News
Forschungsaufenthalt und Oberseminarvortrag von Rami Katz „Oscillations in strongly 2-cooperative systems and their applications in systems biology“
Dienstag, der 18. Februar 2025 um 11:00 Uhr
Am Dienstag, dem 18. Februar 2025 um 11:00 Uhr spricht im Seminarraum S 74, Gebäude NW II.
Herr Dr. Rami Katz [en],
Dynamical Networks and Systems Biology group [en],
Department of Industrial Engineering [en],
University of Trento [en], Italy
(Gast am Lehrstuhl für Nichtlineare Analysis und Mathematische Physik
bei Herrn Prof. Dr. Thomas Kriecherbauer
und am Lehrstuhl für Angewandte Mathematik
bei Herrn Prof. Dr. Lars Grüne)
im Rahmen des
Forschungszentrums für Modellierung und Simulation (MODUS)
sowie des Oberseminars "Numerische Mathematik, Optimierung und Dynamische Systeme"
über das Thema
„Oscillations in strongly 2-cooperative systems and their applications in systems biology“.
Rami Katz ist am 17.-21. Februar 2025 Gast des Lehrstuhls für einen Forschungsaufenthalt. In dieser Zeit ist er zusammen mit Giulia Giordano im Büro 3.2.01.538 erreichbar. Seine wissenschaftlichen Arbeitsfelder liegen im Bereich Kontrolltheorie von PDEs, Nichtlineare Dynamische Systeme und Algebraische Methoden für Inverse Probleme.
ABSTRACT:
The emergence of sustained oscillations (via convergence to periodic orbits) in high-dimensional nonlinear dynamical systems is
a highly non-trivial question with important applications in systems biology, including the understanding of bio-molecular oscillators
ruling cell life-cycle and metabolism, as well as circadian rhythms in hormone secretion, body temperature and metabolic functions.
In systems biology, the mechanism underlying such widespread oscillatory biological motifs is still not fully understood. From a
mathematical perspective, the study of sustained oscillations is comprised of two parts: (i) showing that at least one periodic orbit exists
and (ii) studying the stability of periodic orbits and/or characterising the initial conditions which yield solutions that converge to periodic
trajectories. In this talk we will focus on a specific class of nonlinear dynamical systems that are strongly 2-cooperative. Employing results
from the theory of cones of rank k, the spectral theory of totally positive matrices and Perron-Frobenius theory, we will show that strongly
2-cooperative systems admit an explicit set of initial conditions of positive measure, such that every solution emanating from this set
converges to a periodic orbit. We will further demonstrate our results using the n-dimensional Goodwin oscillator and a 4-dimensional
biological oscillator based on RNA–mediated regulation.
Weitere Einzelheiten erfahren Sie auf
- der Webseite zum MODUS-Seminarprogramm.