Druckansicht der Internetadresse:

Department of Mathematics

Chair of Applied Mathematics Prof. Dr. L. Grüne / Prof. Dr. A. Schiela

Print page

DFG project “Nonsmooth multi-level optimization algorithms for energetic formulations of finite-strain elastoplasticity”

start of the project: 2019 , end of the project: 2022

contract number: SCHI 1379/6-1

funding institution: DFG (Priority Programme 1962)

PROJECT MEMBERS

principal investigator

Prof. Dr. Anton Schiela

project members

M.Sc. Bastian Pötzl

external project members

Prof. Dr. Oliver Sander (Technische Universität Dresden)

AIMS OF THE PROJECT

Energetic formulations of finite-strain elastoplasticity are an instance of the general theory of rate-independent systems. They generalize the primal formulation of small-strain elastoplasticity, where the variables are the displacements, plastic strain, and possibly hardening variables. As they do not involve derivatives, nonsmooth phenomena can be modeled in a particularly elegant way.In the energetic formulation, time-discrete elastoplastic problems are sequences of minimization problems, which makes them amenable to optimization algorithms. The increment minimization problems combine various difficulties: They are highly nonlinear, nonconvex and nonsmooth, and some of the independent variables take values in a Lie group, modelling incompressibility of plastic deformation.On the positive side, after discretization the nonsmooth terms are block-separable, i.e., they can be written as sums of nonsmooth functions with small disjoint sets of independent variables. This fact can be exploited by optimization algorithms.In this project we plan to develop efficient optimization solvers for energetic formulations of finite-strain elastoplasticity. Motivated by the specific problem structure we will use proximal Newton methods, which reduce the given nonconvex nonsmooth problems to sequences of convex, but still nonsmooth subproblems. Then, these subproblems are solved efficiently with the help of a nonsmooth multigrid method. This overcomes a well-known limitation of proximal Newton solvers, which typically lack efficient solvers for the subproblems. We study the new proximal Newton algorithms both in an algebraic setting and in function spaces.We will investigate two alternative approaches for enforcing incompressibility of plastic deformation. On the one hand, we will consider them as elements of the vector space of matrices and subject them to a nonlinear equality constraint. For this formulation we will construct nonsmooth composite step methods. As a complementary approach, we will generalize the multilevel proximal Newton methods to the setting of optimization problems posed on manifolds. The relative merits and shortcomings of these approaches will be compared in a series of benchmarks.

For further information see the web page on the project within the DFG priority program 1962.


responsible for the content: Lars Grüne

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact