Druckansicht der Internetadresse:

Mathematisches Institut

Lehrstuhl für Angewandte Mathematik Prof. Dr. L. Grüne / Prof. Dr. A. Schiela

Seite drucken

News

zur Übersicht


Gastvortrag von Andreas A. Buchheit im Elitestudiengang „Scientific Computing“: „Exact Continuum Representation of Long-range Interacting Systems and Emerging Exotic Phases in Unconventional Superconductors“

Dienstag, den 9. Mai 2023 um 16:30 Uhr

Am Dienstag, dem 9. Mai 2023, um 16:30 Uhr spricht im Hörsaal H 31, FAN, Gebäudeteil „FAN-B“

Herr Dr. Andreas A. Buchheit [en]
Arbeitsgruppe von Prof. Sergej Rjasanow“ [en]
Arbeitsgebiet „Numerische Mathematik“
Fachrichtung Mathematik
Fakultät für Mathematik und Informatik (MI)
Universität des Saarlandes, Saarbrücken
(Gast am Lehrstuhl für Wissenschaftliches Rechnen [en] bei Prof. Dr. Mario Bebendorf [en])

im Rahmen des

Elitestudiengang „Scientific Computing“ [en] des Elitenetzwerk Bayerns

über das Thema

„Exact Continuum Representation of Long-range Interacting Systems and Emerging Exotic Phases in Unconventional Superconductors“.

ABSTRACT:

Continuum limits are a powerful tool in the study of many-body systems in condensed matter physics, yet their validity is often unclear when long-range interactions are present. In this work, we rigorously address this issue and put forth an exact representation of long-range interacting lattices that separates the model into a term describing its continuous analog, the integral contribution, and a term that fully resolves the microstructure, the lattice contribution. Here, we use the recently developed Singular Euler–Maclaurin expansion, a generalization of the 300-year old Euler–Maclaurin summation formula to multidimensional sums that involve functions with algebraic singularities. For any system dimension, any lattice, any power-law interaction, and for linear, nonlinear, and multi-atomic lattices, we show that the lattice contribution can be described by a differential operator based on the multidimensional generalization of the Riemann zeta function, namely the Epstein zeta function. We employ our representation in Fourier space to solve the long-standing problem of long-range interacting unconventional superconductors. We derive a generalized Bardeen–Cooper–Schrieffer gap equation, solve it numerically, and find emerging exotic phases in two-dimensional superconductors with topological phase transitions. Finally, we determine the quantum time evolution and utilize non-equilibrium Higgs spectroscopy to analyze the impact of long-range interactions on the collective excitations of the condensate.

Weitere Einzelheiten erfahren Sie in der Einladung (PDF-Datei) und auf der Webseite des Elitestudiengangs „Scientific Computing“ [en].

Herzliche Einladung zu Kaffee/Tee ab 16:00 Uhr im Konferenzraum K VI, Gebäude FAN B.

Facebook Twitter Youtube-Kanal Instagram UBT-A Kontakt