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Chapter 1

Introduction

The following work is a continuation of my Bachelors Thesis and serves as a preliminary
study for a subsequent doctoral dissertation. As such it is concerned with providing a solid
foundation for further research and a generalization of the models studied during my bach-
elors degree. It is my belief that the results of this work will also aid a number of biological
and physical research projects, which could benefit from the numerical and computational
improvements that will be presented. My aim for this thesis is to introduce a general model
for arbitrary TASEP networks as well as an array of solution methods for these. These
methods will range from an exact solution, except for errors made by numerical solvers, to
very simple approximations. Another generalization that was achieved is the calculation of
solutions to arbitrary networks.

This work is part of a research grant by the DFG and under the supervision of Prof.
Thomas Kriecherbauer and Prof. Lars Grüne. I want to express my gratitude towards them
for their continued support and encouragement during my time working on this problem.
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Chapter 2

Models and Notation

2.1 The TASEP Model

Definition

The TASEP (totally asymmetric simple exclusion process) and ASEP (asymmetric simple
exclusion process) are used to model the stochastic movement of particles on a directed
graph consisting of N vertices M and edges. It was originally introduced to model the
movement of ribosomes along a one dimensional chain of mRNA base pairs by MacDonald
and Gibbs [1]. It has since found usage in simulations of pedestrian and vehicular traffic [2] [3]
as well as simulation of cellular automata. The term TASEP does not describe one specific
mathematical model and as such a handful of different interpretations have been developed
over the years. In our model each node can only be occupied by a single particle or be empty.
This property is fundamental to all TASEP and ASEP systems and is found across basically
all works regarding this topic. The dynamics of the system we are modeling in this work
arise from assigning an independent random clock with a Poisson distribution to each edge.
In general the laws of movement in the chain can be understood as follows. If the node i
is occupied and the connected j node is empty then a jump occurs once the corresponding
clock rings. If we assume τi to denote if the node with index i is occupied and ξi if it is
empty, we can schematically describe situations in which jumps can and cannot occur as
follows.

τi ξj ξi τj
Clock Rings

In this case a jump can occur. The three remaining cases prohibit a jump, these are
pictured below.
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Clock Rings

In these cases, a jump cannot happen. In the upper two cases it is of course because
there exist no particles that could jump into the adjacent node. In the lower case it is
because the adjacent node is already occupied and thus the particle in node i cannot move
into node j. This is different from the model used in [2] for example, where the movement of
all particles is applied simultaneously. This leads to different dynamics of the systems, one
main difference being the formation of particle chains that move through the lattice as one
unbreakable unit in the case of global updates. In our case such chains cannot occur. This
is because of two reasons. Firstly if the node to which the connection leads is occupied when
the clock rings, a jump cannot happen, thus only the leading particle of a chain can jump,
while the rest of the chain stays in its original position. Secondly while simultaneous jumps
can occur, these events represent a null set. This entails that the solution is not influenced
by them.

To allow for particles to flow through the lattice we have to make an addition to the
model. For this imagine two infinite reservoirs. One of which is always filled completely and
particles can enter into a node i if it is empty and a corresponding clock rings, the other
one is an empty one, into which particles can leave the lattice under the same constraints.
In the figure below a simple one dimensional chain is portrayed. This lattice configuration
could be used to model mRNA translation for example. The arrows not connected to a node
on one side symbolize the connections from the infinitely filled as well as into the infinitely
empty reservoirs.

i = 2 i = 1 i = 0

Figure 2.1: A representation of a lattice with 3 nodes, which particles can enter in node 2
and leave in node 0

Our interest now lies in the movement of particles along this chain. However, all move-
ment along the lattice is stochastic in nature. This means that we can analyze either the
behavior of the paths of the markov-chain, that means the movement of individual particles,
or the probability distribution for occupation of the vertices of the graph. In this work we
are concerned with the expected values of occupation as well as the probability distribution
of the network states. As such the paths of the markov-chain will not be discussed fur-
ther, additional research into this topic was done by Grüne, Kriecherbauer and Margaliot
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in [4]. Going further we will denote the node with index i being in the occupied state at
time t by τi(t). Analog to this the empty state will be written as ξi(t). We will write the
expected value of node i being occupied as ⟨τi⟩(t). This notation will be expanded later to
accommodate more complex lattices and expected values for combinations of nodes. The
question that now arises is how the expected value of occupancy can be calculated. For
this we have to introduce a way to describe movement in probabilistic terms as well as a
way to encode every possible lattice configuration. A lattice configuration or lattice state is
a specific arrangement of particles on the nodes of the lattice. For this we employ binary
numbers with a 1 as the digit at position i representing τi and a 0 at position j representing
ξj. For example in the lattice above, the state in which node 0 and node 1 are occupied with
node 2 being empty, would be enumerated by (011)2 = (3)10. This way we can enumerate all
possible 2N states into binary numbers with N bits. We can then find every possible state
transition and the corresponding particle exchange. Graphically these can be expressed in
the following way.

000

100 001

101 010

110 011

111

In the above figure, every possible state transition is marked between the two correspond-
ing state numbers in base 2.

2.1.1 Preliminary Definitions

It is our aim to rigorously describe the dynamics of TASEP and ASEP. As such a few basic
definitions are needed.

Definition 2.1.1. A Directed Graph is a pair G = (V,E) where V ⊂ N is a set of vertices
and E is a set of edges, which are ordered pairs of distinct vertices, such that:
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E ⊆ {(i, j)|(i, j) ∈ V 2, i ̸= j}.

In our case we enumerate the nodes starting from 0 and ending at N − 1.

Definition 2.1.2. A Weighted Directed Graph or a Directed Network is a graph G = (V,E)
where a weight gi,j ∈ R≥0 is assigned to each edge (i, j) ∈ E of the graph. The weight of the
edge (i, j) is denoted as gi,j.

Note: In this work we will use the terms ”node” and ”vertex” interchangeably. In general
we are interested in adjacent vertices, as movement can only occur if two nodes are connected.
For this we define the so called adjacency Matrix in the following way.

Definition 2.1.3. A matrix A ∈ RN×N is called adjacency matrix for a directed network
G = (V,E) if the entries ai,j of the Matrix are of the form

ai,j =

{
gi,j (i, j) ∈ E

0 otherwise

It follows immediately that the number of nonzero entries of this adjacency matrix is
equal to the number M of edges in the Network. Furthermore we define an induced subgraph
as follows.

Definition 2.1.4. An induced subgraph gk = (Ṽ , Ẽ) with the index k ∈ N with 0 ≤ k ≤ 2N

is a subset of a graph G = (V,E) with N vertices if it satisfies the following conditions.
1. V ∋ i ∈ Ṽ , if the i− th digit of the binary representation of k is equal to 1
2. (i, j) ∈ Ẽ, if {i, j} ⊂ Ṽ .

As was alluded to earlier, the movement of particles is governed by poisson-processes
attached to each edge. These are all independent in our case. This simply means, that every
edge is equipped with a unique process, which is not dependent on any other attributes of
the system.

Definition 2.1.5. A discrete random variable X has a poisson distribution, with a parameter
or rate λ ∈ R≥0 if it has a probability mass function given by:

f(k;λ) = P(X = k) =
λke−λ

k!

where k denotes the number of occurrences.

Equipped with these definitions we can move on to discussing the different approaches
of describing the dynamics of a TASEP or ASEP system.
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2.1.2 The Master Equation

TASEP can be understood as a stochastical process, which describes the movement of parti-
cles subject to Poisson processes attached to connections between nodes. Since these move-
ments change the state of the system, different sequences of these ”clocks” ringing will result
in different paths of the system through the state space. This allows us to formulate a
probability measure, which describes the distribution of paths on the state space. In other
words, the measure describes how many of the paths are currently located in some state.
Since the exact description of such systems is not directly related to the results presented
in this work we will not go into further detail here. A more rigorous examination of this
approach to TASEP systems can be found in [4], while stochastic processes are more thor-
oughly discussed in [?](hier noch Lehrbuch verweis). However, the Kolmogorov Equations
for continuous time Markov Processes, which TASEP is an example of, allow us to formulate
a system of differential equations, that describes the evolution of the probability measure of
the paths over time. In particular, the Kolmogorov backward equation is also known as the
Master Equation for these systems. The master equation is dependent on the transition rate
matrix of the markov process. In our case, this matrix is comprised of the Poisson rates of
the connections of the system. We will motivate the derivation of the master equation in
the following section. The enumeration of the states is carried over from earlier. The rates
of the Poisson processes are written as gij for the internal rates from node i to node j as
well as α and β for the entry and exit rate respectively. For example, we can now assume,
that the system described in figure 2.1 is in the state (010) with the binary representation
equal to (2)10 with some probability P. We write this as P(X(t) = s2). It is now possible to
formulate the expression for this probability in the following manner.

P(X(t+∆t) = s2) = P(X(t) = s0)αg2,1(∆t)2

+ P(X(t) = s1)βαg2,1(∆t)3

− P(X(t) = s2)(1− α− g1,0)∆t

+ P(X(t) = s3)β∆t

+ P(X(t) = s4)g2,1∆t

+ P(X(t) = s5)βg2,1(∆t)2

+ P(X(t) = s6)g1,0βg2,1(∆t)3

+ P(X(t) = s7)β
2g1,0g2,1(∆t)4

(2.1)

We can rewrite this equation by summarizing all terms in which ∆t has a higher exponent
than 1. This then yields the following.

P(X(t+∆t) = s2) =− P(X(t) = s2)(1− α− g1,0)∆t

+ P(X(t) = s3)β∆t

+ P(X(t) = s4)g2,1∆t

+O(∆t2)

(2.2)
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This allows us to now rearrange the equation into a differential quotient, which yields the
next expression.

1

∆t
[P(X(t+∆t) = s2)− P(X(t) = s2)] =

−(g1,0 − α)P(X(t) = 2) + g2,1P(X(t) = s4) + βP(X(t) = s3) +O(∆t),
(2.3)

which, when ∆t → 0, yields an ordinary differential equation for the probability of the
system being in state 2. Note that all of the expressions we lumped together in O(∆t) have
also gone to 0 in the limit, which means that those expressions have no impact on the change
of the probability distribution, as they constitute a null-set. The differential equation for
P(X(t) = s2) then reads as:

d

dt
P(X(t) = s2) = −(g1,0 − α)P(X(t) = 2) + g2,1P(X(t) = s4) + βP(X(t) = s3) (2.4)

It is useful to simplify this notation. To achieve this, we define a vector x ∈ R2N where
xi(t) = P(X(t) = si), as well as a matrix A for the rates of the Poisson processes. This
matrix is also known as the transition rate matrix for the Markov process. We can then
describe the entire system of ODEs for every possible state of the lattice as:

ẋ(t) = Ax(t) (2.5)

This expression is known as the Master Equation for the TASEP. For the lattice in figure
2.1 the master equation would have the following matrix A:

−α β 0 0 0 0 0 0
0 −α− β g1,0 0 0 0 0 0
0 0 −α− g1,0 β g2,1 0 0 0
0 0 0 −α− β 0 g2,1 0 0
α 0 0 0 −g2,1 β 0 0
0 α 0 0 0 −g2,1 − β g1,0 0
0 0 α 0 0 0 −g1,0 β
0 0 0 α 0 0 0 −β


(2.6)

This kind of approach is also known as a top down model, since every possible state of the
system is calculated. To calculate the expected value ⟨τi⟩(t) for some node i, the sum of the
probability of every state in which node i is occupied needs to be evaluated. In this case the
three equations for the expected values read:

⟨τ0⟩(t) =
4∑

i=1

x2i−1(t)

⟨τ1⟩(t) =
∑

i∈{2,3,6,7}

xi(t)

⟨τ2⟩(t) =
7∑

i=4

xi(t)

(2.7)
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We can also expand this derivation to Poisson processes that have a time dependent mean
rate, in which case all rates become dependent on some abstract value of time denoted by
t. Previous publications were able to prove that the master equation will reach a steady
state, if the rates are constant [?]. In the case of periodic jump rates it is possible to prove
entrainment of the expected values to the periodicity of the corresponding rates. [5] One
major drawback of the top down approaches are their sheer size. As is shown above, the
ODE-system grows exponentially with the amound of nodes inside the lattice. This has
many serious ramifications, foremost of which is the amount of memory and processing time
needed to calculate solutions. Quick, back of the napkin math suggests that to calculate
the solution of a system with a few hundred nodes with this model, more storage capacity
is needed, than the entire internet provides to date. We undertook efforts to reduce the
memory and computational footprint of our programs. These improvements allowed us to
calculate systems with up to a few dozen nodes. This is still not enough nodes to simulate
anything meaningful, as mRNA chains can contain several hundred nodes for ribosomes to
attach to [?]. In the case of traffic simulations many thousands of nodes might have to
be included to achieve reliable and meaningful results. These requirements necessitate an
approximation that behaves more favorably with growing lattices.

2.1.3 The Mean Field Approximation

As was shown before, the master equation is not suitable for calculating solutions to large
systems. Because of this, other solution methods have been developed over the years. One
of these is the so called mean field approximation. The general idea stems from an inversion
of the approach of the master equation. Instead of a top down approach, in which the
probability for every possible state is calculated, the mean field approximations utilize so
called bottom up approaches. To motivate this approach we first look at another way of
describing the expected values for the occupancy of nodes. Because the values of the nodes
can either be 0 or 1, calculating the expected value boils down to summing all probabilities
for the nodes being occupied. To ease notation, we define another probability measure on
our system. Instead of a measure for all the system states we define P(τi) as the probability
of node i being occupied. Because of the binary node states, it holds that ⟨τi⟩ = P(τi).
Note that this is the same expression as is found in equation (2.7). However we can now
expand this expression to multiple nodes as well. We write the probability of the system
being in a state in which nodes i and j are occupied as P(τiτj). This can be understood
as the sum of all probabilities for states in which node i and j are occupied. Rewriting
the probabilities in this manner allows us to formulate an expression for the change of the
probability of occupation of arbitrary collections of nodes, as opposed to the formulation of
the master equation, which was describing system states. In a manner similar to before we
can now express the change in probability of some node i being occupied in terms of these
expressions. We can write the probability for node i being occupied when some amount of
time ∆t has passed as P(τi(t+∆t)). Describing the correlation of occupied and unoccupied
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nodes then yields the following expression for the one dimensional TASEP.

P(τi(t+∆t)) = P(τi(t))
− P(τi(t), ξi+1(t))gi,i+1∆t

+ P(τi−1(t), ξi(t))gi−1,i∆t

(2.8)

This expression is still exact. The reason for this is that until now we have just rewritten
sums of specific lattice state probabilities. Because of linearity, we can factor out the Poisson
rates gi,j for the relevant state transitions from the sums. Rearranging the equation yields
the following expression for the differential quotient.

P(τi(t+∆t))− P(τi(t))
∆t

=− P(τi+1(t), ξi(t))gi+1,i

+ P(τi(t), ξi−1(t))gi,i−1,
(2.9)

which when ∆t → 0 and rewriting the occupancy in terms of expected value yields

d

dt
⟨τi⟩(t) = gi,i−1⟨τiξi−1⟩(t)− gi,i−1⟨τiξi−1⟩(t). (2.10)

This expression is also exact, however the two terms on the right hand side contain expected
values for the occupancy of two nodes. Since these values are not known, we cannot solve
this ODE. It is of course possible to run trough the same procedure for the new expressions.
This would yield the following ODEs.

d

dt
⟨τi+1ξi⟩(t) =− ⟨τi+1ξi⟩(t)gi+1,i

+ ⟨τi+1τiξi−1⟩(t)gi,i−1

+ ⟨τi+2ξi+1ξi⟩(t)gi+2,i+1

(2.11)

d

dt
⟨τiξi−1⟩(t) =− ⟨τiξi−1⟩(t)gi,i−1

+ ⟨τi+1ξiξi−1⟩(t)gi+1,i

+ ⟨τiτi−1ξi−2⟩(t)gi−1,i−2

(2.12)

Again the same construction of sums of probabilities for specific states was used here. How-
ever, the same issue as before persists here as well. In general, every ODE describing some
moment of order k is dependent on moments of order k+1. We can describe these dependen-
cies in a more general manner. To achieve this we denote with sdn = sn−1, · · · , s0 the binary
number with n digits which has a decimal representation of d. In mathematical terms this
means that (sn−1 · · · s1s0)2 = (d)10. Additionally the expression sdn(i) is used to describe the
value of si We generalize the expected values ⟨τi⟩ to higher order moments in the following
way.

T (sdn, k) = ⟨τk+nξk+n−1 · · · τk⟩ (2.13)
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Furthermore we denote the entry flow rate into node i with αi as well as the exit flow rate
out of node i with βi. Lattice internal flow rates are described the same way as earlier. The
general ODE for arbitrary moments on one dimensional lattices is constructed as follows.
First of all we sum over all state changes which result in the state T (sdn, k) and are facilitated
by particles leaving or entering the lattice. It follows that these sums are over states in which
there is one particle missing at the node with index k+ i, compared to the original moment,
ie. T (sd−2i

n , k) as well as states in which there is an additional particle at position k + i, ie.
T (sd+2i

n , k). We will be utilizing the notation ”+=” to denote assigning the sum of the right
and left hand side to the left hand side, similar to how this symbol is used in programming
languages.

d

dt
T (sdn, k)+ =

n−1∑
i=0

[
αk+iT (s

d−2i

n , k)
∣∣
sdn(i)=1

+ βk+iT (s
d+2i

n , k)
∣∣
sdn(i)=0

]
(2.14)

Similarly we need to subtract the sum over all state transitions away from T (sdn, k) through
particles leaving or entering the lattice. This part of the ODE then reads as follows.

d

dt
T (sdn, k)− =

n−1∑
i=0

[
αk+iT (s

d
n, k)

∣∣
sdn(i)=0

+ βk+iT (s
d
n, k)

∣∣
sdn(i)=1

]
(2.15)

Note that in the case of the 1d-TASEP where the lattice only has one entry and exit point,
these expressions can be simplified by omitting the sum. They would then read as

d

dt
T (sdn, k)+ =

[
αT (sd−2n−1

n , k)
∣∣
sdn(n)=1

+ βT (sd+1
n , k)

∣∣
sdn(1)=0

]
−
[
αT (sdn, k)

∣∣
sdn(n)=0

+ βT (sdn, k)
∣∣
sdn(1)=1

]
.

(2.16)

Next we want to sum over all state changes in which the number of particles in the lattice
does not change, only their positions. That means that a state in which node i is occupied
and node i+1 is empty can be the result of this particle moving from node i+1. Subsequently
the state that can produce this has the enumeration index d+ 2i+1 − 2i. First we sum over
all transitions that increase the probability for the state T (sdn, k) to occur.

T (sdn, k)+ =
n−2∑
i=0

[
gk+i+1,k+iT (s

d−2i+2i+1

n , k)
∣∣
sdn(i)=1,sdn(i+1)=0

]
(2.17)

Like before, we also have to take the inverse process, meaning the reduction of the probability
through particles moving inside the lattice, into account.

T (sdn, k)− =
n−2∑
i=0

[
gk+i+1,k+iT (s

d
n, k)

∣∣
sdn(i+1)=1,sdn(i)=0

]
(2.18)

Lastly we want to account for state changes in which particles enter from or leave into lattice
sites which are not included in T (sdn, k). However in contrast to (2.14) and (2.15) the particles
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only move to or from outside of the scope of the moment, while remaining inside the lattice.
We begin by adding the positive probability change, since the lattice is one dimensional,
there can be at most two such such cases. One is out of scope particles entering the moment
from the left hand side.

T (sdn, k)+ = gk+n+1,k+nT (s
d+2n+k+1−2n+k

n+1 , k + 1)
∣∣
sdn(n+k)=1

(2.19)

While the other is the case of a particle leaving from the node on the right most side.

T (sdn, k)+ = gk,k−1T (s
2∗(d+1)
n+1 , k)

∣∣
sdn(1)=0

(2.20)

The last terms are the respective inversions of the two previous cases.

T (sdn, k)− = gk+n+1,k+nT (s
d+2n+k+1

n+1 , k + 1)
∣∣
sdn(n+k)=0

(2.21)

T (sdn, k)− = gk+n−1,k+nT (s
2∗d
n+1, k)

∣∣
sdn(1)=1

(2.22)

Note that here every vertical bar is to be understood as an if condition. More precisely,
the respective summands are only to be used in the ODE if the condition marked on the
bottom right is fulfilled, they should be left out otherwise. Another assumption we make in
these ODEs is that all transition rates which are not defined, for example g0,−1 or gN,N−1 are
equal to 0. With this we don’t have to formulate individual formulae for edge cases. This
expression allows us to calculate the mean field approximation of the master equation up to
any length of moment.

It should also be noted, that for the case of T (·, N) this expression yields the master
equation. This statement is the result of the way we constructed the mean field expressions.
As was already discussed earlier, the probabilities shown here are the sums of state probabil-
ities in which the occupation of some subset of nodes is known. It follows that higher order
moments are the sums of states in which the state of more nodes is fixed. At T (·, N) we have
fixed the occupational state of every node in the lattice, in other words, we describe the sum
over only one network state. This means, that the full mean field description of a TASEP
lattice is actually more complex than the master equation and would not lead to any tangible
benefits during the solution process. To circumvent this issue, some method for closing the
mean field ODEs at some order of moments has to be derived. Inspiration for this procedure
was found in [6] where a similar issue for epidemiological simulations was discussed. This
approach can be qualitatively motivated by looking at the impact of an occupied node to
nodes further and further down the lattice. Assuming some node i to be occupied, we know
that the expected value of occupancy of the next node i − 1 is immediately correlated to
node i being filled. Going one step further, node i− 2 is correlated to node i only indirectly
through node i− 1. While correlation still exists, it is weakened by the fact that the middle
node acts as a sort of buffer. The larger this buffer gets, the weaker the two nodes should
be correlated. The general idea of closures is to assume that at some point, the correlation
between nodes is small enough to introduce a small enough error, that the results are still
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accurate to same order of consistency as the solver of the ODE. We can describe this with
a so called correlation measure CXY between the moments X and Y , given by

CX ,Y =
⟨XY ⟩
⟨X⟩⟨Y ⟩

. (2.23)

We know that if CX ,Y = 1 the two moments are uncorrelated. However, this will never be
the case. This can be shown by writing an example for these moments as sums of state
probabilities. These expressions are as follows.

⟨τi⟩(t) =
∑

k∈{l|slN (i)=1}

P(X(t) = sk)

⟨τj⟩(t) =
∑

k∈{l|slN (j)=1}

P(X(t) = sk)

⟨τiτj⟩(t) =
∑

k∈{l|slN (i)=slN (j)=1}

P(X(t) = sk)

(2.24)

It follows, that the expression ⟨τi⟩⟨τj⟩ contains probabilities that don’t occur in ⟨τiτj⟩.
Namely all states which are of the form ⟨ξiτj⟩ and ⟨τiξj⟩. Rearranging equation (2.23)
yields an expression for closures of second order moments.

⟨XY ⟩ = ⟨X⟩⟨Y ⟩CX ,Y (2.25)

A similar derivation can be done for third order moments, resulting in closures of one of
these forms.

⟨XY Z⟩ = ⟨X⟩⟨Y ⟩⟨Z⟩CX ,Y ,Z

= ⟨XY ⟩⟨Z⟩CXY ,Z

=
⟨XY ⟩⟨Y Z⟩

⟨Y ⟩
CXY ,YZ

(2.26)

These closures for third order moments are not unique anymore, hence choosing the one which
introduces the smallest error is necessary. In general, it is not known which closure produces
the most accurate results, however. If we now apply closures to the mean field approximations
outlined in the equations (2.14) - (2.22), we can formulate reduced ODEs for TASEP systems.
The simplest of which is also known as RFM or ribosome flow model. Applying it to the
same 3-node chain for which the master equation was formulated previously, we get the
following expression.

d

dt
⟨τ0⟩ = g1,0⟨τ1⟩⟨ξ0⟩ − β⟨τ0⟩

d

dt
⟨τ1⟩ = g2,1⟨τ1⟩⟨ξ0⟩ − g1,0⟨τ1⟩⟨xi0⟩

d

dt
⟨τ2⟩ = α⟨ξ2⟩ − g2,1⟨τ2⟩⟨ξ1⟩

(2.27)
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The simplification achieved by this should be immediately obvious. In general the mean
field approach grows with O(n) instead of O(2n) for the master equation. The consequence
of this is that much larger networks can be simulated. In our case networks with around
105 nodes could be calculated. This approach can of course be expanded to closures of any
moment. Though it will later be shown that the benefits of larger closures get outweighed
by their drawbacks, foremost of which is numerical instability. Another issue are numerical
errors caused by floating point arithmetic. These can even become so severe that the solution
process fails. Last but not least, the ODE solver introduces an error.

2.1.4 Exact Solutions

To be able to verify solutions which exceed the size constraints of the master equation, we
have also implemented another exact solution method. First of all it should be noted, that
exact solutions exist only for a small subset of TASEP networks. The following section is
largely based on work done by B. Derrida and M.R. Evans [7] [8]. In their work an exact
solution was found for one dimensional lattices which have unit Poisson rates for all internal
connections and time independent input and output rates α and β. The main idea of their
approach is to first define the steady state of the system as the configuration where the
change of the probabilities of every state of the system is 0.

d

dt
P(X(t) = si) = 0 (2.28)

This probability can also be expressed with unnormalized weights fN where the following
holds.

P(X(t) = si) = fN(si)/ZN (2.29)

with
ZN =

∑
τi=0,1

· · ·
∑
τi=0,1

fN(τ0, τ1, · · · , τN−1). (2.30)

It is then possible to find the value of fN with the following expression.

fN(τ0, τ1, · · · , τN−1) = ⟨W |
N−1∏
i=0

(τiD + (1− τi)E)|V ⟩, (2.31)

with D and E square matrices and |V ⟩ and ⟨W | vectors which satisfy these conditions:

DE = D + E

D|V ⟩ = 1

β
|V ⟩

⟨W |E =
1

α
⟨W |.

(2.32)

In short, the expression (2.31) tells us that any weight fN(si) is given by a product of
matrices D and E with the first of these at position i if site i is occupied and the latter at
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that position if it is empty. Furthermore, an additional matrix C can be defined by

C = D + E, (2.33)

which allows us to define an expression for ⟨τi⟩:

⟨τi⟩ =
⟨W |Ci−1DCN−i|V ⟩

⟨W |CN |V ⟩
. (2.34)

Note that these expressions can also be formulated for higher order moments. It can then
be shown that the matrices D and E are one dimensional in the case that α+β = 1. In this
case the entire chain is uncorrelated and the matrices can be defined as D = 1

β
and E = 1

α
.

In the case that α + β ̸= 1 the matrices are infinite dimensional. There are a number of
matrices which could be used here [8]. Since infinite dimensional matrices are unwieldy to
implement in numerical algorithms, we chose another approach, which is also outlined in
the before mentioned sources. We use the following notation to make the expressions more
legible.

ZN = ⟨W |CN |V ⟩

=
N∑
p=1

p(2N − 1− p)!

N !(N − p)!

( 1
β
)p+1 − ( 1

α
)p+1

( 1
β
)− ( 1

α
)

BN,p =


p(2N − p− 1)!

N !(N − p)!
0 < p ≤ N

0 otherwise

(2.35)

Note that the second formula for ZN can be obtained by applying the commutation rules
defined in (2.32). This allows us to formulate the expression for ⟨τi⟩ as follows:

⟨τi⟩ =
N−i∑
n=1

Bn,1
ZN−n

ZN

+
Zi−1

ZN

N−i∑
p=1

BN−i,p
1

βp+1
(2.36)

Note that now the enumeration of the nodes starts at 1. The main challenge in computing
these values lies in the size of the values themselves. Already for chain sizes of 15 the
factorials exceed the value range of standardized integer data types. The solution to this
problem will be discussed in the Programs section.

2.1.5 Expansion to arbitrary Networks

In this section a generalization of the one dimensional TASEP will be derived. To motivate
this we can assume that up until now every network had an adjacency matrix adj(G) of the
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following form:

adj(G) =



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0

0 1 0
. . . 0 0 0

...
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0


, (2.37)

which just describes a network in which every node i + 1 leads either into the next node i
or nowhere. If we also introduce entry and exit vectors A and B which contain values αi

and βi for the rates with which particles enter or exit node i we can describe every possible
network. To describe a 1-dimensional TASEP lattice, these vectors would read:

A =


0
0
...
0
α

 , B =


β
0
...
0
0

 (2.38)

Note that the rules of movement outlined earlier still apply here. As such we can still describe
state transitions using state probabilities of the lattice. The reasoning for this analogously
follows the reasoning of the 1-dimensional case outlined in (2.1) and (2.3). Numerically the
only major difference is that the matrix A of the master equation gets denser if the lattice
is more highly connected. Aside from that the algorithmic derivation as well as the solving
process are identical.

The mean field approximation on the other hand is much more cumbersome to evaluate
and derive. We begin by redefining a few expressions from the 1-dimensional case. First
of all we want to generalize the expression for the moments to arbitrary subnetworks of
the lattice. For this we enumerate these partial lattices similarly to the enumeration of the
lattice states, where a binary number is used to describe every possible sub lattice. We
write g(k) as the set of nodes of the lattice in which every node with index i is included if
the ith digit of the binary representation of k is equal to 1. Furthermore we describe with
adj(g(k)) the adjacency matrix describing the lattice given by g(k). Note that these will be
the same dimension as the original adjacency matrix adj(G) as the numeration of the nodes
is not changed and it can be trivially expanded to the original dimensionality. We can then
analogously to (2.13) describe a moment of a subnetwork as follows

T̃ (sdn, g(k)) = ⟨τi0ξi1 · · · τin−1⟩ (2.39)

Where again τ denotes some node being full and ξ denoting it being empty. The indexes
have to be subindexed as the nodes don’t have to be sequentially ordered for them to be
connected. In this case n is the amount of nodes in the subnet and the definition of sdn as
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well as sdn(i) has not changed. The indices ik are the elements of the Vertex set Ṽg(k) of g(k).

We can now formulate the general ODE for a moment T̃ (sdn, g(k)). This is again similar
to the equations (2.14) - (2.22). We begin by formulating an expression for the increase in
probability through particles entering or leaving the lattice from or into the infinite reservoirs.

d

dt
T̃ (sdn, g(k))+ =

N−1∑
i=0

[
αiT̃ (s

d−2i

n , g(k))
∣∣
i∈Ṽg(k),s

d
n(i)=1

+ βiT̃ (s
d+2i

n , g(k))
∣∣
i⊂Ṽg(k),s

d
n(i)=0

]
(2.40)

Analogously we can sum all state transitions for particles leaving the lattice, thus deterio-
rating the state. The corresponding expression is

d

dt
T̃ (sdn, g(k))− =

N−1∑
i=0

[
αiT̃ (s

d
n, g(k))

∣∣
i⊂Ṽg(k),s

d
n(i)=0

+ βiT̃ (s
d
n, g(k))

∣∣
i⊂Ṽg(k),s

d
n(i)=1

]
. (2.41)

Next we want to sum all positive probability changes which are facilitated by particles moving
inside of the lattice defined by g(k) and sdn. We know that every time two adjacent nodes
are in the configuration (01) the state can be the result of another state in which has the
same configuration except the occupation of these two nodes is inverted. We have to take
the sum over all possible combinations of nodes of the sub network, to make sure that all
possible connections are checked.

d

dt
T̃ (sdn, g(k))+ =

n−1∑
i=0

[
n−1∑
j=0

adj(g(k))ijT̃ (s
d−2j+2i

n , g(k))
∣∣
{i,j} ⊂Ṽg(k),s

d
n(i)=0,sdn(j)=1

]
(2.42)

It follows, that the same process can also reduce the probability for the lattice configura-
tion. As such we also have to check all possibilities for the deterioration of this state. The
corresponding equation reads as

d

dt
T̃ (sdn, g(k))− =

n−1∑
i=0

[
n−1∑
j=0

adj(g(k))ijT̃ (s
d
n, g(k))

∣∣
{i,j} ⊂Ṽg(k),s

d
n(i)=1,sdn(j)=0

]
(2.43)

Now we have to account for all probability increases which are dependent on particles leaving
the sub network, but remaining inside of the full network, as well as increases which are due
to particles entering the sub lattice from nodes which are not an element of Ṽg(k). This can be
done by constructing all possible sub networks which include g(k) as well as one additional
node out of the full lattice. First we formulate the expression for an increase in probability
due to a particle from outside the sub net entering.

d

dt
T̃ (sdn, g(k))+ =

N−1∑
i=0

[
n−1∑
j=0

adj(g(k + 2i))ijT̃ (s
d+2i−2j

n+1 , g(k + 2i))
∣∣
{i,j} ⊂Ṽg(k+2i)⊂G,i ̸⊂Ṽg(k),s

d
n(j)=1

]
(2.44)

Next we write the formula for the increase in probability due to a particle leaving into a
lattice node, which is not in the sub network. Here we assume, that the occupation of the
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added node is always determined by the most significant bit in (d)10. This is mainly because
it simplifies notation.

d

dt
T̃ (sdn, g(k))+ =

N−1∑
i=0

[
n−1∑
j=0

adj(g(k + 2i))jiT̃ (s
d+2n

n+1 , g(k + 2i))
∣∣
{i,j} ⊂g(k+2i)⊂G,i ̸⊂Ṽg(k),s

d
n(j)=0

]
(2.45)

At last we have to take the analogous inverse cases of the two previous cases into account.
That means the decrease of probability due to particles leaving or entering from or into sub
network nodes into or from the full network. First the expression for particles leaving, thus
decreasing probability. We make the same assumption for the node being determined by the
most significant bit.

d

dt
T̃ (sdn, g(k))− =

N−1∑
i=0

[
n−1∑
j=0

adj(g(k + 2i))jiT̃ (s
d
n+1, g(k + 2i))

∣∣
{i,j} ⊂g(k+2i)⊂G,i ̸⊂Ṽg(k),s

d
n(j)=1

]
(2.46)

And lastly the decrease due to particles entering an empty sub network node.

d

dt
T̃ (sdn, g(k))− =

N−1∑
i=0

[
n−1∑
j=0

adj(g(k + 2i))ijT̃ (s
d+2n

n+1 , g(k + 2i))
∣∣
{i,j} ⊂g(k+2i)⊂G,i ̸⊂Ṽg(k),s

d
n(j)=0

]
(2.47)

This equation is also exact, if the moments of every order of moments on every subnetwork
would be calculated. In addition to the 2N different lattice configurations, the size of the
ODE is increased by another factor of 2N because the moments of every partial lattice have
to be evaluated. In Practice most of these equations will be discarded, however, as non
connected networks can be handled individually and we are only interested in the equations
needed to compute closures of some size n < N . These closures present an additional
challenge as there are now many more possible closure configurations to take into account.

AB HIER ALLES IGNORIEREN

τ0

τ1 τ2

τ3 τ4
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τ10 τ11

TASEP in traffic simulation

The TASEP model is also applied in traffic simulation, where it is used to simulate traffic
jams and their behaviour. Slowly moving traffic can be described as a lattice of either
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occupied or empty sites which vehicles can enter and leave in only one direction. Each site
can then be attributed with a flow rate, describing the average time an object occupies this
site until it moves on to the next one, given that it is empty. One example for this would
be a one lane road with heavy traffic. If there is a point of congestion along the way, it
could be described by the flow rate of one site inside the lattice being lower than that of
the proceeding sites. Computing the trajectories of the corresponding differential equation
yields the probabilities of occupancy of the sites over time. This allows for the examination
of traffic behaviour.
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2.2 Comparison of Mean-Field and Master Equation

Methods

The master equation

Consider a stochastic system which can exist in one of N possible states. For each state there
exists an expression xi(t), denoting the probability that a given system is in the configuration
i at time t. The master equation of that system then describes the changes of these proba-
bilities over time. It finds use in various disciplines including physics [9], chemistry [10], and
traffic simulation [11]. To describe it accurately it is necessary to know the transition rates
pij between the states i and j. The totally asymmetric simple exclusion principle (TASEP)
describes a lattice of n consecutive sites, each of which can either be free or occupied by a
particle. This structure allows every possible state to be encoded into a binary number in
which empty sites correspond to zeroes and occupied sites to ones. The number of possible
states N the system can be in grows exponentially with the number of sites of the lattice.
This leads to N = 2n. The same also applies for the dimension of the master equation,
because it takes every possible lattice configuration into account. As such N also denotes
the dimension of its system matrix. This leads to any solving attempt being very hard to
compute even for relatively small values of n. For every site in such a system there exists
a non-zero translation rate which describes the flow of particles from that site to the next.
This approach describes the behaviour of a TASEP bound system more accurately than the
mean field approach which will be shown later.

The correlation functions

To motivate the expressions used in the mean field approach a short derivation of the corre-
lation functions will be given. These functions are the basis for the approximations that are
used later on. For a more in depth derivation consider [12]. Consider the following expres-
sion, which accurately describes the change in probability of occupancy of any non-boundary
lattice site.

τ(t+∆t) =


τi(t), with probability 1− (hi−1 + hi) ∆t

τi(t) + [1− ti(t)]τi−1(t), with probability hi−1 ∆t

τiτi+ 1, with probability hi ∆t

(2.48)

The first line describes the change in probability if neither site i − 1 nor site i is updated.
Therefore τi does not change. The second and third equation describe the a change in
occupancy of sites i − 1 or i respectively. The expected value for τi can then be calculated
as follows.

⟨τi(t+∆t)⟩ = ⟨τi(t)⟩+ ⟨(1− τi(t))τi−1(t)⟩hi−1∆t+ ⟨τi(t)(τi+1(t)− 1)⟩hi∆t (2.49)
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The rate of change of the expected values can the be obtained by taking the limit over
the above equation, which leads to the following expression.

d

dt
⟨τi(t)⟩ = lim

∆t→0

⟨τi(t+∆t)⟩ − ⟨τi(t)⟩
∆t

= ⟨(1−τi(t))τi−1(t)⟩hi−1+⟨τi(t)(τi+1(t)−1)⟩hi (2.50)

The above can also be expanded to

d

dt
⟨τi(t)⟩ = hi−1(⟨τi−1(t)⟩ − ⟨τi−1(t)τi(t)⟩) + hi(⟨τi(t)τi+1(t)⟩ − τi(t)) (2.51)

The rate of change of the resulting product terms can also be described. In a similar fashion
to the derivation above, the change of ⟨τiτi+1⟩ can be expressed as the following. Note: The
dependency of τi on t was omitted to improve readability.

d

dt
⟨τiτi+1⟩ = ⟨τiτi+1(τi+2 − 1)⟩hi+1 + ⟨τi−1(1− τi)τi+1⟩hi−1 (2.52)

Which, when expanded gives

d

dt
⟨τiτi+1⟩ = (⟨τiτi+1τi+2⟩ − ⟨τiτi+1⟩)hi+1 + (⟨τi−1τi+1⟩ − ⟨τi−1τiτi+1⟩)hi−1 (2.53)

These equations are exact and describe the change of the expected values. However, to
calculate for example (2.51), one needs to know the solution to (2.53). This would require
the knowledge of ⟨τi−1τi+1⟩ and ⟨τi−1τiτi+1⟩. As such the problem is a N-body problem.
The calculation of any correlation function requires the knowledge of all other correlation
functions. The goal is then to approximate the correlation functions, such that no additional
knowledge of other functions is required. This leads to the next section.

The mean field approach

In mean field theory the behaviour of complex high-dimensional stochastic models is ap-
proximated by simplifying the effects of every other particle on any given particle inside a
system down to the effect of only one particle on that given particle. This can be achieved
by averaging the effects of the other particles or ignoring them [7]. This effectively narrows
a many body problem down to a single body problem, reducing its complexity and easing
the computation of its solutions. In the case of TASEP one could reasonably assume, that
the probability xi(t) for any site i to be occupied only depends on the probability of the
preceding site being occupied (xi−1(t)) and the probability of the following site being empty
(1− xi+1(t)).

To simplify the complex n-body problem of TASEP, one can approximate the unknown
correlation functions in (2.50) and (2.52). In the case of (2.50) this leads to the following
approximations:

⟨(1− τi(t))τi−1(t)⟩hi−1 + ⟨τi(t)(τi+1(t)− 1)⟩hi ≈ hi−1⟨τi−1⟩⟨1− τi⟩+ hi⟨τi⟩⟨τi+1 − 1⟩ (2.54)
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Because of E[XY ] ̸= E[X] ∗ E[Y ] if X and Y are stochastically dependent, an error is
introduced by this approximation. The approximation above leads to the following system
of n first-order nonlinear ordinary differential equations. It can also be understood as the
continuity equation for this process. As the change of the expected values of occupancy of
the sites are equal to the ingoing flux minus the outgoing flux.

ẋ1(t) = α(t)(1− x1)− h1(t)x1(1− x2)

ẋ2(t) = h1(t)x1(1− x2)− h2(t)x2(1− x3)

ẋ3(t) = h2(t)x2(1− x3)− h3(t)x3(1− x4)

...

ẋn−1(t) = hn−2(t)xn−2(1− xn−1)− hn−1(t)xn−1(1− xn)

ẋn(t) = hn−1(t)xn−1(1− xn)− β(t)xn

(2.55)

This however ignores indirect dependencies of sites, which may lead to inaccuracies of the
solutions obtained by this method.

One way to mitigate the error might be to approximate (2.51) instead of (2.50). The idea
being, that in (2.51) the multiplication terms can be calculated with the help of (2.52) and
(2.53). As such (2.51) remains unchanged. The terms ⟨τi−1τi⟩ and ⟨τiτi+1⟩ are calculated
using an approximation of (2.52) and (2.53). Possible approximations are:

⟨τiτi+1(τi+2 − 1)⟩hi+1 ≈ hi+1⟨τi⟩⟨τi+1⟩⟨τi+2 − 1⟩
≈ hi+1⟨τiτi+1⟩⟨τi+2 − 1⟩
≈ hi+1⟨τi⟩⟨τi+1(τi+2 − 1)⟩

for the first term.

⟨τi−1(1− τi)τi+1⟩hi−1 ≈ hi−1⟨τi−1⟩⟨(1− τi)⟩⟨τi+1⟩
≈ hi−1⟨τi−1(1− τi)⟩⟨τi+1⟩
≈ hi−1⟨τi−1⟩⟨(1− τi)τi+1⟩

for the second term.

(2.56)

The combination which resulted in the least error compared to the master equation during
preliminary testing turned out to be

hi+1⟨τiτi+1⟩⟨τi+2 − 1⟩+ hi−1⟨τi−1⟩⟨(1− τi)τi+1⟩ (2.57)

The reason for this might be that only a single multiplicative expected value term is required
for any time-step. One upside of this approach in contrast to (2.54) is that in addition to
⟨τi−1⟩, ⟨τi⟩and ⟨τi+1⟩, the term ⟨τi+2⟩ also effects the calculation of ⟨τi⟩. It is therefore
possible that this approach yields more accurate results.

Regardless of which approach is used, the error depends on the covariance of the state
occupation probabilities. These covariances depend on the flow of particles between the

22



lattice sites as higher flow necessarily leads to higher correlation of the probability of occu-
pancy. One immediate effect of this simplification, however, is the reduction of the number
of ordinary differential equations from N = 2n to N = n if (2.50) is used. And a reduction to
N = 2n if (2.52) is used. In either case computation is eased drastically. This describes the
mean field method of calculating the probabilities xi(t) of TASEP systems. The mean field
method is commonly used in statistical physics [13], neuroscience [14] and epidemiology [15]

2.3 Motivation of this Work

Differences in computational complexity

Given the difference in computational cost between the two approaches it becomes obvious
why the mean field model has found widespread use instead of the master equation approach.
This imbalance is not limited to the time difference in computing the solutions of these two
models. A more difficult challenge to overcome when using the master equation method is the
number of states that have to be taken into consideration, when solving a TASEP problem.
Consider a system of a lattice consisting of 65 discrete sites. The mean field method then
requires a system of 65 ordinary differential equations. Computing a solution of a system of
this size is comparatively simple. The system of differential equations of the master equation
method, however, grows exponentially with the number of states. This leads to the dimension
of the master equation growing to N = 265. This has a few ramifications when trying to
compute a solution. Firstly, the amount of memory needed to store a system of this size
would exceed 30 exabytes, even if every value of the state-vector would only need one byte
of space. The second problem is, that a 64-bit processor is not natively able to point to
any address which takes more than 64 bits to describe. This would be necessary to allocate
memory larger than 264 bytes (16 Exabytes). While this is possible, it adds another layer
of complexity which slows down the calculation and increases the computation time even
further. Adding to this problem is the effort needed for finding the master equation to a given
TASEP system. Generating the matrix which is used in computing a solution is not trivial as
will be shown later and adds additional challenges for anyone implementing such a program.
In contrast, the differential equations used for computing the mean field approximation, can
be generated with less effort, as they, despite being nonlinear, only need to take the previous
and following sites into account. This reduces complexity, as all equations will have the same
structure with the difference being in the indices of the entries of the state vector.

The following thesis will show a computationally efficient method of computing the so-
lutions to the master equation and provide an algorithm which can be used to generate its
matrix.

Validation of the mean field method

As the mean field method is widely used one might assume the propriety of its solutions to
TASEP systems. However, there is a lack of evidence that could either confirm or deny the
accuracy the mean-field approach. This absence of any kind of mathematical validation is
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concerning, as the simplified model is used in various commercial and research endeavours.
This is understandable, given the previously mentioned challenges rendering any master
equation based solution approach unusable in most cases. This thesis aims to examine the
accuracy of the mean field method up to a lattice size of around 30 in time variant and time
invariant conditions to be able to asses the validity of small scale approximations.
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Chapter 3

Programs and Algorithms

3.1 Explicit Runge-Kutta Methods

Definition

For a more complete derivation and explanation of Runge-Kutta Methods see [16].
Let an initial value problem in Rn, n ∈ N be specified as follows:

d

dt
x(t) = f(t, x(t)), x(t0) = x0 (3.1)

Where f : D → Rn is a continuous function and D is an open subset of R× Rn.
Let the exact solution of this problem be described as x(t; t0, x0) for t ∈ [t0, T ]. A set
T = {t0, t1, · · · , tN} of time values with t0 < t1 < · · · < tN = T is called a lattice of the
interval [t0, T ].
A function x̃ : T → Rn is called a lattice function.
An iterative single step method is then given by the continuous mapping

Φ : R× Rn × R → Rn (3.2)

with which a lattice function can be recursively defined for every lattice T and initial con-
dition x0 as follows:

x̃(t0) = x0, x̃(ti+1) = Φ(ti, x̃(ti), hi) for i = 0, 1, · · · , N − 1 (3.3)

This allows for the general definition of the lattice function of a s-step explicit Runge-Kutta-
method as follows:

Φ(t, x, h) = x+ h

s∑
i=1

biki (3.4)

where
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ki = f

(
t+ cih, x+ h

i−1∑
j=1

aijkj

)
(3.5)

The coefficients of this methods can be expressed as

b =


b1
b2
...
bs

 ∈ Rs, c =


c1
c2
...
cs

 ∈ Rs, A =


0
a21 0
a31 a32 0
...

...
. . . . . .

as1 · · · · · · as,s−1 0

 ∈ Rs×s (3.6)

which can be written in a so called Butcher-tableau as:

c1

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

(3.7)

This methodology allows us to express the Euler (s = 1), Heun (s = 2) and RK(4) (s = 4)
Methods as follows:

0

1

0

1 1
1
2

1
2

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

(3.8)

3.2 Accuracy and Speed trade-off in ODE Solvers

Prebuilt solvers

There exists a number of solvers for ODE systems that could be used to solve master equa-
tions of the TASEP model. Matlab for example has a range of prebuilt solvers available for
use [17] which suit most smaller systems of differential equations. These mostly implement a
form of an adaptive Runge-Kutta method, which allows for variable step sizes and increased
accuracy. One disadvantage of using a mathematical software environment like Matlab is
their lack of speed compared to a direct implementation of a similar solving method.
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Adaptive step size solvers

The size of the matrices describing TASEP master equations grows rapidly with lattice
length. This leads to the fact that minor time savings in one computational step have a
considerable cumulative impact on the total time taken to compute solutions. Because of
this the main requirement for any solving method is being able to produce accurate results
while keeping computational overhead as low as possible. This leads to the decision not to
implement adaptive step size methods, as the simpler, fixed step size, RK(4)-method was
able to produce highly accurate solutions. The fixed step size however leads to possible
overhead in areas, where trajectories remain stationary.

3.3 Chosen Metrics for Evaluation

This thesis aims to evaluate mean field approximations on their accuracy. This and the
undeniable difference in speed due to the difference in dimension of mean field and master
equation methods lead to the main focus of evaluation lying on the accuracy of the solvers.
The developed algorithms are compared with a known accurate solution, which was computed
using Octave. Methods which were deemed accurate enough were then compared against each
other in speed and usability. Finally, algorithms that are easily parallelised were preferred,
as the main computational action the program performs is matrix vector multiplication of
the state vectors x with the system matrix A. Matrix vector multiplications are comparably
easy to parallelise, which increases the performance of the program regarding time taken to
compute a solution.

3.4 Quality Assessment of Chosen Method

Keeping all of the above in mind, the RK(4)-method was chosen as the main algorithm. The
reasons for this decision will be explained below.

Simple stages

Every Runge-Kutta-method uses a varying number of stages to compute solutions to systems
of ordinary differential equations. The RK(4)-method has one coefficient per stage which
means that the number of floating point operations per time step is as low as RK methods
permit. While this increases the error compared to a more complex method, it enables the
algorithm to run at finer time steps without a considerable decrease in performance. This
in turn decreases the error as well. Another upside of the simplistic make-up of the Butcher
tableau of the RK(4)-method is the ease of implementation in code, especially considering
that all programs were written in C which lacks a lot of higher level functionality that newer
languages like python provide.
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Accuracy

Compared to other methods for solving ODE-systems, mainly the Euler- and Heun-methods,
the classic Runge-Kutta algorithm is more accurate, as is demonstrated below.

Figure 3.1: Comparison of ODE solving methods

Picture and corresponding R-code can be found at: https://commons.wikimedia.org/wiki/File:Runge-kutta.svg

This is due to the Runge-Kutta(4)-method having a global error O(h4), whereas Euler
has O(h1) and Heun O(h3). As such the RK(4) Method offers a good compromise between
speed, accuracy and ease of implementation, which made it the best option for this project.
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Chapter 4

Comparison

4.1 Trajectory Behaviour

4.1.1 Time-invariant environment

Overview

In this section the algorithms for solving the master equation and for solving the mean field
model, as well as the extension of the mean field model are compared solving time-invariant
systems. This means that all flow rates are static and the system will converge to a steady
state. The following solutions were obtained using the developed algorithms.

Differences between the non extended mean field approximation and the master
equation

We have calculated the trajectories of the expected values of the occupancy of the sites over
time for suitable example lattices with given flow rates. These lattices have been chosen to
analyse the differences of the models. The y-values represent the expected value of occupancy
calculated by the different algorithms. The trajectories calculated by the non extended mean
field model tend to overshoot the correct solution in cases where the flow rate of one site is
significantly higher or lower than the preceding or following site. Take for example a lattice
of length 10, where the flow rates are as follows

α = h1 = 0.99 h2 = h3 = · · · = h8 = 0.01 h9 = 0, 99 β = 0.0 (4.1)

Let the above model be called Model 1 (M1). This flow leads to a gradual increase in the
probability of occupancy of every site over time, as particles cannot leave the last site. The
non extended mean field model is lacking in accuracy in this case, as is shown in the figure
below (Fig 4.1) that compares the result of the non extended model with that of the master
equation for the lattice sites 9 and 10. While the mean field model solutions converge to the
correct steady state value, the temporal evolution of the trajectories before convergence is
incorrect.
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Figure 4.1: M1, Sites 9 and 10, Mean Field and Master Equation

Another, perhaps more serious problem is the trajectory inaccuracy (both in the temporal
evolution as well as the convergence values) of themean field model when simulating solutions
to lattices with random flow rates:

α = 0.840188

h1 = 0.394383

h2 = 0.783099

h3 = 0.798440

h4 = 0.911647

β = 0.197551

(4.2)

Let the above model be called Model 2 (M2). These were obtained using the C pseudo-
random number generator “random()”. This example has been chosen to show differences
in lattices where the flow rates are different from one another, but are all the same order of
magnitude. The resulting trajectories for all lattice sites can be seen in the figure below (fig.
4.2). As is clearly visible, the mean field model fails to accurately model the trajectories.
Note that this is not because of low temporal resolution of the algorithms as the timesteps
for the RK(4) algorithm used to approximate the master equation solution are ∆t = 0.001
and those for the same RK(4) algorithm used to approximate the solution to the mean
field model are ∆t = 0.00001. These values were determined during the development of the
programs. At these points any further increase of the temporal resolution only increased the
time it took to complete a simulation without increasing the accuracy.

30



Figure 4.2: M2, Sites 1-5, Mean Field and Master Equation

The mean field model produces more suitable results for the expected values of the middle
sites of a lattice with equal flow rates. The trajectories diverge from the correct solution at
the beginning of the solution. This is because the non extended mean field model simulates
a response of the trajectories that is slow in comparison to the correct result. This results in
a minor error, that corrects itself, when the trajectories converge to their steady states. In
the following figure (fig 4.3) a lattice with flow rates of 0.5 was simulated and the values for
the sites 3 to 8 are displayed. The following lattice is configuration is called Model 3 (M3):

α(t) = h1(t) = · · · = h9 = β = 0.5 (4.3)

31



Figure 4.3: M3, Sites 3-8, Mean Field and Master Equation

Differences between the extended mean field approximation and the master equa-
tion

Much like the non extended version, the extended mean field model has some specific problems
that are explored in this section. In the extended mean field approximation significantly
different results are found for scenario (4.1). The results are more accurate in the first half
of the simulation, but, as the trajectories converge, the extended mean field model overshoots
the steady state convergence value 1.0 and oscillates around it (fig. 4.4). This behaviour
and the increased accuracy in the first half of the simulation can be explained in a similar
way. When the expected values for the occupation of lattice sites rise in the master equation
the non extended model over values those changes, resulting in a premature rise of the
trajectories. This is due to the limited scope of the model, where the expected value of any
lattice site is only directly dependent on the expected values of the directly neighbouring
sites. The extension increases that scope and the simulation is more responsive to changes
in the expected values. This quicker response, however, is contributing to the error in cases
where the model reacts too strongly to the high expected values of the following sites. The
figure 4.4 compares the result of the extended model with that of the master equation for
M1 and the lattice sites 9 and 10.
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Figure 4.4: M1, Sites 9 and 10, Extended Mean Field and Master Equation

The trajectory for site 9 follows the correct solution very accurately, only slightly differing
towards the end. However, when looking at the calculated trajectory for site 10 the short-
comings of the extended model become visible. The extended mean field model overshoots
the correct solution and the steady state value 1.0 as well.

Comparing all methods in figure 4.5 shows the very different trajectories of the three
approaches. The extended mean field model is much more accurate than the non extended
model in the beginning. But, the non extended version does not oscillate towards the end of
the simulation.
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Figure 4.5: M1, Sites 9 and 10, Extended, Non Extended Mean Field and Master Equation

Looking at a lattice with hop rates as described in (4.2), one can see further improvements
of the extended model over the non extended model (fig. 4.6). The extended mean field model
produces trajectories that follow the solutions of the master equation more precisely than
the non extended model. An error still exists in the extended approximation that results in
imprecise steady states and a deviation from the correct solutions. The reason for this might
again be the limited scope of the extended model compared to the master equation. Another
reason might be that the results of the extended mean field model are more strongly impacted
by high values of expected values of occupancy in comparison to the master equation. This
impact comes from the way the mean field model was expanded. In this case the extended
model takes one subsequent lattice site into account, as described in (2.57). This results in
an imbalance of the number of preceding and following sites that are considered during the
computation of the temporal evolution of the solutions. The obtained solutions are, however,
more accurate in comparison to the non extended mean field model
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Figure 4.6: M2, Sites 1-5, Extended Mean Field and Master Equation

Simulating a lattice with equal flow rates of 0.5 (Model 3), the extended mean field model
produces similar results to the non extended mean field model. The trajectories are more
accurate in the first half of the simulation in comparison to the non extended model. The
final steady states, however, are less accurate. Below, the trajectories of sites 3 through 8 of
a lattice are shown. In the figure below (fig. 4.7) Model 3 was simulated.
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Figure 4.7: M3, Sites 3-8, Extended Mean Field and Master Equation

4.1.2 Time-variant environments

Overview

In this section the three algorithms are compared solving time-variant systems. As shown
before in [5], under these circumstances, the system will converge to a periodic solution with
the same period as the rates.

Differences between the non extended mean field approximation and the master
equation

Consider the following lattice of length 3 with time dependent jump rates Model 4 (M4):

α(t) = 0.05 ∗ sin(t ∗ 0.03) + 1

h1(t) = h2(t) = 0.19 ∗ sin(t ∗ 0.8) + 1

β(t) = 0.05 ∗ sin(t ∗ 0.9) + 1

(4.4)

The next figure (fig. 4.8) compares the results of the mean field model with that of the
master equation for all three lattice sites. The main difference of the solutions is that the
mean field model tends to offset the expected values of the occupancy of the lattice sites.
The trajectory that oscillates around 0.5 is accurate at the beginning of the simulation but
becomes less accurate with time.
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Figure 4.8: M4, Sites 1-3, non extended mean field and master equation

In this case the values obtained by the two methods are roughly similar, the lack in
accuracy of the mean field model becomes more clear if we simulate a lattice of length 4 with
the following flow rate functions:

α(t) = sin(0.3 ∗ t) + 1

h1(t) = sin(0.8 ∗ t) + 1

h2(t) = t

h3(t) = sin(0.8 ∗ t) + 1

β(t) = sin(0.9 ∗ t) + 1

(4.5)

Let the above configuration be called Model 5 (M5). This gives a steadily rising middle flow
rate, the immediate effect of which is an increase of the probability that the next site is
occupied and the previous site is empty. This leads to the trajectory shown in figure 4.9 for
the second site of the lattice:
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Figure 4.9: M5, Site 2, Non Extended Mean Field and Master Equation

Here, the solution calculated using the mean field model starts out accurately, but, as
time moves on, starts to differ by roughly 0.2 at certain points during the simulation and
since this solution is periodic and the flow rate h2(t) is rising with time, the mean field
trajectory will become more and more inaccurate. This behaviour is due to the fact that a
particle which enters site 2 will almost immediately enter site 3, due to the high flow from
2 to 3. The effect of this is that the behaviour of the lattice is almost as if the second site
does not exist and particles flow from site 1 directly into site 3. The mean field model can
not account for such a case. The same error can be seen on the following site. Since the flow
rate is high, the expected value of occupancy of the 2nd site is very low and the value for
the 3rd site is very high. The following figure shows the trajectories of the 3rd site.
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Figure 4.10: M5, Site 3, Non Extended Mean Field and Master Equation

The mean field approximation gives increased values for the 3rd site during the periods
in which the expected values of occupancy are high.

As can be seen in the figure below (fig. 4.11), which displays the trajectories of the
second site, similar to the figure above but with t ∈ [2000, 2500]. This shows that, while
the master equation trajectory remains stable, the non extended mean field models remains
at 0 for extended periods of time. After which the response is very sudden and extreme.
The trajectory of the non extended mean field model over- and undershoots the trajectories
of the master equation. The non extended mean field models inability to take the expected
values of occupancy of non-neighbouring sites directly into account facilitates these errors.
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Figure 4.11: M5, Site 2, Non Extended Mean Field and Master Equation

A similar error appears in the trajectories of the third site. Here, the error lies in increased
trajectory-values, because the non extended mean field model interprets the high flow rate
of the previous site as a steady stream of particles. This error stems from the mean field
models limited scope. A consequence of this limitation is the inaccurate trajectory for the
third site.
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Figure 4.12: M5, Site 3, Non Extended Mean Field and Master Equation

The non extended mean fields trajectory is approximately 1.0 for large amounts of time,
before drastically shifting to follow the trajectory of the master equation. The solution is
accurate within a small error, if the expected value of occupancy of the previous site is low.

Differences between the extended mean field approximation and the master equa-
tion

The extended mean field model is compared to the master equation, simulating the same
system as (4.4) and Model 4. The figure below (fig. 4.13) shows the increased accuracy of
the extended model with the exception of the middle site. The trajectories of the edge cases,
which oscillate more strongly than the middle one, are more accurate in comparison to the
non extended model. The trajectory of the expected value for the occupation of the middle
site follows the shape of the master equation trajectory well. However, the solution is offset
by approx 0.01 almost immediately after the beginning of the simulation.
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Figure 4.13: M4, Sites 1-3, extended mean field and master equation

In the following figure (fig. 4.14) the trajectories of the two algorithms are again compared
using a steadily rising middle flow rate and periodic flow rates for the other lattice sites as in
(4.5) and Model 5. For the second site, the extended mean field model shows the same errors
as before, where the shape of the trajectories is similar to the trajectories of the master
equation, but the values are offset by a relatively steady margin. In the case of (4.5) the
extended model is off by roughly 0.1 to 0.2 during most of the beginning of the simulation.
An immediate effect of this is that the extended model is sometimes less accurate than the
non extended version.

42



Figure 4.14: M5, Site 2, Extended Mean Field and Master Equation

A similar picture emerges for the trajectories of site 3. Again the trajectory of the
extension follows the shape of the master equation trajectory more accurately, yet the error
is often higher than the error of the non extended model, due to the relatively steady offset
(fig. 4.15).

Figure 4.15: M5, Site 3, Extended Mean Field and Master Equation
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An upside of the extended mean field model is that the trajectories remain stable for
longer. As such, the error compared to the non extended model is lower, if the simulation is
run for longer. The trajectory for the expected value for site 2 as calculated by the extended
model does not exhibit the same behaviour as the trajectory of the non extended model (fig.
4.16). Specifically, the extension does not get “stuck” at the values 0 or 1 and follows the
master equations trajectory more precisely. The reason for the difference of the models is
probably the increased “scope” of the extended model.

Figure 4.16: M5, Site 2, Extended Mean Field and Master Equation

Looking at the trajectories for the 3rd site, however, the extended model again falls short
of the accuracy of the non extended model (fig. 4.17). A reason for this might be that,
while the extended mean field model directly computes the expected values of any site i with
the values of sites i − 1 through i + 2, the values of site i − 2 are not directly influencing
the calculation. This explains the relatively small error of the trajectories of site 2. The
trajectories of site 3, however, suffer from both the inaccurate response to changes in fluxes
of the non extended model as well as the steady error margin of the extension. Cumulatively
this leads to a larger error than that of the non extended model.
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Figure 4.17: M5, Site 3, Extended Mean Field and Master Equation

Comparing the extended and the non extended mean field algorithm at selected times
in the simulation further illustrates the above mentioned flaws of these approximations. For
the second site, the following figure (fig. 4.18) shows the delay in the response of the non
extended mean field model which leads to a far too drastic change of the trajectory values.
Also visible is the “offset” of the trajectories simulated by the extended mean field model.
This “offset” seems to be typical for the extension of the model. One notable aspect here is
that it remains almost constant for large parts of the simulation.
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Figure 4.18: M5, Site 2, Extended Mean Field, Non Extended Mean Field and Master
Equation

A similar picture emerges for the expected value trajectories for the third site. Here, the
extended model displays the same constant error as well as a less accurate shape (fig. 4.19).
The decrease in accuracy might be due to the extended model not including more than one
previous site in the calculation of the expected values. As such the two algorithms have a
similar delay but the non extended mean field model changes the gradient of the trajectory
more drastically. This quick response leads to an accurate trajectory during the period where
the expected value is close to 0.

46



Figure 4.19: M5, Site 3, Extended Mean Field, Non Extended Mean Field and Master
Equation

4.2 Steady States

Overview

In the following section, the steady states as simulated by the three methods, will be com-
pared. Because the system will only ever reach a steady state, if the flow rates are constant,
we will only consider the time-invariant case. To identify the time at which a system has
reached a steady state, the algorithm will check if the absolute change of all components of
the trajectory remain below a given threshold for a set period of time. If this is the case, the
algorithm will halt and the approximative solution for the steady states will be returned.

Differences

We look at a lattice with flow rates of the form:

α(t) = h1(t) = · · · = h19(t) = β(t) = 0.1 (4.6)

Which we will call Model 6 (M6). The results of which can be seen in the following figure
(fig. 4.20). In many cases the expected values as calculated with the non extended mean
field model are slightly below or above the correct solutions. It seems that this method is
slightly less accurate than the master equation.
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Figure 4.20: M6, Steady States, Non Extended Mean Field and Master Equation

In figure 4.20 the expected values as calculated by the mean field model are too high for
the first half of the lattice sites and too low for the second half. Simulating the same lattice
with the extended mean field method yields similar results (fig 4.21). The extension of the
model yields more accurate steady states in this case, however.

Figure 4.21: M6, Steady States, Extended Mean Field and Master Equation

This behaviour remains the same for a lattice with flow rates of 10, with the error roughly
equal to that of a lattice with low flow rates.

Consider therefore the next model, Model 7 (M7):

α(t) = h1(t) = · · · = h19(t) = β(t) = 10 (4.7)
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The next figure (fig. 4.22) shows the steady states of such a lattice, calculated using the non
extended mean field model. We also extended the size of the lattice to 25 to illustrate, that
the results will remain similar regardless of lattice size.

Figure 4.22: M7, Steady States, Non Extended Mean Field and Master Equation

The error, however, is relatively small, ranging from around 0.03 to 0.02 at the high end
to accurate values for the sites in the middle of the lattice. The extended mean field model
increases the accuracy even further, producing approximately equal results to the master
equation (fig. 4.23).

Figure 4.23: M7, Steady States, Extended Mean Field and Master Equation
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This generally is the case for lattices where the flow rates do not change abruptly. There
is, however, one case in which the mean field model produces results that are very different
from the correct solutions. This happens in lattices containing consecutive sites with very
high flow rates, followed immediately by consecutive sites with very low flow rates. For this
case we define Model 8 (M8) to be:

α = 10

h1 = 1

h2 = h3 = h4 = 10

h5 = h6 = h7 = 1

h8 = h9 = 100

h10 = h11 = h12 = 1

h13 = h14 = h15 = 100

h16 = h17 = 1

h18 = 100

h19 = β = 1

(4.8)

The results of such a case are shown in figure 4.24 below.

Figure 4.24: M8, Steady States, Non Extended Mean Field and Master Equation

In this example, the mean field model fails to accurately calculate the expected values of
many of the lattice sites. In the case of position 14 the calculation is off by 0.46.

The extended model is marginally more accurate, yet the error remains high for a lot of
lattice sites. While the values for positions 7 and 14 are more accurate, the value for position
13 is almost exactly as inaccurate as calculated by the non extended model. Additionally,
the value for site 8 is far less accurate than with the non extended model (fig. 4.25).
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Figure 4.25: M8, Steady States, Extended Mean Field and Master Equation

4.3 Advantages of the Master Equation

Additional Information

Because the master equation takes the probabilities of every state into account, it allows
the program to compute more than just the expected values of a site being occupied. It
enables the calculation of the covariances of the states and the probabilities of any single
state or number of states can be saved and examined. It is also possible to calculate the
multiplicative expected values for any number of states. This ability was detrimental to
determine the initial values of the extended mean field model. For any additional extension
of the mean field model this functionality will be useful as well. This is because extending
the mean field model further will require the multiplicative expected values of three or more
states as the initial values of the differential equation. These values can be used to analyse
the systems in more detail and allow for a better understanding of them.

Accuracy

As is shown above, the mean field model in certain cases fails to accurately calculate the
expected values. The master equation does not have that problem as the underlying cal-
culations are exact and able to handle, for example large spikes or dips, in flow rate. The
Accuracy of the master equation method only depends on the accuracy of the solving method
used for the differential equation ẋ = Ax.
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4.4 Advantages of the non extended Mean Field Model

Speed and Memory

The mean field model is undeniably faster than the master equation method. This is due to a
significant difference in floating point operations the algorithms have to perform in order to
simulate a single time step. This lower number of calculations also means that there is less
data needed for any time step, which allows much larger lattices (6 ∗ 108 on a system with
32 GB of RAM), in comparison to the master equation which reaches the memory limit of
most computers at a lattice length of around 40.

4.5 Advantages of the extended Mean Field Model

Accuracy compared to the non extended version

Extending the mean field model can yield more accurate results in certain situations. How-
ever, these situations are mainly limited to the cases in which the non extended version
is already accurate to a reasonable degree. Cases in which the extension yields far better
results are rare. The greatest improvements can be found in trajectory shape and trajectory
accuracy. However the performance impact of the extended version is negligible compared to
the non extended version. As such, implementing the extended version is the better choice
in many cases.
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Chapter 5

Conclusion

Both, the non extended mean field model as well as its extended version trade accuracy for
a smaller memory footprint and a higher simulation speed. Their main downsides are the
simulation of lattices with large differences in flow rate as well as time dependent flow rates.
If a system is simulated, in which the flow rates have similar values and if that system addi-
tionally has time invariant flow rates, both mean field methods are able to produce accurate
results for the expected values of TASEP systems. This is where the disadvantages of these
methods are beginning to show, because if any variability in the flow rates is introduced, the
accuracy of these methods begins to decrease. This means that if the lattice has time variant
flow rates or large flow rate changes, the mean field methods are unable to produce accurate
results. This is also true for the trajectories of the expected values, as their behaviour over
time until an equilibrium state is reached will differ significantly from the correct solution.
This makes it hard to perform accurate observations of the behaviour of the system until it
has reached its steady state. Lastly, the master equation method supplies much more infor-
mation about the lattice if implemented, the program can calculate variances, covariances,
probabilities of individual lattice states and probabilities of arbitrary groupings of lattice
states. These values simply cannot be calculated using the mean field methods.

In general, if a simple large system is simulated, the mean field methods are able to
produce correct results quickly. If the behaviour of a more complicated system is simulated,
the master equation produces much more accurate results, and it enables a deeper insight
into the system.
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[16] L. Grüne, “Numerische Methoden für Differentialgleichungen,” 2020. [Online; accessed
29-September-2020].

[17] Matlab, “Choose an ODE Solver,” 2020. [Online; accessed 17-September-2020].

55


