
Optimal Feedback Control with Neural Networks
A compositionality-based approach via Hamilton-Jacobi-Bellman PDEs

Pp Optimal Control Problems Pp

The project deals with nonlinear infinite horizon optimal control
problems of the form

minimize 𝐽 (𝑥0, 𝑢) =
∫ ∞

0
𝑒−𝛿𝑡ℓ (𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡, (1)

such that ¤𝑥 (𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)), 𝑥 (0) = 𝑥0, (2)

where
▶ 𝑥 : R≥0 → R𝑛 is the state at time 𝑡 with initial value 𝑥 (0) = 𝑥0
▶ 𝑢 : R≥0 → 𝑈 ⊂ R𝑚 is the control variable
▶ 𝑓 : R𝑛 ×𝑈 → R𝑛 is a controlled vector field that determines the

dynamics of 𝑥 in dependence of 𝑢 via the differential equation (2)
▶ ℓ : R𝑛 ×𝑈 → R is the cost function and 𝛿 ∈ [0,∞) is the discount rate
A control function 𝑢★ is called optimal for an initial value 𝑥0 if it
minimizes the costs in (1), i.e., 𝐽 (𝑥0, 𝑢★) = 𝑉 (𝑥0) for the optimal value
function

𝑉 (𝑥0) := inf
𝑢

𝐽 (𝑥0, 𝑢).
It is desirable to obtain the optimal control in feedback form, i.e.,

𝑢★(𝑡) = 𝐹 (𝑥★(𝑡))
for a feedback law 𝐹 : R𝑛 → 𝑈 and the corresponding optimal trajectory
𝑥★. If an (approximate) optimal value function 𝑉 is known, an

(approximate) optimal feedback law 𝐹 can be computed from 𝑉 .

Task: Compute the optimal value function 𝑉 efficiently.

Pp Curse of Dimensionality for the HJB-PDE Pp

The optimal value function is the unique (viscosity) solution of the
Hamilton-Jacobi-Bellman equation

𝛿𝑉 (𝑥) + sup
𝑢∈𝑈

{−𝐷𝑉 (𝑥) 𝑓 (𝑥,𝑢) − ℓ (𝑥,𝑢)} = 0,

a partial differential equation (PDE) in R𝑛. Solving this PDE numerically
is subject to the curse of dimensionality, i.e., in general the numerical
effort grows exponentially in the state dimension 𝑛.

Deep neural networks can compute so-called compositional functions
without suffering from the curse of dimensionality. One particular
example for compositional functions are separable functions of the
form

𝑉 (𝑥) =
𝑠∑︁
𝑗=1

𝑉𝑗 (𝑧 𝑗),

where 𝑧 𝑗 are lower-dimensional components of 𝑥 .

Pp Project Goals Pp

▶ Explanation of the ability of deep neural networks for the
curse-of-dimensionality-free solution of high-dimensional HJB-PDEs

▶ Identification of structural conditions for optimal control problems
allowing for compositional (approximate) optimal value functions and
possibly also compositional optimal feedback laws

▶ Construction of neural network architectures and training algorithms
for an efficient approximation

Pp Network Architecture for Separable Functions Pp
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▶ In the training process, we iteratively evaluate the network at randomly
chosen points 𝑥1, . . . , 𝑥𝑁 of the state space, measure the deviation from
the desired function 𝑉 with an appropriate loss function, and update
the weights of the network accordingly

Pp Stabilization Task: Control Lyapunov Functions Pp
▶ Objective: control the trajectory to a desired set point and keep it there

; Compute a control Lyapunov function 𝑉

▶ Consider an interconnected control system represented as graph: one
node for each subsystem with an edge between two nodes if they
interact, i.e., influence their dynamics

▶ Assume input-to-state stability for each subsystem
▶ Assume that each cycle of the graph contains at least one node with a

high level of controllability, called active node
▶ Result: existence of a separable control Lyapunov function 𝑉 =

∑𝑠
𝑗=1𝑉𝑗

Numerical test case:

¤𝑥1 = 𝑥10 + 𝑢,
¤𝑥2 = 𝑥1 − 𝑥2 + 𝑥21,

¤𝑥 𝑗 = 𝑥 𝑗−1 − 𝑥 𝑗, 3 ≤ 𝑗 ≤ 10.
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Pp Separability via Decaying Sensitivity Pp
▶ Setting: interconnected control system represented by its graph
▶ Assumption: the influence of the node 𝑥𝑘 on

𝑉 (𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗, 𝑥 𝑗+1, . . . , 𝑥𝑠) −𝑉 (𝑥1, . . . , 𝑥 𝑗−1, 0, 𝑥 𝑗+1, . . . , 𝑥𝑠)
decays to 0 with an increasing graph-distance of the nodes 𝑥𝑘 and 𝑥 𝑗

▶ Construction: overlapping decomposition based on neighborhoods
in the graph

▶ Result: separable approximation of 𝑉 (·) ≈ ∑𝑠
𝑗=1Ψ𝑗 (·) +𝑉 (0)
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Pp Example: Convoy of Vehicles Pp
▶ Control objective: the first vehicle should follow some reference

trajectory and all other vehicles should maintain a fixed distance 𝐿

▶ Decaying sensitivity yields that a perturbation in any vehicle will
decrease quickly if the vehicles are controlled optimally

▶ Numerical simulation with 100 vehicles, dynamics ¤𝑥𝑖 = 𝑣𝑖, ¤𝑣𝑖 = 𝑢𝑖 and
costs given as (𝑥1 − 𝑥ref)2︸       ︷︷       ︸

reference

+∑99
𝑗=1 (𝑥 𝑗+1 − 𝑥 𝑗 − 𝐿)2︸             ︷︷             ︸

desired distance

+ 𝑟 (𝑣,𝑢)︸ ︷︷ ︸
regularization

Velocities for the first 5 vehicles and decay in the optimal value function 𝑉 (𝑥) = 𝑥𝑇𝑃𝑥
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