News
Vortrag von Stephanie Thomas im MODUS-Oberseminar: „West Nile virus transmission in Germany: Epidemiological model as basis for an early warning system“
Mittwoch, den 8. Februar 2023
Am Mittwoch, dem 8. Februar 2023, um 12:15 Uhr sprechen im S 102, FAN, Gebäudeteil „FAN-B“
Dr. Stephanie Thomas
Postdoc am Lehrstuhl für Biogeografie
Fakultät für Biologie, Chemie und Geowissenschaften
Universität Bayreuth
im Rahmen des
Laperriere (2011)Forschungszentrums für Modellierung und Simulation (MODUS).
über das Thema
„West Nile virus transmission in Germany: Epidemiological model as basis for an early warning system“.
Weitere Einzelheiten erfahren Sie im eLearning-Kurs (Vortragsankündigungen, Diskussionen, ...) des MODUS-Forschungszentrums sowie vom „Bayreuth Lab for Digital Sciences“ (BayLDS).
ABSTRACT:
Mosquito-borne diseases still represent largely underestimated risks in Europe. The fact that autochthonous transmission of such
diseases has not played a significant role in the recent past goes hand in hand with the high probability that corresponding disease
patterns, should local transmission occur, will not be correctly diagnosed. Besides newly introduced mosquito species such as the Asian
tiger mosquito (Aedes albopictus), native mosquito species can transmit novel viruses, such as West Nile virus (WNV), which was most
likely introduced via migratory birds. There was a huge increase in cases in EU member states in 2018. Of 1605 West Nile virus infections,
96% were acquired locally. West Nile virus was first detected in humans in Germany in 2019, and in 2020 a cluster of 9 cases occurred in
Leipzig within only four weeks (Pietsch 2020).
Due to climate change, risk areas are expected to expand, and critical periods are expected
to lengthen. A validated early warning system is not yet available throughout Germany.
The epidemiological West Nile model we developed is based on
Laperriere (2011),
Rubel (2008),
Bergsman (2016),
and Kioutsioukis (2019),
where each compartment (health status) of hosts (birds) and vectors (mosquitoes) is represented by an ordinary differential
equation. We present the ongoing work of the validation and determination of the sensitivity of the model as next steps for its long-term
application in the context of an early warning system. This work is part of the project
BayByeMos
(Verbundprojekt Klimawandel und Gesundheit Bayern).
- Bergsman, L. D., J. H. Hyman and C. A. Manore (2016). A mathematical model for the spread of West Nile virus in migratory and resident birds. Mathematical Biosciences and Engineering 13(2): 401–424.
- Kioutsioukis, I. and N. I. Stilianakis (2019). Assessment of West Nile virus transmission risk from a weather-dependent epidemiological model and a global sensitivity analysis framework. Acta Tropica 193: 129–141.
- Laperriere, V., K. Brugger and F. Rubel (2011). Simulation of the seasonal cycles of bird, equine and human West Nile virus cases. Preventive Veterinary Medicine 98(2–3)B 99–110.
- Pietsch, C., Michalski, D., Münch, J., Petros, S., Bergs, S., Trawinski, H., Lübbert, C., & Liebert, U.G. (2020). Autochthonous West Nile virus infection outbreak in humans, Leipzig, Germany, August to September 2020. Eurosurveillance, 25.
- Rubel, F., K. Brugger, M. Hantel, S. Chvala-Mannsberger, T. Bakonyi, H. Weissenböck and N. Nowotny (2008). Explaining Usutu virus dynamics in Austria: Model development and calibration. Preventive Veterinary Medicine 85(3–4): 166–186.
- Thomas, S M; Beierkuhnlein, C (2020): Kombination von Artverbreitungsmodellen und epidemiologischen Modellen zur Vorhersage stechmücken-übertragener arboviraler Krankheiten in Wittmann, J. and Maretis, D.K.: Simulation in den Umwelt- und Geowissenschaften, Shaker, Aachen.