Adaptive Step Sizes for Stochastic Gradient Descent

Stochastic Optimization Problems

Consider a family of functions, indexed with & € Q, for some probability
space (Q,P):
fe: R" >R

Stochastic Optimization aims at minimizing:

P=x B [f0)] = [ f0dE@ (1)
where P is the probability measure on Q.
Gradient Descent
A simple way to solve smooth optimization problems like
)

is gradient descent:
» Select initial x; € R”

» In Iteration k, compute VF(x;) and update

X1 = X — 2V f(x).
Here: ax > 0 Is some step size.

Practical Approach: (Mini-)Batch-Algorithms

Convergence Analysis & Variance

Main theoretical concern: Noise in the search direction:

Ve [Vfi(xn) | = Be [IV£(xx) — VF(xp)|I7] -
Variance models are needed. A popular choice is:

Ve [Vi(x)| < Vo+ VIl VE ()] (2)

Such models can be used for step size control and a-priori error analysis.

\4

In fact, bounds as in (2) can be deduced form certain smoothness- and
convexity-assumptions ([ 1, 2]).

However, they might lead to unwanted dependency of the step size on the
convexity.

In [1] we developed an alternative model, which mitigates these problems.

Direct Incoporation of the Variance

An Alternative Approach directly uses the variance for step size selection.
In general, it holds that

B[V fe(wi) |I7] = Ve

Vie(wi)]

A =
L

e[ 11V fx(wi)

7]

(3)

is the step size which maximizes the expected descent in the current
Iteration.

» In [1] we developed techniques to estimate the parameters needed in (3).
» Usually, the measure P is not available. Instead, one has access to a set of > We use exponential smoothing techniques to minimize noise in the
. iid observed quantities.
observations &, ..., EN ~ P. X .
> Then » Moderate computational overhead leads to a nearly hyperparameter
1 < free stochastic optimization algorithm.
felx) = n E ,ffi(x) » Theoretical convergence guarantees are given in special cases, numerical
, , , , =L experiments show the methods works well beyond theory.
is a (stochastic) approximation to F from (1).
> In each iteration, sample a new & and use V f¢ (xx) as a search direction.
» This search direction is an unbiased estimator for VF(x): Numerical Results on Image Classification Tasks
2 | V| = VF(x).
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Figure: Performance on interpolating artificial data. For non-interpolating see [1]

Figure: Performance on Image Classification data sets. Top row:
row: CIFAR-10, third row: SVHN, last row: CIFAR-100.
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