Druckansicht der Internetadresse:

Mathematisches Institut

Lehrstuhl für Angewandte Mathematik Prof. Dr. L. Grüne / Prof. Dr. A. Schiela

Seite drucken

News

zur Übersicht


Forschungsaufenthalt und Oberseminarvortrag „On the implicit programming approach in a class of mathematical programs with equilibrium constraints“ von Jiří Outrata

Montag, den 2. Dezember 2024 um 10:00 Uhr

Am Donnerstag, dem 2. Dezember 2024 um 10:00 Uhr spricht im Seminarraum S 137, Gebäude NW III.

Herr Doc. Ing. Jiří Outrata, Dr Sc.
Institut für Informationstheorie und Automatisierung (UTIA)
Tschechische Akademie der Wissenschaften (ASCR), Prag,Tschechische Republik

im Rahmen des

Oberseminars "Numerische Mathematik, Optimierung und Dynamische Systeme"

über das Thema

„On the implicit programming approach in a class of mathematical programs with equilibrium constraints“.

Jiří Outrata ist am 2.-3. Dezember 2024 Gast des Lehrstuhls für einen Forschungsaufenthalt. In dieser Zeit ist er im Büro 3.2.01.538 erreichbar. Seine wissenschaftlichen Arbeitsfelder liegen im Bereich Variationsanalysis, nichtglatte Optimierung, verallgemeinerte Ableitungen, Formoptimierung, Kontaktprobleme, Stabilitätsanalysis von Optimierungsproblemen und Cournot-Nash-Walras-Equilibria.

Die Einladung die Zusammenfassung des Vortrags finden Sie in der PDF-Datei.

ABSTRACT:

We consider a class of mathematical programs with equilibrium constraints (MPECs) which can be converted to minimization of a Lipschitzian objective in the upper-level variable only. It is assumed that the equilibria are governed by generalized equations (GEs), whose solution maps are single-valued and locally Lipschitz and the resulting nonsmooth programs are solved via a bundle method. Since the relevant rules of the generalized differential calculus hold merely as inclusions, we are generally not. able to supply the used bundle method with correct subgradients, which makes the application of this, so-called ImP approach, questionable. It turns out, however, that on the basis of some generalizations of the classical semismoothness property one can:

  1. suggest a procedure in which the (Clarke) subdifferentials are replaced by some larger sets of the so-called pseudosubgradients. The used bundle method converges then to points satisfying a slightly weaker stationarity condition,
  2. interpret this condition in terms of the Clarke stationarity condition of an equivalent MPEC,
  3. propose a numerically efficient way of computing the pseudosubgradients provided the multi-valued part of the considered GE possesses the so-called SCD (subspace containing derivative) property. The approach is tested via an economic MPEC modelling an oligopolistic market, where one player decides to replace the Cournot-Nash strategy by the Stackelberg one and possible strategy changes of some players are associated with certain costs of change.

Facebook Youtube-Kanal Instagram UBT-A Kontakt