Druckansicht der Internetadresse:

Mathematisches Institut

Lehrstuhl für Angewandte Mathematik Prof. Dr. L. Grüne / Prof. Dr. A. Schiela

Seite drucken

News

zur Übersicht


Vortrag von Steffen Schotthöfer im MODUS-Oberseminar: „Low-rank lottery tickets: Finding efficient low-rank neural networks via matrix differential equations“

Mittwoch, den 18. Januar 2023 um 12:15 Uhr

Am Mittwoch, dem 18. Januar 2023, um 12:15 Uhr spricht im S 102, FAN, Gebäudeteil „FAN-B“

Herr M. Sc. Steffen Schotthöfer
Doktorand in der Arbeitsgruppe 5 „Computational Science and Mathematical Models
Institut für Angewandte und Numerische Mathematik
Fakultät für Mathematik
Karlsruher Institut für Technologie (KIT), Karlsruhe

im Rahmen des

Forschungszentrums für Modellierung und Simulation (MODUS).

über das Thema

„Low-rank lottery tickets: Finding efficient low-rank neural networks via matrix differential equations“.

ABSTRACT:

Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them are significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. This allows us to provide approximation, stability, and descent guarantees. Moreover, our method automatically and dynamically adapts the ranks during training to achieve the desired approximation accuracy. The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.

Weitere Einzelheiten erfahren Sie im eLearning-Kurs (Vortragsankündigungen, Diskussionen, ...) des MODUS-Forschungszentrums.

Dort stehen auch die konkreten Einwahldaten zur Videokonferenz.

Facebook Twitter Youtube-Kanal Instagram UBT-A Kontakt