Druckansicht der Internetadresse:

Mathematisches Institut

Lehrstuhl für Angewandte Mathematik Prof. Dr. L. Grüne / Prof. Dr. A. Schiela

Seite drucken


zur Übersicht

Vortrag im Mathematischen Kolloquium von A. Jentzen: "Overcoming the curse of dimensionality: from nonlinear Monte Carlo to deep neural networks"

Donnerstag, den 19. November 2020

Am Donnerstag, dem 19. November 2020 um 16:30 Uhr spricht in einer Zoom-Konferenz

Herr Prof. Dr. Arnulf Jentzen
Arbeitsgruppe für Maschinelles Lernen und Stochastische Analysis
Angewandte Mathematik: Institut für Analysis und Numerik
Fachbereichs Mathematik und Informatik
Westfälische Wilhelms-Universität Münster
(Gast am Lehrstuhl für Angewandte Mathematik
bei Herrn Prof. Dr. Lars Grüne)

im Rahmen des

Mathematischen Kolloquiums

über das Thema

"Overcoming the curse of dimensionality: from nonlinear Monte Carlo to deep neural networks".

Weitere Einzelheiten, die Einladung und die Zusammenfassung des Vortrags finden Sie auf den Informationen zum WS 2020/21 des Mathematischen Kolloquiums.

Die Einlogdaten zur Zoom-Konferenz finden Sie in der Einladung.


Partial differential equations (PDEs) are among the most universal tools used in modelling problems in nature and man-made complex systems. For example, stochastic PDEs are a fundamental ingredient in models for nonlinear filtering problems in chemical engineering and weather forecasting, deterministic Schroedinger PDEs describe the wave function in a quantum physical system, deterministic Hamiltonian-Jacobi-Bellman PDEs are employed in operations research to describe optimal control problems where companies aim to minimise their costs, and deterministic Black-Scholes-type PDEs are highly employed in portfolio optimization models as well as in state-of-the-art pricing and hedging models for financial derivatives. The PDEs appearing in such models are often high-dimensional as the number of dimensions, roughly speaking, corresponds to the number of all involved interacting substances, particles, resources, agents, or assets in the model. For instance, in the case of the above mentioned financial engineering models the dimensionality of the PDE often corresponds to the number of financial assets in the involved hedging portfolio. Such PDEs can typically not be solved explicitly and it is one of the most challenging tasks in applied mathematics to develop approximation algorithms which are able to approximatively compute solutions of high-dimensional PDEs. Nearly all approximation algorithms for PDEs in the literature suffer from the so-called ”curse of dimensionality“ in the sense that the number of required computational operations of the approximation algorithm to achieve a given approximation accuracy grows exponentially in the dimension of the considered PDE. With such algorithms it is impossible to approximatively compute solutions of high-dimensional PDEs even when the fastest currently available computers are used. In the case of linear parabolic PDEs and approximations at a fixed space-time point, the curse of dimensionality can be overcome by means of Monte Carlo approximation algorithms and the Feynman-Kac formula. In this talk we prove that suitable deep neural network approximations do indeed overcome the curse of dimensionality in the case of a general class of semilinear parabolic PDEs and we thereby prove, for the first time, that a general semilinear parabolic PDE with a nonlinearity depending on the PDE solution can be solved approximatively without the curse of dimensionality.
Facebook Twitter Youtube-Kanal Instagram Blog UBT-A Kontakt