can actually interpret nδ as reaction time

in the sense of the time step at which the motion is initiated by the controller.

Regarding the approximation of user trajectories, 2OL-LQR3 has two main advantages:

First, the additional parameter leads to a much better approximation of the complete move-

ment including both initial phase and correction phase, qualitatively as well as quantitatively

(e.g., for the user trajectory shown in Figure 7.1 and Figure 7.3, the SSE obtained when using

2OL-LQR3 accounts for just 3.8% of the SSE obtained when using 2OL-LQR2). In particu-

lar, 2OL-LQR3 also succeeds in reproducing details of both the position and the (smoothed)

velocity time series: Both the peak velocity and the second submovement, which caused

the most difficulties for 2OL-LQR2, are much better approximated here, although still not

absolutely perfect.

Second, the jerk weight r is more meaningful in 2OL-LQR3 because it is used there only for

104 CHAPTER 7. MODELING REACTION TIME

the actual movement: Since motion delays are mainly determined by nδ, the parameter r

can thus be interpreted as the effort spent after the movement has been initiated.

However, looking closely at the acceleration at the beginning, we found that our model

initiates the movement later than the user but with faster increasing acceleration. Similar

findings were also observed for all other trajectories investigated.

The reason for this phenomenon is quite simple: The parameter nδ is not optimized to

approximate only the initial phase particularly well, but to maximize the fit of the entire

position time series. Depending on the characteristics of the individual movement, the

optimizer therefore does not necessarily select nδ as the “real” reaction time but only loosely

corresponding to it. In our case, for example, nδ seems to be chosen slightly too large7 in

order to compensate for the acceleration, which apparently rises too fast at the beginning

due to our used system dynamics (4.39).8

In summary, the additional parameter nδ allows not only to model existing reaction times

sufficiently, but also to extend the initial phases in order to better approximate the user tra-

jectory in general, even if it loses any reasonable interpretation. Despite the many advantages

of the 2OL-LQR3 model, it is therefore advisable to apply 2OL-LQR2 to user trajectories

instead, at least for a starting point, to avoid some inexplicable “over-fitting”, especially if

it is not clear whether such initial phases are present in the user trajectory at all.

7Note that in Figure 7.3, where we optimized the reaction time step together with the other parameters,

nδ = 45 applies, whereas in Figure 7.1, where we determined the duration of the initial phase from the trial

trajectory using (5.7), nδ = 23 applies.
8This is probably because in the second-order lag (2OL), on which our dynamics is based, the control is

necessarily proportional to the acceleration (except for additive terms such as spring stiffness and damping).

The use of higher-order dynamics, e.g., based on a third-order lag, would therefore be an interesting approach

for the future.

Chapter 8

Conclusion

At first glance, the execution of a mouse movement seems to be a very simple and straight-

forward action that we practice day after day without even thinking about it. However, it is

the incredible and still only partially understood complexity of the human brain that makes

it extremely difficult to predict the behavior of computer users. All models that attempt

to capture human movements therefore work with simplifications, which, depending on the

field of research, either concern the biomechanical apparatus, the neuro-muscular system, or

the intentions and objectives of the users.

While in the first part of this thesis we presented (besides some theoretical basics) some of

these models of motion dynamics, the main concern was to bring these different approaches

together in a general framework. The LQR scheme, which already had been applied to point-

ing tasks by Todorov [67], albeit in a substantially extended variant, proved to be suitable for

this purpose: Here, we were able to maintain the second-order linear dynamics of the 2OL-Eq

using equality constraints and simultaneously take the user objectives that we assumed for

pointing tasks, namely accuracy maximization, time minimization, and jerk minimization,

into account. Moreover, we decided to include three easily interpretable system parameters:

the spring stiffness k, the damping factor d, and the jerk weight r.

We were able to derive an analytical solution for our 2OL-LQR model, which yields the opti-

mal trajectory for any task configuration and parameter set. In order to check the suitability

of our model, we extended it by a least squares parameter fitting process. In the resulting

2OL-LQR algorithm, we wanted to find the parameter set for which some solution trajectory

best approximates a given experimentally observed user trajectory in terms of SSE.

In an iterative design process, we were able to illustrate the problems (missing correction

phase, implausible physical behavior) that arise when the positional error is penalized only

at the end of the movement, as suggested by Todorov [67]. Furthermore, we succeeded in

modifying the cost structure in such a way that both the trial trajectories we extracted from

Müller’s Pointing Dynamics Dataset [50] and the resulting mean trajectories were visibly

well approximated by our model. In contrast, as was shown, two much-cited models from

literature failed to do so: While MinJerk, similar to our first variant 2OL-LQR1, could

105

106 CHAPTER 8. CONCLUSION

not reproduce the correction phases of user trajectories, for 2OL-Eq it was the acceleration

being necessarily proportional to the remaining distance that prevented a sufficiently good

approximation. Moreover, the SSE (and also the maximum error) of our model was on

average much lower than that of both 2OL-Eq and MinJerk.

We can thus conclude that our proposed 2OL-LQR2 model is generally more capable of

describing user movements and in particular of reproducing concrete user trajectories in the

pointing tasks under consideration. Moreover, unlike Todorov’s model, no final time has to

be specified in order to obtain a reasonable approximation, which increases the applicability

of our model, since in most real-world pointing tasks there exists no pre-specified temporal

boundary for users, but their personal skills are the time-limiting factor. In addition to that,

our algorithm provides a further benefit: As we have shown, it is possible to characterize

different users by different stiffness and damping parameters and even draw conclusions

about the effort a particular user put into the task, which might provide new insights into

the complex interrelationships of human behavior.

Nevertheless, it is important to remember that our model (like most others) is based on some

extreme simplifications of reality: In particular, the assumption of linear system dynamics

and quadratic costs and the absence of state and control constraints, both of which result

from the use of the LQR framework, are the main limitations of our model. For example,

they prevent the implementation of constant costs that only occur outside the target box

as well as some limitation of the applied force or of the admissible mouse cursor positions

of a user. Moreover, in contrast to MinJerk, for example, it cannot be guaranteed that the

target is actually reached, since the only requirement for the solution trajectory (besides the

system dynamics and the initial conditions) is that it minimizes the total cost function, which

also includes other objectives in addition to endpoint accuracy. According to our experience,

however, the target has always been reached. In addition, the fact that our objective function

is directly derived from the task instructions suggests that our model trajectories do not only

outperform those of 2OL-Eq and MinJerk in terms of SSE and maximum error, but they are

also qualitatively meaningful as they fit to the original task.

We also compared all three models with respect to their approximation of mean trajectories.

Although the results slightly differed from those obtained with trial trajectories in some

places, the basic effects were the same. We therefore conclude that mean trajectories seem

to be a promising tool to get a first insight into the possibilities and limitations of a model,

especially in case of very high costs for the approximation of each single trial trajectory

(e.g., due to a very large experimental dataset and/or a time-consuming computation of the

simulation trajectories). However, final reliable statements on a model’s approximation of

human movements should better be made on the basis of unaveraged user trajectories.

Furthermore, we had a closer look at the phenomenon of reaction times. As we have shown,

our 2OL-LQR2 model is not able to produce an initial phase during which the mouse cursor

essentially remains at the initial position. For this reason, we presented the 2OL-LQR3

107

variant of our model, which is capable of doing that. Nonetheless, we recommend to use 2OL-

LQR2 first, particularly if there are no clear reaction times in the user trajectories, because

2OL-LQR3 is in danger of always obtaining better approximations by arbitrarily adjusting

the additional parameter nδ, whereby all parameters lose their meaningful interpretation.

However, there are still some outstanding issues:

An interpretation of the observed impact of the task ID on the parameters as well as a basic

understanding of the effects of these parameters on the optimal trajectory (which is any-

thing but trivial due to the unclear dependencies between the parameters and the optimal

control) is still pending. In addition, we suspect that despite the small number and easy

interpretability of the parameters, there is still some correlation between them. A principal

component analysis (PCA) could provide decisive insights in this respect.

Moreover, it would be of interest to apply our algorithm to user trajectories that do not

originate from a reciprocal pointing task but from a task in which the targets are completely

unknown to the users in advance (maybe also in 2D or 3D and/or with some via-points

included). Regarding the characterization of users by parameter sets, an experiment with

considerably more participants could also provide additional insights.

Furthermore, the deterministic approach of our model did not allow for a meaningful con-

sideration of visual or proprioceptive perception. The next logical step would be to extend

our model to include stochastic error terms and to distinguish between observed output and

actual state of the system, analogously to Todorov’s extended LQG model. This would also

weaken our model assumption of completely optimal user behavior, which does not exactly

correspond to reality.

Thanks to our extremely extensible framework, however, countless other modifications are

conceivable as well, e.g., using higher-order system dynamics, replacing the jerk costs by

some other effort-related cost terms, or penalizing the movement duration independent of

the target accuracy.

In summary, we strongly believe that the LQR framework, which has received far too little

attention in the past, represents a promising approach for the research on human-computer

interactions. We also hope that with our application to pointing tasks we can contribute a

small part to a better understanding of these interactions – which, possibly, in the future

will help to construct more intuitive interfaces between human and machine, of which we

cannot even imagine today whether “anyone would want them in their home”.

108 CHAPTER 8. CONCLUSION

Bibliography

[1] Z. Artstein. Discrete and continuous bang-bang and facial spaces or: Look for the

extreme points. SIAM Review, 22(2):172–185, 1980.

[2] K. J. Åström. Introduction to Stochastic Control Theory. Dover Books on Electrical

Engineering. Dover Publications, 2012.

[3] Y. Bard. Nonlinear Parameter Estimation. Academic Press, New York, NY, 1974.

[4] S. Baron and D. L. Kleinman. Manned Vehicle Systems Analysis by Means of Modern

Control Theory. Number Bd. 1753 in NASA contractor report. National Aeronautics

and Space Administration, 1971.

[5] S. Barthelemy and P. Boulinguez. Manual reaction time asymmetries in human subjects:

the role of movement planning and attention. Neuroscience Letters, 315(1):41–44, 2001.

[6] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and

Applied Mathematics, 1996.

[7] A. E. Bryson and Y.-C. Ho. Applied optimal control: optimization, estimation, and

control. Hemisphere Pub. Corp.; distributed by Halsted Press Washington: New York,

rev. printing. edition, 1975.

[8] D. Bullock and S. Grossberg. Neural dynamics of planned arm movements: Emergent

invariants and speed-accuracy properties during trajectory formation. In Neural Net-

works and Natural Intelligence, pages 553–622. Massachusetts Institute of Technology,

Cambridge, MA, USA, 1988.

[9] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2016.

[10] V. C. K. Cheung, A. d’Avella, M. C. Tresch, and E. Bizzi. Central and sensory con-

tributions to the activation and organization of muscle synergies during natural motor

behaviors. Journal of Neuroscience, 25(27):6419–6434, 2005.

[11] E. M. Connelly. A control model: Interpretation of fitts’ law. In Twentieth Annual

Conference on Manual Control June 12-14, 1984 Ames Research, pages 621–642, 1984.

109

110 BIBLIOGRAPHY

[12] R. Costello. The surge model of the well-trained human operator in simple manual

control. IEEE Transactions on Man-Machine Systems, 9(1):2–9, 1968.

[13] R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. I. Interscience, 1st

english edition, 1953.

[14] E. R. F. W. Crossman and P. J. Goodeve. Feedback control of hand-movement and

fitts’ law. The Quarterly Journal of Experimental Psychology, 35(2):251–278, 1983.

[15] Datareportal, Hootsuite, and We Are Social. Digital 2019: Global digital overview.

https://datareportal.com/reports/digital-2019-global-digital-overview

(accessed: 2019-07-10).

[16] J. Diedrichsen, R. Shadmehr, and R. B. Ivry. The coordination of movement: optimal

feedback control and beyond. Trends in Cognitive Sciences, 14(1):31–39, 2010.

[17] J. J. DiStefano, A. R. Stubberud, and I. J. Williams. Schaum’s outline of theory and

problems of feedback and control systems: continuous (analog) and discrete (digital).

Schaum’s outline. McGraw-Hill, New York, NY, 2nd edition, 1995.

[18] Y. Dodge. Kolmogorov–Smirnov Test, pages 283–287. Springer New York, New York,

NY, 2008.

[19] F. C. Donders. On speed of mental processes. Acta psychologica, 30:412–31, 02 1969.

[20] D. Elliott, W. Helsen, and R. Chua. A century later: Woodworth’s (1899) two-

component model of goal-directed aiming. Psychological bulletin, 127:342–357, 06 2001.

[21] E. Fernández-Cara and E. Zuazua. Control theory: History, mathematical achievements

and perspectives. Bolet́ın de la Sociedad Española de Matemática Aplicada, 26, 79-140.,

2003.

[22] P. M. Fitts. The information capacity of the human motor system in controlling the

amplitude of movement. Journal of Experimental Psychology, 47(6):381–391, 1954.

[23] T. Flash and N. Hogan. The coordination of arm movements: An experimentally

confirmed mathematical model. Journal of neuroscience, 5:1688–1703, 1985.

[24] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the

analysis of variance. Journal of the American Statistical Association, 32(200):675–701,

1937.

[25] K.-C. Gan and E. R. Hoffmann. Geometrical conditions for ballistic and visually con-

trolled movements. Ergonomics, 31(5):829–839, 1988. PMID: 3402428.

https://datareportal.com/reports/digital-2019-global-digital-overview

BIBLIOGRAPHY 111

[26] J. Gori, O. Rioul, and Y. Guiard. To miss is human: Information-theoretic rationale for

target misses in fitts’ law. In CHI 2017 Conference on Human Factors in Computing

Systems, pages 260–264, 05 2017.

[27] J. Gori, O. Rioul, and Y. Guiard. Speed-accuracy tradeoff: A formal information-

theoretic transmission scheme (fitts). ACM Transactions on Computer-Human Inter-

action, 25:1–33, 09 2018.

[28] L. J. Grady and J. R. Polimeni. Discrete Calculus: Applied Analysis on Graphs for

Computational Science. Springer London, 2010.

[29] R. Granit. Receptors and sensory perception. Yale University Press, 1955.

[30] L. Grüne. Mathematische Kontrolltheorie (Vorlesungsskript). Fakultät für Mathematik

und Physik, Universität Bayreuth, 08 2018.

[31] B. Hoff. A model of duration in normal and perturbed reaching movement. Biological

Cybernetics, 71(6):481–488, 10 1994.

[32] B. Hoff and M. A. Arbib. Models of trajectory formation and temporal interaction of

reach and grasp. Journal of Motor Behavior, 25(3):175–192, 1993. PMID: 12581988.

[33] S. W. Keele. Movement control in skilled motor performance. Psychological bulletin,

70(6p1):387, 1968.

[34] W. Ki Na and B. Gou. Feedback-linearization-based nonlinear control for pem fuel cells.

Energy Conversion, IEEE Transactions on, 23:179–190, 04 2008.

[35] D. L. Kleinman. Optimal control of linear systems with time-delay and observation

noise. IEEE Transactions on Automatic Control, 14(5):524–527, 10 1969.

[36] D. L. Kleinman, S. Baron, and W. H. Levison. A control theoretic approach to manned-

vehicle systems analysis. IEEE Transactions on Automatic Control, 16(6):824–832, 12

1971.

[37] T. O. Kv̊alseth. An alternative to fitts’ law. Bulletin of the Psychonomic Society,

16(5):371–373, 11 1980.

[38] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. John Wiley & Sons,

Inc., New York, NY, USA, 1972.

[39] C. L. MacKenzie and T. Iberall. The Grasping Hand. Advances in Psychology. Elsevier

Science, 1994.

[40] I. S. MacKenzie. Fitts’ law as a research and design tool in human-computer interaction.

Human-Computer Interaction, 7(1):91–139, 1992.

112 BIBLIOGRAPHY

[41] J. C. Maxwell. I. on governors. Proceedings of the Royal Society of London, 16:270–283,

1868.

[42] D. T. McRuer and H. R. Jex. A review of quasi-linear pilot models. IEEE Transactions

on Human Factors in Electronics, HFE-8(3):231–249, 09 1967.

[43] D. T. McRuer and E. S. Krendel. Mathematical Models of Human Pilot Behavior.

Number Nr. 188-196 in Mathematical Models of Human Pilot Behavior. North Atlantic

Treaty Organization, Advisory Group for Aerospace Research and Development, 1974.

[44] D. T. McRuer, W. Reisener, E. S. Krendel, and D. Graham. Human Pilot Dynamics

in Compensatory Systems: Theory, Models, and Experiments with Controlled Element

and Forcing Function Variations. British Library Lending Division, 07 1965.

[45] D. E. Meyer, R. A. Abrams, S. Kornblum, C. E. Wright, and J. E. Keith Smith. Optimal-

ity in human motor performance: Ideal control of rapid aimed movements. Psychological

review, 95:340–370, 08 1988.

[46] D. E. Meyer, J. E. Keith Smith, S. Kornblum, R. A. Abrams, and C. E. Wright. Speed-

accuracy tradeoffs in aimed movements: Toward a theory of rapid voluntary action.

Attention and Performance XIII, 01 1990.

[47] R. G. Miller. Simultaneous Statistical Inference. Springer-Verlag,, New York, 2nd

edition, 1981.

[48] P. Morasso. Spatial control of arm movements. Experimental brain research, 42(2):223–

227, 1981.

[49] D. Mottet and R. J. Bootsma. The dynamics of goal-directed rhythmical aiming. Bio-

logical Cybernetics, 80(4):235–245, 04 1999.

[50] J. Müller, A. Oulasvirta, and R. Murray-Smith. Control theoretic models of pointing.

ACM Trans. Comput.-Hum. Interact., 24(4):27:1–27:36, 08 2017.

[51] A. D. Nordin, W. Rymer, A. A. Biewener, A. Schwartz, D. Chen, and B. F. Horak.

Biomechanics and neural control of movement, 20 years later: What have we learned

and what has changed? Journal of NeuroEngineering and Rehabilitation, 14, 12 2017.

[52] M. Omrani, M. T. Kaufman, N. G. Hatsopoulos, and P. D. Cheney. Perspectives on

classical controversies about the motor cortex. Journal of Neurophysiology, 118(3):1828–

1848, 2017. PMID: 28615340.

[53] G. O’Shea and T. R. Bashore, Jr. The vital role of the american journal of psychology

in the early and continuing history of mental chronometry. The American Journal of

Psychology, 125(4):435–448, 2012.

BIBLIOGRAPHY 113

[54] G. Padfield and B. Lawrence. The birth of flight control: An engineering analysis of

the wright brothers’ 1902 glider. The Aeronautical Journal, 107:697–718, 12 2003.

[55] R. Plamondon. A kinematic theory of rapid human movements: Part iii. kinetic out-

comes. Biological Cybernetics, 78(2):133–145, 02 1998.

[56] R. Plamondon and A. Alimi. Speed/accuracy trade-offs in target-directed movements.

The Behavioral and brain sciences, 20:279–303; discussion 303, 07 1997.

[57] N. Qian, Y. Jiang, Z.-P. Jiang, and P. Mazzoni. Movement duration, fitts’s law, and

an infinite-horizon optimal feedback control model for biological motor systems. Neural

Computation, 25:697–724, 2013.

[58] D. Rey and M. Neuhäuser. Wilcoxon-signed-rank test. In M. Lovric, editor, Interna-

tional Encyclopedia of Statistical Science, pages 1658–1659, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

[59] M. J. E. Richardson and T. Flash. Comparing smooth arm movements with the two-

thirds power law and the related segmented-control hypothesis. Journal of Neuroscience,

22(18):8201–8211, 2002.

[60] J. S. Rustagi. Chapter ii. classical variational methods. In Variational Methods in

Statistics, volume 121 of Mathematics in Science and Engineering, pages 16–45. Elsevier,

1976.

[61] A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified

least squares procedures. Analytical chemistry, 36:1627–1639, 07 1964.

[62] R. A. Schmidt and T. D. Lee. Motor Control and Learning: A Behavioral Emphasis.

Human Kinetics, 5th edition, 2005.

[63] R. Shadmehr. Control of movements and temporal discounting of reward. Current Opin-

ion in Neurobiology, 20(6):726–730, 2010. Motor systems, Neurobiology of behaviour.

[64] R. Shadmehr, J. J. Orban de Xivry, M. Xu-Wilson, and T.-Y. Shih. Temporal dis-

counting of reward and the cost of time in motor control. Journal of Neuroscience,

30(31):10507–10516, 2010.

[65] T. Söderström. Linear Quadratic Gaussian Control, pages 319–365. Springer London,

London, 2002.

[66] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems.

Springer-Verlag, Berlin, Heidelberg, 2nd edition, 1998.

[67] E. Todorov. Studies of goal-directed movements. Massachusetts Institute of Technology,

1998.

114 BIBLIOGRAPHY

[68] E. Todorov and M. I. Jordan. Optimal feedback control as a theory of motor coordina-

tion. Nature Neuroscience, 5:1226–1235, 2002.

[69] A. T. Welford. The measurement of sensory-motor performance : Survey and reappraisal

of twelve years’ progress. Ergonomics, 3(3):189–230, 1960.

[70] A. T. Welford, A. H. Norris, and N. W. Shock. Speed and accuracy of movement and

their changes with age. Acta Psychologica, 30:3–15, 1969.

[71] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–

83, 1945.

[72] B. Ziebart, A. Dey, and J. A. Bagnell. Probabilistic pointing target prediction via

inverse optimal control. In Proceedings of the 2012 ACM international conference on

Intelligent User Interfaces - IUI ’12. ACM Press, 2012.

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht ander-

weitig zu Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel ver-

wendet habe.

Sämtliche wissentlich verwendete Textausschnitte, Zitate oder Inhalte anderer Verfasser wur-

den ausdrücklich als solche gekennzeichnet.

, den

Ort Datum Unterschrift

	List of Tables
	List of Figures
	1 Introduction
	2 Control Theoretic Basics
	2.1 Continuous Time
	2.2 Discrete Time

	3 Human Motor Control Models
	3.1 Fitts' law
	3.2 Models of Motion Dynamics
	3.2.1 1OL-Eq
	3.2.2 2OL-Eq
	3.2.3 Other Models

	3.3 Optimization-Based Models
	3.3.1 Minimum-Jerk Model

	4 2OL-LQR
	4.1 Linear-Quadratic Regulator (LQR)
	4.2 Modifications and Application to Pointing Tasks
	4.2.1 Pointing Tasks
	4.2.2 System Dynamics
	4.2.3 Optimality Criteria
	4.2.4 2OL-LQR and its Analytical Solution

	4.3 A Few Generalizations
	4.3.1 Extension to Higher Dimensions
	4.3.2 Extension to Via-Point Tasks

	5 Parameter Fitting Process
	5.1 Least Squares Parameter Fitting
	5.2 User Trajectories
	5.2.1 Pointing Dynamics Dataset
	5.2.2 Further Processed Trajectories

	5.3 2OL-LQR Algorithm

	6 Design of the Cost Function and Results
	6.1 Variants of 2OL-LQR
	6.1.1 2OL-LQR1
	6.1.2 2OL-LQR2

	6.2 Main Results
	6.2.1 Qualitative Comparisons
	6.2.2 Quantitative Comparisons
	6.2.3 Parameter Distribution
	6.2.4 Mean Trajectory Analysis

	7 Modeling Reaction Time
	8 Conclusion
	Bibliography

