News
Oberseminar-Vortrag von Andrii Mironchenko „Input-to-state stability meets small-gain theory“
Freitag, der 19. Juli 2024 um 14:00 Uhr
Am Freitag, dem 19. Juli 2024 um 14:00 Uhr spricht im Seminarraum S 78, Gebäude NW II.
Dr. habil. Andrii Mironchenko,
Arbeitsgruppe „Dynamische Systeme“,
Institut für Mathematik,
Fakultät für Technische Wissenschaften,
Universität Klagenfurt in Klagenfurt am Wörthersee, Österreich
im Rahmen des
Oberseminars "Numerische Mathematik, Optimierung und Dynamische Systeme"
über das Thema
„Input-to-state stability meets small-gain theory“.
Die wissenschaftlichen Arbeitsfelder von Andrii Mironchenko liegen im Bereich Stabilitätsanalyse großskaliger Netzwerke, Stabilität und Kontrolle unendlicher Netzwerke, hybride, impulsive, zeitdiskrete und geschaltete Systeme, nicht-koerzive Lyapunov-Theorie und monotone (positive) Systeme.
ABSTRACT:
In most cases, one shows the stability of a nonlinear system by the construction of a suitable Lyapunov function for it. However,
if the system is a complex large-scale or potentially infinite network of nonlinear agents, direct analysis of the stability of such a system
becomes very challenging. The problem becomes even more complex, if the number of agents, which are acting in the network
is unknown. Nonlinear small-gain theory for finite networks of ODE systems has provided efficient methods to counteract these challenges
and has become the basis for the powerful methods of nonlinear controller design. In this talk, we present the full generalization of the
Lyapunov-based nonlinear small-gain theorem to the case of countably many interacting systems. We use Lyapunov methods combined
with the analysis of nonlinear monotone systems on a positive cone of certain sequence spaces. If the gain operator is homogeneous and
subadditive, we prove constructive results giving an explicit expression for the Lyapunov function of the infinite network. Though we focus
on infinite ODE networks, we expect that the results can be extended to infinite networks consisting of infinite-dimensional components,
and we have developed some machinery for this case as well.
Weitere Einzelheiten erfahren Sie in der Einladung (PDF).